Bull

AlIX 5L Technical Reference
Base Operating System and Extensions

Volume 2/2

AlIX

ORDER REFERENCE
86 A2 48EF 02

Bull

AlIX 5L Technical Reference
Base Operating System and Extensions

Volume 2/2

AIX

Software

May 2003

BULL CEDOC

357 AVENUE PATTON
B.P.20845

49008 ANGERS CEDEX 01
FRANCE

ORDER REFERENCE
86 A2 48EF 02

The following copyright notice protects this book under the Copyright laws of the United States of America
and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

Copyright © Bull S.A. 1992, 2003

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of
this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX® is a registered trademark of International Business Machines Corporation, and is being used under
licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Linux is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

Contents

About This Book . . .

Who Should Use This Book

Highlighting

Case-Sensitivity in AIX

ISO9000

32-Bit and 64-Bit Support for the UNIX98 SpeC|f|cat|on
Related Publications C e e e

Chapter 1. Base Operatlng System (BOS) Runtime Services (Q Z)
gsort Subroutine

quotactl Subroutine .

raise Subroutine .

rand or srand Subroutine .

rand_r Subroutine .

random, srandom, initstate, or setstate Subroutlne
ra_attachrset Subroutine

ra_detachrset Subroutine.

ra_exec Subroutine.

ra_fork Subroutine .

ra_getrset Subroutine . .
read, readx, readv, readvx, or pread Subroutme .
readdir_r Subroutine

readlink Subroutine .

read_real_time or time_base_ to t|me Subroutme
realpath Subroutine.

reboot Subroutine .

re_comp or re_exec Subroutlne .

regcmp or regex Subroutine

regcomp Subroutine

regerror Subroutine.

regexec Subroutine.

regfree Subroutine .

reltimerid Subroutine .
remainder, remainderf, or remalnderl Subroutlne .
remove Subroutine .

remquo, remquof, or remquol Subroutme

rename Subroutine .

reset_malloc_log Subroutine

revoke Subroutine .

rintf, rintl, or rint Subroutlne

round, roundf, or roundl Subroutine .

rmdir Subroutine .

rpmatch Subroutine.

RSiAddSetHot Subroutine

RSiChangeFeed Subroutine

RSiChangeHotFeed Subroutine .

RSiClose Subroutine . .

RSiCreateHotSet Subroutine

RSiCreateStatSet Subroutine .

RSiDelSetHot Subroutine

RSiDelSetStat Subroutine

RSiFirstCx Subroutine.

RSiFirstStat Subroutine .

© Copyright IBM Corp. 1994, 2003

. Xxiii
. Xiii
. Xiii
. Xiii
. Xiv
. Xiv
. Xiv

RSiGetHotltem Subroutine .
RSiGetRawValue Subroutine
RSiGetValue Subroutine .
RSilnit Subroutine .
RSilnstantiate Subroutine
RSilnvite Subroutine
RSiMainLoop Subroutine.
RSiNextCx Subroutine.
RSiNextStat Subroutine .
RSiOpen Subroutine . . .
RSiPathAddSetStat Subroutme
RSiPathGetCx Subroutine
RSiStartFeed Subroutine. .
RSiStartHotFeed Subroutine
RSiStatGetPath Subroutine .
RSiStopFeed Subroutine. .
RSiStopHotFeed Subroutine
rs_alloc Subroutine .
rs_discardname Subroutine .
rs_free Subroutine . .
rs_getassociativity Subroutlne .
rs_getinfo Subroutine .
rs_getnameattr Subroutine .
rs_getnamedrset Subroutine
rs_getpartition Subroutine
rs_getrad Subroutine .
rs_init Subroutine
rs_numrads Subroutine
rs_op Subroutine
rs_registername Subroutlne
rs_setnameattr Subroutine.
rs_setpartition Subroutine .
rsqrt Subroutine

rstat Subroutines .

scalbln, scalbInf, scalblnl, scalbn scalbnf scalbnl or scalb Subroutlne

scandir or alphasort Subroutine . .
scanf, fscanf, sscanf, or wsscanf Subroutme .
sched_yield Subroutine .

select Subroutine .

semctl Subroutine .

semget Subroutine

semop Subroutine.

setacldb or endacldb Subroutlne

setauthdb Subroutine

setbuf, setvbuf, setbuffer, or setllnebuf Subroutlne
setcsmap Subroutine.

setgid, setrgid, setegid, setregld or setgldx Subroutme .

setgroups Subroutine

setjmp or longjmp Subroutine
setlocale Subroutine .

setpcred Subroutine .

setpenv Subroutine

setpgid or setpgrp Subroutlne
setpri Subroutine .

setpwdb or endpwdb Subroutlne
setroledb or endroledb Subroutine .

iV Technical Reference, Volume 2: Base Operating System and Extensions

. 63
. 65
. 66
. 68
. 69
. 70
.72
. 73
. 74
. 75
. 78
.79
. 80
. 81
. 82
. 84
. 85
. 86
. 87
. 88
. 89
. 90
.9
.92
. 93
. 94
. 96
. 96
. 97
.. 99
. 101
. 103
. 104
. 105
. 106
. 107
. 109
. 115
. 115
. 120
. 123
. 125
. 127
. 128
. 129
. 131
. 132
. 134
. 135
. 136
. 139
. 142
. 146
. 147
. 148
. 149

setsid Subroutine .

setuid, setruid, seteuid, setrewd or setwdx Subroutlne
setuserdb or enduserdb Subroutine

sgetl or sputl Subroutine

shmat Subroutine .

shmctl Subroutine .

shmdt Subroutine .

shmget Subroutine

sigaction, sigvec, or signal Subroutme

sigaltstack Subroutine

sigemptyset, sidfillset, S|gaddset S|gdelset or S|g|smember Subroutlne .

siginterrupt Subroutine .

signbit Macro .
sigpending Subroutine .
sigprocmask, sigsetmask, or S|gblock Subroutlne
sigqueue Subroutine . .
sigset, sighold, sigrelse, or 3|g|gnore Subroutme
sigsetjmp or siglongjmp Subroutine
sigstack Subroutine .

sigsuspend or sigpause Subroutlne
sigthreadmask Subroutine .
sigtimedwait and sigwaitinfo Subroutme
sigwait Subroutine.

sin, sinf, or sinl Subroutine

sinh, sinhf, or sinhl Subroutine .
sleep, nsleep or usleep Subroutine
sockatmark Subroutine .
SpmiAddSetHot Subroutine
SpmiCreateHotSet .o
SpmiCreateStatSet Subroutine .
SpmiDdsAddCx Subroutine
SpmiDdsDelCx Subroutine
SpmiDdslnit Subroutine..
SpmiDelSetHot Subroutine
SpmiDelSetStat Subroutine
SpmiExit Subroutine .

SpmiFirstCx Subroutine.
SpmiFirstHot Subroutine
SpmiFirstStat Subroutine .
SpmiFirstVals Subroutine .
SpmiFreeHotSet Subroutine .
SpmiFreeStatSet Subroutine .
SpmiGetCx Subroutine . .
SpmiGetHotSet Subroutine
SpmiGetStat Subroutine
SpmiGetStatSet Subroutine .
SpmiGetValue Subroutine .
Spmilnit Subroutine .
Spmilnstantiate Subroutine
SpmiNextCx Subroutine
SpmiNextHot Subroutine
SpmiNextHotltem Subroutine.
SpmiNextStat Subroutine .
SpmiNextVals Subroutine .
SpmiNextValue Subroutine . .
SpmiPathAddSetStat Subroutine

. 150
. 151
. 153
. 154
. 155
. 158
. 160
. 161
. 164
. 174
. 175
177
. 178
. 179
. 179
. 181
. 183
. 186
. 187
. 188
. 189
. 191
. 192
. 193
. 194
. 196
. 197
. 198
. 201
. 202
. 203
. 204
. 205
. 207
. 208
. 210
. 210
.21
. 213
. 214
. 215
. 216
. 217
. 218
. 219
. 221
. 222
. 223
. 225
. 226
. 227
. 228
. 230
. 232
. 232
. 234

Contents

\'}

SpmiPathGetCx Subroutine .
SpmiStatGetPath Subroutine .
sqrt, sqrtf, or sqrtl Subroutine
src_err_msg Subroutine
src_err_msg_r Subroutine .
srcrrgs Subroutine.

srcrrgs_r Subroutine .
srcsbuf Subroutine

srcsbuf_r Subroutine .

srcsrpy Subroutine

srcsrqt Subroutine .

srcsrqt_r Subroutine .

srcstat Subroutine .

srcstat_r Subroutine .
srcstathdr Subroutine
srcstattxt Subroutine .
srcstattxt_r Subroutine .
srcstop Subroutine

srcstrt Subroutine . .
ssignal or gsignal Subroutme.
statacl or fstatacl Subroutine . .
statfs, fstatfs, or ustat Subroutlne .
statvfs or fstatvfs Subroutine .

statx, stat, Istat, fstatx, fstat, fullstat, ffuIIstat stat64 Istat64 or fstat64 Subroutlne .

strcat, strncat, strxfrm, strcpy, strncpy, or strdup Subroutine
strcmp, strncmp, strcasecmp, strncasecmp, or strcoll Subroutine
strerror Subroutine
strfmon Subroutine
strftime Subroutine .
strlen, strchr, strrchr, strpbrk, strspn strcspn strstr strtok or strsep Subroutme .
strncollen Subroutine. .
strtof, strtod, or strtold Subroutlne .
strtoimax or strtoumax Subroutine .
strtok_r Subroutine
strtol, strtoul, strtoll, strtoull, or at0| Subroutlne
strptime Subroutine .
stty or gtty Subroutine
swab Subroutine
swapoff Subroutine
swapon Subroutine
swapqry Subroutine .
symlink Subroutine
sync Subroutine
sync_cache_range Subroutlne
sysconf Subroutine
sysconfig Subroutine. . .
SYS_CFGDD sysconfig Operat|on .
SYS_CFGKMOD sysconfig Operation
SYS_GETLPAR_INFO sysconfig Operation
SYS_GETPARMS sysconfig Operation .
SYS_KLOAD sysconfig Operation .
SYS_KULOAD sysconfig Operation
SYS_QDVSW sysconfig Operation
SYS_QUERYLOAD sysconfig Operation
SYS_SETPARMS sysconfig Operation .
SYS_SINGLELOAD sysconfig Operation

Vi Technical Reference, Volume 2: Base Operating System and Extensions

. 236
. 237
. 238
. 240
. 241
. 241
. 243
. 244
. 247
. 250
. 253
. 256
. 259
. 262
. 264
. 265
. 265
. 266
. 269
.27
. 272
. 274
. 276
. 277
. 281
. 283
. 285
. 286
. 288
. 291
. 294
. 295
. 297
. 298
. 299
. 301
. 303
. 304
. 305
. 306
. 307
. 308
. 310
.31
.31
. 315
. 316
. 318
. 319
. 320
. 321
. 323
. 325
. 326
. 327
. 328

syslog, openlog, closelog, or setlogmask Subroutine .

syslog_r, openlog_r, closelog_r, or setlogmask_r Subroutine

sys_parm Subroutine.

system Subroutine

tan, tanf, or tanl Subroutine
tanh, tanhf, or tanhl Subroutine .
tcb Subroutine .

tcdrain Subroutine.

tcflow Subroutine .

tcflush Subroutine .

tcgetattr Subroutine .

tcgetpgrp Subroutine .
tcsendbreak Subroutine.
tcsetattr Subroutine

tcsetpgrp Subroutine .

termdef Subroutine
test_and_set Subroutine .
tgamma, tgammaf, or tgammal Subroutme.
times Subroutine .

timezone Subroutine .
thread_post Subroutine .
thread_post_many Subroutine
thread_self Subroutine .
thread_setsched Subroutine .
thread_wait Subroutine .

tmpfile Subroutine .

tmpnam or tempnam Subroutlne
towctrans Subroutine.

towlower Subroutine .

towupper Subroutine .
t_rcvreldata Subroutine .

t_rcvv Subroutine .

t_rcvvudata Subroutine .

t_sndv Subroutine .

t_sndreldata Subroutine.
t_sndvudata Subroutine.
t_sysconf Subroutine.

trc_close Subroutine .
trc_find_first, trc_find_next, and trc compare Subroutlne
trc_free Subroutine

trc_hkemptyset, trc_hkfillset, trc hkaddset trc hkdelset and trc hklsset Subroutlne

trc_hookname Subroutine .
trc_libentl Subroutine.
trc_loginfo Subroutine

trc_open Subroutine .
trc_perror Subroutine.

trc_read Subroutine .

trc_seek and trc_tell Subroutlne
trc_strerror Subroutine .
trcgen or trcgent Subroutine .

trchook, utrchook, trchook64, and utrhook64 Subroutlne.

trcoff Subroutine

trcon Subroutine

trcstart Subroutine.

trcstop Subroutine. .
trunc, truncf, or truncl Subroutlne .

Contents

. 329
. 332
. 336
. 337
. 339
. 340
. 341
. 342
. 343
. 344
. 346
. 347
. 348
. 349
. 351
. 352
. 353
. 354
. 355
. 357
. 358
. 359
. 360
. 360
. 362
. 363
. 363
. 365
. 366
. 367
. 367
. 369
. 371
. 373
. 376
. 377
. 379
. 380
. 381
. 385
. 386
. 387
. 388
. 390
. 392
. 394
. 395
. 398
. 399
. 400
. 402
. 404
. 404
. 405
. 406
. 406

Vii

truncate, truncate64, ftruncate, or ftruncate64 Subroutine
tsearch, tdelete, tfind or twalk Subroutine .
ttylock, ttywait, ttyunlock, or ttylocked Subroutine
ttyname or isatty Subroutine . e
ttyslot Subroutine .

ulimit Subroutine

umask Subroutine .

umount or uvmount Subroutme

uname or unamex Subroutine

ungetc or ungetwc Subroutine

unlink Subroutine .

unload Subroutine.

unlockpt Subroutine .

usrinfo Subroutine.

utimes or utime Subroutine

varargs Macros.

vfscanf, vscanf, or vsscanf Subroutlne

vfwscanf, vswscanf, or vwscanf Subroutine
viwprintf, vwprintf Subroutine.

vmagetinfo Subroutine

vmount or mount Subroutine .

vsnprintf Subroutine .

vwsprintf Subroutine .

wait, waitpid, wait3, or wait364 Subroutme
waitid Subroutine .

wcscat, weschr, wesemp, Wcscpy, or wcscspn Subroutme .

wcscoll Subroutine

wcsftime Subroutine .

wcesid Subroutine .

wcslen Subroutine.

wcsncat, wesnemp, or wcsncpy Subroutlne
wcespbrk Subroutine .

wcesrchr Subroutine

wcesrtombs Subroutine .

wcsspn Subroutine

wcsstr Subroutine .

wcstod, wcstof, or westold Subroutlne
wcestoimax or westoumax Subroutine .
wcestok Subroutine. .

wcstol or westoll Subroutine .
wcstombs Subroutine .
westoul or westoull Subroutine .
weswces Subroutine

weswidth Subroutine .

wesxfrm Subroutine .

wctob Subroutine .

wctomb Subroutine

wctrans Subroutine .
wctype or get_wctype Subroutlne .
wcewidth Subroutine .

wim_assign Subroutine .
wim_change_class Subroutine .
wlm_check subroutine .
wim_classify Subroutine
wim_class2key Subroutine.
wim_create_class Subroutine

Viii Technical Reference, Volume 2: Base Operating System and Extensions

. 407
. 410
. 412
. 413
. 415
. 415
. 418
. 419
. 420
. 422
. 423
. 424
. 426
. 426
. 428
. 429
. 432
. 433
. 433
. 434
. 435
. 439
. 439
. 440
. 443
. 444
. 446
. 447
. 448
. 449
. 449
. 451
. 451
. 452
. 453
. 454
. 455
. 457
. 458
. 459
. 461
. 463
. 464
. 465
. 466
. 468
. 468
. 469
. 470
. 471
. 473
. 475
. 476
. 477
. 479
. 480

wim_delete_class Subroutine.

wim_endkey Subroutine

wim_get_bio_stats subroutine

wim_get_info Subroutine

wim_get_procinfo Subroutine. .

wim_init_class_definition Subroutine .

wim_initialize Subroutine

wim_initkey Subroutine .

wim_key2class Subroutine.

wim_load Subroutine.

wim_read_classes Subroutine

wim_set Subroutine .

wim_set_tag Subroutine

wmemchr Subroutine.

wmemcmp Subroutine .

wmemcpy Subroutine

wmemmove Subroutine.

wmemset Subroutine.

wordexp Subroutine .

wordfree Subroutine . .

write, writex, writev, writevx or pwrlte Subroutlnes .

wstring Subroutine. .

wstrtod or watof Subroutine .

wstrtol, watol, or watoi Subroutine .

xcrypt_key_setup, xcrypt_encrypt, xcrypt_ decrypt xcrypt hash xcrypt maIIoc xcrypt free
xcrypt_printb, xcrypt_btoa and xcrypt randbuff Subroutine . . .

yield Subroutine e e e

Chapter 2. Curses Subroutines . .
addch, mvaddch, mvwaddch, or waddch Subroutme .

addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr waddnstr or waddstr Subroutme

attroff, attron, attrset, wattroff, wattron, or wattrset Subroutine.

attron or wattron Subroutine .

attrset or wattrset Subroutine.

baudrate Subroutine .

beep Subroutine

box Subroutine .

can_change_color, color content has colors |n|t coIor |n|t pa|r start coIor or pa|r content
Subroutine. .

cbreak, nocbreak, noraw, or raw Subroutlne .

clear, erase, wclear or werase Subroutine .

clearok, idlok, leaveok, scrollok, setscrreg or wsetscrreg Subroutme

clrtobot or wclrtobot Subroutine .

clrtoeol or wclrtoeol Subroutine .

color_content Subroutine .

copywin Subroutine .

curs_set Subroutine . .

def_prog_mode, def_shell_ mode reset prog mode or reset sheII mode Subrout|ne .

def_shell_mode Subroutine .

del_curterm, restartterm, set_ curterm or setupterm Subroutme .

delay_output Subroutine

delch, mvdelch, mvwdelch or wdelch Subroutme

deleteln or wdeleteln Subroutine

delwin Subroutine .

echo or noecho Subroutine .

echochar or wechochar Subroutines .

Contents

. 482
. 483
. 484
. 486
. 488
. 489
. 490
. 491
. 492
. 493
. 495
. 497
. 499
. 500
. 501
. 501
. 502
. 503
. 503
. 506
. 506
. 511
. 514
. 515

. 516
. 520

. 523
. 523

524

. 526
. 528
. 528
. 529
. 530
. 531

. 532
. 535
. 536
. 537
. 540
. 541
. 542
. 543
. 544
. 545
. 546
. 547
. 549
. 550
. 551
. 552
. 552
. 553

ix

endwin Subroutine .
erase or werase Subroutine .

erasechar, erasewchar, killchar, and k|IIwchar Subroutme

filter Subroutine.

flash Subroutine

flushinp Subroutine

garbagedlines Subroutine .

getbegyx, getmaxyx, getparyx, or getyx Subroutlne
getch, mvgetch, mvwgetch, or wgetch Subroutine .
getmaxyx Subroutine.

getnstr, getstr, mvgetnstr, mvgetstr mvwgetnstr mvwgetstr wgetnstr or wgetstr Subroutine

getsyx Subroutine .

getyx Macro .

halfdelay Subroutme

has_colors Subroutine .

has_ic and has_il Subroutine.

has_il Subroutine .

idlok Subroutine .
inch, mvinch, mvwinch, or wmch Subroutme .
init_color Subroutine .

init_pair Subroutine

initscr and newterm Subroutlne

insch, mvinsch, mvwinsch, or winsch Subroutlne
insertln or winsertin Subroutine .

intrflush Subroutine

keyname, key_name Subroutlne

keypad Subroutine .

killchar or killwchar Subroutlne .
_lazySetErrorHandler Subroutine

leaveok Subroutine

longname Subroutine

makenew Subroutine.

meta Subroutine .

move or wmove Subroutlne .

mvcur Subroutine .

mvwin Subroutine .

newpad, pnoutrefresh, prefresh or subpad Subroutlne
newterm Subroutine . .

derwin, newwin, or subwin Subroutme

nl or nonl Subroutine.

nodelay Subroutine

notimeout, timeout, wtimeout Subroutme
overlay or overwrite Subroutine .

pair_content Subroutine. .
prefresh or pnoutrefresh Subroutlne .

printw, wprintw, mvprintw, or mvwprintw Subroutlne
putp, tputs Subroutine

raw or noraw Subroutine

refresh or wrefresh Subroutine .
reset_prog_mode Subroutine.
reset_shell_mode Subroutine.

resetterm Subroutine.

resetty, savetty Subroutine.

restartterm Subroutine .

ripoffline Subroutine .

savetty Subroutine

X Technical Reference, Volume 2: Base Operating System and Extensions

. 554
. 555
. 556
. 557
. 557
. 558
. 559
. 560
. 561
. 565
. 566
. 568
. 569
. 570
. 570
. 571
. 572
. 573
. 574
. 575
. 576
. 577
. 578
. 579
. 580
. 581
. 582
. 583
. 584
. 585
. 586
. 587
. 588
. 589
. 589
. 591
. 592
. 594
. 596
. 598
. 599
. 599
. 601
. 602
. 603
. 604
. 606
. 607
. 608
. 609
. 610
. 610
. 611
. 612
. 612
. 614

scanw, wscanw, mvscanw, or mvwscanw Subroutine .
scr_dump, scr_init, scr_restore, scr_set Subroutine
scr_init Subroutine
scr_restore Subroutine .
scrl, scroll, wscrl Subroutine .
scrollok Subroutine
set_curterm Subroutine .
setscrreg or wsetscrreg Subroutme
setsyx Subroutine .
set_term Subroutine .
setupterm Subroutine
_showstring Subroutine .

. 614
. 615
. 617
. 618
. 619
. 620
. 621
. 622
. 623
. 624
. 624
. 626

slk_attroff, slk_attr_off, slk_attron, sIk attrset sIk attr set sIk clear sIk coIor slk |n|t sIk Iabel

slk_noutrefresh, slk_refresh, slk_restore, slk_set, slk_touch, slk_wset, Subroutine

slk_init Subroutine.

slk_label Subroutine .

slk_noutrefresh Subroutine

slk_refresh Subroutine .

slk_restore Subroutine .

slk_set Subroutine.

slk_touch Subroutine. .
standend, standout, wstandend or wstandout Subroutlne .
start_color Subroutine

subpad Subroutine

subwin Subroutine.

tgetent, tgetflag, tgetnum, tgetstr or tgoto Subroutlne
tgetflag Subroutine

tgetnum Subroutine .

tgetstr Subroutine .

tgoto Subroutine .

tigetflag, tigetnum, tlgetstr or tparm Subroutme .

tigetnum Subroutine .

tigetstr Routine .

is_linetouched, is Wlntouched touchlme touchwm untouchwm or wtouchln Subroutme

touchoverlap Subroutine

touchwin Subroutine .

tparm Subroutine .

tputs Subroutine

typeahead Subroutine

unctrl Subroutine .

ungetch, unget_wch Subroutlne .

vidattr, vid_attr, vidputs, or vid_puts Subroutlne . .
doupdate, refresh, wnoutrefresh, or wrefresh Subroutlnes .

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) .

SDOT or DDOT Function .

CDOTC or ZDOTC Function .

CDOTU or ZDOTU Function . . .

SAXPY, DAXPY, CAXPY, or ZAXPY Subroutme .
SROTG, DROTG, CROTG, or ZROTG Subroutine .
SROT, DROT, CSROT, or ZDROT Subroutine .
SCOPY, DCOPY, CCOPY, or ZCOPY Subroutine .
SSWAP, DSWAP, CSWAP, or ZSWAP Subroutine .
SNRM2, DNRM2, SCNRM2, or DZNRM2 Function.
SASUM, DASUM, SCASUM, or DZASUM Function

SSCAL, DSCAL, CSSCAL, CSCAL, ZDSCAL, or ZSCAL Subroutine .

. 627
. 630
. 631
. 631
. 632
. 633
. 633
. 634
. 635
. 636
. 637
. 638
. 640
. 641
. 642
. 642
. 643
. 644
. 646
. 647
. 648
. 649
. 650
. 651
. 652
. 653
. 654
. 655
. 656
. 657

. 661
. 661
. 661
. 662
. 663
. 663
. 664
. 665
. 666
. 667
. 668
. 668

Contents

Xi

ISAMAX, IDAMAX, ICAMAX, or IZAMAX Function .
SDSDOT Function . . .

SROTM or DROTM Subroutlne .

SROTMG or DROTMG Subroutine .
SGEMV, DGEMV, CGEMV, or ZGEMV Subroutlne.
SGBMV, DGBMV, CGBMV, or ZGBMV Subroutine .
CHEMV or ZHEMV Subroutine .

CHBMYV or ZHBMV Subroutine .

CHPMV or ZHPMV Subroutine .

SSYMV or DSYMV Subroutine .

SSBMV or DSBMV Subroutine .

SSPMV or DSPMV Subroutine . .
STRMV, DTRMV, CTRMV, or ZTRMV Subroutme .
STBMV, DTBMV, CTBMV, or ZTBMV Subroutine
STPMV, DTPMV, CTPMV, or ZTPMV Subroutine
STRSV, DTRSV, CTRSV, or ZTRSV Subroutine.
STBSV, DTBSV, CTBSV, or ZTBSV Subroutine .
STPSV, DTPSV, CTPSV, or ZTPSV Subroutine .
SGER or DGER Subroutine .

CGERU or ZGERU Subroutine .

CGERC or ZGERC Subroutine .

CHER or ZHER Subroutine

CHPR or ZHPR Subroutine

CHER2 or ZHER2 Subroutine

CHPR2 or ZHPR2 Subroutine

SSYR or DSYR Subroutine

SSPR or DSPR Subroutine

SSYR2 or DSYR2 Subroutine

SSPR2 or DSPR2 Subroutine

SGEMM, DGEMM, CGEMM, or ZGEMM Subroutlne .

SSYMM, DSYMM, CSYMM, or ZSYMM Subroutine
CHEMM or ZHEMM Subroutine. . .

SSYRK, DSYRK, CSYRK, or ZSYRK Subroutlne
CHERK or ZHERK Subroutine .

SSYR2K, DSYR2K, CSYR2K, or ZSY.R2K Subroutlne

CHER2K or ZHER2K Subroutine . . .
STRMM, DTRMM, CTRMM, or ZTRMM Subroutme
STRSM, DTRSM, CTRSM, or ZTRSM Subroutine .

Appendix A. Base Operatlng System Error Codes for Services That Require Path-Name

Resolution
Appendix B. ODM Error Codes

Appendix C. Notices
Trademarks .

Index

Xii Technical Reference, Volume 2: Base Operating System and Extensions

. 669
. 670
. 671
. 672
. 673
. 674
. 676
. 677
. 679
. 680
. 681
. 682
. 683
. 685
. 687
. 688
. 690
. 692
. 694
. 695
. 695
. 696
. 697
. 698
. 699
. 700
. 701
. 702
. 704
. 705
. 706
. 708
. 710
.71
. 713
. 714
. 716
. 718

. 721

. 723

. 725
. 726

. 727

About This Book

This book provides information on application programming interfaces to the operating system.

This book is part of the six-volume technical reference set, AIX 5L Version 5.2 Technical Reference, that
provides information on system calls, kernel extension calls, and subroutines in the following volumes:

* AIX 5L Version 5.2 Technical Reference: Base Operating System and Extensions Volume 1 and AIX 5L
Version 5.2 Technical Reference: Base Operating System and Extensions Volume 2 provide information
on system calls, subroutines, functions, macros, and statements associated with base operating system
runtime services.

* AIX 5L Version 5.2 Technical Reference: Communications Volume 1 and AIX 5L Version 5.2 Technical
Reference: Communications Volume 2 provide information on entry points, functions, system calls,
subroutines, and operations related to communications services.

» AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1 and AIX 5L Version 5.2
Technical Reference: Kernel and Subsystems Volume 2 provide information about kernel services,
device driver operations, file system operations, subroutines, the configuration subsystem, the
communications subsystem, the low function terminal (LFT) subsystem, the logical volume subsystem,
the M-audio capture and playback adapter subsystem, the printer subsystem, the SCSI subsystem, and
the serial DASD subsystem.

This edition supports the release of AIX 5L Version 5.2 with the 5200-01 Recommended Maintenance
package. Any specific references to this maintenance package are indicated as AIX 5.2 with 5200-01.

Who Should Use This Book

This book is intended for experienced C programmers. To use the book effectively, you should be familiar
with commands, system calls, subroutines, file formats, and special files.

Highlighting

The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files,
structures, directories, and other items whose names are

predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to
be supplied by the user.
Monospace Identifies examples of specific data values, examples of

text similar to what you might see displayed, examples of
portions of program code similar to what you might write
as a programmer, messages from the system, or
information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the Is command to list files. If you type LS, the
system responds that the command is "not found.” Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

© Copyright IBM Corp. 1994, 2003 xiii

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

32-Bit and 64-Bit Support for the UNIX98 Specification

Beginning with Version 4.3, the operating system is designed to support The Open Group’s UNIX98
Specification for portability of UNIX-based operating systems. Many new interfaces, and some current
ones, have been added or enhanced to meet this specification, making Version 4.3 even more open and
portable for applications.

At the same time, compatibility with previous releases of the operating system is preserved. This is
accomplished by the creation of a new environment variable, which can be used to set the system
environment on a per-system, per-user, or per-process basis.

To determine the proper way to develop a UNIX98-portable application, you may need to refer to The
Open Group’s UNIX98 Specification, which can be obtained on a CD-ROM by ordering Go Solo 2: The
Authorized Guide to Version 2 of the Single UNIX Specification, a book which includes The Open Group’s
UNIX98 Specification on a CD-ROM.

Related Publications

The following books contain information about or related to application programming interfaces:
« [AIX 5L Version 5.2 System Management Guide: Operating System and Devices

[AIX 5L Version 5.2 System Management Guide: Communications and Networks

[AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging Programs

[AIX 5L Version 5.2 Communications Programming Concepts

[AIX 5L Version 5.2 Kernel Extensions and Device Support Programming Concepts|

[AIX 5L Version 5.2 Files Reference

XiV Technical Reference, Volume 2: Base Operating System and Extensions

Chapter 1. Base Operating System (BOS) Runtime Services
(Q-2)

gsort Subroutine

Purpose
Sorts a table of data in place.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

void qsort (Base, NumberOfElements, Size, ComparisonPointer)
void * m;

size t |umberOfElements) [Size|;

int |(*ComparisonPointer)|(const void*, const void*);

Description

The gsort subroutine sorts a table of data in place. It uses the quicker-sort algorithm.

Parameters

Base Points to the element at the base of the table.

NumberOfElements Specifies the number of elements in the table.

Size Specifies the size of each element.

ComparisonPointer Points to the comparison function, which is passed two parameters that point to

the objects being compared. The gsort subroutine sorts the array in ascending
order according to the comparison function.

Return Values
The comparison function compares its parameters and returns a value as follows:

 If the first parameter is less than the second parameter, the ComparisonPointer parameter returns a
value less than 0.

 If the first parameter is equal to the second parameter, the ComparisonPointer parameter returns O.

 If the first parameter is greater than the second parameter, the ComparisonPointer parameter returns a
value greater than 0.

Because the comparison function need not compare every byte, the elements can contain arbitrary data in
addition to the values being compared.

Note: If two items are the same when compared, their order in the output of this subroutine is
unpredictable.

The pointer to the base of the table should be of type pointer-to-element, and cast to type
pointer-to-character.

© Copyright IBM Corp. 1994, 2003 1

Related Information
The subroutine, subroutine.

[Searching and Sorting Example Program, [Subroutines Overview|in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

quotactl Subroutine

Purpose
Manipulates disk quotas.

Library
Standard C Library (libc.a)

Syntax

#include <jfs/quota.h>

int quotactl (Path, Cmd, ID, Addr)
int [Cmd|, m;

char * Hddrl, * |Ijath|;

Description

The quotactl subroutine enables, disables, and manipulates disk quotas for file systems on which quotas
have been enabled.

Currently, disk quotas are supported only by the Journaled File System (JFS).

Parameters

Path Specifies the path name of any file within the mounted file system to which the quota control command is to
be applied.

2 Technical Reference, Volume 2: Base Operating System and Extensions

Cmd

ID

Addr

Specifies the quota control command to be applied and whether it is applied to a user or group quota.

For JFSs, the Cmd parameter can be constructed through use of the QCMD(Cmd, type) macro contained
within the jfs/quota.h file. The Cmd parameter specifies the quota control command. The type parameter
specifies either user (USRQUOTA) or group (GRPQUOTA) quota type.

The valid JFS specific quota control values for the Cmd parameter are:

Q_QUOTAON
Enables disk quotas for the file system specified by the Path parameter. The Addr parameter
specifies a file from which to take the quotas. The quota file must exist; it is normally created with
thecommand. The ID parameter is unused. Root user authority is required to enable
quotas.

Q_QUOTAOFF
Disables disk quotas for the file system specified by the Path parameter. The Addr and ID
arguments are unused. Root user authority is required to disable quotas.

Q_GETQUOTA
Gets disk quota limits and current usage for a user or group specified by the /D parameter. The
Addr parameter points to a dqblk buffer to hold the returned information. The dqblk structure is
defined in the jfs/quota.h file. Root user authority is required if the /D value is not the current ID of
the caller.

Q_SETQUOTA
Sets disk quota limits for the user or group specified by the /D parameter. The Addr parameter
points to a dqblk buffer containing the new quota limits. The dqblk structure is defined in the
jfs/quota.h file. Root user authority is required to set quotas.

Q_SETUSE
Sets disk usage limits for the user or group specified by the ID parameter. The Addr parameter
points to a dqblk buffer containing the new usage limits. The dgblk structure is defined in the
jfs/quota.h file. Root user authority is required to set disk usage limits.
Specifies the user or group ID to which the quota control command applies. The /D parameter is interpreted
by the specified quota type. The JFS file system supports quotas for IDs within the range of MINDQUID
through MAXDQID.
Points to the address of an optional, command specific, data structure that is copied in or out of the system.
The interpretation of the Addr parameter for each quota control command is given above.

Return Values

A successful call returns 0, otherwise the value -1 is returned and the errno global variable indicates the
reason for the failure.

Error Codes

A quotactl subroutine will fail when one of the following occurs:

EACCES In the Q_QUOTAON command, the quota file is not a regular file.

EACCES Search permission is denied for a component of a path prefix.

EFAULT An invalid Addr parameter is supplied; the associated structure could not be

copied in or out of the kernel.

EFAULT The Path parameter points outside the process’s allocated address space.

EINVAL The specified quota control command or quota type is invalid.

EINVAL Path name contains a character with the high-order bit set.

EINVAL The ID parameter is outside of the supported range (MINDQID through
MAXDQID).

EIO An 1/O error occurred while reading from or writing to a file containing quotas.

ELOOP Too many symbolic links were encountered in translating a path name.

ENAMETOOLONG A component of either path name exceeded 255 characters, or the entire

length of either path name exceeded 1023 characters.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2)

3

ENOENT A file name does not exist.

ENOTBLK Mounted file system is not a block device.

ENOTDIR A component of a path prefix is not a directory.

EOPNOTSUPP The file system does not support quotas.

EPERM The quota control commands is privileged and the caller did not have root
user authority.

EROFS In the @Q_QUOTAON command, the quota file resides on a read-only file
system.

EUSERS The in-core quota table cannot be expanded.

Related Information

The command.

[Disk Quota System Overview|in AIX 5L Version 5.2 Security Guide.

raise Subroutine

Purpose
Sends a signal to the currently running program.

Libraries
Standard C Library (libc.a)

Threads Library (libpthreads.a)

Syntax

#include <sys/signal.h>

int raise ([Signal)

int Signal;

Description

The raise subroutine sends the signal specified by the Signal parameter to the executing process or
thread, depending if the POSIX threads API (the libpthreads.a library) is used or not. When the program
is not linked with the threads library, the raise subroutine sends the signal to the calling process as
follows:

return kill(getpid(), Signal);

When the program is linked with the threads library, the raise subroutine sends the signal to the calling
thread as follows:

return pthread kill(pthread self(), Signal);

When using the threads library, it is important to ensure that the threads library is linked before the
standard C library.

Parameter

Signal Specifies a signal number.

4 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values

Upon successful completion of the raise subroutine, a value of 0 is returned. Otherwise, a nonzero value
is returned, and the errno global variable is set to indicate the error.

Error Code

EINVAL The value of the sig argument is an invalid signal number

Related Information
The [exit] subroutine, [kill| subroutine, [pthread_kill| subroutine, sigaction {*sigaction, sigvec, or signal

[Subroutine” on page 164) subroutine.

|Signa| Managemenﬂ in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs provides more information about signal management in multi-threaded processes.

rand or srand Subroutine

Purpose

Generates pseudo-random numbers.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>
int rand

void srand (

unsigned int Seed;

Description

Attention: Do not use the rand subroutine in a multithreaded environment. See the multithread
alternative in the rand_r (‘rand_r Subroutine” on page 6) subroutine article.

The rand subroutine generates a pseudo-random number using a multiplicative congruential algorithm.
The random-number generator has a period of 2**32, and it returns successive pseudo-random numbers
in the range from 0 through (2**15) -1.

The srand subroutine resets the random-number generator to a new starting point. It uses the Seed
parameter as a seed for a new sequence of pseudo-random numbers to be returned by subsequent calls
to the rand subroutine. If you then call the srand subroutine with the same seed value, the rand
subroutine repeats the sequence of pseudo-random numbers. When you call the rand subroutine before
making any calls to the srand subroutine, it generates the same sequence of numbers that it would if you
first called the srand subroutine with a seed value of 1.

Note: The rand subroutine is a simple random-number generator. Its spectral properties, a mathematical

measurement of randomness, are somewhat limited. See the drand48 subroutine or the random
subroutine for more elaborate random-number generators that have greater spectral properties.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2)

5

Parameter

Seed Specifies an initial seed value.

Return Values

Upon successful completion, the rand subroutine returns the next random number in sequence. The
srand subroutine returns no value.

There are better random number generators, as noted above; however, the rand and srand subroutines
are the interfaces defined for the ANSI C library.

Example

The following functions define the semantics of the rand and srand subroutines, and are included here to
facilitate porting applications from different implementations:
static unsigned int next = 1;

int rand()
{

next = next
*

1103515245 + 12345;
return ((next >>16) & 32767);
1

void srand (Seed)

unsigned
int Seed;
{

next = Seed;

}

Related Information

The [drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48, or Icong48| subroutine,
random, srandom, initstate, or setstate (‘random, srandom, initstate, or setstate Subroutine” on page 7)
subroutine.

[Subroutines Overview|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

rand_r Subroutine

Purpose
Generates pseudo-random numbers.

Libraries
Thread-Safe C Library (libc_r.a)

Berkeley Compatibility Library (libbsd.a)

Syntax

#include <stdlib.h>

6 Technical Reference, Volume 2: Base Operating System and Extensions

int rand_r (Seed)

unsigned int *

Description

The rand_r subroutine generates and returns a pseudo-random number using a multiplicative congruential
algorithm. The random-number generator has a period of 2**32, and it returns successive pseudo-random
numbers.

Note: The rand_r subroutine is a simple random-number generator. Its spectral properties (the
mathematical measurement of the randomness of a number sequence) are limited. See the
subroutine or the random (“random, srandom, initstate, or setstate Subroutine’)
subroutine for more elaborate random-number generators that have greater spectral properties.

Programs using this subroutine must link to the libpthreads.a library.

Parameter

Seed Specifies an initial seed value.

Return Values

0 Indicates that the subroutines was successful.
-1 Indicates that the subroutines was not successful.

Error Codes

If the following condition occurs, the rand_r subroutine sets the errno global variable to the corresponding
value.

EINVAL The Seed parameter specifies a null value.
File
lusr/include/sys/types.h Defines system macros, data types, and subroutines.

Related Information
The subroutine, random (‘random, srandom, initstate, or setstate Subroutine’) subroutine.

[Subroutines Overview| and [List of Multithread Subroutines|in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

random, srandom, initstate, or setstate Subroutine

Purpose
Generates pseudo-random numbers more efficiently.

Library
Standard C Library (libc.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 7

Syntax
#include <stdlib.h>
long random ()

void srandom (Seed)
unsigned int Seed;

char xinitstate ([Seed, [Statel Wumber)
unsigned int Seed;

char *State;

size_t Number;

char *setstate (State)
const char *State;

Description

Attention: Do not use the random, srandom, initstate, or setstate subroutine in a multithreaded
environment.

The random subroutine uses a non-linear additive feedback random-number generator employing a
default-state array size of 31 long integers to return successive pseudo-random numbers in the range from
0 to 2**31-1. The period of this random number generator is very large, approximately 16 * (2**31-1). The
size of the state array determines the period of the random number generator. Increasing the state array
size increases the period.

With a full 256 bytes of state information, the period of the random-number generator is greater than
2**69, which should be sufficient for most purposes.

The random and srandom subroutines have almost the same calling sequence and initialization
properties as the rand and srand subroutines. The difference is that the rand subroutine produces a
much less random sequence; in fact, the low dozen bits generated by the rand subroutine go through a
cyclic pattern. All the bits generated by the random subroutine are usable. For example, random()&01
produces a random binary value.

The srandom subroutine, unlike the srand subroutine, does not return the old seed because the amount
of state information used is more than a single word. The initstate subroutine and setstate subroutine
handle restarting and changing random-number generators. Like the rand subroutine, however, the
random subroutine by default produces a sequence of numbers that can be duplicated by calling the
srandom subroutine with 1 as the seed.

The initstate subroutine allows a state array, passed in as an argument, to be initialized for future use.
The size of the state array (in bytes) is used by the initstate subroutine, to decide how sophisticated a
random-number generator it should use; the larger the state array, the more random are the numbers.
Values for the amount of state information are 8, 32, 64, 128, and 256 bytes. For amounts greater than or
equal to 8 bytes, or less than 32 bytes, the random subroutine uses a simple linear congruential random
number generator, while other amounts are rounded down to the nearest known value. The Seed
parameter specifies a starting point for the random-number sequence and provides for restarting at the
same point. The initstate subroutine returns a pointer to the previous state information array.

Once a state has been initialized, the setstate subroutine allows rapid switching between states. The array
defined by State parameter is used for further random-number generation until the initstate subroutine is
called or the setstate subroutine is called again. The setstate subroutine returns a pointer to the previous
state array.

After initialization, a state array can be restarted at a different point in one of two ways:
» The initstate subroutine can be used, with the desired seed, state array, and size of the array.

8 Technical Reference, Volume 2: Base Operating System and Extensions

* The setstate subroutine, with the desired state, can be used, followed by the srandom subroutine with
the desired seed. The advantage of using both of these subroutines is that the size of the state array
does not have to be saved once it is initialized.

Parameters
Seed Specifies an initial seed value.
State Points to the array of state information.

Number Specifies the size of the state information array.

Error Codes

If the initstate subroutine is called with less than 8 bytes of state information, or if the setstate subroutine
detects that the state information has been damaged, error messages are sent to standard error.

Related Information

The [drand48, erand48, jrand48, Icong48, Irand48, mrand48, nrand48, seed48, or srand4§ subroutine,
rand or srand (‘rand or srand Subroutine” on page 5) subroutine.

[Subroutines Overview|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

ra_attachrset Subroutine

Purpose
Attaches a work component to a resource set.

Library
Standard C library (libc.a)

Syntax

#include <sys/rset.h>

int ra_attachrset (rstypel, [rsid], |rset], [flags])
rstype_t rstype;

rsid_t rsid;

rsethandle_t rset;

unsigned int flags;

Description

The ra_attachrset subroutine attaches a work component specified by the rstype and rsid parameters to a
resource set specified by the rset parameter.

The work component is an existing process identified by the process ID. A process ID value of
RS_MYSELF indicates the attachment applies to the current process.

The following conditions must be met to successfully attach a process to a resource set:

* The resource set must contain processors that are available in the system.

* The calling process must either have root authority or have CAP_NUMA_ATTACH capability.

* The calling process must either have root authority or the same effective userid as the target process.
» The target process must not contain any threads that have bindprocessor bindings to a processor.

» The resource set must be contained in (be a subset of) the target process’ partition resource set.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 9

If any of these conditions are not met, the attachment will fail.

Once a process is attached to a resource set, the threads in the process will only run on processors
contained in the resource set.

Dynamic Processor Deallocation and DLPAR may invalidate the processor attachment that is being
specified. A program must become DLPAR Aware to resolve this problem.

Parameters

rstype Specifies the type of work component to be attached to the resource set specified by the rset parameter.
The rstype parameter must be the following value, defined in rset.h:

*« R_PROCESS: existing process
rsid Identifies the work component to be attached to the resource set specified by the rset parameter. The rsid
parameter must be the following:

* Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process’ process ID.
rset Specifies which work component (specified by the rstype and rsid parameters) to attach to the resource set.
flags Reserved for future use. Specify as 0.

Return Values

If successful , a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The ra_attachrset subroutine is unsuccessful if one or more of the following are true:
EINVAL One of the following is true:

» The flags parameter contains an invalid value.
» The rstype parameter contains an invalid type qualifier.

ENODEV The resource set specified by the rsetf parameter does not contain any available processors.
ESRCH The process identified by the rstype and rsid parameters does not exist.
EPERM One of the following is true:

» The resource set specified by the rset parameter is not included in the partition resource set of the
process identified by the rstype and rsid parameters.

* The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.

» The calling process has neither root authority nor the same effective user ID as the process
identified by the rstype and rsid parameters.

* The process identified by the rstype and rsid parameters has one or more threads with a
bindprocessor processor binding.

Related Information

['ra_fork Subroutine” on page 14} [“ra_exec Subroutine” on page 12, [‘ra_getrset Subroutine” on page 15|
and [ra_detachrset Subroutine” on page 11|

The|Dynamic Logical Panitionind article in AIX 5L Version 5.2 General Programming Concepts: Writing
and Debugging Programs.

The|dr_reconfig system cal' in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

10 Technical Reference, Volume 2: Base Operating System and Extensions

ra_detachrset Subroutine

Purpose
Detaches a work component from a resource set.

Library
Standard C library (libc.a)

Syntax

#include <sys/rset.h>

int ra_detachrset (rstype] |rsid] |flags))
rstype_t rstype;

rsid_t rsid;

unsigned int flags;

Description

The ra_detachrset subroutine detaches a work component specified by rstype and rsid from a resource
set.

The work component is an existing process identified by the process ID. A process ID value of
RS_MYSELF indicates the detach command applies to the current process.

The following conditions must be met to detach a process from a resource set:
» The calling process must either have root authority or have CAP_NUMA_ATTACH capability.
» The calling process must either have root authority or the same effective userid as the target process.

If these conditions are not met, the operation will fail.

Once a process is detached from a resource set, the threads in the process can run on all available
processors contained in the process’ partition resource set.

Parameters

rstype Specifies the type of work component to be detached from to the resource set specified by rset. This
parameter must be the following value, defined in rset.h:
* R_PROCESS: existing process

rsid Identifies the work component to be attached to the resource set specified by rset. This parameter must
be the following:

» Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process’ process ID.

flags Reserved for future use. Specify as 0.

Return Values

If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned, and the errno global
variable is set to indicate the error.

Error Codes
The ra_detachrset subroutine is unsuccessful if one or more of the following are true:

EINVAL One of the following is true:
* The flags parameter contains an invalid value.
» The rstype parameter contains an invalid type qualifier.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2)

1

ESRCH The process identified by the rstype and rsid parameters does not exist.

EPERM One of the following is true:

* The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.

» The calling process has neither root authority nor the same effective user ID as the process

identified by the rstype and rsid parameters.

Related Information

“ra_fork Subroutine” on page 14} |‘ra_exec Subroutine’} ['ra_getrset Subroutine” on page 15} and

“ra_attachrset Subroutine” on page 9|

ra_exec Subroutine

Purpose
Executes a file and attaches it to a given resource.

Library
Standard C library (libc.a)

Syntax

#include <sys/rset.h

>
int ra_execl(rstype), |rsi51, |7-‘Zagsl path, argument® [,argumentl,..

rstype_t rstype;

rsid_t rsid;

unsigned int flags;

const char * path, argument0, argumentl,...;

int ra_execle(rstype, rsid, flags, path, argumentO[,argumentl,..

rstype_t rstype;

rsid_t rsid;

unsigned int flags;

const char * path, argument®, argumentl,...;
char * const envptr[];

int ra_execlp(rstype, rsid, flags, File, argumentO[,argumentl,..

rstype_t rstype;

rsid_t rsid;

unsigned int flags;

const char * File, argument@®, argumentl,...;

int ra_execv (rstype, rsid, flags, path, argumentv)
rstype_t rstype;

rsid_t rsid;

unsigned int flags;

const char * path;

char * const argumentv[];

int ra_execve (rstype, rsid, flags, path, argumentv, envptr)
rstype_t rstype;

rsid_t rsid;

unsigned int flags;

const char * path;

char * const argumentv[], envptr[];

int ra_execvp (rstype, rsid, flags, File, argumentv)
rstype_t rstype;

rsid_t rsid;

unsigned int flags;

const char * File;

char * const argumentv[];

12 Technical Reference, Volume 2: Base Operating System and Extensions

.1, 0)

.1, 0, envptr)

1, 0)

int ra_exect(rstype, rsid, flags, path, argumentv, envptr)
rstype_t rstype;

rsid_t rsid;

unsigned int flags;

char * path, argumentv, envptr[];

Description

The ra_exec subroutine in all its forms, executes a new program in the calling process, and attaches the

process to the resource specified by the rstype and rsid parameters.

The following conditions must be met to successfully attach a process to a resource set:

* The resource set must contain processors that are available in the system.

* The process must either have root authority or have CAP_NUMA_ATTACH capability.

» The calling thread must not have a bindprocessor binding to a processor.

* The resource set must be contained in (be a subset of) the process’ partition resource set.

Note: When the exec subroutine is used, the new process image inherits its process’ resource set
attachments.

Dynamic Processor Deallocation and DLPAR may invalidate the processor attachment that is being
specified. A program must become DLPAR Aware to resolve this problem.

Parameters

The ra_exec subroutine has the same parameters as the exec subroutine, with the addition of the
following new parameters:

rstype Specifies the type of resource the new process image will be attached to. This parameter must be the

following, defined in rset.h:
* R_RSET: resource set

rsid Identifies the resource the new process image will be attached to. This parameter must be a resource set

handle.

» Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process’ process ID.

flags Reserved for future use. Specify as 0.

Return Values
The ra_exec subroutine’s return values are the same as the exec subroutine’s return values.

Error Codes

The ra_exec subroutine’s error codes are the same as the exec subroutine’s error codes, with the addition

of the following error codes:

EINVAL One of the following is true:
» The rstype parameter contains an invalid type identifier.
* The flags parameter contains an invalid flags value.

ENODEV The specified resource set does not contain any available processors.
EFAULT Invalid address.
EPERM One of the following is true:

» The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.

» The calling process contains one or more threads with a bindprocessor processor binding.
» The specified resource set is not included in the calling process’ partition resource set.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z)

13

Related Information

The [‘ra_fork Subroutine”| ['ra_attachrset Subroutine” on page 9| [‘ra_detachrset Subroutine” on page 11}
and [‘ra_getrset Subroutine” on page 15|

The|Dynamic Logical Panitionind article in AIX 5L Version 5.2 General Programming Concepts: Writing
and Debugging Programs.

The|dr_reconfig system call in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

The|exec: execl, execle, execlp, execy, execve, execvp, or exect Subroutine| in AIX 5L Version 5.2
Technical Reference: Base Operating System and Extensions Volume 1.

ra_fork Subroutine

Purpose
Creates and attaches a new process to a given resource.

Library
Standard C library (libc.a)

Syntax

#include <sys/rset.h>

pid_t ra_forkdrstypel |rsid|, |flagslb
rstype_t rstype;

rsid_t rsid;

unsigned int flags;

Description

The ra_fork subroutine creates a new process, and attaches the new process to the resource set
specified by rstype and rsid.

The following conditions must be met to successfully attach a process to a resource set:

* The resource set must contain processors that are available in the system.

» The process must either have root authority or have CAP_NUMA_ATTACH capability.

* The calling thread must not have a bindprocessor binding to a processor.

* The resource set must be contained in (be a subset of) the process’ partition resource set.

Note: When the fork subroutine is used, the child process inherits its parent’s resource set attachments.

Dynamic Processor Deallocation and DLPAR may invalidate the processor attachment that is being
specified. A program must become DLPAR Aware to resolve this problem.

Parameters

rstype Specifies the type of resource the new process will be attached to. This parameter must be the following
value, defined in rset.h.

* R_RSET: resource set.
rsid Identifies the resource the new process will be attached to. This parameter must be a resource set handle.

* Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process’ process ID.
flags Reserved for future use. Specify as 0.

14 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values
The ra_fork subroutine’s return values are the same as the fork subroutine’s return values.

Error Codes
The ra_fork subroutine’s error codes are the same as the fork subroutine’s error codes with the addition
of the following:
EINVAL One of the following is true:
» The rstype parameter contains an invalid type identifier.
» The flags parameter contains an invalid flags value.

ENODEV The specified resource set does not contain any available processors.
EFAULT Invalid address.
EPERM One of the following is true:

» The calling process has neither root authority nor CAP_NUMA_ATTACH attachment privilege.
* The calling process contains one or more threads with a bindprocessor processor binding.
» The specified resource set is not included in the calling process’ partition resource set.

Related Information
[‘ra_attachrset Subroutine” on page 9| [‘ra_detachrset Subroutine” on page 11} and [‘'ra_getrset Subroutine’}

The |Dynamic Logical Partitioning article in AIX 5L Version 5.2 General Programming Concepts: Writing
and Debugging Programs.

The|dr_reconfig system call in AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1.

The [fork, f_fork, or vfork Subrouting|, and lexec: execl, execle, execlp, execv, execve, execvp, or exect|
|Subroutine| articles in AIX 5L Version 5.2 Technical Reference: Base Operating System and Extensions
Volume 2.

ra_getrset Subroutine

Purpose
Gets the resource set to which a work component is attached.

Library
Standard C library (libc.a)

Syntax

include <sys/rset.h>

int ra_getrset (rstypel, |rsidl [flags), |rset)
rstype_t rstype;

rsid_t rsid;

unsigned int flags;

rsethandle_t rset;

Description
The ra_getrset subroutine returns the resource set to which a specified work component is attached.

The work component is an existing process identified by the process ID. A process ID value of
RS_MYSELF indicates the resource set attached to the current process is requested.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 15

The following return values from the ra_getrset subroutine indicate the type of resource set returned:

* Avalue of RS_EFFECTIVE_RSET indicates the process was explicitly attached to the resource set.
This may have been done with the ra_attachrset subroutine.

* Avalue of RS_PARTITION_RSET indicates the process was not explicitly attached to a resource set.
However, the process had an explicitly set partition resource set. This may be set with the
rs_setpartition subroutine or through the use of WLM work classes with resource sets.

» A value of RS_DEFAULT_RSET indicates the process was not explicitly attached to a resource set nor
did it have an explicitly set partition resource set. The system default resource set is returned.

Parameters

rstype Specifies the type of the work component whose resource set attachment is requested. This parameter
must be the following value, defined in rset.h:

* R_PROCESS: existing process

rsid Identifies the work component whose resource set attachment is requested. This parameter must be the
following:
* Process ID (for rstype of R_PROCESS): set the rsid_t at_pid field to the desired process’ process ID.
flags Reserved for future use. Specify as 0.
rset Specifies the resource set to receive the work component’s resource set.

Return Values

If successful, a value of RS_EFFECTIVE_RSET, RS_PARTITION_RSET, or RS_DEFAULT_RSET is
returned. If unsuccessful, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The ra_getrset subroutine is unsuccessful if one or more of the following are true:

EINVAL One of the following is true:
* The flags parameter contains an invalid value.

» The rstype parameter contains an invalid type qualifier.
EFAULT Invalid address.
ESRCH The process identified by the rstype and rsid parameters does not exist.

Related Information
The [‘rs_getpartition Subroutine” on page 93]

read, readx, readv, readvx, or pread Subroutine

Purpose
Reads from a file.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

ssize_t read (FileDescriptor,
Buffer, NBytes)

16 Technical Reference, Volume 2: Base Operating System and Extensions

int |FileDescriptorj
void *
size_t

int readx (FileDescriptor, ;Buffer, NBytes, Extension)
int FileDescriptor;

char * Buffer;

unsigned int NBytes;

int |Extension|;

#include <sys/uio.h>

ssize t readv (FileDescriptor, iov, iovCount)
int FileDescriptors;
const struct iovec *

ssize_t readvx (FileDescriptor, iov, iovCount, Extension)
int FileDescriptors;

struct iovec *iov;

int iovCount;

int Extension;

#include <unistd.h>
ssize_t pread (int fildes, void *buf, size_t nbyte, off_t offset);

Description

The read subroutine attempts to read NBytes of data from the file associated with the FileDescriptor
parameter into the buffer pointed to by the Buffer parameter.

The readv subroutine performs the same action but scatters the input data into the iovCount buffers
specified by the array of iovec structures pointed to by the iov parameter. Each iovec entry specifies the
base address and length of an area in memory where data should be placed. The readv subroutine
always fills an area completely before proceeding to the next.

The readx and readvx subroutines are the same as the read and readv subroutines, respectively, with
the addition of an Extension parameter, which is needed when reading from some device drivers and
when reading directories. While directories can be read directly, it is recommended that the opendir and
readdir calls be used instead, as this is a more portable interface.

On regular files and devices capable of seeking, the read starts at a position in the file given by the file
pointer associated with the FileDescriptor parameter. Upon return from the read subroutine, the file pointer
is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of a file pointer
associated with such a file is undefined.

On directories, the readvx subroutine starts at the position specified by the file pointer associated with
theFileDescriptor parameter. The value of this file pointer must be either 0 or a value which the file pointer
had immediately after a previous call to the readvx subroutine on this directory. Upon return from the
readvx subroutine, the file pointer increments by a number that may not correspond to the number of
bytes copied into the buffers.

When attempting to read from an empty pipe (first-in-first-out (FIFO)):
» If no process has the pipe open for writing, the read returns 0 to indicate end-of-file.
» |If some process has the pipe open for writing:

— If O_NDELAY and O_NONBLOCK are clear (the default), the read blocks until some data is written
or the pipe is closed by all processes that had opened the pipe for writing.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 17

— |If O_NDELAY is set, the read subroutine returns a value of 0.

— If O_NONBLOCK is set, the read subroutine returns a value of -1 and sets the global variable errno
to EAGAIN.

When attempting to read from a character special file that supports nonblocking reads, such as a terminal,
and no data is currently available:

* If O_NDELAY and O_NONBLOCK are clear (the default), the read subroutine blocks until data
becomes available.
» |f O_NDELAY is set, the read subroutine returns 0.

* |If O_NONBLOCK is set, the read subroutine returns -1 and sets the errno global variable to EAGAIN if
no data is available.

When attempting to read a regular file that supports enforcement mode record locks, and all or part of the
region to be read is currently locked by another process:

* |f O_NDELAY and O_NONBLOCK are clear, the read blocks the calling process until the lock is
released.

» |f O_NDELAY or O_NONBLOCK is set, the read returns -1 and sets the global variable errno
toEAGAIN.

The behavior of an interrupted read subroutine depends on how the handler for the arriving signal was
installed.

Note: A read from a regular file is not interruptible. Only reads from objects that may block indefinitely,
such as FIFOs, sockets, and some devices, are generally interruptible.

If the handler was installed with an indication that subroutines should not be restarted, the read subroutine
returns a value of -1 and the global variable errno is set to EINTR (even if some data was already
consumed).

If the handler was installed with an indication that subroutines should be restarted:

* If no data had been read when the interrupt was handled, this read will not return a value (it is
restarted).

» If data had been read when the interrupt was handled, this read subroutine returns the amount of data
consumed.

The pread function performs the same action as read, except that it reads from a given position in the file
without changing the file pointer. The first three arguments to pread are the same as read with the
addition of a fourth argument offset for the desired position inside the file. An attempt to perform a pread
on a file that is incapable of seeking results in an error.

Note: The pread64 subroutine applies to AIX 4.3 and later.
ssize_t pread64(int filedes , void *buf , size_t nbytes , off64_t offset)

The pread64 subroutines performs the same action as pread but the limit of offset to the maximum file

size for the file associated with the file Descriptor and DEV_OFF_MAX if the file associated with
fileDescriptor is a block special or character special file.

Parameters

FileDescriptor A file descriptor identifying the object to be read.

18 Technical Reference, Volume 2: Base Operating System and Extensions

Extension

iov

caddr_t iov_base;
size_t jov_len;

Provides communication with character device drivers that require additional information
or return additional status. Each driver interprets the Extension parameter in a
device-dependent way, either as a value or as a pointer to a communication area. Drivers
must apply reasonable defaults when the value of the Extension parameter is O.

For directories, the Extension parameter determines the format in which directory entries
should be returned:

« If the value of the Extension parameter is 0, the format in which directory entries are
returned depends on the value of the real directory read flag (described in the ulimit
(‘ulimit Subroutine” on page 415) subroutine).

« If the calling process does not have the real directory read flag set, the buffers are
filled with an array of directory entries truncated to fit the format of the System V
directory structure. This provides compatibility with programs written for UNIX System
V.

< If the calling process has the real directory read flag set (see the ulimit subroutine),
the buffers are filled with an image of the underlying implementation of the directory.

« If the value of the Extension parameter is 1, the buffers are filled with consecutive
directory entries in the format of adirent structure. This is logically equivalent to the
readdir subroutine.

» Other values of the Extension parameter are reserved.

For tape devices, the Extension parameter determines the response of the readx
subroutine when the tape drive is in variable block mode and the read request is for less
than the tape’s block size.

« If the value of the Extension parameter is TAPE_SHORT_READ, the readx subroutine
returns the number of bytes requested and sets the errno global variable to a value of
0.

« If the value of the Extension parameter is 0, the readx subroutine returns a value of 0
and sets the errno global variable to ENOMEM.

Points to an array of iovec structures that identifies the buffers into which the data is to

be placed. The iovec structure is defined in the sys/uio.h file and contains the following

members:

iovCount Specifies the number of iovec structures pointed to by the iov parameter.
Buffer Points to the buffer.
NBytes Specifies the number of bytes read from the file associated with theFileDescriptor parameter.

Note: When reading tapes, the read subroutines consume a physical tape block on each call to the
subroutine. If the physical data block size is larger than specified by the Nbytes parameter, an error
will be returned, since all of the data from the read will not fit into the buffer specified by the read.

To avoid read errors due to unknown blocking sizes on tapes, set the NBytes parameter to a very
large value (such as 32K bytes).

Return Values

Upon successful completion, the read, readx, readv, readvx, and pread subroutines return the number of
bytes actually read and placed into buffers. The system guarantees to read the number of bytes requested
if the descriptor references a normal file that has the same number of bytes left before the end of the file
is reached, but in no other case.

A value of 0 is returned when the end of the file has been reached. (For information about communication
files, see the ioctl and termio files.)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 19

Otherwise, a value of -1 is returned, the global variable errno is set to identify the error, and the content of
the buffer pointed to by the Buffer or iov parameter is indeterminate.

Error Codes
The read, readx, readv, readvx, and pread subroutines are unsuccessful if one or more of the following
are true:

EBADMSG The file is a STREAM file that is set to control-normal mode and the message waiting to be read
includes a control part.

EBADF The FileDescriptor parameter is not a valid file descriptor open for reading.

EINVAL The file position pointer associated with the FileDescriptor parameter was negative.

EINVAL The sum of the iov_len values in the jov array was negative or overflowed a 32-bit integer.

EINVAL The value of the iovCount parameter was not between 1 and 16, inclusive.

EINVAL The value of the Nbytes parameter that is larger than OFF_MAX, was requested on the 32-bit kernel.
This is a case where the system call is requested from a 64-bit application that is running on a 32-bit
kernel.

EINVAL The STREAM or multiplexer referenced by FileDescriptor is linked (directly or indirectly) downstream
from a multiplexer.

EAGAIN The file was marked for non-blocking I/0, and no data was ready to be read.

EFAULT The Buffer or part of the jov points to a location outside of the allocated address space of the process.

EDEADLK A deadlock would occur if the calling process were to sleep until the region to be read was unlocked.

EINTR A read was interrupted by a signal before any data arrived, and the signal handler was installed with
an indication that subroutines are not to be restarted.

EIO An 1/O error occurred while reading from the file system.

EIO The process is a member of a background process attempting to read from its controlling terminal, and
either the process is ignoring or blocking the SIGTTIN signal or the process group has no parent
process.

EFBIG An offset greater than MAX_FILESIZE was requested on the 32-bit kernel.

EOVERFLOW An attempt was made to read from a regular file where NBytes was greater than zero and the
starting offset was before the end-of-file and was greater than or equal to the offset maximum
established in the open file description associated with FileDescriptor.

The read, readx, readv, readvx and pread subroutines may be unsuccessful if the following is true:

ENXIO A request was made of a nonexistent device, or the request was outside the capabilities of the device.
ESPIPE fildes is associated with a pipe or FIFO.

If Network File System (NFS) is installed on the system, the read system call can also fail if the following
is true:

ETIMEDOUT The connection timed out.

Related Information

The [fentl, dup, or dup2] subroutine, fioct] subroutine, [lockfx subroutine, subroutine,
or creat| subroutine, jopendir, readdir, or seekdir|subroutine, subroutine, subroutine, |[socket
subroutine, |§ocketpai[| subroutine.

The [Input and Output Handling in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

20 Technical Reference, Volume 2: Base Operating System and Extensions

readdir_r Subroutine

Purpose
Reads a directory.

Library
Thread-Safe C Library (libc_r.a)

Syntax

#include <sys/types.h>
#include <dirent.h>

int readdir r (DirectoryPointer, Entry, Result)
DIR =* |Director‘yPointer‘|;

struct dirent * [Entryj;
struct dirent *x Resultl;
Description

The readdir_r subroutine returns the directory entry in the structure pointed to by the Result parameter.
The readdir_r subroutine returns entries for the . (dot) and .. (dot-dot) directories, if present, but never
returns an invalid entry (with d_ino set to 0). When it reaches the end of the directory, the readdir_r
subroutine returns a 0. When it detects an invalid operation, the readdir_r subroutine returns a 9.

Note: The readdir subroutine is reentrant when an application program uses different DirectoryPointer
parameter values (returned from thesubroutine). Use the readdir_r subroutine when
multiple threads use the same directory pointer.

Using the readdir_r subroutine after the subroutine, for the structure pointed to by the
DirectoryPointer parameter, has an undefined result. The structure pointed to by the DirectoryPointer
parameter becomes invalid for all threads, including the caller.

Programs using this subroutine must link to the libpthreads.a library.

Parameters

DirectoryPointer Points to the DIR structure of an open directory.

Entry Points to a structure that contains the next directory entry.
Result Points to the directory entry specified by the Entry parameter.

Return Values

0 Indicates that the subroutines was successful.
9 Indicates that the subroutines was not successful.

Error Codes

If the readdir_r subroutine is unsuccessful, the errno global variable is set to one of the following values:

EACCES Search permission is denied for any component of the structure
pointed to by the DirectoryPointer parameter, or read permission is

denied for the structure pointed to by the DirectoryPointer
parameter.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 21

ENAMETOOLONG The length of the DirectoryPointer parameter exceeds the value of
the PATH_MAX variable, or a path-name component is longer
than the value of NAME_MAX variable while the
_POSIX_NO_TRUNC variable is in effect.

ENOENT The named directory does not exist.

ENOTDIR A component of the structure pointed to by the DirectoryPointer
parameter is not a directory.

EMFILE Too many file descriptors are currently open for the process.

ENFILE Too many file descriptors are currently open in the system.

EBADF The structure pointed to by the DirectoryPointer parameter does

not refer to an open directory stream.

Examples
To search a directory for the entry name,enter:
len = strlen(name);
DirectoryPointer = opendir(".");
for (readdir_r(DirectoryPointer, &Entry, &Result); Result != NULL;
readdir_r(DirectoryPointer, &Entry, &Result))
if (dp->d_namlen == Tlen && !strcmp(dp->d_name, name)) {
closedir(DirectoryPointer);
return FOUND;

closedir(DirectoryPointer);
return NOT_FOUND;

Related Information
The subroutine, subroutines, [fork] subroutine, [lseek] subroutine, [openx, open, or creat

subroutine, read, readv, readx, or readvx (‘read, readx, readv, readvx, or pread Subroutine” on page 16)
subroutine, scandir or alphasort (‘scandir or alphasort Subroutine” on page 107) subroutine.

The [opendir, readdir, telldir, seekdir, rewinddir, or closedir| subroutine.

[Subroutines Overviewj [List of File and Directory Manipulation Services| and [List of Multithread Subroutines|
in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging Programs.

readlink Subroutine

Purpose
Reads the contents of a symbolic link.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int readlink (|Pathl, Bufferl, BufferSize)
const char *Path;

char *Buffer;

size_t BufferSize;

Description

The readlink subroutine copies the contents of the symbolic link named by the Path parameter in the
buffer specified in the Buffer parameter. The BufferSize parameter indicates the size of the buffer in bytes.

22 Technical Reference, Volume 2: Base Operating System and Extensions

If the actual length of the symbolic link is less than the number of bytes specified in the BufferSize
parameter, the string copied into the buffer will be null-terminated. If the actual length of the symbolic link
is greater than the number of bytes specified in the Buffersize parameter, an error is returned. The length
of a symbolic link cannot exceed 1023 characters or the value of the PATH_MAX constant. PATH_MAX is
defined in the limits.h file.

Parameters

Path Specifies the path name of the destination file or directory.

Buffer Points to the user’s buffer. The buffer should be at least as large as the BufferSize parameter.
BufferSize Indicates the size of the buffer. The contents of the link are null-terminated, provided there is

room in the buffer.

Return Values

Upon successful completion, the readlink subroutine returns a count of the number of characters placed in
the buffer (not including any terminating null character). If the readlink subroutine is unsuccessful, the
buffer is not modified, a value of -1 is returned, and the errno global variable is set to indicate the error.

Error Codes
The readlink subroutine fails if one or both of the following are true:
ENOENT The file named by the Path parameter does not exist, or the path points to an empty string.

EINVAL The file named by the Path parameter is not a symbolic link.
ERANGE The path name in the symbolic link is longer than the BufferSize value.

The readlink subroutine can also fail due to additional errors. See ['Base Operating System Error Codes|
ffor Services that Require Path-Name Resolution”|for a list of additional error codes.

The readlink subroutine can also fail due to additional errors. See Appendix A,"Base Operating System
Error Codes for Services That Require Path-Name Resolution” on page A-1 for a list of additional error
codes.

If Network File System (NFS) is installed on the system, the readlink subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Related Information
The [In] command.

The |Iink| subroutine, statx, stat, fstatx, fstat, fullstat, or ffullstat d“statx, stat, Istat, fstatx, fstat, fullstat,|
ffullstat, stat64, Istat64, or fstatb4 Subroutine” on page 277) subroutine, symlink (“symlink Subroutine” on|
page 308) subroutine, unlink (‘unlink Subroutine” on page 423) subroutine.

Files, Directories, and File Systems for Programmers|in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

read_real _time or time_base to time Subroutine

Purpose
Read the processor real time clock or time base registers to obtain high-resolution elapsed time.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 23

Library
Standard C Library (libc.a)

Syntax

#include <sys/time.h>
#include <sys/systemcfg.h>

int read_real_time(timebasestruct t *t,
size t size of timebasestruct_t);

int time_base_to_time(timebasestruct t =t,
size_t size_of_timebasestruct_t);

Description

These subroutines are designed to be used for making high-resolution measurement of elapsed time,
using the processor real time clock or time base registers. The read_real_time subroutine reads the value
of the appropriate registers and stores them in a structure. The time_base_to_time subroutine converts
time base data to real time, if necessary. This process is divided into two steps because the process of
reading the time is usually part of the timed code, and so the conversion from time base to real time can
be moved out of the timed code.

The read_real_time subroutine reads either the processor real time clock (for the POWER family or
PowerPC 601 RISC Microprocessor in AIX 5.1 and earlier) or the time base register (in the case of the
POWER-based processors other than the PowerPC 601 RISC Microprocessor). The t argument is a
pointer to a timebasestruct_t, where the time values are recorded.

After calling read_real_time, if running on a processor with a real time clock, t->tb_high and t->tb_low
contain the current clock values (seconds and nanoseconds), and t->flag contains the RTC_POWER.

If running on a processor with a time base register, t->tb_high and t-tb_low contain the current values of
the time base register, and t->flag contains RTC_POWER_PC.

The time_base_to_time subroutine converts time base information to real time, if necessary. It is
recommended that applications unconditionally call the time_base_to_time subroutine rather than
performing a check to see if it is necessary.

If t->flag is RTC_POWER, the subroutine simply returns (the data is already in real time format).
If t->flag is RTC_POWER_PC, the time base information in t->tb_high and t->tb_low is converted to

seconds and nanoseconds; t->tb_high is replaced by the seconds; t->tb_low is replaced by the
nanoseconds; and t->flag is changed to RTC_POWER.

Parameters

t Points to a timebasestruct t.

Return Values

The read_real_time subroutine returns RTC_POWER if the contents of the real time clock has been
recorded in the timebasestruct, or returns RTC_POWER_PC if the content of the time base registers has
been recorded in the timebasestruct.

The time_base_to_time subroutine returns 0 if the conversion to real time is successful (or not
necessary), otherwise -1 is returned.

24 Technical Reference, Volume 2: Base Operating System and Extensions

Examples

This example shows the time it takes for print_f to print the comment between the begin and end time
codes:

#include <stdio.h>
#include <sys/time.h>

int

main(void)

{
timebasestruct_t start, finish;
int val = 3;
int secs, n_secs;

/* get the time before the operation begins */
read_real_time(&start, TIMEBASE_SZ);

/* begin code to be timed */
(void) printf("This is a sample Tine %d \n", val);
/* end code to be timed */

/* get the time after the operation is complete */
read_real_time(&finish, TIMEBASE_SZ);

/*

* Call the conversion routines unconditionally, to ensure

* that both values are in seconds and nanoseconds regardless
* of the hardware platform.

*/

time_base_to_time(&start, TIMEBASE_SZ);
time_base_to_time(&finish, TIMEBASE SZ);

/* subtract the starting time from the ending time =/
secs = finish.tb_high - start.tb_high;
n_secs = finish.tb_low - start.tb_Tow;

/*

* If there was a carry from Tow-order to high-order during

* the measurement, we may have to undo it.

*/

if (n_secs < 0) {
secs--;
n_secs += 1000000000;
1

(void) printf("Sample time was %d seconds %d nanoseconds\n",
secs, n_secs);

exit(0);
1

Related Information
The [gettimer, settimer, restimer, stime, or time{ subroutines, |getrusage, times, or vtimes| subroutines.

[High-Resolution Time Measurements Using POWER-based Time Base or POWER family Real-Time Clock|
in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging Programs.

realpath Subroutine

Purpose
Resolves path names.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 25

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

char *realpath (const char *file_name,
char *resolved_name)

Description

The realpath subroutine performs filename expansion and path name resolution in file_name and stores it
in resolved_name.

The realpath subroutine can handle both relative and absolute path names. For both absolute and relative
path names, the realpath subroutine returns the resolved absolute path name.

The character pointed to by resolved_name must be big enough to contain the fully resolved path name.
The value of PATH_MAX (defined in limits.h header file may be used as an appropriate array size.

Return Values

On successful completion, the realpath subroutine returns a pointer to the resolved name. Otherwise, it
returns a null pointer, and sets errno to indicate the error. If the realpath subroutine encounters an error,
the contents of resolved_name are undefined.

Error Codes
Under the following conditions, the realpath subroutine fails and sets errno to:

EACCES Read or search permission was denied for a component of the
path name.

EINVAL File_name or resolved_name is a null pointer.

ELOOP Too many symbolic links are encountered in translating file_name.

ENAMETOOLONG The length of file_name or resolved_name exceeds PATH_MAX or
a path name component is longer than NAME_MAX.

ENOENT The file_name parameter does not exist or points to an empty
string.

ENOTDIR A component of the file_name prefix is not a directory.

The realpath subroutine may fail if:

ENOMEM Insufficient storage space is available.

Related Information
Theor sysconf (f‘sysconf Subroutine” on page 311b subroutine.

reboot Subroutine

Purpose
Restarts the system.

26 Technical Reference, Volume 2: Base Operating System and Extensions

Library
Standard C Library (libc.a)

Syntax

#include <sys/reboot.h>

void reboot (V-/owToL |4r‘gumentb
int HowTo;
void *Argument;

Description

The reboot subroutine restarts or re-initial program loads (IPL) the system. The startup is automatic and
brings up /unix in the normal, nonmaintenance mode.

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is passed in case
of 64-bit application calling 32-bit kernel interface.

The calling process must have root user authority in order to run this subroutine successfully.

Attention: Users of the reboot subroutine are not portable. The reboot subroutine is intended for use
only by the halt, reboot, and shutdown commands.

Parameters
HowTo Specifies one of the following values:
RB_SOFTIPL
Soft IPL.
RB_HALT
Halt operator; turn the power off.
RB_POWIPL

Halt operator; turn the power off. Wait a specified length of time, and then turn the power on.

Argument Specifies the amount of time (in seconds) to wait between turning the power off and turning the
power on. This option is not supported on all models. Please consult your hardware technical
reference for more details.

Return Values

Upon successful completion, the reboot subroutine does not return a value. If the reboot subroutine fails,
a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The reboot subroutine is unsuccessful if any of the following is true:

EPERM The calling process does not have root user authority.
EINVAL The HowTo value is not valid.
EFAULT The Argument value is not a valid address.

Related Information
The command, command, command.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 27

re_comp or re_exec Subroutine

Purpose
Regular expression handler.

Library
Standard C Library (libc.a)

Syntax
char *re_comp (

const char *String;

int re_exec(String)
const char *String;

Description
Attention: Do not use the re_comp or re_exec subroutine in a multithreaded environment.

The re_comp subroutine compiles a string into an internal form suitable for pattern matching. The re_exec
subroutine checks the argument string against the last string passed to the re_comp subroutine.

The re_comp subroutine returns 0 if the string pointed to by the String parameter was compiled
successfully; otherwise a string containing an error message is returned. If the re_comp subroutine is
passed 0 or a null string, it returns without changing the currently compiled regular expression.

The re_exec subroutine returns 1 if the string pointed to by the String parameter matches the last
compiled regular expression, 0 if the string pointed to by the String parameter failed to match the last
compiled regular expression, and -1 if the compiled regular expression was invalid (indicating an internal
error).

The strings passed to both re_comp and re_exec subroutines may have trailing or embedded newline
characters; they are terminated by nulls. The regular expressions recognized are described in the manual
entry for the ed command, given the above difference.

Parameters

String Points to a string that is to be matched or compiled.

Return Values

If an error occurs, the re_exec subroutine returns a -1, while the re_comp subroutine returns one of the
following strings:

* No previous regular expression
* Regular expression too long

* unmatched \(

* missing]

* too many \(\) pairs

* unmatched)

28 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information
The [compile, step, or advance| subroutine, regcmp or regex (‘regcmp or regex Subroutine”) subroutine.

The [ed| command, [sed| command, command.

[List of String Manipulation Services|and [Subroutines, Example Programs, and Libraries|in AIX 5L Version
5.2 General Programming Concepts: Writing and Debugging Programs.

[National Language Support Overview|in AIX 5L Version 5.2 National Language Support Guide and
Reference.

regcmp or regex Subroutine

Purpose
Compiles and matches regular-expression patterns.

Libraries
Standard C Library (libc.a)

Programmers Workbench Library (libPW.a)

Syntax

#include <libgen.h>

char *regcmp ([, String, . . . 1, (char *) 0)

const char *String, . . . ;
const char *regex ([Pattern|, [Subject| [, [ret|, . . . 1)
char *Pattern, *Subject, *ret, . . . ;

extern char *__locl;

Description

The regemp subroutine compiles a regular expression (or Pattern) and returns a pointer to the compiled
form. The regemp subroutine allows multiple String parameters. If more than one String parameter is
given, then the regecmp subroutine treats them as if they were concatenated together. It returns a null
pointer if it encounters an incorrect parameter.

You can use the regemp command to compile regular expressions into your C program, frequently
eliminating the need to call the regecmp subroutine at run time.

The regex subroutine compares a compiled Pattern to the Subject string. Additional parameters are used
to receive values. Upon successful completion, the regex subroutine returns a pointer to the next
unmatched character. If the regex subroutine fails, a null pointer is returned. A global character pointer,
__loc1, points to where the match began.

The regemp and regex subroutines are borrowed from the ed command; however, the syntax and
semantics have been changed slightly. You can use the following symbols with the regcmp and regex
subroutines:

[1*.~ These symbols have the same meaning as they do in the ed command.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 29

- The minus sign (or hyphen) within brackets used with the regex subroutine
means "through,” according to the current collating sequence. For example,
[a-z] can be equivalent to [abcd . . . xyz] or [aBbCc .. . xYyZz]. You can use
the - by itself if the - is the last or first character. For example, the character
class expression [] -] matches the] (right bracket) and - (minus) characters.

The regemp subroutine does not use the current collating sequence, and the
minus sign in brackets controls only a direct ASCIl sequence. For example,
[a-z] always means [abc . . . xyz] and [A-Z] always means [ABC . . . XYZ].
If you need to control the specific characters in a range using the regcmp
subroutine, you must list them explicitly rather than using the minus sign in the
character class expression.

$ Matches the end of the string. Use the \n character to match a new-line
character.

+ A regular expression followed by + (plus sign) means one or more times. For
example, [0-9] + is equivalent to [0-9] [0-9] *.

[m[m][m,u Integer values enclosed in [] (braces) indicate the number of times to apply the

preceding regular expression. The m character is the minimum number and the
u character is the maximum number. The u character must be less than 256. If
you specify only m, it indicates the exact number of times to apply the regular
expression. [m,] is equivalent to [m,u.] and matches m or more occurrences of
the expression. The + (plus sign) and * (asterisk) operations are equivalent to
[1,] and [0,], respectively.

(...)%n This stores the value matched by the enclosed regular expression in the (n+1)th
ret parameter. Ten enclosed regular expressions are allowed. The regex
subroutine makes the assignments unconditionally.

(...) Parentheses group subexpressions. An operator, such as *, +, or [] works on a
single character or on a regular expression enclosed in parentheses. For
example, (a*(cb+)*)$0.

All of the preceding defined symbols are special. You must precede them with a \ (backslash) if you want
to match the special symbol itself. For example, \$ matches a dollar sign.

Note: The regemp subroutine uses the malloc subroutine to make the space for the vector. Always free
the vectors that are not required. If you do not free the unneeded vectors, you can run out of
memory if the regemp subroutine is called repeatedly. Use the following as a replacement for the
malloc subroutine to reuse the same vector, thus saving time and space:

/* . . . Your Program . . . */
malloc(n)

int n;
{

static int rebuf[256] ;

return ((n <= sizeof(rebuf)) ? rebuf : NULL);
}

The regemp subroutine produces code values that the regex subroutine can interpret as the regular
expression. For instance, [a-z] indicates a range expression which the regemp subroutine compiles into a
string containing the two end points (a and z).

The regex subroutine interprets the range statement according to the current collating sequence. The
expression [a-z] can be equivalent either to [abcd . . . xyz], or to [aBbCcDd . . . xXyYzZ], as long as
the character preceding the minus sign has a lower collating value than the character following the minus
sign.

The behavior of a range expression is dependent on the collation sequence. If you want to match a
specific set of characters, you should list each one. For example, to select letters a, b, or ¢, use [abc]
rather than [a-c] .

30 Technical Reference, Volume 2: Base Operating System and Extensions

Notes:
1. No assumptions are made at compile time about the actual characters contained in the range.
2. Do not use multibyte characters.

3. You can use the] (right bracket) itself within a pair of brackets if it immediately follows the leading [
(left bracket) or [(a left bracket followed immediately by a circumflex).

4. You can also use the minus sign (or hyphen) if it is the first or last character in the expression. For
example, the expression [] -0] matches either the right bracket (]), or the characters - through O.

Matching a Character Class in National Language Support

A common use of the range expression is matching a character class. For example, [0-9] represents all
digits, and [a-z, A-Z] represents all letters. This form may produce unexpected results when ranges are
interpreted according to the current collating sequence.

Instead of the range expression shown above, use a character class expression within brackets to match
characters. The system interprets this type of expression according to the current character class
definition. However, you cannot use character class expressions in range expressions.

The following exemplifies the syntax of a character class expression:
[:charclass:]

that is, a left bracket followed by a colon, followed by the name of the character class, followed by another
colon and a right bracket.

National Language Support supports the following character classes:

[:upper:] ASCII uppercase letters.

[:lower:] ASCII lowercase letters.

[:alpha:] ASCII uppercase and lowercase letters.

[:digit:] ASCII digits.

[:alnum:] ASCII uppercase and lowercase letters, and digits.

[:xdigit:] ASCII hexadecimal digits.

[:punct:] ASCII punctuation character (neither a control character nor an alphanumeric character).
[:space:] ASCII space, tab, carriage return, new-line, vertical tab, or form feed character.

[:print:] ASCII printing characters.

Parameters

Subject Specifies a comparison string.

String Specifies the Pattern to be compiled.

Pattern Specifies the expression to be compared.

ret Points to an address at which to store comparison data. The regex subroutine allows multiple ret

String parameters.

Related Information

The [ctypd subroutine, [compile, step, or advance| subroutine, [malloc, free, realloc, calloc, mallopt]
mallinfo, or allocalsubroutine, regcomp (‘regcomp Subroutine” on page 32) subroutine, regex 1“regexe9|
Subroutine” on page 35) subroutine.

The command, command.

|Subroutines Overview| in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 31

regcomp Subroutine

Purpose
Compiles a specified basic or extended regular expression into an executable string.

Library
Standard C Library (libc. a)

Syntax

#include <regex.h>

int regcomp (|Pregl, |Patternl, [CFlags)
const char *Preg;

const char *Pattern;

int CFlags;

Description

The regcomp subroutine compiles the basic or extended regular expression specified by the Pattern
parameter and places the output in the structure pointed to by the Preg parameter.

Parameters
Preg Specifies the structure to receive the compiled output of the regcomp subroutine.
Pattern Contains the basic or extended regular expression to be compiled by the regcomp subroutine.

The default regular expression type for the Pattern parameter is a basic regular expression. An
application can specify extended regular expressions with the REG_EXTENDED flag.

CFlags Contains the bitwise inclusive OR of 0 or more flags for the regcomp subroutine. These flags are
defined in the regex.h file:

REG_EXTENDED
Uses extended regular expressions.

REG_ICASE
Ignores case in match.

REG_NOSUB
Reports only success or failure in the regexec subroutine. If this flag is not set, the regcomp
subroutine sets the re_nsub structure to the number of parenthetic expressions found in the
Pattern parameter.

REG_NEWLINE
Prohibits . (period) and nonmatching bracket expression from matching a new-line character.
The ~ (circumflex) and $ (dollar sign) will match the zero-length string immediately following or
preceding a new-line character.

Return Values

If successful, the regcomp subroutine returns a value of 0. Otherwise, it returns another value indicating
the type of failure, and the content of the Preg parameter is undefined.

Error Codes

The following macro names for error codes may be written to the errno global variable under error
conditions:

REG_BADPAT Indicates a basic or extended regular expression that is not valid.

32 Technical Reference, Volume 2: Base Operating System and Extensions

REG_ECOLLATE Indicates a collating element referenced that is not valid.

REG_ECTYPE Indicates a character class-type reference that is not valid.

REG_EESCAPE Indicates a trailing \ in pattern.

REG_ESUBREG Indicates a number in \digit is not valid or in error.

REG_EBRACK Indicates a [] imbalance.

REG_EPAREN Indicates a \(\) or () imbalance.

REG_EBRACE Indicates a \{\} imbalance.

REG_BADBR Indicates the content of \{\} is unusable: not a number, number too large, more than two
numbers, or first number larger than second.

REG_ERANGE Indicates an unusable end point in range expression.

REG_ESPACE Indicates out of memory.

REG_BADRPT Indicates a ? (question mark), * (asterisk), or + (plus sign) not preceded by valid basic or

extended regular expression.

If the regcomp subroutine detects an illegal basic or extended regular expression, it can return either the
REG_BADPAT error code or another that more precisely describes the error.

Examples

The following example illustrates how to match a string (specified in the string parameter) against an
extended regular expression (specified in the Pattern parameter):

#include <sys/types.h>

#include <regex.h>

int

match(char *string, char *pattern)

{

int status;

regex_t re;

if (regcomp(&re, pattern, REG_EXTENDED|REG_NOSUB) != 0) {
return(0) ; /* report error */

1
status = regexec(&re, string, (size_t) 0, NULL, 0);
regfree(&re);
if (status !=0) {

return(0) ; /* report error */
1

return(1);

}

In the preceding example, errors are treated as no match. When there is no match or error, the calling
process can get details by calling the regerror subroutine.

Related Information
The regerror (‘regerror Subroutine’) subroutine, regexec (“regexec Subroutine” on page 35) subroutine,
regfree (‘regfree Subroutine” on page 38)) subroutine.

[Subroutines Overview| and [Understanding Internationalized Regular Expression Subroutines|in AlX 5L
Version 5.2 General Programming Concepts: Writing and Debugging Programs.

regerror Subroutine

Purpose
Returns a string that describes the ErrCode parameter.

Library
Standard C Library (libc. a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 33

Syntax

#include <regex.h>

int |[ErrCodef;

const regex t * IEr‘eg|;
char * |FrrBufl
size_t [ErrBuf Sizej

Description

The regerror subroutine provides a mapping from error codes returned by the regcomp and regexec
subroutines to printable strings. It generates a string corresponding to the value of the ErrCode parameter,
which is the last nonzero value returned by the regcomp or regexec subroutine with the given value of
the Preg parameter. If the ErrCode parameter is not such a value, the content of the generated string is
unspecified. The string generated is obtained from the regex.cat message catalog.

size_t regerror (ErrCode, Preg, ErrBuf, ErrBuf_Size)

If the ErrBuf_Size parameter is not 0, the regerror subroutine places the generated string into the buffer
specifier by the ErrBuf parameter, whose size in bytes is specified by the ErrBuf_Size parameter. If the
string (including the terminating null character) cannot fit in the buffer, the regerror subroutine truncates
the string and null terminates the result.

Parameters

ErrCode Specifies the error for which a description string is to be returned.

Preg Specifies the structure that holds the previously compiled output of the regcomp subroutine.
ErrBuf Specifies the buffer to receive the string generated by the regerror subroutine.

ErrBuf_Size Specifies the size of the ErrBuf parameter.

Return Values

The regerror subroutine returns the size of the buffer needed to hold the entire generated string, including
the null termination. If the return value is greater than the value of the ErrBuf_Size variable, the string
returned in the ErrBuf buffer is truncated.

Error Codes

If the ErrBuf_Size value is 0, the regerror subroutine ignores the ErrBuf parameter, but returns the one of
the following error codes. These error codes defined in the regex.h file.

REG_NOMATCH Indicates the basic or extended regular expression was unable to find a match.

REG_BADPAT Indicates a basic or extended regular expression that is not valid.

REG_ECOLLATE Indicates a collating element referenced that is not valid.

REG_ECTYPE Indicates a character class-type reference that is not valid.

REG_EESCAPE Indicates a trailing \ in pattern.

REG_ESUBREG Indicates a number in \digit is not valid or in error.

REG_EBRACK Indicates a [] imbalance.

REG_EPAREN Indicates a \ (\) or () imbalance.

REG_EBRACE Indicates a \{\} imbalance.

REG_BADBR Indicates the content of \{\} is unusable: not a number, number too large, more than two
numbers, or first number larger than second.

REG_ERANGE Indicates an unusable end point in range expression.

REG_ESPACE Indicates out of memory.

REG_BADRPT Indicates a ? (question mark), * (asterisk), or + (plus sign) not preceded by valid basic or

extended regular expression.

34 Technical Reference, Volume 2: Base Operating System and Extensions

REG_ENEWLINE Indicates a new-line character was found before the end of the regular or extended regular
expression, and REG_NEWLINE was not set.

If the Preg parameter passed to the regexec subroutine is not a compiled basic or extended regular
expression returned by the regcomp subroutine, the result is undefined.

Examples

An application can use the regerror subroutine (with the parameters (Code, Preg, null, (size_t) 0) passed
to it) to determine the size of buffer needed for the generated string, call the malloc subroutine to allocate
a buffer to hold the string, and then call the regerror subroutine again to get the string. Alternately, this
subroutine can allocate a fixed, static buffer that is large enough to hold most strings (perhaps 128 bytes),
and then call the malloc subroutine to allocate a larger buffer if necessary.

Related Information

The regcomp (‘regcomp Subroutine” on page 32)) subroutine, regexec (“regexec Subroutine”) subroutine,
regfree (‘regfree Subroutine” on page 38) subroutine.

[Subroutines Overview| and [Understanding Internationalized Regular Expression Subroutines|in AlX 5L
Version 5.2 General Programming Concepts: Writing and Debugging Programs.

regexec Subroutine

Purpose

Compares the null-terminated string specified by the value of the String parameter against the compiled
basic or extended regular expression Preg, which must have previously been compiled by a call to the
regcomp subroutine.

Library
Standard C Library (libc. a)

Syntax

#include <regex.h>

int regexec (Preg, String, NMatch, PMatch, EFlags)
const regex_t *

const char * s
size_t
regmatch t *

PMatchl

Description

The regexec subroutine compares the null-terminated string in the String parameter with the compiled
basic or extended regular expression in the Preg parameter initialized by a previous call to the regcomp
subroutine. If a match is found, the regexec subroutine returns a value of 0. The regexec subroutine
returns a nonzero value if it finds no match or it finds an error.

If the NMatch parameter has a value of 0, or if the REG_NOSUB flag was set on the call to the regcomp
subroutine, the regexec subroutine ignores the PMatch parameter. Otherwise, the PMatch parameter
points to an array of at least the number of elements specified by the NMatch parameter. The regexec
subroutine fills in the elements of the array pointed to by the PMatch parameter with offsets of the

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 35

substrings of the String parameter. The offsets correspond to the parenthetic subexpressions of the
original pattern parameter that was specified to the regcomp subroutine.

The pmatch.rm_so structure is the byte offset of the beginning of the substring, and the pmatch.rm_eo
structure is one greater than the byte offset of the end of the substring. Subexpression i begins at the i th
matched open parenthesis, counting from 1. The 0 element of the array corresponds to the entire pattern.
Unused elements of the PMatch parameter, up to the value PMatch[NMatch-1], are filled with -1. If more
than the number of subexpressions specified by the NMatch parameter (the pattern parameter itself counts
as a subexpression), only the first NMatch-1 subexpressions are recorded.

When a basic or extended regular expression is being matched, any given parenthetic subexpression of
the pattern parameter might match several different substrings of the String parameter. Otherwise, it might
not match any substring even though the pattern as a whole did match.

The following rules are used to determine which substrings to report in the PMatch parameter when
regular expressions are matched:

» |If a subexpression in a regular expression participated in the match several times, the offset of the last
matching substring is reported in the PMatch parameter.

» If a subexpression did not participate in a match, the byte offset in the PMatch parameter is a value of
-1. A subexpression does not participate in a match if any of the following are true:

— An * (asterisk) or \{\} (backslash, left brace, backslash, right brace) appears immediately after the
subexpression in a basic regular expression.

— An * (asterisk), ? (question mark), or { } (left and right braces) appears immediately after the
subexpression in an extended regular expression and the subexpression did not match (matched 0
times).

— A/ (pipe) is used in an extended regular expression to select either the subexpression that didn’t
match or another subexpression, and the other subexpression matched.

» If a subexpression is contained in a subexpression, the data in the PMatch parameter refers to the last
such subexpression.

» If a subexpression is contained in a subexpression and the byte offsets in the PMatch parameter have a
value of -1, the pointers in the PMatch parameter also have a value of -1.

» If a subexpression matched a zero-length string, the offsets in the PMatch parameter refer to the byte
immediately following the matching string.

If the REG_NOSUB flag was set in the cflags parameter in the call to the regcomp subroutine, and the
NMatch parameter is not equal to 0 in the call to the regexec subroutine, the content of the PMatch array
is unspecified.

If the REG_NEWLINE flag was not set in the cflags parameter when the regcomp subroutine was called,
then a new-line character in the pattern or String parameter is treated as an ordinary character. If the
REG_NEWLINE flag was set when the regcomp subroutine was called, the new-line character is treated
as an ordinary character except as follows:

* A new-line character in the String parameter is not matched by a period outside of a bracket expression
or by any form of a nonmatching list. A nonmatching list expression begins with a A (circumflex) and
specifies a list that matches any character or collating element and the expression in the list after the
leading caret. For example, the regular expression [“abc] matches any character except a, b, or c. The
circumflex has this special meaning only when it is the first character in the list, immediately following
the left bracket.

* A (circumflex) in the pattern parameter, when used to specify expression anchoring, matches the
zero-length string immediately after a new-line character in the String parameter, regardless of the
setting of the REG_NOTBOL flag.

36 Technical Reference, Volume 2: Base Operating System and Extensions

* A$ (dollar sign) in the pattern parameter, when used to specify expression anchoring, matches the
zero-length string immediately before a new-line character in the String parameter, regardless of the
setting of the REG_NOTEOL flag.

Parameters

Preg Contains the compiled basic or extended regular expression to compare against the String parameter.

String Contains the data to be matched.

NMatch Contains the number of subexpressions to match.

PMatch Contains the array of offsets into the String parameter that match the corresponding subexpression in the
Preg parameter.

EFlags Contains the bitwise inclusive OR of 0 or more of the flags controlling the behavior of the regexec

subroutine capable of customizing.

The EFlags parameter modifies the interpretation of the contents of the String parameter. It is the bitwise
inclusive OR of 0 or more of the following flags, which are defined in the regex.h file:

REG_NOTBOL
The first character of the string pointed to by the String parameter is not the beginning of the
line. Therefore, the ~ (circumflex), when used as a special character, does not match the
beginning of the String parameter.

REG_NOTEOL
The last character of the string pointed to by the String parameter is not the end of the line.
Therefore, the $ (dollar sign), when used as a special character, does not match the end of the
String parameter.

Return Values

On successful completion, the regexec subroutine returns a value of 0 to indicate that the contents of the
String parameter matched the contents of the pattern parameter, or to indicate that no match occurred.
The REG_NOMATCH error is defined in the regex.h file.

Error Codes

If the regexec subroutine is unsuccessful, it returns a nonzero value indicating the type of problem. The
following macros for possible error codes that can be returned are defined in the regex.h file:

REG_NOMATCH Indicates the basic or extended regular expression was unable to find a match.

REG_BADPAT Indicates a basic or extended regular expression that is not valid.

REG_ECOLLATE Indicates a collating element referenced that is not valid.

REG_ECTYPE Indicates a character class-type reference that is not valid.

REG_EESCAPE Indicates a trailing \ (backslash) in the pattern.

REG_ESUBREG Indicates a number in \digit is not valid or is in error.

REG_EBRACK Indicates a [] (left and right brackets) imbalance.

REG_EPAREN Indicates a \ (\) (backslash, left parenthesis, backslash, right parenthesis) or () (left and
right parentheses) imbalance.

REG_EBRACE Indicates a \ { \ } (backslash, left brace, backslash, right brace) imbalance.

REG_BADBR Indicates the content of \ {\ } (backslash, left brace, backslash, right brace) is unusable (not a
number, number too large, more than two numbers, or first number larger than second).

REG_ERANGE Indicates an unusable end point in range expression.

REG_ESPACE Indicates out of memory.

REG_BADRPT Indicates a ? (question mark), * (asterisk), or + (plus sign) not preceded by valid basic or

extended regular expression.

If the value of the Preg parameter to the regexec subroutine is not a compiled basic or extended regular
expression returned by the regcomp subroutine, the result is undefined.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 37

Examples

The following example demonstrates how the REG_NOTBOL flag can be used with the regexec
subroutine to find all substrings in a line that match a pattern supplied by a user. (For simplicity, very little
error-checking is done in this example.)

(void) regcomp (&re, pattern, 0) ;

/* this call to regexec finds the first match on the line */

error = regexec (&re, &buffer[0], 1, &m, 0) ;

while (error = = 0) { /* while matches found */

<subString found between pm.r._sp and pm.rm_ep>

/* This call to regexec finds the next match */

error = regexec (&re, pm.rm_ep, 1, &pm, REG_NOTBOL) ;

Related Information
The regcomp (‘regcomp Subroutine” on page 32) subroutine, regerror (‘regerror Subroutine” on page 33)
subroutine, regfree (‘regfree Subroutine”) subroutine.

[Subroutines Overview| and [Understanding Internationalized Regular Expression Subroutines|in AlX 5L
Version 5.2 General Programming Concepts: Writing and Debugging Programs.

regfree Subroutine

Purpose
Frees any memory allocated by the regcomp subroutine associated with the Preg parameter.

Library
Standard C Library (libc. a)

Syntax

#include <regex.h>

void regfree (

regex_t *Preg;

Description

The regfree subroutine frees any memory allocated by the regcomp subroutine associated with the Preg
parameter. An expression defined by the Preg parameter is no longer treated as a compiled basic or
extended regular expression after it is given to the regfree subroutine.

Parameters

Preg Structure containing the compiled output of the regcomp subroutine. Memory associated with this structure
is freed by the regfree subroutine.

Related Information
The regcomp (‘regcomp Subroutine” on page 32) subroutine, regerror (‘regerror Subroutine” on page 33)
subroutine, regexec (‘regexec Subroutine” on page 35) subroutine.

[Subroutines Overview| and [Understanding Internationalized Regular Expression Subroutines|in A/X 5L
Version 5.2 General Programming Concepts: Writing and Debugging Programs.

38 Technical Reference, Volume 2: Base Operating System and Extensions

reltimerid Subroutine

Purpose
Releases a previously allocated interval timer.

Library
Standard C Library (libc.a)

Syntax

#include <sys/time.h>
#include <sys/events.h>

int reltimerid ([TimerID)

timer_t TimerlID;

Description

The reltimerid subroutine is used to release a previously allocated interval timer, which is returned by the
gettimerid subroutine. Any pending timer event generated by this interval timer is cancelled when the call
returns.

Parameters

TimerlD Specifies the ID of the interval timer being released.

Return Values

The reltimerid subroutine returns a 0 if it is successful. If an error occurs, the value -1 is returned and
errno is set.

Error Codes
If the reltimerid subroutine fails, a -1 is returned and errno is set with the following error code:

EINVAL The timer ID specified by the Timerid parameter is not a valid timer ID.

Related Information
The |gettimerid| subroutine.

[List of Time Data Manipulation Services|in AIX 5L Version 5.2 System Management Concepts: Operating
System and Devices.

[Subroutines Overview|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

remainder, remainderf, or remainderl Subroutine

Purpose
Returns the floating-point remainder.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 39

Syntax

#include <math.h>

double remainder (x, y)
double x;
double y;

float remainderf (El, Izb
float x;
float y;

lTong double remainderl (x, y)
Tong double x;
long double y ;

Description

The remainder, remainderf, and remainderl subroutines return the floating-point remainder r=x - ny when
y is nonzero. The value n is the integral value nearest the exact value x/y. When | n x/y |=% , the value nis
chosen to be even.

Parameters
X Specifies the value of the numerator.
y Specifies the value of the denominator.

Return Values

Upon successful completion, the remainder, remainderf, and remainderl subroutines return the
floating-point remainder r=x - ny when y is nonzero.

If x or yis NaN, a NaN is returned.

If x is infinite or y is 0 and the other is non-NaN, a domain error occurs, and a NaN is returned.

Related Information

labs Subrouting], [feclearexcept Subroutineg, ffetestexcept Subroutine} and [lldiv Subroutine|in AIX 5L Version
5.2 Technical Reference: Base Operating System and Extensions Volume 1.

in AIX 5L Version 5.2 Files Reference.

remove Subroutine

Purpose
Removes a file.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>

int remove(

const char *FileName;

40 Technical Reference, Volume 2: Base Operating System and Extensions

Description

The remove subroutine makes a file named by FileName inaccessible by that name. An attempt to open
that file using that name does not work unless you recreate it. If the file is open, the subroutine does not
remove it.

If the file designated by the FileName parameter has multiple links, the link count of files linked to the
removed file is reduced by 1.

Parameters

FileName Specifies the name of the file being removed.

Return Values

Upon successful completion, the remove subroutine returns a value of 0; otherwise it returns a nonzero
value.

Related Information
Thesubroutine, rename (‘rename Subroutine” on page 42) subroutine.

The [link] or unlink (unlink Subroutine” on page 423) command.

[Files, Directories, and File Systems for Programmers|in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

remquo, remquof, or remquol Subroutine

Purpose
Returns the floating-point remainder.

Syntax

#include <math.h>

double remquo @, M,

double x;
double y;
int *quos;

float remquof (x, y, quo)
float x;
float y;
int *quos;

long double remquol (x, y, quo)
Tong double x;

Tong double y;

int *quos;

Description

The remquo, remquof, and remquol subroutines compute the same remainder as the remainder,
remainderf, and remainderl functions, respectively. In the object pointed to by quo, they store a value
whose sign is the sign of x/y and whose magnitude is congruent modulo 2" to the magnitude of the
integral quotient of x/y, where n is 3.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 41

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

X Specifies the value of the numerator.

y Specifies the value of the denominator.

quo Points to the object where a value whose sign is the sign of x/y is stored.

Return Values
The remquo, remquof, and remquol subroutines return x REM y.

If x or yis NaN, a NaN is returned.

If x is xInf or y is zero and the other argument is non-NaN, a domain error occurs, and a NaN is returned.

Related Information
[‘remainder, remainderf, or remainderl Subroutine” on page 39|

feclearexcept Subroutine] [fetestexcept Subroutine|in AIX 5L Version 5.2 Technical Reference: Base
Operating System and Extensions Volume 1.

in AIX 5L Version 5.2 Files Reference.

rename Subroutine

Purpose
Renames a directory or a file.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>

int rename (|FromPath], [ToPath)
const char *FromPath, *ToPath;

Description

The rename subroutine renames a directory or a file within a file system.

To use the rename subroutine, the calling process must have write and search permission in the parent
directories of both the FromPath and ToPath parameters. If the path defined in the FromPath parameter is
a directory, the calling process must have write and search permission to the FromPath directory as well.

If the FromPath and ToPath parameters both refer to the same existing file, the rename subroutine returns
successfully and performs no other action.

42 Technical Reference, Volume 2: Base Operating System and Extensions

The components of both the FromPath and ToPath parameters must be of the same type (that is, both
directories or both non-directories) and must reside on the same file system. If the ToPath file already
exists, it is first removed. Removing it guarantees that a link named ToPath will exist throughout the
operation. This link refers to the file named by either the ToPath or FromPath parameter before the
operation began.

If the final component of the FromPath parameter is a symbolic link, the symbolic link (not the file or
directory to which it points) is renamed. If the ToPath is a symbolic link, the link is destroyed.

If the parent directory of the FromPath parameter has the|Sticky bit attribute| (described in the sys/mode.h
file), the calling process must have an effective user ID equal to the owner ID of the FromPath parameter,
or to the owner ID of the parent directory of the FromPath parameter.

A user who is not the owner of the file or directory must have root user authority to use the rename
subroutine.

If the FromPath and ToPath parameters name directories, the following must be true:

» The directory specified by the FromPath parameter is not an ancestor of ToPath. For example, the
FromPath path name must not contain a path prefix that names the directory specified by the ToPath
parameter.

» The directory specified in the FromPath parameter must be well-formed. A well-formed directory
contains both . (dot) and .. (dot dot) entries. That is, the . (dot) entry in the FromPath directory refers to
the same directory as that in the FromPath parameter. The .. (dot dot) entry in the FromPath directory
refers to the directory that contains an entry for FromPath.

» The directory specified by the ToPath parameter, if it exists, must be well-formed (as defined
previously).

Parameters
FromPath Identifies the file or directory to be renamed.
ToPath Identifies the new path name of the file or directory to be renamed. If ToPath is an existing file or

empty directory, it is replaced by FromPath. If ToPath specifies a directory that is not empty, the
rename subroutine exits with an error.

Return Values

Upon successful completion, the rename subroutine returns a value of 0. Otherwise, a value of -1 is
returned, and the errno global variable is set to indicate the error.

Error Codes

The rename subroutine is unsuccessful and the file or directory name remains unchanged if one or more
of the following are true:

EACCES Creating the requested link requires writing in a directory mode that denies the
process write permission.

EBUSY The directory named by the FromPath or ToPath parameter is currently in use by the
system, or the file named by FromPath or ToPath is a named STREAM.

EDQUOT The directory that would contain the path specified by the ToPath parameter cannot

be extended because the user’s or group’s quota of disk blocks on the file system
containing the directory is exhausted.

EEXIST The ToPath parameter specifies an existing directory that is not empty.

EINVAL The path specified in the FromPath or ToPath parameter is not a well-formed
directory (FromPath is an ancestor of ToPath), or an attempt has been made to
rename . (dot) or .. (dot dot).

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 43

EISDIR The ToPath parameter names a directory and the FromPath parameter names a
non-directory.

EMLINK The FromPath parameter names a directory that is larger than the maximum link
count of the parent directory of the ToPath parameter.
ENOENT A component of either path does not exist, the file named by the FromPath

parameter does not exist, or a symbolic link was named, but the file to which it
refers does not exist.

ENOSPC The directory that would contain the path specified in the ToPath parameter cannot
be extended because the file system is out of space.

ENOTDIR The FromPath parameter names a directory and the ToPath parameter names a
non-directory.

ENOTEMPTY The ToPath parameter specifies an existing directory that is not empty.

EROFS The requested operation requires writing in a directory on a read-only file system.

ETXTBSY The ToPath parameter names a shared text file that is currently being used.

EXDEV The link named by the ToPath parameter and the file named by the FromPath

parameter are on different file systems.

If Network File System (NFS) is installed on the system, the rename subroutine can be unsuccessful if the
following is true:

ETIMEDOUT The connection timed out.

The rename subroutine can be unsuccessful for other reasons. See Appendix A, "Base Operating System
Error Codes For Services That Require Path-Name Resolution” for a list of additional errors.

Related Information

The subroutine, [link subroutine, [mkdif subroutine, rmdir (rmdir Subroutine” on page 48)
subroutine, unlink (‘unlink Subroutine” on page 423) subroutine.

The command, command, @ command, command.

[Files, Directories, and File Systems for Programmers|in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

reset_malloc_log Subroutine

Purpose
Resets information collected by the malloc subsystem.

Syntax

#include <malloc.h>

void reset_malloc_log (addr)

void *addr;

Description

The reset_malloc_log subroutine resets the record of currently active malloc allocations stored by the
malloc subsystem. These records are stored in malloc_log structures, which are located in the process
heap. Only records corresponding to the heap of which addris a member are reset, unless addris NULL,
in which case records for all heaps are reset. The addr parameter must be a pointer to space allocated
previously by the malloc subsystem or NULL, otherwise no information is reset and the errno global
variable is set to EINVAL.

44 Technical Reference, Volume 2: Base Operating System and Extensions

Parameters

addr Pointer to space allocated previously by the malloc subsystem

Related Information

Imalloc Subroutine} |get_malloc_log Subroutine] and |get_malloc_log_live Subrouting|in AIX 5L Version 5.2
Technical Reference: Base Operating System and Extensions Volume 1

revoke Subroutine

Purpose
Revokes access to a file.

Library
Standard C Library (libc.a)

Syntax
int revoke (

char *Path;

Description
The revoke subroutine revokes access to a file by all processes.

All accesses to the file are revoked. Subsequent attempts to access the file using a file descriptor
established before the revoke subroutine fail and cause the process to receive a return value of -1, and
the errno global variable is set to EBADF.

A process can revoke access to a file only if its effective user ID is the same as the file owner ID, or if the
calling process is privileged.

Note: The revoke subroutine has no affect on subsequent attempts to open the file. To assure exclusive
access to the file, the caller should change the access mode of the file before issuing the revoke
subroutine. Currently the revoke subroutine works only on terminal devices. The subroutine
changes file access modes.

Parameters

Path Path name of the file for which access is to be revoked.

Return Values
Upon successful completion, the revoke subroutine returns a value of 0.

If the revoke subroutine fails, a value of -1 returns and the errno global variable is set to indicate the
error.

Error Codes
The revoke subroutine fails if any of the following are true:
ENOTDIR A component of the path prefix is not a directory.

EACCES Search permission is denied on a component of the path prefix.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 45

ENOENT

ENOENT
ENOENT
ESTALE

EFAULT
ELOOP
ENAMETOOLONG

EIO
EPERM

EINVAL

Related Information

A component of the path prefix does not exist, or the process has the
disallow truncation attribute (see the ulimit subroutine).

The path name is null.

A symbolic link was named, but the file to which it refers does not exist.

The process’s root or current directory is located in a virtual file system that
has been unmounted.

The Path parameter points outside of the process’s address space.

Too many symbolic links were encountered in translating the path name.

A component of a path name exceeds 255 characters, or an entire path name
exceeds 1023 characters.

An 1/O error occurred during the operation.

The effective user ID of the calling process is not the same as the file’s owner
ID.

Access rights revocation is not implemented for this file.

The subroutine, subroutine.

[List of Security and Auditing Subroutines|and [Subroutines Overview| in AIX 5L Version 5.2 General

Programming Concepts: Writing and Debugging Programs.

rintf, rintl, or rint Subroutine

Purpose

Rounds to the nearest integral value.

Syntax

#include <math.h>

float rintf (x)
float x;

long double rintl (x)

Tong double x;

double rint (x)
double x;

Description

The rintf, rintl, and rint subroutines return the integral value (represented as a double) nearest x in the
direction of the current rounding mode. The current rounding mode is implementation-defined.

The rintf, rintl, and rint subroutines differ from the nearbyint, nearbyintf, and nearbyintl subroutines
only in that they may raise the inexact floating-point exception if the result differs in value from the

argument.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

X

Specifies the value to be rounded.

46 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values

Upon successful completion, the rintf, rintl, and rint subroutines return the integer (represented as a
double precision number) nearest x in the direction of the current rounding mode.

If xis NaN, a NaN is returned.
If xis £0 or +Inf, x is returned.

If the correct value would cause overflow, a range error occurs the rintf, rintl, and rint subroutines return
the value of the macro +HUGE_VALF and +tHUGE_VALL (with the same sign as x), respectively.

Related Information

abs Subrouting, [floor, floorl, ceil, ceill, nearest, trunc, rint, itrunc, uitrunc, fmod, fmodl, fabs, or fabsl|
Subroutinel [feclearexcept Subrouting] [fetestexcept Subrouting] [class, _class, finite, isnan, or unordered
Subroutines| and|lldiv Subroutine|in AIX 5L Version 5.2 Technical Reference: Base Operating System and
Extensions Volume 1.

in AIX 5L Version 5.2 Files Reference.

round, roundf, or roundl Subroutine

Purpose
Rounds to the nearest integer value in a floating-point format.

Syntax

#include <math.h>

double round (E|)
double x;

float roundf (x)
float x;

long double roundl (x)
Tong double x;

Description

The round, roundf, and roundl subroutines round the x parameter to the nearest integer value in
floating-point format, rounding halfway cases away from zero, regardless of the current rounding direction.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

X Specifies the value to be rounded.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 47

Return Values
Upon successful completion, the round, roundf, and roundl subroutines return the rounded integer value.

If x is NaN, a NaN is returned.
If xis +0 or =Inf, x is returned.
If the correct value would cause overflow, a range error occurs and the round, roundf, and roundl

subroutines return the value of the macro +HUGE_VAL, +HUGE_VALF, and +HUGE_VALL (with the
same sign as x), respectively.

Related Information

feclearexcept Subroutine|and [fetestexcept Subrouting in AIX 5L Version 5.2 Technical Reference: Base
Operating System and Extensions Volume 1.

in AIX 5L Version 5.2 Files Reference.

rmdir Subroutine

Purpose
Removes a directory.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int rmdir (

const char *Path;

Description

The rmdir subroutine removes the directory specified by the Path parameter. If Network File System
(NFS) is installed on your system, this path can cross into another node.

For the rmdir subroutine to execute successfully, the calling process must have write access to the parent
directory of the Path parameter.

In addition, if the parent directory of Path has the [Sticky bit attribute| (described in the sys/mode.h file), the
calling process must have one of the following:

* An effective user ID equal to the directory to be removed
* An effective user ID equal to the owner ID of the parent directory of Path
* Root user authority.

48 Technical Reference, Volume 2: Base Operating System and Extensions

Parameters

Path Specifies the directory path name. The directory you specify must be:
Empty The directory contains no entries other than . (dot) and .. (dot dot).

Well-formed
If the . (dot) entry in the Path parameter exists, it must refer to the same directory as Path.
Exactly one directory has a link to the Path parameter, excluding the self-referential . (dot). If the ..
(dot dot) entry in Path exists, it must refer to the directory that contains an entry for Path.

Return Values

Upon successful completion, the rmdir subroutine returns a value of 0. Otherwise, a value of -1 is
returned, the specified directory is not changed, and the errno global variable is set to indicate the error.

Error Codes
The rmdir subroutine fails and the directory is not deleted if the following errors occur:

EACCES There is no search permission on a component of the path prefix, or there is no
write permission on the parent directory of the directory to be removed.

EBUSY The directory is in use as a mount point.

EEXIST or ENOTEMPTY The directory named by the Path parameter is not empty.

ENAMETOOLONG The length of the Path parameter exceeds PATH_MAX; or a path-name
component longer than NAME_MAX and POSIX_NO_TRUNC is in effect.

ENOENT The directory named by the Path parameter does not exist, or the Path
parameter points to an empty string.

ENOTDIR A component specified by the Path parameter is not a directory.

EINVAL The directory named by the Path parameter is not well-formed.

EROFS The directory named by the Path parameter resides on a read-only file system.

The rmdir subroutine can be unsuccessful for other reasons. See Appendix A, "Base Operating System
Error Codes For Services That Require Path-Name Resolution” on page A-1 for a list of additional errors.

If NFS is installed on the system, the rmdir subroutine fails if the following is true:

ETIMEDOUT The connection timed out.

Related Information

The [chmod or fchmod)] subroutine, mkdir] subroutine, remove (remove Subroutine” on page 40)
subroutine, rename (‘rename Subroutine” on page 42) subroutine, umask {“‘umask Subroutine” on|
page 418) subroutine, unlink (]“unlink Subroutine” on page 423b subroutine.

The @ command, command.

|Fi|es, Directories, and File Systems For Programmers| in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

rpmatch Subroutine

Purpose
Determines whether the response to a question is affirmative or negative.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 49

Library
Standard C Library (libc. a)

Syntax

#include <stdlib.h>

int rpmatch (

const char *Response;

Description

The rpmatch subroutine determines whether the expression in the Response parameter matches the
affirmative or negative response specified by the LC_MESSAGES category in the current locale. Both
expressions can be extended regular expressions.

Parameters

Response Specifies input entered in response to a question that requires an affirmative or negative reply.

Return Values

This subroutine returns a value of 1 if the expression in the Response parameter matches the locale’s
affirmative expression. It returns a value of 0 if the expression in the Response parameter matches the
locale’s negative expression. If neither expression matches the expression in the Response parameter, a
-1 is returned.

Examples

The following example shows an affirmative expression in the En_US locale. This example matches any
expression in the Response parameter that begins with a y or Y followed by zero or more alphabetic
characters, or it matches the letter o followed by the letter k.

~lyYI[:alpha:]* | ok

Related Information

The||oca|econv| subroutine, |n|_|anginfc_>| subroutine, regcomp (‘regcomp Subroutine” on page 32)
subroutine, regexec (‘regexec Subroutine” on page 35) subroutine, setlocale ({“setlocale Subroutine” on|

page 136) subroutine.

[National Language Support Overview] and [Setting the Locale| in AIX 5L Version 5.2 National Language
Support Guide and Reference.

|Subroutines, Example Programs, and Libraries| in AIX 5L Version 5.2 General Programming Concepts:
Writing and Debugging Programs.

RSiAddSetHot Subroutine

Purpose
Add a single set of peer statistics to an already defined

Library
RSI Library (libSpmi.a)

50 Technical Reference, Volume 2: Base Operating System and Extensions

Syntax
#include sys/Rsi.h

struct SpmiHotVals *RSiAddSetHot(rhandle, HotSet, StatName,

GrandParent,
maxresp, threshold, frequency, feed_type,
except_type, severity, trap_no)

RSiHandle rhandle;

struct SpmiHotSet *HotSet;

char *StatName;

cx_handle GrandParent;

int maxresp;

int threshold;

int frequency;

int feed type;

int excp_type;

int severity;

int trap_no;

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”|

subroutine.

HotSetSpecifies a pointer to a valid structure of type SpmiHotSet as created by the RSiCreateHotSet
(“RSiCreateHotSet Subroutine” on page 56) subroutine call.

StatNameSpecifies the name of the statistic within the subcontexts (peer contexts) of the context identified
by the GrandParent parameter.

GrandParentSpecifies a valid cx_handle handle as obtained by another subroutine call. The handle must
identify a context with at least one subcontext, which contains the statistic identified by the StatName
parameter. If the context specified is one of the RTime contexts, no subcontext need to be created at the
time the SpmiAddSetHot subroutine call is issued; the presence of the metric identified by the StatName
parameter is checked against the context class description.

If the context specified has or may have multiple levels of instantiable context below it (such as the FS
and RTime/ARM contexts), the metric is only searched for at the lowest context level. The SpmiHotSet
created is a pseudo hotvals structure used to link together a peer group of SpmiHotVals structures, which
are created under the covers, one for each subcontext of the GrandParent context. In the case of
RTime/ARM, if additional contexts are later added under the GrandParent contexts, additional hotsets are
added to the peer group. This is transparent to the application program, except that the RSiGetHotltem
(“RSiGetHotltem Subroutine” on page 63) subroutine call will return the peer group SpmiHotVals
pointer rather than the pointer to the pseudo structure.

Note that specifying a specific volume group context (such as FS/rootvg) or a specific application context
(such as RTime/ARN/armpeek) is still valid and won'’t involve creation of pseudo SpmiHotVals structures.

maxrespMust be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If
specified as zero, indicates that all SpmiHotltems that meet the criteria specified by threshold must be
returned, up-to a maximum of maxresp items. If both exceptions/traps and feeds are requested, the
maxresp value is used to cap the number of exceptions/alerts as well as the number of items returned. If
feed_type is specified as SiHotAlways, the maxresp parameter is still used to return at most maxresp
items.

Where the GrandParent argument specifies a context that has multiple levels of instantiable contexts
below it, the maxresp is applied to each of the lowest level contexts above the the actual peer contexts at
a time. For example, if the GrandParent context is FS (file systems) and the system has three volume
groups, then a maxresp value of 2 could cause up to a maximum of 2 x 3 = 6 responses to be generated.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 51

thresholdMust be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If
specified as zero, indicates that all values read qualify to be returned in feeds. The value specified is
compared to the data value read for each peer statistic. If the data value exceeds the threshold, it qualifies
to be returned as an SpmiHotltems element in the SpmiHotVals structure. If the threshold is specified as
a negative value, the value qualifies if it is lower than the numeric value of threshold. If feed_type is
specified as SiHotAlways, the threshold value is ignored for feeds. For peer statistics of type SiCounter,
the threshold must be specified as a rate per second; for SiQuantity statistics the threshold is specified as
a level.

frequencyMust be non-zero if excp_type specifies that exceptions or SNMP traps must be generated.
Ignored for feeds. Specifies the minimum number of minutes that must expire between any two
exceptions/traps generated from this |[SpmiHotVals| structure. This value must be specified as no less than
5 minutes.

feed_typeSpecifies if feeds of SpmiHotltems should be returned for this SpmiHotVals structure. The
following values are valid:

» SiHotNoFeedNo feeds should be generated
» SiHotThresholdFeeds are controlled by threshold.
* SiHotAlwaysAll values, up-to a maximum of maxresp must be returned as feeds.

excp_typeControls the generation of exception data packets and/or the generation of SNMP Traps from
xmservd. Note that these types of packets and traps can only actually be sent if xmservd is running.
Because of this, exception packets and SNMP traps are only generated as long as xmservd is active.
Traps can only be generated on AIX. The conditions for generating exceptions and traps are controlled by
the threshold and frequency parameters. The following values are valid for excp_type:

» SiNoHotExceptionGenerate neither exceptions not traps.
» SiHotExceptionGenerate exceptions but not traps.

» SiHotTrapGenerate SNMP traps but not exceptions.

» SiHotBothGenerate both exceptions and SNMP traps.

severityRequired to be positive and greater than zero if exceptions are generated, otherwise specify as
zero. Used to assign a severity code to the exception for display by exmon.

trap_noRequired to be positive and greater than zero if SNMP traps are generated, otherwise specify as
zero. Used to assign the trap number in the generated SNMP trap.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Return Values

If successful, the subroutine returns a pointer to a structure of type struct[SpmiHotVals] If an error
occurs, NULL is returned and an error text may be placed in the external character array RSiEMsg. If you
attempt to add more values to a statset than the current local buffer size allows, RSiErrno is set to
RSiTooMany. If you attempt to add more values than the buffer size of the remote host’'s xmservd
daemon allows, RSiErrno is set to RSiBadStat and the status field in the returned packet is set to
too_many_values.

The external integer RSiMaxValues holds the maximum number of values acceptable with the
data-consumer’s buffer size.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];

52 Technical Reference, Volume 2: Base Operating System and Extensions

e extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codesq .

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

» |‘RSiCreateHotSet Subroutine” on page 56
+ [‘RSiOpen Subroutine” on page 75,

RSiChangeFeed Subroutine

Purpose

Changes the frequency at which the xmservd on the host identified by the first argument daemon is
sending data_feed packets for a statset.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

int RSiChangeFeed(rhandle, statset, msecs)
RSiHandle rhandle;struct SpmiStatSet =*statset;int msecs;

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”|

on page 75)) subroutine.

statsetMust be a pointer to a structure of type struct[SpmiStatSet] which was previously returned by a
successful RSiCreateStatSet subroutine call. Data feeding must have been started for this SpmiStatSet

via a previous RSiStartFeed (“RSiStartFeed Subroutine” on page 80) subroutine call.

msecsThe number of milliseconds between the sending of data_feed packets. This number is rounded to
a multiple of min_remote_int milliseconds by the xmservd daemon on the remote host. This minimum
interval can be modified through the -i command line interval to xmservd.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Return Values

If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external
character array RSiEMsg regardless of the subroutine’s success or failure.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 53

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
« extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Coded,

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

+ [“‘RSiCreateStatSet Subroutine” on page 57|
+ [‘RSiOpen Subroutine” on page 75

+ [“RSiStartFeed Subroutine” on page 80|

RSiChangeHotFeed Subroutine

Purpose

Changes the frequency at which the xmservd on the host identified by the first argument daemon is
sending hot_feed packets for a statset or checking if exceptions or SNMP traps should be generated.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiChangeFeed(rhandle, hotset, msecs)
RSiHandle rhandle;struct SpmiHotSet xhotset;int msecs;

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”|

on page 75) subroutine.

hotsetMust be a pointer to a structure of type struct[SpmiHotSet} which was previously returned by a
successful RsiCreateHotSet (“RSiCreateHotSet Subroutine” on page 56) subroutine call. Data feeding
must have been started for this SpmiHotSet via a previous RSiStartHotFeed (“RSiStartHotFeed|
[Subroutine” on page 81) subroutine call.

msecsThe number of milliseconds between the sending of Hot_feed packets. This number is rounded to
a multiple of min_remote_int milliseconds by the xmservd daemon on the remote host. This minimum
interval can be modified through the -i command line interval to xmservd.

This subroutine is part of the Performance Toolbox for AIX licensed product.

54 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values

If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external
character array RSiEMsg regardless of the subroutine’s success or failure.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsg[];
» extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes.

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

In the sample program, the SpmiStatSet is created in the local function Iststats shown previously in lines
6 through 10.

+ [‘RSiCreateHotSet Subroutine” on page 56|
+ [‘RSiOpen Subroutine” on page 75
+ [‘RSiStartHotFeed Subroutine” on page 81|

RSiClose Subroutine

Purpose
Terminates the RSI interface for a remote host connection.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

void RSiClose(rhandle)
RSiHandle rhandle;

Description
The RSiClose subroutine is responsible for:

1. Removing the data-consumer program as a known data consumer on a particular host. This is done by
sending a going_down packet to the host.

2. Marking the RSI handle as not active.
3. Releasing all memory allocated in connection with the RSI handle.
4. Terminating the RSI interface for a remote host.

A successful RSiOpen (“RSiOpen Subroutine” on page 75) subroutine creates tables on the remote host
it was issued against. Therefore, a data consumer program that has issued successful RSiOpen

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 55

subroutine calls should issue an RSiClose (“RSiClose Subroutine” on page 55| subroutine call for each
RSiOpen call before the program exits so that the tables in the remote xmservd daemon can be released.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen subroutine.

The macro RSilsOpen can be used to test whether an RSI handle is open. It takes an RSiHandle as
argument and returns true (1) if the handle is open, otherwise false (0).

Files

lusr/include/sys/Rsi.hDeclares the subroutines, data structures, handles, and macros that an application
program can use to access the RSI.

Related Information

For related information, see:

+ |“RSilnit Subroutine” on page 68

+ [‘RSiOpen Subroutine” on page 75

RSiCreateHotSet Subroutine

Purpose
Creates an empty hotset on the remote host identified by the argument.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

struct SpmiHotSet *RSiCreateHotSet(rhandle)
RSiHandle rhandle;

Description

The RSiCreateHotSet subroutine allocates an[SpmiHotSef] structure. The structure is initialized as an
empty SpmiHotSet and a pointer to the SpmiHotSet structure is returned.

The SpmiHotSet structure provides the anchor point to a set of peer statistics and must exist before the
RSiAddSetHot (“‘RSiAddSetHot Subroutine” on page 50) subroutine can be successfully called.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen d“RSiOpen Subroutine”l

on page 75) subroutine.

Return Values

The RSiCreateHotSet subroutine returns a pointer to a structure of type SpmiHotSet if successful. If
unsuccessful, the subroutine returns a NULL value.

56 Technical Reference, Volume 2: Base Operating System and Extensions

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];

« extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codeq .

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

+ [‘RSiOpen Subroutine” on page 75

+ [‘RSiAddSetHot Subroutine” on page 50|

RSiCreateStatSet Subroutine

Purpose
Creates an empty statset on the remote host identified by the argument.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiStatSet *RSiCreateStatSet(rhandle)
RSiHandle rhandle;

Description

The RSiCreateStatSet subroutine allocates an structure. The structure is initialized as an
empty SpmiStatSet and a pointer to the SpmiStatSet structure is returned.

The SpmiStatSet structure provides the anchor point to a set of statistics and must exist before the
RSiPathAddSetStat (“RSiPathAddSetStat Subroutine” on page 78) subroutine can be successfully
called.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen d“RSiOpen Subroutine”l

subroutine.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 57

Return Values

The RSiCreateStatSet subroutine returns a pointer to a structure of type SpmiStatSet if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
» extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes,

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

+ [‘RSiOpen Subroutine” on page 75

+ [‘RSiPathAddSetStat Subroutine” on page 78!

RSiDelSetHot Subroutine

Purpose
Deletes a single set of peer statistics identified by an [SpmiHotVals] structure from an [SpmiHotSet.
Library

RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

int RSiDelSetHot(rhandle, hsp, hvp)
RSiHandle rhandle;struct SpmiHotSet *hsp;struct SpmiHotValsxhvp;

Description
The RSiDelSetHot subroutine performs the following actions:

1. Validates that the SpmiHotSet identified by the second argument exists and contains the
SpmiHotVals statistic identified by the third argument.

2. Deletes the SpmiHotVals value from the SpmiHotSet so that future data_feed packets do not include
the deleted statistic.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”|

subroutine.

58 Technical Reference, Volume 2: Base Operating System and Extensions

hspMust be a pointer to a structure type struct[SpmiHotSet] which was previously returned by a
successful RSiCreateHotSet subroutine call.

hvpMust be a handle of type struct[SpmiHotVals| as returned by a successful RSiAddSetHot
(“RSiAddSetHot Subroutine” on page 50) subroutine call. You cannot specify an SpmiHotVals that was
internally generated by the Spmi library code as described under the GrandParent parameter to
RSiAddSetHot (“RSiAddSetHot Subroutine” on page 50).

Return Values

If successful, the subroutine returns a zero value; otherwise it returns a non-zero value and an error text
may be placed in the external character array RSIEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsg[];
e extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes,

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

+ [‘RSiOpen Subroutine” on page 75

+ [‘RSiAddSetHot Subroutine” on page 50}

RSiDelSetStat Subroutine

Purpose
Deletes a single statistic identified by an [SpmiStatValg pointer from an [SpmiStatSet]
Library

RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

int RSiDelSetStat(rhandle, ssp, svp)
RSiHandle rhandle;struct SpmiStatSet *ssp;struct SpmiStatVals*svp;

Description
The RSiDelSetStat subroutine performs the following actions:

1. Validates the SpmiStatSet identified by the second argument exists and contains the SpmiStatVals
statistic identified by the third argument.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 59

2. Deletes the SpmiStatVals value from the SpmiStatSet so that future data_feed packets do not
include the deleted statistic.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen d“RSiOpen Subroutine”l

on page 75) subroutine.

sspMust be a pointer to a structure type struct |SpmiStatSetl which was previously returned by a
successful RSiCreateStatSet “‘RSiCreateStatSet Subroutine” on page 57b subroutine call.

svpMust be a handle of type struct |SpmiStatVaIs| as returned by a successful RSiPathAddSetStat
(“RSiPathAddSetStat Subroutine” on page 78) subroutine call.

Return Values

If successful, the subroutine returns a zero value; otherwise it returns a non-zero value and an error text
may be placed in the external character array RSIEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
» extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes.

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

- [‘RSiCreateStatSet Subroutine” on page 57|

* [‘BSiOpen Subroutine” on page 75

+ [‘RSiPathAddSetStat Subroutine” on page 78|

RSiFirstCx Subroutine

Purpose
Returns the first subcontext of an context.
Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

60 Technical Reference, Volume 2: Base Operating System and Extensions

struct SpmiCxLink *RSiFirstCx(rhandle, context, name,
descr)

RSiHandle rhandle;

cx_handle *context;

char *xname;

char *xdescr;

Description

The RSiFirstCx subroutine performs the following actions:

1. Validates that the context identified by the second argument exists.

2. Returns a handle to the first element of the list of subcontexts defined for the context.
3. Returns the short name and description of the subcontext.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”|

subroutine.

contextMust be a handle of type cx_handle, which was previously returned by a successful
RSiPathGetCx (“RSiPathGetCx Subroutine” on page 79) subroutine call.

nameMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the short name of the subcontext is
returned in the character array pointer.

descrMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the description of the subcontext is
returned in the character array pointer.

Return Values

If successful, the subroutine returns a pointer to a structure of type struct|SpmiCxLink| If an error occurs
or if the context doesn’t contain subcontexts, NULL is returned and an error text may be placed in the
external character array RSIiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq(];
e extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes,

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 61

Related Information

For related information, see:

* [‘RSiNextCx Subroutine” on page 73|

* [‘RSiOpen Subroutine” on page 75
“RSiPathGetCx Subroutine” on page 79|

RSiFirstStat Subroutine

Purpose
Returns the first statistic of an context.
Library

RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

struct SpmiStatLink *RSiFirstStat(rhandle, context, name,
descr)

RSiHandle rhandle;

cx_handle *context;

char xxname;

char *xdescr;

Description

The RSiFirstStat subroutine performs the following actions:

1. Validates that the context identified by the second argument exists.

2. Returns a handle to the first element of the list of statistics defined for the context.
3. Returns the short name and description of the statistic.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”|

on page 75)) subroutine.

contextMust be a handle of type ex_handle, which was previously returned by a successful
RSiPathGetCx (“RSiPathGetCx Subroutine” on page 79) subroutine call.

nameMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the short name of the statistics value is
returned in the character array pointer.

descrMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the description of the statistics value is
returned in the character array pointer.

Return Values

If successful, the subroutine returns a pointer to a structure of type struct|SpmiStatLink! If an error
occurs, NULL is returned and an error text may be placed in the external character array RSiEMsg.

62 Technical Reference, Volume 2: Base Operating System and Extensions

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
« extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in |List of RSi Error Codes,

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

+ [‘RSiNextStat Subroutine” on page 74|

+ [‘RSiOpen Subroutine” on page 75

+ [‘RSiPathGetCx Subroutine” on page 79|

RSiGetHotltem Subroutine

Purpose

Locates and decodes the next SpmiHotltems element at the current position in an incoming data packet
of type hot_feed.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

struct SpmiHotVals *RSiGetHotItem(rhandle, HotSet, index, value,
absvalue, name)

RSiHandle rhandle;

struct SpmiHotSet *xHotSet;

int *index;

float *value;

flost absvalue;

char *xname;

Description

The RSiGetHotltem subroutine locates the SpmiHotltems structure in the hot_feed data packet indexed
by the value of the index parameter. The subroutine returns a NULL value if no further SpmiHotltems
structures are found. The RSiGetHotltem subroutine should only be executed after a successful call to the
RSiGetHotSet subroutine.

The RSiGetHotltem subroutine is designed to be used for walking all SpmiHotltems elements returned in
a hot_feed data packet. Because the data packet may contain elements belonging to more than one
SpmiHotSet, the index is purely abstract and is only used to keep position. By feeding the updated integer
pointed to by index back to the next call, the walking of the hot_feed packet can be done in a tight loop.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 63

Successful calls to RSiGetHotltem will decode each SpmiHotltems element and return the data value in
value and the name of the peer context that owns the corresponding statistic in name.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters

rhandle

HotSet

index

value

absvalue

name

Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on
subroutine.
Used to return a pointer to a valid |SpmiHotSet| structure as obtained by a previous
RSiCreateHotSet (“‘RSiCreateHotSet Subroutine” on page 56) subroutine call. The calling program
can use this value to locate the SpmiHotSet if its address was stored by the program after it was
created. The time stamps in the SpmiHotSet are updated with the time stamps of the decoded
SpmiHotltems element.

A pointer to_an integer that contains the desired relative element number in the array
across aII contained in the data packet. A value of zero points to the first element.
When the RSiGetHotltem subroutine returns, the integer contain the index of the next
SpmiHotltems element in the data packet. By passing the returned index parameter to the next call
to RSiGetHotltem, the calling program can iterate through all SpmiHotltems elements in the
hot_feed data packet.

A pointer to a float variable. A successful call will return the decoded data value of the peer statistic.
Before the value is returned, the RSiGetHotltem function:

» Determines the format of the data field as being either SiFloat or SiLong and extracts the data
value for further processing.

« Determines the data value as being either type SiQuantity or type SiCounter and performs one of
the actions listed here:

— If the data value is of type SiQuantity, the subroutine returns the val field of the SpmiHotltems
structure.

— If the data value is of type SiCounter, the subroutine returns the value of the val_change field
of the SpmiHotltems structure divided by the elapsed number of seconds since the previous
time a data value was requested for this set of statistics.

A pointer to a float variable. A successful call will return the decoded value of the val field of the
SpmiHotltems structure of the peer statistic. In case of a statistic of type SiQuantity, this value will
be the same as the one returned in the argument value. In case of a peer statistic of type SiCounter,
the value returned is the absolute value of the counter.

A pointer to a character pointer. A successful call will return a pointer to the name of the peer context
for which the data value was read.

Return Values

The RSiGetHotltem subroutine returns a pointer to the current[SpmiHotVals] structure within the hotset. If
no more SpmiHotltems elements are available, the subroutine returns a NULL value. The structure
returned contains the data, such as threshold, which may be relevant for presentation of the results of an
SpmiGetHotSet subroutine call to end-users. In the returned SpmiHotVals structure, all fields contain the
correct values as declared, except for the following:

stat

grandpa
items

Declared as SpmiStatHdl, actually points to a valid[SpmiStaf structure. By casting the handle to a
pointer to SpmiStat, data in the structure can be accessed.

Contains the cx_handle for the parent context of the peer contexts.

When using the Spmi interface this is an array of SpmiHotltems structures. When using the
RSiGetHotltem subroutine, the array is empty and attempts to access it will likely result in
segmentation faults or access of not valid data.

64 Technical Reference, Volume 2: Base Operating System and Extensions

path Will contain the path to the parent of the peer contexts. Even when the peer contexts are multiple
levels below the parent context, the path points to the top context because the peer context
identifiers in the SpmiHotltems elements will contain the path name from there and on. For example,
if the hotvals peer set defines all volume groups, the path specified in the returned SpmiHotVals
structure would be “FS” and the path name in one SpmiHotltems element may be “rootvg/lv01”.
When combined with the metric name from the stat field, the full path name can be constructed as,
for example, “FS/rootvg/lv01/%totfree”.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];

« extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in [List of RSi Error Codes.

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

+ [‘RSiOpen Subroutine” on page 75

+ [‘RSiCreateHotSet Subroutine” on page 56,

RSiGetRawValue Subroutine

Purpose

Returns a pointer to a valid |SpmiStatVals| structure for a given SpmiStatVals pointer by extraction from a
data_feed packet. This subroutine call should only be issued from a callback function after it has been
verified that a data_feed packet was received from the host identified by the first argument.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiStatVals RSiGetRawValue(rhandle, svp, index)
RSiHandle rhandle;

struct SpmiStatVals *svp;

int *index;

Description
The RSiGetRawValue subroutine performs the following:

1. Finds an SpmiStatVals structure in the received data packet based upon the second argument to the
subroutine call. This involves a lookup operation in tables maintained internally by the RSi interface.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 65

2. Updates the struct SpmiStat pointer in the SpmiStatVals structure to point at a valid SpmiStat
structure.

3. Returns a pointer to the SpmiStatVals structure. The returned pointer points to a static area and is
only valid until the next execution of RSiGetRawValue.

4. Updates an integer variable with the index into the ValsSet array of the data_feed packet, which
corresponds to the second argument to the call.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen d“RSiOpen Subroutine”l

on page 75) subroutine.

svpA handle of type struct [SpmiStatVals| which was previously returned by a successful
RSiPathAddSetStat (“RSiPathAddSetStat Subroutine” on page 78) subroutine call.

indexA pointer to an integer variable. When the subroutine call succeeds, the index into the ValsSet array
of the data feed packet is returned. The index corresponds to the element that matches the svp argument
to the subroutine.

Return Values

If successful, the subroutine returns a pointer; otherwise NULL is returned and an error text may be placed
in the external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
« extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in [List of RSi Error Codeq .

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

“RSiOpen Subroutine” on page 75|

+ [‘RSiPathAddSetStat Subroutine” on page 78|

RSiGetValue Subroutine

Purpose

Returns a data value for a given [SpmiStatVals| pointer by extraction from the data_feed packet. This
subroutine call should only be issued from a callback function after it has been verified that a data_feed
packet was received from the host identified by the first argument.

66 Technical Reference, Volume 2: Base Operating System and Extensions

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

float RSiGetValue(rhandle, svp)
RSiHandle rhandle;
struct SpmiStatVals =*svp;

Description
The RSiGetValue subroutine provides the following:

1. Finds an SpmiStatVals structure in the received data packet based upon the second argument to the
subroutine call. This involves a lookup operation in tables maintained internally by the RSi interface.

2. Determines the format of the data field as being either SiFloat or SiLong and extracts the data value
for further processing based upon its data format.

3. Determines the value as either of type SiQuantity or SiCounter. If the former is the case, the data
value returned is the val field in the SpmiStatVals structure. If the latter type is found, the value
returned by the subroutine is the val_change field divided by the elapsed number of seconds since the
previous data packet’s time stamp.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandleMust be an RSiHandle, previously initialized by the RSiOpen (“RSiOpen Subroutine” on

subroutine.

svpA handle of type struct |§pmiStatVaIsl which was previously returned by a successful
RSiPathAddSetStat (“RSiPathAddSetStat Subroutine” on page 78) subroutine call.

Return Values

If successful, the subroutine returns a non-negative value; otherwise it returns a negative value less than
or equal to -1.0. A NULL error text is placed in the external character array RSiEMsg regardless of the
subroutine’s success or failure.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
« extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes,

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 67

Related Information

For related information, see:

* [‘BSiOpen Subroutine” on page 75

+ [‘RSiPathAddSetStat Subroutine” on page 78|

RSilnit Subroutine

Purpose
Allocates or changes the table of RSi handles.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

RSiHandle RSiInit(count)
int count;

Description

Before any other RSi call is executed, a data-consumer program must issue the RSilnit call. Its purpose is
to either:

» Allocate an array of RSiHandleStruct structures and return the address of the array to the
data-consumer program.

* Increase the size of a previously allocated array of RSiHandleStruct structures and initialize the new
array with the contents of the previous one.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters

countMust specify the number of elements in the array of RSi handles. If the call is used to expand a
previously allocated array, this argument must be larger than the current number of array elements. It must
always be larger than zero. Specify the size of the array to be at least as large as the number of hosts
your data-consumer program can talk to at any point in time.

Return Values

If successful, the subroutine returns the address of the allocated array. If an error occurs, an error text is
placed in the external character array RSiEMsg and the subroutine returns NULL. When used to increase
the size of a previously allocated array, the subroutine first allocates the new array, then moves the entire
old array to the new area. Application programs should, therefore, refer to elements in the RSi handle
array by index rather than by address if they anticipate the need for expanding the array. The array only
needs to be expanded if the number of remote hosts a data-consumer program talks to might increase
over the life of the program.

An application that calls RSilnit repeatedly needs to preserve the previous address of the RSiHandle
array while the RSilnit call is re-executed. After the call has completed successfully, the calling program
should free the previous array using the free subroutine.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

68 Technical Reference, Volume 2: Base Operating System and Extensions

» extern char RSIEMsq[];
» extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIEMsg

character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in

the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes,

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information
For related information, see the [‘RSiClose Subroutine” on page 55|

RSilnstantiate Subroutine

Purpose
Creates (instantiates) all subcontexts of ancontext object.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSilnstantiate(rhandle, context)
RSiHandle rhandle;
cx_handle *context;

Description
The RSilnstantiate subroutine performs the following actions:
1. Validates that the context identified by the second argument exists.

2. Instantiates the context so that all subcontexts of that context are created in the context hierarchy.
Note that this subroutine call currently only makes sense if the context’s SilnstFreq is set to
SiContlnst or SiCfglnst because all other contexts would have been instantiated whenever the
xmservd daemon was started.

The RSilnstantiate subroutine explicitly instantiates the subcontexts of an instantiable context. If the
context is not instantiable, do not call the RSilnstantiate subroutine.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters

rhandleMust point to a structure of type RSiHandle, which was previously initialized by the RSiOpen
(“RSiOpen Subroutine” on page 75) subroutine.

contextMust be a handle of type cx_handle, which was previously returned by a successful
RSiPathGetCx (“RSiPathGetCx Subroutine” on page 79) subroutine call.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z)

69

Return Values

If successful, the subroutine returns a zero value; otherwise it returns an error code as defined in SiError
and an error text may be placed in the external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
» extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes .

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

+ [“RSiFirstCx Subroutine” on page 60|

+ [‘RSiOpen Subroutine” on page 75

+ [‘RSiPathGetCx Subroutine” on page 79|

RSilnvite Subroutine

Purpose

Invites data suppliers on the network to identify themselves and returns a table of data-supplier host
names.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

char **RSilnvite(resy callb, excp_callb)
int (xresy callb)();
int (*excp_callb)();

Description

The RSilnvite subroutine call broadcasts are_you_there messages on the network to provoke xmservd
daemons on remote hosts to respond and returns a table of all responding hosts.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
The arguments to the subroutine are:

70 Technical Reference, Volume 2: Base Operating System and Extensions

resy_callbMust be either NULL or a pointer to a function that processes i_am_back packets as they are
received from the xmservd daemons on remote hosts for the duration of the RSilnvite subroutine call.
When the callback function is invoked, it is passed three arguments as described in the following
information.

If this argument is specified as NULL, a callback function internal to the RSilnvite subroutine receives any
i_am_back packets and uses them to build the table of host names the function returns.

excp_callbMust be NULL or a pointer to a function that processes except_rec packets as they are
received from the xmservd daemons on remote hosts. If a NULL pointer is passed, your application does
not receive except_rec messages. When this callback function is invoked, it is passed three arguments as
described in the following information.

This argument always overrides the corresponding argument of any previous RSilnvite or RSiOpen call,
and it can be overridden by subsequent executions of either. In this way, your application can turn
exception monitoring on and off. For an RSiOpen to override the exception processing specified by a
previous open call, the connection must first be closed with the RSiClose call. That's because an
RSiOpen against an already active handle is treated as a no-operation.

The resy_callb and excp_callb functions in your application are called with the following three arguments:

* An RSiHandle. The RSi handle pointed to is almost certain not to represent the host that sent the
packet. Ignore this argument, and use only the second one: the pointer to the input buffer.

» A pointer of type pack * to the input buffer containing the received packet. Always use this pointer
rather than the pointer in the RSiHandle structure.

« A pointer of type struct sockaddr_in * to the IP address of the originating host.

Return Values

If successful, the subroutine returns an array of character pointers, each of which contains a host name of
a host that responded to the invitation. The returned host names are actually constructed as two “words”
with the first one being the host name returned by the host in response to an are_you_there request; the
second one being the character form of the host’s IP address. The two “words” are separated by one or
more blanks. This format is suitable as an argument to the RSiOpen (“RSiOpen Subroutine” on|
subroutine call. In addition, the external integer variable RSilnvTabActive contains the number
of host names found. The returned pointer to an array of host names must not be freed by the subroutine
call. The calling program should not assume that the pointer returned by this subroutine call remains valid
after subsequent calls to RSilnvite. If the call is not successful, an error text is placed in the external
character array RSiEMsg, an error number is placed in RSiErrno, and the subroutine returns NULL.

The list of host names returned by RSilnvite does not include the hosts your program has already
established a connection with through an RSiOpen call. Your program is responsible for keeping track of
such hosts. If you need a list of both sets of hosts, either let the RSilnvite call be the first one issued from
your program or merge the list of host names returned by the call with the list of hosts to which you have
connections.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsg[];
» extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in [List of RSi Error Codes,

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 71

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, seg“RSiOpen Subroutine” on page 75,

RSiMainLoop Subroutine

Purpose
Allows an application to suspend execution and wait to get awakened when data feeds arrive.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

void RSiMainLoop(msecs)
int msecs;

Description
The RSiMainLoop subroutine:

1. Allows the data-consumer program to suspend processing while waiting for data_feed packets to
arrive from one or more xmservd daemons.

2. Tells the subroutine that waits for data feeds to return control to the data-consumer program so that
the latter can check for and react to other events.

3. Invokes the subroutine to process data_feed packets for each such packet received.

To work properly, the RSiMainLoop subroutine requires that at least one RSiOpen
[Subroutine” on page 75) call has been successfully completed and that the connection has not been
closed.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters

msecsThe minimum elapsed time in milliseconds that the subroutine should continue to attempt receives
before returning to the caller. Notice that your program releases control for as many milliseconds you
specify but that the callback functions defined on the RSiOpen call may be called repetitively during that
time.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
» extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes,

72 Technical Reference, Volume 2: Base Operating System and Extensions

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the RSI.

Related Information
For related information, see r‘RSiOpen Subroutine” on page 75l

RSiNextCx Subroutine

Purpose
Returns the next subcontext of an context.
Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiCxLink *RSiNextCx(rhandle, context, link, name,
descr)

RSiHandle rhandle;

cx_handle *context;

struct SpmiCxLink *link;

char *xname;

char *xdescr;

Description

The RSiNextCx subroutine:

1. Validates that the context identified by the second argument exists.

2. Returns a handle to the next element of the list of subcontexts defined for the context.
3. Returns the short name and description of the subcontext.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters

rhandleMust point to a structure of type RSiHandle, which was previously initialized by the RSiOpen
(“RSiOpen Subroutine” on page 75) subroutine.

contextMust be a handle of type cx_handle, which was previously returned by a successful
RSiPathGetCx (“RSiPathGetCx Subroutine” on page 79) subroutine call.

linkMust be a pointer to a structure of type struct |§pmiCxLinE|, which was previously returned by a
successful RSiFirstCx (“RSiFirstCx Subroutine” on page 60) or RSiNextCx subroutine call.

nameMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the short name of the subcontext is
returned in the character array pointer.

descrMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a

character array pointer. When the subroutine call is successful, the description of the subcontext is
returned in the character array pointer.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z)

73

Return Values

If successful, the subroutine returns a pointer to a structure of type struct|SpmiCxLink| If an error occurs,
or if no more subcontexts exist for the context, NULL is returned and an error text may be placed in the
external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
» extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes,

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

+ [‘RSiFirstCx Subroutine” on page 60|

+ [‘RSiOpen Subroutine” on page 75

+ [‘RSiPathGetCx Subroutine” on page 79|

RSiNextStat Subroutine

Purpose
Returns the next statistic of an context.
Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

struct SpmiStatLink *RSiNextStat(rhandle, context, link, name,
descr)

RSiHandle rhandle;

cx_handle *context;

struct SpmiStatLink *link;

char *xname;

char *xdescr;

Description

The RSiNextStat subroutine:

1. Validates that a context identified by the second argument exists.

2. Returns a handle to the next element of the list of statistics defined for the context.
3. Returns the short name and description of the statistic.

74 Technical Reference, Volume 2: Base Operating System and Extensions

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen
) subroutine.

contextMust be a handle of type ¢x_handle, which was previously returned by a successful
RSiPathGetCx (“RSiPathGetCx Subroutine” on page 79) subroutine call.

linkMust be a pointer to a structure of type struct EpmiStatLinﬂ, which was previously returned by a
successful RSiFirstStat {(“RSiFirstStat Subroutine” on page 62) or RSiNextStat subroutine call.

nameMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the short name of the statistics value is
returned in the character array pointer.

descrMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the description of the statistics value is
returned in the character array pointer.

Return Values

If successful, the subroutine returns a pointer to a structure of type struct SpmiStatLink. If an error
occurs, or if no more statistics exists for the context, NULL is returned and an error text may be placed in
the external character array RSIiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
« extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes,.

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

“RSiFirstStat Subroutine” on page 62|

+ [‘RSiOpen Subroutine’|

* |“RSiPathGetCx Subroutine” on page 79l

RSiOpen Subroutine

Purpose
Initializes the RSi interface for a remote host.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 75

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

int RSiOpen(rhandle, wait, bufsize, hostID, feed callb,
resy_callb, excp _callb)

RSiHandle rhandle;

int wait;

int bufsize;

char *hostID;

int (*feed callb)();

int (*resy_callb)();

int (*excp_callb)();

Description
The RSiOpen subroutine performs the following actions:

1. Establishes the issuing data-consumer program as a data consumer known to the xmservd daemon
on a particular host. The subroutine does this by sending an are_you_there packet to the host.

2. Initializes an RSi handle for subsequent use by the data-consumer program.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
The arguments to the subroutine are:

rhandleMust point to an element of the RSiHandleStruct array, which is returned by a previous RSilnit
(“RSilnit Subroutine” on page 68) call. If the subroutine is successful the structure is initialized and
ready to use as a handle for subsequent RSi interface subroutine calls.

waitMust specify the timeout in milliseconds that the RSi interface shall wait for a response when using
the request-response functions. On LANSs, a reasonable value for this argument is 100 milliseconds. If the
response is not received after the specified wait time, the library subroutines retry the receive operation
until five times the wait time has elapsed before returning a timeout indication. The wait time must be zero
or more milliseconds.

bufsizeSpecifies the maximum buffer size to be used for constructing network packets. This size must be
at least 4,096 bytes. The buffer size determines the maximum packet length that can be received by your
program and sets the limit for the number of data values that can be received in one data_feed packet.
There’s no point in setting the buffer size larger than that of the xmservd daemon because both must be
able to handle the packets. If you need large sets of values, you can use the command line argument -b
of xmservd to increase its buffer size up to 16,384 bytes.

The fixed part of a data_feed packet is 104 bytes and each value takes 32 bytes. A buffer size of 4,096
bytes allows up to 124 values per packet.

hostiIDMust be a character array containing the identification of the remote host whose xmservd daemon
is the one with which you want to talk. The first characters of the host identification (up to the first white
space) is used as the host name. The full host identification is stored in the RSiHandle field longname
and may contain any description that helps the end user identify the host used. The host name may be
either in long format (including domain name) or in short format.

feed_callbMust be a pointer to a function that processes data_feed packets as they are received from the
xmservd daemon. When this callback function is invoked, it is passed three arguments as described in
the following information.

76 Technical Reference, Volume 2: Base Operating System and Extensions

resy_callbMust be a pointer to a function that processes i_am_back packets as they are received from
the xmservd daemon. When this callback function is invoked it is passed three arguments as described in
the following information.

excp_callbMust be NULL or a pointer to a function that processes except_rec packets as they are
received from the xmservd daemon. If a NULL pointer is passed, your application does not receive
except_rec messages. When this callback function is invoked, it is passed three arguments as described
in the following information. This argument always overrides the corresponding argument of any previous
RSilnvite (“RSilnvite Subroutine” on page 70) or RSiOpen (“RSiOpen Subroutine” on page 75)
subroutine call and can itself be overridden by subsequent executions of either. In this way, your
application can turn exception monitoring on and off. For an RSiOpen call to override the exception
processing specified by a previous open call, the connection must first be closed with the RSiClose
(“RSiClose Subroutine” on page 55)) subroutine call.

The feed_callb, resy_callb, and excp_callb functions are called with the arguments:

RSiHandle. When a data_feed packet is received, the structure pointed to is guaranteed to represent the
host sending the packet. In all other situations the RSiHandle structure may represent any of the hosts to
which your application is talking.

Pointer of type pack * to the input buffer containing the received packet. In callback functions, always use
this pointer rather than the pointer in the RSiHandle structure.

Pointer of type struct sockaddr_in * to the IP address of the originating host.

Return Values

If successful, the subroutine returns zero and initializes the array element of type RSiHandle pointed to by
rhandle. If an error occurs, error text is placed in the external character array RSIEMsg and the
subroutine returns a negative value.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsg[];
e extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes,.

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

« [‘RSiClose Subroutine” on page 55
“RSilnvite Subroutine” on page 70|

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 77

RSiPathAddSetStat Subroutine

Purpose
Add a single statistics value to an already defined

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

struct SpmiStatVals *RSiPathAddSetStat(rhandle, statset,
path)

RSiHandle rhandle;

struct SpmiStatSet *statset;

char *path;

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”|

subroutine.

statsetMust be a pointer to a structure of type struct SpmiStatSet, which was previously returned by a
successful RSiCreateStatSet (“RSiCreateStatSet Subroutine” on page 57) subroutine call.

pathMust be the full value path name of the statistics value to add to the SpmiStatSet. The value path
name must not include a terminating slash. Note that value path names never start with a slash.

Return Values

If successful, the subroutine returns a pointer to a structure of type struct[SpmiStatVals| If an error
occurs, NULL is returned and an error text may be placed in the external character array RSiEMsg. If you
attempt to add more values to a statset than the current local buffer size allows, RSiErrno is set to
RSiTooMany. If you attempt to add more values than the buffer size of the remote host’s xmservd
daemon allows, RSiErrno is set to RSiBadStat and the status field in the returned packet is set to
too_many_values.

The external integer RSiMaxValues holds the maximum number of values acceptable with the
data-consumer’s buffer size.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
« extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes,

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

78 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information

For related information, see:

* [‘RSiCreateStatSet Subroutine” on page 57|
* [‘RSiOpen Subroutine” on page 75,

RSiPathGetCx Subroutine

Purpose
Searches the context hierarchy for an context that matches a context path name.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

cx_handle *RSiPathGetCx(rhandle, path)
RSiHandle rhandle;
char *path;

Description

The RSiPathGetCx subroutine performs the following actions:

1. Searches the context hierarchy for a given path name of a context.

2. Returns a handle to be used when subsequently referencing the context.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”|

subroutine.

pathA path name of a context for which a handle is to be returned. The context path name must be the
full path name and must not include a terminating slash. Note that context path names never start with a
slash.

Return Values

If successful, the subroutine returns a handle defined as a pointer to a structure of type ¢x_handle. If an
error occurs, NULL is returned and an error text may be placed in the external character array RSiEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
« extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 79

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

+ |“RSiFirstCx Subroutine” on page 60|
* |“RSiOpen Subroutine” on page 75
+ [‘RSiNextCx Subroutine” on page 73|

RSiStartFeed Subroutine

Purpose
Tells xmservd to start sending data feeds for a statset.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiStartFeed(rhandle, statset, msecs)
RSiHandle rhandle;

struct SpmiStatSet *statset;

int msecs;

Description

The RSiStartFeed subroutine performs the following function:

1. Informs xmservd of the frequency with which it is required to send data_feed packets.
2. Tells the xmservd to start sending data_feed packets.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”|

on page 75)) subroutine.

statsetMust be a pointer to a structure of type struct EpmiStatSeﬂ, which was previously returned by a
successful RSiCreateStatSet (“RSiCreateStatSet Subroutine” on page 57) subroutine call.

msecsThe number of milliseconds between the sending of data_feed packets. This number is rounded to
a multiple of min_remote_int milliseconds by the xmservd daemon on the remote host. This minimum
interval can be modified through the -i command line interval to xmservd.

Return Values

If successful, the subroutine returns zero; otherwise it returns -1 and an error text may be placed in the
external character array RSIiEMsg.

80 Technical Reference, Volume 2: Base Operating System and Extensions

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
« extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in |List of RSi Error Codes,

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

+ [“RSiCreateStatSet Subroutine” on page 57|
+ [‘RSiOpen Subroutine” on page 75

+ [‘RSiStopFeed Subroutine” on page 84|

RSiStartHotFeed Subroutine

Purpose

Tells xmservd to start sending hot feeds for a hotset or to start checking for if exceptions or SNMP traps
should be generated.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

int RSiStartFeed(rhandle, hotset, msecs)
RSiHandle rhandle;

struct SpmiHotSet =*hotset;

int msecs;

Description
The RSiStartHotFeed subroutine performs the following function:

1. Informs xmservd of the frequency with which it is required to send hot_feed packets, if the hotset is
defined to generate hot_feed packets.

2. Informs xmservd of the frequency with which it is required to check if exceptions or SNMP traps
should be generated. This is only done if it is specified for the hotset that exceptions and/or
SNMP traps should be generated.

3. Tells the xmservd to start sending data_feed packets and/or start checking for exceptions or traps.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 81

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”|

on page 75)) subroutine.

hotsetMust be a pointer to a structure of type struc |SpmiHotSetl which was previously returned by a
successful RSiCreateHot (“RSiCreateHotSet Subroutine” on page 56) subroutine call.

msecsThe number of milliseconds between the sending of hot_feed packets and/or the number of
milliseconds between checks for if exceptions or SNMP traps should be generated. This number is
rounded to a multiple of min_remote_int milliseconds by the xmservd daemon on the remote host. This
minimum interval can be modified through the -i command line interval to xmservd.

Return Values

If successful, the subroutine returns zero; otherwise it returns -1 and an error text may be placed in the
external character array RSIEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
« extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes,

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

+ [‘RSiCreateHotSet Subroutine” on page 56

* [‘RSiOpen Subroutine” on page 75

« [‘RSiChangeHotFeed Subroutine” on page 54|
* [‘RSiStopHotFeed Subroutine” on page 85|

RSiStatGetPath Subroutine

Purpose
Finds the full path name of a statistic identified by a [SpmiStatVals| pointer.
Library

RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

82 Technical Reference, Volume 2: Base Operating System and Extensions

char *RSiStatGetPath(rhandle, svp)
RSiHandle rhandle;
struct SpmiStatVals *svp;

Description

The RSiStatGetPath subroutine performs the following:

1. Validates that the SpmiStatVals statistic identified by the second argument does exist.
2. Returns a pointer to a character array containing the full value path name of the statistic.

The memory area pointed to by the returned pointer is freed when the RSiStatGetPath subroutine call is
repeated. For each invocation of the subroutine, a new memory area is allocated and its address returned.

If the calling program needs the returned character string after issuing the RSiStatGetPath subroutine call,
the program must copy the returned string to locally allocated memory before reissuing the subroutine call.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters

rhandleMust be an RSiHandle, previously initialized by the RSiOpen (“RSiOpen Subroutine” on|
subroutine.

svpMust be a handle of type struct SpmiStatVals as returned by a successful RSiPathAddSetStat
(“RSiPathAddSetStat Subroutine” on page 78) subroutine call.

Return Values

If successful, the RSiStatGetPath subroutine returns a pointer to a character array containing the full path
name of the statistic. If unsuccessful, the subroutine returns a NULL value and an error text may be
placed in the external character array RSIEMsg.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
» extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes,.

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

* |“RSiOpen Subroutine” on page 75|

+ [‘RSiPathAddSetStat Subroutine” on page 78|

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 83

RSiStopFeed Subroutine

Purpose
Tells xmservd to stop sending data feeds for a statset.

Library
RSI Library (libSpmi.a)

Syntax

#include sys/Rsi.h

int RSiStopFeed(rhandle, statset, erase)
RSiHandle rhandle;

struct SpmiStatSet *statset;

boolean erase;

Description
The RSiStopFeed subroutine instructs the xmservd of a remote system to:

1. Stop sending data_feed packets for a given If the daemon is not told to erase the
SpmiStatSet, feeding of data can be resumed by issuing the RSiStartFeed (“RSiStartFeed
[Subroutine” on page 80) subroutine call for the SpmiStatSet.

2. Optionally tells the daemon and the API library subroutines to erase all their information about the
SpmiStatSet. Subsequent references to the erased SpmiStatSet are not valid.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters

rhandleMust point to a structure of type RSiHandle, which was previously initialized by the RSiOpen
(“RSiOpen Subroutine” on page 75) subroutine.

statsetMust be a pointer to a structure of type struct SpmiStatSet, which was previously returned by a
successful RSiCreateStatSet (“RSiCreateStatSet Subroutine” on page 57) subroutine call. Data feeding
must have been started for this SpmiStatSet via a previous RSiStartFeed (“RSiStartFeed Subroutine”|

on page 80) subroutine call.

eraself this argument is set to true, the xmservd daemon on the remote host discards all information
about the named SpmiStatSet. Otherwise the daemon maintains its definition of the set of statistics.

Return Values

If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external
character array RSIEMsg regardless of the subroutine’s success or failure.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq(];
e extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in [List of RSi Error Codes,

84 Technical Reference, Volume 2: Base Operating System and Extensions

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

* |“RSiOpen Subroutine” on page 75|

- |‘RSiStartFeed Subroutine” on page 80}

RSiStopHotFeed Subroutine

Purpose

Tells xmservd to stop sending hot feeds for a hotset and to stop checking for exception and SNMP trap
generation.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

int RSiStopFeed(rhandle, hotset, erase)
RSiHandle rhandle;

struct SpmiHotSet *hotset;

boolean erase;

Description

The RSiStopHotFeed subroutine instructs the xmservd of a remote system to:

1. Stop sending hot_feed packets or check if exceptions or SNMP traps should be generated for a given
If the daemon is not told to erase the SpmiHotSet, feeding of data can be resumed by

issuing the RSiStartHotFeed (“RSiStartHotFeed Subroutine” on page 81) subroutine call for the
SpmiHotSet.

2. Optionally tells the daemon and the API library subroutines to erase all their information about the
SpmiHotSet. Subsequent references to the erased SpmiHotSet are not valid.

This subroutine is part of the Performance Toolbox for AIX licensed product.

Parameters

rhandleMust point to a structure of type RSiHandle, which was previously initialized by the RSiOpen
(“RSiOpen Subroutine” on page 75) subroutine.

hotsetMust be a pointer to a structure of type struct SpmiHotSet, which was previously returned by a
successful RSiCreateHotSet (“RSiCreateHotSet Subroutine” on page 56)) subroutine call. Data feeding
must have been started for this SpmiStatSet via a previous RSiStartHotFeed (“RSiStartHotFeed|
[Subroutine” on page 81) subroutine call.

eraself this argument is set to true, the xmservd daemon on the remote host discards all information
about the named SpmiHotSet. Otherwise the daemon maintains its definition of the set of statistics.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 85

Return Values

If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external
character array RSiEMsg regardless of the subroutine’s success or failure.

Error Codes

All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char RSIEMsq[];
» extern int RSIErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSIiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in|List of RSi Error Codes,

Files

lusr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information

For related information, see:

+ [‘RSiOpen Subroutine” on page 75

+ [‘RSiStartHotFeed Subroutine” on page 81|

+ [‘RSiChangeHotFeed Subroutine” on page 54|

rs_alloc Subroutine

Purpose
Allocates a resource set and returns its handle.

Library
Standard C library (libc.a)

Syntax

#include <sys/rset.h>
rsethandle_t rs_alloc (flags]
unsigned int flags;

Description

The rs_alloc subroutine allocates a resource set and initializes it according to the information specified by
the flags parameter. The value of the flags parameter determines how the new resource set is initialized.

The handle for the new resource set is returned by the subroutine.

86 Technical Reference, Volume 2: Base Operating System and Extensions

Parameters

flags Specifies how the new resource set is initialized. It takes one of the following values, defined in rset.h:
« RS_EMPTY (or 0 value): The resource set is initialized to contain no resources.
* RS_SYSTEM: The resource set is initialized to contain available system resources.
* RS_ALL: The resource set is initialized to contain all resources.

» RS_PARTITION: The resource set is initialized to contain the resources in the caller's process partition
resource set.

Return Values

On successful completion, a resource set handle for the new resource set is returned. Otherwise, a value
of 0 is returned and the errno global variable is set to indicate the error.

Error Codes
The rs_alloc subroutine is unsuccessful if one or more of the following are true:

EINVAL The flags parameter contains an invalid value.
ENOMEM There is not enough space to create the data structures related to the resource set.

Related Information
[rs_free Subroutine” on page 88, |“rs_getinfo Subroutine” on page 90} and [‘rs_init Subroutine” on page 96|

rs_discardname Subroutine

Purpose
Discards a resource set definition from the system resource set registry.

Library
Standard C library (libc.a)

Syntax

#include <sys/rset.h>
int rs_discardname (namespacel |rsname)
char *namespace, *rsname;

Description

The rs_discardname subroutine discards from the system global repository the definition of the resource
set. The resource set is identified by the namespace and rsname parameters. The specified resource set
is removed from the registry, and can no longer be shared with other applcations.

In order to be able to discard a name from the global repository, the calling process must have root
authority or attachment privilege, and an effective user ID equal to that of the rsname parameter’s creator.

Parameters

namespace Points to a null terminated string corresponding to the name space within which rsname should be
found.

rsname Points to a null terminated string corresponding to the name of a registered resource set to be
discarded.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 87

Return Values

If successful, a value of 0 is returned. Otherwise, a value of -1 is returned, and the errno global variable is
set to indicate the error.

Error Codes
The rs_discardname subroutine is unsuccessful if one or more of the following are true:

EINVAL One of the following is true:
» The rsname parameter contains a null value.
* The namespace parameter contains a null value.
* The rsname or namespace parameters point to an invalid name.

* The name length is null or greater than the RSET_NAME_SIZE constant (defined in rset.h), or the
name contains invalid characters.
EPERM One of the following is true:

* The calling process has neither root authority nor CAP_NUMA_ATTACH priveleges.

» The calling process has neither the same user ID as the creator of the rsname definition nor root
authority .

* The namespace parameter starts with sys. This name space is reserved for system use.
EFAULT Invalid address, and/or exceptions outside errno range.

Related Information

“rs_getnameattr Subroutine” on page 91} [“rs_registername Subroutine” on page 99, and [‘rs_getnamedrsef]
Subroutine” on page 92|

rs_free Subroutine

Purpose
Frees a resource set.

Library
Standard C library (libc.a)

Syntax

#include <sys/rset.h>
void rs_free
rsethandle_t rset;

Description

The rs_free subroutine frees a resource set identified by the rset parameter. The resource set must have
been allocated by the rs_alloc subroutine

Parameters

rset Specifies the resource set whose memory will be freed.

Related Information
The|“rs_a||oc Subroutine” on page 861

88 Technical Reference, Volume 2: Base Operating System and Extensions

rs_getassociativity Subroutine

Purpose
Gets the hardware associativity values for a resource.

Library
Standard C library (libc.a)

Syntax

#include <sys/rset.h>
int rs_getassociativity (typel lessoc_array, [array sizel)
unsigned int type;

unsigned int id;

unsigned int *assoc_array;

unsigned int array size;

Description

The rs_getassociativity subroutine returns the array of hardware associativity values for a specified
resource.

This is a special purpose subroutine intended for specialized root applications needing the hardware
associativity value information. The rs_getinfo, rs_getrad, and rs_numrads subroutines are provided for
non-root applications to discover system hardware topology.

The calling process must have root authority to get hardware associativity values.

Parameters

type Specifies the resource type whose associativity values are requested. The only value supported to
retrieve values for a processor is R_PROCS.

id Specifies the logical resource id whose associativity values are requested.

assoc_array Specifies the address of an array of unsigned integers to receive the associativity values.

array_size Specifies the number of unsigned integers in assoc_array.

Return Values

If successful, a value of 0 is returned. The assoc_array parameter array contains the resource’s
associativity values. The first entry in the array indicates the number of associativity values returned. If the
hardware system does not provide system topology data, a value of 0 is returned in the first array entry. If
unsuccessful, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The rs_getassociativity subroutine is unsuccessful if one or more of the following are true:

EINVAL One of the following occurred:
e The array_size parameter was specified as 0.

* Aninvalid type parameter was specified.
ENODEV The resource specified by the id parameter does not exist.
EFAULT Invalid address.
EPERM The calling process does not have root authority.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 89

Related Information

[‘rs_getinfo Subroutine”} [‘rs_getrad Subroutine” on page 94|, and ['rs_numrads Subroutine” on page 96}

rs_getinfo Subroutine

Purpose

Gets information about a resource set.

Library

Standard C library (libc.a)

Syntax

#include <sys/rset.h

>
int rs_getinfo(lrset |info typel, |flags|)
rsethandle_t rset;
rsinfo_t info_type;
unsigned int flags;

Description

The rs_getinfo subroutine retrieves information about the resource set identified by the rset parameter.
Depending on the value of the info_type parameter, the rs_getinfo subroutine returns information about
the number of available processors, the number of available memory pools, or the amount of available
memory contained in the resource rset. The subroutine can also return global system information such as
the maximum system detail level, the symmetric multiprocessor (SMP) and multiple chip module (MCM)
system detail levels, and the maximum number of processor or memory pool resources in a resource set.

Parameters

rset Specifies a resource set handle of a resource set the information should be retrieved from. This
parameter is not meaningful if the info_type parameter is R_MAXSDL, R_MAXPROCS,
R_MAXMEMPS, R_SMPSDL, or R_MCMSDL.

info_type Specifies the type of information being requested. One of the following values (defined in rset.h) can
be used:

R_NUMPROCS: The number of available processors in the resource set is returned.
R_NUMMEMPS: The number of available memory pools in the resource set is returned.
R_MEMSIZE: The amount of available memory (in MB) contained in the resource set is returned.
R_MAXSDL: The maximum system detail level of the system is returned.

R_MAXPROCS: The maximum number of processors that may be contained in a resource set is
returned.

R_MAXMEMPS: The maximum number of memory pools that may be contained in a resource set is
returned.

R_SMPSDL: The system detail level that corresponds to the traditional notion of an SMP is
returned. A system detail level of 0 is returned if the hardware system does not provide system
topology data.

R_MCMSDL: The system detail level that corresponds to resources packaged in an MCM is
returned. A system detail level of 0 is returned if the hardware system does not have MCMs or does
not provide system topology data.

flags Reserved for future use. Specify as 0.

90 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values

If successful, the requested information is returned. If unsuccessful, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The rs_getinfo subroutine is unsuccessful if one or more of the following are true:

EINVAL One of the following is true:
= The info_type parameter specifies an invalid resource type value.

* The flags parameter was not specified as 0.
EFAULT Invalid address.

Related Information
The [‘rs_numrads Subroutine” on page 96,

rs_getnameattr Subroutine

Purpose
Retrieves the access control information of a resource set definition in the system resource set registry.

Library
Standard C library (libc.a)

Syntax

#include <sys/rset.h>

int rs_getnameattr (namespacel |rsname, |attr]
char *namespace, *rsname;

rs_attributes_t *attr;

Description

The rs_getnameattr subroutine retrieves from the system resource set registry the access control
information of the resource set definition specified by the namespace and rsname parameters.

The owner ID, group ID, and access control information of the specified resource set are stored in the
structure pointed to by the attr parameter.

Note: No special authority or access permission is required to query this information.

Parameters

namespace Points to a null terminated string corresponding to the name space within which the rsname
parameter should be found.

rsname Points to a null terminated string corresponding to the name the information should be retrieved for.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 91

attr Points to an rs_attributes_t structure containing the owner, group, and mode fields, which will be
filled by the subroutine. The mode field in the rs_attributes_t structure is used to store the access
permissions, and is constructed by logically ORing one or more of the following values, defined in
rset.h:

* RS_IRUSR: Gives read rights to the name’s owner.

* RS_IWUSR: Gives write rights to the name’s owner.

* RS_IRGRP: Gives read rights to users of the same group as the name’s owner.
* RS_IWGRP: Gives write rights to users of the same group as the name’s owner.
* RS_IROTH: Gives read rights to others.

* RS_IWOTH: Gives write rights to others.

Read privilege for a user means that the user can retrieve a resource set definition by issuing a call

to the rs_getnamedrset subroutine. Write privilege for a user means that the user can redefine a
name by issuing another call to the rs_getnamedrset subroutine.

Return Values

If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The rs_getnameattr subroutine is unsuccessful if one or more of the following are true:

EINVAL If one of the following is true:
» The rsname parameter is a null pointer.
* The namespace parameter is a null pointer.

» The rsname or namespace parameters point to an invalid name. The name length is 0 or greater
than the RSET_NAME_SIZE constant (defined in rset.h), or the rsname parameter contains
invalid characters.

ENOENT The rsname parameter could not be found in the name space identified by the namespace
parameter.

EFAULT Invalid address.

Related Information
“rs_registername Subroutine” on page 99, [‘rs_discardname Subroutine” on page 87} and [‘rs_getnamedrset|

Subroutine’].

rs_getnamedrset Subroutine

Purpose
Retrieves the contents of a named resource set from the system resource set registry.

Library
Standard C library (libc.a)

Syntax

#include <sys/rset.h>
int rs_getnamedrset dnamespacel, |r‘sname|, |r$et|)
char *namespace, *rsname;

92 Technical Reference, Volume 2: Base Operating System and Extensions

Description

The rs_getnamedrset subroutine retrieves a resource set definition from the system registry. The
namespace and rsname parameters identify the resource set to be retrieved. The rset parameter identifies
where the retrieved resource set should be returned. The namespace and rsname parameters identify a
previously registered resource set definition.

The calling process must have root authority or read access rights to the resource set definition in order to
retrieve it.

The rset parameter must be allocated (using the rs_alloc subroutine) prior to calling the rs_getnamedrset
subroutine.

Parameters

namespace Points to a null-terminated string corresponding to the name space within which rsname is found.

rsname Points to a null-terminated string corresponding to the previously registered name of a resource
set.

rset Specifies the resource set handle for the resource set that the registered resource set is copied

into. The registered resource set is specified by the rsname parameter.

Return Values

If successful , a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The rs_getnamedrset subroutine is unsuccessful if one or more of the following are true:

EINVAL One of the following is true:
» The rsname parameter is a null pointer.
* The namespace parameter is a null pointer.

* The rsname or namespace parameters point to an invalid name. The name length is 0 or greater
than the RSET_NAME_SIZE constant (defined in rset.h), or the rsname parameter contains
invalid characters.

ENOENT The rsname parameter could not be found in the name space identified by the namespace
parameter.

EPERM The calling process has neither read permission on rsname nor root authority.

EFAULT Invalid address.

Related Information

['rs_alloc Subroutine” on page 86| [‘rs_registername Subroutine” on page 99, [‘rs_getnameattr Subroutine’|
fon page 91| and|[‘rs_discardname Subroutine” on page 87

rs_getpartition Subroutine

Purpose
Gets the partition resource set to which a process is attached.

Library
Standard C library (libc.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 93

Syntax

#include <sys/rset.h>

int rs_getpartition
pid_t pid;
rsethandle_t rset;

Description

The rs_getpartition subroutine returns the partition resource set attached to the specified process. A
process ID value of RS_MYSELF indicates the partition resource set attached to the current process is
requested.

The return value from the rs_getpartition subroutine indicates the type of resource set returned.
A value of RS_PARTITION_RSET indicates the process has a partition resource set that is set explicitly.
This may be set with the rs_setpartition subroutine or through the use of WLM work classes with

resource sets.

A value of RS_DEFAULT_RSET indicates the process did not have an explicitly set partition resource set.
The system default resource set is returned.

Parameters
pid Specifies the process ID whose partition rset is requested.
rset Specifies the resource set to receive the process’ partition resource set.

Return Values

If successful, a value of RS_PARTITION_RSET, or RS_DEFAULT_RSET is returned. If unsuccessful, a
value of -1 is returned and the global errno variable is set to indicate the error.

Error Codes
The rs_getpartition subroutine is unsuccessful if one or more of the following are true:

EFAULT Invalid address.
ESRCH The process identified by the pid parameter does not exist.

Related Information
The [‘ra_getrset Subroutine” on page 15|

rs_getrad Subroutine

Purpose
Returns a system resource allocation domain (RAD) contained in an input resource set.

Library
Standard C library (libc.a)

94 Technical Reference, Volume 2: Base Operating System and Extensions

Syntax

#include <sys/rset.h>

int rs_getrad [inded

rsethandle_t rset, rad;
unsigned int sdl;
unsigned int index;
unsigned int flags;

Description

The rs_getrad subroutine returns a system RAD at a specified system detail level and index that is
contained in an input resource set. If only some of the resources in the specified system RAD are
contained in the input resource set, only the resources in both the system RAD and the input resource set
are returned.

The input resource set is specified by the rset parameter. The output system RAD is identified by the rad
parameter.

The system RAD is specified by system detail level sdl and index number index. If only a portion of the
specified RAD is contained in rset, only that portion is returned in rad.

The rset and rad parameters must be allocated (using the rs_alloc subroutine) prior to calling the
rs_getrad subroutine.

Parameters

rset Specifies a resource set handle for the input resource set.

rad Specifies a resource set handle to receive the desired system RAD (contained in the rset parameter).

sdl Specifies the system detail level of the desired system RAD.

index Specifies the index of the system RAD that should be returned from among those at the specified sdl. This
parameter must belong to the [0, rs_numrads(rset, sdl, flags)- 1] interval.

flags The following flags (defined in rset.h) can be used to modify the default behavior of the rs_getrad

subroutine. By default, the rs_getrad subroutine empties the resource set specified by rad before the
specified RAD is retrieved.

* RS_UNION: Instead of emptying rad before the specified RAD is retrieved, the RAD retrieved is added
to the contents of rad. On completion, rad contains the union of its original contents and the specified
RAD.

* RS_EXCLUSION: Instead of emptying rad before the specified RAD is retrieved, the resources in the
specified RAD that are also in rad are removed from rad. On return, rad contains all the resources it
originally contained except those in the specified RAD.

Return Values

If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The rs_getrad subroutine is unsuccessful if one or more of the following are true:

EINVAL One of the following is true:
* The flags parameter contains an invalid value.
* The sdl parameter is greater than the maximum system detail level.

» The RAD specified by the index parameter does not exist at the system detail level specified by the
sdl parameter.
EFAULT Invalid address.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 95

Related Information
[rs_numrads Subroutine”} [‘'rs_getinfo Subroutine” on page 90} and [‘rs_alloc Subroutine” on page 86|

rs_init Subroutine

Purpose
Initializes a previously allocated resource set.

Library
Standard C library (libc.a)

Syntax
#include <sys/rset.h>
int rs_init (rset|,

rsethandle_t rset;
unsigned int flags;

Description

The rs_init subroutine initializes a previously allocated resource set. The resource set is initialized
according to information specified by the flags parameter.

Parameters
rset Specifies the handle of the resource set to initialize.
flags Specifies how the resource set is initialized. It takes one of the following values, defined in rset.h:

« RS_EMPTY: The resource set is initialized to contain no resources.
< RS_SYSTEM: The resource set is initialized to contain available system resources.
« RS_ALL: The resource set is initialized to contain all resources.

* RS_PARTITION: The resource set is initialized to contain the resources in the caller's process partition
resource set.

Return Values

If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned, and the errno global
variable is set to indicate the error.

Error Codes
The rs_init subroutine is unsuccessful if one or more of the following are true:

EINVAL The flags parameter contains an invalid value.

Related Information
The [‘rs_alloc Subroutine” on page 86

rs_numrads Subroutine

Purpose
Returns the number of system resource allocation domains (RADs) that have available resources.

96 Technical Reference, Volume 2: Base Operating System and Extensions

Library
Standard C library (libc.a)

Syntax

#include <sys/rset.h>

int rs_numrads (rset|, [flags)
rsethandle_t rset;

unsigned int sdl;

unsigned int flags;

Description

The rs_numrads subroutine returns the number of system RADs at system detail level sdl, that have
available resources contained in the resource set identified by the rset parameter.

The number of atomic RADs contained in the rset parameter is returned if the sdl parameter is equal to
the maximum system detail level.

Parameters

rset Specifies the resource set handle for the resource set being queried.
sdl Specifies the system detail level in which the caller is interested.
flags Reserved for future use. Specify as 0.

Return Values

If successful, the number of available RADs at system detail level sdl, that have resources contained in
the specified resource set is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The rs_numrads subroutine is unsuccessful if one or more of the following are true:
EINVAL One of the following is true:

* The flags parameter contains an invalid value.

» The sdl parameter is greater than the maximum system detail level.
EFAULT Invalid address.

Related Information
[rs_getrad Subroutine” on page 94|, and[‘rs_getinfo Subroutine” on page 90}

rs_op Subroutine

Purpose
Performs a set of operations on one or two resource sets.

Library
Standard C library (libc.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z)

97

Syntax

#include <sys/rset.h>

int rs_op (command}, |rsetl], |rset2} |flags],
unsigned int command;

rsethandle_t rsetl, rsetZ;

unsigned int flags;

unsigned int id;

Description

The rs_op subroutine performs the operation specified by the command parameter on resource set rset1
or both resource sets rset1 and rset2.

Parameters

command Specifies the operation to apply to the resource sets identified by rset? and rset2. One of the
following values, defined in rset.h, can be used:

* RS_UNION: The resources contained in either rset1 or rset2 are stored in rset2.
* RS_INTERSECTION: The resources that are contained in both rset? and rset2 are stored in rset2.

» RS_EXCLUSION: The resources in rset? that are also in rset2 are removed from rset2. On
completion, rset2 contains all the resources that were contained in rset2 but were not contained in
rset1.

» RS_COPY: All resources in rset1 whose type is flags are stored in rset2. If rset1 contains no
resources of this type, rset2 will be empty. The previous content of rset2 is lost, while the content
of rset1 is unchanged.

* RS_FIRST: The first resource whose type is flags is retrieved from rset? and stored in rset2. If
rset1 contains no resources of this type, rset2 will be empty.

* RS_NEXT: The resource from rset1 whose type is flags and that follows the resource contained in
rset2 is retrieved and stored in rset2. If no resource of the appropriate type follows the resource
specified in rset2, rset2 will be empty.

* RS_NEXT_WRAP: The resource from rset1 whose type is flags and that follows the resource
contained in rset2 is retrieved and stored in rset2. If no resource of the appropriate type follows the
resource specified in rset2, rset2 will contain the first resource of this type in rset1.

* RS_ISEMPTY: Test if resource set rset1 is empty.
* RS_ISEQUAL: Test if resource sets rset? and rset2 are equal.

* RS_ISCONTAINED: Test if all resources in resource set rset1 are also contained in resource set
rset2.

« RS_TESTRESOURCE: Test if the resource whose type is flags and index is id is contained in
resource set rset1.

- RS_ADDRESOURCE: Add the resource whose type is flags and index is id to resource set rset1.
+ RS_DELRESOURCE: Delete the resource whose type is flags and index is id from resource set

rseti.
rset1 Specifies the resource set handle for the first of the resource sets involved in the command operation.
rset2 Specifies the resource set handle for the second of the resource sets involved in the command

operation. This resource set is also used, on return, to store the result of the operation, and its
previous content is lost. The rset2 parameter is ignored on the RS_ISEMPTY, RS_TESTRESOURCE,
RS_ADDRESOURCE, and RS_DELRESOURCE commands.

flags When combined with the RS_COPY command, the flags parameter specifies the type of the
resources that will be copied from rset1 to rset2. When combined with an RS_FIRST or an RS_NEXT
command, the flags parameter specifies the type of the resource that will be retrieved from rset1. This
parameter is constructed by logically ORing one or more of the following values, defined in rset.h:
* R_PROCS: processors
* R_MEMPS: memory pools

* R_ALL_RESOURCES: processors and memory pools

If none of the above are specified for flags, R_ALL_RESOURCES is assumed.

98 Technical Reference, Volume 2: Base Operating System and Extensions

id On the RS_TESTRESOURCE, RS_ADDRESOURCE, and RS_DELRESOURCE commands, the id
parameter specifies the index of the resource to be tested, added, or deleted. This parameter is
ignored on the other commands.

Return Values

If successful, the commands RS_ISEMPTY, RS_ISEQUAL, RS_ISCONTAINED, and
RS_TESTRESOURCE return 0 if the tested condition is not met and 1 if the tested condition is met. All
other commands return O if successful. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The rs_op subroutine is unsuccessful if one or more of the following are true:

EINVAL If one of the following is true:
= rset1 identifies an invalid resource set.
» rset2 identifies an invalid resource set.
e command identifies an invalid operation.
* command is RS_NEXT or RS_NEXT_WRAP*, and rset2 does not contain a single resource.

* command is RS_NEXT or RS_NEXT_WRAP*, and the single resource contained in rset2 is not
also contained in rset1.

» flags identifies an invalid resource type.

= id specifies a resource index that is too large.
EFAULT Invalid address.

Related Information
The [‘rs_alloc Subroutine” on page 86|

rs_registername Subroutine

Purpose
Registers a resource set definition in the system resource set registry.

Library
Standard C library (libc.a)

Syntax

#include <sys/rset.h>
int rs_registername(rset| phamespacel, |rsnamel, fnodel, |command)
rsethandle_t rset;

char *namespace, *rsname;

unsigned int mode, command;

Description

The rs_registername subroutine registers in the system resource registry (within the name space
identified by namespace) the definition of the resource set identified by the rset handle. The
rs_registername subroutine does this by associating with it the name specified by the null terminated
string structure pointed to by rsname.

If rsname does not exist, the owner and group IDs of rsname are set to the caller’'s owner and group IDs,
and the access control information for rsname is set according to the mode parameter.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 99

If rsname already exists, its owner and group IDs and its access control information are left unchanged,
and the mode parameter is ignored. This name can be shared with any applications to identify a dedicated
resource set.

Using the command parameter, you can ask to overwrite or not to overwrite the rsname parameter’s
registration if it already exists in the global repository within the name space identified by namespace. If
rsname already exists within the specified name space and the command parameter is set to not
overwrite, an error is reported to the calling process.

Notes:

1. Registering a resource set definition can only be done by a process that has root authority or
CAP_NUMA_ATTACH attachment privilege.

2. Overwriting an existing name’s registration can be done only by a process that has root authority or
write access to this name.

An application registered resource set definition is non-persistent. It does not persist over a system boot.

Both the namespace and rsname parameters may contain up to 255 characters. They must begin with an
ASCII alphanumeric character. Only the period (.), minus (-), and underscore (_) characters can be mixed
with ASCII alphanumeric characters within these strings. Moreover, the names are case-sensitive, which
means there is a difference between uppercase and lowercase letters in resource set names and name
spaces.

Parameters

rset Specifies a resource set handle of a resource set a name should be registered for.

namespace Points to a null terminated string corresponding to the name space within which rsname will be
registered.

rsname Points to a null terminated string corresponding to the name registered with the setting of the
resource set specified by rset.

mode Specifies the bit pattern that determines the created name access permissions. It is constructed by

logically ORing one or more of the following values, defined in rset.h:

* RS_IRUSR: Gives read rights to the name’s owner

* RS_IWUSR: Gives write rights to the name’s owner

* RS_IRGRP: Gives read rights to users of the same group as the name’s owner
* RS_IWGRP: Gives write rights to users of the same group as the name’s owner
* RS_IROTH: Gives read rights to others

* RS_IWOTH: Gives write rights to others

Read privilege for a user means that the user can retrieve a resource set definition (by issuing a

call to the rs_getnamedrset subroutine). Write privilege for a user means that the user can

redefine a name (by issuing another call to the rs_getnamedrset subroutine).

command Specifies whether the rsname parameter’s registration should be overwritten if it already exists in

the global repository. This parameter takes one of the following values, defined in rset.h:

 RS_REDEFINE: The rsname parameter should be redefined if it already exists in the name
space identified by namespace. In such a case, the calling process must have write access to
rsname.

* RS_DEFINE: The rsname parameter should not be redefined if it already exists in the name
space identified by namespace. If this happens, an error is reported to the calling process

Return Values

If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

100 Technical Reference, Volume 2: Base Operating System and Extensions

Error Codes
The rs_registername subroutine is unsuccessful if one or more of the following are true:

EINVAL If one of the following is true:
e rsname is a null pointer.
* namespace is a null pointer.

= rsname or namespace points to an invalid name. The name length is 0 or greater than the
RSET_NAME_SIZE constant (defined in rset.h), or the name contains invalid characters.

* mode identifies an invalid access rights value.
e command identifies an invalid command value.

EEXIST The command parameter is set to RS_DEFINE and rsname already exists in the global repository
within the name space identified by namespace.

ENOMEM There is not enough space to create the data structures related to the registry of this resource set.

EPERM If one of the following is true:

* The command parameter is set to RS_REDEFINE and the calling process has neither write
access to rsname nor root authority .

» The calling process has neither the attachment privilege nor root authority.

» The namespace parameter starts with sys. This name space is reserved for system use.
EFAULT Invalid address, and/or exceptions outside errno range.

Related Information

“rs_getnameattr Subroutine” on page 91| [“rs_discardname Subroutine” on page 87} and [‘rs_getnamedrsef]
Subroutine” on page 92|

rs_setnameattr Subroutine

Purpose
Sets the access control information of a resource set definition in the system resource set registry.

Library
Standard C library (libc.a)

Syntax

#include <sys/rset.h>
int rs_setnameattr (hamespacel, |rsnamel, [command), |attr])
char *namespace, *rsname;

unsigned int command;

rs_attributes *attr;

Description

The rs_setnameattr subroutine sets (depending on the command value) one or more of the owner, group,
or access control information of the system registry resource set definition specified by the namespace
and rsname parameters.

The owner ID and/or group ID and/or access control information of the rsname parameter must be
supplied in the structure pointed to by the attr parameter.

Notes:

1. In order to be able to set the attributes of a name, the calling process must have root authority or the
attachment privilege and an effective user ID equal to that of the rsname parameter’s owner.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 101

2. Root authority is required to change the resource set definition owner ID, or to set its group ID outside
of the caller’s list of groups.

Parameters

namespace

rsname

command

attr

Points to a null terminated string corresponding to the name space within which rsname should be
found.

Points to a null terminated string corresponding to the name the information should be retrieved
for.

Specifies which attributes should be changed. This parameter is constructed by logically ORing
one or more of the following values, defined in rset.h:

* RS_OWNER: Set owner as specified in the owner field of attr.
* RS_GROUP: Set group as specified in the group field of attr.

* RS_PERM: Set access control information as specified in the mode field of attr.

Points to an rs_attributes_t structure containing the owner, group and mode fields, which will
possibly be used by the subroutine for setting attributes. The mode field is used to store the
access permissions, and is constructed by logically ORing one or more of the following values,
defined in rset.h:

* RS_IRUSR: Gives read rights to the name’s owner

* RS_IWUSR: Gives write rights to the name’s owner

* RS_IRGRP: Gives read rights to users of the same group as the name’s owner
* RS_IWGRP: Gives write rights to users of the same group as the name’s owner
* RS_IROTH: Gives read rights to the others

* RS_IWOTH: Gives write rights to the others

Return Values

If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global
variable is set to indicate the error.

Error Codes
The rs_setnameattr subroutine is unsuccessful if one or more of the following are true:

EINVAL

EPERM

ENOENT
ENOSPC
EFAULT

ENOSYS

One of the following is true:

rsname is a null pointer.
namespace is a null pointer.

rsname or namespace point to an invalid name. Name length is O or greater than the
RSET_NAME_SIZE constant (defined in rset.h), or name contains invalid characters.

command identifies an invalid command value.
command includes RS_PERM and the mode field of attr identifies an invalid access rights value.
attris a null pointer.

One of the following is true:

The calling process has neither CAP_NUMA_ATTACH attachment privilege nor root authority.

command includes RS_OWNER and the owner field of attr is different from the caller’s user ID and
the caller does not have root authority.

command includes RS_GROUP, the group field of attr is outside of the caller’s list of groups, and
caller does not have root authority.

The namespace parameter starts with sys. This name space is reserved for system use.

rsname could not be found in the name space identified by namespace.
Out of file-space blocks.

Invalid address; exceptions outside errno range.

The rs_setnameattr subroutine is not supported by the system.

102 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information
The [‘rs_getnameattr Subroutine” on page 91|

rs_setpartition Subroutine

Purpose
Sets the partition resource set of a process.

Library
Standard C library (libc.a)

Syntax

#include <sys/rset.h>

int rs_setpartition@,
pid_t pid;

rsethandle_t rset;

unsigned int flags;

Description

The rs_setpartition subroutine sets a process’ partition resource set. The subroutine can also be used to
remove a process’ partition resource set.

The partition resource set limits the threads in a process to running only on the processors contained in
the partition resource set.

The work component is an existing process identified by the process ID. A process ID value of
RS_MYSELF indicates the attachment applies to the current process.

The following conditions must be met to set a process’ partition resource set:
* The calling process must have root authority.
* The resource set must contain processors that are available in the system.

* The new partition resource set must be equal to, or a superset of the target process’ effective resource
set.

* The target process must not contain any threads that have bindprocessor bindings to a processor.

Parameters

pid Specifies the process ID of the process whose partition resource set is to be set. A value of RS_MYSELF
indicates the current process’ partition resource set should be set.

rset Specifies the partition resource set to be set. A value of RS_DEFAULT indicates the process’ partition

resource set should be removed.
flags Reserved for future use. Specify as 0.

Return Values

If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned, and the errno global
variable is set to indicate the error.

Error Codes
The rs_setpartition subroutine is unsuccessful if one or more of the following are true:

EINVAL The flags parameter contains an invalid value.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 103

ENODEV The resource set specified by the rset parameter does not contain any available processors.

ESRCH The process identified by the pid parameter does not exist.
EFAULT Invalid address.

ENOMEM Memory not available.

EPERM One of the following is true:

* The calling process does not have root authority.

» The process identified by the pid parameter has one or more threads with a bindprocessor
processor binding.

» The process identified by the pid parameter has an effective resource set and the new partition
resource set identified by the rset parameter does not contain all of the effective resource set’s
resources.

Related Information
['rs_getpartition Subroutine” on page 93 and [‘ra_attachrset Subroutine” on page 9}

rsqrt Subroutine

Purpose
Computes the reciprocal of the square root of a number.

Libraries
IEEE Math Library (libm.a)

System V Math Library (libmsaa.a)

Syntax

#include <math.h>

double rsqrt(double EI)

Description

The rsqrt command computes the reciprocal of the square root of a number x; that is, 1.0 divided by the
square root of x (1.0/sqrt(x)). On some platforms, using the rsqrt subroutine is faster than computing 1.0 /
sqrt(x). The rsqrt subroutine uses the same rounding mode used by the calling program.

When using the libm.a library, the rsqrt subroutine responds to special values of x in the following ways:

» If xis NaN, then the rsqrt subroutine returns NaN. If x is a signaling Nan (NaNS), then the rsqrt
subroutine returns a quiet NaN and sets the VX and VXSNAN (signaling NaN invalid operation
exception) flags in the FPSCR (Floating-Point Status and Control register) to 1.

* If xis +/- 0.0, then the rsqrt subroutine returns +/- INF and sets the ZX (zero divide exception) flag in
the FPSCR to 1.

» If x is negative, then the rsqrt subroutine returns NaN, sets the errno global variable to EDOM, and
sets the VX and VXSQRT (square root of negative number invalid operation exception) flags in the
FPSCR to 1.

When using the libmsaa.a library, the rsqrt subroutine responds to special values of x in the following

ways:

* If xis +/- 0.0, then the rsqrt subroutine returns +/-HUGE_VAL and sets the errno global variable to
EDOM. The subroutine invokes the subroutine, which prints a message indicating a singularity
error to standard error output.

104 Technical Reference, Volume 2: Base Operating System and Extensions

» If xis negative, then the rsqrt subroutine returns 0.0 and sets the errno global variable to EDOM. The
subroutine invokes the matherr subroutine, which prints a message indicating a domain error to
standard error output.

When compiled with libmsaa.a, a program can use the matherr subroutine to change these error-handling
procedures.

Parameter

X Specifies a double-precision floating-point value.

Return Values
Upon successful completion, the rsqrt subroutine returns the reciprocal of the square root of x.

1.0 If xis 1.0.
+0.0 If xis +INF.

Error Codes

When using either the libm.a or libmsaa.a library, the rsqrt subroutine may return the following error
code:

EDOM The value of x is negative.

Related Information
The subroutine, sqrt or cbrt (“sqrt, sqrtf, or sqrtl Subroutine” on page 238) subroutine.

rstat Subroutines

Purpose
Gets performance data from remote kernels.

Library

(librpcsvc.a)

Syntax

#include <rpcsvc/rstat.h>

rstat (host, statp)
char *host;
struct statstime *statp;

Description

The rstat subroutine gathers statistics from remote kernels. These statistics are available on items such as
paging, swapping and CPU utilization.

Parameters
host Specifies the name of the machine going to be contacted to obtain statistics found in the statp parameter.
statp Contains statistics from host.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 105

Return Values
If successful, the rstat subroutine fills in the statstime for host and returns a value of 0.

Files

lusr/include/rpcsvc/rstat.x

Related Information
The@ command.

The daemon

scalbin, scalbinf, scalblnl, scalbn, scalbnf, scalbnl, or scalb Subroutine

Purpose
Computes the exponent using FLT_RADIX=2.

Syntax

#include <math.h>

double scalbln dﬂ,ED
double x;
Tong n;

float scalbInf (x, n)
float x;
Tong n;

long double scalblnl (x, n)
Tong double x;
Tong n;

double scalbn (x, n)
double x;
int n;

float scalbnf (x, n)

float x;

int n;

long double scalbnl (x, n)
Tong double x;

int n;

double scalb(x, y)
double x, y;

Description

The scalbln, scalbinf, scalbinl, scalbn, scalbnf, and scalbnl subroutines compute x * FLT_RADIX"
efficiently, not normally by computing FLT_RADIX" explicitly. For AIX, FLT_RADIX n=2.

The scalb subroutine returns the value of the x parameter times 2 to the power of the y parameter.

106 Technical Reference, Volume 2: Base Operating System and Extensions

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters
X Specifies the value to be computed.
n Specifies the value to be computed.

Return Values

Upon successful completion, the scalbln, scalbinf, scalbinl, scalbn, scalbnf, and scalbnl subroutines
return x * FLT_RADIX" .

If the result would cause overflow, a range error occurs and the scalblin, scalbinf, scalbinl, scalbn,
scalbnf, and scalbnl subroutines return tHUGE_VAL, +HUGE_VALF, and +HUGE_VALL (according to
the sign of x) as appropriate for the return type of the function.

If the correct value would cause underflow, and is not representable, a range error may occur, and 0.0 is
returned.

If xis NaN, a NaN is returned.
If xis +0 or =Inf, x is returned.
If nis 0, x is returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value is returned.

Error Codes

If the correct value would overflow, the scalb subroutine returns +/-INF (depending on a negative or
positive value of the x parameter) and sets errno to ERANGE.

If the correct value would underflow, the scalb subroutine returns a value of 0 and sets errno to
ERANGE.

Related Information
[‘remainder, remainderf, or remainderl Subroutine” on page 39|

feclearexcept Subroutine] [fetestexcept Subrouting|in AIX 5L Version 5.2 Technical Reference: Base
Operating System and Extensions Volume 1.

in AIX 5L Version 5.2 Files Reference.

scandir or alphasort Subroutine

Purpose
Scans or sorts directory contents.

Library
Standard C Library (libc.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 107

Syntax

#include <sys/types.h>
#include <sys/dir.h>

int scandir(DirectoryName ,Namelist,Select,Compare)
char * |DirectoryNamel

struct dirent * (* VameList| [1);

int (* [Select) (struct dirent =*);

int (* |Compare) (void *, void *);

int alphasort (pirectoryl,Directory2)
void *Directoryl, *Directory?2;

Description

The scandir subroutine reads the directory pointed to by the DirectoryName parameter, and then uses the
malloc subroutine to create an array of pointers to directory entries. The scandir subroutine returns the
number of entries in the array and, through the NameList parameter, a pointer to the array.

The Select parameter points to a user-supplied subroutine that is called by the scandir subroutine to
select which entries to include in the array. The selection routine is passed a pointer to a directory entry
and should return a nonzero value for a directory entry that is included in the array. If the Select parameter
is a null value, all directory entries are included.

The Compare parameter points to a user-supplied subroutine. This routine is passed to the gsort
subroutine to sort the completed array. If the Compare parameter is a null value, the array is not sorted.
The alphasort subroutine provides comparison functions for sorting alphabetically.

The memory allocated to the array can be deallocated by freeing each pointer in the array, and the array
itself, with the free subroutine.

The alphasort subroutine treats Directory1 and Directory2 as pointers to dirent pointers and alphabetically
compares them. This subroutine can be passed as the Compare parameter to either the scandir
subroutine or the gsort subroutine, or a user-supplied subroutine can be used.

Parameters

DirectoryName Points to the directory name.

NamelList Points to the array of pointers to directory entries.

Select Points to a user-supplied subroutine that is called by the scandir
subroutine to select which entries to include in the array.

Compare Points to a user-supplied subroutine that sorts the completed array.

Directory1, Directory2 Point to dirent structures.

Return Values

The scandir subroutine returns the value -1 if the directory cannot be opened for reading or if the malloc
subroutine cannot allocate enough memory to hold all the data structures. If successful, the scandir
subroutine returns the number of entries found.

The alphasort subroutine returns the following values:

Less than 0 The dirent structure pointed to by the Directory1 parameter is lexically less than the
dirent structure pointed to by the Directory2 parameter.
0 The dirent structures pointed to by the Directory1 parameter and the Directory2

parameter are equal.

108 Technical Reference, Volume 2: Base Operating System and Extensions

Greater than 0 The dirent structure pointed to by the Directory1 parameter is lexically greater than the
dirent structure pointed to by the Directory2 parameter.

Related Information

The [malloc, free, realloc, calloc, mallopt, mallinfo, or alloca subrouting, [opendir, readdir, telldir)|

Iseekdir, rewinddir, or closedir| subroutine, gsort (‘gsort Subroutine” on page 1) subroutine.

|Fi|es, Directories, and File Systems for Programmers| in AIX 5L Version 5.2 General Programming

Concepts: Writing and Debugging Programs.

scanf, fscanf, sscanf, or wsscanf Subroutine

Purpose

Converts formatted input.
Library

Standard C Library (libc.a)

or (libc128.a)

Syntax

#include <stdio.h>

int scanf ([Format| [, |Pointerl ... 1)
const char *format;

int fscanf (Stream, Format [, Pointer, ...

FILE « trearf

const char *Format;

int sscanf (String, Format [, Pointer, ...

const char * *Format

int wsscanf (wcs, Format [, Pointer, ...

const wchar_t *
const char *format;

Description

D

D

D

The scanf, fscanf, sscanf, and wsscanf subroutines read character data, interpret it according to a
format, and store the converted results into specified memory locations. If the subroutine receives
insufficient arguments for the format, the results are unreliable. If the format is exhausted while arguments
remain, the subroutine evaluates the excess arguments but otherwise ignores them.

These subroutines read their input from the following sources:

scanf Reads from standard input (stdin).

fscanf Reads from the Stream parameter.

sscanf Reads from the character string specified by the String parameter.
wsscanf Reads from the wide character string specified by the wcs parameter.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 109

The scanf, fscanf, sscanf, and wsscanf subroutines can detect a language-dependent radix character,
defined in the program’s locale (LC_NUMERIC), in the input string. In the C locale, or in a locale that does
not define the radix character, the default radix character is a full stop . (period).

Parameters

wes Specifies the wide-character string to be read.
Stream Specifies the input stream.

String Specifies input to be read.

Pointer Specifies where to store the interpreted data.

110 Technical Reference, Volume 2: Base Operating System and Extensions

Format Contains conversion specifications used to interpret the input. If there are insufficient arguments for the
Format parameter, the results are unreliable. If the Format parameter is exhausted while arguments remain,
the excess arguments are evaluated as always but are otherwise ignored.

The Format parameter can contain the following:

» Space characters (blank, tab, new-line, vertical-tab, or form-feed characters) that, except in the following
two cases, read the input up to the next nonwhite space character. Unless a match in the control string
exists, trailing white space (including a new-line character) is not read.

» Any character except a % (percent sign), which must match the next character of the input stream.

» A conversion specification that directs the conversion of the next input field. The conversion specification
consists of the following:

— The % (percent sign) or the character sequence %n$.

Note: The %n$ character sequence is an X/Open numbered argument specifier. Guidelines for use
of the %n% specifier are:

- The value of nin %n$ must be a decimal number without leading 0’s and must be in the
range from 1 to the NL_ARGMAX value, inclusive. See thefile for more
information about the NL_ARGMAX value. Using leading 0’s (octal numbers) or a larger n
value can have unpredictable results.

- Mixing numbered and unnumbered argument specifications in a format string can have
unpredictable results. The only exceptions are %% (two percent signs) and %* (percent
sign, asterisk), which can be mixed with the %n$ form.

- Referencing numbered arguments in the argument list from the format string more than
once can have unpredictable results.

— The optional assignment-suppression character * (asterisk).

— An optional decimal integer that specifies the maximum field width.

— An optional character that sets the size of the receiving variable for some flags. Use the following
optional characters:

| Long integer rather than an integer when preceding the d, i, or n conversion codes; unsigned
long integer rather than unsigned integer when preceding the o, u, or x conversion codes;
double rather than float when preceding the e, f, or g conversion codes.

1l Long long integer rather than an integer when preceding the d, i, or n conversion codes;
unsigned long long integer rather than unsigned integer when preceding the o, u, or x
conversion codes.

L A long double rather than a float, when preceding the e, f, or g conversion codes; long integer
rather than an integer when preceding the d, i, or n conversion codes; unsigned long integer
rather than unsigned integer when preceding the o, u, or x conversion codes.

h Short integer rather than an integer when preceding the d, i, and n conversion codes;
unsigned short integer (half integer) rather than an unsigned integer when preceding the o, u,
or X conversion codes.

— A conversion code that specifies the type of conversion to be applied.
The conversion specification takes the form:
%[*] [width] [size]convcode

Format (Continued)

The results from the conversion are placed in the memory location designated by the Pointer parameter
unless you specify assignment suppression with an * (asterisk). Assignment suppression provides a way to
describe an input field to be skipped. The input field is a string of nonwhite space characters. It extends to
the next inappropriate character or until the field width, if specified, is exhausted.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 111

The conversion code indicates how to interpret the input field. The corresponding Pointer parameter must
be a restricted type. Do not specify the Pointer parameter for a suppressed field. You can use the following
conversion codes:

%

Accepts a single % (percent sign) input at this point; no assignment or conversion is done. The
complete conversion specification should be %% (two percent signs).

Accepts an optionally signed decimal integer with the same format as that expected for the subject
sequence of the strtol subroutine with a value of 10 for the base parameter. If no size modifier is
specified, the Pointer parameter should be a pointer to an integer.

Accepts an optionally signed integer with the same format as that expected for the subject
sequence of the strtol subroutine with a value of 0 for the base parameter. If no size modifier is
specified, the Pointer parameter should be a pointer to an integer.

Accepts an optionally signed decimal integer with the same format as that expected for the subject
sequence of the strtoul subroutine with a value of 10 for the base parameter. If no size modifier is
specified, the Pointer parameter should be a pointer to an unsigned integer.

Accepts an optionally signed octal integer with the same format as that expected for the subject
sequence of the strtoul subroutine with a value of 8 for the base parameter. If no size modifier is
specified, the Pointer parameter should be a pointer to an unsigned integer.

Accepts an optionally signed hexadecimal integer with the same format as that expected for the
subject sequence of the strtoul subroutine with a value of 16 for the base parameter. If no size
modifier is specified, the Pointer parameter should be a pointer to an integer.

e f,org

Accepts an optionally signed floating-point number with the same format as that expected for the
subject sequence of the strtod subroutine. The next field is converted accordingly and stored
through the corresponding parameter; if no size modifier is specified, this parameter should be a
pointer to a float. The input format for floating-point numbers is a string of digits, with some
optional characteristics:

* It can be a signed value.

* |t can be an exponential value, containing a decimal rational number followed by an exponent
field, which consists of an E or an e followed by an (optionally signed) integer.

» |t can be one of the special values INF, NaNQ, or NaNS. This value is translated into the
IEEE-754 value for infinity, quiet NaN, or signaling NaN, respectively.

Matches an unsigned hexadecimal integer, the same as the %p conversion of the printf
subroutine. The corresponding parameter is a pointer to a void pointer. If the input item is a value
converted earlier during the same program execution, the resulting pointer compares equal to that
value; otherwise, the results of the %p conversion are unpredictable.

Consumes no input. The corresponding parameter is a pointer to an integer into which the scanf,
fscanf, sscanf, or wsscanf subroutine writes the number of characters (including wide characters)
read from the input stream. The assignment count returned at the completion of this function is not
incremented.

Accepts a sequence of nonwhite space characters (scanf, fscanf, and sscanf subroutines). The
wsscanf subroutine accepts a sequence of nonwhite-space wide-character codes; this sequence
is converted to a sequence of characters in the same manner as the westombs subroutine. The
Pointer parameter should be a pointer to the initial byte of a char, signed char, or unsigned char
array large enough to hold the sequence and a terminating null-character code, which is
automatically added.

Accepts a sequence of nonwhite space characters (scanf, fscanf, and sscanf subroutines). This
sequence is converted to a sequence of wide-character codes in the same manner as the
mbstowcs subroutine. The wsscanf subroutine accepts a sequence of nonwhite-space wide
character codes. The Pointer parameter should be a pointer to the initial wide character code of an

112 Technical Reference, Volume 2: Base Operating System and Extensions

array large enough to accept the sequence and a terminating null wide character code, which is
automatically added. If the field width is specified, it denotes the maximum number of characters
to accept.

c Accepts a sequence of bytes of the number specified by the field width (scanf, fscanf and sscanf
subroutines); if no field width is specified, 1 is the default. The wsscanf subroutine accepts a
sequence of wide-character codes of the number specified by the field width; if no field width is
specified, 1 is the default. The sequence is converted to a sequence of characters in the same
manner as the westombs subroutine. The Pointer parameter should be a pointer to the initial
bytes of an array large enough to hold the sequence; no null byte is added. The normal skip over
white space does not occur.

Cc Accepts a sequence of characters of the number specified by the field width (scanf, fscanf, and
sscanf subroutines); if no field width is specified, 1 is the default. The sequence is converted to a
sequence of wide character codes in the same manner as the mbstowcs subroutine. The
wsscanf subroutine accepts a sequence of wide-character codes of the number specified by the
field width; if no field width is specified, 1 is the default. The Pointer parameter should be a pointer
to the initial wide character code of an array large enough to hold the sequence; no null
wide-character code is added.

[scansef]
Accepts a nonempty sequence of bytes from a set of expected bytes specified by the scanset
variable (scanf, fscanf, and sscanf subroutines). The wsscanf subroutine accepts a nonempty
sequence of wide-character codes from a set of expected wide-character codes specified by the
scanset variable. The sequence is converted to a sequence of characters in the same manner as
the westombs subroutine. The Pointer parameter should be a pointer to the initial character of a
char, signed char, or unsigned char array large enough to hold the sequence and a terminating
null byte, which is automatically added. In the scanf, fscanf, and sscanf subroutines, the
conversion specification includes all subsequent bytes in the string specified by the Format
parameter, up to and including the] (right bracket). The bytes between the brackets comprise the
scanset variable, unless the byte after the [(left bracket) is a A (circumflex). In this case, the
scanset variable contains all bytes that do not appear in the scanlist between the ~ (circumflex)
and the] (right bracket). In the wsscanf subroutine, the characters between the brackets are first
converted to wide character codes in the same manner as the mbtowc subroutine. These wide
character codes are then used as described above in place of the bytes in the scanlist. If the
conversion specification begins with [] or [A], the right bracket is included in the scanlist and the
next right bracket is the matching right bracket that ends the conversion specification. You can
also:

* Represent a range of characters by the construct First-Last. Thus, you can express
[0123456789] as [0-9]. The First parameter must be lexically less than or equal to the Last
parameter or else the - (dash) stands for itself. The - also stands for itself whenever it is the first
or the last character in the scanset variable.

* Include the] (right bracket) as an element of the scanset variable if it is the first character of the
scanset. In this case it is not interpreted as the bracket that closes the scanset variable. If the
scanset variable is an exclusive scanset variable, the] is preceded by the A (circumflex) to
make the] an element of the scanset. The corresponding Pointer parameter should point to a
character array large enough to hold the data field and that ends with a null character (\0). The
\O is added automatically.

A scanf conversion ends at the end-of-file (EOF character), the end of the control string, or when an input
character conflicts with the control string. If it ends with an input character conflict, the conflicting character
is not read from the input stream.

Unless a match in the control string exists, trailing white space (including a new-line character) is not read.

The success of literal matches and suppressed assignments is not directly determinable.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 113

The National Language Support (NLS) extensions to the scanf subroutines can handle a format string that
enables the system to process elements of the argument list in variable order. The normal conversion
character % is replaced by %n$, where n is a decimal number. Conversions are then applied to the
specified argument (that is, the nth argument), rather than to the next unused argument.

The first successful run of the [fgetd] fgets [fread, [getc} |getchar] [gets] scantf, or fscanf subroutine using
a stream that returns data not supplied by a prior call to the ungetc (‘ungetc or ungetwc Subroutine” od
page 422) subroutine marks the st_atime field for update.

Return Values

These subroutines return the number of successfully matched and assigned input items. This number can
be 0 if an early conflict existed between an input character and the control string. If the input ends before
the first conflict or conversion, only EOF is returned. If a read error occurs, the error indicator for the
stream is set, EOF is returned, and the errno global variable is set to indicate the error.

Error Codes

The scanf, fscanf, sscanf, and wsscanf subroutines are unsuccessful if either the file specified by the
Stream, String, or wcs parameter is unbuffered or data needs to be read into the file’s buffer and one or
more of the following conditions is true:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the file specified by the Stream, String, or
wes parameter, and the process would be delayed in the scanf, fscanf, sscanf, or wsscanf operation.

EBADF The file descriptor underlying the file specified by the Stream, String, or wcs parameter is not a valid file
descriptor open for reading.
EINTR The read operation was terminated due to receipt of a signal, and either no data was transferred or a

partial transfer was not reported.

Note: Depending upon which library routine the application binds to, this subroutine may return EINTR.
Refer to the signal (‘sigaction, sigvec, or signal Subroutine” on page 164) subroutine regarding
SA_RESTART.

EIO The process is a member of a background process group attempting to perform a read from its
controlling terminal, and either the process is ignoring or blocking the SIGTTIN signal or the process
group has no parent process.

EINVAL The subroutine received insufficient arguments for the Format parameter.

EILSEQ A character sequence that is not valid was detected, or a wide-character code does not correspond to a
valid character.

ENOMEM Insufficient storage space is available.

Related Information

printfl subroutine, setlocale
(“setlocale Subroutine” on page 136) subroutine, strtol, strtoul, atol, or atoi (“strtol, strtoul, strtoll, strtoull,

or atoi Subroutine” on page 299) subroutine, ungetc (“‘ungetc or ungetwc Subroutine” on page 422))
subroutine, westombs (‘wcstombs Subroutine” on page 461) subroutine.

Input and Output Handling Programmer’'s Overview| in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

|Nationa| Language Support Overview for Programmind in AIX 5L Version 5.2 National Language Support
Guide and Reference.

114 Technical Reference, Volume 2: Base Operating System and Extensions

sched_yield Subroutine

Purpose
Yield processor.

Library
Standard Library (libc.a)

Syntax
#include <sched.h>

int sched_yield (void) ;

Description

The sched_yield function forces the running thread to relinquish the processor until it again becomes the
head of its thread list. It takes no arguments.

Return Values

The sched_yield function returns 0 if it completes successfully, or it returns a value of -1 and sets errno to
indicate the error.

select Subroutine

Purpose
Checks the 1/O status of multiple file descriptors and message queues.

Library
Standard C Library (libc.a)

Syntax

#include <sys/time.h>
#include <sys/select.h>
#include <sys/types.h>

int select (Nfdsmsgs, Readlist, Writelist, Exceptlist, TimeOut)
int Wfdsmsgs|;

struct sellist * Readlist), *Writelist, *Exceptlist;
struct timeval * [TimeOutf

Description

The select subroutine checks the specified file descriptors and message queues to see if they are ready
for reading (receiving) or writing (sending), or if they have an exceptional condition pending.

When selecting on an unconnected stream socket, select returns when the connection is made. If
selecting on a connected stream socket, then the ready message indicates that data can be sent or
received. Files descriptors of regular files always select true for read, write, and exception conditions. For
more information on sockets, refer toI”Understanding Socket Connections”| and the related ’
|Pending Connections Example Program[" dealing with pending connections in AlX 5L Version 5.2
Communications Programming Concepts.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 115

The select subroutine is also supported for compatibility with previous releases of this operating system
and with BSD systems.

Note: If selecting on a non-blocking socket for both read and write events and if the destination host is
unreachable, select could show a different behavior due to timing constraints. Refer to the
section of this document for further information..

Parameters

Nfdsmsgs Specifies the number of file descriptors and the number of message queues to check. The
low-order 16 bits give the length of a bit mask that specifies which file descriptors to check;
the high-order 16 bits give the size of an array that contains message queue identifiers. If
either half of the Nfdsmsgs parameter is equal to a value of 0, the corresponding bit mask or
array is assumed not to be present.

TimeOut Specifies either a null pointer or a pointer to a timeval structure that specifies the maximum
length of time to wait for at least one of the selection criteria to be met. The timeval structure
is defined in the /usr/include/sys/time.h file and it contains the following members:

struct timeval {
int tv_sec; /* seconds */
int tv_usec; /* microseconds */

}s

The number of microseconds specified in TimeOut.tv_usec, a value from 0 to 999999, is set
to one millisecond if the process does not have root user authority and the value is less than
one millisecond.

If the TimeOut parameter is a null pointer, the select subroutine waits indefinitely, until at
least one of the selection criteria is met. If the TimeOut parameter points to a timeval
structure that contains zeros, the file and message queue status is polled, and the select
subroutine returns immediately.

116 Technical Reference, Volume 2: Base Operating System and Extensions

ReadlList, WriteList, Specify what to check for reading, writing, and exceptions, respectively. Together, they specify

ExceptiList the selection criteria. Each of these parameters points to a sellist structure, which can
specify both file descriptors and message queues. Your program must define the sellist
structure in the following form:

struct sellist

{
int fdsmask[F]; /* file descriptor bit mask x/
int msgids[M]; /* message queue identifiers x/

}s

The fdsmask array is treated as a bit string in which each bit corresponds to a file descriptor.
File descriptor n is represented by the bit(1 << (n mod bits)) in the array element
fdsmask[n / BITS(int)]. (The BITS macro is defined in the values.h file.) Each bit that is set
to 1 indicates that the status of the corresponding file descriptor is to be checked.

Note: The low-order 16 bits of the Nfdsmsgs parameter specify the number of bits (not
elements) in the fdsmask array that make up the file descriptor mask. If only part of the last
int is included in the mask, the appropriate number of low-order bits are used, and the
remaining high-order bits are ignored. If you set the low-order 16 bits of the Nfdsmsgs
parameter to 0, you must not define an fdsmask array in the sellist structure.

Each int of the msgids array specifies a message queue identifier whose status is to be
checked. Elements with a value of -1 are ignored. The high-order 16 bits of the Nfdsmsgs
parameter specify the number of elements in the msgids array. If you set the high-order 16
bits of the Nfdsmsgs parameter to 0, you must not define a msgids array in the sellist
structure.

Note: The arrays specified by the ReadList, WriteList, and ExceptList parameters are the
same size because each of these parameters points to the same sellist structure type.
However, you need not specify the same number of file descriptors or message queues in
each. Set the file descriptor bits that are not of interest to 0, and set the extra elements of the
msgids array to -1.

You can use the SELLIST macro defined in the sys/select.h file to define the sellist
structure. The format of this macro is:

SELLIST(f, m) declarator . . . ;

where f specifies the size of the fdsmask array, m specifies the size of the msgids array, and
each declarator is the name of a variable to be declared as having this type.

Return Values

Upon successful completion, the select subroutine returns a value that indicates the total number of file
descriptors and message queues that satisfy the selection criteria. The fdsmask bit masks are modified so
that bits set to 1 indicate file descriptors that meet the criteria. The msgids arrays are altered so that
message queue identifiers that do not meet the criteria are replaced with a value of -1.

The return value is similar to the Nfdsmsgs parameter in that the low-order 16 bits give the number of file
descriptors, and the high-order 16 bits give the number of message queue identifiers. These values
indicate the sum total that meet each of the read, write, and exception criteria. Therefore, the same file
descriptor or message queue can be counted up to three times. You can use the NFDS and NMSGS
macros found in the sys/select.h file to separate out these two values from the return value. For example,
if rc contains the value returned from the select subroutine, NFDS(rc) is the number of files selected, and
NMSGS(rc) is the number of message queues selected.

If the time limit specified by the TimeOut parameter expires, the select subroutine returns a value of 0.
If a connection-based socket is specified in the Readlist parameter and the connection disconnects, the

select subroutine returns successfully, but thesubroutine on the socket will return a value of 0 to
indicate the socket connection has been closed.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 117

For nonbloking connection-based sockets, both successful and unsuccessful connections will cause the
select subroutine to return successfully without any error.

When the connection completes successfully the socket becomes writable, and if the connection
encounters an error the socket becomes both readable and writable.

When using the select subroutine, you can not check any pending errors on the socket. You need to call
the getsockopt subroutine with SOL_SOCKET and SOL_ERROR to check for a pending error.

If the select subroutine is unsuccessful, it returns a value of -1 and sets the global variable errno to
indicate the error. In this case, the contents of the structures pointed to by the ReadList, WriteList, and
ExceptlList parameters are unpredictable.

Error Codes
The select subroutine is unsuccessful if one of the following are true:

EBADF An invalid file descriptor or message queue identifier was specified.

EAGAIN Allocation of internal data structures was unsuccessful.

EINTR A signal was caught during the select subroutine and the signal handler was installed with an indication
that subroutines are not to be restarted.

EINVAL One of the parameters to the select subroutine contained a value that is not valid.

EFAULT The ReadList, WriteList, ExceptList, or TimeOut parameter points to a location outside of the address
space of the process.

Examples

The following is an example of the behavior of the select subroutine called on a non-blocking socket,
when trying to connect to a host that is unreachable:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <fcntl.h>
#include <sys/time.h>
#include <errno.h>
#include <stdio.h>

int main()
{
int sockfd, cnt, i = 1;
struct sockaddr_in serv_addr;

bzero((char *)&serv_addr, sizeof (serv_addr));
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = inet_addr("172.16.55.25");
serv_addr.sin_port = htons(102);

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
exit(1);

if (fcnt1(sockfd, F_SETFL, FNONBLOCK) < 0)
exit(1);

if (connect(sockfd, (struct sockaddr *)&serv_addr, sizeof

(serv_addr)) < 0 && errno != EINPROGRESS)

exit(1);

for (cnt=0; cnt<2; cnt++) {
fd_set readfds, writefds;

FD_ZERO(&readfds);
FD_SET(sockfd, &readfds);
FD_ZERO(&writefds);
FD_SET(sockfd, &writefds);

118 Technical Reference, Volume 2: Base Operating System and Extensions

if (select(sockfd + 1, &readfds, &writefds, NULL,

NULL) < 0)
exit(1l);
printf("Iteration %d ==============\n", 1i);

printf("FD_ISSET(sockfd, &readfds) == %d\n",
FD_ISSET(sockfd, &readfds));

printf("FD_ISSET(sockfd, &writefds) == %d\n",
FD_ISSET(sockfd, &writefds));

P+s

}

return 0;

}

Here is the output of the above program :

Iteration 1 ==============
FD_ISSET(sockfd, &readfds) == 0
FD_ISSET(sockfd, &writefds) == 1
Iteration 2 ==============

FD_ISSET(sockfd, &readfds) == 1
FD_ISSET(sockfd, &writefds) == 1

In the first iteration, select notifies the write event only. In the second iteration, select notifies both the
read and write events.

Notes

FD_SETSIZE is the #define variable that defines how many file descriptors the various FD macros will
use. The default value for FD_SETSIZE will vary, depending on the version of AIX. As the number of open
files supported has increased, the default value of FD_SETSIZE has increased.

In AIX Version 4.3.1, the size increased to 32767 open file descriptors (from 2000 in prior releases). In AIX
5L Version 5.2.0, the size increased to 65534 open file descriptors. This value can not be set greater than
OPEN_MAX, which also varies from one AIX Version to another.

For more information, refer to the /usrf/include/sys/time.h file.

The user may override FD_SETSIZE to select a smaller value before including the system header files.
This is desirable for performance reasons, because of the overhead in FD_ZERO to zero 65534 bits.

Performance Issues and Recommended Coding Practices

The select subroutine can be a very compute intensive system call, depending on the number of open file
descriptors used and the lengths of the bit maps used. Do not follow the examples shown in many text
books. Most were written when the number of open files supported was small, and thus the bit maps were
short. You should avoid the following (where select is being passed FD_SETSIZE as the number of FDs
to process):

select (FD_SETSIZE,)

Performance will be poor if the program uses FD_ZERO and the default FD_SETSIZE. FD_ZERO should
not be used in any loops or before each select call. However, using it one time to zero the bit string will
not cause problems. If you plan to use this simple programming method, you should override
FD_SETSIZE to define a smaller number of FDs. For example, if your process will only open two FDs that
you will be selecting on, and there will never be more than a few hundred other FDs open in the process,
you should lower FD_SETSIZE to approximately 1024.

Do not pass FD_SETSIZE as the first parameter to select. This specifies the maximum number of file
descriptors the system should check for. The program should keep track of the highest FD that has been
assigned or use the getdtablesize subroutine to determine this value. This saves passing excessively long
bit maps in and out of the kernel and reduces the number of FDs that select must check.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 119

Use the poll system call instead of select. The poll system call has the same functionality as select, but
it uses a list of FDs instead of a bit map. Thus, if you are only selecting on a single FD, you would only
pass one FD to poll. With select, you have to pass a bit map that is as long as the FD number assigned
for that FD. If AIX assigned FD 4000, for example, you would have to pass a bit map 4001 bits long.

Related Information
The subroutine.

The|lnput and Output Handling Programmer’s Overvievv| in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

semctl Subroutine

Purpose
Controls semaphore operations.

Library
Standard C Library (libc.a)

Syntax

#include <sys/sem.h>

int semctl (SemaphorelID, SemaphoreNumber, Command, arg)
OR
int semctl (SemaphorelID, SemaphoreNumber, Command)

int SemaphoreIDk

int [SemaphoreNumber);

int Commandk

union semun {
int val;
struct semid_ds *buf;
unsigned short xarray;

} arg;

If the fourth argument is required for the operation requested, it must be of type union semun and explicitly
declared as shown above.

Description

The semctl subroutine performs a variety of semaphore control operations as specified by the Command
parameter.

The following limits apply to semaphores:

* Maximum number of semaphore IDs is 4096 for operating system releases before AlX 4.3.2 and
131072 for AIX 4.3.2 and following.

* Maximum number of semaphores per ID is 65,535.

* Maximum number of operations per call by the semop (]“semop Subroutine” on page 125|) subroutine is
1024.

* Maximum number of undo entries per procedure is 1024.
* Maximum semaphore value is 32,767.
* Maximum adjust-on-exit value is 16,384.

120 Technical Reference, Volume 2: Base Operating System and Extensions

Parameters

SemaphorelD
Specifies the semaphore identifier.

SemaphoreNumber
Specifies the semaphore number.

arg.val Specifies the value for the semaphore for the SETVAL command.

arg.buf
Specifies the buffer for status information for the IPC_STAT and IPC_SET commands.

arg.array
Specifies the values for all the semaphores in a set for the GETALL and SETALL commands.

Command
Specifies semaphore control operations.

The following Command parameter values are executed with respect to the semaphore specified
by the SemaphorelD and SemaphoreNumber parameters. These operations get and set the
values of a sem structure, which is defined in the sys/sem.h file.

GETVAL
Returns the semval value, if the current process has read permission.

SETVAL
Sets the semval value to the value specified by the arg.val parameter, if the current
process has write permission. When this Command parameter is successfully executed,
the semadj value corresponding to the specified semaphore is cleared in all processes.

GETPID

Returns the value of the sempid field, if the current process has read permission.
GETNCNT

Returns the value of the semncnt field, if the current process has read permission.
GETZCNT

Returns the value of the semzcnt field, if the current process has read permission.

The following Command parameter values return and set every semval value in the set of
semaphores. These operations get and set the values of a sem structure, which is defined in the
sys/sem.h file.

GETALL
Stores semvals values into the array pointed to by the arg.array parameter, if the current
process has read permission.

SETALL
Sets semvals values according to the array pointed to by the arg.array parameter, if the
current process has write permission. When this Command parameter is successfully
executed, the semadj value corresponding to each specified semaphore is cleared in all
processes.

The following Commands parameter values get and set the values of a semid_ds structure,
defined in the sys/sem.h file. These operations get and set the values of a sem structure, which
is defined in the sys/sem.h file.

IPC_STAT
Obtains status information about the semaphore identified by the SemaphorelD parameter.
This information is stored in the area pointed to by the arg.buf parameter.

IPC_SET
Sets the owning user and group IDs, and the access permissions for the set of

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 121

semaphores associated with the SemaphorelD parameter. The IPC_SET operation uses
as input the values found in the arg.buf parameter structure.

IPC_SET sets the following fields:

sem_perm.uid User ID of the owner
sem_perm.gid Group ID of the owner
sem_perm.mode Permission bits only
sem_perm.cuid Creator’s user ID

IPC_SET can only be executed by a process that has root user authority or an effective
user ID equal to the value of the sem perm.uid or sem_perm.cuid field in the data structure
associated with the SemaphorelD parameter.

IPC_RMID

Removes the semaphore identifier specified by the SemaphorelD parameter from the
system and destroys the set of semaphores and data structures associated with it. This
Command parameter can only be executed by a process that has root user authority or an
effective user ID equal to the value of the sem_perm.uid or sem_perm.cuid field in the data
structure associated with the SemaphorelD parameter.

Return Values
Upon successful completion, the value returned depends on the Command parameter as follows:

Command
GETVAL
GETPID
GETNCNT
GETZCNT
All Others

Return Value

Returns the value of the semval field.
Returns the value of the sempid field.
Returns the value of the semncnt field.
Returns the value of the semzcnt field.
Return a value of 0.

If the semctl subroutine is unsuccessful, a value of -1 is returned and the global variable errno is set to
indicate the error.

Error Codes
The semctl subroutine is unsuccessful if any of the following is true:

EINVAL
EINVAL
EINVAL
EACCES
ERANGE

EPERM

EFAULT
ENOMEM

The SemaphorelD parameter is not a valid semaphore identifier.

The SemaphoreNumber parameter is less than O or greater than or equal to the sem_nsems value.
The Command parameter is not a valid command.

The calling process is denied permission for the specified operation.

The Command parameter is equal to the SETVAL or SETALL value and the value to which semval
value is to be set is greater than the system-imposed maximum.

The Command parameter is equal to the IPC_RMID or IPC_SET value and the calling process does not
have root user authority or an effective user ID equal to the value of the sem_perm.uid or sem_perm.cuid
field in the data structure associated with the SemaphorelD parameter.

The arg.buf or arg.array parameter points outside of the allocated address space of the process.

The system does not have enough memory to complete the subroutine.

Related Information
The semget (‘semget Subroutine” on page 123) subroutine, semop (‘semop Subroutine” on page 125)

subroutine.

122 Technical Reference, Volume 2: Base Operating System and Extensions

semget Subroutine

Purpose
Gets a set of semaphores.

Library
Standard C Library (libc.a)

Syntax

#include <sys/sem.h>

int semget (Key, NumberOfSemaphores, SemaphoreFlag)
key_t |Keyjs
int WumberOfSemaphores|, [SemaphoreFlag|;

Description
The semget subroutine returns the semaphore identifier associated with the Key parameter value.

The semget subroutine creates a data structure for the semaphore ID and an array containing the
NumberOfSemaphores parameter semaphores if one of the following conditions is true:

* The Key parameter is equal to the IPC_PRIVATE operation.

* The Key parameter does not already have a semaphore identifier associated with it, and the
IPC_CREAT value is set.

Upon creation, the data structure associated with the new semaphore identifier is initialized as follows:
* The sem perm.cuid and sem_perm.uid fields are set equal to the effective user ID of the calling process.

* The sem perm.cgid and sem perm.gid fields are set equal to the effective group ID of the calling
process.

* The low-order 9 bits of the sem_perm.mode field are set equal to the low-order 9 bits of the
SemaphoreFlag parameter.

* The sem nsems field is set equal to the value of the NumberOfSemaphores parameter.
* The sem otime field is set equal to 0 and the sem_ctime field is set equal to the current time.

The data structure associated with each semaphore in the set is not initialized. The semctl (‘semctl
[Subroutine” on page 120) subroutine (with the Command parameter values SETVAL or SETALL) can be
used to initialize each semaphore.

If the Key parameter value is not IPC_PRIVATE, the [[IPC_EXCL] value is not set, and a semaphore
identifier already exists for the specified Key parameter, the value of the NumberOfSemaphores parameter
specifies the number of semaphores that the current process needs.

If the NumberOfSemaphores parameter has a value of 0, any number of semaphores is acceptable. If the
NumberOfSemaphores parameter is not 0, the semget subroutine is unsuccessful if the set contains fewer
than the value of the NumberOfSemaphores parameter.

The following limits apply to semaphores:

* Maximum number of semaphore IDs is 4096 for operating system releases before AlX 4.3.2 and
131072 for AIX 4.3.2 and following.

* Maximum number of semaphores per ID is 65,535.
* Maximum number of operations per call by the semop subroutine is 1024.
* Maximum number of undo entries per procedure is 1024.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 123

* Maximum semaphore value is 32,767.
* Maximum adjust-on-exit value is 16,384.

Parameters
Key

NumberOfSemaphores
SemaphoreFlag

Return Values

Specifies either the IPC_PRIVATE value or an IPC key constructed by the [ftok]
subroutine (or a similar algorithm).

Specifies the number of semaphores in the set.

Constructed by logically ORing one or more of the following values:

IPC_CREAT
Creates the data structure if it does not already exist.

IPC_EXCL
Causes the semget subroutine to fail if the IPC_CREAT value is also set
and the data structure already exists.

S_IRUSR
Permits the process that owns the data structure to read it.

S_IWUSR
Permits the process that owns the data structure to modify it.

S_IRGRP
Permits the group associated with the data structure to read it.

S_IWGRP
Permits the group associated with the data structure to modify it.

S_IROTH
Permits others to read the data structure.

S_IWOTH
Permits others to modify the data structure.

Values that begin with the S_I prefix are defined in the file and are a
subset of the access permissions that apply to files.

Upon successful completion, the semget subroutine returns a semaphore identifier. Otherwise, a value of
-1 is returned and the errno global variable is set to indicate the error.

Error Codes

The semget subroutine is unsuccessful if one or more of the following conditions is true:

EACCES A semaphore identifier exists for the Key parameter but operation permission, as specified by the
low-order 9 bits of the SemaphoreFlag parameter, is not granted.

EINVAL A semaphore identifier does not exist and the NumberOfSemaphores parameter is less than or equal to a
value of 0, or greater than the system-imposed value.
EINVAL A semaphore identifier exists for the Key parameter, but the number of semaphores in the set associated

with it is less than the value of the NumberOfSemaphores parameter and the NumberOfSemaphores
parameter is not equal to O.
ENOENT A semaphore identifier does not exist for the Key parameter and the IPC_CREAT value is not set.
ENOSPC Creating a semaphore identifier would exceed the maximum number of identifiers allowed systemwide.
EEXIST A semaphore identifier exists for the Key parameter, but both the IPC_CREAT and IPC_EXCL values are

set.

ENOMEM There is not enough memory to complete the operation.

124 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information

Thesubroutine, semctl (‘semctl Subroutine” on page 120) subroutine, semop (‘semop Subroutine”)
subroutine.

The [mode.h]file.

semop Subroutine

Purpose
Performs semaphore operations.

Library
Standard C Library (libc.a)

Syntax

#include <sys/sem.h>

int
struct sembuf * |SemaphoreOperationsls
size t [VumberOfSemaphoreOperations|;

int semop (SemaphoreID, SemaphoreOperations, NumberOfSemaphoreOperations)
EemaphoreID

Description

The semop subroutine performs operations on the set of semaphores associated with the semaphore
identifier specified by the |Semaphorela parameter. The sembuf structure is defined in the
lusr/include/sys/sem.hfile.

Each sembuf structure specified by the SemaphoreOperations parameter includes the following fields:

sem_num Semaphore number
sem_op Semaphore operation
sem flg Operation flags

Each semaphore operation specified by the sem_op field is performed on the semaphore specified by the
SemaphorelD parameter and the sem_num field. The sem_op field specifies one of three semaphore
operations.

1. If the sem_op field is a negative integer and the calling process has permission to alter, one of the
following conditions occurs:

« If the semval variable (see the /usr/include/sys/sem.h file) is greater than or equal to the absolute
value of the sem_op field, the absolute value of the sem_op field is subtracted from the semval
variable. In addition, if the SEM_UNDO flag is set in the sem_f1g field, the absolute value of the
sem_op field is added to the semadj value of the calling process for the specified semaphore.

 If the semval variable is less than the absolute value of the sem_op field and the IPC_NOWAIT
value is set in the sem_f1g field, the semop subroutine returns immediately.

 |If the semval variable is less than the absolute value of the sem op field and the IPC_NOWAIT
value is not set in the sem_f1g field, the semop subroutine increments the semncnt field associated
with the specified semaphore and suspends the calling process until one of the following conditions
occurs:

— The value of the semval variable becomes greater than or equal to the absolute value of the
sem_op field. The value of the semncnt field associated with the specified semaphore is then
decremented, and the absolute value of the sem_op field is subtracted from the semval variable.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 125

In addition, if the SEM_UNDO flag is set in the sem_f1g field, the absolute value of the sem op
field is added to the semadj value of the calling process for the specified semaphore.

— The SemaphorelD parameter for which the calling process is awaiting action is removed from the
system. When this occurs, the errno global variable is set to the EIDRM flag and a value of -1 is
returned.

— The calling process received a signal that is to be caught. When this occurs, the semop
subroutine decrements the value of the semncnt field associated with the specified semaphore.
When the semzcnt field is decremented, the calling process resumes as prescribed by the
sigaction (“sigaction, sigvec, or signal Subroutine” on page 164) subroutine.

2. If the sem op field is a positive integer and the calling process has alter permission, the value of the
sem_op field is added to the semval variable. In addition, if the SEM_UNDO flag is set in the sem_f1g
field, the value of the sem_op field is subtracted from the calling process’s semadj value for the
specified semaphore.

3. If the value of the sem_op field is 0 and the calling process has read permission, one of the following
occurs:

« If the semval variable is 0, the semop subroutine returns immediately.

* If the semval variable is not equal to 0 and IPC_NOWAIT value is set in the sem_f1g field, the
semop subroutine returns immediately.

 If the semval variable is not equal to 0 and the IPC_NOWAIT value is set in the sem_flg field, the
semop subroutine increments the semzcnt field associated with the specified semaphore and
suspends execution of the calling process until one of the following occurs:

— The value of the semval variable becomes 0. When this occurs, the value of the semzcnt field
associated with the specified semaphore is decremented.

— The SemaphorelD parameter for which the calling process is awaiting action is removed from the
system. If this occurs, the errno global variable is set to the EIDRM error code and a value of -1
is returned.

— The calling process received a signal that is to be caught. When this occurs, the semop
subroutine decrements the value of the semzcnt field associated with the specified semaphore.
When the semzcnt field is decremented, the calling process resumes execution as prescribed by
the sigaction subroutine.

The following limits apply to semaphores:

* Maximum number of semaphore IDs is 4096 for operating system releases before AlX 4.3.2 and
131072 for AIX 4.3.2 and following.

* Maximum number of semaphores per ID is 65,535.

* Maximum number of operations per call by the semop subroutine is 1024.
* Maximum number of undo entries per procedure is 1024.

* Maximum capacity of a semaphore value is 32,767 bytes.

* Maximum adjust-on-exit value is 16,384 bytes.

Parameters

SemaphorelD Specifies the semaphore identifier.
NumberOfSemaphoreOperations Specifies the number of structures in the array.
SemaphoreOperations Points to an array of structures, each of which specifies a

semaphore operation.

Return Values

Upon successful completion, the semop subroutine returns a value of 0. Also, the SemaphorelD
parameter value for each semaphore that is operated upon is set to the process ID of the calling process.

126 Technical Reference, Volume 2: Base Operating System and Extensions

If the semop subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set to
indicate the error. If the SEM_ORDER flag was set in the sem_f1g field for the first semaphore operation in
the SemaphoreOperations array, the SEM_ERR value is set in the sem_f1g field for the unsuccessful
operation.

If the SemaphorelD parameter for which the calling process is awaiting action is removed from the system,
the errno global variable is set to the EIDRM error code and a value of -1 is returned.

Error Codes

The semop subroutine is unsuccessful if one or more of the following are true for any of the semaphore
operations specified by the SemaphoreQOperations parameter. If the operations were performed individually,
the discussion of the SEM_ORDER flag provides more information about error situations.

EINVAL The SemaphorelD parameter is not a valid semaphore identifier.

EFBIG The sem_num value is less than O or it is greater than or equal to the number of semaphores in the set
associated with the SemaphorelD parameter.

E2BIG The NumberOfSemaphoreOperations parameter is greater than the system-imposed maximum.

EACCES The calling process is denied permission for the specified operation.

EAGAIN The operation would result in suspension of the calling process, but the IPC_NOWAIT value is set in the
sem_flg field.

ENOSPC The limit on the number of individual processes requesting a SEM_UNDO flag would be exceeded.

EINVAL The number of individual semaphores for which the calling process requests a SEM_UNDO flag would
exceed the limit.

ERANGE An operation would cause a semval value to overflow the system-imposed limit.

ERANGE An operation would cause a semadj value to overflow the system-imposed limit.

EFAULT The SemaphoreOperations parameter points outside of the address space of the process.

EINTR A signal interrupted the semop subroutine.

EIDRM The semaphore identifier SemaphorelD parameter has been removed from the system.

Related Information

The [exec] subroutine, [exit| subroutine, [fork] subroutine, semetl (‘semctl Subroutine” on page 120)
subroutine, semget (‘semget Subroutine” on page 123) subroutine, sigaction {“sigaction, sigvec, or signall
[Subroutine” on page 164) subroutine.

setacldb or endacldb Subroutine

Purpose
Opens and closes the SMIT ACL database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int setacldb(Mode)
int Mode;

int endacldb;

Description

These functions may be used to open and close access to the user SMIT ACL database. Programs that
call the getusraclattr or getgrpaclattr subroutines should call the setacldb subroutine to open the
database and the endacldb subroutine to close the database.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 127

The setacldb subroutine opens the database in the specified mode, if it is not already open. The open
count is increased by 1.

The endacldb subroutine decreases the open count by 1 and closes the database when this count goes
to 0. Any uncommitted changed data is lost.

Parameters

Mode Specifies the mode of the open. This parameter may contain one or more of the following values defined in
the usersec.h file:

S_READ
Specifies read access.

S_WRITE
Specifies update access.

Return Values

The setacldb and endacldb subroutines return a value of 0 to indicate success. Otherwise, a value of -1
is returned and the errno global variable is set to indicate the error.

Error Codes
The setacldb subroutine fails if the following is true:

EACCES Access permission is denied for the data request.

Both subroutines return errors from other subroutines.

Security
Security Files Accessed: The calling process must have access to the SMIT ACL data.

Mode File rw/etc/security/smitacl.user

Related Information

The |getgrpaclattr, nextgrpacl, or putgrpaclattr| subroutine, |getusraclattr, nextusracl, or putusraclattr|
subroutine.

setauthdb Subroutine

Purpose
Restricts the search order for loadable authentication modules.

Library
Standard C Library (libc.a)

Syntax

int setauthdb (new db namel, lold db namel)
const char *new_db_name;
char *old db_name;

128 Technical Reference, Volume 2: Base Operating System and Extensions

Description

The setauthdb library function controls which loadable authentication modules are examined by the
security library functions. Specifying a value for the new_auth_db parameter will restrict the security library
functions to the named simple or compound loadable authentication module. Future calls to security library
functions will be restricted to the given loadable authentication module. The restriction may be removed by
using a zero length string as the value of the new_auth_db parameter.

The current value may be obtained by providing a pointer to a character array which is long enough to
hold the longest permissible stanza name in the /usr/lib/security/methods.cfg file (15 characters).

Parameters

new_db_name Pointer to the name of the new database module. The
new_db_name parameter must reference a value module
name contained in the /usr/lib/security/methods.cfq file,
or one of the predefined values (BUILTIN, compat, or
files). The empty string may be used to remove the
restriction on which modules are used.

old_db_name Pointer to where the name of the current module will be
stored. A NULL value for the old_db_name parameter may
be used if the current name of the database is not

wanted.

Return Values

0 The module search restriction has been successfully
changed.

-1 The module search restriction could not be changed. The

errno variable must be examined to determine the cause
of the failure.

Error Codes

EINVAL The new_auth_db parameter is longer than the
permissible length of a stanza in the
lusr/lib/security/methods.cfg file (15 characters).

ENOENT The new_auth_dbdoes not reference a valid stanza in
lustr/lib/security/methods.cfg or one of the predefined
values.

Related Information

lgetauthdb Subroutine|in AIX 5L Version 5.2 Technical Reference: Base Operating System and Extensions
Volume 1.

setbuf, setvbuf, setbuffer, or setlinebuf Subroutine

Purpose
Assigns buffering to a stream.

Library
Standard C Library (libc.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 129

Syntax

#include <stdio.h>

void setbuf ([Stream|, Buffer)
FILE *Stream;
char *Buffer;

int setvbuf (Stream, Buffer, Mode, Size)
FILE *Stream;
char *Buffer;

void setbuffer (Stream, Buffer, Size)
FILE *Stream;
char *Buffer;
size t Size;

void setlinebuf (Stream)
FILE *Stream;

Description

The setbuf subroutine causes the character array pointed to by the Buffer parameter to be used instead of
an automatically allocated buffer. Use the setbuf subroutine after a stream has been opened, but before it
is read or written.

If the Buffer parameter is a null character pointer, input/output is completely unbuffered.

A constant, BUFSIZ, defined in the stdio.h file, tells how large an array is needed:
char buf[BUFSIZ];

For the setvbuf subroutine, the Mode parameter determines how the Stream parameter is buffered:

_IOFBF Causes input/output to be fully buffered.

_IOLBF Causes output to be line-buffered. The buffer is flushed when a new line is written, the buffer is full, or
input is requested.

_IONBF Causes input/output to be completely unbuffered.

If the Buffer parameter is not a null character pointer, the array it points to is used for buffering. The Size
parameter specifies the size of the array to be used as a buffer, but all of the Size parameter’s bytes are
not necessarily used for the buffer area. The constant BUFSIZ in the stdio.h file is one buffer size. If
input/output is unbuffered, the subroutine ignores the Buffer and Size parameters. The setbuffer
subroutine, an alternate form of the setbuf subroutine, is used after Stream has been opened, but before
it is read or written. The character array Buffer, whose size is determined by the Size parameter, is used
instead of an automatically allocated buffer. If the Buffer parameter is a null character pointer, input/output
is completely unbuffered.

The setbuffer subroutine is not needed under normal circumstances because the default file 1/0O buffer
size is optimal.

The setlinebuf subroutine is used to change the stdout or stderr file from block buffered or unbuffered to
line-buffered. Unlike the setbuf and setbuffer subroutines, the setlinebuf subroutine can be used any
time Stream is active.

A buffer is normally obtained from the malloc subroutine at the time of the first getc subroutine or putc
subroutine on the file, except that the standard error stream, stderr, is normally not buffered.

130 Technical Reference, Volume 2: Base Operating System and Extensions

Output streams directed to terminals are always either line-buffered or unbuffered.

Note: A common source of error is allocating buffer space as an automatic variable in a code block, and
then failing to close the stream in the same block.

The setbuffer and setlinebuf subroutines are included for compatibility with Berkeley System Distribution
(BSD).

Parameters

Stream Specifies the input/output stream.

Buffer Points to a character array.

Mode Determines how the Stream parameter is buffered.
Size Specifies the size of the buffer to be used.

Return Values

Upon successful completion, setvbuf returns a value of 0. Otherwise it returns a nonzero value if a value
that is not valid is given for type, or if the request cannot be honored.

Related Information

The [fopen, freopen, or fdopen| subroutine, firead| subroutine, lgetc, fgetc, getchar, or getw| subroutine,
lgetwc, fgetwc, or getwchar| subroutine, jmalloc, free, realloc, calloc, mallopt, mallinfo, or alloca]
subroutine, [putc, putchar, fputc, or putw| subroutine, [putwe, putwchar, or fputwc|subroutine.

The|Input and Output Handling| in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

setcsmap Subroutine

Purpose
Reads a code-set map file and assigns it to the standard input device.

Library
Standard C Library (libc.a)

Syntax

#include <sys/termios.h>

int setcsmap (Path);
char * Eath;

Description

The setcsmap subroutine reads in a code-set map file. The path parameter specifies the location of the
code-set map file. The path is usually composed by forming a string with the csmap directory and the
code set, as in the following example:

n=sprintf(path,"%s%s",CSMAP_DIR,n1_Tanginfo(CODESET));
The file is processed and according to the included informations, the setcsmap subroutine changes the tty

configuration. Multibyte processing may be enabled, and converter modules may be pushed onto the tty
stream.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 131

Parameter

Path Names the code-set map file.

Return Values

If a code set-map file is successfully opened and compiled, a value of 0 is returned. If an error occurred, a
value of 1 is returned and the errno global variable is set to identify the error.

Error Codes

EINVAL Indicates an invalid value in the code set map.

EIO An 1/O error occurred while the file system was being read.
ENOMEM Insufficient resources are available to satisfy the request.
EFAULT A kernel service, such as copyin, has failed.

ENOENT The named file does not exist.
EACCESS The named file cannot be read.

Related Information
The command.

The file format.

tty Subsystem Overview|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

setgid, setrgid, setegid, setregid, or setgidx Subroutine

Purpose
Sets the process group IDs.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int setgid (GID)
gid_t ﬂ!ﬂ;

int setrgid (RGID)
gid_t [RGID};

int setegid (EGID)
gid_t [FGID]

int setregid (RGID, EGID)
gid_t RGID;
gid_t EGID;

#include <unistd.h>
#include <sys/id.h>

int setqidx (which, GID)
int nicrl
gid_t GID;

132 Technical Reference, Volume 2: Base Operating System and Extensions

Description

The setgid, setrgid, setegid, setregid, and setgidx subroutines set the process group IDs of the calling
process. The following semantics are supported:

setgid

setegid

setrgid
setregid

setgidx

If the effective user ID of the process is the root user, the process’s real, effective, and saved group
IDs are set to the value of the GID parameter. Otherwise, the process effective group ID is reset if
the GID parameter is equal to either the current real or saved group IDs, or one of its supplementary
group IDs. Supplementary group IDs of the calling process are not changed.

The process effective group ID is reset if one of the following conditions is met:

* The EGID parameter is equal to either the current real or saved group IDs.
* The EGID parameter is equal to one of its supplementary group IDs.

* The effective user ID of the process is the root user.

The EPERM error code is always returned.

The RGID and EGID parameters can have one of the following relationships:

RGID '= EGID
If the EGID parameter is equal to either the process’s real or saved group IDs, the process
effective group ID is set to the EGID parameter. Otherwise, the EPERM error code is
returned.

RGID == EGID
If the effective user ID of the process is the root user, the process’s real and effective group
IDs are set to the EGID parameter. If the EGID parameter is equal to the process’s real or
saved group IDs, the process effective group ID is set to EGID. Otherwise, the EPERM error
code is returned.

The which parameter can have one of the following values:

ID_EFFECTIVE
GID must be either the real or saved GID or one of the values in the concurrent group set.
The effective group ID for the current process will be set to GID.

ID_EFFECTIVEIID_REAL
Invoker must have appropriate privilege. The real and effective group ID for the current
process will be set to GID.

ID_EFFECTIVEIID_REALIID_SAVED
Invoker must have appropriate privilege. The real, effective and saved group ID for the
current process will be set to GID.

The setegid, setrgid, setregid, and setgidx subroutines are thread-safe.

The operating system does not support setuid (‘setuid, setruid, seteuid, setreuid or setuidx Subroutine” on|

page 151)) or setgid shell scripts.

These subroutines are part of Base Operating System (BOS) Runtime.

Parameters

GID

RGID
EGID
which

Specifies the value of the group ID to set.
Specifies the value of the real group ID to set.
Specifies the value of the effective group ID to set.
Specifies which group ID values to set.

Return Values

0 Indicates that the subroutine was successful.
-1 Indicates the subroutine failed. The errno global variable is set to indicate the error.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 133

Error Codes
If the setgid, setegid, or setgidx subroutine fails, one or more of the following are returned:

EPERM Indicates the process does not have appropriate privileges and the GID or EGID parameter is not equal
to either the real or saved group IDs of the process.
EINVAL Indicates the value of the GID, EGID or which parameter is invalid.

Related Information

The|getgid| subroutine,|getgroup§| subroutine, setgroups (“setgroups Subroutine”b subroutine, setuid
d“setuid, setruid, seteuid, setreuid or setuidx Subroutine” on page 151) subroutine.

The command.

|List of Security and Auditing Subroutines] [Subroutines Overview|in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

setgroups Subroutine

Purpose
Sets the supplementary group ID of the current process.

Library
Standard C Library (libc.a)

Syntax

#include <grp.h>

int setgroups (WumberGroups), |GroupIDSet])
int NumberGroups
gid_t *GroupIDSet;

Description

The setgroups subroutine sets the supplementary group ID of the process. The setgroups subroutine
cannot set more than NGROUPS_MAX groups in the group set. (NGROUPS_MAX is a constant defined
in the limits.h file.)

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is passed in case
of 64-bit application calling 32-bit kernel interface.

Parameters
GroupIDSet Pointer to the array of group IDs to be established.
NumberGroups Indicates the number of entries in the GrouplDSet parameter.

Return Values

Upon successful completion, the setgroups subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

134 Technical Reference, Volume 2: Base Operating System and Extensions

Error Codes
The setgroups subroutine fails if any of the following are true:

EFAULT The NumberGroups and GrouplDSet parameters specify an array that is partially or completely outside of
the process’ allocated address space.

EINVAL The NumberGroups parameter is greater than the NGROUPS_MAX value.

EPERM A group ID in the GroupIDSet parameter is not presently in the supplementary group ID, and the invoker
does not have root user authority.

Security

Auditing Events:

Event Information
PROC_SetGroups NumberGroups, GrouplDSet

Related Information

The|gﬂid| subroutine,|gmroup§| subroutine, |init§roups| subroutine, setgid (‘setgid, setrgid, setegid|
Isetregid, or setgidx Subroutine” on page 132) subroutine.

[List of Security and Auditing Subroutines|and [Subroutines Overview|in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

setjmp or longjmp Subroutine

Purpose
Saves and restores the current execution context.

Library
Standard C Library (libc.a)

Syntax

#include <setjmp.h>
int setjmp (Context)
Jjmp_buf Context;

void Tongjmp ([Context], [|Value)
Jjmp_buf Context;
int lValue;

int _setjmp (Context)
jmp_buf Context;

void _longjmp (Context, Value)
Jjmp_buf Context;
int Value;

Description

The setjmp subroutine and the longjmp subroutine are useful when handling errors and interrupts
encountered in low-level subroutines of a program.

The setjmp subroutine saves the current stack context and signal mask in the buffer specified by the
Context parameter.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 135

The longjmp subroutine restores the stack context and signal mask that were saved by the setjmp
subroutine in the corresponding Context buffer. After the longjmp subroutine runs, program execution
continues as if the corresponding call to the setjmp subroutine had just returned the value of the Value
parameter. The subroutine that called the setjmp subroutine must not have returned before the completion
of the longjmp subroutine. The setjmp and longjmp subroutines save and restore the signal mask
sigmask (2), while _setjmp and _longjmp manipulate only the stack context.

If a process is using the AT&T System V sigset interface, then the setjmp and longjmp subroutines do
not save and restore the signal mask. In such a case, their actions are identical to those of the _setjmp
and _longjmp subroutines.

Parameters
Context Specifies an address for a jmp_buf structure.
Value Indicates any integer value.

Return Values

The setjmp subroutine returns a value of 0, unless the return is from a call to the longjmp function, in
which case setjmp returns a nonzero value.

The longjmp subroutine cannot return 0 to the previous context. The value 0 is reserved to indicate the
actual return from the setjmp subroutine when first called by the program. The longjmp subroutine does
not return from where it was called, but rather, program execution continues as if the corresponding call to
setjmp was returned with a returned value of Value.

If the longjmp subroutine is passed a Value parameter of 0, then execution continues as if the
corresponding call to the setjmp subroutine had returned a value of 1. All accessible data have values as
of the time the longjmp subroutine is called.

Attention: If the longjmp subroutine is called with a Context parameter that was not previously set by
the setjmp subroutine, or if the subroutine that made the corresponding call to the setjmp subroutine has
already returned, then the results of the longjmp subroutine are undefined. If the longjmp subroutine
detects such a condition, it calls the longjmperror routine. If longjmperror returns, the program is
aborted. The default version of longjmperror prints the message: Tongjmp or siglongjmp used outside
of saved context to standard error and returns. Users wishing to exit in another manner can write their
own version of the longjmperror program.

Related Information
The sigsetjmp or siglongjmp (“sigsetjimp or siglongjmp Subroutine” on page 186) subroutine.

[Subroutines Overview|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

setlocale Subroutine

Purpose
Changes or queries the program’s entire current locale or portions thereof.

Library
Standard C Library (libc.a)

136 Technical Reference, Volume 2: Base Operating System and Extensions

Syntax

#include <locale.h>

char xsetlocale ([Categoryl, |Locale)
int Category;
const char *Locale;

Description

The setlocale subroutine selects all or part of the program’s locale specified by the Category and Locale
parameters. The setlocale subroutine then changes or queries the specified portion of the locale. The
LC_ALL value for the Category parameter names the entire locale (all the categories). The other Category
values name only a portion of the program locale.

The Locale parameter specifies a string that provides information needed to set certain conventions in the
Category parameter. The components of the Locale parameter are language and territory. Values allowed
for the locale argument are the predefined language_territory combinations or a user-defined locale.

If a user defines a new locale, a uniquely named locale definition source file must be provided. The
character collation, character classification, monetary, numeric, time, and message information should be
provided in this file. The locale definition source file is converted to a binary file by the
command. The binary locale definition file is accessed in the directory specified by the LOCPATH
environment variable.

Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

The default locale at program startup is the C locale. A call to the setlocale subroutine must be made
explicitly to change this default locale environment. See [Understanding Locale Subroutines|in A/IX 5L
Version 5.2 General Programming Concepts: Writing and Debugging Programs for setlocale subroutine
examples.

The locale state is common to all threads within a process.

Parameters

Category Specifies a value representing all or part of the locale for a program. Depending on the value of the
Locale parameter, these categories may be initiated by the values of environment variables with
corresponding names. Valid values for the Category parameter, as defined in the locale.h file, are:

LC_ALL
Affects the behavior of a program’s entire locale.

C_COLLATE
Affects the behavior of regular expression and collation subroutines.

C_CTYPE
Affects the behavior of regular expression, character-classification, case-conversion, and
wide character subroutines.

C_MESSAGES
Affects the content of messages and affirmative and negative responses.

C_MONETAR
Affects the behavior of subroutines that format monetary values.

C_NUMERIC
Affects the behavior of subroutines that format nonmonetary numeric values.

C_TIME
Affects the behavior of time-conversion subroutines.

=

=

=

'_ I

I

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 137

Locale

Points to a character string containing the required setting for the Category parameter.

The following are special values for the Locale parameter:

HCH
"POSIX”

nn

NULL

The C locale is the locale all programs inherit at program startup.

Specifies the same locale as a value of['C’}

Specifies categories be set according to locale environment variables.

Queries the current locale environment and returns the name of the locale.

The Language Territory Table contains supported language_territory values for the Locale

parameter:

Table 1. Language Territory Table

Locale Value Language Territory Code Set
Ar_AA Arabic Arabic Countries IBM-1046
ar_AA Arabic Arabic Countries ISO8859-6
bg_BG Bulgarian Bulgaria 1ISO8856-5
cs_Cz Czech Czech Republic 1ISO8859-2
da_DK Danish Denmark 1ISO8859-1
de_CH German Switzerland 1ISO8859-1
de_DE German Germany 1ISO8859-1
el_GR Greek Greece 1ISO8859-7
en_GB English Great Britain 1ISO8859-1
en_US English United States 1ISO8859-1
es_ES Spanish Spain 1ISO8859-1
fi_FI Finnish Finland 1SO8859-1
fr_BE French Belgium 1ISO8859-1
fr_CA French Canada 1ISO8859-1
fr_FR French France 1ISO8859-1
fr_ CH French Switzerland 1ISO8859-1
hr_HR Croatian Croatia 1ISO8859-2
hu_HU Hungarian Hungary 1ISO8859-2
is_IS Icelandic Iceland 1SO8859-1
it IT Italian Italy 1SO8859-1
Iw_IL Hebrew Israel IBM-856
iw_IL Hebrew Israel 1ISO8859-8
Ja_JP Japanese Japan IBM-943
ja_JP Japanese Japan IBM-eucdJP
ko_KR Korean Korea IBM-euckKR
mk_MK Macedonian Former Yugoslav Republic |1SO8859-5
of Macedonia

nl_BE Dutch Belgium 1ISO8859-1
nl_NL Dutch Netherlands 1ISO8859-1
no_NO Norwegian Norway 1ISO8859-1

138 Technical Reference, Volume 2: Base Operating System and Extensions

Table 1. Language Territory Table (continued)

Locale Value Language Territory Code Set
pl_PL Polish Poland 1ISO8859-2
pt_PT Portuguese Portugal 1ISO8859-1
ro_RO Romanian Romania 1ISO8859-2
ru_RU Russian Russia ISO8859-5
sh_SP Serbian Latin Yugoslavia 1ISO8859-2
sl_SlI Slovene Slovenia 1ISO8859-2
sk_SK Slovak Slovakia 1ISO8859-2
sr_SP Serbian Cyrillic Yugoslavia 1ISO8859-5
Zh_CN Simplified Chinese PRC GBK
sv_SE Swedish Sweden 1ISO8859-1
tr_ TR Turkish Turkey 1ISO8859-9
zh_TW Chinese (trad) Taiwan IBM-eucTW

Return Values

If a pointer to a string is given for the Locale parameter and the selection can be honored, the setlocale
subroutine returns the string associated with the specified Category parameter for the new locale. If the
selection cannot be honored, a null pointer is returned and the program locale is unchanged.

If a null is used for the Locale parameter, the setlocale subroutine returns the string associated with the
Category parameter for the program’s current locale. The program’s locale is not changed.

A subsequent call with the string returned by the setlocale subroutine, and its associated category, will
restore that part of the program locale. The string returned is not modified by the program, but can be
overwritten by a subsequent call to the setlocale subroutine.

Related Information
Thesubroutine, subroutine, rpmatch d“rpmatch Subroutine” on page 49b

subroutine.

The [localedef| command.

[Subroutines, Example Programs, and Libraries|in AlX 5L Version 5.2 General Programming Concepts:
Writing and Debugging Programs.

[National Language Support Overview] and [Setting the Localg| in AlX 5L Version 5.2 National Language
Support Guide and Reference.

setpcred Subroutine

Purpose
Sets the current process credentials.

Library
Security Library (libc.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 139

Syntax

#include <usersec.h>

int setpcred ([User|, [Credentials)
char *x(Credentials;
char *User;

Description

The setpcred subroutine sets a process’ credentials according to the Credentials parameter. If the User
parameter is specified, the credentials defined for the user in the user database are used. If the
Credentials parameter is specified, the credentials in this string are used. If both the User and Credentials
parameters are specified, both the user’s and the supplied credentials are used. However, the supplied
credentials of the Credentials parameter will override those of the user. At least one parameter must be
specified.

The setpcred subroutine requires the setpenv subroutine to follow it.

Note: If the subroutine is to be called from a program invoked from thefile, the

setpcred subroutine should be called first to establish the process’ credentials.

User Specifies the user for whom credentials are being established.

140 Technical Reference, Volume 2: Base Operating System and Extensions

Credentials

Defines specific credentials to be established. This parameter points to an array of
null-terminated character strings that may contain the following values. The last character string

must be null.

LOGIN_USER=%s

Login user name

REAL_USER=%s
Real us

REAL_GROUP=%s

er name

Real group name

GROUPS=%s

Supplementary group ID

AUDIT_CLASSES=%

S

Audit classes

RLIMIT_CPU=%d

Process soft CPU limit

RLIMIT_FSIZE=%d

Process soft file size

RLIMIT_DATA=%d

Process soft data segment size

RLIMIT_STACK=%d

Process soft stack segment size

RLIMIT_CORE=%d

Process soft core file size

RLIMIT_RSS=%d

Process soft resident set size

RLIMIT_CORE_HARD=%d
Process hard core file size

RLIMIT_CPU_HARD

=%d

Process hard CPU limit

RLIMIT_DATA_HARD=%d
Process hard data segment size

RLIMIT FSIZE_HA

RD=%d

Process hard file size

RLIMIT_RSS_HARD

=%d

Process hard resident set size

RLIMIT_STACK_HA

RD=%d

Process hard stack segment size

UMASK=%0

Process umask (file creation mask)

A process must have root user authority to set all credentials except the UMASK credential.

Resource

RLIMIT CORE
RLIMIT_CPU
RLIMIT DATA
RLIMIT_FSIZE
RLIMIT_RSS
RLIMIT_STACK

Hard

unTimited
%d
unlimited
%d
unlimited
unTimited

Soft

N N I P O o
o 0 0 0 0 0o

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2)

141

The soft limit credentials will override the equivalent hard limit credentials that may proceed them. To set
the hard limits, the hard limit credentials should follow the soft limit credentials.

Return Values

Upon successful return, the setpcred subroutine returns a value of 0. If setpcred fails, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The setpcred subroutine fails if one or more of the following are true:

EINVAL The Credentials parameter contains invalid credentials specifications.
EINVAL The User parameter is null and the Credentials parameter is either null or points to an empty string.
EPERM The process does not have the proper authority to set the requested credentials.

Other errors may be set by subroutines invoked by the setpcred subroutine.

Related Information
The [auditwrite subroutine, [ckuseracct] subroutine, subroutine, subroutine,

subroutine, setpenv (‘setpenv Subroutine”) subroutine.

[List of Security and Auditing Subroutines) [Subroutines Overview|in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

setpenv Subroutine

Purpose
Sets the current process environment.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int setpenv (|Userl [Modd, |Environment |Command)
char *User;

int Mode;

char **Environment;

char *Command,;

Description

The setpenv subroutine first sets the environment of the current process according to its parameter
values, and then sets the working directory and runs a specified command. If the User parameter is
specified, the process environment is set to that of the specified user, the user's working directory is set,
and the specified command run. If the User parameter is not specified, then the environment and working
directory are set to that of the current process, and the command is run from this process. The
environment consists of both user-state and system-state environment variables.

Note: The setpenv subroutine requires the setpcred subroutine to precede it.

142 Technical Reference, Volume 2: Base Operating System and Extensions

The setpenv subroutine performs the following steps:

Setting the Process Environment

Setting the Process Current Working Directory

Executing the Initial Program

Parameters

Command
Specifies the command to be executed. If the

The first step involves changing the user-state and
system-state environment. Since this is dependent on the
values of the Mode and Environment parameters, see the
description for the parameter for more information.

After the user-state and system-state environment is set,
the working directory of the process may be set. If the
Mode parameter includes the PENV_INIT value, the
current working directory is changed to the user’s initial
login directory (defined in the file).
Otherwise, the current working directory is unchanged.
After the working directory of the process is reset, the
initial program (usually the shell interpreter) is executed. If
the Command parameter is null, the shell from the user
database is used. If the parameter is not defined, the shell
from the user-state environment is used and the
Command parameter defaults to the /usr/bin/sh file. If the
Command parameter is not null, it specifies the command
to be executed. If the Mode parameter contains the
PENV_ARGYV value, the Command parameter is assumed
to be in the argv structure and is passed to the
subroutine. The string contained in the Command
parameter is used as the Path parameter of the execve
subroutine. If the Mode parameter does not contain
PENV_ARGV value, the Command parameter is parsed
into an argv structure and executed. If the Command
parameter contains the $SHELL value, substitution is
done prior to execution.

Note: This step will fail if the Command parameter
contains the $SHELL value but the user-state
environment does not contain the SHELL value.

Mode parameter contains the PENV_ARGYV value,

then the Command parameter is assumed to be a valid argument vector for the [execv] subroutine.

Environment

Specifies the value of user-state and system-state environment variables in the same format
returned by the getpenv subroutine. The user-state variables are prefaced by the keyword
USRENVIRON:, and the system-state variables are prefaced by the keyword SYSENVIRON:.
Each variable is defined by a string of the form var=value, which is an array of null-terminated

character pointers.
Mode

Specifies how the setpenv subroutine is to set the environment and run the command. This

parameter is a bit mask and must contain only one of the following values, which are defined in

the usersec.h file:
PENV_INIT

The user-state environment is initialized as follows:

AUTHSTATE

Retained from the current environment. If the AUTHSTATE value is not present, it
is defaulted to the compat value.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2)

143

KRB5CCNAME
Retained from the current environment. This value is defined if you authenticated
through the Distributed Computing Environment (DCE).

USER Set to the name specified by the User parameter or to the name corresponding to
the current real user ID. The name is shortened to a maximum of 8 characters.

LOGIN
Set to the name specified by the User parameter or to the name corresponding to
the current real user ID. If set by the User parameter, this value is the complete
login name, which may include a DCE cell name.

LOGNAME
Set to the current system environment variable LOGNAME.

TERM Retained from the current environment. If the TERM value is not present, it is
defaulted to an IBM6155.

SHELL
Set from the initial program defined for the real user ID of the current process. If
no program is defined, then the /usr/bin/sh shell is used as the default.

HOME Set from the home directory defined for the real user ID of the current process. If
no home directory is defined, the default is /Thome/guest.

PATH Set initially to the value for the PATH value in the /etc/environment file. If not set,
it is destructively replaced by the default value of PATH=/usr/bin:$HOME:. (The
final period specifies the working directory). The PATH variable is destructively
replaced by the usrenv attribute for this user in the /etc/security/environ file if
the PATH value exists in the /etc/environment file.

The following files are read for additional environment variables:

letc/environment
Variables defined in this file are added to the environment.

letc/security/environ
Environment variables defined for the user in this file are added to the user-state
environment.

The user-state variables in the Environment parameter are added to the user-state
environment. These are preceded by the USRENVIRON: keyword.

The system-state environment is initialized as follows:

LOGNAME
Set to the current LOGNAME value in the protected user environment. The login
(tsm) command passes this value to the setpenv subroutine to ensure
correctness.

NAME Set to the login name corresponding to the real user ID.

TTY Set to the TTY name corresponding to standard input.

The following file is read for additional environment variables:

letc/security/environ
The system-state environment variables defined for the user in this file are added
to the environment. The system-state variables in the Environment parameter are
added to the environment. These are preceded by the SYSENVIRON keyword.

144 Technical Reference, Volume 2: Base Operating System and Extensions

PENV_DELTA
The existing user-state and system-state environment variables are preserved and the
variables defined in the Environment parameter are added.

PENV_RESET
The existing environment is cleared and totally replaced by the content of the Environment
parameter.

PENV_KLEEN
Closes all open file descriptors, except 0, 1, and 2, before executing the command. This
value must be logically ORed with PENV_DELTA, PENV_RESET, or PENV_INIT. It cannot
be used alone.

PENV_NOPROF
The new shell will not be treated as a login shell. Only valid when used with the
PENV_INIT flag.

For both system-state and user-state environments, variable substitution is performed.

The Mode parameter may also contain:

PENV_ARGV Specifies that the Command parameter is already in argv format and need not be parsed. This
value must be logically ORed with PENV_DELTA, PENV_RESET, or PENV_INIT. It cannot be used
alone.

User Specifies the user name whose environment and working directory is to be set and the specified command
run. If a null pointer is given, the current real uid is used to determine the name of the user.

Return Values

If the environment was successfully established, this function does not return. If the setpenv subroutine
fails, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setpenv subroutine fails if one or more of the following are true:

EINVAL The Mode parameter contains values other than PENV_INIT, PENV_DELTA, PENV_RESET, or

PENV_ARGV.
EINVAL The Mode parameter contains more than one of PENV_INIT, PENV_DELTA, or PENV_RESET values.
EINVAL The Environment parameter is neither null nor empty, and does not contain a valid environment string.

EPERM The caller does not have read access to the environment defined for the system, or the user does not have
permission to change the specified attributes.

Other errors may be set by subroutines invoked by the setpenv subroutine.

Related Information

The |execl, execv, execle, execve, execlp, execvp, or exect| subroutine, subroutine, setpcred
(“setpcred Subroutine” on page 139) subroutine.

The command, @ command.

[List of Security and Auditing Subroutines) [Subroutines Overview|in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 145

setpgid or setpgrp Subroutine

Purpose
Sets the process group ID.

Libraries
setpgid: Standard C Library (libc.a)

setpgrp: Standard C Library (libc.a);

Berkeley Compatibility Library (libbsd.a)

Syntax

#include <unistd.h>

int setpgid (IProcessIDl, |ProcessGroupID))
pid_t ProcessID, ProcessGroupID;

int setpgrp ()

Description

The setpgid subroutine is used either to join an existing process group or to create a new process group
within the session of the calling process. The process group ID of a session leader does not change. Upon
return, the process group ID of the process having a process ID that matches the ProcessID value is set
to the ProcessGrouplD value. As a special case, if the ProcessID value is 0, the process ID of the calling
process is used. If ProcessGrouplD value is 0, the process ID of the indicated process is used.

This function is implemented to support job control.

The setpgrp subroutine in the libc.a library supports a subset of the function of the setpgid subroutine. It
has no parameters. It sets the process group ID of the calling process to be the same as its process ID
and returns the new value.

In BSD systems, the setpgrp subroutine is defined with two parameters, as follows:

int setpgrp (ProcessID, ProcessGroup)
int ProcessID, ProcessGroup;

Parameters
ProcessID Specifies the process whose process group ID is to be changed.
ProcessGrouplD Specifies the new value of calling process group ID.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

146 Technical Reference, Volume 2: Base Operating System and Extensions

Error Codes
The setpgid subroutine is unsuccessful if one or more of the following is true:

EACCES The value of the ProcessID parameter matches the process ID of a child process of the calling process
and the child process has successfully executed one of the exec subroutines.

EINVAL The value of the ProcessGrouplD parameter is less than 0, or is not a valid value.

ENOSYS The setpgid subroutine is not supported by this implementation.

EPERM The process indicated by the value of the ProcessID parameter is a session leader.

EPERM The value of the ProcessID parameter matches the process ID of a child process of the calling process
and the child process is not in the same session as the calling process.

EPERM The value of the ProcessGrouplD parameter is valid, but does not match the process ID of the process

indicated by the ProcessID parameter. There is no process with a process group ID that matches the
value of the ProcessGrouplD parameter in the same session as the calling process.

ESRCH The value of the ProcessID parameter does not match the process ID of the calling process of a child
process of the calling process.

Related Information
The subroutine.

setpri Subroutine

Purpose
Sets a process scheduling priority to a constant value.

Library
Standard C Library (libc.a)

Syntax

#include <sys/sched.h>

int setpri (|ProcessIDl, |Priority)
pid_t ProcessiD;
int Priority;

Description

The setpri subroutine sets the scheduling priority of all threads in a process to be a constant. All threads
have their scheduling policies changed to SCHED_RR. A process nice value and CPU usage can no
longer be used to determine a process scheduling priority. Only processes that have root user authority
can set a process scheduling priority to a constant.

Parameters

ProcessID Specifies the process ID. If this value is 0 then the current process scheduling priority is set to a
constant.

Priority Specifies the scheduling priority for the process. A lower number value designates a higher

scheduling priority. The Priority parameter must be in the range PRIORITY_MIN < Priority <
PRIORITY_MAX. (See the sys/sched.h file.)

Return Values

Upon successful completion, the setpri subroutine returns the former scheduling priority of the process
just changed. Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 147

Error Codes
The setpri subroutine is unsuccessful if one or more of the following is true:

EINVAL The priority specified by the Priority parameter is outside the range of acceptable priorities.
EPERM The process executing the setpri subroutine call does not have root user authority.
ESRCH No process can be found corresponding to that specified by the ProcessID parameter.

Related Information
The subroutine.

[Performance-Related Subroutines|in AIX 5L Version 5.2 Performance Management Guide.

setpwdb or endpwdb Subroutine

Purpose
Opens or closes the authentication database.

Library
Security Library (libc.a)

Syntax

#include <userpw.h>

int setpwdb (

int Mode;
int endpwdb ()

Description
These functions are used to open and close access to the authentication database. Programs that call

either the [getuserpw] or putuserpw subroutine should call the setpwdb subroutine to open the database
and the endpwdb subroutine to close the database.

The setpwdb subroutine opens the authentication database in the specified mode, if it is not already open.
The open count is increased by 1.

The endpwdb subroutine decreases the open count by one and closes the authentication database when
this count drops to 0. Subsequent references to individual data items can cause a memory access
violation. The endpwdb subroutine also frees the space that was allocated by either the getuserpw,
putuserpw, or putuserpwhist subroutine. For security reasons, freeing the space clears the password
field. Any uncommitted changed data is lost.

Parameters
Mode Specifies the mode of the open. This parameter may contain one or more of the following values, defined in
the usersec.h file:

S_READ
Specifies read access.

S_WRITE
Specifies update access.

148 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values

The setpwdb and endpwdb subroutines return a value of 0 to indicate success. Otherwise, a value of -1
is returned and the errno global variable is set to indicate the error.

Error Codes
The setpwdb and endpwdb subroutines fail if the following is true:

EACCES Access permission is denied for the data request.

Both of these functions return errors from other subroutines.

Security
Access Control: The calling process must have access to the authentication data.
Files Accessed:

Modes File
rw /etc/security/passwd
rw /etc/passwd

Related Information

The subroutine, subroutine, [getuserpw, putuserpw, or putuserpwhist
subroutine.

[List of Security and Auditing Subroutines} [Subroutines Overview|in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

setroledb or endroledb Subroutine

Purpose
Opens and closes the role database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int setroledb(Mode)
int Mode;

int endroledb

Description

These functions may be used to open and close access to the role database. Programs that call the
getroleattr subroutine should call the setroledb subroutine to open the role database and the endroledb
subroutine to close the role database.

The setroledb subroutine opens the role database in the specified mode, if it is not already open. The
open count is increased by 1.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 149

The endroledb subroutine decreases the open count by 1 and closes the role database when this count
goes to 0. Any uncommitted changed data is lost.

Parameters

Mode Specifies the mode of the open. This parameter may contain one or more of the following values defined in
the usersec.h file:

S_READ
Specifies read access.

S_WRITE
Specifies update access.

Return Values

The setroledb and endroledb subroutines return a value of 0 to indicate success. Otherwise, a value of
-1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setroledb subroutine fails if the following is true:

EACCES Access permission is denied for the data request.

Both subroutines return errors from other subroutines.

Security
Files Accessed: The calling process must have access to the role data.

Mode File rw/etc/security/roles

Related Information
The |getroleattr, nextrole, or putroleattr| subroutine.

setsid Subroutine

Purpose
Creates a session and sets the process group ID.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>
pid_t setsid (void)

Description

The setsid subroutine creates a new session if the calling process is not a process group leader. Upon
return, the calling process is the session leader of this new session, the process group leader of a new
process group, and has no controlling terminal. The process group ID of the calling process is set equal to
its process ID. The calling process is the only process in the new process group and the only process in
the new session.

150 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values

Upon successful completion, the value of the new process group ID is returned. Otherwise, (pid_t) -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The setsid subroutine is unsuccessful if the following is true:

EPERM The calling process is already a process group leader, or the process group ID of a process other than the
calling process matches the process ID of the calling process.

Related Information
The [fork] subroutine, [getpid, getpgrp, or getppid|subroutine, setpgid (‘setpgid or setpgrp Subroutine” on|
‘

ge 146) subroutine, setpgrp (‘setpgid or setpgrp Subroutine” on page 146) subroutine.

setuid, setruid, seteuid, setreuid or setuidx Subroutine

Purpose
Sets the process user IDs.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int setuid (UID)

uid_t ;

int setruid (RUID)

uid_t [RUID]

int seteuid (EUVID)
uid t [EUID}

int setreuid (RUID, EUID)
uid_t RUID;

uid_t EVID;

#include <unistd.h>
#include <sys/id.h>

int setuidx (which, UID)

int i

uid_t UID;
Description
The setuid, setruid, seteuid, and setreuid subroutines reset the process user IDs. The following

semantics are supported:

setuid If the effective user ID of the process is the root user, the process’s real, effective, and saved user
IDs are set to the value of the UID parameter. Otherwise, the process effective user ID is reset if the
UID parameter specifies either the current real or saved user IDs.

seteuid The process effective user ID is reset if the UID parameter is equal to either the current real or saved
user IDs or if the effective user ID of the process is the root user.
setruid The EPERM error code is always returned. Processes cannot reset only their real user IDs.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 151

setreuid The RUID and EUID parameters can have the following two possibilities:

RUID '= EUID
If the EUID parameter specifies either the process’s real or saved user IDs, the process
effective user ID is set to the EUID parameter. Otherwise, the EPERM error code is
returned.

RUID== EUID
If the process effective user ID is the root user, the process’s real and effective user IDs are
set to the EUID parameter. Otherwise, the EPERM error code is returned.
setuidx The which parameter can have one of the following values:

ID_EFFECTIVE
UID must be either the real or saved UID. The effective user ID for the current process will
be set to UID.

ID_EFFECTIVEIID_REAL
Invoker must have appropriate privilege. The real and effective user ID for the current
process will be set to UID.

ID_EFFECTIVEIID_REALIID_SAVED
Invoker must have appropriate privilege. The real, effective and saved user ID for the current
process will be set to UID.

ID_LOGIN
Invoker must have appropriate privilege. The login UID for the current process will be set to
UID.

The real and effective user ID parameters can have a value of -1. If the value is -1, the actual value for
the UID parameter is set to the corresponding current the UID parameter of the process.

The operating system does not support setuid or setgid (‘setgid, setrgid, setegid, setregid, or setgidy
[Subroutine” on page 132) shell scripts.

These subroutines are part of Base Operating System (BOS) Runtime.

Parameters

UID Specifies the user ID to set.

EUID Specifies the effective user ID to set.
RUID Specifies the real user ID to set.
which Specifies which user ID values to set.

Return Values

Upon successful completion, the setuid, seteuid, setreuid, and setuidx subroutines return a value of 0.
Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setuid, seteuid, setreuid, and setuidx subroutines are unsuccessful if either of the following is true:

EINVAL The value of the UID or EUID parameter is not valid.

EPERM The process does not have the appropriate privileges and the UID and EUID parameters are not equal to
either the real or saved user IDs of the process.

Related Information

The|getuid or geteuid| subroutine, setgid (“setgid, setrgid, setegid, setregid, or setgidx Subroutine” on|
|Qage 1320 subroutine.

152 Technical Reference, Volume 2: Base Operating System and Extensions

[List of Security and Auditing Subroutines|and [Subroutines Overview|in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

setuserdb or enduserdb Subroutine

Purpose

Opens and closes the user database.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int setuserdb (

int Mode;
int enduserdb ()

Description

These functions may be used to open and close access to the user database. Programs that call either
the or getgroupattr subroutine should call the setuserdb subroutine to open the user
database and the enduserdb subroutine to close the user database.

The setuserdb subroutine opens the user database in the specified mode, if it is not already open. The
open count is increased by 1.

The enduserdb subroutine decreases the open count by 1 and closes the user database when this count
goes to 0. Any uncommitted changed data is lost.

Parameters

Mode Specifies the mode of the open. This parameter may contain one or more of the following values defined in
the usersec.h file:

S_READ
Specifies read access

S_WRITE
Specifies update access.

Return Values

The setuserdb and enduserdb subroutines return a value of 0 to indicate success. Otherwise, a value of
-1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setuserdb subroutine fails if the following is true:

EACCES Access permission is denied for the data request.

Both subroutines return errors from other subroutines.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 153

Security

Files Accessed: The calling process must have access to the user data. Depending on the actual attributes
accessed, this may include:

Modes File

rw /etc/passwd

rw /etc/group

rw /etc/security/user
rw /etc/security/limits
rw /etc/security/group
rw /etc/security/environ

Related Information

The [getgroupattr] subroutine, [getuserattr] subroutine, subroutine, setpwdb (‘setpwdb o
endpwdb Subrout

ne” on page 148) subroutine.

[List of Security and Auditing Subroutines|and [Subroutines Overview| in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

sgetl or sputl Subroutine

Purpose
Accesses long numeric data in a machine-independent fashion.

Library
Object File Access Routine Library (libld.a)

Syntax
Tong sgetl (

char *Buffer;

void sputl (Value, Buffer)

Tong [/alue]

char *Buffer;

Description

The sgetl subroutine retrieves four bytes from memory starting at the location pointed to by the Buffer
parameter. It then returns the bytes as a long Value with the byte ordering of the host machine.

The sputl subroutine stores the four bytes of the Value parameter into memory starting at the location
pointed to by the Buffer parameter. The order of the bytes is the same across all machines.

Using the sputl and sgetl subroutines together provides a machine-independent way of storing long
numeric data in an ASCII file. For example, the numeric data stored in the portable archive file format can
be accessed with the sputl and sgetl subroutines.

Parameters
Value Specifies a 4-byte value to store into memory.
Buffer Points to a location in memory.

154 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information
The [ar] command, command.

ThefiIe format, file format.

[Subroutines Overview|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

shmat Subroutine

Purpose
Attaches a shared memory segment or a mapped file to the current process.

Library
Standard C Library (libc.a)

Syntax

#include <sys/shm.h>

void *shmat (SharedMemoryID, SharedMemoryAddress, SharedMemoryFlag)
int [SharedMemoryID|, [SharedMemoryFlagl;
const void * [SharedMemoryAddress|;

Description

The shmat subroutine attaches the shared memory segment or mapped file specified by the
SharedMemoryID parameter (returned by the [shmget] subroutine), or file descriptor specified by the
SharedMemorylD parameter (returned by the [openx| subroutine) to the address space of the calling
process.

To learn more about the limits that apply to shared memory, see the [Inter-Process Communication (IPC)|
article in AIX 5L Version 5.2 General Programming Concepits.

Note: The following applies to AIX 4.2.1 and later releases for 32-bit processes only.

An extended shmat capability is available. If an environment variable EXTSHM=ON is defined then
processes executing in that environment will be able to create and attach more than eleven shared
memory segments.

The segments can be of size from 1 byte to 2GB, although for segments larger than 256MB in size the
environment variable EXTSHM=ON is ignored. The process can attach these segments into the address
space for the size of the segment. Another segment could be attached at the end of the first one in the
same 256MB segment region. The address at which a process can attach is at page boundaries - a
multiple of SHMLBA_EXTSHM bytes. For segments larger than 256MB in size, the address at which a
process can attach is at 256MB boundaries, which is a multiple of SHMLBA bytes.

The segments can be of size from 1 byte to 256MB. The process can attach these segments into the
address space for the size of the segment. Another segment could be attached at the end of the first one
in the same 256MB segment region. The address at which a process can attach will be at page
boundaries - a multiple of SHMLBA_EXTSHM bytes.

The maximum address space available for shared memory with or without the environment variable and
for memory mapping is 2.75GB. An additional segment register "OxE" is available so that the address

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z2) 155

space is from 0x30000000 to 0xEO000000. However, a 256MB region starting from 0xD0000000 will be
used by the shared libraries and is therefore unavailable for shared memory regions or mmapped regions.

On AIX 5.2 and later, a 32-bit process running with the very large address space model has up to 3.25 GB
of address space available for the shmat and mmap memory mappings. For a 32-bit process with the
very large address space model, the address space available for mappings is from 0x30000000 to
OxFFFFFFFF. This extended address range applies to both extended shmat and standard shmat. For
more information on how to use the very large address space model, see the|Understanding the Very|
|Large Address-Space Modell article in AIX 5L Version 5.2 General Programming Concepts.

There are some restrictions on the use of the extended shmat feature. These shared memory regions can
not be used as I/O buffers where the unpinning of the buffer occurs in an interrupt handler. The restrictions
on the use are the same as that of mmap buffers.

The smaller region sizes are not supported for mapping files. Regardless of whether EXTSHM=ON or not,
mapping a file will consume at least 256MB of address space.

The SHM_SIZE shmctl command is not supported for segments created with EXTSHM=ON.

A segment created with EXTSHM=ON can be attached by a process without EXTSHM=ON. This will
consume a 256MB area of the address space irrespective of the size of the shared memory region.

A segment created without EXTSHM=ON can be attached by a process with EXTSHM=ON. This will
consume a 256MB area of the address space irrespective of the size of the shared memory region.

The environment variable provides the option of executing an application either with the additional
functionality of attaching more than 11 segments when EXTSHM=ON, or the higher-performance access to
11 or fewer segments when the environment variable is not set.

Parameters

SharedMemoryID Specifies an identifier for the shared memory segment.
SharedMemoryAddress ldentifies the segment or file attached at the address specified by the SharedMemoryAddress
parameter, as follows:

 If the SharedMemoryAddress parameter is not equal to 0, and the SHM_RND flag is set in
the SharedMemoryFlag parameter, the segment or file is attached at the next lower
segment boundary. This address is given by (SharedMemoryAddress
-(SharedMemoryAddress modulo SHMLBA_EXTSHM if environment variable
EXTSHM=ON or SHMLBA if not). SHMLBA specifies the low boundary address multiple of
a segment.

 If the SharedMemoryAddress parameter is not equal to 0 and the SHM_RND flag is not
set in the SharedMemoryFlag parameter, the segment or file is attached at the address
given by the SharedMemoryAddress parameter. If this address does not point to a
SHMLBA_EXTSHM boundary if the environment variable EXTSHM=ON or SHMLBA
boundary if not, the shmat subroutine returns the value -1 and sets the errno global
variable to the EINVAL error code. SHMLBA specifies the low boundary address multiple
of a segment.

156 Technical Reference, Volume 2: Base Operating System and Extensions

SharedMemoryFlag Specifies several options. Its value is either O or is constructed by logically ORing one or
more of the following values:

SHM_COPY
Changes an open file to deferred update (see the openx subroutine). Included only
for compatibility with previous versions of the operating system.

SHM_MAP
Maps a file onto the address space instead of a shared memory segment. The
SharedMemoryID parameter must specify an open file descriptor in this case.

SHM_RDONLY
Specifies read-only mode instead of the default read-write mode.

SHM_RND
Rounds the address given by the SharedMemoryAddress parameter to the next
lower segment boundary, if necessary.

The shmat subroutine makes a shared memory segment addressable by the current process. The
segment is attached for reading if the SHM_RDONLY flag is set and the current process has read
permission. If the SHM_RDONLY flag is not set and the current process has both read and write
permission, it is attached for reading and writing.

If the SHM_MAP flag is set, file mapping takes place. In this case, the shmat subroutine maps the file
open on the file descriptor specified by the SharedMemoryID onto a segment. The file must be a regular
file. The segment is then mapped into the address space of the process. A file of any size can be mapped
if there is enough space in the user address space.

When file mapping is requested, the SharedMemoryFlag parameter specifies how the file should be
mapped. If the SHM_RDONLY flag is set, the file is mapped read-only. To map read-write, the file must
have been opened for writing.

All processes that map the same file read-only or read-write map to the same segment. This segment
remains mapped until the last process mapping the file closes it.

A mapped file opened with the O_DEFER update has deferred update. That is, changes to the shared
segment do not affect the contents of the file resident in the file system until an @subroutine is issued
to the file descriptor for which the mapping was requested. Setting the SHM_COPY flag changes the file to
the deferred state. The file remains in this state until all processes close it. The SHM_COPY flag is
provided only for compatibility with Version 2 of the operating system. New programs should use the
O_DEFER open flag.

A file descriptor can be used to map the corresponding file only once. To map a file several times requires
multiple file descriptors.

When a file is mapped onto a segment, the file is referenced by accessing the segment. The memory
paging system automatically takes care of the physical I/O. References beyond the end of the file cause
the file to be extended in page-sized increments. The file cannot be extended beyond the next segment
boundary.

Return Values

When successful, the segment start address of the attached shared memory segment or mapped file is
returned. Otherwise, the shared memory segment is not attached, the errno global variable is set to
indicate the error, and a value of -1 is returned.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 157

Error Codes

The shmat subroutine is unsuccessful and the shared memory segment or mapped file is not attached if
one or more of the following are true:

EACCES The calling process is denied permission for the specified operation.

EAGAIN The file to be mapped has enforced locking enabled, and the file is currently locked.

EBADF A file descriptor to map does not refer to an open regular file.

EEXIST The file to be mapped has already been mapped.

EINVAL The SHM_RDONLY and SHM_COPY flags are both set.

EINVAL The SharedMemoryID parameter is not a valid shared memory identifier.

EINVAL The SharedMemoryAddress parameter is not equal to 0, and the value of (SharedMemoryAddress -
(SharedMemoryAddress modulo SHMLBA_EXTSHM if the environment variable EXTSHM=ON or
SHMLBA if not) points outside the address space of the process.

EINVAL The SharedMemoryAddress parameter is not equal to 0, the SHM_RND flag is not set in the
SharedMemoryFlag parameter, and the SharedMemoryAddress parameter points to a location outside of
the address space of the process.

EMFILE The number of shared memory segments attached to the calling process exceeds the system-imposed
limit.

ENOMEM The available data space in memory is not large enough to hold the shared memory segment. ENOMEM
is always returned if a 32-bit process tries to attach a shared memory segment larger than 2GB.

ENOMEM The available data space in memory is not large enough to hold the mapped file data structure.

ENOMEM The requested address and length crosses a segment boundary. This is not supported when the
environment variable EXTSHM=ON.

Related Information

The [exec] subroutine, fexit] subroutine, [fclear subroutine, [fork subroutine, [fsynd subroutineJmmap
subroutine, jlmunmap] subroutine, jopenx subroutine, [truncate| subroutine, [readvx| subroutine
subroutine, [shmdt subroutlne subroutine, (writevx| subroutine.

The command and command.

[List of Memory Manipulation Services} [Subroutines Overview] [Understanding Memory Mapping in AIX 5L
Version 5.2 General Programming Concepts: Writing and Debugging Programs.

shmctl Subroutine

Purpose
Controls shared memory operations.

Library
Standard C Library (libc.a)

Syntax

#include <sys/shm.h>

int shmctl (SharedMemoryID, Command, Buffer)
int [SharedMemoryID|, [Command}
struct shmid_ds * Bufferf;

Description

The shmctl subroutine performs a variety of shared-memory control operations as specified by the
Command parameter.

158 Technical Reference, Volume 2: Base Operating System and Extensions

The following limits apply to shared memory:
* Maximum shared-memory segment size is:

— 256M bytes before AIX 4.3.1

— 2G bytes for AIX 4.3.1 through AIX 5.1

— 064G bytes for 64-bit applications for AIX 5.1 and later
* Minimum shared-memory segment size is 1 byte.

* Maximum number of shared memory IDs is 4096 for operating system releases before AlX 4.3.2 and
131072 for AIX 4.3.2 and following.

Parameters

SharedMemoryID Specifies an identifier returned by the shmget subroutine.

Buffer Indicates a pointer to the shmid_ds structure. The shmid_ds structure is defined in the
sys/shm.h file.

Command The following commands are available:
IPC_STAT

Obtains status information about the shared memory segment identified by the
SharedMemoryID parameter. This information is stored in the area pointed to by the
Buffer parameter. The calling process must have read permission to run this
command.

IPC_ SET
Sets the user and group IDs of the owner as well as the access permissions for the
shared memory segment identified by the SharedMemoryID parameter. This
command sets the following fields:
shm_perm.uid /* owning user ID */
shm_perm.gid /* owning group ID */
shm_perm.mode /* permission bits only =*/

You must have an effective user ID equal to root or to the value of the
shm_perm.cuid or shm_perm.uid field in the shmid_ds data structure identified by the
SharedMemoryID parameter.

IPC_RMID
Removes the shared memory identifier specified by the SharedMemoryID parameter
from the system and erases the shared memory segment and data structure
associated with it. This command is only executed by a process that has an effective
user ID equal either to that of superuser or to the value of the shm_perm.uid or
shm_perm.cuid field in the data structure identified by the SharedMemoryID
parameter.

SHM_SIZE
Sets the size of the shared memory segment to the value specified by the shm_segsz
field of the structure specified by the Buffer parameter. This value can be larger or
smaller than the current size. The limit is the maximum shared-memory segment
size. This command is only executed by a process that has an effective user ID
equal either to that of a process with the appropriate privileges or to the value of the
shm_perm.uid or shm_perm.cuid field in the data structure identified by the
SharedMemoryID parameter. This command is not supported for regions created
with the environment variable EXTSHM=ON. This results in a return value of -1 with
errno set to EINVAL. Attempting to use the SHM_SIZE on a shared memory region
larger than 256MB or attempting to increase the size of a shared memory region
larger than 256MB results in a return value of -1 with errno set to EINVAL.

Return Values

When completed successfully, the shmetl subroutine returns a value of 0. Otherwise, it returns a value of
-1 and the errno global variable is set to indicate the error.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 159

Error Codes
The shmctl subroutine is unsuccessful if one or more of the following are true:

EACCES The Command parameter is equal to the IPC_STAT value and read permission is denied to the calling
process.

EFAULT The Buffer parameter points to a location outside the allocated address space of the process.

EINVAL The SharedMemoryID parameter is not a valid shared memory identifier.

EINVAL The Command parameter is not a valid command.

EINVAL The Command parameter is equal to the SHM_SIZE value and the value of the shm_segsz field of the
structure specified by the Buffer parameter is not valid.

EINVAL The Command parameter is equal to the SHM_SIZE value and the shared memory region was created
with the environment variable EXTSHM=ON.

ENOMEM The Command parameter is equal to the SHM_SIZE value, and the attempt to change the segment size
is unsuccessful because the system does not have enough memory.

EOVERFLOWhe Command parameter is IPC_STAT and the size of the shared memory region is greater than or
equal to 4G bytes. This only happens with 32-bit programs.

EPERM The Command parameter is equal to the IPC_RMID or SHM_SIZE value, and the effective user ID of the
calling process is not equal to the value of the shm_perm.uid or shm_perm.cuid field in the data structure
identified by the SharedMemoryID parameter. The effective user ID of the calling process is not the root
user ID.

Related Information
The subroutine, subroutine, subroutine, subroutine.

The command and command.

[List of Memory Manipulation Services} [Subroutines Overview} [Understanding Memory Mapping in AIX 5L
Version 5.2 General Programming Concepts: Writing and Debugging Programs.

shmdt Subroutine

Purpose
Detaches a shared memory segment.

Library
Standard C Library (libc.a)

Syntax

#include <sys/shm.h>

int shmdt (SharedMemoryAddress)
const void = |SharedMemor‘yAddr‘ess|;

Description

The shmdt subroutine detaches from the data segment of the calling process the shared memory
segment located at the address specified by the SharedMemoryAddress parameter.

Mapped file segments are automatically detached when the mapped file is closed. However, you can use
the shmdt subroutine to explicitly release the segment register used to map a file. Shared memory
segments must be explicitly detached with the shmdt subroutine.

If the file was mapped for writing, the shmdt subroutine updates the mtime and ctime time stamps.

160 Technical Reference, Volume 2: Base Operating System and Extensions

The following limits apply to shared memory:
* Maximum shared-memory segment size is:

— 256M bytes before AIX 4.3.1

— 2G bytes for AIX 4.3.1 through AIX 5.1

— 064G bytes for 64-bit applications for AIX 5.1 and later
* Minimum shared-memory segment size is 1 byte.

* Maximum number of shared memory IDs is 4096 for operating system releases before AlX 4.3.2 and
131072 for AIX 4.3.2 and following.

Parameters

SharedMemoryAddress Specifies the data segment start address of a shared memory segment.

Return Values

When successful, the shmdt subroutine returns a value of 0. Otherwise, the shared memory segment at
the address specified by the SharedMemoryAddress parameter is not detached, a value of 1 is returned,
and the errno global variable is set to indicate the error.

Error Codes
The shmdt subroutine is unsuccessful if the following condition is true:

EINVAL The value of the SharedMemoryAddress parameter is not the data-segment start address of a shared
memory segment.

Related Information
The [exec]|subroutine, [exit] subroutine, |fork|subrou subroutine, Immap| subroutine, [Imunmap
shmget

subroutine, |§hmat| subroutine, |shmct|| subroutine, | subroutine.

The command and command.

[List of Memory Manipulation Services} [Subroutines Overview} [Understanding Memory Mapping| in AIX 5L
Version 5.2 General Programming Concepts: Writing and Debugging Programs.

shmget Subroutine

Purpose
Gets shared memory segments.

Library
Standard C Library (libc.a)

Syntax

#include <sys/shm.h>

int shmget (Key, Size, SharedMemoryFlag)
key t I%%_ﬂ,_‘
ize

size t
int [SharedMemoryFlagl

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 161

Description

The shmget subroutine returns the shared memory identifier associated with the specified Key parameter.

The following limits apply to shared memory:
* Maximum shared-memory segment size is:

— 256M bytes before AIX 4.3.1

— 2G bytes for AIX 4.3.1 through AlIX 5.1

— 64G bytes for 64-bit applications for AIX 5.1 and later
* Minimum shared-memory segment size is 1 byte.

* Maximum number of shared memory IDs is 4096 for operating system releases before AlIX 4.3.2 and
131072 for AIX 4.3.2 and following.

Parameters
Key

Size
SharedMemoryFlag

Specifies either the IPC_PRIVATE value or an IPC key constructed by the subroutine (or
by a similar algorithm).

Specifies the number of bytes of shared memory required.

Constructed by logically ORing one or more of the following values:

IPC_CREAT
Creates the data structure if it does not already exist.

IPC_EXCL
Causes the shmget subroutine to be unsuccessful if the IPC_CREAT flag is also
set, and the data structure already exists.

SHM_LGPAGE
Attempts to create the region so it can be mapped through hardware-supported,
large-page mechanisms, if enabled. This is purely advisory. For the system to
consider this flag, it must be used in conjunction with the SHM_PIN flag and enabled
with the vmtune command (-L to reserve memory for the region (which requires a
reboot) and -S to enable SHM_PIN). To successfully get large-pages, the user
requesting large-page shared memory must have CAP_BYPASS_RAC_VMM
capability. This has no effect on shared memory regions created with the
EXTSHM=0ON environment variable.

SHM_PIN
Attempts to pin the shared memory region if enabled. This is purely advisory. For the
system to consider this flag, the system must be enable with vmtune command.
This has no effect on shared memory regions created with EXTSHM=0ON
environment variable.

S_IRUSR
Permits the process that owns the data structure to read it.

S_IWUSR
Permits the process that owns the data structure to modify it.

S_IRGRP
Permits the group associated with the data structure to read it.

S_IWGRP
Permits the group associated with the data structure to modify it.

S_IROTH
Permits others to read the data structure.

S_IWOTH
Permits others to modify the data structure.

Values that begin with the S_I prefix are defined in the sys/mode.h file and are a subset of
the access permissions that apply to files.

162 Technical Reference, Volume 2: Base Operating System and Extensions

A shared memory identifier, its associated data structure, and a shared memory segment equal in number
of bytes to the value of the Size parameter are created for the Key parameter if one of the following is
true:

* The Key parameter is equal to the IPC_PRIVATE value.

* The Key parameter does not already have a shared memory identifier associated with it, and the
IPC_CREAT flag is set in the SharedMemoryFlag parameter.

Upon creation, the data structure associated with the new shared memory identifier is initialized as follows:
* The shm perm.cuid and shm_perm.uid fields are set to the effective user ID of the calling process.
* The shm_perm.cgid and shm_perm.gid fields are set to the effective group ID of the calling process.

* The low-order 9 bits of the shm_perm.mode field are set to the low-order 9 bits of the SharedMemoryFlag
parameter.

* The shm_segsz field is set to the value of the Size parameter.
e The shm_Ipid, shm_nattch, shm_atime, and shm_dtime fields are set to O.
* The shm_ctime field is set to the current time.

Note: Once created, a shared memory segment is deleted only when the system reboots or by issuing
the ipcrm command or using the following shmetl subroutine:

if (shmctl (id, IPC_RMID, 0) == -1)
perror ("error in closing segment"),exit (1);

Return Values

Upon successful completion, a shared memory identifier is returned. Otherwise, the shmget subroutine
returns a value of -1 and sets the errno global variable to indicate the error.

Error Codes
The shmget subroutine is unsuccessful if one or more of the following are true:

EACCES A shared memory identifier exists for the Key parameter, but operation permission as specified by the
low-order 9 bits of the SharedMemoryFlag parameter is not granted.

EEXIST A shared memory identifier exists for the Key parameter, and both the IPC_CREAT and IPC_EXCL flags
are set in the SharedMemoryFlag parameter.

EINVAL A shared memory identifier does not exist and the Size parameter is less than the system-imposed
minimum or greater than the system-imposed maximum.
EINVAL A shared memory identifier exists for the Key parameter, but the size of the segment associated with it is

less than the Size parameter, and the Size parameter is not equal to 0.

ENOENT A shared memory identifier does not exist for the Key parameter, and the IPC_CREAT flag is not set in
the SharedMemoryFlag parameter.

ENOMEM A shared memory identifier and associated shared memory segment are to be created but the amount of
available physical memory is not sufficient to meet the request.

ENOSPC A shared memory identifier will be created, but the system-imposed maximum of shared memory
identifiers allowed will be exceeded.

Related Information

subroutine, subroutine, subroutine, subroutine, subroutine,
shmdt

subroutine.

The command and command.

[List of Memory Manipulation Services| [Subroutines Overview| [Understanding Memory Mapping| in A/X 5L
Version 5.2 General Programming Concepts: Writing and Debugging Programs.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 163

sigaction, sigvec, or signal Subroutine

Purpose

Specifies the action to take upon delivery of a signal.
Libraries

sigaction Standard C Library (libc.a)
signal, sigvec Standard C Library (libc.a);

Berkeley Compatibility Library (libbsd.a)

Syntax

#include <signal.h>

int sigaction ([Signall ctionl [0Action))
int Signal;
struct sigaction *Action, *OAction;

int sigvec (Signal,
int Signal;
struct sigvec *Invec, *Outvec;

void (*signal (Signal, Action)) ()
int Signal;
void (*Action) (int);

Description

The sigaction subroutine allows a calling process to examine and change the action to be taken when a
specific signal is delivered to the process issuing this subroutine.

In multi-threaded applications using the threads library (libpthreads.a), signal actions are common to all
threads within the process. Any thread calling the sigaction subroutine changes the action to be taken
when a specific signal is delivered to the threads process, that is, to any thread within the process.

Note: The sigaction subroutine must not be used concurrently to the sigwait subroutine on the same
signal.

The Signal parameter specifies the signal. If the Action parameter is not null, it points to a sigaction
structure that describes the action to be taken on receipt of the Signal parameter signal. If the OAction
parameter is not null, it points to asigaction structure in which the signal action data in effect at the time
of the sigaction subroutine call is returned. If the Action parameter is null, signal handling is unchanged;
thus, the call can be used to inquire about the current handling of a given signal.

The sigaction structure has the following fields:

Member Type Member Name Description

void(*) (int) sa_handler SIG_DFL, SIG_IGN or pointer to a
function.

sigset_t sa_mask Additional set of signals to be blocked
during execution of signal-catching
function.

164 Technical Reference, Volume 2: Base Operating System and Extensions

Member Type Member Name Description

int sa_flags Special flags to affect behaviour of
signal.

void(*) (int, siginfo_t *, void *) sa_sigaction Signal-catching function.

The sa_handler field can have a|SIG_DFL|or[SIG_IGN| value, or it can be a pointer to a function. A
SIG_DFL value requests default action to be taken when a signal is delivered. A value of SIG_IGN
requests that the signal have no effect on the receiving process. A pointer to a function requests that the
signal be caught; that is, the signal should cause the function to be called. These actions are more fully
described in "Parameters”.

When a signal is delivered to a thread, if the action of that signal specifies termination, stop, or continue,
the entire process is terminated, stopped, or continued, respectively.

If the SA_SIGINFO flag (see below) is cleared in the sa_flags field of the sigaction structure, the
sa_handler field identifies the action to be associated with the specified signal. If the SA_SIGINFO flag is
set in the sa_flags field, the sa_sigaction field specifies a signal-catching function. If the SA_SIGINFO bit
is cleared and the sa_handler field specifies a signal-catching function, or if the SA_SIGINFO bit is set, the
sa_mask field identifies a set of signals that will be added to the signal mask of the thread before the
signal-catching function is invoked.

The sa_mask field can be used to specify that individual signals, in addition to those in the process signal
mask, be blocked from being delivered while the signal handler function specified in the sa_handler field is
operating. The sa_flags field can have the SA_ONSTACK, SA_OLDSTYLE, or SA_NOCLDSTOP bits set
to specify further control over the actions taken on delivery of a signal.

If the SA_ONSTACK bit is set, the system runs the signal-catching function on the signal stack specified
by the sigstack subroutine. If this bit is not set, the function runs on the stack of the process to which the
signal is delivered.

If the SA_OLDSTYLE bit is set, the signal action is set to SIG_DFL label prior to calling the
signal-catching function. This is supported for compatibility with old applications, and is not recommended
since the same signal can recur before the signal-catching subroutine is able to reset the signal action and
the default action (normally termination) is taken in that case.

If a signal for which a signal-catching function exists is sent to a process while that process is executing
certain subroutines, the call can be restarted if the SA_RESTART bit is set for each signal. The only
affected subroutines are the following:

- read,readx, readv, or readvx (‘read, readx, readv, readvx, or pread Subroutine” on page 16)

« write,writex, writev, or writevx (‘write, writex, writev, writevx or pwrite Subroutines” on page 506}
« fiocti orioctl)_<|

+ |fentl] lockf, or flock

* wait, wait3, orwaitpid (]“wait, waitpid, wait3, or wait364 Subroutine” on page 440b

Other subroutines do not restart and return EINTR label, independent of the setting of the SA_RESTART
bit.

If SA_SIGINFO is cleared and the signal is caught, the signal-catching function will be entered as: void
func(int signo);

Where signo is the only argument to the signal catching function. In this case the sa_handler member
must be used to describe the signal catching function and the application must not modify the

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 165

sa_sigaction member. If SA_SIGINFO is set and the signal is caught, the signal-catching function will be
entered as: void func(int signo, siginfo_t * info, void * context); where two additional arguments
are passed to the signal catching function.

The second argument will point to an object of type siginfo_t explaining the reason why the signal was
generated. The third argument can be cast to a pointer to an object of type ucontext_t to refer to the
receiving process’ context that was interrupted when the signal was delivered. In this case the
sa_sigaction member must be used to describe the signal catching function and the application must not
modify the sa_handler member.

The si_signo member contains the system-generated signal number. The si_errno member may contain
implementation-dependent additional error information. If nonzero, it contains an error number identifying
the condition that caused the signal to be generated. The si_code member contains a code identifying the
cause of the signal. If the value of si_code is less than or equal to 0, the signal was generated by a
process and si_pid and si_uid respectively indicate the process ID and the real user ID of the sender.

The signal.h header description contains information about the signal specific contents of the elements of
the siginfo_t type. If SA_NOCLDWAIT is set and sig equals SIGCHLD, child processes of the calling
processes will not be transformed into zombie processes when they terminate. If the calling process
subsequently waits for its children, and the process has no unwaited for children that were transformed
into zombie processes, it will block until all of its children terminate, and wait, wait3, waitid and waitpid
will fail and set errno to ECHILD. Otherwise, terminating child processes will be transformed into zombie
processes, unless SIGCHLD is set to SIG_IGN.

If SA_RESETHAND is set, the disposition of the signal will be reset to SIG_DFL and the SA_SIGINFO
flag will be cleared on entry to the signal handler.

If SA_NODEFER is set and sig is caught, sig will not be added to the process’ signal mask on entry to the
signal handler unless it is included in sa_mask. Otherwise, sig will always be added to the process’ signal
mask on entry to the signal handler. If sig is SIGCHLD, the SA_NOCLDSTOP flag is not set in sa_flags,
and the implementation supports the SIGCHLD signal, a SIGCHLD signal will be generated for the calling
process whenever any of its child processes stop.

If sigis SIGCHLD and the SA_NOCLDSTORP flag is set in sa_flags, the implementation will not generate a
SIGCHLD signal in this way. When a signal is caught by a signal-catching function installed by sigaction,
a new signal mask is calculated and installed for the duration of the signal-catching function (or until a call
to either sigprocmask orsigsuspend is made).

This mask is formed by taking the union of the current signal mask and the value of the sa_mask for the
signal being delivered unless SA_NODEFER or SA_RESETHAND is set, and including the signal being
delivered. If the user’s signal handler returns normally, the original signal mask is restored.

Once an action is installed for a specific signal, it remains installed until another action is explicitly
requested (by another call to sigaction), until the SA_RESETHAND flag causes resetting of the handler,
or until one of the exec functions is called.

If the previous action for sig had been established by signal, the values of the fields returned in the
structure pointed to by oact are unspecified, and in particular oact->sa_handler is not necessarily the
same value passed to signal.

However, if a pointer to the same structure or a copy thereof is passed to a subsequent call to sigaction
through the act argument, handling of the signal will be as if the original call to signal were repeated.

If sigaction fails, no new signal handler is installed. It is unspecified whether an attempt to set the action
for a signal that cannot be caught or ignored to SIG_DFL is ignored or causes an error to be returned with
errno set to EINVAL.

166 Technical Reference, Volume 2: Base Operating System and Extensions

If SA_SIGINFO is not set in sa_flags, then the disposition of subsequent occurrences of sig when it is
already pending is implementation-dependent; the signal-catching function will be invoked with a single
argument.

The sigvec and signal subroutines are provided for compatibility to older operating systems. Their
function is a subset of that available with sigaction.

The sigvec subroutine uses the sigvec structure instead of the sigaction structure. The sigvec structure
specifies a mask as an int instead of a sigset_t. The mask for the sigvec subroutine is constructed by
setting the i-th bit in the mask if signal i is to be blocked. Therefore, the sigvec subroutine only allows
signals between the values of 1 and 31 to be blocked when a signal-handling function is called. The other
signals are not blocked by the signal-handler mask.

The sigvec structure has the following members:

int (*sv_handler)();
/* signal handler =/
int sv_mask;
/* signal mask */
int sv_flags;
/* flags */

The sigvec subroutine in the libbsd.a library interprets the SV_INTERRUPT flag and inverts it to the
SA_RESTART flag of thesigaction subroutine. The sigvec subroutine in the libc.a library always sets the
SV_INTERRUPT flag regardless of what was passed in the sigvec structure.

The sigvec subroutine in the libbsd.a library interprets the SV_INTERRUPT flag and inverts it to the
SA_RESTART flag of the sigaction subroutine. The sigvec subroutine in the libc.a library always sets the
SV_INTERRUPT flag regardless of what was passed in the sigvec structure.

The signal subroutine in the libc.a library allows an action to be associated with a signal. The Action
parameter can have the same values that are described for the sv_handler field in the sigaction structure
of thesigaction subroutine. However, no signal handler mask or flags can be specified; the signal
subroutine implicitly sets the signal handler mask to additional signals and the flags to be SA_OLDSTYLE.

Upon successful completion of a signal call, the value of the previous signal action is returned. If the call
fails, a value of -1 is returned and the errno global variable is set to indicate the error as in the sigaction
call.

The signal in libc.a does not set the SA_RESTART flag. It sets the signal mask to the signal whose
action is being specified, and sets flags to SA_OLDSTYLE. The Berkeley Software Distribution (BSD)
version of signal sets the SA_RESTART flag and preserves the current settings of the signal mask and
flags. The BSD version can be used by compiling with the Berkeley Compatibility Library (libbsd.a).

The signal in libc.a does not set the SA_RESTART flag. It sets the signal mask to the signal whose
action is being specified, and sets flags to SA_OLDSTYLE. The Berkeley Software Distribution (BSD)
version of signal sets the SA_RESTART flag and preserves the current settings of the signal mask and
flags. The BSD version can be used by compiling with the Berkeley Compatibility Library (libbsd.a).

Parameters

Signal Defines the signal. The following list describes signal names and the specification for each. The
value of the Signal parameter can be any signal name from this list or its corresponding number
except the SIGKILL name. If you use the signal name, you must include the signal.h file, because
the name is correlated in the file with its corresponding number.

Note: The symbols in the following list of signals represent these actions:

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 167

* Specifies the default action that includes creating a core dump file.
@ Specifies the default action that stops the process receiving these signals.

! Specifies the default action that restarts or continues the process receiving these signals.

+ Specifies the default action that ignores these signals.
% Indicates a likely shortage of paging space.
See Terminal Programming for more information on the use of these signals.
SIGHUP
Hang-up. (1)
SIGINT
Interrupt. (2)
SIGQUIT
Quit. (3%)
SIGILL
Invalid instruction (not reset when caught). (4%)
SIGTRAP
Trace trap (not reset when caught). (5%)
SIGIOT
End process (see the abort subroutine). (6*)
SIGEMT
EMT instruction. (7%)
SIGFPE
Arithmetic exception, integer divide by 0, or floating-point exception.(8*)
SIGKILL
Kill (cannot be caught or ignored). (9)
SIGBUS
Specification exception. (10%)
SIGSEGV
Segmentation violation. (11%)
SIGSYS
Parameter not valid to subroutine. (12%)
SIGPIPE
Write on a pipe when there is no process to read it. (13)
SIGALRM
Alarm clock. (14)
SIGTERM
Software termination signal. (15)
SIGURG
Urgent condition on I/O channel. (16+)
SIGSTOP
Stop (cannot be caught or ignored). (17 @)
SIGTSTP
Interactive stop. (18@)
SIGCONT

Continue if stopped. (19!)

168 Technical Reference, Volume 2: Base Operating System and Extensions

SIGCHLD
To parent on child stop or exit. (20+)

SIGTTIN
Background read attempted from control terminal. (21@)

SIGTTOU
Background write attempted from control terminal. (22 @)

SIGIO Input/output possible or completed. (23+)

SIGXCPU
CPU time limit exceeded (see the setrlimit subroutine). (24)

SIGXFSzZ
File size limit exceeded (see the setrlimit subroutine).(25)

reserved
(26)
SIGMSG
Input data has been stored into the input ring buffer. (27#)

SIGWINCH
Window size change. (28+)

SIGPWR
Power-fail restart. (29+)

SIGUSR1
User-defined signal 1. (30)

SIGUSR2
User-defined signal 2. (31)

SIGPROF
Profiling timer expired. (see the setitimer subroutine).(32)

SIGDANGER
Paging space low. (33+%)
SIGVTALRM
Virtual time alarm (see the setitimer subroutine). (34)

SIGMIGRATE
Migrate process. (35)

SIGPRE
Programming exception (user defined). (36)

reserved
(37-58)
SIGGRANT
Monitor access wanted. (60#)

SIGRETRACT
Monitor access should be relinquished. (61#)

SIGSOUND
A sound control has completed execution. (62#)

SIGSAK
Secure attention key. (63)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2)

169

Action Points to a sigaction structure that describes the action to be taken upon receipt of the Signal
parameter signal.

The three types of actions that can be associated with a signal (SIG_DFL, SIG_IGN, or a pointer
to a function) are described as follows:

» SIG_DFL Default action: signal-specific default action.

Except for those signal numbers marked with a + (plus sign), @ (at sign), or ! (exclamation
point), the default action for a signal ends the receiving process with all of the consequences
described in the _exit subroutine. In addition, a memory image file is created in the current
directory of the receiving process if an asterisk appears with a Signal parameter and the
following conditions are met:

— The saved user ID and the real user ID of the receiving process are equal.

— An ordinary file named core exists in the current directory and is writable, or it can be
created. If the file is created, it must have the following properties:

The access permission code 0666 (0x1B6), modified by the file-creation mask (see the
umask subroutine)

A file owner ID that is the same as the effective user ID of the receiving process
A file group ID that is the same as the effective group ID of the receiving process.

For signal numbers marked with a ! (exclamation point), the default action restarts the receiving
process if it has stopped, or continues to run the receiving process.

For signal numbers marked with a @ (at sign), the default action stops the execution of the
receiving process temporarily. When a process stops, a SIGCHLD signal is sent to its parent
process, unless the parent process has set the SA_NOCLDSTOP bit. While a process has
stopped, any additional signals that are sent are not delivered until the process has started
again. An exception to this is the SIGKILL signal, which always terminates the receiving
process. Another exception is the SIGCONT signal, which always causes the receiving process
to restart or continue running. A process whose parent process has ended is sent a SIGKILL
signal if the SIGTSTP, SIGTTIN, or SIGTTOU signals are generated for that process.

For signal numbers marked with a +, the default action ignores the signal. In this case, the
delivery of a signal does not affect the receiving process.

If a signal action is set to SIG_DFL while the signal is pending, the signal remains pending.
* SIG_IGN Ignore signal.

Delivery of the signal does not affect the receiving process. If a signal action is set to the
SIG_IGN action while the signal is pending, the pending signal is discarded.

An exception to this is the SIGCHLD signal whose SIG_DFL action ignores the signal. If the
action for the SIGCHLD signal is set to SIG_IGN, child processes of the calling processes will
not be transformed into zombie processes when they terminate. If the calling process
subsequently waits for its children, and the process has no unwaited for children that were
transformed into zombie processes, it will block until all of its children terminate, and wait,
wait3, waitid and waitpid will fail and set errno to ECHILD.

Note: The SIGKILL and SIGSTOP signals cannot be ignored.
» Pointer to a function, catch signal.

Upon delivery of the signal, the receiving process runs the signal-catching function specified by
the pointer to function. The signal-handler subroutine can be declared as follows:

handler(Signal, Code, SCP)
int Signal, Code;
struct sigcontext *SCP;

170 Technical Reference, Volume 2: Base Operating System and Extensions

The Signal parameter is the signal number. The Code parameter is provided only for
compatibility with other UNIX-compatible systems. The Code parameter value is always 0. The
SCP parameter points to the sigcontext structure that is later used to restore the previous
execution context of the process. The sigcontext structure is defined in the signal.h file.

A new signal mask is calculated and installed for the duration of the signal-catching function (or
until sigprocmask orsigsuspend subroutine is made). This mask is formed by joining the
process-signal mask (the mask associated with the action for the signal being delivered) and
the mask corresponding to the signal being delivered. The mask associated with the
signal-catching function is not allowed to block those signals that cannot be ignored. This is
enforced by the kernel without causing an error to be indicated. If and when the signal-catching
function returns, the original signal mask is restored (modified by any sigprocmask calls that
were made since the signal-catching function was called) and the receiving process resumes
execution at the point it was interrupted.

The signal-catching function can cause the process to resume in a different context by calling
the longjmp subroutine. When the longjmp subroutine is called, the process leaves the signal
stack, if it is currently on the stack, and restores the process signal mask to the state when the
corresponding setjmp subroutine was made.

Once an action is installed for a specific signal, it remains installed until another action is
explicitly requested (by another call to the sigaction subroutine), or until one of the exec
subroutines is called. An exception to this is when the SA_OLDSTYLE bit is set. In this case
the action of a caught signal gets set to the SIG_DFL action before the signal-catching function
for that signal is called.

If a signal action is set to a pointer to a function while the signal is pending, the signal remains
pending.

When signal-catching functions are invoked asynchronously with process execution, the
behavior of some of the functions defined by this standard is unspecified if they are called from
a signal-catching function. The following set of functions are reentrant with respect to signals;
that is, applications can invoke them, without restriction, from signal-catching functions:

_exit
access
alarm
cfgetispeed
cfgetospeed
cfsetispeed
cfsetospeed
chdir
chmod
chown
close

creat

dup

dup2

exec

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 171

execle
execve
fentl

fork
fpathconf
fstat
getegid
geteuid
getgid
getgroups
getpgrp
getpid
getppid
getuid
kill

link
Iseek
mkdir
mkfifo
open
pathconf
pause
pipe
raise
read
readx
rename
rmdir
setgid
setpgid
setpgrp
setsid
setuid
sigaction
sigaddset
sigdelset

sigemptyset

172 Technical Reference, Volume 2: Base Operating System and Extensions

sigismember
signal
sigpending
sigprocmask
sigsuspend
sleep

stat

statx
sysconf
tcdrain
tcflow
tcflush
tcgetattr
tcgetpgrp
tcsendbreak
tcsetattr
tcsetpgrp
time

times
umask
uname
unlink

ustat

utime

wait

waitpid
write

All other subroutines should not be called from signal-catching functions since their behavior is
undefined.

OAction
Points to a sigaction structure in which the signal action data in effect at the time of the sigaction
subroutine is returned.

Invec Points to a sigvec structure that describes the action to be taken upon receipt of the Signal
parameter signal.

Outvec
Points to a sigvec structure in which the signal action data in effect at the time of the sigvec
subroutine is returned.

Action Specifies the action associated with a signal.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 173

Return Values

Upon successful completion, the sigaction subroutine returns a value of 0. Otherwise, a value of
SIG_ERR is returned and the errno global variable is set to indicate the error.

Error Codes

The sigaction subroutine is unsuccessful and no new signal handler is installed if one of the following
occurs:

EFAULT The Action or OAction parameter points to a location outside of the allocated address space of the
process.

EINVAL The Signal parameter is not a valid signal number.

EINVAL An attempt was made to ignore or supply a handler for theSIGKILL, SIGSTOP, and SIGCONT signals.

Related Information

The [acet subroutine, [_exit, exit, or atexit| subroutine, [getinterval,incinterval, absinterval, resinc
Iresabs, alarm,ualarm, getitimer, or setitimer] subroutine, |getrlimit, setrlimit, or vlimit| subroutine,
subroutine, longjmp or setjmp (‘setimp or longjmp Subroutine” on page 135) subroutine, [pause]
subroutine, |ptracE| subroutine, sigpause or sigsuspend (‘sigsuspend or sigpause Subroutine” on|

page 188) subroutine, sigprocmask,sigsetmask, or sigblock (“sigprocmask, sigsetmask, or sigblocK
Subroutine” on page 179) subroutine, sigstack (“sigstack Subroutine” on page 187) subroutine, sigwait
(“sigwait Subroutine” on page 192) subroutine, umask (‘umask Subroutine” on page 418) subroutine, wait,
waitpid, or wait3 (‘wait, waitpid, wait3, or wait364 Subroutine” on page 440) subroutine.

The command.
The [cord file.

[Signal Management in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs provides more information about signal management in multi-threaded processes.

sigaltstack Subroutine

Purpose
Allows a thread to define and examine the state of an alternate stack for signal handlers.

Library
(libc.a)

Syntax

#include <signal.h>

int sigaltstack(const stack_t *ss, stack_t *0ss);

Description

The sigaltstack subroutine allows a thread to define and examine the state of an alternate stack for signal
handlers. Signals that have been explicitly declared to execute on the alternate stack will be delivered on
the alternate stack.

If ssis not null pointer, it points to a stack_t structure that specifies the alternate signal stack that will take
effect upon return from sigaltstack subroutine. The ss_flags member specifies the new stack state. If it is

174 Technical Reference, Volume 2: Base Operating System and Extensions

set to SS_DISABLE, the stack is disabled and ss_sp and ss_ssize are ignored. Otherwise the stack will
be enabled, and the ss_sp and ss_size members specify the new address and size of the stack.

The range of addresses starting at ss_sp, up to but not including ss_sp + ss_size, is available to the
implementation for use as the stack.

If oss is not a null pointer, on successful completion it will point to a stack_t structure that specifies the
alternate signal stack that was in effect prior to the sigaltstack subroutine. The ss_sp and ss_size
members specify the address and size of the stack. The ss_flags member specifies the stack’s state, and
may contain one of the following values:

SS_ONSTACK The process is currently executing on the alternate signal stack. Attempts to modify the alternate
signal stack while the process is executing or it fails. This flag must not be modified by
processes.

SS_DISABLE The alternate signal stack is currently disabled.

The value of SIGSTKSZ is a system default specifying the number of bytes that would be used to cover
the usual case when manually allocating an alternate stack area. The value MINSIGSTKSZ is defined to
be the minimum stack size for a signal handler. In computing an alternate stack size, a program should
add that amount to its stack requirements to allow for the system implementation overhead.

After a successful call to one of the exec functions, there are no alternate stacks in the new process
image.

Parameters

ss A pointer to a stack_t structure specifying the alternate stack to use during signal handling.
0ss A pointer to a stack_t structure that will indicate the alternate stack currently in use.

Return Values
Upon successful completion, sigaltstack subroutine returns 0. Otherwise, it returns -1 and set errno to
indicate the error.

-1 Not successful and the errno global variable is set to one of the following error codes.

Error Codes

EINVAL The ss parameter is not a null pointer, and the ss_flags member pointed to by ss contains flags other
that SS_DISABLE.

ENOMEM The size of the alternate stack area is less than MINSIGSTKSZ.

EPERM An attempt was made to modify an active stack.

Related Information

The sigaction (‘sigaction, sigvec, or signal Subroutine”
siglongjmp Subroutine” on page 186) subroutine.

on page 164) subroutine, sigsetjmp

sigemptyset, sigdfillset, sigaddset, sigdelset, or sigismember
Subroutine

Purpose
Creates and manipulates signal masks.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 175

Library
Standard C Library (libc.a)

Syntax

#include <signal.h>

int sigemptyset (
sigset_t *Set;

int sigfillset (Set)
sigset_t =*Set;

int sigaddset (Set, ignalNumber]
sigset_t *Set;

int SignalNumbers;

int sigdelset (Set, SignalNumber)
sigset_t *Set;

int SignalNumber;

int sigismember (Set, SignalNumber)
sigset_t *Set;

int SignalNumber;

Description

The sigemptyset, sidfillset, sigaddset, sigdelset, and sigismember subroutines manipulate sets of
signals. These functions operate on data objects addressable by the application, not on any set of signals
known to the system, such as the set blocked from delivery to a process or the set pending for a process.

The sigemptyset subroutine initializes the signal set pointed to by the Set parameter such that all signals
are excluded. The sigfillset subroutine initializes the signal set pointed to by the Set parameter such that
all signals are included. A call to either the sigfillset or sigemptyset subroutine must be made at least
once for each object of the sigset_t type prior to any other use of that object.

The sigaddset and sigdelset subroutines respectively add and delete the individual signal specified by
the SignalNumber parameter from the signal set specified by the Set parameter. The sigismember
subroutine tests whether the SignalNumber parameter is a member of the signal set pointed to by the Set
parameter.

Parameters

Set Specifies the signal set.
SignalNumber Specifies the individual signal.
Examples

To generate and use a signal mask that blocks only the SIGINT signal from delivery, enter:
#include <signal.h>

int return_value;
sigset_t newset;
sigset_t =xnewset p;

newset p = &newset;

sigemptyset (newset);

sigaddset (newset, SIGINT);

return_value = sigprocmask (SIG_SETMASK, newset_p, NULL);

176 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values

Upon successful completion, the sigismember subroutine returns a value of 1 if the specified signal is a
member of the specified set, or the value of 0 if not. Upon successful completion, the other subroutines
return a value of 0. For all the preceding subroutines, if an error is detected, a value of -1 is returned and
the errno global variable is set to indicate the error.

Error Codes
The sigdfillset, sigdelset, sigismember, and sigaddset subroutines are unsuccessful if the following is
true:

EINVAL The value of the SignalNumber parameter is not a valid signal number.

Related Information

The sigaction, sigvec, or signal (“sigaction, sigvec, or signal Subroutine” on page 164{) subroutine,
sigprocmask (“sigprocmask, sigsetmask, or sigblock Subroutine” on page 179) subroutine, sigsuspend
“sigsuspend or sigpause Subroutine” on page 188) subroutine.

siginterrupt Subroutine

Purpose
Sets restart behavior with respect to signals and subroutines.

Library
Standard C Library (libc.a)

Syntax
int siginterrupt ()

int Signal, Flag;

Description

The siginterrupt subroutine is used to change the subroutine restart behavior when a subroutine is
interrupted by the specified signal. If the flag is false (0), subroutines are restarted if they are interrupted
by the specified signal and no data has been transferred yet.

If the flag is true (1), the restarting of subroutines is disabled. If a subroutine is interrupted by the specified
signal and no data has been transferred, the subroutine will return a value of -1 with the errno global
variable set to EINTR. Interrupted subroutines that have started transferring data return the amount of data
actually transferred. Subroutine interrupt is the signal behavior found on 4.1 BSD and AT&T System V
UNIX systems.

Note that the BSD signal-handling semantics are not altered in any other way. Most notably, signal
handlers always remain installed until explicitly changed by a subsequent sigaction or sigvec call, and
the signal mask operates as documented in the sigaction subroutine. Programs can switch between
restartable and interruptible subroutine operations as often as desired in the running of a program.

Issuing a siginterrupt call during the running of a signal handler causes the new action to take place on
the next signal caught.

Restart does not occur unless it is explicitly specified with the sigaction or sigvec subroutine in the libc.a
library.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 177

This subroutine uses an extension of the sigvec subroutine that is not available in the BSD 4.2; hence, it
should not be used if backward compatibility is needed.

Parameters
Signal Indicates the signal.
Flag Indicates true or false.

Return Values

A value of 0 indicates that the call succeeded. A value of -1 indicates that the supplied signal number is
not valid.

Related Information

The sigaction or sigvec (“sigaction, sigvec, or signal Subroutine” on page 164{) subroutine, sigpause
(“sigsuspend or sigpause Subroutine” on page 188) subroutine, sigsetmask or sigblock

Isigsetmask, or sigblock Subroutine” on page 179) subroutine.

signbit Macro

Purpose
Tests the sign.

Syntax
#include <math.h>

int signbit @
real-floating x;

Description

The signbit macro determines whether the sign of its argument value is negative. NaNs, zeros, and
infinities have a sign bit.

Parameters

X Specifies the value to be tested.

Return Values
The signbit macro returns a nonzero value if the sign of its argument value is negative.

Related Information

class, _class, finite, isnan, or unordered Subroutines, [fpclassify Subroutinel fisfinite Subroutine} fisinf|
Subroutine} [isnormal Subrouting, and|lidiv Subroutinelin AIX 5L Version 5.2 Technical Reference: Base
Operating System and Extensions Volume 1.

in AIX 5L Version 5.2 Files Reference.

178 Technical Reference, Volume 2: Base Operating System and Extensions

sigpending Subroutine

Purpose
Returns a set of signals that are blocked from delivery.

Library
Standard C Library (libc.a)

Syntax

#include <signal.h>

int sigpending (

sigset_t *Set;

Description

The sigpending subroutine stores a set of signals that are blocked from delivery and pending for the
calling thread, in the space pointed to by the Sef parameter.

Parameters

Set Specifies the set of signals.

Return Values

Upon successful completion, the sigpending subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The sigpending subroutine is unsuccessful if the following is true:

EINVAL The input parameter is outside the user’'s address space.

Related Information
The sigprocmask (‘sigprocmask, sigsetmask, or sigblock Subroutine”) subroutine.

sigprocmask, sigsetmask, or sigblock Subroutine

Purpose
Sets the current signal mask.

Library
Standard C Library (libc.a)

Syntax

#include <signal.h>

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 179

int sigprocmask (fow], [Set],

int How;

const sigset_t *Set;

sigset *0Set;

int |s1'gsetmask| (|SignaZMaskb

int SignalMask;

int (SignalMask)

int SignalMask;

Description

Note: The sigprocmask, sigsetmask, and sigblock subroutines must not be used in a multi-threaded
application. The sigthreadmask d“sigthreadmask Subroutine” on page 189[) subroutine must be
used instead.

The sigprocmask subroutine is used to examine or change the signal mask of the calling thread.

The subroutine is used to examine or change the signal mask of the calling process.

Typically, you should use the sigprocmask(SIG_BLOCK) subroutine to block signals during a critical
section of code. Then use the sigprocmask(SIG_SETMASK) subroutine to restore the mask to the
previous value returned by the sigprocmask(SIG_BLOCK) subroutine.

If there are any pending unblocked signals after the call to the sigprocmask subroutine, at least one of
those signals will be delivered before the sigprocmask subroutine returns.

The sigprocmask subroutine does not allow the SIGKILL or SIGSTOP signal to be blocked. If a program
attempts to block either signal, the sigprocmask subroutine gives no indication of the error.

Parameters

How

Set

OSet

SignalMask

Indicates the manner in which the set is changed. It can have one of the following values:

SIG_BLOCK
The resulting set is the union of the current set and the signal set pointed to by the Set
parameter.

SIG_UNBLOCK
The resulting set is the intersection of the current set and the complement of the signal
set pointed to by the Set parameter.

SIG_SETMASK

The resulting set is the signal set pointed to by the Set parameter.
Specifies the signal set. If the value of the Set parameter is not null, it points to a set of signals
to be used to change the currently blocked set. If the value of the Set parameter is null, the value
of the How parameter is not significant and the process signal mask is unchanged. Thus, the call
can be used to inquire about currently blocked signals.
If the OSet parameter is not the null value, the signal mask in effect at the time of the call is
stored in the space pointed to by the OSet parameter.
Specifies the signal mask of the process.

Compatibility Interfaces

The sigsetmask subroutine allows changing the process signal mask for signal values 1 to 31. This
same function can be accomplished for all values with the sigprocmask(SIG_SETMASK) subroutine. The
signal of value j will be blocked if the ith bit of SignalMask parameter is set.

180 Technical Reference, Volume 2: Base Operating System and Extensions

Upon successful completion, the sigsetmask subroutine returns the value of the previous signal mask. If
the subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the error as in
the sigprocmask subroutine.

The sigblock subroutine allows signals with values 1 to 31 to be logically ORed into the current process
signal mask. This same function can be accomplished for all values with the sigprocmask(SIG_BLOCK)
subroutine. The signal of value i will be blocked, in addition to those currently blocked, if the i-th bit of the
SignalMask parameter is set.

It is not possible to block a SIGKILL or SIGSTOP signal using the sigblock or sigsetmask subroutine.
This restriction is silently imposed by the system without causing an error to be indicated.

Upon successful completion, the sigblock subroutine returns the value of the previous signal mask. If the
subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the error as in the
sigprocmask subroutine.

Return Values

Upon completion, a value of 0 is returned. If the sigprocmask subroutine fails, the signal mask of the
process is unchanged, a value of -1 is returned, and the global variable errno is set to indicate the error.

Error Codes
The sigprocmask subroutine is unsuccessful if the following is true:
EPERM The user does not have the privilege to change the signal’s mask.

EINVAL The value of the How parameter is not equal to one of the defined values.
EFAULT The user’'s mask is not in the process address space.

Examples
To set the signal mask to block only the SIGINT signal from delivery, enter:

#include <signal.h>

int return_value;
sigset_t newset;
sigset_t xnewset_p;

newset_p = &newset;

sigemptyset (newset p);

sigaddset(newset_p, SIGINT);

return_value = sigprocmask (SIG_SETMASK, newset p, NULL);

Related Information
The |kill or killpg| subroutine, sigaction, sigvec, or signal (“sigaction, sigvec, or signal Subroutine” on
page 164) subroutine, sigaddset, sigdelset, sigemptyset, sigfillset, sigismember (‘sigemptyset,|

sigfillset, sigaddset, sigdelset, or sigismember Subroutine” on page 175) subroutine, sigpause

(“sigsuspend or sigpause Subroutine” on page 188) subroutine, sigpending (‘sigpending Subroutine”

page 179) subroutine, sigsuspend (‘sigsuspend or sigpause Subroutine” on page 188) subroutine.

sigqueue Subroutine

Purpose
Queues a signal to a process.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 181

Library
Standard C Library (libc.a)

Syntax

#include <signal.h>

int sigqueue ,
pid_t pid;

int signo;

const union sigval value;

Description

The sigqueue subroutine causes the signal specified by the signo parameter to be sent with the value
specified by the value parameter to the process specified by the pid parameter. If the signo parameter is
zero, error checking is performed but no signal is actually sent. This can be used to check the validity of
the pid parameter.

The conditions required for a process to have permission to queue a signal to another process are the
same as for the kill subroutine.

The sigqueue subroutine returns immediately. If SA_SIGINFO is set by the receiving process for the
specified signal, and if the resources are available to queue the signal, the signal is queued and sent to
the receiving process. If SA_SIGINFO is not set for the signo parameter, the signal is sent at least once to
the receiving process.

If multiple signals in the range SIGRTMIN to SIGRTMAX should be available for delivery, the lowest
numbered of them will be delivered first.

Parameters

pid Specifies the process to which a signal is to be sent.
signo Specifies the signal number.

value Specifies the value to be sent with the signal.

Return Values

Upon successful completion the sigqueue subroutine returns a zero. If unsuccessful, it returns a -1 and
sets the errno variable to indicate the error.

Error Code
The sigqueue subroutine will fail if:

EAGAIN No resources are available to queue the signal. The process has already queued SIGQUEUE_MAX
signals that are still pending at the receiver(s), or a system-wide resource limit has been exceeded.

EINVAL The value of the signo parameter is an invalid or unsupported signal number, or if the selected signal
can either stop or continue the receiving process. AlX does not support queuing of the following
signals: SIGKILL, SIGSTOP, SIGTSTP, SIGCONT, SIGTTIN, SIGTTOU, and SIGCLD.

EPERM The process does not have the appropriate privilege to send the signal to the receiving process.

ESRCH The process specified by the pid parameter does not exist.

Related Information
“sigtimedwait and sigwaitinfo Subroutine” on page 191|and [‘sigaction, sigvec, or signal Subroutine” on|

page 1 64_1|.

182 Technical Reference, Volume 2: Base Operating System and Extensions

sigset, sighold, sigrelse, or sigignore Subroutine

Purpose
Enhance the signal facility and provide signal management.

Library
Standard C Library (libc.a)

Syntax

#include <signal.h>

void (xsigset([Signall, |Function])) ()
int Signal;

void (*Function) ();

int sighold (

int Signal;

int sigrelse ([Signal)

int Signal;

int sigignore ([Signal)

int Signal;

Description

The sigset, sighold, sigrelse, and sigignore subroutines enhance the signal facility and provide signal
management for application processes.

The sigset subroutine specifies the system signal action to be taken upon receiving a Signal parameter.
The sighld and sigrelse subroutines establish critical regions of code. A call to the sighold subroutine is
analogous to raising the priority level and deferring or holding a signal until the priority is lowered by
sigrelse. The sigrelse subroutine restores the system signal action to the action that was previously
specified by the sigset structure.

The sigignore subroutine sets the action for the Signal parameter to SIG_IGN.

The other signal management routine, signal, should not be used in conjunction with these routines for a
particular signal type.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 183

Parameters

Signal

Specifies the signal. The Signal parameter can be assigned any one of the following signals:

SIGHUP
Hang up

SIGINT Interrupt

SIGQUIT
Quit*

SIGILL lllegal instruction (not reset when caught)*

SIGTRAP
Trace trap (not reset when caught)*

SIGABRT
Abort*

SIGFPE
Floating point exception*, or arithmetic exception, integer divide by 0

SIGSYS
Bad argument to routine*

SIGPIPE
Write on a pipe with no one to read it

SIGALRM
Alarm clock

SIGTERM
Software termination signal

SIGUSR1
User-defined signal 1

SIGUSR2
User-defined signal 2.

* The default action for these signals is an abnormal termination.

For portability, application programs should use or catch only the signals listed above. Other signals are
hardware-dependant and implementation-dependant and may have very different meanings or results
across systems. For example, the System V signals (SIGEMT, SIGBUS, SIGSEGV, and SIGIOT) are
implementation-dependent and are not listed above. Specific implementations may have other
implementation-dependent signals.

184 Technical Reference, Volume 2: Base Operating System and Extensions

Function

address

Specifies the choice. The Function parameter is declared as a type pointer to a function returning
void. The Function parameter is assigned one of four values: SIG_DFL, SIG_IGN, SIG_HOLD, or an
address of a signal-catching function. Definitions of the actions taken by each of the values are:

SIG_DFL
Terminate process upon receipt of a signal.

Upon receipt of the signal specified by the Signal parameter, the receiving process is to be
terminated with all of the consequences outlined in the subroutine. In addition, if Signal
is one of the signals marked with an asterisk above, implementation-dependent abnormal
process termination routines, such as a core dump, can be invoked.

SIG_IGN
Ignore signal.

Any pending signal specified by the Signal parameter is discarded. A pending signal is a
signal that has occurred but for which no action has been taken. The system signal action is
set to ignore future occurrences of this signal type.

SIG_HOLD
Hold signal.

The signal specified by the Signal parameter is to be held. Any pending signal of this type
remains held. Only one signal of each type is held.
Catch signal.

Upon receipt of the signal specified by the Signal parameter, the receiving process is to execute the
signal-catching function pointed to by the Function parameter. Any pending signal of this type is
released. This address is retained across calls to the other signal management functions, sighold
and sigrelse. The signal number Signal is passed as the only argument to the signal-catching
function. Before entering the signal-catching function, the value of the Function parameter for the
caught signal is set to SIG_HOLD. During normal return from the signal-catching handler, the system
signal action is restored to the Function parameter and any held signal of this type is released. If a
nonlocal goto (see the setjmp subroutine) is taken, the sigrelse subroutine must be invoked to
restore the system signal action and to release any held signal of this type.

Upon return from the signal-catching function, the receiving process will resume execution at the
point at which it was interrupted, except for implementation-defined signals in which this may not be
true.

When a signal to be caught occurs during a nonatomic operation such as a call to the read, write,
open, or ioctl subroutine on a slow device (such as a terminal); during a pause subroutine; during a
wait subroutine that does not return immediately, the signal-catching function is executed. The
interrupted routine then returns a value of -1 to the calling process with the errno global variable set
to EINTR.

Return Values

Upon successful completion, the sigset subroutine returns the previous value of the system signal action
for the specified Signal. Otherwise, it returns SIG_ERR and the errno global variable is set to indicate the

error.

For the sighold, sigrelse, and sigignore subroutines, a value of 0 is returned upon success. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The sigset, sighold, sigrelse, or sigignore subroutine is unsuccessful if the following is true:

EINVAL

The Signal value is either an illegal signal number, or the default handling of Signal cannot be changed.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 185

Related Information
The|exit| subroutine, m subroutine, setjmp (“setjmp or longjmp Subroutine” on page 135) subroutine,
signal (“sigaction, sigvec, or signal Subroutine” on page 164) subroutine, wait (‘wait, waitpid, wait3, o1
(wait364 Subroutine” on page 440)subroutine.

sigsetjmp or siglongjmp Subroutine
Purpose

Saves or restores stack context and signal mask.
Library

Standard C Library (libc.a)

Syntax

#include <setjmp.h>

int sigsetjmp ([Environment|, [SaveMask])
sigjmp_buf Environment;
int SaveMask;

void siglongjmp (Environment,

sigjmp_buf Environment;
int Value;

Description

The sigsetjmp subroutine saves the current stack context, and if the value of the SaveMask parameter is
not 0, the sigsetjmp subroutine also saves the current signal mask of the process as part of the calling
environment.

The siglongjmp subroutine restores the saved signal mask only if the Environment parameter was
initialized by a call to the sigsetjmp subroutine with a nonzero SaveMask parameter argument.

Parameters

Environment Specifies an address for a sigjmp_buf structure.

SaveMask Specifies the flag used to determine if the signal mask is to be saved.
Value Specifies the return value from the siglongjmp subroutine.

Return Values
The sigsetjmp subroutine returns a value of 0. The siglongjmp subroutine returns a nonzero value.

Related Information
The setjmp or longjmp (“setjmp or longimp Subroutine” on page 13

subroutine, sigaction (

“sigaction,

186 Technical Reference, Volume 2: Base Operating System and Extensions

sigstack Subroutine

Purpose
Sets and gets signal stack context.

Library
Standard C Library (libc.a)

Syntax

#include <signal.h>

int sigstack (|[InStackl, PutStack)
struct sigstack *InStack, *OutStack;

Description
The sigstack subroutine defines an alternate stack on which signals are to be processed.

When a signal occurs and its handler is to run on the signal stack, the system checks to see if the process
is already running on that stack. If so, it continues to do so even after the handler returns. If not, the signal
handler runs on the signal stack, and the original stack is restored when the handler returns.

Use the sigvec or sigaction subroutine to specify whether a given signal-handler routine is to run on the
signal stack.

Attention: A signal stack does not automatically increase in size as a normal stack does. If the stack
overflows, unpredictable results can occur.

Parameters

InStack Specifies the stack pointer of the new signal stack.

If the value of the InStack parameter is nonzero, it points to a sigstack structure, which has the
following members:

caddr_t ss_sp;

int ss_onstack;

The value of InStack->ss_sp specifies the stack pointer of the new signal stack. Since stacks grow
from numerically greater addresses to lower ones, the stack pointer passed to the sigstack
subroutine should point to the numerically high end of the stack area to be used.
InStack->ss_onstack should be set to a value of 1 if the process is currently running on that stack;
otherwise, it should be a value of 0.

If the value of the InStack parameter is 0 (that is, a null pointer), the signal stack state is not set.
OutStack Points to structure where current signal stack state is stored.

If the value of the OutStack parameter is nonzero, it points to a sigstack structure into which the
sigstack subroutine stores the current signal stack state.

If the value of the OutStack parameter is 0, the previous signal stack state is not reported.

Return Values

Upon successful completion, the sigstack subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 187

Error Codes

The sigstack subroutine is unsuccessful and the signal stack context remains unchanged if the following
is true:

EFAULT The InStack or OutStack parameter points outside of the address space of the process.

Related Information

Thelongjmp ([‘setjimp or longjmp Subroutine” on page 135) subroutine, setjimp (“setjmp or lon ml
Subroutine” on page 135) subroutine, sigaction, signal, or sigvec (‘sigaction, sigvec, or signal

Subroutine” on page 164) subroutine.

sigsuspend or sigpause Subroutine

Purpose
Automatically changes the set of blocked signals and waits for a signal.

Library
Standard C Library (libc.a)

Syntax

#include <signal.h>

int sigsuspend ([SignalMask|

const sigset_t *SignalMask;

int sigpause (SignalMask)
int SignalMask;

Description

The sigsuspend subroutine replaces the signal mask of a thread with the set of signals pointed to by the
SignalMask parameter. It then suspends execution of the thread until a signal is delivered that executes a
signal-catching function or terminates the process. The sigsuspend subroutine does not allow the
SIGKILL or SIGSTOP signal to be blocked. If a program attempts to block one of these signals, the
sigsuspend subroutine gives no indication of the error.

If delivery of a signal causes the process to end, the sigsuspend subroutine does not return. If delivery of
a signal causes a signal-catching function to start, the sigsuspend subroutine returns after the
signal-catching function returns, with the signal mask restored to the set that existed prior to the
sigsuspend subroutine.

The sigsuspend subroutine sets the signal mask and waits for an unblocked signal as one atomic
operation. This means that signals cannot occur between the operations of setting the mask and waiting
for a signal. If a program invokes the sigprocmask (SIG_SETMASK) and pause subroutines separately, a
signal that occurs between these subroutines might not be noticed by the pause subroutine.

In normal usage, a signal is blocked by using the sigprocmask(SIG_BLOCK,...) subroutine for
single-threaded applications, or the sigthreadmask(SIG_BLOCK,...) subroutine for multi-threaded
applications (using the libpthreads.a threads library) at the beginning of a critical section. The
process/thread then determines whether there is work for it to do. If no work is to be done, the
process/thread waits for work by calling the sigsuspend subroutine with the mask previously returned by
the sigprocmask or sigthreadmask subroutine.

188 Technical Reference, Volume 2: Base Operating System and Extensions

The sigpause subroutine is provided for compatibility with older UNIX systems; its function is a subset of
the sigsuspend subroutine.

Parameter

SignalMask Points to a set of signals.

Return Values

If a signal is caught by the calling thread and control is returned from the signal handler, the calling thread
resumes execution after the sigsuspend or sigpause subroutine, which always return a value of -1 and
set the errno global variable to EINTR.

Related Information

The subroutine, sigprocmask (“sigprocmask, sigsetmask, or sigblock Subroutine” on page 179b
subroutine, sigaction or signal (“sigaction, sigvec, or signal Subroutine” on page 164) subroutine,
sigthreadmask (‘sigthreadmask Subroutine”) subroutine.

[Signal Management]in ALX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs provides more information about signal management in multi-threaded processes.

sigthreadmask Subroutine

Purpose
Sets the signal mask of a thread.

Library
Threads Library (libpthreads.a)

Syntax

#include <pthread.h>
#include <signal.h>

int sigthreadmask(jowl bld_set)

int how;
const sigset_t *set;
sigset_t *old set;

Description

The sigthreadmask subroutine is used to examine or change the signal mask of the calling thread. The
sigprocmask subroutine must not be used in a multi-threaded process.

Typically, the sigthreadmask(SIG_BLOCK) subroutine is used to block signals during a critical section of
code. The sigthreadmask(SIG_SETMASK) subroutine is then used to restore the mask to the previous
value returned by the sigthreadmask(SIG_BLOCK) subroutine.

If there are any pending unblocked signals after the call to the sigthreadmask subroutine, at least one of
those signals will be delivered before the sigthreadmask subroutine returns.

The sigthreadmask subroutine does not allow the SIGKILL or SIGSTOP signal to be blocked. If a
program attempts to block either signal, the sigthreadmask subroutine gives no indication of the error.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 189

Note: The pthread.h header file must be the first included file of each source file using the threads

library.
Parameters
how Indicates the manner in which the set is changed. It can have one of the following values:
SIG_BLOCK
The resulting set is the union of the current set and the signal set pointed to by the set
parameter.
SIG_UNBLOCK
The resulting set is the intersection of the current set and the complement of the signal set
pointed to by the set parameter.
SIG_SETMASK
The resulting set is the signal set pointed to by the set parameter.
set Specifies the signal set. If the value of the Set parameter is not null, it points to a set of signals to be

used to change the currently blocked set. If the value of the Set parameter is null, the value of the How
parameter is not significant and the process signal mask is unchanged. Thus, the call can be used to
inquire about currently blocked signals.

old_set If the old_set parameter is not the null value, the signal mask in effect at the time of the call is stored in
the spaced pointed to by the old_set parameter.

Return Values

Upon completion, a value of 0 is returned. If the sigthreadmask subroutine fails, the signal mask of the
process is unchanged, a value of -1 is returned, and the global variable errno is set to indicate the error.

Error Codes
The sigthreadmask subroutine is unsuccessful if the following is true:

EFAULT The set or old_set pointers are not in the process address space.
EINVAL The value of the how parameter is not supported.
EPERM The calling thread does not have the privilege to change the signal’s mask.

Examples
To set the signal mask to block only the SIGINT signal from delivery, enter:

#include <pthread.h>
#include <signal.h>

int return_value;
sigset_t newset;
sigset_t xnewset p;

newset_p = &newset;

sigemptyset (newset p);

sigaddset(newset_p, SIGINT);

return_value = sigthreadmask(SIG_SETMASK, newset p, NULL);

Related Information

The|ki|| or kiIIp§] subroutine, |pthread_ki||| subroutine, sigaction, sigvec, or signal (“sigaction, sigvec, of

|signa| Subroutine” on page 164) subroutine, sigpause d‘gigsuspend or sigpause Subroutine” on page 188)
subroutine, sigpending (“sigpending Subroutine” on page 179) subroutine, sigwait (“sigwait Subroutine’]
on page 192) subroutine, sigsuspend (‘sigsuspend or sigpause Subroutine” on page 188) subroutine.

190 Technical Reference, Volume 2: Base Operating System and Extensions

[Signal Management]in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

sigtimedwait and sigwaitinfo Subroutine

Purpose
Waits for a signal, and provides a mechanism for retrieving any queued value.

Library
Standard C Library (libc.a)

Threads Library (libpthreads.a)

Syntax

#include <signal.h>

int sigtimedwait (sed, [infd,
const sigset_t *set;

siginfo_t *info;

const struct timespec *timeout;

int sigwaitinfo (set, info)
const sigset_t *set;
siginfo_t *info;

Description

The sigwaitinfo subroutine selects a pending signal from the set specified by the set parameter. If no
signal in the set parameter is pending at the time of the call, the calling thread is suspended until one or
more signals in the set parameter become pending or until it is interrupted by an unblocked, caught signal.
If the wait was interrupted by an unblocked, caught signal, the subroutines will restart themselves.

The sigwaitinfo subroutine is functionally equivalent to the sigwait subroutine if the info argument is
NULL. If the info argument is non-NULL, the sigwaitinfo subroutine is equivalent to the sigwait
subroutine, except that the selected signal number is stored in the si_signo member, and the cause of the
signal is stored in the si_code member of the info parameter. If any value is queued to the selected
signal, the first such queued value is dequeued, and if the info argument is non-NULL, the value is stored
in the si_value member of the info parameter. If no further signals are queued for the selected signal, the
pending indication for that signal is reset.

The sigtimedwait subroutine is equivalent to the sigwaitinfo subroutine except that if none of the signals
specified by the set parameter are pending, the sigtimedwait subroutine waits for the time interval
referenced by the timeout parameter. If the timespec structure pointed to by the timeout parameter
contains a zero value and if none of the signals specified by the set parameter are pending, the
sigtimedwait subroutine returns immediately with an error.

If there are multiple pending signals in the range SIGRTMIN to SIGRTMAX, the lowest numbered signal in
that range will be selected.

Note: All signals in set should have been blocked prior to calling any of the sigwait subroutines.

Parameters
set Specifies the pending signals that may be selected.
info Points to a siginfo_t in which additional signal information can be returned.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 191

timeout Points to the timespec structure.

Return Values

Upon successful completion, the sigtimedwait and sigwaitinfo subroutines return the selected signal
number. If unsuccessful, the sigtimedwait and sigwaitinfo subroutines return -1 and set the errno
variable to indicate the error.

Error Codes
The sigtimedwait subroutine will fail if:

EAGAIN No signal specified by the set parameter was generated within the specified timeout period.

The sigtimedwait and sigwaitinfo subroutines may fail if:

EINVAL The set parameter is empty, or contains an invalid, non-catchable, or unsupported signal number.

The sigtimedwait subroutine may also fail when none of the selected signals are pending if:

EINVAL The timeout parameter specified a tv_nsec value less than zero or greater than or equal to 1000 million.

Related Information
[‘sigqueue Subroutine” on page 181| and ['sigwait Subroutine’].

sigwait Subroutine

Purpose
Blocks the calling thread until a specified signal is received.

Library
Threads Library (libpthreads.a)

Syntax

#include </usr/include/dce/cma_sigwait.h>

int sigwait (,
const sigset_t =*set;
int *sig;

Description

The sigwait subroutine blocks the calling thread until one of the signal in the signal set set is received by
the thread. Only asynchronous signals can be waited for.

The signal can be either sent directly to the thread, using the pthread_kill subroutine, or to the process. In
that case, the signal will be delivered to exactly one thread that has not blocked the signal.

Concurrent use of sigaction and sigwait subroutines on the same signal is forbidden.

192 Technical Reference, Volume 2: Base Operating System and Extensions

Parameters

set Specifies the set of signals to wait on.
sig Points to where the received signal number will be stored.

Return Values

Upon successful completion, the received signal number is returned via the sig parameter, and 0 is
returned. Otherwise, an error code is returned.

Error Code
The sigwait subroutine is unsuccessful if the following is true:

EINVAL The set parameter contains an invalid or unsupported signal number.

Related Information
The . subroutine, subroutine, sigaction ('sigaction, sigvec, or signal Subroutine” on|
page 164

) subroutine, sigthreadmask (‘sigthreadmask Subroutine” on page 189) subroutine.

[Signal Management] in ALX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs .

sin, sinf, or sinl Subroutine

Purpose
Computes the sine.

Syntax

#include <math.h>

double sin (ED
double x;

float sinf (x)
float x;

long double sinl (x)
Tong double x;

Description

The sin, sinf, sinl subroutines compute the sine of the x parameter, measured in radians.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters
X Floating-point value
y Floating-point value

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2)

Return Values
Upon successful completion, the sin, sinf, and sinl subroutines return the sine of x.

If xis NaN, a NaN is returned.
If xis 0, x is returned.
If x is subnormal, a range error may occur and x should be returned.

If x is +Inf, a domain error occurs, and a NaN is returned.

Error Codes

The sin, sinf, and sinl subroutines lose accuracy when passed a large value for the x parameter. In the
sin subroutine, for example, values of x that are greater than pi are argument-reduced by first dividing
them by the machine value for 2 * pi , and then using the IEEE remainder of this division in place of x.
Since the machine value of pi can only approximate its infinitely precise value, the remainder of x/(2 * pi)
becomes less accurate as x becomes larger. Similar loss of accuracy occurs for the sinl subroutine during
argument reduction of large arguments.

sin When the x parameter is extremely large, these functions return 0 when there would be a
complete loss of significance. In this case, a message indicating TLOSS error is printed on the
standard error output. For less extreme values causing partial loss of significance, a PLOSS error
is generated but no message is printed. In both cases, the errno global variable is set to a
ERANGE value.

These error-handling procedures may be changed with the matherr subroutine when using the libmsaa.a
(-Imsaa) library.

Related Information
The [matherr] subroutine, sinh, sinhl {sinh, sinhf, or sinhl Subroutine’) subroutines.

[Subroutines Overview|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

[128-Bit long double Floating-Point Format{in A/X 5L Version 5.2 General Programming Concepts: Writing
and Debugging Programs.

in AIX 5L Version 5.2 Files Reference.

sinh, sinhf, or sinhl Subroutine

Purpose
Computes hyperbolic sine.

Syntax

#include <math.h>

double sinh (El)
double x;

float sinhf (x)
float x;

194 Technical Reference, Volume 2: Base Operating System and Extensions

long double sinhl (x)
double x;

Description
The sinh, sinhf, and sinhl subroutines compute the hyperbolic sine of the x parameter.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

X Specifies a double-precision floating-point value.

Return Values
Upon successful completion, the sinh, sinhf, and sinhl subroutines return the hyperbolic sine of x.

If the result would cause an overflow, a range error occurs and +HUGE_VAL, +HUGE_VALF, and
+HUGE_VALL (with the same sign as x) is returned as appropriate for the type of the function.

If xis NaN, a NaN is returned.
If x is £0 orInf, x is returned.

If x is subnormal, a range error may occur and x should be returned.

Error Codes

If the correct value overflows, the sinh, sinhf and sinhl subroutines return a correctly signed HUGE_VAL,
and the errno global variable is set to ERANGE.

These error-handling procedures should be changed with thesubroutine when the libmsaa.a
(-lmsaa) library is used.

Related Information

asinh, acosh, or atanh Subrouting|, [feclearexcept Subroutineg) ffetestexcept Subroutine} and [class, _class,|
finite, isnan, or unordered Subroutines|in AIX 5L Version 5.2 Technical Reference: Base Operating System
and Extensions Volume 1.

in AIX 5L Version 5.2 Files Reference.

The subroutine, sin, asin, acos, atan, or atan2 (sin, sinf, or sinl Subroutine” on page 193)
subroutine.

[Subroutines Overview|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

|1 28-Bit long double Floating-Point Format| in AIX 5L Version 5.2 General Programming Concepts: Writing
and Debugging Programs.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 195

sleep, nsleep or usleep Subroutine

Purpose
Suspends a current process from execution.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

unsigned int sleep (

#include <sys/time.h>

int nsleep (,
struct timestruc_t *Rqtp, *Rmtp;

int usleep (

useconds_t Useconds;

Description

The nsleep subroutine is an extended form of the sleep subroutine. The sleep or nsleep subroutines
suspend the current process until:

* The time interval specified by the Rqip parameter elapses.

» A signal is delivered to the calling process that invokes a signal-catching function or terminates the
process.

* The process is notified of an event through an event notification function.

The suspension time may be longer than requested due to the scheduling of other activity by the system.
Upon return, the location specified by the Rmip parameter shall be updated to contain the amount of time
remaining in the interval, or O if the full interval has elapsed.

Parameters

Rqtp Time interval specified for suspension of execution.
Rmip Specifies the time remaining on the interval timer or 0.
Seconds Specifies time interval in seconds.

Useconds Specifies time interval in microseconds.

Compatibility Interfaces

The sleep and usleep subroutines are provided to ensure compatibility with older versions of the
operating system, AT&T System V and BSD systems. They are implemented simply as front-ends to the
nsleep subroutine. Programs linking with the libbsd.a library get a BSD compatible version of the sleep
subroutine. The return value from the BSD compatible sleep subroutine has no significance and should be
ignored.

Return Values
The nsleep, sleep, and usleep subroutines return a value of 0 if the requested time has elapsed.

If the nsleep subroutine returns a value of -1, the notification of a signal or event was received and the
Rmip parameter is updated to the requested time minus the time actually slept (unslept time), and the
errno global variable is set.

196 Technical Reference, Volume 2: Base Operating System and Extensions

If the sleep subroutine returns because of a premature arousal due to delivery of a signal, the return value
will be the unslept amount (the requested time minus the time actually slept) in seconds.

Error Codes

If the nsleep subroutine fails, a value of -1 is returned and the errno global variable is set to one of the
following error codes:

EINTR A signal was caught by the calling process and control has been returned from the signal-catching
routine, or the process has been notified of an event through an event notification function.

EINVAL The Rgip parameter specified a nanosecond value less than zero or greater than or equal to one
second.

The sleep subroutine is always successful and no return value is reserved to indicate an error.

Related Information

Thesubroutine, subroutine, sigaction (“sigaction, sigvec, or signal Subroutine” on page 164)
subroutine.

List of Time Data Manipulation Services|in AIX 5L Version 5.2 System Management Concepts: Operating
System and Devices.

[Subroutines Overview|in AIX 5L Version 5.2 System Management Guide: Operating System and Devices.

sockatmark Subroutine

Purpose
Determines whether a socket is at the out-of-band mark.

Syntax

#include <sys/socket.h>

int sockatmark(El)
int s;

Description

The sockatmark subroutine determines whether the socket specified by the s parameter is at the
out-of-band data mark. If the protocol for the socket supports out-of-band data by marking the stream with
an out-of-band data mark, the sockatmark subroutine returns a 1 when all data preceding the mark has
been read and the out-of-band data mark is the first element in the receive queue. The sockatmark
subroutine does not remove the mark from the stream.

The use of this subroutine between receive operations allows an application to determine which received
data precedes the out-of-band data and which follows the out-of-band data. There is an inherent race
condition in the use of this function. On an empty receive queue, the current read of the location might
well be at the mark’, but the system has no way of knowing that the next data segment that will arrive from
the network will carry the mark, and sockatmark will return false The next read operation will silently
consume the mark. Because of this, the sockatmark subroutine can only be used reliably when the
application already knows that the out-of-band data has been seen by the system or that it is known that
there is data waiting to be read at the socket.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 197

Parameters

s Specifies the socked to be checked.

Return Values

Upon successful completion, the sockatmark subroutine returns a value indicating whether the socket is
at an out-of-band data mark. If the protocol has marked the data stream and all data preceding the mark
has been read, the return value is 1. If there is no mark, or if data precedes the mark in the receive
queue, the sockatmark subroutine returns a 0. Otherwise, it returns a value of -1 and sets the errno
global variable to indicate the error.

Error Codes

EBADF The s parameter is not a valid file descriptor.
ENOTTY The s parameter does not specify a descriptor for a socket.

SpmiAddSetHot Subroutine

Purpose
Adds a set of peer statistics values to a hotset.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

struct SpmiHotVals *SpmiAddSetHot (HotSet, StatName,

GrandParent, maxresp,
threshold, frequency, feed type,
except_type, severity, trap_no)

struct SpmiHotSet *HotSet;

char *StatName;

SpmiCxHd1 GrandParent;

int maxresp;

int threshold;

int frequency;

int feed type;

int excp_type;

int severity;

int trap_no;

Description

The SpmiAddSetHot subroutine adds a set of peer statistics to a hotset. The structure that
provides the anchor point to the set must exist before the SpmiAddSetHot subroutine call can succeed.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters

HotSet

Specifies a pointer to a valid structure of type SpmiHotSet as created by the SpmiCreateHotSet
(“‘SpmiCreateHotSet” on page 201) subroutine call.

198 Technical Reference, Volume 2: Base Operating System and Extensions

StatName

Specifies the name of the statistic within the subcontexts (peer contexts) of the context identified
by the GrandParent parameter.

GrandParent

Specifies a valid handle as obtained by another subroutine call. The handle must
identify a context with at least one subcontext, which contains the statistic identified by the
StatName parameter. If the context specified is one of the RTime contexts, no subcontext need to
exist at the time the SpmiAddSetHot subroutine call is issued; the presence of the metric
identified by the StatName parameter is checked against the context class description.

If the context specified has or may have multiple levels of instantiable context below it (such as
the FS and RTime/ARM contexts), the metric is only searched for at the lowest context level. The
SpmiHotSet created is a pseudo hotvals structure used to link together a peer group of
SpmiHotValsstructures, which are created under the covers, one for each subcontext of the
GrandParent context. In the case of RTime/ARM, if additional contexts are later added under the
GrandParent contexts, additional hotsets are added to the peer group. This is transparent to the
application program, except that the SpmiFirstHot, SpmiNextHot, and SpmiNextHotltem
subroutine calls will return the peer group SpmiHotVals pointer rather than the pointer to the
pseudo structure.

Note that specifying a specific volume group context (such as FS/rootvg) or a specific application
context (such as RTime/ARN/armpeek) is still valid and won’t involve creation of pseudo
SpmiHotVals structures.

maxresp

Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If
specified as zero, indicates that all that meet the criteria specified by threshold

must be returned, up-to a maximum of maxresp items. If both exceptions/traps and feeds are
requested, the maxresp value is used to cap the number of exceptions/alerts as well as the
number of items returned. If feed_type is specified as SiHotAlways, the maxresp parameter is still
used to return at most maxresp items.

Where the GrandParent argument specifies a context that has multiple levels of instantiable
contexts below it, the maxresp is applied to each of the lowest level contexts above the the actual
peer contexts at a time. For example, if the GrandParent context is FS (file systems) and the
system has three volume groups, then a maxresp value of 2 could cause up to a maximum of 2 x
3 = 6 responses to be generated.

threshold

Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If
specified as zero, indicates that all values read qualify to be returned in feeds. The value specified
is compared to the data value read for each peer statistic. If the data value exceeds the threshold,
it qualifies to be returned as an SpmiHotltems element in the SpmiHotVals structure. If the
threshold is specified as a negative value, the value qualifies if it is lower than the numeric value
of threshold. If feed_type is specified as SiHotAlways, the threshold value is ignored for feeds.
For peer statistics of type SiCounter, the threshold must be specified as a rate per second; for
SiQuantity statistics the threshold is specified as a level.

frequency

Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated.
Ignored for feeds. Specifies the minimum number of minutes that must expire between any two
exceptions/traps generated from this SpmiHotVals structure. This value must be specified as no
less than 5 minutes.

feed_type

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 199

Specifies if feeds of SpmiHotltems should be returned for this SpmiHotVals structure. The
following values are valid:
SiHotNoFeed
No feeds should be generated
SiHotThreshold
Feeds are controlled by threshold.
SiHotAlways
All values, up-to a maximum of maxresp must be returned as feeds.

excp_type

Controls the generation of exception data packets and/or the generation of SNMP Traps from
xmservd. Note that these types of packets and traps can only actually be sent if xmservd is
running. Because of this, exception packets and SNMP traps are only generated as long as
xmservd is active. Traps can only be generated on AlIX systems. The conditions for generating
exceptions and traps are controlled by the threshold and frequency parameters. The following
values are valid for excp_type:

SiNoHotException
Generate neither exceptions not traps.

SiHotException
Generate exceptions but not traps.

SiHotTrap
Generate SNMP traps but not exceptions.

SiHotBoth
Generate both exceptions and SNMP traps.

severity

Required to be positive and greater than zero if exceptions are generated, otherwise specify as
zero. Used to assign a severity code to the exception for display by exmon.

trap_no

Required to be positive and greater than zero if SNMP traps are generated, otherwise specify as
zero. Used to assign the trap number in the generated SNMP trap.

Return Values

The SpmiAddSetHot subroutine returns a pointer to a structure of type [SpmiHotVals| if successful. If
unsuccessful, the subroutine returns a NULL value.

Programming Notes

The SpmiAddSetHot functions in a straight forward manner and as described previously in all cases
where the GrandParent context is a context that has only one level of instantiable contexts below it. This
covers most context types such as CPU, Disk, LAN, etc. In a few cases, currently only the FS (file system)
and RTime/ARM (application response) contexts, the SPMI works by creating pseudo-hotvals structures
that effectively expand the hotset. These pseudo-hotvals structures are created either at the time the
SpmiAddSetHot call is issued or when new subcontexts are created for a context that's already the
GrandParent of a hotvals peer set. For example:

When a peer set is created for RTime/ARM, maybe only a few or no subcontexts of this context exists. If
two applications were defined at this point, say checking and savings, one valsset would be created for
the RTime/ARM context and a pseudo-valsset for each of RTime/ARM/checking and
RTime/ARM/savings. As new applications are added to the RTime/ARM contexts, new pseudo-valssets
are automatically added to the hotset.

200 Technical Reference, Volume 2: Base Operating System and Extensions

Pseudo-valssets represent an implementation convenience and also helps minimize the impact of
retrieving and presenting data for hotsets. As far as the caller of the RSiGetHotltem subroutine call is
concerned, it is completely transparent. All this caller will ever see is the real hotvals structure. That is not
the case for callers of SpmiFirstHot, SpmiNextHot, and SpmiNextHotltem. All of these subroutines will
return pseudo-valssets and the calling program should be prepared to handle this.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the [List of SPMI Error Codes for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

SpmiCreateHotSet

Purpose

Creates an empty hotset.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h
struct SpmiHotSet *SpmiCreateHotSet()

Description

The SpmiCreateHotSet subroutine creates an empty hotset and returns a pointer to an
structure.This structure provides the anchor point for a hotset and must exist before the SpmiAddSetHot
subroutine can be successfully called.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Return Values

The SpmiCreateHotSet subroutine returns a pointer to a structure of type SpmiHotSet if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 201

« extern char SpmiErrmsg[];
» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the |List of SPMI Error Codes for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

+ [“‘SpmiDelSetHot Subroutine” on page 207}

* [“SpmiFreeHotSet Subroutine” on page 215}
+ [“SpmiAddSetHot Subroutine” on page 198
« |Understanding SPMI Data Aread

SpmiCreateStatSet Subroutine

Purpose
Creates an empty set of statistics.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h
struct SpmiStatSet *SpmiCreateStatSet()

Description

The SpmiCreateStatSet subroutine creates an empty set of statistics and returns a pointer to an
SpmiStatSet structure.

The [SpmiStatSe] structure provides the anchor point to a set of statistics and must exist before the
SpmiPathAddSetStat subroutine can be successfully called.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Return Values

The SpmiCreateStatSet subroutine returns a pointer to a structure of type SpmiStatSet if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

202 Technical Reference, Volume 2: Base Operating System and Extensions

» extern char SpmiErrmsg[];
» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the |List of SPMI Error Codes for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

+ [‘SpmiDelSetStat Subroutine” on page 208|

+ [“SpmiFreeStatSet Subroutine” on page 216|

+ [“SpmiPathAddSetStat Subroutine” on page 234
+ |Understanding SPMI Data Aread

SpmiDdsAddCx Subroutine

Purpose
Adds a volatile context to the contexts defined by an application.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

char *SpmiDdsAddCx(Ix, Path, Descr, Asnno)
ushort Ix;

char *Path, =*Descr;

int Asnno;

Description

The SpmiDdsAddCx subroutine uses the shared memory area to inform the SPMI that a context is
available to be added to the context hierarchy, moves a copy of the context to shared memory, and
allocates memory for the data area.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters

Ix

Specifies the element number of the added context in the table of dynamic contexts. No context
can be added if the table of dynamic contexts has not been defined in the SpmiDdslInit subroutine
call. The first element of the table is element number 0.

Path

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 203

Specifies the full path name of the context to be added. If the context is not at the top-level, the
parent context must already exist.

Descr
Provides the description of the context to be added as it will be presented to data consumers.
Asnno

Specifies the ASN.1 number to be assigned to the new context. All subcontexts on the same level
as the new context must have unique ASN.1 numbers. Typically, each time the SpmiDdsAddCx
subroutine adds a subcontext to the same parent context, the Asnno parameter is incremented.
See |Making Dynamic Data-Supplier Statistics Uniquel for more information about ASN.1 numbers.

Return Values

If successful, the SpmiDdsAddCx subroutine returns the address of the shared memory data area. If an
error occurs, an error text is placed in the external SpmiErrmsg character array, and the subroutine
returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the [List of SPMI Error Codeq for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

* [‘SpmiDdsDelCx Subroutine’]

* [“SpmiDdsInit Subroutine” on page 205|

SpmiDdsDelCx Subroutine

Purpose
Deletes a volatile context.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiDdsDelCx(Area)
char *Area;

204 Technical Reference, Volume 2: Base Operating System and Extensions

Description

The SpmiDdsDelCx subroutine informs the SPMI that a previously added, volatile context should be
deleted.

If the SPMI has not detected that the context to delete was previously added dynamically, the
SpmiDdsDelCx subroutine removes the context from the list of to-be-added contexts and returns the
allocated shared memory to the free list. Otherwise, the SpmiDdsDelCx subroutine indicates to the SPMI
that a context and its associated statistics must be removed from the context hierarchy and any allocated
shared memory must be returned to the free list.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
Area

Specifies the address of the previously allocated shared memory data area as returned by an
SpmiDdsAddCx subroutine call.

Return Values

If successful, the SpmiDdsDelCx subroutine returns a value of 0. If an error occurs, an error text is placed
in the external SpmiErrmsg character array, and the subroutine returns a nonzero value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the [List of SPMI Error Codeq for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

* [*SpmiDdsAddCx Subroutine” on page 203|
* |“SpmiDdsInit Subroutine’
» |Understanding SPMI Data Areas

SpmiDdsinit Subroutine

Purpose
» Establishes a program as a dynamic data-supplier (DDS) program.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 205

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

SpmiShare *SpmiDdsInit(CxTab, CxCnt, IxTab, IxCnt,
FileName)

cx_create *CxTab, xIxTab;

int CxCnt, IxCnt;

char *FileName;

Description

The SpmiDdsinit subroutine establishes a program as a dynamic data-supplier (DDS) program. To do so,
the SpmiDdslInit subroutine:

1. Determines the size of the shared memory required and creates a shared memory segment of that
size.

2. Moves all static contexts and all statistics referenced by those contexts to the shared memory.
3. Calls the SPMI and requests it to add all of the DDS static contexts to the context tree.
Notes:

1. The SpmiDdsInit subroutine issues an Spmilnit subroutine call if the application program has not
issued one.

2. If the calling program uses shared memory for other purposes, including memory mapping of files, the
SpmiDdsinit or the Spmilnit subroutine call must be issued before access is established to other
shared memory areas.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
CxTab

Specifies a pointer to the table of nonvolatile contexts to be added.
CxCnt

Specifies the number of elements in the table of nonvolatile contexts. Use the CX_L macro to find
this value.

IxTab

Specifies a pointer to the table of volatile contexts the program may want to add later. If no
contexts are defined, specify NULL.

IxCnt
Specifies the number of elements in the table of volatile contexts. Use the CX_L macro to find this
value. If no contexts are defined, specify 0.

FileName

Specifies the fully qualified path and file name to use when creating the shared memory segment.
At execution time, if the file exists, the process running the DDS must be able to write to the file.
Otherwise, the SpmiDdsiInit subroutine call does not succeed. If the file does not exist, it is
created. If the file cannot be created, the subroutine returns an error. If the file name includes
directories that do not exist, the subroutine returns an error.

206 Technical Reference, Volume 2: Base Operating System and Extensions

For non-AlX systems, a sixth argument is required to inform the SPMI how much memory to
allocate in the DDS shared memory segment. This is not required for AIX systems because
facilities exist to expand a memory allocation in shared memory. The sixth argument is:

size

Size in bytes of the shared memory area to allocate for the DDS program. This parameter is of
type int.

Return Values

If successful, the SpmiDdslInit subroutine returns the address of the shared memory control area. If an
error occurs, an error text is placed in the external SpmiErrmsg character array, and the subroutine
returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the [List of SPMI Error Codes for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

« [“SpmiExit Subroutine” on page 210|
* [“Spmilnit Subroutine” on page 223
« |Understanding SPMI Data Aread

SpmiDelSetHot Subroutine

Purpose
Removes a single set of peer statistics from a hotset.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiDelSetHot (HotSet, HotVal)
struct SpmiHotSet *HotSet;
struct SpmiHotVals *HotlVal;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 207

Description

The SpmiDelSetHot subroutine removes a single set of peer statistics, identified by the HotVal parameter,
from a hotset, identified by the HotSet parameter.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
HotSet

Specifies a pointer to a valid structure of type as created by the ['SpmiCreateHotSet]

n page 201|subroutine call.

HotVal

Specifies a pointer to a valid structure of type , as created by the “SpmiAddSetHot|
[Subroutine” on page 198 subroutine call. You cannot specify an SpmiHotVals that was internally
generated by the SPMI library code as described under the GrandParent parameter to
SpmiAddSetHot.

Return Values

The SpmiDelSetHot subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns a
nonzero value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];
» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the [List of SPMI Error Codeq for more information.

Files

l/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

* |“SpmiCreateHotSet” on page 201|

* |“SpmiFreeHotSet Subroutine” on page 215|
+ [“SpmiAddSetHot Subroutine” on page 198
» |Understanding SPMI Data Areas

SpmiDelSetStat Subroutine

Purpose
Removes a single statistic from a set of statistics.

208 Technical Reference, Volume 2: Base Operating System and Extensions

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiDelSetStat (StatSet, StatVal)
struct SpmiStatSet *StatSet;
struct SpmiStatVals =StatVal;

Description

The SpmiDelSetStat subroutine removes a single statistic, identified by the StatVal parameter, from a set
of statistics, identified by the StatSet parameter.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters

StatSet

Specifies a pointer to a valid structure of type as created by the [‘SpmiCreateStatSet|
[Subroutine” on page 202 subroutine call.

StatVal

Specifies a pointer to a valid structure of type |SpmiStatVaIs| as created by the
[‘SpmiPathAddSetStat Subroutine” on page 234 subroutine call.

Return Values

The SpmiDelSetStat subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns
a nonzero value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:
« extern char SpmiErrmsg[];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the |List of SPMI Error Coded for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

- [“SpmiCreateStatSet Subroutine” on page 202|

+ [“SpmiFreeStatSet Subroutine” on page 216|

+ [“SpmiPathAddSetStat Subroutine” on page 234

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 209

« |Understanding SPMI Data Aread

SpmiExit Subroutine

Purpose

Terminates a dynamic data supplier (DDS) or local data consumer program’s association with the SPMI,
and releases allocated memory.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h
void SpmiExit()

Description

A successful [“Spmilnit Subroutine” on page 223 or [‘'SpmiDdsInit Subroutine” on page 205 call allocates
shared memory. Therefore, a Dynamic Data Supplier (DDS) program that has issued a successful

Spmilnit or SpmiDdslnit subroutine call should issue an SpmiExit subroutine call before the program
exits the SPMI. Allocated memory is not released until the program issues an SpmiExit subroutine call.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

* [“Spmilnit Subroutine” on page 223

« [‘SpmiDdsInit Subroutine” on page 205|

SpmiFirstCx Subroutine

Purpose
Locates the first subcontext of a context.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiCxLink *SpmiFirstCx(CxHandle)
SpmiCxHd1 CxHandle;

210 Technical Reference, Volume 2: Base Operating System and Extensions

Description

The SpmiFirstCx subroutine locates the first subcontext of a context. The subroutine returns a NULL
value if no subcontexts are found.

The structure pointed to by the returned pointer contains a handle to access the contents of the
corresponding structure through the SpmiGetCxsubroutine call.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
CxHandle
Specifies a valid [SpmiCxHdl handle as obtained by another subroutine call.

Return Values

The SpmiFirstCx subroutine returns a pointer to an |[SpmiCxLink| structure if successful. If unsuccessful,
the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];

* extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the [List of SPMI Error Codeqd for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

* |[“SpmiGetCx Subroutine” on page 217

+ [“SpmiNextCx Subroutine” on page 226|

* |Understanding SPMI Data Areaa

» |Understanding the SPMI Data Hierarchy/|

SpmiFirstHot Subroutine

Purpose
Locates the first of the sets of peer statistics belonging to a hotset.

Library
SPMI Library (libSpmi.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 211

Syntax
#include sys/Spmidef.h

struct SpmiHotVals *SpmiFirstHot (HotSet)
struct SpmiHotSet HotSet;

Description
The SimiFirstHot subroutine locates the first of the [SpmiHotVals|structures belonging to the specified

SpmiHotSet. Using the returned pointer, the SpmiHotSet can then either be decoded directly by the
calling program, or it can be used to specify the starting point for a subsequent SpmiNextHotltem
subroutine call. The SpmiFirstHot subroutine should only be executed after a successful call to the
SpmiGetHotSet subroutine.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
HotSet

Specifies a valid SpmiHotSet structure as obtained by another subroutine call.

Return Values

The SpmiFirstHot subroutine returns a pointer to a structure of type SpmiHotVals structure if successful.
If unsuccessful, the subroutine returns a NULL value. A returned pointer may refer to a pseudo-hotvals
structure as described in the SpmiAddSetHot subroutine.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];

* extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the [List of SPMI Error Codeq for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

+ [“SpmiCreateHotSet” on page 201

* [SpmiAddSetHot Subroutine” on page 19§
* |“SpmiNextHot Subroutine” on page 227
» [“SpmiNextHotltem Subroutine” on page 228|
 |Understanding SPMI Data Areas
» |Understanding the SPMI Data Hierarchy|

212 Technical Reference, Volume 2: Base Operating System and Extensions

SpmiFirstStat Subroutine

Purpose
Locates the first of the statistics belonging to a context.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiStatLink *SpmiFirstStat(CxHandle)
SpmiCxHd1 CxHandle;

Description

The SpmiFirstStat subroutine locates the first of the statistics belonging to a context. The subroutine
returns a NULL value if no statistics are found.

The structure pointed to by the returned pointer contains a handle to access the contents of the
corresponding structure through the [*SpmiGetStat Subroutine” on page 219 call.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
CxHandle
Specifies a valid [SpmiCxHdl handle as obtained by another subroutine call.

Return Values

The SpmiFirstStat subroutine returns a pointer to a structure of type [SpmiStatLink|if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the [List of SPMI Error Coded for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 213

Related Information

For related information, see:

* [“SpmiGetStat Subroutine” on page 219
* [“SpmiNextStat Subroutine” on page 230
» |Understanding SPMI Data Aread

» |Understanding the SPMI Data Hierarchy|

SpmiFirstVals Subroutine

Purpose
Returns a pointer to the first SpmiStatVals structure belonging to a set of statistics.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiStatVals *SpmiFirstVals(StatSet)
struct SpmiStatSet *StatSet;

Description

The SpmiFirstVals subroutine returns a pointer to the first structure belonging to the set of
statistics identified by the StatSet parameter. SpmiStatVals structures are accessed in reverse order so
the last statistic added to the set of statistics is the first one returned. This subroutine call should only be
issued after an SpmiGetStatSet subroutine has been issued against the statset.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet
subroutine call.

Return Values

The SpmiFirstVals subroutine returns a pointer to an SpmiStatVals structure if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];
» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the |List of SPMI Error Coded for more information.

214 Technical Reference, Volume 2: Base Operating System and Extensions

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

* |“SpmiCreateStatSet Subroutine” on page 202|
* |“SpmiNextVals Subroutine” on page 235]

» |Understanding SPMI Data Areas

SpmiFreeHotSet Subroutine

Purpose
Erases a hotset.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiFreeHotSet (HotSet)
struct SpmiHotSet *HotSet;

Description

The SpmiFreeHotSet subroutine erases the hotset identified by the HotSet parameter. All [SpmiHotVal
structures chained off the structure are deleted before the set itself is deleted.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
HotSet

Specifies a pointer to a valid structure of type SpmiHotSet as created by the [‘SpmiCreateHotSet’|

on page 201|subroutine call.

Return Values

The SpmiFreeHotSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns
a nonzero value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];
» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 215

in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the [List of SPMI Error Codeqd for more information.

Files

l/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

* |“SpmiCreateHotSet” on page 201|

* |“SpmiDelSetHot Subroutine” on page 207|
+ [“SpmiAddSetHot Subroutine” on page 198
« |Understanding SPMI Data Areas

SpmiFreeStatSet Subroutine

Purpose
Erases a set of statistics.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiFreeStatSet(StatSet)
struct SpmiStatSet *StatSet;

Description
The SpmiFreeStatSet subroutine erases the set of statistics identified by the StatSet parameter. All

SpmiStatVals| structures chained off the [SpmiStatSef] structure are deleted before the set itself is deleted.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet
subroutine call.

Return Values

The SpmiFreeStatSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns
a nonzero value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

« extern char SpmiErrmsg[];

216 Technical Reference, Volume 2: Base Operating System and Extensions

* extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the |List of SPMI Error Coded for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

+ [“SpmiCreateStatSet Subroutine” on page 202|

+ [“‘SpmiDelSetStat Subroutine” on page 208|

+ [“SpmiPathAddSetStat Subroutine” on page 234
+ |Understanding SPMI Data Aread

SpmiGetCx Subroutine

Purpose
Returns a pointer to the structure corresponding to a specified context handle.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiCx *SpmiGetCx(CxHandle)
SpmiCxHd1 CxHandle;

Description

The SpmiGetCx subroutine returns a pointer to the SpmiCx structure corresponding to the context handle
identified by the CxHandle parameter.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
CxHandle
Specifies a valid [SpmiCxHdl handle as obtained by another subroutine call.

Return Values

The SpmiGetCx subroutine returns a a pointer to an SpmiCx data structure if successful. If unsuccessful,
the subroutine returns NULL.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 217

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

« extern char SpmiErrmsg[];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the |List of SPMI Error Coded for more information.

Files

l/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

+ [“SpmiFirstCx Subroutine” on page 210

+ [‘SpmiNextCx Subroutine” on page 226|

« |Understanding SPMI Data Aread

» |Understanding the SPMI Data Hierarchy/|

SpmiGetHotSet Subroutine

Purpose

Requests the SPMI to read the data values for all sets of peer statistics belonging to a specified
SpmiHotSe]

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiGetHotSet (HotSet, Force);
struct SpmiHotSet *HotSet;
boolean Force;

Description

The SpmiGetHotSet subroutine requests the SPMI to read the data values for all peer sets of statistics
belonging to the SpmiHotSet identified by the HotSet parameter. The Force parameter is used to force the
data values to be refreshed from their source.

The Force parameter works by resetting a switch held internally in the SPMI for aII|SpmiStatVaI§ and
‘

miHotVals| structures, regardless of the and |SpmiHotSe!|s to which they belong.
Whenever the data value for a peer statistic is requested, this switch is checked. If the switch is set, the
SPMI reads the latest data value from the original data source. If the switch is not set, the SPMI reads the
data value stored in the SpmiHotVals structure. This mechanism allows a program to synchronize and
minimize the number of times values are retrieved from the source. One method programs can use is to
ensure the force request is not issued more than once per elapsed amount of time.

218 Technical Reference, Volume 2: Base Operating System and Extensions

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
HotSet

Specifies a pointer to a valid structure of type SpmiHotSet as created by the |“SpmiCreateHotSet”|
on page 201|subroutine call.

Force

If set to true, forces a refresh from the original source before the SPMI reads the data values for
the set. If set to false, causes the SPMI to read the data values as they were previously retrieved
from the data source.

When the force argument is set true, the effect is that of marking all statistics known by the SPMI
as obsolete, which causes the SPMI to refresh all requested statistics from kernel memory or other
sources. As each statistic is refreshed, the obsolete mark is reset. Statistics that are not part of the
HotSet specified in the subroutine call remain marked as obsolete. Therefore, if an application
repetitively issues a series of, SpmiGetHotSet and SpmiGetStatSet subroutine calls for multiple
hotsets and statsets, each time, only the first such call need set the force argument to true.

Return Values

The SpmiGetHotSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns a
nonzero value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:
« extern char SpmiErrmsg([];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the [List of SPMI Error Codeq for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

* |“SpmiCreateHotSet” on page 201|

* |“SpmiAddSetHot Subroutine” on page 198|

SpmiGetStat Subroutine

Purpose
Returns a pointer to the structure corresponding to a specified statistic handle.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 219

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiStat *SpmiGetStat(StatHandle)
SpmiStatHd1 StatHandle;

Description

The SpmiGetStat subroutine returns a pointer to the SpmiStat structure corresponding to the statistic
handle identified by the StatHandle parameter.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
StatHandle

Specifies a valid handle as obtained by another subroutine call.

Return Values

The SpmiGetStat subroutine returns a pointer to a structure of type SpmiStat if successful. If
unsuccessful, the subroutine returns a NULL value.

Return Values

The SpmiGetStat subroutine returns a pointer to a structure of type SpmiStat if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the |List of SPMI Error Coded for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

* |“SpmiFirstStat Subroutine” on page 213|
+ [“SpmiNextStat Subroutine” on page 230
« (Understanding SPMI Data Aread

» |Understanding the SPMI Data Hierarchy|

220 Technical Reference, Volume 2: Base Operating System and Extensions

SpmiGetStatSet Subroutine

Purpose
Requests the SPMI to read the data values for all statistics belonging to a specified set.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiGetStatSet(StatSet, Force);
struct SpmiStatSet *StatSet;
boolean Force;

Description
The SpmiGetStatSet subroutine requests the SPMI to read the data values for all statistics belonging to
theidentified by the StatSet parameter. The Force parameter is used to force the data

values to be refreshed from their source.

The Force parameter works by resetting a switch held internally in the SPMI for aII|SpmiStatVaIa and
structures, regardless of the SpmiStatSets and [SpmiHotSets| to which they belong.
Whenever the data value for a statistic is requested, this switch is checked. If the switch is set, the SPMI
reads the latest data value from the original data source. If the switch is not set, the SPMI reads the data
value stored for the SpmiStatVals structure. This mechanism allows a program to synchronize and
minimize the number of times values are retrieved from the source. One method is to ensure the force
request is not issued more than once per elapsed amount of time.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet
subroutine call.

Force

If set to true, forces a refresh from the original source before the SPMI reads the data values for
the set. If set to false, causes the SPMI to read the data values as they were previously retrieved
from the data source.

When the force argument is set true, the effect is that of marking all statistics known by the SPMI
as obsolete, which causes the SPMI to refresh all requested statistics from kernel memory or other
sources. As each statistic is refreshed, the obsolete mark is reset. Statistics that are not part of the
StatSet specified in the subroutine call remain marked as obsolete. Therefore, if an application
repetitively issues the SpmiGetStatSet and SpmiGetHotSet subroutine calls for multiple statsets
and hotsets, each time, only the first such call need set the force argument to true.

Return Values

The SpmiGetStatSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns a
nonzero value.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 221

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

« extern char SpmiErrmsg[];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the |List of SPMI Error Coded for more information.

Files

l/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

+ [‘SpmiCreateStatSet Subroutine” on page 202

+ [‘SpmiPathAddSetStat Subroutine” on page 234

SpmiGetValue Subroutine

Purpose
Returns a decoded value based on the type of data value extracted from the data field of an

SpmiStatVals| structure.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

float SpmiGetValue(StatSet, StatVal)
struct SpmiStatSet *StatSet;
struct SpmiStatVals *Statlal;

Description
The SpmiGetValue subroutine performs the following steps:

1. Verifies that an SpmiStatVals structure exists in the set of statistics identified by the StatSet
parameter.

2. Determines the format of the data field as being either SiFloat or SiLong and extracts the data value
for further processing.

3. Determines the data value as being of either type SiQuantity or type SiCounter.
4. If the data value is of type SiQuantity, returns the val field of the SpmiStatVals structure.

5. If the data value is of type SiCounter, returns the value of the val_change field of the SpmiStatVals
structure divided by the elapsed number of seconds since the previous time a data value was
requested for this set of statistics.

222 Technical Reference, Volume 2: Base Operating System and Extensions

This subroutine call should only be issued after an SpmiGetStatSet subroutine has been issued against
the statset.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
StatSet

Specifies a pointer to a valid structure of type as created by the SpmiCreateStatSet
subroutine call.

StatVal

Specifies a pointer to a valid structure of type SpmiStatVals as created by the
SpmiPathAddSetStat subroutine call or returned by the SpmiFirstVals or SpmiNextVals
subroutine calls.

Return Values

The SpmiGetValue subroutine returns the decoded value if successful. If unsuccessful, the subroutine
returns a negative value that has a numerical value of at least 1.1.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];
» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the |List of SPMI Error Coded for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

* |“SpmiGetStatSet Subroutine” on page 221|

« [“SpmiCreateStatSet Subroutine” on page 202

» [‘SpmiPathAddSetStat Subroutine” on page 234
» |Understanding SPMI Data Aread

Spmilnit Subroutine

Purpose
Initializes the SPMI for a local data consumer program.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 223

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int Spmilnit (TimeOut)
int TimeOut;

Description

The Spmilnit subroutine initializes the SPMI. During SPMI initialization, a memory segment is allocated
and the application program obtains basic addressability to that segment. An application program must
issue the Spmilnit subroutine call before issuing any other subroutine calls to the SPMI.

Note: The Spmilnit subroutine is automatically issued by the SpmiDdsInit subroutine call. Successive
Spmilnit subroutine calls are ignored.

Note: If the calling program uses shared memory for other purposes, including memory mapping of files,
the Spmilnit subroutine call must be issued before access is established to other shared memory
areas.

The SPMI entry point called by the Spmilnit subroutine assigns a segment register to be used by the
SPMI subroutines (and the application program) for accessing common shared memory and establishes
the access mode to the common shared memory segment. After SPMI initialization, the SPMI subroutines
are able to access the common shared memory segment in read-only mode.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
TimeOut

Specifies the number of seconds the SPMI waits for a Dynamic Data Supplier (DDS) program to
update its shared memory segment. If a DDS program does not update its shared memory
segment in the time specified, the SPMI assumes that the DDS program has terminated or
disconnected from shared memory and removes all contexts and statistics added by the DDS
program.

The SPMI saves the largest TimeOut value received from the programs that invoke the SPMI. The
TimeOut value must be zero or must be greater than or equal to 15 seconds and less than or
equal to 600 seconds. A value of zero overrides any other value from any other program that
invokes the SPMI and disables the checking for terminated DDS programs.

Return Values

The Spmilnit subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns a
nonzero value. If a nonzero value is returned, the application program should not attempt to issue
additional SPMI subroutine calls.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];
» extern int SpmiErrno;

224 Technical Reference, Volume 2: Base Operating System and Extensions

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the [List of SPMI Error Codeq for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

+ [“SpmiDdsInit Subroutine” on page 205
* |“SpmiExit Subroutine” on page 21_O|

Spmilnstantiate Subroutine

Purpose
Explicitly instantiates the subcontexts of an instantiable context.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int Spmilnstantiate(CxHandle)
SpmiCxHd1 CxHandle;

Description

The Spmilnstantiate subroutine explicitly instantiates the subcontexts of an instantiable context. If the
context is not instantiable, do not call the Spmilnstantiate subroutine.

An instantiation is done implicitly by the SpmiPathGetCx and SpmiFirstCx subroutine calls. Therefore,
application programs usually do not need to instantiate explicitly.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters

CxHandle
Specifies a valid context handle [SpmiCxHdl| as obtained by another subroutine call.

Return Values

The Spmilnstantiate subroutine returns a value of 0 if successful. If the context is not instantiable, the
subroutine returns a nonzero value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 225

« extern char SpmiErrmsg[];
» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the |List of SPMI Error Codes for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

+ [“SpmiFirstCx Subroutine” on page 210

+ [“SpmiPathGetCx Subroutine” on page 236|
« |Understanding the SPMI Data Hierarchy/|

SpmiNextCx Subroutine

Purpose
Locates the next subcontext of a context.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h
struct SpmiCxLink *SpmiNextCx(CxLink)struct SpmiCxLink *CxLink;

Description

The SpmiNextCx subroutine locates the next subcontext of a context, taking the context identified by the
CxLink parameter as the current subcontext. The subroutine returns a NULL value if no further
subcontexts are found.

The structure pointed to by the returned pointer contains an|SpmiCxHdl|handle to access the contents of
the corresponding structure through the SpmiGetCx subroutine call.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters

CxLink
Specifies a pointer to a valid structure as obtained by a previous SpmiFirstCx
subroutine.

226 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values

The SpmiNextCx subroutine returns a pointer to a structure of type SpmiCxLink if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];

* extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the |List of SPMI Error Coded for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

+ [“SpmiFirstCx Subroutine” on page 210

+ [‘SpmiGetCx Subroutine” on page 217|

+ |Understanding SPMI Data Aread

» |Understanding the SPMI Data Hierarchy/|

SpmiNextHot Subroutine

Purpose
Locates the next set of peer statistics [SpmiHotVals|belonging to an[SpmiHotSet|
Library

SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiHotVals *SpmiNextHot (HotSet, HotVals)
struct SpmiHotSet *HotSet;
struct SpmiHotVals *HotlVals;

Description

The SpmiNextHot subroutine locates the next SpmiHotVals structure belonging to an SpmiHotSet, taking
the set of peer statistics identified by the HotVals parameter as the current one. The subroutine returns a
NULL value if no further SpmiHotVals structures are found. The SpmiNextHot subroutine should only be
executed after a successful call to the SpmiGetHotSet subroutine and (usually, but not necessarily) a call
to the SpmiFirstHot subroutine and one or more subsequent calls to SpmiNextHot.

The subroutine allows the application programmer to position at the next set of peer statistics in
preparation for using the SpmiNextHotltem subroutine call to traverse this peer set’s array of

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 227

SpmiHotltems| elements. Use of this subroutine is only necessary if it is desired to skip over some
SpmiHotVals structures in an SpmiHotSet. Under most circumstances, the SpmiNextHotltem will be the
sole means of accessing all elements of the SpmiHotltems arrays of all peer sets belonging to an
SpmiHotSet.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters

HotSet

Specifies a valid pointer to an |SpmiHotSet| structure as obtained by a previous
I'SpmiCreateHotSet” on page 201| call.

HotVals

Specifies a pointer to an|SpmiHotVals| structure as returned by a previous SpmiFirstHot or
SpmiNextHot subroutine call or as returned by an SpmiAddSetHot subroutine call.

Return Values

The SpmiNextHot subroutine returns a pointer to the next SpmiHotVals structure within the hotset. If no
more SpmiHotVals structures are available, the subroutine returns a NULL value. A returned pointer may
refer to a pseudo-hotvals structure as described the SpmiAddSetHot subroutine.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the [List of SPMI Error Codeqd for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For more information, see:

* [“SpmiFirstHot Subroutine” on page 211|

* [“SpmiGetHotSet Subroutine” on page 218]
* |“SpmiNextHotltem Subroutine”
« |Data Access Structures and Handles, HotSetd

SpmiNextHotltem Subroutine

Purpose
Locates and decodes the nextelement at the current position in an

228 Technical Reference, Volume 2: Base Operating System and Extensions

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiHotVals *SpmiNextHotItem(HotSet, HotVals, index,
value, name)

struct SpmiHotSet *HotSet;

struct SpmiHotVals *HotlVals;

int *index;

float *value;

char *xname;

Description

The SpmiNextHotltem subroutine locates the next SpmiHotltems structure belonging to an SpmiHotSet,
taking the element identified by the HotVals and index parameters as the current one. The subroutine
returns a NULL value if no further SpmiHotltems structures are found. The SpmiNextHotltem subroutine
should only be executed after a successful call to the SpmiGetHotSet subroutine.

The SpmiNextHotltem subroutine is designed to be used for walking all SpmiHotltems elements returned
by a call to the SpmiGetHotSet subroutine, visiting the [SpmiHotVals| structures one by one. By feeding
the returned value and the updated integer pointed to by index back to the next call, this can be done in a

tight loop. Successful calls to SpmiNextHotltem will decode each SpmiHotltems element and return the
data value in value and the name of the peer context that owns the corresponding statistic in name.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters

HotSet

Specifies a valid pointer to an SpmiHotSet structure as obtained by a previous
[‘SpmiCreateHotSet” on page 201| calll.

HotVals

Specifies a pointer to an SpmiHotVals structure as returned by a previousSpmiNextHotltem,
SpmiFirstHot, or SpmiNextHot subroutine call or as returned by an SpmiAddSetHot subroutine
call. If this parameter is specified as NULL, the first SpmiHotVals structure of the SpmiHotSet is
used and the index parameter is assumed to be set to zero, regardless of its actual value.

index

A pointer to an integer that contains the desired element number in the SpmiHotltems array of the
SpmiHotVals structure specified by HotVals. A value of zero points to the first element. When the
SpmiNextHotltem subroutine returns, the integer contain the index of the next SpmiHotltems
element within the returned SpmiHotVals structure. If the last element of the array is decoded, the
value in the integer will point beyond the end of the array, and the SpmiHotVals pointer returned
will point to the peer set, which has now been completely decoded. By passing the returned
SpmiHotVals pointer and the index parameter to the next call to SpmiNextHotltem, the
subroutine will detect this and proceed to the first SpmiHotltems element of the next
SpmiHotVals structure if one exists.

value

A pointer to a float variable. A successful call will return the decoded data value for the statistic.
Before the value is returned, the SpmiNextHotltem function:

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 229

+ Determines the format of the data field as being either SiFloat or SiLong and extracts the data
value for further processing.

+ Determines the data value as being either type SiQuantity or type SiCounter and performs one
of the actions listed here:

— If the data value is of type SiQuantity, the subroutine returns the val field of the
SpmiHotltems structure.

— If the data value is of type SiCounter, the subroutine returns the value of the val_change
field of the SpmiHotltems structure divided by the elapsed number of seconds since the
previous time a data value was requested for this set of statistics.

name

A pointer to a character pointer. A successful call will return a pointer to the name of the peer
context for which the data value was read.

Return Values

The SpmiNextHotltem subroutine returns a pointer to the current SpmiHotVals structure within the
hotset. If no more SpmiHotVals structures are available, the subroutine returns a NULL value. The
structure returned contains the data, such as threshold, which may be relevant for presentation of the
results of an SpmiGetHotSet subroutine call to end-users. A returned pointer may refer to a
pseudo-hotvals structure as described in the SpmiAddSetHot subroutine.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the [List of SPMI Error Codeq for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For more information, see:

* [‘SpmiFirstHot Subroutine” on page 211|

* [‘SpmiNextHot Subroutine” on page 227]

* [“SpmiGetHotSet Subroutine” on page 218|

« |Data Access Structures and Handles, HotSetd

SpmiNextStat Subroutine

Purpose
Locates the next statistic belonging to a context.

230 Technical Reference, Volume 2: Base Operating System and Extensions

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiStatLink *SpmiNextStat(StatLink)
struct SpmiStatLink *StatlLink;

Description

The SpmiNextStat subroutine locates the next statistic belonging to a context, taking the statistic identified
by the StatLink parameter as the current statistic. The subroutine returns a NULL value if no further
statistics are found.

The structure pointed to by the returned pointer contains an |SpmiStatHdI| handle to access the contents of
i

the corresponding structure through the ['SpmiGetStat Subroutine” on page 219 call.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters

StatLink

Specifies a valid pointer to a EpmiStatLinH structure as obtained by a previous [‘SpmiFirstStat

[Subroutine” on page 213 call.

Return Values

The SpmiNextStat subroutine returns a pointer to a structure of type SpmiStatLink if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the |List of SPMI Error Coded for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

* |“SpmiFirstStat Subroutine” on page 213|
» [*SpmiGetStat Subroutine” on page 219
« (Understanding SPMI Data Aread

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 231

« |Understanding the SPMI Data Hierarchy/|

SpmiNextVals Subroutine

Purpose
Returns a pointer to the next [SpmiStatVals| structure in a set of statistics.
Library

SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiStatVals *SpmiNextVals(StatSet, StatVal)
struct SpmiStatSet *StatSet;
struct SpmiStatVals *Statlal;

Description

The SpmiNextVals subroutine returns a pointer to the next SpmiStatVals structure in a set of statistics,
taking the structure identified by the StatVal parameter as the current structure. The SpmiStatVals
structures are accessed in reverse order so the statistic added before the current one is returned. This
subroutine call should only be issued after an SpmiGetStatSet subroutine has been issued against the
statset.

Parameters

StatSet
Specifies a pointer to a valid structure of type as created by the [‘SpmiCreateStatSet|
[Subroutine” on page 202| call.

StatVal

Specifies a pointer to a valid structure of type SpmiStatVals as created by the
“SpmiPathAddSetStat Subroutine” on page 234] subroutine call or returned by a previous
“SpmiFirstVals Subroutine” on page 214|or SpmiNextVals subroutine call.

Return Values

The SpmiNextVals subroutine returns a pointer to a SpmiStatVals structure if successful. If unsuccessful,
the subroutine returns a NULL value.

SpmiNextValue Subroutine

Purpose

Returns either the first [SpmiStatVals| structure in a set of statistics or the next SpmiStatVals structure in a
set of statistics and a decoded value based on the type of data value extracted from the data field of an
SpmiStatVals structure.

Library
SPMI Library (libSpmi.a)

Syntax

#include sys/Spmidef.h

232 Technical Reference, Volume 2: Base Operating System and Extensions

struct SpmiStatVals*SpmiNextValue(StatSet, StatVal, value)
struct SpmiStatSet *StatSet;

struct SpmiStatVals *StatVal;

float *value;

Description

Instead of issuing subroutine calls to ['SpmiFirstVals Subroutine” on page 214] / [*SpmiNextVals Subroutine’]
(to get the first or next SpmiStatVals structure) followed by calls to SpmiGetValue (to get
the decoded value from the SpmiStatVals structure), the SpmiNextValue subroutine returns both in one
call. This subroutine call returns a pointer to the first SpmiStatVals structure belonging to the StatSet
parameter if the StatVal parameter is NULL. If the StatVal parameter is not NULL, the next SpmiStatVals
structure is returned, taking the structure identified by the StatVal parameter as the current structure. The
data value corresponding to the returned SpmiStatVals structure is decoded and returned in the field
pointed to by the value argument. In decoding the data value, the subroutine does the following:

» Determines the format of the data field as being either SiFloat or SiLong and extracts the data value
for further processing.
» Determines the data value as being either type SiQuantity or type SiCounter and performs one of the
actions listed here:
— If the data value is of type SiQuantity, the subroutine returns the val field of the SpmiStatVals
structure.

— If the data value is of type SiCounter, the subroutine returns the value of the val_change field of the
SpmiStatVals structure divided by the elapsed number of seconds since the previous time a data
value was requested for this set of statistics.

Note: This subroutine call should only be issued after an [‘SpmiGetStatSet Subroutine” on page 221| has
been issued against the statset.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters

StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the [‘SpmiCreateStatSet]
[Subroutine” on page 202| call.

StatVal

Specifies either a NULL pointer or a pointer to a valid structure of type SpmiStatVals as created
by the ['SpmiPathAddSetStat Subroutine” on page 234 call or returned by a previous
SpmiNextValue subroutine call. If StatValis NULL, then the first SpmiStatVals pointer belonging
to the set of statistics pointed to by StatSet is returned.

valueA pointer used to return a decoded value based on the type of data value extracted from the data
field of the returned SpmiStatVals structure.

Return Value

The SpmiNextValue subroutine returns a pointer to a SpmiStatVals structure if successful. If
unsuccessful, the subroutine returns a NULL value.

If the StatVal parameter is:

NULL
The first SpmiStatVals structure belonging to the StatSet parameter is returned.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 233

not NULL

The next SpmiStatVals structure after the structure identified by the StatVal parameter is returned and the
value parameter is used to return a decoded value based on the type of data value extracted from the
data field of the returned SpmiStatVals structure.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the |List of SPMI Error Coded for more information.

Programming Notes

The SpmiNextValue subroutine maintains internal state information so that retrieval of the next data value
from a statset can be done without traversing linked lists of data structures. The stats information is kept
separate for each process, but is shared by all threads of a process.

If the subroutine is accessed from multiple threads, the state information is useless and the performance
advantage is lost. The same is true if the program is simultaneously accessing two or more statsets. To
benefit from the performance advantage of the SpmiNextValue subroutine, a program should retrieve all
values in order from one stat set before retrieving values from the next statset.

The implementation of the subroutine allows a program to retrieve data values beginning at any point in
the statset if the SpmiStatVals pointer is known. Doing so will cause a linked list traversal. If subsequent
invocations of SpmiNextValue uses the value returned from the first and following invocation as their
second argument, the traversal of the link list can be avoided.

It should be noted that the value returned by a successful SpmiNextValue invocation is always the pointer
to the SpmiStatVals structure whose data value is decoded and returned in the value argument.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

“SpmiGetStatSet Subroutine” on page 221|

+ [“SpmiCreateStatSet Subroutine” on page 202
+ [“SpmiPathAddSetStat Subroutine’].

Data Access Structures and Handles, StatSets|

SpmiPathAddSetStat Subroutine

Purpose
Adds a statistics value to a set of statistics.

234 Technical Reference, Volume 2: Base Operating System and Extensions

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiStatVals *SpmiPathAddSetStat(StatSet, StatName,
Parent)

struct SpmiStatSet *StatSet;

char *StatName;

SpmiCxHd1 Parent;

Description

The SpmiPathAddSetStat subroutine adds a statistics value to a set of statistics. The
structure that provides the anchor point to the set must exist before the SpmiPathAddSetStat subroutine
call can succeed.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the [‘SpmiCreateStatSet]
[Subroutine” on page 202| call.

StatName

Specifies the name of the statistic within the context identified by the Parent parameter.If the
Parent parameter is NULL, you must specify the fully qualified path name of the statistic in the
StatName parameter.

Parent

Specifies either a valid [SpmiCxHdI| handle as obtained by another subroutine call or a NULL
value.

Return Values

The SpmiPathAddSetStat subroutine returns a pointer to a structure of type [SpmiStatVals| if successful.
If unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];
» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the |List of SPMI Error Coded for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 235

Related Information

For related information, see:

+ [“SpmiGetStatSet Subroutine” on page 221|

* |“SpmiCreateStatSet Subroutine” on page 202|
* |“SpmiDelSetStat Subroutine” on page 208
* |“SpmiFreeStatSet Subroutine” on page 21€_S|.

» |Data Access Structures and Handles, StatSets|

SpmiPathGetCx Subroutine

Purpose
Returns a handle to use when referencing a context.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

SpmiCxHd1 SpmiPathGetCx(CxPath, Parent)
char *CxPath;
SpmiCxHd1 Parent;

Description

The SpmiPathGetCx subroutine searches the context hierarchy for a given path name of a context and
returns a handle to use when subsequently referencing the context.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Parameters
CxPath

Specifies the path name of the context to find. If you specify the fully qualified path name in the
CxPath parameter, you must set the Parent parameter to NULL. If the path name is not qualified
or is only partly qualified (that is, if it does not include the names of all contexts higher in the data
hierarchy), the SpmiPathGetCx subroutine begins searching the hierarchy at the context identified
by the Parent parameter. If the CxPath parameter is either NULL or an empty string, the
subroutine returns a handle identifying the Top context.

Parent

Specifies the anchor context that fully qualifies the CxPath parameter. If you specify a fully
qualified path name in the CxPath parameter, you must set the Parent parameter to NULL.

Return Values

The SpmiPathGetCx subroutine returns a handle to a context if successful. If unsuccessful, the subroutine
returns a NULL value.

236 Technical Reference, Volume 2: Base Operating System and Extensions

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

» extern char SpmiErrmsg[];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the |List of SPMI Error Coded for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

« |Understanding SPMI Data Aread

« |Understanding the SPMI Data Hierarchy|

SpmiStatGetPath Subroutine

Purpose
Returns the full path name of a statistic.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h>

char *miStatGetPath(Parent, StatHandle, MaxLevels)
SpmiCxHd1Sp Parent;

SpmiStatHd1 StatHandle;

int MaxLevels;

Description

The SpmiStatGetPath subroutine returns the full path name of a statistic, given a parent context
SpmiCxHdIf handle and a statistics handle. The MaxLevels parameter can limit the number

of levels in the hierarchy that must be searched to generate the path name of the statistic.

The memory area pointed to by the returned pointer is freed when the SpmiStatGetPath subroutine call is
repeated. For each invocation of the subroutine, a new memory area is allocated and its address
returned.If the calling program needs the returned character string after issuing the SpmiStatGetPath
subroutine call, the program must copy the returned string to locally allocated memory before reissuing the
subroutine call.

This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 237

Parameters
Parent

Specifies a valid SpmiCxHdl handle as obtained by another subroutine call.
StatHandle

Specifies a valid SpmiStatHdIl handle as obtained by another subroutine call. This handle must
point to a statistic belonging to the context identified by the Parent parameter.

MaxLevels

Limits the number of levels in the hierarchy that must be searched to generate the path name. If
this parameter is set to 0, no limit is imposed.

Return Values

If successful, the SpmiStatGetPath subroutine returns a pointer to a character array containing the full
path name of the statistic. If unsuccessful, the subroutine returns a NULL value.

Error Codes

All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

« extern char SpmiErrmsg[];

» extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the [List of SPMI Error Coded for more information.

Files

lusr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information

For related information, see:

« |Understanding SPMI Data Aread

« |Understanding the SPMI Data Hierarchy/|

sqrt, sqrtf, or sqrtl Subroutine

Purpose

Computes the square root.

Syntax

#include <math.h>
double sqrt (E[)
double x;

float sqrtf (x)
float x;

238 Technical Reference, Volume 2: Base Operating System and Extensions

long double sqrtl (x)
Tong double x;

Description

The sqrt, sqrtf, and sqrtl subroutines compute the square root of the x parameter.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

X Specifies some double-precision floating-point value.

Return Values
Upon successful completion, the sqrtf subroutine returns the square root of x.

For finite values of x < -0, a domain error occurs, and a NaN is returned.
If xis NaN, a NaN is returned.
If xis £0 or +Inf, x is returned.

If x is -Inf, a domain error shall occur, and a NaN is returned.

Error Codes
When using libm.a (-Im):

For the sqrt subroutine, if the value of x is negative, a NaNQ is returned and the errno global variable is
set to a EDOM value.

When using libmsaa.a (-Imsaa):

If the value of x is negative, a 0 is returned and the errno global variable is set to a EDOM value. A
message indicating a DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the matherr subroutine when using the libmsaa.a
(-lmsaa) library.

Related Information
The |exp, expmi1, log, log10, log1p, or pow| subroutine.

feclearexcept Subroutine] [fetestexcept Subroutinel and[class, _class, finite, isnan, or unordered|
Subroutines|in AIX 5L Version 5.2 Technical Reference: Base Operating System and Extensions Volume

1.

in AIX 5L Version 5.2 Files Reference.

[Subroutines Overview| AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 239

[128-Bit long double Floating-Point Format| AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs.

src_err_msg Subroutine

Purpose
Retrieves a System Resource Controller (SRC) error message.

Library

System Resource Controller Library (libsrc.a)

Syntax

int src_err_msg (|err'no|, |ErrorText|)
int errno;

char *xErrorText;

Description
The src_err_msg subroutine retrieves a System Resource Controller (SRC) error message.

Parameters

errno Specifies the SRC error code.
ErrorText Points to a character pointer to place the SRC error message.

Return Values

Upon successful completion, the src_err_msg subroutine returns a value of 0. Otherwise, a value of -1 is
returned. No error message is returned.

Related Information

The |addssy§| subroutine, |chssys| subroutine, |de|ssys| subroutine, Iaefssysl subroutine, |§etsubsvﬂ

subroutine, Igetssysl subroutine, srcsbuf (“srcsbuf Subroutine” on page 244) subroutine, srcrrgs (]“srcrrqs|
[Subroutine” on page 241) subroutine, sresrpy (‘srcsrpy Subroutine” on page 250) subroutine, srcsrqt
(“srcsrqt Subroutine” on page 253) subroutine, srestat (‘srcstat Subroutine” on page 259) subroutine,
srcstathdr (“srcstathdr Subroutine” on page 264) subroutine, srcstattxt (‘srcstattxt Subroutine” on|

page 265) subroutine, srcstop (“srcstop Subroutine” on page 266) subroutine, srestrt ((‘srcstrt Subroutine’|
on page 269) subroutine.

[List of SRC Subroutines|in AlX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

[Programming Subsystem Communication with the SRC|in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

|System Resource Controller (SRC) Overview for Programmers| in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

240 Technical Reference, Volume 2: Base Operating System and Extensions

src_err_msg_r Subroutine

Purpose

Gets the System Resource Controller (SRC) error message corresponding to the specified SRC error
code.

Library

System Resource Controller (libsrc.a)

Syntax

#include <spc.h>

int src_err_msg_r (srcerrno, ErrorText)

int |srcerrnof;
char **x [ErrorText)

Description

The src_err_msg_r subroutine returns the message corresponding to the input srcerrno value in a
caller-supplied buffer. This subroutine is threadsafe and reentrant.

Parameters
srcerrno Specifies the SRC error code.
ErrorText Pointer to a variable containing the address of a caller-supplied buffer where the message will be

returned. If the length of the message is unknown, the maximum message length can be used
when allocating the buffer. The maximum message length is SRC_BUF_MAX in /usr/include/spc.h
(2048 bytes).

Return Values

Upon successful completion, the src_err_msg_r subroutine returns a value of 0. Otherwise, no error
message is returned and the subroutine returns a value of -1.

Related Information

The srcsbuf_r (“srcsbuf_r Subroutine” on page 247), srcsrqt_r (‘srcsrgt_r Subroutine” on page 256),
srcrrgs_r (“srcrrgs_r Subroutine” on page 243), srcstat_r (‘srcstat_r Subroutine” on page 262), and
srcstattxt_r (‘srcstattxt_r Subroutine” on page 265) subroutines.

[List of SRC Subroutines|in AlX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

|Programming Subsystem Communication with the SRC| in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

[System Resource Controller (SRC) Overview for Programmers|in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

srcrrgs Subroutine

Purpose
Gets subsystem reply information from the System Resource Controller (SRC) request received.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 241

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

struct srchdr *srcrrgs (

char *Packet;

Description

The srcrrqs subroutine saves the srchdr information contained in the packet the subsystem received from
the System Resource Controller (SRC). The srchdr structure is defined in the spc.h file. This routine must
be called by the subsystem to complete the reception process of any packet received from the SRC. The
subsystem requires this information to reply to any request that the subsystem receives from the SRC.

Note: The saved srchdr information is overwritten each time this subroutine is called.

Parameters

Packet Points to the SRC request packet received by the subsystem. If the subsystem received the packet on a
message queue, the Packet parameter must point past the message type of the packet to the start of the
request information. If the subsystem received the information on a socket, the Packet parameter points
to the start of the packet received on the socket.

Return Values

The srcrrgs subroutine returns a pointer to the static srchdr structure, which contains the return address
for the subsystem response.

Examples

The following will obtain the subsystem reply information:
int rc;

struct sockaddr addr;

int addrsz;

struct srcreq packet;

/* wait to receive packet from SRC daemon */
rc=recvfrom(0, &packet, sizeof(packet), 0, &addr, &addrsz);
/* grab the reply information from the SRC packet =/
if (rc>0)
srchdr=srcrrgs (&packet);

Files
/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information

The sresbuf (“srcsbuf Subroutine” on page 244) subroutine, sresrpy (“srcsrpy Subroutine” on page 25
subroutine, sresrqt (‘srcsrqt Subroutine” on page 253) subroutine, srcstat (‘srcstat Subroutine” on

Eaée 25§qubroutine, srcstathdr (‘srcstathdr Subroutine” on page 264) subroutine, srcstattxt 1“srcstattxt|
Subroutine” on page 265) subroutine, srecstop (“srcstop Subroutine” on page 266)) subroutine, srcstrt

(“srcstrt Subroutine” on page 269) subroutine.

242 Technical Reference, Volume 2: Base Operating System and Extensions

[List of SRC Subroutines|in AlX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

[Programming Subsystem Communication with the SRC|in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

|System Resource Controller (SRC) Overview for Programmersl in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

srcrrqs_r Subroutine

Purpose

Copies the System Resource Controller (SRC) request header to the specified buffer. The SRC request
header contains the return address where the caller sends responses for this request.

Library

System Resource Controller (libsrc.a)

Syntax

#include <spc.h>

struct srchdr *srcrrgs_r (Packet, SRChdr)
char * |Eacket|;
struct srchdr * |§RChdr|;

Description

The srecrrqgs_r subroutine saves the SRC request header (srchdr) information contained in the packet the
subsystem received from the Source Resource Controller. The srchdr structure is defined in the spc.h file.
This routine must be called by the subsystem to complete the reception process of any packet received
from the SRC. The subsystem requires this information to reply to any request that the subsystem
receives from the SRC.

This subroutine is threadsafe and reentrant.

Parameters

Packet Points to the SRC request packet received by the subsystem. If the subsystem received the packet on a
message queue, the Packet parameter must point past the message type of the packet to the start of the
request information. If the subsystem received the information on a socket, the Packet parameter points
to the start of the packet received on the socket.

SRChdr Points to a caller-supplied buffer. The srcrrgs_r subroutine copies the request header to this buffer.

Examples

The following will obtain the subsystem reply information:
int rc;

struct sockaddr addr;

int addrsz;

struct srcreq packet;
struct srchdr *xheader;
struct srchdr *rtn_addr;

/*wait to receive packet from SRC daemon =/
rc=recvfrom(0, &packet, sizeof(packet), 0, &addr, &addrsz;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 243

/* grab the reply information from the SRC packet =/

if (rc>0)

{
header = (struct srchdr *)malloc(sizeof(struct srchdr));
rtn_addr = srcrrgs_r(&packet,header);
if (rtn_addr == NULL)

{

/* handle error */
}

Return Values
Upon successful completion, the srerrg_r subroutine returns the address of the caller-supplied buffer.

Error Codes
If either of the input addresses is NULL, the srcrrqs_r subroutine fails and returns a value of NULL.

SRC_PARM One of the input addresses is NULL.

Related Information

The src_err_msg_r (“src_err_msg_r Subroutine” on page 241), sresbuf_r (“srcsbuf r Subroutine” on|
[page 247), srcsrqt_r [sresrgt_r Subroutine” on page 256), srcstat_r (‘srcstat_r Subroutine” on page 262),
and srcstattxt_r (‘srcstattxt_r Subroutine” on page 265) subroutines.

srcsbuf Subroutine

Purpose
Gets status for a subserver or a subsystem and returns status text to be printed.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

intsrcshuf(Host,Type,SubsystemName,
SubserverObject ,SubsystemPID, StatusType,StatusFrom,StatusText,Continued)

char * Host|, * [SubsystemNamel;

char = |Subserver0bject|, *k lStatusText|;

short [Typel, [StatusTypels
int [SubsystemPID|, [StatusFrom|, * |Continued;

Description

The sresbuf subroutine gets the status of a subserver or subsystem and returns printable text for the
status in the address pointed to by the StatusText parameter.

When the StatusType parameter is SHORTSTAT and the Type parameter is SUBSYSTEM, the srcstat
subroutine is called to get the status of one or more subsystems. When the StatusType parameter is

244 Technical Reference, Volume 2: Base Operating System and Extensions

LONGSTAT and the Type parameter is SUBSYSTEM, the srcrsqt subroutine is called to get the long
status of one subsystem. When the Type parameter is not SUBSYSTEM, the srcsrqt subroutine is called
to get the long or short status of a subserver.

Parameters

Host Specifies the foreign host on which this status action is requested. If the host is null,
the status request is sent to the System Resource Controller (SRC) on the local host.
The local user must be running as "root”. The remote system must be configured to
accept remote System Resource Controller requests. That is, the srcmstr daemon (see
letc/inittab) must be started with the -r flag and the /etc/hosts.equiv or .rhosts file
must be configured to allow remote requests.

Type Specifies whether the status request applies to the subsystem or subserver. If the Type
parameter is set to SUBSYSTEM, the status request is for a subsystem. If not, the
status request is for a subserver and the Type parameter is a subserver code point.

SubsystemName Specifies the name of the subsystem on which to get status. To get the status of all
subsystems, use the SRCALLSUBSYS constant. To get the status of a group of
subsystems, the SubsystemName parameter must start with the SRCGROUP constant,
followed by the name of the group for which you want status appended. If you specify a
null SubsystemName parameter, you must specify a SubsystemPID parameter.

SubserverObject Specifies a subserver object. The SubserverObject parameter modifies the Type
parameter. The SubserverObject parameter is ignored if the Type parameter is set to
SUBSYSTEM. The use of the SubserverObject parameter is determined by the
subsystem and the caller. This parameter will be placed in the objname field of the
subreq structure that is passed to the subsystem.

SubsystemPID Specifies the process ID of the subsystem on which to get status, as returned by the
srestrt subroutine. You must specify the SubsystemPID parameter if multiple instances
of the subsystem are active and you request a long subsystem status or subserver
status. If you specify a null SubsystemPID parameter, you must specify a
SubsystemName parameter.

StatusType Specifies LONGSTAT for long status or SHORTSTAT for short status.

StatusFrom Specifies whether status errors and messages are to be printed to standard output or
just returned to the caller. When the StatusFrom parameter is SSHELL, the errors are
printed to standard output.

StatusText Allocates memory for the printable text and sets the StatusText parameter to point to
this memory. After it prints the text, the calling process must free the memory allocated
for this buffer.

Continued Specifies whether this call to the sresbuf subroutine is a continuation of a status
request. If the Continued parameter is set to NEWREQUEST, a request for status is
sent and the srcsbuf subroutine then waits for another. On return, the srcsbuf
subroutine is updated to the new continuation indicator from the reply packet and the
Continued parameter is set to END or STATCONTINUED by the subsystem. If the
Continued parameter is set to something other than END, this field must remain equal
to that value; otherwise, this function will not be able to receive any more packets for
the original status request. The calling process should not set the value of the
Continued parameter to a value other than NEWREQUEST. The Continued parameter
should not be changed while more responses are expected.

Return Values

If the sresbuf subroutine succeeds, it returns the size (in bytes) of printable text pointed to by the
StatusText parameter.

Error Codes
The sresbuf subroutine fails if one or more of the following are true:

SRC_BADSOCK The request could not be passed to the subsystem because of some
socket failure.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 245

SRC_CONT

SRC_DMNA
SRC_INET_AUTHORIZED_HOST
SRC_INET_INVALID_HOST
SRC_INVALID_USER
SRC_MMRY

SRC_NOCONTINUE

SRC_NORPLY
SRC_NSVR
SRC_SOCK
SRC_STPG

SRC_UDP

SRC_UHOST
SRC_WICH

Examples

1. To get the status of a subsystem, enter:

char *status;
int continued=NEWREQUEST;
int rc;

do {

The subsystem uses signals. The request cannot complete.

The SRC daemon is not active.

The local host is not in the remote /etc/hosts.equiv file.

On the remote host, the local host is not known.

The user is not root or group system.

An SRC component could not allocate the memory it needs.

The Continued parameter was not set to NEWREQUEST, and no
continuation is currently active.

The request timed out waiting for a response.

The subsystem is not active.

There is a problem with SRC socket communications.

The request was not passed to the subsystem. The subsystem is
stopping.

The SRC port is not defined in the /etc/services file.

The foreign host is not known.

There are multiple instances of the subsystem active.

rc=srcsbuf("MaryC", SUBSYSTEM, "srctest", "", 0,
SHORTSTAT, SSHELL, &status, continued);

if (status!=0)

{
printf(status);
free(status);
status=0;

}
} while (rc>0);

This gets short status of the srctest subsystem on the MaryC machine and prints the formatted status

to standard output.

2. To get the status of a subserver, enter:

char *status;
int continued=NEWREQUEST;
int rc;

do {

rc=srcsbuf("", 12345, "srctest", "", 0,
LONGSTAT, SSHELL, &status, continued);

if (status!=0)

{
printf(status);
free(status);
status=0;

1
} while (rc>0);

This gets long status for a specific subserver belonging to subsystem srctest. The subserver is the

one having code point 12345. This request is processed on the local machine. The formatted status is

printed to standard output.

246 Technical Reference, Volume 2: Base Operating System and Extensions

Files

letc/services Defines sockets and protocols used for Internet services.
/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information

The srcrrqs d“srcrrqs Subroutine” on page 241) subroutine, srcsrpy (]“srcsroy Subroutine” on page 250[)
subroutine, sresrqt (‘srcsrqt Subroutine” on page 253) subroutine, srcstat {“srcstat Subroutine” on|

page ZSQD subroutine, srcstathdr (“srcstathdr Subroutine” on page 264) subroutine, srcstattxt Q“srcstattxﬂ
Subroutine” on page 265) subroutine, srcstop (“srcstop Subroutine” on page 266) subroutine, srcstrt
(“srcstrt Subroutine” on page 269) subroutine.

[List of SRC Subroutines|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

[Programming Subsystem Communication with the SRC|in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

[System Resource Controller (SRC) Overview for Programmers| in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

srcsbuf _r Subroutine

Purpose
Gets status for a subserver or a subsystem and returns status text to be printed.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

int srcsbuf_r(Host, Type, SubsystemName, SubserverObject, SubsystemPID,
StatusType, StatusFrom, StatusText, Continued, SRCHandle)

char x Host|, * [SubsystemNamel;

char * [SubserverObject|, ** [StatusText|;
short |Typel, [StatusTypel;
pid_t_[SubsystemPID};

int [StatusFrom| * [Continued);

char *=* ERCHandZe|;

Description

The sresbuf_r subroutine gets the status of a subserver or subsystem and returns printable text for the
status in the address pointed to by the StatusText parameter. The sresbuf_r subroutine supports all the
functions of the srcbuf subroutine except the StatusFrom parameter.

When the StatusType parameter is SHORTSTAT and the Type parameter is SUBSYSTEM, the srcstat_r
subroutine is called to get the status of one or more subsystems. When the StatusType parameter is

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 247

LONGSTAT and the Type parameter is SUBSYSTEM, the srcrsqt_r subroutine is called to get the long
status of one subsystem. When the Type parameter is not SUBSYSTEM, the srcsrqt_r subroutine is
called to get the long or short status of a subserver.

This routine is threadsafe and reentrant.

Parameters

Host Specifies the foreign host on which this status action is requested. If the host is null,
the status request is sent to the System Resource Controller (SRC) on the local host.

Type Specifies whether the status request applies to the subsystem or subserver. If the Type

parameter is set to SUBSYSTEM, the status request is for a subsystem. If not, the
status request is for a subserver and the Type parameter is a subserver code point.

SubsystemName Specifies the name of the subsystem on which to get status. To get the status of all
subsystems, use the SRCALLSUBSYS constant. To get the status of a group of
subsystems, the SubsystemName parameter must start with the SRCGROUP constant,
followed by the name of the group for which you want status appended. If you specify a
null SubsystemName parameter, you must specify a SubsystemPID parameter.

SubserverObject Specifies a subserver object. The SubserverObject parameter modifies the Type
parameter. The SubserverObject parameter is ignored if the Type parameter is set to
SUBSYSTEM. The use of the SubserverObject parameter is determined by the
subsystem and the caller. This parameter will be placed in the objname field of the
subreq structure that is passed to the subsystem.

SubsystemPID Specifies the process ID of the subsystem on which to get status, as returned by the
srestrt subroutine. You must specify the SubsystemPID parameter if multiple instances
of the subsystem are active and you request a long subsystem status or subserver
status. If you specify a null SubsystemPID parameter, you must specify a
SubsystemName parameter.

StatusType Specifies LONGSTAT for long status or SHORTSTAT for short status.

StatusFrom Specifies whether status errors and messages are to be printed to standard output or
just returned to the caller. When the StatusFrom parameter is SSHELL, the errors are
printed to standard output. The SSHELL value is not recommended in a multithreaded
environment since error messages to standard output may be interleaved in an
unexpected manner.

StatusText Allocates memory for the printable text and sets the StatusText parameter to point to
this memory. After it prints the text, the calling process must free the memory allocated
for this buffer.

Continued Specifies whether this call to the sresbuf_r subroutine is a continuation of a status
request. If the Continued parameter is set to NEWREQUEST, a request for status is
sent and the sresbuf_r subroutine then waits for a reply. On return from the srcsbuf_r
subroutine, the Continued parameter is updated to the new continuation indicator from
the reply packet. The continuation indicator in the reply packet will be set to END or
STATCONTINUED by the subsystem. If the Continued parameter is set to something
other than END, the caller should not change that value; otherwise, this function will not
be able to receive any more packets for the original status request. The calling process
should not set the value of the Continued parameter to a value other than
NEWREQUEST. In normal processing, the Continued parameter should not be
changed while more responses are expected. The caller must continue to call the
srcsbuf _r subroutine until END is received. As an alternative, call the srecsbuf r
subroutine with Continued=SRC_CLOSE to discard the remaining data, close the
socket, and free the internal buffers.

SRCHandle Identifies a request and its associated responses. Set to NULL by the caller for a
NEWREQUEST. The srcsbuf_r subroutine saves a value in SRCHandle to allow
srcsbuf_r continuation calls to use the same socket and internal buffers. The
SRCHandle parameter should not be changed by the caller except for
NEWREQUESTSs.

248 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values

If the sresbuf_r subroutine succeeds, it returns the size (in bytes) of printable text pointed to by the

StatusText parameter.

Error Codes

The sresbuf_r subroutine fails and returns the corresponding error code if one of the following error

conditions is detected:

SRC_BADSOCK

SRC_CONT

SRC_DMNA
SRC_INET_AUTHORIZED_HOST
SRC_INET_INVALID_HOST
SRC_INVALID_USER
SRC_MMRY

SRC_NOCONTINUE

SRC_NORPLY
SRC_NSVR
SRC_SOCK
SRC_STPG

SRC_UDP

SRC_UHOST
SRC_WICH

Examples

1. To get the status of a subsystem, enter:

char *status;

int continued=NEWREQUEST;
int rc;

char *handle

do {

The request could not be passed to the subsystem because of some

socket failure.

The subsystem uses signals. The request cannot complete.

The SRC daemon is not active.

The local host is not in the remote /etc/hosts.equiv file.

On the remote host, the local host is not known.

The user is not root or group system.

An SRC component could not allocate the memory it needs.

The Continued parameter was not set to NEWREQUEST, and no
continuation is currently active.

The request timed out waiting for a response.

The subsystem is not active.

There is a problem with SRC socket communications.

The request was not passed to the subsystem. The subsystem is
stopping.

The SRC port is not defined in the /etc/services file.

The foreign host is not known.

There are multiple instances of the subsystem active.

rc=srcsbuf_r("MaryC", SUBSYSTEM, "srctest", "", 0,
SHORTSTAT, SDAEMON, &status, continued, &handle);

if (status!=0)
{

printf(status);
free(status);
status=0;

}
} while (rc>0);
if (rc<0)
{
...handle error from srcsbuf_r...

}

This gets short status of the srctest subsystem on the MaryC machine and prints the formatted status

to standard output.

Caution: In a multithreaded environment, the caller must manage the sharing of standard output
between threads. Set the StatusFrom parameter to SDAEMON to prevent unexpected error
messages from being printed to standard output.

2. To get the status of a subserver, enter:

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2)

249

char *status;

int continued=NEWREQUEST;
int rc;

char *handle

do {
rc=srcsbuf_r("", 12345, "srctest", "", 0,
LONGSTAT, SDAEMON, &status, continued, &handle);
if (status!=0)
{
printf(status);
free(status);
status=0;
}
} while (rc>0);
if (rc<0)
{

}

...handle error from srcsbuf_r...

This gets long status for a specific subserver belonging to subsystem srctest. The subserver is the
one having code point 12345. This request is processed on the local machine. The formatted status is
printed to standard output.

CAUTION:

In a multithreaded environment, the caller must manage the sharing of standard output between
threads. Set the StatusFrom parameter to SDAEMON to prevent unexpected error messages
from being printed to standard output.

Related Information

The src_err_msg_r (“src_err_msg_r Subroutine” on page 241) subroutine, srcsrqt_r d“srcsrqt_ﬂ
[Subroutine” on page 256) subroutine, srcrrqs_r (‘srcrrgs_r Subroutine” on page 243) subroutine, srcstat_r
(“srcstat_r Subroutine” on page 262) subroutine, srcstattxt_r (‘srcstatixt_r Subroutine” on page 265)
subroutine.

[List of SRC Subroutines|in AlX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

[Programming Subsystem Communication with the SRC|in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

[System Resource Controller (SRC) Overview for Programmers| in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

srcsrpy Subroutine

Purpose
Sends a reply to a request from the System Resource Controller (SRC) back to the client process.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

int srcsrpy ([SRChdrl, |PPacketl, |PPacketSize|, |Continued)

250 Technical Reference, Volume 2: Base Operating System and Extensions

struct srchdr *SRChdr;
char *PPacket;

int PPacketSize;
ushort Continued;

Description

The sresrpy subroutine returns a subsystem reply to a System Resource Controller (SRC) subsystem
request. The format and content of the reply are determined by the subsystem and the requester, but must
start with a srchdr structure. This structure and all others required for subsystem communication with the
SRC are defined in the |[lusr/include/spc.h| file. The subsystem must reply with a pre-defined format and
content for the following requests: START, STOP, STATUS, REFRESH, and TRACE. The START, STOP,
REFRESH, and TRACE requests must be answered with a srcrep structure. The STATUS request must
be answered with a reply in the form of a statbuf structure.

Note: The srcsrpy subroutine creates its own socket to send the subsystem reply packets.

Parameters
SRChdr Points to the reply address buffer as returned by the srcrrqs subroutine.
PPacket Points to the reply packet. The first element of the reply packet is a srchdr structure. The cont

element of the PPacket->srchdr structure is modified on returning from the sresrpy subroutine.
The second element of the reply packet should be a svrreply structure, an array of statcode
structures, or another format upon which the subsystem and the requester have agreed.

PPacketSize Specifies the number of bytes in the reply packet pointed to by the PPacket parameter. The
PPacketSize parameter may be the size of a short, or it may be between the size of a srchdr
structure and the SRCPKTMAX value, which is defined in the@ file.

Continued Indicates whether this reply is to be continued. If the Continued parameter is set to the constant
END, no more reply packets are sent for this request. If the Continued parameter is set to
CONTINUED, the second element of what is indicated by the PPacket parameter must be a
svrreply structure, since the rtnmsg element of the svrreply structure is printed to standard
output. For a status reply, the Continued parameter is set to STATCONTINUED, and the
second element of what is pointed to by the PPacket parameter must be an array of statcode
structures. If a STOP subsystem request is received, only one reply packet can be sent and the
Continued parameter must be set to END. Other types of continuations, as determined by the
subsystem and the requester, must be defined using positive values for the Continued
parameter. Values other than the following must be used:

0 END
1 CONTINUED
2 STATCONTINUED

Return Values
If the sresrpy subroutine succeeds, it returns the value SRC_OK.

Error Codes
The srcsrpy subroutine fails if one or both of the following are true:

SRC_SOCK There is a problem with SRC socket communications.
SRC_REPLYSZ SRC reply size is invalid.
Examples

1. To send a STOP subsystem reply, enter:

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 251

struct srcrep return_packet;
struct srchdr *srchdr;

bzero(&return_packet,sizeof(return_packet));
return_packet.svrreply.rtncode=SRC_OK;
strcpy(return_packet.svrreply,"srctest");

srcsrpy (srchdr,return_packet,sizeof(return_packet),END);

This entry sends a message that the subsystem srctest is stopping successfully.
2. To send a START subserver reply, enter:

struct srcrep return_packet;
struct srchdr *srchdr;

bzero(&return_packet,sizeof(return_packet));
return_packet.svrreply.rtncode=SRC_SUBMSG;
strcpy(return_packet.svrreply,objname, "mysubserver");
strcpy(return_packet.svrreply,objtext,"The subserver,\
mysubserver, has been started");

srcsrpy(srchdr,return_packet,sizeof(return_packet),END) ;

The resulting message indicates that the start subserver request was successful.
3. To send a status reply, enter:
int rc;
struct sockaddr addr;
int addrsz;
struct srcreq packet;
struct
{
struct srchdr srchdr;
struct statcode statcode[10];
} status;
struct srchdr *srchdr;
struct srcreq packet;

/* grab the reply information from the SRC packet */
srchdr=srcrrqs (&packet) ;
bzero(&status.statcode[0].objname,

/* get SRC status header */

srcstathdr(status.statcode[0].objname,
status.statcode[0].objtext);

/* send status packet(s) */
srcsrpy(srchdr,&status,sizeof(status),STATCONTINUED) ;

srcsrpy(srchdr,&status,sizeof(status),STATCONTINUED) ;

/* send final packet =*/
srcsrpy(srchdr,&status,sizeof(struct srchdr),END);

This entry sends several status packets.

Files

/dev/.SRC-unix Specifies the location for temporary socket files.

252 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information

The srcrrgs (“srcrrgs Subroutine” on page 241) subroutine, sresbuf (‘srcsbuf Subroutine” on page 244)
subroutine, sresrqt (]“srcsrqt Subroutine”) subroutine, srcstat (]“srcstat Subroutine” on page 259)
subroutine, srcstathdr (]“srcstathdr Subroutine” on page 264) subroutine, srcstattxt (]"srcstattxt Subroutine”|
|5n page 265b subroutine, srcstop (]“srcstop Subroutine” on page 266b subroutine, srcstrt 4“srcst[t|
[Subroutine” on page 269) subroutine.

|List of SRC Subroutines| in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

[Programming Subsystem Communication with the SRC|in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

[System Resource Controller (SRC) Overview for Programmers|in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

[Understanding SRC Communication Types in AIX 5L Version 5.2 General Programming Concepts: Writing
and Debugging Programs.

srcsrqt Subroutine

Purpose
Sends a request to a subsystem.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h> srcsrqt(Host, SubsystemName, SubsystemPID,
Requestlength, SubsystemRequest, Replylength, ReplyBuffer, StartItAlso, Continued)

char * Host|, * [SubsystemNamel;

char * [SubsystemRequest|, * ReplyBuffer];

int [SubsystemPID| [StartItAlsol, * |Continued];

short [Requestlengthl, * ReplylLengthl;

Description

The sresrqt subroutine sends a request to a subsystem, waits for a response, and returns one or more
replies to the caller. The format of the request and the reply is determined by the caller and the
subsystem.

Note: The srcsrqt subroutine creates its own socket to send a request to the subsystem. The socket that
this function opens remains open until an error or an end packet is received.

Two types of continuation are returned by the sresrqt subroutine:

No continuation ReplyBuffer->srchdr.continued is set to the END constant.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 253

Reply continuation

Parameters

SubsystemPID
Host

SubsystemName
RequestlLength
SubsystemRequest

ReplyLength

ReplyBuffer
StartltAlso

Continued

Return Values

ReplyBuffer->srchdr.continued is not set to the END constant, but to a positive
value agreed upon by the calling process and the subsystem. The packet is
returned to the caller.

The process ID of the subsystem.

Specifies the foreign host on which this subsystem request is to be sent. If the host is
null, the request is sent to the subsystem on the local host. The local user must be
running as "root”. The remote system must be configured to accept remote System
Resource Controller requests. That is, the srcmstr daemon (see /etc/inittab) must be
started with the -r flag and the /etc/hosts.equiv or .rhosts file must be configured to
allow remote requests.

Specifies the name of the subsystem to which this request is to be sent. You must
specify a SubsystemName if you do not specify a SubsystemPID.

Specifies the length, in bytes, of the request to be sent to the subsystem. The
maximum value in bytes for this parameter is 2000 bytes.

Points to the subsystem request packet.

Specifies the maximum length, in bytes, of the reply to be received from the
subsystem. On return from the sresrqt subroutine, the ReplyLength parameter is set
to the actual length of the subsystem reply packet.

Points to a buffer for the receipt of the reply packet from the subsystem.

Specifies whether the subsystem should be started if it is nonactive. When nonzero,
the System Resource Controller (SRC) attempts to start a nonactive subsystem, and
then passes the request to the subsystem.

Specifies whether this call to the sresrqt subroutine is a continuation of a previous
request. If the Continued parameter is set to NEWREQUEST, a request for it is sent
to the subsystem and the subsystem is notified that another response is expected.
The calling process should never set Continued to any value other than
NEWREQUEST. The last response from the subsystem will set Continued to END.

If the sresrqt subroutine is successful, the value SRC_OK is returned.

Error Codes

The sresrqt subroutine fails if one or more of the following are true:

SRC_BADSOCK

SRC_CONT
SRC_DMNA

The request could not be passed to the subsystem because of a
socket failure.

The subsystem uses signals. The request cannot complete.

The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOST
SRC_INET_INVALID_HOST
SRC_INVALID_USER
SRC_MMRY

SRC_NOCONTINUE

SRC_NORPLY
SRC_NSVR
SRC_REQLEN2BIG
SRC_SOCK
SRC_STPG

SRC_UDP
SRC_UHOST

The local host is not in the remote /etc/hosts.equiv file.

On the remote host, the local host is not known.

The user is not root or group system.

An SRC component could not allocate the memory it needs.

The Continued parameter was not set to NEWREQUEST, and no
continuation is currently active.

The request timed out waiting for a response.

The subsystem is not active.

The RequestlLength is greater than the maximum 2000 bytes.
There is a problem with SRC socket communications.

The request was not passed to the subsystem. The subsystem is
stopping.

The SRC port is not defined in the /etc/services file.

The foreign host is not known.

254 Technical Reference, Volume 2: Base Operating System and Extensions

Examples

1. To request long subsystem status, enter:

int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
struct
{
struct srchdr srchdr;
struct statcode statcode[20];
} statbuf;
struct subreq subreq;

subreq.action=STATUS;

subreq.object=SUBSYSTEM;

subreq.parml=LONGSTAT;

strcpy(subreq.objname,"srctest");

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt("MaryC", "srctest", 0, reqlen, &subreq, &replen,
&statbuf, SRC_NO, &cont);

This entry gets long status of the subsystem srctest on the MaryC machine. The subsystem keeps
sending status packets until statbuf.srchdr.cont=END.

2. To start a subserver, enter:

int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
struct
{
struct srchdr srchdr;
struct statcode statcode[20];
} statbuf;
struct subreq subreq;

subreq.action=START;

subreq.object=1234;

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt("", "", 987, reqlen, &subreq, &replen, &statbuf,
SRC_NO, &cont);

This entry starts the subserver with the code point of 1234, but only if the subsystem is already active.
3. To start a subserver and a subsystem, enter:

int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
struct
{

struct srchdr srchdr;

struct statcode statcode[20];
} statbuf;
struct subreq subreq;
subreq.action=START;
subreq.object=1234;
replen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt("", "", 987, reqlen, &subreq, &replen, &statbuf, SRC_YES, &cont);

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 255

This entry starts the subserver with the code point of 1234. If the subsystem to which this subserver
belongs is not active, the subsystem is started.

Files

letc/services Defines sockets and protocols used for Internet services.
/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information

The srerrgs (“srcrrgs Subroutine” on page 241) subroutine, sresbuf (“srcsbuf Subroutine” on page 244)
subroutine, srcsrpy (‘srcsrpy Subroutine” on page 250) subroutine, srestat (“srcstat Subroutine” on|

page 25§D subroutine, srcstathdr (“srcstathdr Subroutine” on page 264) subroutine, srcstattxt (]“srcstattxﬂ
Subroutine” on page 265) subroutine, srcstop (“srcstop Subroutine” on page 266[) subroutine, srcstrt
(“srcstrt Subroutine” on page 269) subroutine.

List of SRC Subroutines| [Programming Subsystem Communication with the SRC| |System Resource
Controller (SRC) Overview for Programmers|in AIX 5L Version 5.2 General Programming Concepts:
Writing and Debugging Programs.

srcsrqt_r Subroutine

Purpose
Sends a request to a subsystem.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

srcsrqt_r(Host, SubsystemName, SubsystemPID, Requestlength,
SubsystemRequest, Replylength, ReplyBuffer, StartItAlso,
Continued, SRCHandle)

char * [Host|, * [SubsystemNamel;

char * [SubsystemRequest|, * ReplyBuffer];

pid_t [SubsystemPID],

int, [StartItAlso|, * [Continued}

short [Requestlengthl, * ReplyLengthl;

char *x |§RCHOndZe|;

Description

The sresrqt_r subroutine sends a request to a subsystem, waits for a response and returns one or more
replies to the caller. The format of the request and the reply is determined by the caller and the
subsystem.

Note: For each NEWREQUEST, the srcsrqt_r subroutine creates its own socket to send a request to the
subsystem. The socket that this function opens remains open until an error or an end packet is
received.

This system is threadsafe and reentrant.

256 Technical Reference, Volume 2: Base Operating System and Extensions

Two types of continuation are returned by the sresrqt_r subroutine:

No continuation
Reply continuation

Parameters

SubsystemPID
Host

SubsystemName
RequestLength
SubsystemRequest

ReplyLength

ReplyBuffer
StartltAlso

Continued

SRCHandle

ReplyBuffer->srchdr.continued is set to the END constant.
ReplyBuffer->srchdr.continued is not set to the END constant, but to a positive
value agreed upon by the calling process and the subsystem. The packet is
returned to the caller.

The process ID of the subsystem.

Specifies the foreign host on which this subsystem request is to be sent. If the
host is null, the request is sent to the subsystem on the local host.

Specifies the name of the subsystem to which this request is to be sent. You
must specify a SubsystemName if you do not specify a SubsystemPID.
Specifies the length, in bytes, of the request to be sent to the subsystem. The
maximum length is 2000 bytes.

Points to the subsystem request packet.

Specifies the maximum length, in bytes, of the reply to be received from the
subsystem. On return from the sresrqt subroutine, the ReplyLength parameter is
set to the actual length of the subsystem reply packet.

Points to a buffer for the receipt of the reply packet from the subsystem.
Specifies whether the subsystem should be started if it is nonactive. When
nonzero, the System Resource Controller (SRC) attempts to start a nonactive
subsystem, and then passes the request to the subsystem.

Specifies whether this call to the sresrqt subroutine is a continuation of a
previous request. If the Continued parameter is set to NEWREQUEST, a request
for it is sent to the subsystem and the subsystem is notified that a response is
expected. Under normal circumstances, the calling process should never set
Continued to any value other than NEWREQUEST. The last response from the
subsystem will set Continued to END. The caller must continue to call the
sresrqt_r subroutine until END is received. Otherwise, the socket will not be
closed and the internal buffers freed. As an alternative, set
Continued=SRC_CLOSE to discard the remaining data, close the socket, and
free the internal buffers.

Identifies a request and its associated responses. Set to NULL by the caller for a
NEWREQUEST. The sresrqt_r subroutine saves a value in SRCHandle to allow
sresrqt_r continuation calls to use the same socket and internal buffers. The
SRCHandle parameter should not be changed by the caller except for
NEWREQUESTSs.

Return Values
If the sresrqt_r subroutine is successful, the value SRC_OK is returned.

Error Codes

The sresrqt_r subroutine fails and returns the corresponding error code if one of the following error
conditions is detected:

SRC_BADSOCK The request could not be passed to the subsystem because of a
socket failure.

SRC_CONT The subsystem uses signals. The request cannot complete.

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.
SRC_INET_INVALID_HOST On the remote host, the local host is not known.
SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory it needs.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 257

SRC_NOCONTINUE The Continued parameter was not set to NEWREQUEST, and no
continuation is currently active.

SRC_NORPLY The request timed out waiting for a response.

SRC_NSVR The subsystem is not active.

SRC_REQLEN2BIG The RequestLength is greater than the maximum 2000 bytes.

SRC_SOCK There is a problem with SRC socket communications.

SRC_STPG The request was not passed to the subsystem. The subsystem is
stopping.

SRC_UDP The SRC port is not defined in the /etc/services file.

SRC_UHOST The foreign host is not known.

Examples

1. To request long subsystem status, enter:

int cont=NEWREQUEST;

int rc;

short replen;

short reqlen;

char *handle;

struct

{
struct srchdr srchdr;
struct statcode statcode[20];

} statbuf;

struct subreq subreq;

subreq.action=STATUS;

subreq.object=SUBSYSTEM;

subreq.parml=LONGSTAT;

strcpy (subreq.objname, "srctest");

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt_r("MaryC", "srctest", 0, reqlen, &subreq, &replen,
&statbuf, SRC_NO, &cont, &handle);

This entry gets long status of the subsystem srctest on the MaryC machine. The subsystem keeps
sending status packets until statbuf.srchdr.cont=END.

2. To start a subserver, enter:

int cont=NEWREQUEST;

int rc;

short replen;

short reqlen;

struct

char *handle;

struct

{
struct srchdr srchdr;
struct statcode statcode[20];

} statbuf;

struct subreq subreq;

subreq.action=START;

subreq.object=1234;

replen=sizeof(statbuf);

reqlen=sizeof(subreq);

rc=srcsrqt_r("", "", 987, reqlen, &subreq, &replen, &statbuf,
SRC_NO, &cont, &handle);

This entry starts the subserver with the code point of 1234, but only if the subsystem is already active.
3. To start a subserver and a subsystem, enter:

258 Technical Reference, Volume 2: Base Operating System and Extensions

int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
char *handle;
struct
{

struct srchdr srchdr;

struct statcode statcode[20];
} statbuf;
struct subreq subreq;
subreq.action=START;
subreq.object=1234;
replen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt("", "", 987, reqlen, &subreq, &replen, &statbuf, SRC_YES, &cont, &handle);

This entry starts the subserver with the code point of 1234. If the subsystem to which this subserver
belongs is not active, the subsystem is started.

Files

letc/services Defines sockets and protocols used for Internet services.
/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information

The src_err_msg_r (‘src_err_msg_r Subroutine” on page 241), sresbuf_r (“srcsbuf_r Subroutine” on|
[page 247), srcrrgs_r {'srcrrgs_r Subroutine” on page 243), srcstat_r (‘srcstat_r Subroutine” on page 262),
and srcstattxt_r (‘srcstattxt_r Subroutine” on page 265) subroutines.

[List of SRC Subroutines|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

[Programming Subsystem Communication with the SRC|in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

[System Resource Controller (SRC) Overview for Programmers|in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

srcstat Subroutine

Purpose
Gets short status on one or more subsystems.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

int srcstat(Host,
SubsystemName ,SubsystemPID, Replylength, StatusReply,Continued)
char * [Host|, * [SubsystemNamel;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 259

int [SubsystemPID], * [Continued}

short * Replylength;

void * |StatusReplyf

Description

The srestat subroutine sends a short status request to the System Resource Controller (SRC) and returns
status for one or more subsystems to the caller.

Parameters

Host

SubsystemName

SubsystemPID

ReplyLength

StatusReply

Continued

Return Values

Specifies the foreign host on which this status action is requested. If the host is null, the
status request is sent to the SRC on the local host. The local user must be running as
"root”. The remote system must be configured to accept remote System Resource
Controller requests. That is, the sremstr daemon (see /etc/inittab) must be started with the
-r flag and the /etc/hosts.equiv or .rhosts file must be configured to allow remote
requests.

Specifies the name of the subsystem on which to get short status. To get status of all
subsystems, use the SRCALLSUBSYS constant. To get status of a group of subsystems,
the SubsystemName parameter must start with the SRCGROUP constant, followed by the
name of the group for which you want status appended. If you specify a null
SubsystemName parameter, you must specify a SubsystemPID parameter.

Specifies the PID of the subsystem on which to get status as returned by the srcstat
subroutine. You must specify the SubsystemPID parameter if multiple instances of the
subsystem are active and you request a long subsystem status or subserver status. If you
specify a null SubsystemPID parameter, you must specify a SubsystemName parameter.
Specifies size of a srchdr structure plus the number ofstructures times the size
of one statcode structure. On return from the srestat subroutine, this value is updated.
Specifies a pointer to a structure containing first element as struct srchdr and secondary
element as struct statcode (both defined in spc.h file) array that receives the status reply
for the requested subsystem. The first element of the returned statcode array contains the
status title line. The number of statcode structures array items depends on the number of
subsystems user queried.

Specifies whether this call to the srestat subroutine is a continuation of a previous status
request. If the Continued parameter is set to NEWREQUEST, a request for short
subsystem status is sent to the SRC and srestat waits for the first status response. The
calling process should never set Continued to a value other than NEWREQUEST. The last
response for the SRC sets Continued to END.

If the srestat subroutine succeeds, it returns a value of 0. An error code is returned if the subroutine is

unsuccessful.

Error Codes

The srestat subroutine fails if one or more of the following are true:

SRC_DMNA The SRC daemon is not active.
SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.
SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER

SRC_MMRY

SRC_NOCONTINUE

SRC_NORPLY
SRC_SOCK
SRC_UDP

The user is not root or group system.

An SRC component could not allocate the memory it needs.
Continued was not set to NEWREQUEST and no continuation is
currently active.

The request timed out waiting for a response.

There is a problem with SRC socket communications.

The SRC port is not defined in the /etc/services file.

260 Technical Reference, Volume 2: Base Operating System and Extensions

SRC_UHOST The foreign host is not known.

Examples

1. To request the status of a subsystem, enter:

intcont=NEWREQUEST;
struct {
struct srchdr srchdr
struct statcode statcode[6];
} status;
short replen=sizeof(status);

srcstat("MaryC","srctest",0,&replen,&status,&cont);

This entry requests short status of all instances of the subsystem srctest on the MaryC machine.
2. To request the status of all subsystems, enter:

int cont=NEWREQUEST;
struct {
struct srchdr srchdr;
struct statcode statcode[80];
} status;
short replen=sizeof(status);

srcstat("",SRCALLSUBSYS,0,&replen,&status,&cont);

This entry requests short status of all subsystems on the local machine.
3. To request the status for a group of subsystems, enter:

int cont=NEWREQUEST;
struct struct {
struct srchdr srchdr;
struct statcode statcode[30];
} status;
short replen=sizeof(status), rep_num;
char subsysname[30];

strcpy (subsysname, SRCGROUP) ;
strcat(subsysname,"tcpip");
srcstat("",subsysname,0,&replen,&status, &cont);

rep_num = (replen - sizeof(strcut srchdr)) / sizeof(strcut statcode);

for (i = 0; 1 < rep_num; i++)
printf("objtype %d status %d objname %s objtext %s\n",
status.statcode[i].objtype, status.statcode[i].status,
status.statcode[i].objname, status.statcode[i].objtext);

This entry requests short status of all members of the subsystem group tcpip on the local machine ,
and displays the query results on stdout.

Files

letc/services Defines the sockets and protocols used for Internet services.
/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information

The srcrrgs (“srcrrgs Subroutine” on page 241) subroutine, sresbuf (“srcsbuf Subroutine” on page 244)
subroutine, srcsrpy (“srcsrpy Subroutine” on page 250) subroutine, sresrqt (“srcsrgt Subroutine” on|
page 253

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 261

page 253) subroutine, srestathdr (“srcstathdr Subroutine” on page 264) subroutine, srcstattxt (‘srcstatixd
Subroutine” on page 265) subroutine, srcstop (‘srcstop Subroutine” on page 266) subroutine, srcstrt
(“srcstrt Subroutine” on page 269) subroutine.

List of SRC Subroutines} [Programming Subsystem Communication with the SRC} |System Resource
Controller (SRC) Overview for Programmers|in AIX 5L Version 5.2 General Programming Concepts:
Writing and Debugging Programs.

srcstat_r Subroutine

Purpose
Gets short status on a subsystem.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

int srcstat_r(Host, SubsystemName, SubsystemPID, Replylength,
StatusReply, Continued, SRCHandle)
char * [Host|, * [SubsystemNamel;

struct statrep * [StatusReplyjs

char *=* |§RCHandZe.;

Description

The srestat_r subroutine sends a short status request to the System Resource Controller (SRC) and
returns status for one or more subsystems to the caller. This subroutine is threadsafe and reentrant.

Parameters

Host Specifies the foreign host on which this status action is requested. If the host is null, the
status request is sent to the SRC on the local host.

SubsystemName Specifies the name of the subsystem on which to get short status. To get status of all

subsystems, use the SRCALLSUBSYS constant. To get status of a group of subsystems,
the SubsystemName parameter must start with the SRCGROUP constant, followed by the
name of the group for which you want status appended. If you specify a null
SubsystemName parameter, you must specify a SubsystemPID parameter.
SubsystemPID Specifies the PID of the subsystem on which to get status as returned by the srcstat_r
subroutine. You must specify the SubsystemPID parameter if multiple instances of the
subsystem are active and you request a long subsystem status or subserver status. If you
specify a null SubsystemPID parameter, you must specify a SubsystemName parameter.

ReplyLength Specifies size of a srchdr structure plus the number of statcode structures times the size
of one statcode structure. On return from the srcstat_r subroutine, this value is updated.
StatusReply Specifies a pointer to a statrep code structure containing a statcode array that receives

the status reply for the requested subsystem. The first element of the returned statcode
array contains the status title line. The structure is defined in the spc.h file.

262 Technical Reference, Volume 2: Base Operating System and Extensions

Continued Specifies whether this call to the srestat_r subroutine is a continuation of a previous status
request. If the Continued parameter is set to NEWREQUEST, a request for short
subsystem status is sent to the SRC and srcstat_r waits for the first status response.
During NEWREQUEST processing, the srcstat_r subroutine opens a socket, mallocs
internal buffers, and saves a value in SRCHandle. In normal circumstances, the calling
process should never set Continued to a value other than NEWREQUEST. When the
srcstat_r subroutine returns with Continued=STATCONTINUED, call srcstat_r without
changing the Continued and SRCHandle parameters to receive additional data. The last
response from the SRC sets Continued to END. The caller must continue to call srcstat_r
until END is received. Otherwise, the socket will not be closed and the internal buffers
freed. As an alternative, call srcstat_r with Continued=STATCONTINUED to discard the
remaining data, close the socket, and free the internal buffers.

SRCHandle Identifies a request and its associated responses. Set to NULL by the caller for a
NEWREQUEST. The srcstat_r subroutine saves a value in SRCHandle to allow
subsequent srcstat_r calls to use the same socket and internal buffers. The SRCHandle
parameter should not be changed by the caller except for NEWREQUESTS.

Return Values

If the srestat_r subroutine succeeds, it returns a value of 0. An error code is returned if the subroutine is
unsuccessful.

Error Codes

The srestat_r subroutine fails and returns the corresponding error code if one of the following error
conditions is detected:

SRC_DMNA The SRC daemon is not active.

SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.

SRC_INET_INVALID_HOST On the remote host, the local host is not known.

SRC_INVALID_USER The user is not root or group system.

SRC_MMRY An SRC component could not allocate the memory it needs.

SRC_NOCONTINUE Continued was not set to NEWREQUEST and no continuation is
currently active.

SRC_NORPLY The request timed out waiting for a response.

SRC_SOCK There is a problem with SRC socket communications.

SRC_UDP The SRC port is not defined in the /etc/services file.

SRC_UHOST The foreign host is not known.

Examples

1. To request the status of a subsystem, enter:

int cont=NEWREQUEST;

struct statcode statcode[20];
short replen=sizeof(statcode);
char xhandle;

srcstat_r("MaryC","srctest",0,&replen,statcode, &cont, &handle);

This entry requests short status of all instances of the subsystem srctest on the MaryC machine.
2. To request the status of all subsystems, enter:

int cont=NEWREQUEST;

struct statcode statcode[20];
short replen=sizeof(statcode);
char *handle;

srcstat_r("",SRCALLSUBSYS,0,&replen,statcode, &cont, &handle);

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 263

This entry requests short status of all subsystems on the local machine.
3. To request the status for a group of subsystems, enter:

int cont=NEWREQUEST;

struct statcode statcode[20];

short replen=sizeof(statcode);

char subsysname[30];
char *handle;

strcpy (subsysname, SRCGROUP) ;

strcat(subsysname,"tcpip");
srcstat_r("",subsysname,0,&replen,statcode, &cont, &handle);

This entry requests short status of all members of the subsystem group tcpip on the local machine.

Files

letc/services Defines the sockets and protocols used for Internet services.
/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information

The src_err_msg_r (“src_err_msg_r Subroutine” on page 241), sresbuf_r (“srcsbuf r Subroutine” on|
[page 247), sresrqt_r [sresrgt_r Subroutine” on page 256), srerrgs_r {“srcrrgs_r Subroutine” on page 243),
and srestattxt_r (“‘srcstattxt_r Subroutine” on page 265) subroutines.

srcstathdr Subroutine

Purpose
Gets the title line of the System Resource Controller (SRC) status text.

Library

System Resource Controller Library (libsrc.a)

Syntax

void srcstathdr ([Titlell [Title2)
char *Titlel, *TitleZ;

Description
The srcstathdr subroutine retrieves the title line, or header, of the SRC status text.

Parameters

Title1 Specifies the objname field of a statcode structure. The subsystem name title is placed here.
Title2 Specifies the objtext field of a statcode structure. The remaining titles are placed here.

Return Values

The subsystem name title is returned in the Title1 parameter. The remaining titles are returned in the Title2
parameter.

264 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information

The srcrrgs (“srcrrgs Subroutine” on page 241) subroutine, sresbuf (‘srcsbuf Subroutine” on page 244)
subroutine, srcsrpy (“srcsrpy Subrouting” on page 250) subroutine, srcsrqt (“srcsrgt Subroutine” on|
Eaée ZSEQ subroutine, srcstat (‘srcstat Subroutine” on page 259) subroutine, srcstattxt (“srcstattxf
Subroutine’)) subroutine, srcstop (“srcstop Subroutine” on page 266|) subroutine, srcstrt
Subroutine” on page 269[) subroutine.

List of SRC Subroutines} [Programming Subsystem Communication with the SRC} [System Resource]
Controller (SRC) Overview for Programmers|in AIX 5L Version 5.2 General Programming Concepts:
Writing and Debugging Programs.

srcstattxt Subroutine

Purpose
Gets the System Resource Controller (SRC) status text representation for a status code.

Library

System Resource Controller Library (libsrc.a)

Syntax
char *srcstattxt ([StatusCode)

short StatusCode;

Description

The srestattxt subroutine, given an SRC status code, gets the text representation and returns a pointer to
this text.

Parameters

StatusCode Specifies an SRC status code to be translated into meaningful text.

Return Values
The srecstattxt subroutine returns a pointer to the text representation of a status code.

Related Information

The srcrrgs (“srcrrgs Subroutine” on page 241) subroutine, sresbuf (‘srcsbuf Subroutine” on page 244)
subroutine, srcsrpy (“srcsrpy Subrouting” on page 250) subroutine, srcsrqt (“srcsrgt Subroutine” on|
bage 253) subroutine, srcstat (“srcstat Subroutine” on page 259) subroutine, srcstathdr (“srcstathdi|
Subroutine” on page 264) subroutine, srcstop (“srcstop Subroutine” on page 266[) subroutine, srcstrt
{“srcstrt Subroutine” on page 269) subroutine.

List of SRC Subroutines} [Programming Subsystem Communication with the SRC} [System Resource]
Controller (SRC) Overview for Programmers|in AIX 5L Version 5.2 General Programming Concepts:
Writing and Debugging Programs.

srcstattxt r Subroutine

Purpose
Gets the status text representation for an SRC status code.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 265

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

char *srcstattxt_r (StatusCode, Text)
short StatusCode;
char *Text;

Description

The srestattxt_r subroutine, given an SRC status code, gets the text representation and returns it in a
caller-supplied buffer. This routine is threadsafe and reentrant.

Parameters
StatusCode Specifies an SRC status code to be translated into meaningful text.
Text Points to a caller-supplied buffer where the text will be returned. If the length of the text is

unknown, the maximum text length can be used when allocating the buffer. The maximum text
length is SRC_STAT_MAX in /usr/include/spc.h (64 bytes).

Return Values

Upon successful completion, the srcstattxt_r subroutine returns the address of the caller-supplied buffer.
Otherwise, no text is returned and the subroutine returns NULL.

Related Information

The src_err_msg_r (‘src_err_msg_r Subroutine” on page 241), sresbuf_r (“srcsbuf _r Subroutine” on|
|page 24 ﬂD, sresrqgt_r (‘srcsrgt_r Subroutine” on page 256), srerrgs_r (“srcrrgs_r Subroutine” on page 243),
and srcstat_r (‘srcstat_r Subroutine” on page 262) subroutines.

[List of SRC Subroutines|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

[Programming Subsystem Communication with the SRC|in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

[System Resource Controller (SRC) Overview for Programmers| in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

srcstop Subroutine

Purpose
Stops a System Resource Controller (SRC) subsystem.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <spc.h>

266 Technical Reference, Volume 2: Base Operating System and Extensions

srcstop(Host, SubsystemName, SubsystemPID, StopType)
srcstop(Replylength, ServerReply, StopFrom)

char * Host|, * [SubsystemNamel;

int [SubsystemPID|, [StopFromj

short [StopType|l, * ReplyLengthi

struct srcrep *

Description

EerverRep Zy|;

The srcstop subroutine sends a stop subsystem request to a subsystem and waits for a stop reply from
the System Resource Controller (SRC) or the subsystem. The srcstop subroutine can only stop a
subsystem that was started by the SRC.

Parameters

Host

SubsystemName
SubsystemPID

StopType

ReplyLength

ServerReply
StopFrom

Return Values

Specifies the foreign host on which this stop action is requested. If the host is the null
value, the request is sent to the SRC on the local host. The local user must be running as
"root”. The remote system must be configured to accept remote System Resource
Controller requests. That is, the sremstr daemon (see /etc/inittab) must be started with the
-r flag and the /etc/hosts.equiv or .rhosts file must be configured to allow remote
requests.

Specifies the name of the subsystem to stop.

Specifies the process ID of the system to stop as returned by the srestrt subroutine. If you
specify a null SubsystemPID parameter, you must specify a SubsystemName parameter.
Specifies the type of stop requested of the subsystem. If this parameter is null, a normal
stop is assumed. The StopType parameter must be one of the following values:

CANCEL
Requires a quick stop of the subsystem. The subsystem is sent a SIGTERM
signal. After the wait time defined in the subsystem object, the SRC issues a
SIGKILL signal to the subsystem. This waiting period allows the subsystem to
clean up all its resources and terminate. The stop reply is returned by the SRC.

FORCE
Requests a quick stop of the subsystem and all its subservers. The stop reply is
returned by the SRC for subsystems that use signals and by the subsystem for
other communication types.

NORMAL
Requests the subsystem to terminate after all current subsystem activity has
completed. The stop reply is returned by the SRC for subsystems that use signals
and by the subsystem for other communication types.
Specifies the maximum length, in bytes, of the stop reply. On return from the srcstop
subroutine, this field is set to the actual length of the subsystem reply packet received.
Points to an svrreply structure that will receive the subsystem stop reply.
Specifies whether the srcstop subroutine is to display stop results to standard output. If the
StopFrom parameter is set to SSHELL, the stop results are displayed to standard output
and the srestop subroutine returns successfully. If the StopFrom parameter is set to
SDAEMON, the stop results are not displayed to standard output, but are passed back to
the caller.

Upon successful completion, the srestop subroutine returns SRC_OK or SRC_STPOK.

Error Codes

The srestop subroutine fails if one or more of the following are true:

SRC_BADFSIG

The stop force signal is an invalid signal.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 267

SRC_BADNSIG
SRC_BADSOCK

SRC_DMNA
SRC_INET_AUTHORIZED_HOST
SRC_INET_INVALID_HOST
SRC_INVALID_USER
SRC_MMRY

SRC_NORPLY

SRC_NOTROOT

SRC_SOCK

SRC_STPG

SRC_SVND
SRC_UDP
SRC_UHOST
SRC_PARM

Examples

The stop normal signal is an invalid signal.

The stop request could not be passed to the subsystem on its
communication socket.

The SRC daemon is not active.

The local host is not in the remote /etc/hosts.equiv file.

On the remote host, the local host is not known.

The user is not root or group system.

An SRC component could not allocate the memory it needs.
The request timed out waiting for a response.

The SRC daemon is not running as root.

There is a problem with SRC socket communications.

The request was not passed to the subsystem. The subsystem is
stopping.

The subsystem is unknown to the SRC daemon.

The remote SRC port is not defined in the /etc/services file.
The foreign host is not known.

Invalid parameter passed.

1. To stop all instances of a subsystem, enter:

int rc;
struct svrreply svrreply;

short replen=sizeof(svrreply);

rc=srcstop("MaryC","srctest",0,FORCE,&replen,&svrreply, SDAEMON) ;

This request stops a subsystem with a stop type of FORCE for all instances of the subsystem srctest
on the MaryC machine and does not print a message to standard output about the status of the stop.

2. To stop a single instance of a subsystem, enter:

struct svrreply svrreply;

short replen=sizeof(svrreply);

rc=srcstop("","",999,CANCEL,&replen,&svrreply,SSHELL) ;

This request stops a subsystem with a stop type of CANCEL, with the process ID of 999 on the local
machine and prints a message to standard output about the status of the stop.

Files
letc/services Defines sockets and protocols used for Internet services.
/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix

Related Information

Specifies the location for temporary socket files.

The srerrgs (“srcrrgs Subroutine” on page 241) subroutine, sresbuf (“srcsbuf Subroutine” on page 244)

subroutine, sresrpy (“srcsrpy Subroutine” on page 250) subroutine, srcsrqt (“srcsrgt Subroutine” on|

page 2530 subroutine, srestat (“srcstat Subroutine” on page 259) subroutine, srcstathdr (“srcstathdn

Subroutine” on page 264) subroutine, srcstattxt (“srcstattxt Subroutine” on page 265[) subroutine, srcstrt
(“srcstrt Subroutine” on page 269) subroutine.

|List of SRC Subroutines| in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging

Programs.

268 Technical Reference, Volume 2: Base Operating System and Extensions

[Programming Subsystem Communication with the SRC|in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

[System Resource Controller (SRC) Overview for Programmers|in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

srcstrt Subroutine

Purpose
Starts a System Resource Controller (SRC) subsystem.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include<spc.h>
srcstrt (Host, SubsystemName, Environment, Arguments, Restart, StartFrom)

char * Host|, * [SubsystemNamel;

char * [Environment), * WArguments|;

unsigned int Pestar‘ﬂ;
int Etar‘tFrom|;

Description

The srestrt subroutine sends a start subsystem request packet and waits for a reply from the System
Resource Controller (SRC).

Parameters

Host Specifies the foreign host on which this start subsystem action is requested. If the host is
null, the request is sent to the SRC on the local host. The local user must be running as
"root”. The remote system must be configured to accept remote System Resource
Controller requests. That is, the sremstr daemon (see /etc/inittab) must be started with the
-r flag and the /etc/hosts.equiv or .rhosts file must be configured to allow remote
requests.

SubsystemName Specifies the name of the subsystem to start.

Environment Specifies a string that is placed in the subsystem environment when the subsystem is

executed. The combined values of the Environment and Arguments parameters cannot
exceed a maximum of 2400 characters. Otherwise, the srcstrt subroutine will fail. The
environment string is parsed by the SRC according to the same rules used by the shell. For
example, quoted strings are passed as a single Environment value, and blanks outside a
quoted string delimit each environment value.

Arguments Specifies a string that is passed to the subsystem when the subsystem is executed. The
string is parsed from the command line and appended to the command line arguments from
the subsystem object class. The combined values of the Environment and Arguments
parameters cannot exceed a maximum of 2400 characters. Otherwise, the srcstrt
subroutine will fail. The command argument is parsed by the SRC according to the same
rules used by the shell. For example, quoted strings are passed as a single argument, and
blanks outside a quoted string delimit each argument.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 269

Restart

StartFrom

Return Values
When the StartFrom parameter is set to SSHELL, the srcstrt subroutine returns the value SRC_OK.

Specifies override on subsystem restart. If the Restart parameter is set to SRCNO, the
subsystem’s restart definition from the subsystem object class is used. If the Restart
parameter is set to SRCYES, the restart of a subsystem is not attempted if it terminates

Specifies whether the srestrt subroutine is to display start results to standard output. If the
StartFrom parameter is set to SSHELL, the start results are displayed to standard output,
and the srcstrt subroutine always returns successfully. If the StartFrom parameter is set to
SDAEMON, the start results are not displayed to standard output but are passed back to

Otherwise, it returns the subsystem process ID.

Error Codes

The srestrt subroutine fails if any of the following are true:

SRC_AUDITID
SRC_DMNA
SRC_FEXE

SRC_INET_AUTHORIZED_HOST
SRC_INET_INVALID_HOST
SRC_INVALID_USER

SRC_INPT
SRC_MMRY
SRC_MSGQ
SRC_MULT
SRC_NORPLY
SRC_OUT
SRC_PIPE
SRC_SERR
SRC_SUBSOCK
SRC_SUBSYSID
SRC_SOCK
SRC_SVND
SRC_UDP
SRC_UHOST

Examples

The audit user ID is invalid.

The SRC daemon is not active.

The subsystem could not be forked and execed.

The local host is not in the remote /etc/hosts.equiv file.

On the remote host, the local host is not known.

The user is not root or group system.

The subsystem standard input file could not be established.
An SRC component could not allocate the memory it needs.
The subsystem message queue could not be created.
Multiple instance of the subsystem are not allowed.

The request timed out waiting for a response.

The subsystem standard output file could not be established.
A pipe could not be established for the subsystem.

The subsystem standard error file could not be established.
The subsystem communication socket could not be created.
The system user ID is invalid.

There is a problem with SRC socket communications.

The subsystem is unknown to the SRC daemon.

The SRC port is not defined in the /etc/services header file.
The foreign host is not known.

1. To start a subsystem passing the Environment and Arguments parameters, enter:

rc=srcstrt("","srctest", "HOME=/tmpTERM=1bm6155",
"-z\"thezflagargument\"",SRC_YES,SSHELL);

This starts the srctest subsystem on the local host, placing HOME=/tmp, TERM=ibm6155 in the
environment and using -z and thezflagargument as two arguments to the subsystem. This also
displays the results of the start command to standard output and allows the SRC to restart the

subsystem should it end abnormally.

2. To start a subsystem on a foreign host, enter:
rc=srcstrt("MaryC","srctest","","",SRC_NO, SDAEMON) ;

This starts the srctest subsystem on the MaryC machine. This does not display the results of the start

command to standard output and does not allow the SRC to restart the subsystem should it end

abnormally.

270 Technical Reference, Volume 2: Base Operating System and Extensions

Files

Defines sockets and protocols used for Internet services.
/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information

The srerrgs (“srcrrgs Subroutine” on page 241) subroutine, sresbuf (“srcsbuf Subroutine” on page 244)
subroutine, srcsrpy (‘srcsrpy Subroutine” on page 250) subroutine, srcsrqt (“srcsrqgt Subroutine” on|

page 25§Dsubroutine, srcstat (‘srcstat Subroutine” on page 259) subroutine, srcstathdr (“srcstathdr]
Subroutine” on page 264) subroutine, srcstattxt (“srcstattxt Subroutine” on page 265[) subroutine, srcstop
(“srcstop Subroutine” on page 266[) subroutine.

List of SRC Subroutines} [Programming Subsystem Communication with the SRC} [System Resource]
Controller (SRC) Overview for Programmers|in AIX 5L Version 5.2 General Programming Concepts:
Writing and Debugging Programs.

ssignal or gsignal Subroutine

Purpose
Implements a software signal facility.

Library
Standard C Library (libc.a)

Syntax

#include <signal.h>

void (*ssignal ([Signall, Wction))) ()
int Signal;

void (*Action)();

int gsignal (Signal)

int Signal;

Description
Attention: Do not use the ssignal or gsignal subroutine in a multithreaded environment.

The ssignal and gsignal subroutines implement a software facility similar to that of the signal and Kkill
subroutines. However, there is no connection between the two facilities. User programs can use the
ssignal and gsignal subroutines to handle exceptional processing within an application. The signal
subroutine and related subroutines handle system-defined exceptions.

The software signals available are associated with integers in the range 1 through 16. Other values are
reserved for use by the C library and should not be used.

The ssignal subroutine associates the procedure specified by the Action parameter with the software
signal specified by the Signal parameter. The gsignal subroutine raises the Signal, causing the procedure
specified by the Action parameter to be taken.

The Action parameter is either a pointer to a user-defined subroutine, or one of the constants SIG_DFL
(default action) and SIG_IGN (ignore signal). The ssignal subroutine returns the procedure that was

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 271

previously established for that signal. If no procedure was established before, or if the signal number is
illegal, then the ssignal subroutine returns the value of SIG_DFL.

The gsignal subroutine raises the signal specified by the Signal parameter by doing the following:

 |If the procedure for the Signal parameter is SIG_DFL, the gsignal subroutine returns a value of 0 and
takes no other action.

* If the procedure for the Signal parameter is SIG_IGN, the gsignal subroutine returns a value of 1 and
takes no other action.

* |f the procedure for the Signal parameter is a subroutine, the Action value is reset to the SIG_DFL
procedure and the subroutine is called, with the Signal value passed as its parameter. The gsignal
subroutine returns the value returned by the signal-handling routine.

 If the Signal parameter specifies an illegal value or if no procedure is specified for that signal, the
gsignal subroutine returns a value of 0 and takes no other action.

Parameters
Signal Specifies a signal.
Action Specifies a procedure.

Related Information
The kill or killpg| subroutine, signal (“sigaction, sigvec, or signal Subroutine” on page 164) subroutine.

statacl or fstatacl Subroutine

Purpose
Retrieves the access control information for a file.

Library
Standard C Library (libc.a)

Syntax

#include <sys/acl.h>
#include <sys/stat.h>

int statacl (Path, Command, ACL, ACLSize)
char * |Pathl;

int |Command};

struct acl * ;

int fstatacl (FileDescriptor, Command, ACL, ACLSize)
int |FileDescr‘iptor|;

int Command;

struct acl *ACL;

int ACLSize;

Description
The statacl and fstatacl subroutines return the access control information for a file system object.

272 Technical Reference, Volume 2: Base Operating System and Extensions

Parameters

Path
FileDescriptor
Command

ACL

ACLSize

Return Values

Specifies a pointer to the path name of a file.

Specifies the file descriptor of an open file.

Specifies the mode of the path interpretation for Path, specifically whether to retrieve
information about a symbolic link or mount point. Valid values for the Command
parameter are defined in the stat.h file and include:

e STX_LINK

* STX_MOUNT

« STX_NORMAL

Specifies a pointer to a buffer to contain the Access Control List (ACL) of the file system

object. The format of an ACL is defined in the sys/acl.h file and includes the following
members:

acl_len
Size of the Access Control List (ACL).
Note: The entire ACL for a file cannot exceed one memory page (4096 bytes).

acl_mode
File mode.
Note: The valid values for the ac1_mode are defined in the sys/mode.h file.

u_access
Access permissions for the file owner.

g_access
Access permissions for the file group.

0_access
Access permissions for default class others.

acl_ext[]
An array of the extended entries for this access control list.

The members for the base ACL (owner, group, and others) may contain the following bits,
which are defined in the sys/access.h file:

R_ACC
Allows read permission.

W_ACC
Allows write permission.

X_ACC Allows execute or search permission.
Specifies the size of the buffer to contain the ACL. If this value is too small, the first word
of the ACL is set to the size of the buffer needed.

On successful completion, the statacl and fstatacl subroutines return a value of 0. Otherwise, a value of
-1 is returned and the errno global variable is set to indicate the error.

Error Codes

The statacl subroutine fails if one or more of the following are true:

ENOTDIR
ENOENT

ENOENT
EACCES
EFAULT

A component of the Path prefix is not a directory.

A component of the Path does not exist or has the disallow
truncation attribute (see the ulimit subroutine).

The Path parameter was null.

Search permission is denied on a component of the Path prefix.
The Path parameter points to a location outside of the allocated
address space of the process.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 273

ESTALE The process’ root or current directory is located in a virtual file
system that has been unmounted.

ELOOP Too many symbolic links were encountered in translating the Path
parameter.

ENOENT A symbolic link was named, but the file to which it refers does not
exist.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or

the entire Path parameter exceeded 1023 characters.

The fstatacl subroutine fails if the following is true:

EBADF The file descriptor FileDescriptor is not valid.

The statacl or fstatacl subroutine fails if one or more of the following are true:

EFAULT The ACL parameter points to a location outside of the allocated address space of the process.

EINVAL The Command parameter is not a value of STX_LINK, STX_MOUNT, STX_NORMAL.

ENOSPC The ACLSize parameter indicates the buffer at ACL is too small to hold the Access Control List. In this
case, the first word of the buffer is set to the size of the buffer required.

EIO An 1/O error occurred during the operation.

If Network File System (NFS) is installed on your system, the statacl and fstatacl subroutines can also fail
if the following is true:

ETIMEDOUT The connection timed out.

Related Information

The|chac||subroutine, stat (“statx, stat, Istat, fstatx, fstat, fullstat, ffullstat, stat64, Istat64, or fstat64]
[Subroutine” on page 277) subroutine.

The subroutine, subroutine, subroutine, subroutine.
The command, command, command.

[List of Security and Auditing Subroutines|and [Subroutines Overview| in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

statfs, fstatfs, or ustat Subroutine
Purpose
Gets file system statistics.

Library

Standard C Library (libc.a)

Syntax

#include <sys/statfs.h>

274 Technical Reference, Volume 2: Base Operating System and Extensions

int statfs (|Pathl, [StatusBuffer]
char *Path;
struct statfs *StatusBuffer;

int fstatfs ([FileDescriptor], StatusBuffer)
int FileDescriptors;
struct statfs *StatusBuffer;

#include <sys/types.h>
#include <ustat.h>

int ustat (evicel, Buffer)
dev_t Device;
struct ustat *Buffer;

Description

The statfs and fstatfs subroutines return information about the mounted file system that contains the file
named by the Path or FileDescriptor parameters. The returned information is in the format of a statfs
structure, described in the sys/statfs.h file.

The ustat subroutine also returns information about a mounted file system identified by Device. This
device identifier is for any given file and can be determined by examining the [st_dev field of the staf
defined in the sys/stat.h file. The returned information is in the format of a ustat structure,
described in the ustat.h file. The ustat subroutine is superseded by the statfs and fstatfs subroutines.
Use one of these (statfs and fstatfs) subroutines instead.

Parameters

Path The path name of any file within the mounted file system.

FileDescriptor A file descriptor obtained by a successful open or fentl subroutine. A file descriptor is a
small positive integer used instead of a file name.

StatusBuffer A pointer to a statfs buffer for the returned information from the statfs or fstatfs
subroutine.

Device The ID of the device. It corresponds to the st_rdev field of the structure returned by the
stat subroutine. The stat subroutine and the sys/stat.h file provide more information
about the device driver.

Buffer A pointer to a ustat buffer to hold the returned information.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned, and the errno
global variable is set to indicate the error.

Error Codes
The statfs, fstatfs, and ustat subroutines fail if the following is true:

EFAULT The Buffer parameter points to a location outside of the allocated address space of the process.

The fstatfs subroutine fails if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.
EIO An 1/O error occurred while reading from the file system.

The statfs subroutine can be unsuccessful for other reasons. For a list of additional errors, see['Basd]
[Operating System Error Codes For Services That Require Path-Name Resolution’].

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 275

Related Information

The stat (‘statx, stat, Istat, fstatx, fstat, fullstat, ffullstat, stat64, Istat64, or fstat64 Subroutine” on page 277)
subroutine.

|Fi|es, Directories, and File Systems for Programmers| in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

statvfs or fstatvfs Subroutine

Purpose
Returns information about a file system.

Library
Standard C Library (libc.a)

Syntax

#include <sys/statvfs.h>

int statvfs ([path],
const char *Path;
struct statvfs *Buf;

int fstatvfs (, Buf)
int Fildes;
struct statvfs *Buf;

Description

The statvfs and fstatvfs subroutines return descriptive information about a mounted file system containing
the file referenced by the Path or Fildes parameters. The Buf parameter is a pointer to a structure which
will by filled by the subroutine call.

The Path and Fildes parameters must reference a file which resides on the file system. Read, write, or
execute permission of the named file is not required, but all directories listed in the pathname leading to
the file must be searchable.

Parameters

Path The path name identifying the file.

Buf A pointer to a statvfs structure in which information is returned. The statvfs structure is described in the
sys/statvfs.h header file.

Fildes The file descriptor identifying the open file.

Return Values

0 Successful completion.
-1 Not successful and errno set to one of the following.

Error Codes

EACCES Search permission is denied on a component of the path.

276 Technical Reference, Volume 2: Base Operating System and Extensions

EBADF

EIO
ELOOP
ENAMETOOLONG

ENOENT
ENOMEM
ENOTDIR
EOVERFLOW

Related Information

The file referred to by the Fildes parameter is not an open file
descriptor.

An I/O error occurred while reading from the filesystem.

Too many symbolic links encountered in translating path.

The length of the pathname exceeds PATH_MAX, or name
component is longer than NAME_MAX.

The file referred to by the Path parameter does not exist.

A memory allocation failed during information retrieval.

A component of the Path parameter prefix is not a directory.
One of the values to be returned cannot be represented correctly
in the structure pointed to by buf.

The stat (‘statx, stat, Istat, fstatx, fstat, fullstat, ffullstat, stat64, Istat64, or fstat64 Subroutine”b subroutine,

statfs (‘statfs, fstatfs, or ustat Subroutine” on page 274) subroutine.

statx, stat, Istat, fstatx, fstat, fullstat, ffullstat, stat64, Istat64, or fstat64

Subroutine

Purpose
Provides information about a file.

Library

Standard C Library (libc.a)

Syntax

#include <sys/stat.h>

int stat (,
const char *Path;

struct stat *Buffer;

int 1stat (Path, Buffer)

const char *Path;
struct stat *Buffer;

int fstat (|[FileDescriptor], Buffer)
int FileDescriptors;
struct stat *Buffer;

int statx (Path, Buffer, Length, Command)
char *Path;

struct stat *Buffer;

int |Lengthj;

int |Command|;

int fstatx (FileDescriptor,
int FileDescriptors;

struct stat *Buffer;

int Length;

int Command;

#include <sys/fullstat.h>

Buffer, Length, Command)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 277

int fullstat (Path, Command, Buffer)

struct fullstat *Buffer;

char *Path;

int Command;

int ffullstat (FileDescriptor, Command, Buffer)
struct fullstat *Buffer;

int FileDescriptors;

int Command;

int stat64 (,

const char *Path;
struct stat64 *Buffer;
int 1stat64 (Path, Buffer)

const char *Path;
struct stat64 *Buffer;

int fstat64 (|FileDescriptor|, Buffer)
int FileDescriptor;
struct stat64 *Buffer;

Description

The stat subroutine obtains information about the file named by the Path parameter. Read, write, or
execute permission for the named file is not required, but all directories listed in the path leading to the file
must be searchable. The file information, which is a subset of the stat structure, is written to the area
specified by the Buffer parameter.

The Istat subroutine obtains information about a file that is a symbolic link. The Istat subroutine returns
information about the link, while the stat subroutine returns information about the file referenced by the
link.

The fstat subroutine obtains information about the open file referenced by the FileDescriptor parameter.
The fstatx subroutine obtains information about the open file referenced by the FileDescriptor parameter,
as in the fstat subroutine.

The st_mode, st _dev, st_uid, st gid, st_atime, st_ctime, and st_mtime fields of the stat structure have
meaningful values for all file types. The statx, stat, Istat, fstatx, fstat, fullstat, or ffullstat subroutine sets
the st_nlink field to a value equal to the number of links to the file.

The statx subroutine obtains a greater set of file information than the stat subroutine. The Path parameter
is processed differently, depending on the contents of the Command parameter. The Command parameter
provides the ability to collect information about symbolic links (as with the Istat subroutine) as well as
information about mount points and hidden directories. The statx subroutine returns the amount of
information specified by the Length parameter.

The fullstat and ffullstat subroutines are interfaces maintained for backward compatibility. With the
exception of some field names, the fullstat structure is identical to the stat structure.

The stat64, Istat64, and fstat64 subroutines are similar to the stat, Istat, fstat subroutines except that
they return file information in a stat64 structure instead of a stat structure. The information is identical
except that the st_size field is defined to be a 64-bit size. This allows stat64, Istat64, and fstat64 to
return file sizes which are greater than OFF_MAX (2 gigbytes minus 1).

In the large file enabled programming environment, stat is redefined to be stat64, Istat is redefined to be
Istat64 and fstat is redefined to be fstat64.

278 Technical Reference, Volume 2: Base Operating System and Extensions

Parameters

Path Specifies the path name identifying the file. This name is interpreted differently depending on the
interface used.
FileDescriptor
Specifies the file descriptor identifying the open file.
Buffer Specifies a pointer to the stat structure in which information is returned. The stat structure is
described in the |sys/stat.h|file.
Length
Indicates the amount of information, in bytes, to be returned. Any value between 0 and the value
returned by the STATXSIZE macro, inclusive, may be specified. The following macros may be
used:
STATSIZE
Specifies the subset of the stat structure that is normally returned for a stat call.
FULLSTATSIZE
Specifies the subset of the stat (fullstat) structure that is normally returned for a fullstat
call.
STATXSIZE
Specifies the complete stat structure. 0 specifies the complete stat structure, as if
STATXSIZE had been specified.
Command

Specifies a processing option. For the statx subroutine, the Command parameter determines how
to interpret the path name provided, specifically, whether to retrieve information about a symbolic
link, hidden directory, or mount point. Flags can be combined by logically ORing them together.
The following options are possible values:

STX_LINK
If the Command parameter specifies the STX_LINK flag and the Path parameter is a path
name that refers to a symbolic link, the statx subroutine returns information about the
symbolic link. If the STX_LINK flag is not specified, the statx subroutine returns
information about the file to which the link refers.

If the Command parameter specifies the STX_LINK flag and the Path value refers to a
symbolic link, the st_mode field of the returned stat structure indicates that the file is a
symbolic link.

STX_HIDDEN
If the Command parameter specifies the STX_HIDDEN flag and the Path value is a path
name that refers to a hidden directory, the statx subroutine returns information about the
hidden directory. If the STX_HIDDEN flag is not specified, the statx subroutine returns
information about a subdirectory of the hidden directory.

If the Command parameter specifies the STX_HIDDEN flag and Path refers to a hidden
directory, the st_mode field of the returned stat structure indicates that this is a hidden
directory.

STX_MOUNT
If the Command parameter specifies the STX_MOUNT flag and the Path value is the
name of a file or directory that has been mounted over, the statx subroutine returns
information about the mounted-over file. If the STX_MOUNT flag is not specified, the statx
subroutine returns information about the mounted file or directory (the root directory of a
virtual file system).

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 279

If the Command parameter specifies the STX_MOUNT flag, the FS_MOUNT bit in the
st_flag field of the returned stat structure is set if, and only if, this file is mounted over.

If the Command parameter does not specify the STX_MOUNT flag, the FS_MOUNT bit in
the st_flag field of the returned stat structure is set if, and only if, this file is the root
directory of a virtual file system.

STX_NORMAL
If the Command parameter specifies the STX_NORMAL flag, then no special processing
is performed on the Path value. This option should be used when STX_LINK,
STX_HIDDEN, and STX_MOUNT flags are not desired.

For the fstatx subroutine, there are currently no special processing options. The only valid
value for the Command parameter is the STX_NORMAL flag.

For the fullstat and ffullstat subroutines, the Command parameter may specify the
FL_STAT flag, which is equivalent to the STX_NORMAL flag, or the FL_NOFOLLOW flag,
which is equivalent to STX_LINK flag.

STX 64
If the Command parameter specifies the STX_64 flag and the file size is greater than
OFF_MAX, then statx succeeds and returns the file size. Otherwise, statx fails and sets
the errno to EOVERFLOW.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The stat, Istat, statx, and fullstat subroutines are unsuccessful if one or more of the following are true:

EACCES Search permission is denied for one component of the path prefix.

ENAMETOOLONG The length of the path prefix exceeds the PATH_MAX flag value or
a path name is longer than the NAME_MAX flag value while the
POSIX_NO_TRUNC flag is in effect.

ENOTDIR A component of the path prefix is not a directory.

EFAULT Either the Path or the Buffer parameter points to a location outside
of the allocated address space of the process.

ENOENT The file named by the Path parameter does not exist.

EOVERFLOW The size of the file is larger than can be represented in the stat

structure pointed to by the Buffer parameter.

The stat, Istat, statx, and fullstat subroutines can be unsuccessful for other reasons. See|['Base]
|Operating System Error Codes for Services that Require Path-Name Resolution”l for a list of additional
errors.

The fstat, fstatx, and ffullstat subroutines fail if one or more of the following are true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

EFAULT The Buffer parameter points to a location outside the allocated address space of the
process.

EIO An input/output (I/O) error occurred while reading from the file system.

The statx and fstatx subroutines are unsuccessful if one or more of the following are true:

EINVAL The Length value is not between 0 and the value returned by the STATSIZE macro, inclusive.
EINVAL The Command parameter contains an unacceptable value.

280 Technical Reference, Volume 2: Base Operating System and Extensions

Files

lusrf/include/sysffullstat.h| Contains the fullstat structure.
Jusr/include/sysimode.h| Defines values on behalf of the stat.h file.

Related Information

The [chmod] subroutine, |chown|subroutine, link] subroutine, |mknoa subroutine, mount (‘vmount or mount|

[Subroutine” on page 435) subroutine, [openx, open, or creat| subroutine, |pipg| subroutine, symlink

(“symlink Subroutine” on page 308[) subroutine,

vtime§| subroutine.

|Fi|es, Directories, and File Systems for Programmers| in AIX 5L Version 5.2 General Programming

Concepts: Writing and Debugging Programs.

strcat, strncat, strxfrm, strcpy, strncpy, or strdup Subroutine

Purpose
Copies and appends strings in memory.

Library
Standard C Library (libc.a)

Syntax

#include <string.h>

char *|strcat| (|String1} |String2)
char *Stringft,;
const char *String2;

char *[strncat] (String1, String2,
char *Stringf,;

const char *String2;

size_t Number,

size_t (String1, String2, Number)
char *Stringft,;

const char *String2;

size_t Number,

char * (String1, String2)
char *StringT;
const char *String2;

char * (String1, String2, Number)
char *StringT,;

const char *String2;

size_t Number,;

char * strdup (String1)
const char *Stringt;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 281

Description

The strcat, strncat, strxfrm, strcpy, strncpy, and strdup subroutines copy and append strings in
memory.

The String1 and String2 parameters point to strings. A string is an array of characters terminated by a null
character. The strcat, strncat, strcpy, and strncpy subroutines all alter the string in the String1
parameter. However, they do not check for overflow of the array to which the String71 parameter points.
String movement is performed on a character-by-character basis and starts at the left. Overlapping moves
toward the left work as expected, but overlapping moves to the right may give unexpected results. All of
these subroutines are declared in the string.h file.

The strcat subroutine adds a copy of the string pointed to by the String2 parameter to the end of the
string pointed to by the String1 parameter. The strcat subroutine returns a pointer to the null-terminated
result.

The strncat subroutine copies a number of bytes specified by the Number parameter from the String2
parameter to the end of the string pointed to by the String? parameter. The subroutine stops copying
before the end of the number of bytes specified by the Number parameter if it encounters a null character
in the String2 parameter’s string. The strncat subroutine returns a pointer to the null-terminated result.
The strncat subroutine returns the value of the String1 parameter.

The strxfrm subroutine transforms the string pointed to by the String2 parameter and places it in the array
pointed to by the String1 parameter. The strxfrm subroutine transforms the entire string if possible, but
places no more than the number of bytes specified by the Number parameter in the array pointed to by
the String1 parameter. Consequently, if the Number parameter has a value of 0, the String? parameter can
be a null pointer. The strxfrm subroutine returns the length of the transformed string, not including the
terminating null byte. If the returned value is equal to or more than that of the Number parameter, the
contents of the array pointed to by the String1 parameter are indeterminable. If the number of bytes
specified by the Number parameter is 0, the strxfrm subroutine returns the length required to store the
transformed string, not including the terminating null byte. The strxfrm subroutine is determined by the
LC_COLLATE category.

The strepy subroutine copies the string pointed to by the String2 parameter to the character array pointed
to by the String1 parameter. Copying stops after the null character is copied. The strcpy subroutine
returns the value of the String1 parameter, if successful. Otherwise, a null pointer is returned.

The strncpy subroutine copies the number of bytes specified by the Number parameter from the string
pointed to by the String2 parameter to the character array pointed to by the String1 parameter. If the
String2 parameter value is less than the specified number of characters, then the strncpy subroutine pads
the String1 parameter with trailing null characters to a number of bytes equaling the value of the Number
parameter. If the String2 parameter is exactly the specified number of characters or more, then only the
number of characters specified by the Number parameter are copied and the result is not terminated with
a null byte. The strncpy subroutine returns the value of the String1 parameter.

The strdup subroutine returns a pointer to a new string, which is a duplicate of the string pointed to by the
String1 parameter. Space for the new string is obtained by using the malloc subroutine. A null pointer is
returned if the new string cannot be created.

Parameters

Number Specifies the number of bytes in a string to be copied or transformed.

String1 Points to a string to which the specified data is copied or appended.

String2 Points to a string which contains the data to be copied, appended, or transformed.

282 Technical Reference, Volume 2: Base Operating System and Extensions

Error Codes
The strcat, strncat, strxfrm, strcpy, strncpy, and strdup subroutines fail if the following occurs:

EFAULT A string parameter is an invalid address.

In addition, the strxfrm subroutine fails if:

EINVAL A string parameter contains characters outside the domain of the collating sequence.

Related Information

The [memccpy, memchr, memcmp, memcpy, or memmove| subroutine, setlocale (‘setlocale Subroutine’
|gn page 136) subroutine, strcmp, strncmp, strcasecmp, strncasecmp, or strcoll (‘strcmp, strncmp,|
strcasecmp, strncasecmp, or strcoll Subroutine”) subroutine, strlen, strchr, strrchr, strpbrk, strspn,
strespn, strstr, or strtok (“strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, strtok, or strsep Subroutine”|
*

) subroutine, swab (‘swab Subroutine” on page 304) subroutine.

[Subroutines, Example Programs, and Libraries| and |List of String Manipulation Services|in AIX 5L Version
5.2 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview] [Multibyte and Wide Character String Collation Subroutines| and
Multibyte and Wide Character String Comparison Subroutines|in AIX 5L Version 5.2 National Language
Support Guide and Reference

stremp, strncmp, strcasecmp, strncasecmp, or strcoll Subroutine

Purpose

Compares strings in memory.

Library
Standard C Library (libc.a)

Syntax

#include <string.h>

int [stremp| ([String1}, [String2)
const char *String1, *String2;

int (String1, String2,
const char *String1, *String2;
size_t Number,

int strcoll (String1, String2)
const char *String1, *String2;

#include <strings.h>

int (String1, String2)

const char *String1, *String2;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 283

int (String1, String2, Number)
const char *String1, *String2;
size_t Number,

Description
The strcmp, strncmp, strcasecmp, strncasecmp, and strcoll subroutines compare strings in memory.

The String1 and String2 parameters point to strings. A string is an array of characters terminated by a null
character.

The stremp subroutine performs a case-sensitive comparison of the string pointed to by the String1
parameter and the string pointed to by the String2 parameter, and analyzes the extended ASCII character
set values of the characters in each string. The stremp subroutine compares unsigned char data types.
The stremp subroutine then returns a value that is:

» Less than 0 if the value of string String1 is lexicographically less than string String2.
« Equal to 0 if the value of string String1 is lexicographically equal to string String2.
« Greater than 0 if the value of string String1 is lexicographically greater than string String2.

The strncmp subroutine makes the same comparison as the stremp subroutine, but compares up to the
maximum number of pairs of bytes specified by the Number parameter.

The strcasecmp subroutine performs a character-by-character comparison similar to the stremp
subroutine. However, the strcasecmp subroutine is not case-sensitive. Uppercase and lowercase letters
are mapped to the same character set value. The sum of the mapped character set values of each string
is used to return a value that is:

* Less than 0 if the value of string String1 is lexicographically less than string String2.
* Equal to 0 if the value of string String1 is lexicographically equal to string String2.
» Greater than 0 if the value of string String1 is lexicographically greater than string String2.

The strncasecmp subroutine makes the same comparison as the strcasecmp subroutine, but compares
up to the maximum number of pairs of bytes specified by the Number parameter.

Note: Both the strcasecmp and strncasecmp subroutines only work with 7-bit ASCII characters.

The strcoll subroutine works the same as the stremp subroutine, except that the comparison is based on
a collating sequence determined by the LC_COLLATE category. If the stremp subroutine is used on
transformed strings, it returns the same result as the strcoll subroutine for the corresponding
untransformed strings.

Parameters

Number The number of bytes in a string to be examined.

String1 Points to a string which is compared.

String2 Points to a string which serves as the source for comparison.

Error Codes
The stremp, strncmp, strcasecmp, strncasecmp, and strcoll subroutines fail if the following occurs:

EFAULT A string parameter is an invalid address.

284 Technical Reference, Volume 2: Base Operating System and Extensions

In addition, the strcoll subroutine fails if:

EINVAL A string parameter contains characters outside the domain of the collating sequence.

Related Information

The |memccpy, memchr, memcmp, memcpy, or memmove| subroutine, setlocale (‘setlocale Subroutine’
on page 136) subroutine, strcat, strncat, strxfrm, strepy, strncpy, or strdup (“strcat, strncat, strxfrm,
strcpy, strncpy, or strdup Subroutine” on page 281) subroutine, strlen, strchr, strrchr, strpbrk, strspn

“strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, strtok, or strsep Subroutine”

strcspn, strstr, or strtok (
on page 291) subroutine, swab (‘swab Subroutine” on page 304) subroutine.

[List of String Manipulation Subroutines|and [Subroutines, Example Programs, and Libraries|in AIX 5L
Version 5.2 General Programming Concepts: Writing and Debugging Programs.

Multibyte and Wide Character String Collation Subroutines|, and
Multibyte and Wide Character String Comparison Subroutines| AIX 5L Version 5.2 National Language
Support Guide and Reference

strerror Subroutine

Purpose
Maps an error number to an error message string.

Library
Standard C Library (libc.a)

Syntax

#include <string.h>

char *strerror ([ErrorNumber)

int ErrorNumbers;

Description

Attention: Do not use the strerror subroutine in a multithreaded environment.

The strerror subroutine maps the error number in the ErrorNumber parameter to the error message string.
The strerror subroutine retrieves an error message based on the current value of the LC_MESSAGES

category. If the specified message catalog cannot be opened, the default message is returned. The
returned message does not contain a new line ("\n").

Parameters

ErrorNumber Specifies the error number to be associated with the error message.

Return Values
The strerror subroutine returns a pointer to the error message.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 285

Related Information
The subroutine.

The macro, macro, macro, macro.

[Subroutines Overview|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

strfmon Subroutine

Purpose
Formats monetary strings.

Library
Standard C Library (libc. a)

Syntax

#include <monetary.h>

ssize_t strfmon ([§ [MaxSizel [Format], ...)
char *§;

size_t MaxSize;

const char *format, ...;

Description

The strfmon subroutine converts numeric values to monetary strings according to the specifications in the
Format parameter. This parameter also contains numeric values to be converted. Characters are placed
into the S array, as controlled by the Format parameter. The LC_MONETARY category governs the format
of the conversion.

The strfmon subroutine can be called multiple times by including additional format structures, as specified
by the Format parameter.

The Format parameter specifies a character string that can contain plain characters and conversion
specifications. Plain characters are copied to the output stream. Conversion specifications result in the
fetching of zero or more arguments, which are converted and formatted.

If there are insufficient arguments for the Format parameter, the results are undefined. If arguments remain
after the Format parameter is exhausted, the excess arguments are ignored.

A conversion specification consists of the following items in the following order: a % (percent sign),
optional flags, optional field width, optional left precision, optional right precision, and a required
conversion character that determines the conversion to be performed.

Parameters

S Contains the output of the strfmon subroutine.

MaxSize Specifies the maximum number of bytes (including the null terminating byte) that may be placed in the
S parameter.

Format Contains characters and conversion specifications.

286 Technical Reference, Volume 2: Base Operating System and Extensions

Flags

One or more of the following flags can be specified to control the conversion:

=f

An = (equal sign) followed by a single character that specifies the numeric fill character. The default
numeric fill character is the space character. This flag does not affect field-width filling, which always
uses the space character. This flag is ignored unless a left precision is specified.

Does not use grouping characters when formatting the currency amount. The default is to insert grouping
characters if defined for the current locale.

Determines the representation of positive and negative currency amounts. Only one of these flags may
be specified. The locale’s equivalent of + (plus sign) and - (negative sign) are used if + is specified. The
locale’s equivalent of enclosing negative amounts within parentheses is used if ((left parenthesis) is
specified. If neither flag is included, a default specified by the current locale is used.

Left-justifies all fields (pads to the right). The default is right-justification.

Suppresses the currency symbol from the output conversion.

Field Width

w

The decimal-digit string w specifies the minimum field width in which the result of the conversion is
right-justified. If -w is specified, the result is left-justified. The default is a value of 0.

Left Precision

#n

A # (pound sign) followed by a decimal-digit string, n, specifies the maximum number of digits to be formatted
to the left of the radix character. This option can be specified to keep formatted output from multiple calls to the
strfmon subroutine aligned in the same columns. It can also be used to fill unused positions with a special
character (for example, $**x123.45). This option causes an amount to be formatted as if it has the number of
digits specified by the n variable. If more than n digit positions are required, this option is ignored. Digit
positions in excess of those required are filled with the numeric fill character set with the =f flag.

If defined for the current locale and not suppressed with the » flag, the subroutine inserts grouping characters
before fill characters (if any). Grouping characters are not applied to fill characters, even if the fill character is a
digit. In the example:

$0000001,234.56
grouping characters do not appear after the first or fourth 0 from the left.

To ensure alignment, any characters appearing before or after the number in the formatted output, such as
currency or sign symbols, are padded as necessary with space characters to make their positive and negative
formats equal in length.

Right Precision

P

A . (period) followed by a decimal digit string, p, specifies the number of digits after the radix character. If the
value of the p variable is 0, no radix character is used. If a right precision is not specified, a default specified
by the current locale is use. The amount being formatted is rounded to the specified number of digits prior to
formatting.

Conversion Characters

%

The double argument is formatted according to the current locale’s international currency format; for example,
in the U.S.: 1,234.56.

The double argument is formatted according to the current locale’s national currency format; for example, in
the U.S.: §1,234.56.

No argument is converted; the conversion specification %% is replaced by a single %.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 287

Return Values

If successful, and if the number of resulting bytes (including the terminating null character) is not more
than the number of bytes specified by the MaxSize parameter, the strfmon subroutine returns the number
of bytes placed into the array pointed to by the S parameter (not including the terminating null byte).
Otherwise, a value of -1 is returned and the contents of the S array are indeterminate.

Error Codes
The strfmon subroutine may fail if the following is true:

E2BIG Conversion stopped due to lack of space in the buffer.

Related Information

The scanf (‘scanf, fscanf, sscanf, or wsscanf Subroutine” on page 109b subroutine, strftime (“strftim
Subroutine’) subroutine, strptime (‘strptime Subroutine” on page 301) subroutine, wesftime (‘wcsftime]
Subroutine” on page 447) subroutine.

[Subroutines, Example Programs, and Libraries|in AlX 5L Version 5.2 General Programming Concepts:
Writing and Debugging Programs.

[National Language Support Overview] and [List of Time and Monetary Formatting Subroutines|in A/X 5L
Version 5.2 National Language Support Guide and Reference.

strftime Subroutine

Purpose
Formats time and date.

Library
Standard C Library (libc.a)

Syntax

#include <time.h>

size_t strftime ([Stringl |Lengthl, |Format|, [TmDate])
char *String;

size_t Length;

const char *Format;

const struct tm *TmDate;

Description

The strftime subroutine converts the internal time and date specification of the tm structure, which is
pointed to by the TmDate parameter, into a character string pointed to by the String parameter under the
direction of the format string pointed to by the Format parameter. The actual values for the format
specifiers are dependent on the current settings for the category. The tm structure values may
be assigned by the user or generated by the localtime or gmtime subroutine. The resulting string is
similar to the result of the printf Format parameter, and is placed in the memory location addressed by the
String parameter. The maximum length of the string is determined by the Length parameter and terminates
with a null character.

Many conversion specifications are the same as those used by the date command. The interpretation of
some conversion specifications is dependent on the current locale of the process.

288 Technical Reference, Volume 2: Base Operating System and Extensions

The Format parameter is a character string containing two types of objects: plain characters that are
simply placed in the output string, and conversion specifications that convert information from the TmDate
parameter into readable form in the output string. Each conversion specification is a sequence of this form:

% type

* A % (percent sign) introduces a conversion specification.

» The type of conversion is specified by one or two conversion characters. The characters and their
meanings are:

%a
%A
%b
%B

%cC
%C

%d
%D
%e

%E
%h

%H
%l
%j
%m
%M
%n
%N
%0
%op
%ot
%R
%S
%t
%T
%ou

%U

%V

YW
%W

YoX
%X

Represents the locale’s abbreviated weekday name (for example, Sun) defined by the abday statement in the
LC_TIME category.

Represents the locale’s full weekday name (for example, Sunday) defined by the day statement in the
LC_TIME category.

Represents the locale’s abbreviated month name (for example, Jan) defined by the abmon statement in the
LC_TIME category.

Represents the locale’s full month name (for example, January) defined by the mon statement in the LC_TIME
category.

Represents the locale’s date and time format defined by the d_t_fmt statement in the LC_TIME category.
Represents the century number (the year divided by 100 and truncated to an integer) as a decimal number (00
through 99).

Represents the day of the month as a decimal number (01 to 31).

Represents the date in %m/%d/%y format (for example, 01/31/91).

Represents the day of the month as a decimal number (01 to 31). The %e field descriptor uses a two-digit
field. If the day of the month is not a two-digit number, the leading digit is filled with a space character.
Represents the locale’s combined alternate era year and name, respectively, in %0 %N format.

Represents the locale’s abbreviated month name (for example, Jan) defined by the abmon statement in the
LC_TIME category. This field descriptor is a synonym for the %b field descriptor.

Represents the 24-hour-clock hour as a decimal number (00 to 23).

Represents the 12-hour-clock hour as a decimal number (01 to 12).

Represents the day of the year as a decimal number (001 to 366).

Represents the month of the year as a decimal number (01 to 12).

Represents the minutes of the hour as a decimal number (00 to 59).

Specifies a new-line character.

Represents the locale’s alternate era name.

Represents the alternate era year.

Represents the locale’s a.m. or p.m. string defined by the am_pm statement in the LC_TIME category.
Represents 12-hour clock time with a.m./p.m. notation as defined by the t_fmt_ampm statement. The usual
format is %l:%M:%S %p.

Represents 24-hour clock time in %H:%M format.

Represents the seconds of the minute as a decimal number (00 to 59).

Specifies a tab character.

Represents 24-hour-clock time in the format %H:%M:%S (for example, 16:55:15).

Represents the weekday as a decimal number (1 to 7). Monday or its equivalent is considered the first day of
the week for calculating the value of this field descriptor.

Represents the week of the year as a decimal number (00 to 53). Sunday, or its equivalent as defined by the
day statement in the LC_TIME category, is considered the first day of the week for calculating the value of this
field descriptor.

Represents the week number of the year (with Monday as the first day of the week) as a decimal number (01
to 53). If the week containing January 1 has four or more days in the new year, then it is considered week 1;
otherwise, it is considered week 53 of the previous year, and the next week is week 1 of the new year.
Represents the day of the week as a decimal number (0 to 6). Sunday, or its equivalent as defined by the day
statement, is considered as 0 for calculating the value of this field descriptor.

Represents the week of the year as a decimal number (00 to 53). Monday, or its equivalent as defined by the
day statement, is considered the first day of the week for calculating the value of this field descriptor.
Represents the locale’s date format as defined by the d_fmt statement.

Represents the locale’s time format as defined by the t_fmt statement.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 289

‘yoy

%Y
%Z

%%

Some

Represents the year of the century.

Note: When the environment variable XPG_TIME_FMT=0N, %y is the year within the century. When a
century is not otherwise specified, values in the range 69-99 refer to years in the twentieth century (1969 to
1999, inclusive); values in the range 00-68 refer to 2000 to 2068, inclusive.

Represents the year as a decimal number (for example, 1989).

Represents the time-zone name if one can be determined (for example, EST). No characters are displayed if a
time zone cannot be determined.

Specifies a % (percent sign).

conversion specifiers can be modified by the E or O modifier characters to indicate that an

alternative format or specification should be used. If the alternative format or specification does not exist

for the

current locale, the behavior will be the same as with the unmodified conversion specification. The

following modified conversion specifiers are supported:

%Ec
%EC

%EXx
%EX
°/oEy
%EY
%0d

%0e

%O0OH
%0l
%0m
%OM
%08
%0u
%0U

%0V
% 0w
%0W

%0y

Represents the locale’s alternative appropriate date and time as defined by the era_d_t_fmt statement.
Represents the name of the base year (or other time period) in the locale’s alternative form as defined by the
era statement under the era_name category of the current era.

Represents the locale’s alternative date as defined by the era_d_fmt statement.

Represents the locale’s alternative time as defined by the era_t_fmt statement.

Represents the offset from the %EC modified conversion specifier (year only) in the locale’s alternative form.
Represents the full alternative-year form.

Represents the day of the month, using the locale’s alternative numeric symbols, filled as needed with leading
0’s if an alternative symbol for O exists. If an alternative symbol for 0 does not exist, the %0d modified
conversion specifier uses leading space characters.

Represents the day of the month, using the locale’s alternative numeric symbols, filled as needed with leading
0’s if an alternative symbol for 0 exists. If an alternative symbol for O does not exist, the %0e modified
conversion specifier uses leading space characters.

Represents the hour in 24-hour clock time, using the locale’s alternative numeric symbols.

Represents the hour in 12-hour clock time, using the locale’s alternative numeric symbols.

Represents the month, using the locale’s alternative numeric symbols.

Represents the minutes, using the locale’s alternative numeric symbols.

Represents the seconds, using the locale’s alternative numeric symbols.

Represents the weekday as a number using the locale’s alternative numeric symbols.

Represents the week number of the year, using the locale’s alternative numeric symbols. Sunday is considered
the first day of the week. Use the rules corresponding to the %U conversion specifier.

Represents the week number of the year (Monday as the first day of the week, rules corresponding to %V)
using the locale’s alternative numeric symbols.

Represents the number of the weekday (with Sunday equal to 0), using the locale’s alternative numeric
symbols.

Represents the week number of the year using the locale’s alternative numeric symbols. Monday is considered
the first day of the week. Use the rules corresponding to the %W conversion specifier.

Represents the year (offset from %C) using the locale’s alternative numeric symbols.

Parameters

String
Length
Format

Points to the string to hold the formatted time.
Specifies the maximum length of the string pointed to by the String parameter.
Points to the format character string.

TmDate Points to the time structure that is to be converted.

290

Technical Reference, Volume 2: Base Operating System and Extensions

Return Values

If the total number of resulting bytes, including the terminating null byte, is not more than the Length value,
the strftime subroutine returns the number of bytes placed into the array pointed to by the String
parameter, not including the terminating null byte . Otherwise, a value of 0 is returned and the contents of
the array are indeterminate.

Related Information
The|Ioca|time|subroutine, @mtima subroutine, |mbstowcs| subroutine, |printi| subroutine, strfmon

|Subroutine” on page 286) subroutine, strptime (“strptime Subroutine” on page 301[) subroutine, wesftime
(‘wesftime Subroutine” on page 447) subroutine.

The command.

ILC_TIME Category for the Locale Definition Source File Format|in AIX 5L Version 5.2 Files Reference.

List of Time Data Manipulation Services|in AIX 5L Version 5.2 System Management Concepts: Operating
System and Devices.

, ISubroutines, Example Programs, and Libraries|in AlX 5L Version 5.2 General Programming Concepts:
Writing and Debugging Programs.

[National Language Support Overview in AIX 5L Version 5.2 National Language Support Guide and
Reference.

strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, strtok, or strsep
Subroutine

Purpose
Determines the size, location, and existence of strings in memory.

Library
Standard C Library (libc.a)

Syntax

#include <string.h>

size_t strlen (String)

const char *String;

char #strchr (String, |Character)
const char *String;
int Character;

char *strchr (String, Character)
const char *String;
int Character;

char xstrpbrk (Stringll, [String2)
const char *Stringl, StringZ;

size_t strspn (Stringl, String2)
const char *Stringl, * String2;

size_t strcspn (Stringl, String?)
const char *Stringl, *String2;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 291

char xstrstr (Stringl, String2)
const char *Stringl, *StringZ;

char *strtok (Stringl, String2)
char *Stringl;
const char *String2;

char *strsep (Stringl, String2)
char *xStringl;
const char *String2;

char xindex (String, Character)
const char *String;
int Character;

char *rindex (String, Character)
const char *String;
int Character;

Description

Attention: Do not use the strtok subroutine in a multithreaded environment. Use the strtok_r subroutine
instead.

The strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, and strtok subroutines determine such
values as size, location, and the existence of strings in memory.

The String1, String2, and String parameters point to strings. A string is an array of characters terminated
by a null character.

The strlen subroutine returns the number of bytes in the string pointed to by the String parameter, not
including the terminating null bytes.

The strchr subroutine returns a pointer to the first occurrence of the character specified by the Character
(converted to an unsigned character) parameter in the string pointed to by the String parameter. A null
pointer is returned if the character does not occur in the string. The null byte that terminates a string is
considered to be part of the string.

The strrchr subroutine returns a pointer to the last occurrence of the character specified by the Character
(converted to a character) parameter in the string pointed to by the String parameter. A null pointer is
returned if the character does not occur in the string. The null byte that terminates a string is considered to
be part of the string.

The strpbrk subroutine returns a pointer to the first occurrence in the string pointed to by the String1
parameter of any bytes from the string pointed to by the String2 parameter. A null pointer is returned if no
bytes match.

The strspn subroutine returns the length of the initial segment of the string pointed to by the String1
parameter, which consists entirely of bytes from the string pointed to by the String2 parameter.

The strespn subroutine returns the length of the initial segment of the string pointed to by the String1
parameter, which consists entirely of bytes not from the string pointed to by the String2 parameter.

The strstr subroutine finds the first occurrence in the string pointed to by the String? parameter of the
sequence of bytes specified by the string pointed to by the String2 parameter (excluding the terminating
null character). It returns a pointer to the string found in the String? parameter, or a null pointer if the string
was not found. If the String2 parameter points to a string of 0 length, the strstr subroutine returns the
value of the String1 parameter.

292 Technical Reference, Volume 2: Base Operating System and Extensions

The strtok subroutine breaks the string pointed to by the String? parameter into a sequence of tokens,
each of which is delimited by a byte from the string pointed to by the String2 parameter. The first call in
the sequence takes the String1 parameter as its first argument and is followed by calls that take a null
pointer as their first argument. The separator string pointed to by the String2 parameter may be different
from call to call.

The first call in the sequence searches the String1 parameter for the first byte that is not contained in the
current separator string pointed to by the String2 parameter. If no such byte is found, no tokens exist in
the string pointed to by the String1 parameter, and a null pointer is returned. If such a byte is found, it is
the start of the first token.

The strtok subroutine then searches from the first token for a byte that is contained in the current
separator string. If no such byte is found, the current token extends to the end of the string pointed to by
the String1 parameter, and subsequent searches for a token return a null pointer. If such a byte is found,
the strtok subroutine overwrites it with a null byte, which terminates the current token. The strtok
subroutine saves a pointer to the following byte, from which the next search for a token will start. The
subroutine returns a pointer to the first byte of the token.

Each subsequent call with a null pointer as the value of the first argument starts searching from the saved
pointer, using it as the first token. Otherwise, the subroutine’s behavior does not change.

The strsep subroutine returns the next token from the string String? which is delimited by String2. The
token is terminated with a \0 character and String1 is updated to point past the token. The strsep
subroutine returns a pointer to the token, or NULL if String2 is not found in String1.

The index, rindex and strsep subroutines are included for compatibility with BSD and are not part of the
ANSI C Library. The index subroutine is implemented as a call to the strchr subroutine. The rindex
subroutine is implemented as a call to the strrchr subroutine.

Parameters

Character Specifies a character for which to return a pointer.

String Points to a string from which data is returned.

String1 Points to a string from which an operation returns results.
String2 Points to a string which contains source for an operation.

Error Codes
The strlen, strchr, strrchr, strpbrk, strspn, strespn, strstr, and strtok subroutines fail if the following
occurs:

EFAULT A string parameter is an invalid address.

Related Information

The [“setlocale Subroutine” on page 136} [‘strcat, strncat, strxfrm, strcpy, strncpy, or strdup Subroutine” on|
page 281, ['strcmp, strncmp, strcasecmp, strncasecmp, or strcoll Subroutine” on page 283] [“strtok_r|
Subroutine” on page 298, and[‘swab Subroutine” on page 304.

The |memccpy, memchr, memcmp, memcpy, or memmove| subroutine in AIX 5L Version 5.2 Technical
Reference: Base Operating System and Extensions Volume 1

[List of String Manipulation Services|and [Subroutines, Example Programs, and Libraries|in AIX 5L Version
5.2 General Programming Concepts: Writing and Debugging Programs.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 293

[National Language Support Overview| in AIX 5L Version 5.2 National Language Support Guide and
Reference.

strncollen Subroutine

Purpose
Returns the number of collation values for a given string.

Library
Standard C Library (libc.a)

Syntax

include <string.h>

int strncollen ([Stringl, Wumber)
const char *String;
const int Numbers;

Description

The strncollen subroutine returns the number of collation values for a given string pointed to by the String
parameter. The count of collation values is terminated when either a null character is encountered or when
the number of bytes indicated by the Number parameter have been examined.

The collation values are set by the setlocale subroutine for the LC_COLLATE category. For example, if
the locale is set to Es_ES (Spanish spoken in Spain) for the LC_COLLATE category, where ch’ has one
collation value, then strncollen ('abchd’, 5) returns 4.

In German, the <Sharp-S> character has two collation values, so substituting the <Sharp-S> character for
B in the following example, strncollen (’straBa’, 6) returns 7.

If a character has no collation value, its collation length is 0.

Parameters
Number The number of bytes in a string to be examined.
String Pointer to a string to be examined for collation value.

Return Values

Upon successful completion, the strncollen subroutine returns the collation value for a given string,
pointed to by the String parameter.

Related Information

The setlocale (‘setlocale Subroutine” on page 136) subroutine, strcat, strncat, strxfrm, strcpy, strncpy,
or strdup (]"strcat, strncat, strxfrm, strcpy, strncpy, or strdup Subroutine” on page 281) subroutine, stremp,
strncmp, strcasecmp, strncasecmp, or strcoll (‘strcmp, strncmp, strcasecmp, strncasecmp, or strcoII|
|Subroutine” on page 283) subroutine, strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, or strtok
(“strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, strtok, or strsep Subroutine” on page 291) subroutine.

[National Language Support Overview| in AIX 5L Version 5.2 National Language Support Guide and
Reference.

294 Technical Reference, Volume 2: Base Operating System and Extensions

strtof, strtod, or strtold Subroutine

Purpose
Converts a string to a double-precision number.

Syntax

#include <stdlib.h>

float strtof ,

const char *restrict nptr;
char **restrict endptr;

double strtod (nptr, endptr)
const char *nptr
char*xendptr;

long double strtold (nptr, endptr)
const char *restrict nptr;
char **restrict endptr;

Description

The strtof, strtod, and strtold subroutines convert the initial portion of the string pointed to by nptr to
double, float, and long double representation, respectively. First, they decompose the input string into
three parts:

» An initial, possibly empty, sequence of white-space characters (as specified by isspace()).
» A subject sequence interpreted as a floating-point constant or representing infinity or NaN.

» Afinal string of one or more unrecognized characters, including the terminating null byte of the input
string.

Then, they attempt to convert the subject sequence to a floating-point number, and return the result.

The expected form of the subject sequence is an optional plus or minus sign, and one of the following:

* A non-empty sequence of decimal digits optionally containing a radix character, and an optional
exponent part

* A Ox or 0X, and a non-empty sequence of hexadecimal digits optionally containing a radix character,
and an optional binary exponent part
* One of INF or INFINITY, ignoring case
* One of NAN or NAN(n-char-sequence ,,), ignoring case in the NAN part, where:
n-char-sequence:
digit
nondigit
n-char-sequence digit
n-char-sequence nondigit

The subject sequence is defined as the longest initial subsequence of the input string, starting with the first
non-white-space character, that is of the expected form. The subject sequence contains no characters if
the input string is not of the expected form.

If the subject sequence has the expected form for a floating-point number, the sequence of characters
starting with the first digit or the decimal-point character (whichever occurs first) are interpreted as a
floating constant of the C language, except that the radix character is used in place of a period, and if
neither an exponent part nor a radix character appears in a decimal floating-point number, or if a binary
exponent part does not appear in a hexadecimal floating-point number, an exponent part of the appropriate
type with value zero is assumed to follow the last digit in the string.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 295

If the subject sequence begins with a minus sign, the sequence is interpreted as negated. A character
sequence INF or INFINITY shall be interpreted as an infinity, if representable in the return type, or else as
if it were a floating constant that is too large for the range of the return type. A character sequence NAN or
NAN(n-char-sequence ,,,) is interpreted as a quiet NaN, if supported in the return type, or else as if it
were a subject sequence part that does not have the expected form. The meaning of the n-char
sequences is implementation-defined. A pointer to the final string is stored in the object pointed to by the
endptr parameter, provided that the endptr parameter is not a null pointer.

If the subject sequence has the hexadecimal form, the value resulting from the conversion is correctly
rounded.

The radix character is defined in the program’s locale (category LC_NUMERIC). In the POSIX locale, or in
a locale where the radix character is not defined, the radix character defaults to a period.

In other than the C or POSIX locales, other implementation-defined subject sequences may be accepted.

If the subject sequence is empty or does not have the expected form, no conversion shall be performed;
the value of str is stored in the object pointed to by endptr, provided that endpir is not a null pointer.

The strtod subroutine does not change the setting of the errno global variable if successful.

Since 0 is returned on error and is also a valid return on success, an application wishing to check for error
situations should set errno to 0, call the strtof or strtold subroutine, then check errno.

Parameters
nptr Specifies the string to be converted.
endptr Points to the final string.

Return Values

Upon successful completion, the strtof and strtold subroutines return the converted value. If no
conversion could be performed, 0 is returned, and the errno global variable may be set to EINVAL.

If the correct value is outside the range of representable values, HUGE_VAL, HUGE_VALF, or
HUGE_VALL is returned (according to the sign of the value), and errno is set to ERANGE.

If the correct value would cause an underflow, a value whose magnitude is no greater than the smallest
normalized positive number in the return type is returned and the errno global variable is set to ERANGE.

Error Codes

Note: Because a value of 0 can indicate either an error or a valid result, an application that checks for
errors with the strtod, strtof, and strtold subroutines should set the errno global variable equal to
0 prior to the subroutine call. The application can check the errno global variable after the
subroutine call.

If the string pointed to by NumberPointer is empty or begins with an unrecognized character, a value of 0
is returned for the strtod, strtof, and strtold subroutines.

If the conversion cannot be performed, a value of 0 is returned, and the errno global variable is set to
indicate the error.

296 Technical Reference, Volume 2: Base Operating System and Extensions

If the conversion causes an overflow (that is, the value is outside the range of representable values), +/-
HUGE_VAL is returned with the sign indicating the direction of the overflow, and the errno global variable
is set to ERANGE.

If the conversion would cause an underflow, a properly signed value of 0 is returned and the errno global
variable is set to ERANGE.

For the strtod, strtof, and strtold subroutines, if the value of the EndPointer parameter is not (char**)
NULL, a pointer to the character that stopped the subroutine is stored in *EndPointer. If a floating-point
value cannot be formed, *EndPointer is set to NumberPointer.

The strtof subroutine has only one rounding error. (If the strtod subroutine is used to create a
double-precision floating-point number and then that double-precision number is converted to a
floating-point number, two rounding errors could occur.)

Related Information

“scanf, fscanf, sscanf, or wsscanf Subroutine” on page 109| [‘setlocale Subroutine” on page 136}, and [“strtol,|
strtoul, strtoll, strtoull, or atoi Subroutine” on page 299

ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or isascif
Subroutines| and [localeconv Subroutine|in AIX 5L Version 5.2 Technical Reference: Base Operating
System and Extensions Volume 1.

strtoimax or strtoumax Subroutine

Purpose
Converts string to integer type.

Syntax

#include <inttypes.h>

intmax_t strtoimax (pptrl lendptr} basel)
const char *restrict nptr;

char **restrict endptr;

int base;

uintmax_t strtoumax (nptr, endptr, base)
const char *restrict nptr;

char **restrict endptr;

int base;

Description

The strtoimax and strtoumax subroutines are equivalent to the strtol, strtoll, strtoul, and strtoull
subroutines, except that the initial portion of the string shall be converted to intmax_t and uintmax_t
representation, respectively.

Parameters

nptr Points to the string to be converted.

endptr Points to the object where the final string is stored.

base Determines the value of the integer represented in some radix.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 297

Return Values
The strtoimax and strtoumax subroutines return the converted value, if any.

If no conversion could be performed, zero is returned.
If the correct value is outside the range of representable values, {INTMAX_MAX}, {INTMAX_MIN}, or

{UINTMAX_MAX]} is returned (according to the return type and sign of the value, if any), and the errno
global variable is set to ERANGE.

Related Information
The|“strtol, strtoul, strtoll, strtoull, or atoi Subroutine” on page ZQQl

inttypes.h|in AIX 5L Version 5.2 Files Reference.

strtok_r Subroutine

Purpose
Breaks a string into a sequence of tokens.

Libraries
Thread-Safe C Library (libc_r.a)

Syntax

#include<string.h>

char *strtok_r (String, Separators, Pointer);
char *String;

const char *Separators;

char *xPointer;

Description
Note: The strtok_r subroutine is used in a multithreaded environment.

The strtok_r subroutine breaks the string pointed to by the String parameter into a sequence of tokens,
each of which is delimited by a byte from the string pointed to by the Separators parameter. The Pointer
parameter holds the information necessary for the strok_r subroutine to perform scanning on the String
parameter. In the first call to the strok_r subroutine, the value passed as the Pointer parameter is ignored.

The first call in the sequence searches the String parameter for the first byte that is not contained in the
current separator string pointed to by the Separators parameter. If no such byte is found, no tokens exist
in the String parameter, and a null pointer is returned. If such a byte is found, it is the start of the first
token. The strok_r subroutine also updates the Pointer parameter with the starting address of the token
following the first occurrence of the Separators parameter.

In subsequent calls, a null pointer should be passed as the first parameter to the strtok_r subroutine
instead of the String parameter. Each subsequent call with a null pointer as the value of the first argument
starts searching from the Pointer parameter, using it as the first token. Otherwise, the subroutine’s
behavior does not change. The strtok_r subroutine would return successive tokens until no tokens remain.
The Separators parameter may be different from one call to another.

Parameters

String Points to a string from which an operation returns results.

298 Technical Reference, Volume 2: Base Operating System and Extensions

Separators Points to a string which contains source for an operation.
Pointer Points to a user provided pointer.

Error Codes
The strtok_r subroutine fails if the following occurs:

EFAULT A String parameter is an invalid address.

Related Information
The|“strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, strtok, or strsep Subroutine” on page 291l

|Writing Reentrant and Thread-Safe Code| in AIX 5L Version 5.2 General Programming Concepts: Writing
and Debugging Programs.

strtol, strtoul, strtoll, strtoull, or atoi Subroutine

Purpose

Converts a string to a signed or unsigned long integer or long long integer.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

Tong strtol ([Stringl [EndPointer], [Basel)
const char *String;

char *xEndPointer;

int Base;

unsigned long strtoul (String, EndPointer, Base)
const char *String;

char **EndPointer;

int Base;

long Tong int strtoll (String, EndPointer, Base)
char *String, **EndPointer;
int Base;

long long int strtoull (String, EndPointer, Base)
char *String, **EndPointer;
int Base;

int atoi (String)
const char *String;

Description

The strtol subroutine returns a long integer whose value is represented by the character string to which
the String parameter points. The strtol subroutine scans the string up to the first character that is
inconsistent with the Base parameter. Leading white-space characters are ignored, and an optional sign
may precede the digits.

The strtoul subroutine provides the same functions but returns an unsigned long integer.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 299

The strtoll and strtoull subroutines provide the same functions but return long long integers.

The atoi subroutine is equivalent to the strtol subroutine where the value of the EndPointer parameter is a
null pointer and the Base parameter is a value of 10.

If the value of the EndPointer parameter is not null, then a pointer to the character that ended the scan is
stored in EndPointer. If an integer cannot be formed, the value of the EndPointer parameter is set to that
of the String parameter.

If the Base parameter is a value between 2 and 36, the subject sequence’s expected form is a sequence
of letters and digits representing an integer whose radix is specified by the Base parameter. This
sequence is optionally preceded by a + (positive) or - (negative) sign. Letters from a (or A) to z (or Z)
inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less than that of the
Base parameter are permitted. If the Base parameter has a value of 16, the characters 0Ox or 0X optionally
precede the sequence of letters and digits, following the + (positive) or - (negative) sign if present.

If the value of the Base parameter is 0, the string determines the base. Thus, after an optional leading
sign, a leading 0 indicates octal conversion, and a leading Ox or 0X indicates hexadecimal conversion. The
default is to use decimal conversion.

Parameters

String Points to the character string to be converted.

EndPointer Points to a character string that contains the first character not converted.
Base Specifies the base to use for the conversion.

Return Values

Upon successful completion, the strtol, strtoul, strtoll, and strtoull subroutines return the converted
value. If no conversion could be performed, O is returned, and the errno global variable is set to indicate
the error. If the correct value is outside the range of representable values, the strtol subroutine returns a
value of LONG_MAX or LONG_MIN according to the sign of the value, while the strtoul subroutine
returns a value of ULONG_MAX. The strtoll subroutine returns a value of LLONG_MAX or LLONG_MIN,
according to the sign of the value. The strtoul subroutine returns a value of ULONG_MAX, and the
strtoull subroutine returns a value of ULLONG_MAX.

Error Codes
The strtol and strtoul subroutines return the following error codes:

ERANGE The correct value of the converted number causes underflow or overflow.
EINVAL The value of the Base parameter is not valid.

Related Information

The [atof, atoff, strtod, or strtofl subroutine, scanf, fscanf, sscanf, or wsscanf (“scanf, fscanf, sscanf, or|
lwsscanf Subroutine” on page 109) subroutine, setlocale (‘setlocale Subroutine” on page 136) subroutine,
wstrtod or watof (“wstrtod or watof Subroutine” on page 514) subroutine, wstrtol, watol, or watoi
(“wstrtol, watol, or watoi Subroutine” on page 515) subroutine.

[Subroutines Overview|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

300 Technical Reference, Volume 2: Base Operating System and Extensions

strptime Subroutine

Purpose
Converts a character string to a time value.

Library
Standard C Library (libc.a)

Syntax

#include <time.h>

char *strptime (

const char *Buf, *Format;
struct tm *7Tm;

Description

The strptime subroutine converts the characters in the Buf parameter to values that are stored in the Tm

structure, using the format specified by the Format parameter.

Parameters
Buf Contains the character string to be converted by the strptime subroutine.
Format Contains format specifiers for the strptime subroutine. The Format parameter contains 0 or more

specifiers. Each specifier is composed of one of the following elements:

» One or more white-space characters

» An ordinary character (neither % [percent sign] nor a white-space character)
» A format specifier

Note: If more than one format specifier is present, they must be separated by white space or a

non-percent/non-alphanumeric character. If the seperator between format specifiers is other than

white space, the Buf string should hold the same seperator at the corresponding locations.

The [LC_TIME]| category defines the locale values for the format specifiers. The following format specifiers

are supported:

%a Represents the weekday name, either abbreviated as specified by the abday statement or full as specified by

the day statement.

%A Represents the weekday name, either abbreviated as specified by the abday statement or full as specified by

the day statement.

%b Represents the month name, either abbreviated as specified by the abmon statement or full as specified by

the month statement.

%B Represents the month name, either abbreviated as specified by the abmon statement or full as specified by

the month statement.
%C Represents the date and time format defined by the d_t_fmt statement in the LC_TIME category.
%C Represents the century number (0 through 99); leading zeros are permitted but not required.
%d Represents the day of the month as a decimal number (01 to 31).
%D Represents the date in %m/%d/%y format (for example, 01/31/91).
%e Represents the day of the month as a decimal number (01 to 31).
%E Represents the combined alternate era year and name, respectively, in %0 %N format.

%h Represents the month name, either abbreviated as specified by the abmon statement or full as specified by

the month statement.
%H Represents the 24-hour-clock hour as a decimal number (00 to 23).

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2)

301

%l Represents the 12-hour-clock hour as a decimal number (01 to 12).

%j Represents the day of the year as a decimal number (001 to 366).

%m Represents the month of the year as a decimal number (01 to 12).

%M Represents the minutes of the hour as a decimal number (00 to 59).

%n Represents any white space.

%N Represents the alternate era name.

%0 Represents the alternate era year.

%p Represents the a.m. or p.m. string defined by the am_pm statement in the LC_TIME category.

Yot Represents 12-hour-clock time with a.m./p.m. notation as defined by the t_fmt_ampm statement, usually in the
format %I1:%M:%S %p.

%S Represents the seconds of the minute as a decimal number (00 to 61). The decimal number range of 00 to 61
provides for leap seconds.

%t Represents any white space.

%T Represents 24-hour-clock time in the format %H:%M:%S (for example, 16:55:15).

%U Represents the week of the year as a decimal number (00 to 53). Sunday, or its equivalent as defined by the
day statement, is considered the first day of the week for calculating the value of this field descriptor.

%w Represents the day of the week as a decimal number (0 to 6). Sunday, or its equivalent as defined by the day
statement in the LC_TIME category, is considered to be 0 for calculating the value of this field descriptor.

%W Represents the week of the year as a decimal number (00 to 53). Monday, or its equivalent as defined by the
day statement in the LC_TIME category, is considered the first day of the week for calculating the value of this
field descriptor.

%X Represents the date format defined by the d_fmt statement in the LC_TIME category.

%X Represents the time format defined by the t_fmt statement in the LC_TIME category.

%y Represents the year within century.

Note: When the environment variable XPG_TIME_FMT=0ON, %y is the year within the century. When a
century is not otherwise specified, values in the range 69-99 refer to years in the twentieth century (1969 to
1999, inclusive); values in the range 00-68 refer to 2000 to 2068, inclusive.

%Y Represents the year as a decimal number (for example, 1989).

%Z Represents the time-zone name, if one can be determined (for example, EST). No characters are displayed if a
time zone cannot be determined.

%% Specifies a % (percent sign) character.

Some format specifiers can be modified by the E and O modifier characters to indicate an alternative
format or specification. If the alternative format or specification does not exist in the current locale, the
behavior will be as if the unmodified format specifier were used. The following modified format specifiers
are supported:

%Ec Represents the locale’s alternative appropriate date and time as defined by the era_d_t_fmt statement.

%EC Represents the base year (or other time period) in the locale’s alternative form as defined by the era statement
under the era_name category of the current era.

%Ex Represents the alternative date as defined by the era_d_fmt statement.

%EX Represents the locale’s alternative time as defined by the era_t_fmt statement.

%Ey Represents the offset from the %EC format specifier (year only) in the locale’s alternative form.

%EY Represents the full alternative-year format.

%0d Represents the month using the locale’s alternative numeric symbols. Leading O’s are permitted but not
required.

%0e Represents the month using the locale’s alternative numeric symbols. Leading 0’s are permitted but not
required.

%0OH Represents the hour in 24-hour-clock time using the locale’s alternative numeric symbols.

%0l Represents the hour in 12-hour-clock time using the locale’s alternative numeric symbols.

%0m Represents the month using the locale’s alternative numeric symbols.

%0OM Represents the minutes using the locale’s alternative numeric symbols.

%0S Represents the seconds using the locale’s alternative numeric symbols.

%0U Represents the week number of the year using the locale’s alternative numeric symbols. Sunday is considered
the first day of the week. Use the rules corresponding to the %U format specifier.

302 Technical Reference, Volume 2: Base Operating System and Extensions

%0w Represents the day of the week using the locale’s alternative numeric symbols. Sunday is considered the first
day of the week.

%0OW Represents the week number of the year using the locale’s alternative numeric symbols. Monday is considered
the first day of the week. Use the rules corresponding to the %W format specifier.

%0y Represents the year (offset from %C) using the locale’s alternative numeric symbols.

A format specification consisting of white-space characters is performed by reading input until the first
nonwhite-space character (which is not read) or up to no more characters can be read.

A format specification consisting of an ordinary character is performed by reading the next character from
the Buf parameter. If this character differs from the character comprising the directive, the directive fails
and the differing character and any characters following it remain unread. Case is ignored when matching
Buf items, such as month or weekday names.

A series of directives composed of %n format specifiers, %t format specifiers, white-space characters, or
any combination of the three items is processed by reading up to the first character that is not white space
(which remains unread), or until no more characters can be read.

Tm Specifies the structure to contain the output of the strptime subroutine. If a conversion fails, the contents of
the Tm structure are undefined.

Return Values

If successful, the strptime subroutine returns a pointer to the character following the last character parsed.
Otherwise, a null pointer is returned.

Related Information

The scanf (‘scanf, fscanf, sscanf, or wsscanf Subroutine” on page 109) subroutine, [‘strfmon Subroutine”|
on page 286] strftime (“stritime Subroutine” on page 288) subroutine, time] subroutine, wesftime
“wcsftime Subroutine” on page 447) subroutine.

[LC_TIME Category in the Locale Definition Source File Format|in AIX 5L Version 5.2 Files Reference.

[Subroutines, Example Programs, and Libraries|in AlX 5L Version 5.2 General Programming Concepts:
Writing and Debugging Programs.

[National Language Support Overview and [List of Time and Monetary Formatting Subroutines|in AIX 5L
Version 5.2 National Language Support Guide and Reference.

stty or gtty Subroutine

Purpose
Sets or gets terminal state.

Library
Standard C Library (libc.a)

Syntax

#include <sgtty.h>

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 303

stty (|FileDescriptor]), Buffer)
int FileDescriptors;

struct sgttyb *Buffer;

gtty (FileDescriptor, Buffer)

int FileDescriptors;
struct sgttyb *Buffer;

Description
These subroutines have been made obsolete by the ioctl subroutine.

The stty subroutine sets the state of the terminal associated with the FileDescriptor parameter. The gtty
subroutine retrieves the state of the terminal associated with FileDescriptor. To set the state of a terminal,
the calling process must have write permission.

Use of the stty subroutine is equivalent to the ioctl (FileDescriptor, TIOSETP, Buffer) subroutine, while
use of the gtty subroutine is equivalent to the ioctl (FileDescriptor, TIOGETP, Buffer) subroutine.

Parameters
FileDescriptor Specifies an open file descriptor.
Buffer Specifies the buffer.

Return Values

If the stty or gtty subroutine is successful, a value of 0 is returned. Otherwise, a value of -1 is returned
and the errno global variable is set to indicate the error.

Related Information
The subroutine.

The|Input and Output Handling Programmer’s Overview in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

swab Subroutine

Purpose
Copies bytes.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

void swab ([Fron, [ro}

const void *From;
void *To;
ssize_t NumberOfBytes;

304 Technical Reference, Volume 2: Base Operating System and Extensions

Description

The swab subroutine copies the number of bytes pointed to by the NumberOfBytes parameter from the
location pointed to by the From parameter to the array pointed to by the To parameter, exchanging
adjacent even and odd bytes.

The NumberOfBytes parameter should be even and nonnegative. If the NumberOfBytes parameter is odd
and positive, the swab subroutine uses NumberOfBytes -1 instead. If the NumberOfBytes parameter is
negative, the swab subroutine does nothing.

Parameters

From Points to the location of data to be copied.

To Points to the array to which the data is to be copied.
NumberOfBytes Specifies the number of even and nonnegative bytes to be copied.

Related Information

The Imemccpy, memchr, memcmp, memmove, or memset| subroutine, string (‘strlen, strchr, strrchr)|
Istrpbrk, strspn, strcspn, strstr, strtok, or strsep Subroutine” on page 291) subroutine.

[List of Interfaces for Input and Output Handling in AIX 5L Version 5.2 System Management Guide:
Operating System and Devices.

[Input and Output Handling Programmer’s Overview|in AIX 5L Version 5.2 General Programming Concepts:
Writing and Debugging Programs.

swapoff Subroutine

Purpose
Deactivates paging or swapping to a designated block device.

Library
Standard C Library (libc.a)

Syntax
int swapoff

char *PathName ;

Description

The swapoff subroutine deactivates a block device or logical volume that is actively being used for paging
and swapping. There must be sufficient space to satisfy the system’s paging space requirements in the
remaining devices after this device is deactivated or swapoff will fail.

Parameters

PathName Specifies the full path name of the block device or logical volume.

Error Codes
If an error occurs, the errno global variable is set to indicate the error:

EBUSY The deactivation is already running.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 305

EINTR The signal was received during the processing of a request.

ENODEV The PathName file does not exist.

ENOMEM No memory is available.

ENOSPC There is not enough space in other paging spaces to satisfy the system’s requirements.
ENOTBLK The device must be a block device or logical volume.

ENOTDIR A component of the PathName prefix is not a directory.

EPERM Caller does not have proper authority.

Other errors are from calls to the device driver's open subroutine or ioctl subroutine.

Related Information
The command.

The [Subroutines Overview in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

swapon Subroutine

Purpose
Activates paging or swapping to a designated block device.

Library
Standard C Library (libc.a)

Syntax

#include <sys/vminfo.h>

int swapon (|PathName)

char *PathName

Description

The swapon subroutine makes the designated block device available to the system for allocation for
paging and swapping.

The specified block device must be a logical volume on a disk device. The paging space size is
determined from the current size of the logical volume.

Parameters

PathName Specifies the full path name of the block device.

Error Codes
If an error occurs, the errno global variable is set to indicate the error:

EINTR Signal was received during processing of a request.

EINVAL Invalid argument (size of device is invalid).

ENOENT The PathName file does not exist.

ENOMEM The maximum number of paging space devices (16) are already defined, or no memory is available.

ENOTBLK Block device required.
ENOTDIR A component of the PathName prefix is not a directory.

306 Technical Reference, Volume 2: Base Operating System and Extensions

ENXIO No such device address.

Other errors are from calls to the device driver's open subroutine or ioctl subroutine.

Related Information

The subroutine subroutine.
The command, command.

The [Subroutines Overview in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

swapqry Subroutine

Purpose
Returns paging device status.

Library
Standard C Library (libc.a)

Syntax

#include <sys/vminfo.h>

int swapqry (PathNamel, Buffer)
char *PathName

struct pginfo *Buffer;

Description

The swapqry subroutine returns information to a user-designated buffer about active paging and swap
devices.

Parameters
PathName Specifies the full path name of the block device.
Buffer Points to the buffer into which the status is stored.

Return Values

The swapqry subroutine returns 0 if the PathName value is an active paging device. If the Buffer value is
not null, it also returns status information.

Error Codes

If an error occurs, the subroutine returns -1 and the errno global variable is set to indicate the error, as
follows:

EFAULT Buffer pointer is invalid.

EINVAL Invalid argument.

EINTR Signal was received while processing request.
ENODEV Device is not an active paging device.

ENOENT The PathName file does not exist.
ENOTBLK Block device required.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 307

ENOTDIR A component of the PathName prefix is not a directory.
ENXIO No such device address.

Related Information

The subroutine, subroutine.
The command, command.

|Paging Space Overview{ in AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices.

[Subroutines Overview| and [Understanding Paging Space Programming Requirements|in AIX 5L Version
5.2 General Programming Concepts: Writing and Debugging Programs.

symlink Subroutine

Purpose
Makes a symbolic link to a file.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int symlink (Path2)
const char *Pathl;
const char *Path2;

Description

The symlink subroutine creates a symbolic link with the file named by the Path2 parameter, which refers
to the file named by the Path1 parameter.

As with a hard link (described in the link subroutine), a symbolic link allows a file to have multiple names.
The presence of a hard link guarantees the existence of a file, even after the original name has been
removed. A symbolic link provides no such assurance. In fact, the file named by the Path1 parameter need
not exist when the link is created. In addition, a symbolic link can cross file system boundaries.

When a component of a path name refers to a symbolic link rather than a directory, the path name
contained in the symbolic link is resolved. If the path name in the symbolic link starts with a / (slash), it is
resolved relative to the root directory of the process. If the path name in the symbolic link does not start
with / (slash), it is resolved relative to the directory that contains the symbolic link.

If the symbolic link is not the last component of the original path name, remaining components of the
original path name are resolved from the symbolic-link point.

If the last component of the path name supplied to a subroutine refers to a symbolic link, the symbolic link
path name may or may not be traversed. Most subroutines always traverse the link; for example, the
chmod, chown, link, and open subroutines. The statx subroutine takes an argument that determines
whether the link is to be traversed.

308 Technical Reference, Volume 2: Base Operating System and Extensions

The following subroutines refer only to the symbolic link itself, rather than to the object to which the link

refers:

readlink Freadlink Subroutine” on page 22)

rename (‘rename Subroutine” on page 42)

rmdir (‘rmdir Subroutine” on page 48)

symlink

unlink (“unlink Subroutine” on page 423)

Fails with the EEXIST error code if the target is a symbolic link.

Fails with the EEXIST error code if a symbolic link exists with the
same name as the target file as specified by the Path parameter in
the mknod and mkfifo subroutines.

Fails with EEXIST error code when the O_CREAT and O_EXCL
flags are specified and a symbolic link exists for the path name
specified.

Applies only to symbolic links.

Renames the symbolic link if the file to be renamed (the FromPath
parameter for the rename subroutine) is a symbolic link. If the new
name (the ToPath parameter for the rename subroutine) refers to
an existing symbolic link, the symbolic link is destroyed.

Fails with the ENOTDIR error code if the target is a symbolic link.
Running this subroutine causes an error if a symbolic link named by
the Path2 parameter already exists. A symbolic link can be created
that refers to another symbolic link; that is, the Path1 parameter can
refer to a symbolic link.

Removes the symbolic link.

Since the mode of a symbolic link cannot be changed, its mode is ignored during the lookup process. Any
files and directories referenced by a symbolic link are checked for access normally.

Parameters

Path1 Specifies the contents of the Path2 symbolic link. This value is a null-terminated string representing the
object to which the symbolic link will point. Path1 cannot be the null value and cannot be more than
PATH_MAX characters long. PATH_MAX is defined in the limits.h file.

Path2 Names the symbolic link to be created.

Return Values

Upon successful completion, the symlink subroutine returns a value of 0. If the symlink subroutine fails, a
value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes

The symlink subroutine fails if one or more of the following are true:

EEXIST Path2 already exists.

EACCES The requested operation requires writing in a directory with a mode that denies write permission.

EROFS The requested operation requires writing in a directory on a read-only file system.

ENOSPC The directory in which the entry for the symbolic link is being placed cannot be extended because there
is no space left on the file system containing the directory.

EDQUOT The directory in which the entry for the new symbolic link is being placed cannot be extended or disk
blocks could not be allocated for the symbolic link because the user’s or group’s quota of disk blocks on
the file system containing the directory has been exhausted.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 309

The symlink subroutine can be unsuccessful for other reasons. See|'Base Operating System Error Codeg
[For Services That Require Path-Name Resolution’| for a list of additional errors.

Related Information

The [chown, fchown, chownx, or fchown| subroutine, flink] subroutine, [mkdir] subroutine, [nknod|
subroutine, lopenx, open, or create|subroutine, readlink (“readlink Subroutine” on page 22) subroutine,
rename (‘rename Subroutine” on page 42) subroutine, rmdir (rmdir Subroutine” on page 48) subroutine,
statx (]“statx, stat, Istat, fstatx, fstat, fullstat, ffullstat, stat64, Istat64, or fstat64 Subroutine” on page 277b
subroutine, unlink (‘unlink Subroutine” on page 423) subroutine.

TheEl command.

The [limits.H file.

|Fi|es, Directories, and File Systems for Programmers| in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

sync Subroutine

Purpose
Updates all file systems.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>
void sync ()

Description

The sync subroutine causes all information in memory that should be on disk to be written out. The
writing, although scheduled, is not necessarily complete upon return from this subroutine. Types of
information to be written include modified superblocks, i-nodes, data blocks, and indirect blocks.

The sync subroutine should be used by programs that examine a file system, such as the df and fsck
commands.

If Network File System (NFS) is installed on your system, information in memory that relates to remote
files is scheduled to be sent to the remote node.

Related Information
The subroutine.

The |df|command, command.

|Fi|es, Directories, and File Systems for Programmers| in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

310 Technical Reference, Volume 2: Base Operating System and Extensions

_sync_cache_range Subroutine

Purpose
Synchronizes the | cache with the D cache.

Library
Standard C Library (libc.a)

Syntax

void _sync cache_range (eaddr, count)

caddr_t_feaddr};
uint (countls

Description

The _sync_cache_range subroutine synchronizes the | cache with the D cache, given an effective
address and byte count. Programs performing instruction modification can call this routine to ensure that
the most recent instructions are fetched for the address range.

Parameters
eaddr Specifies the starting effective address of the address range.
count Specifies the byte count of the address range.

Related Information
The@ (Cache Line Flush) Instruction in Assembler Language Reference.

sysconf Subroutine

Purpose
Determines the current value of a specified system limit or option.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

long int sysconf (

int Name;

Description

The sysconf subroutine determines the current value of certain system parameters, the configurable
system limits, or whether optional features are supported. The Name parameter represents the system
variable to be queried.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 311

Parameters

Name

_SC_AIO_LISTIO_MAX

_SC_AIO_MAX
_SC_ASYNCHRONOUS_IO
_SC_ARG_MAX

_SC_BC_BASE_MAX
_SC_BC_DIM_MAX

_SC_BC_SCALE_MAX
_SC_BC_STRING_MAX
_SC_CHILD_MAX
_SC_CLK_TCK

_SC_COLL_WEIGHTS_MAX

_SC_DELAYTIMER_MAX
_SC_EXPR_NEST_MAX

_SC_JOB_CONTROL
_SC_IOV_MAX

_SC_LARGE_PAGESIZE
_SC_LINE_MAX

_SC_LOGIN_NAME_MAX
_SC_MQ_OPEN_MAX
_SC_MQ_PRIO_MAX
_SC_MEMLOCK
_SC_MEMLOCK_RANGE
_SC_MEMORY_PROTECTION
_SC_MESSAGE_PASSING
_SC_NGROUPS_MAX

_SC_OPEN_MAX
_SC_PASS_MAX

_SC_PASS_MAX
_SC_PAGESIZE
_SC_PAGE_SIZE
_SC_PRIORITIZED_IO
_SC_PRIORITY_SCHEDULING
_SC_RE_DUP_MAX

_SC_RTSIG_MAX
SC_REALTIME_SIGNALS

Specifies which system variable setting should be
returned. The valid values for the Name parameter are
defined in the limits.h, time.h, and unistd.h files and are
described below:

Maximum number of Input and Output operations that can be specified in a list
Input and Output call.

Maximum number of outstanding asynchronous Input and Output operations.
Implementation supports the Asynchronous Input and Output option.

Specifies the maximum byte length of the arguments for one of the exec
functions, including environment data.

Specifies the maximum number ibase and obase variables allowed by the@
command.

Specifies the maximum number of elements permitted in an array by the be
command.

Specifies the maximum scale variable allowed by the be command.

Specifies the maximum length of a string constant allowed by the be command.
Specifies the number of simultaneous processes per real user ID.

Indicates the clock-tick increment as defined by the CLK_TCK in the time.h
file.

Specifies the maximum number of weights that can be assigned to an entry of
the LC_COLLATE keyword in the locale definition file.

Maximum number of Timer expiration overruns.

Specifies the maximum number of expressions that can be nested within
parentheses by the[expq command.

If this symbol is defined, job control is supported.

Specifies the maximum number of iovec structures one process has available
for use with the readv and writev subroutines.

Size (in bytes) of a large-page.

Specifies the maximum byte length of a command’s input line (either standard
input or another file) when a command is described as processing text files.
The length includes room for the trailing new-line character.

Maximum length of a login name.

Maximum number of open message queue descriptors.

Maximum number of message priorities.

Implementation supports the Process Memory Locking option.

Implementation supports the Range Memory Locking option.

Implementation supports the Memory Protection option.

Implementation supports the Message Passing option.

Specifies the maximum number of simultaneous supplementary group IDs per
process.

Specifies the maximum number of files that one process can have open at any
one time.

Specifies the maximum number of significant characters in a password (not
including the terminating null character).

Maximum number of significant bytes in a password.

Equivalent to _SC_PAGE_SIZE.

Size in bytes of a page.

Implementation supports the Prioritized Input and Output option.
Implementation supports the Process Scheduling option.

Specifies the maximum number of repeated occurrences of a regular
expression permitted when using the \{ m, n \} interval notation.

Maximum number of Realtime Signals reserved for applications use.
Implementation supports the Realtime Signals Extension option.

312 Technical Reference, Volume 2: Base Operating System and Extensions

_SC_SAVED_IDS

_SC_SEM_NSEMS_MAX
_SC_SEM_VALUE_MAX
_SC_SEMAPHORES
_SC_SHARED_MEMORY_OBJECTS
_SC_SIGQUEUE_MAX

_SC_STREAM_MAX

_SC_SYNCHRONIZED_IO
_SC_TIMER_MAX
_SC_TIMERS
_SC_TZNAME_MAX

_SC_VERSION

_SC_XBS5_ILP32_OFF32
_SC_XBS5_ILP32_OFFBIG
_SC_XBS5_LP64_OFF64
_SC_XBS5_LPBIG_OFFBIG

_SC_XOPEN_CRYPT
_SC_XOPEN_LEGACY
_SC_XOPEN_REALTIME
_SC_XOPEN_REALTIME_THREADS
_SC_XOPEN_ENH_I18N

_SC_XOPEN_SHM
_SC_XOPEN_VERSION

_SC_XOPEN_XCU_VERSION
_SC_ATEXIT_MAX
_SC_PAGE_SIZE
_SC_AES_OS_VERSION
_SC_2_VERSION
_SC_2_C_BIND
_SC_2_C_CHAR_TERM
_SC_2_C_DEV

_SC_2_C_VERSION

_SC_2_FORT_DEV
_SC_2_FORT_RUN
_SC_2_LOCALEDEF
_SC_2_SW_DEV

_SC_2_UPE
_SC_NPROCESSORS_CONF
_SC_NPROCESSORS_ONLN
_SC_THREAD_DATAKEYS_MAX

If this symbol is defined, each process has a saved set-user ID and set-group
ID.

Maximum number of Semaphores per process.

Maximum value a Semaphore may have.

Implementation supports the Semaphores option.

Implementation supports the Shared Memory Objects option.

Maximum number of signals a process may send and have pending at any
time.

Specifies the maximum number of streams that one process can have open
simultaneously.

Implementation supports the Synchronised Input and Output option.

Maximum number of per-process Timers.

Implementation supports the Timers option.

Specifies the maximum number of bytes supported for the name of a time zone
(not of the TZ value).

Indicates that the version or revision number of the POSIX standard is
implemented to indicate the 4-digit year and 2-digit month that the standard
was approved by the IEEE Standards Board. This value is currently the long
integer 198808.

Implementation provides a C-language compilation environment with 32-bit int,
long, pointer and off_t types.

Implementation provides a C-language compilation environment with 32-bit int,
long and pointer types and an off_t type using at least 64 bits.

Implementation provides a C-language compilation environment with 32-bit int
and 64-bit long, pointer and off_t types.

Implementation provides a C-language compilation environment with an int type
using at least 32 bits and long, pointer and off_t types using at least 64 bits.
Indicates that the system supports the X/Open Encryption Feature Group.
The implementation supports the Legacy Feature Group.

The implementation supports the X/Open Realtime Feature Group.

The implementation supports the X/Open Realtime Threads Feature Group.
Indicates that the system supports the X/Open Enhanced Internationalization
Feature Group.

Indicates that the system supports the X/Open Shared Memory Feature Group.
Indicates that the version or revision number of the X/Open standard is
implemented.

Specifies the value describing the current version of the XCU specification.
Specifies the maximum number of register functions for the atexit subroutine.
Specifies page-size granularity of memory.

Indicates OSF AES version.

Specifies the value describing the current version of POSIX.2.

Indicates that the system supports the C Language binding option.

Indicates that the system supports at least one terminal type.

Indicates that the system supports the C Language Development Utilities
Option.

Specifies the value describing the current version of POSIX.2 with the C
Language binding.

Indicates that the system supports the FORTRAN Development Utilities Option.
Indicates that the system supports the FORTRAN Development Utilities Option.
Indicates that the system supports the creation of locales.

Indicates that the system supports the Software Development Utilities Option.
Indicates that the system supports the User Portability Utilities Option.
Number of processors configured.

Number of processors online.

Maximum number of data keys that can be defined in a process.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z2) 313

_SC_THREAD_DESTRUCTOR_ITERATI@MS UM number attempts made to destroy a thread’s thread-specific data.

_SC_THREAD_KEYS_MAX
_SC_THREAD_STACK_MIN
_SC_THREAD_THREADS_MAX
_SC_REENTRANT_FUNCTIONS

_SC_THREADS
_SC_THREAD_ATTR_STACKADDR

_SC_THREAD_ATTR_STACKSIZE

Maximum number of data keys per process.

Minimum value for the threads stack size.

Maximum number of threads within a process.

System supports reentrant functions (reentrant functions must be used in
multi-threaded applications).

System supports POSIX threads.

System supports the stack address option for POSIX threads (stackaddr
attribute of threads).

System supports the stack size option for POSIX threads (stacksize attribute
of threads).

_SC_THREAD_PRIORITY_SCHEDULINEystem supports the priority scheduling for POSIX threads.

_SC_THREAD_PRIO_INHERIT
_SC_THREAD_PRIO_PROTECT
_SC_THREAD_PROCESS_SHARED

_SC_TTY_NAME_MAX

System supports the priority inheritance protocol for POSIX threads (priority
inversion protocol for mutexes).

System supports the priority ceiling protocol for POSIX threads (priority
inversion protocol for mutexes).

System supports the process sharing option for POSIX threads (pshared
attribute of mutexes and conditions).

Maximum length of a terminal device name.

Note: The _SYNCHRONIZED_IO, _SC_FSYNC, and SC_MAPPED_FILES commands apply to operating system

version 4.3 and later releases.
_SC_SYNCHRONIZED_IO
_SC_FSYNC
_SC_MAPPED_FILES
_SC_LPAR_ENABLED
_SC_AIX_KERNEL_BITMODE
_SC_AIX_REALMEM
_SC_AIX_HARDWARE_BITMODE
_SC_AIX_MP_CAPABLE

Implementation supports the Synchronized Input and Output option.
Implementation supports the File Synchronization option.
Implementation supports the Memory Mapped Files option.

Indicates whether LPARs are enabled or not.

Determines if the kernel is 32-bit or 64-bit.

Determines the amount of real memory in kilobytes.

Determines whether the machine is 32-bit or 64-bit.

Determines if the hardware is MP-capable or not.

Note: The _SC_AIX_MP_CAPABLE variable is available only to the root
user.

The values returned for the variables supported by the system do not change during the lifetime of the

process making the call.

Return Values

If the sysconf subroutine is successful, the current value of the system variable is returned. The returned
value cannot be more restrictive than the corresponding value described to the application by the limits.h,
time.h, or unistd.h file at compile time. The returned value does not change during the lifetime of the
calling process. If the sysconf subroutine is unsuccessful, a value of -1 is returned.

Error Codes

If the Name parameter is invalid, a value of -1 is returned and the errno global variable is set to indicate
the error. If the Name parameter is valid but is a variable not supported by the system, a value of -1 is
returned, and the errno global variable is set to a value of EINVAL. If the system variable
_SC_AIX_MP_CAPABLE is accessed by a non-root user, a value of -1 is returned and the errno global

variable indicates the error

File

Yusr/include/limits.h|

Contains system-defined limits.

314 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information
The subroutine, subroutine.

The [bc command, command.

[Subroutines Overview|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

sysconfig Subroutine

Purpose
Provides a service for controlling system/kernel configuration.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <sys/sysconfig.h>

int sysconfig ([cmd|, [Parmpl, [Parmier)
int Cmd;

void *Parmp;

int Parmlen;

Description

The sysconfig subroutine is used to customize the operating system. This subroutine provides a means of
loading, unloading, and configuring kernel extensions. These kernel extensions can be additional
[services, pystem callg, device drivers, or ffile systems The sysconfig subroutine also provides the ability
to read and set system run-time operating parameters.

Use of the sysconfig subroutine requires appropriate privilege.

The particular operation that the sysconfig subroutine provides is defined by the value of the Cmd
parameter. The following operations are defined:

SYS_KLOAD Loads a kernel extension object file into kernel memory.
(‘SYS_KLOAD sysconfig|

[Operation” on page 321)

SYS_SINGLELOAD Loads a kernel extension object file only if it is not already loaded.
(‘SYS_SINGLELOAD]

sysconfig Operation” on|

page 325_3]9

SYS_QUERYLOAD Determines if a specified kernel object file is loaded.
(‘SYS_QUERYLOAD|

sysconfig Operation” on|

page 32§|D

SYS_KULOAD Unloads a previously loaded kernel object file.

('SYS_KULOAD sysconfig

[Operation” on page 323)

SYS_QDVSw Checks the status of a device switch entry in the device switch table.
(‘SYS QDVSW sysconfig|

[Operation” on page 325)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 315

SYS_CFGDD Calls the specified [device driver configuration routine| (module entry point).
(‘SYS_CFGDD sysconfig|

|Operation’]b

SYS_CFGKMOD Calls the specified module at its module entry point for configuration purposes.
(‘SYS_CFGKMOD|

sysconfig Operation” on|

page 31 §|D

SYS_GETPARMS Returns a structure containing the current values of run-time system parameters found in
(‘SYS_GETPARMS]| the var structure.

sysconfig Operation” on|

page 32Q|D

SYS_SETPARMS Sets run-time system parameters from a caller-provided structure.
(‘SYS_SETPARMS]|

sysconfig Operation” on|

page 322]9

SYS_GETLPARINFO Copies the system LPAR information into a user-allocated buffer.
(‘SYS_GETLPAR_INFQ|

sysconfig Operation” on|

page 31 glp

In addition, the SYS_64BIT flag can be bitwise or'ed with the Cmd parameter (if the Cmd parameter is
SYS_KLOAD or SYS_SINGLELOAD). For kernel extensions, this indicates that the kernel extension does
not export 64-bit system calls, but that all 32-bit system calls also work for 64-bit applications. For device
drivers, this indicates that the device driver can be used by 64-bit applications.

[‘Loader Symbol Binding Support” on page 322| explains the symbol binding support provided when loading
kernel object files.

Parameters

Cmd Specifies the function that the sysconfig subroutine is to perform.

Parmp Specifies a user-provided structure.

Parmlen Specifies the length of the user-provided structure indicated by the Parmp parameter.

Return Values

These sysconfig operations return a value of 0 upon successful completion of the subroutine. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Any sysconfig operation requiring a structure from the caller fails if the structure is not entirely within
memory addressable by the calling process. A return value of -1 is passed back and the errno global
variable is set to EFAULT.

Related Information

The device driver entry point.

IDevice Configuration Subsystem| [Kernel Environment} [Understanding Kernel Extension Binding|in AIX 5L
Version 5.2 Kernel Extensions and Device Support Programming Concepts.

SYS_CFGDD sysconfig Operation

Purpose
Calls a previously loaded device driver at its module entry point.

316 Technical Reference, Volume 2: Base Operating System and Extensions

Description

The SYS_CFGDD sysconfig operation calls a previously loaded device driver at its module entry point.
The device driver's module entry point, by convention, is its [ddconfig entry point. The SYS_CFGDD
operation is typically invoked by device configure or unconfigure methods to initialize or terminate a device
driver, or to request device vital product data.

The sysconfig subroutine puts no restrictions on the command code passed to the device driver. This
allows the device driver's ddconfig entry point to provide additional services, if desired.

The parmp parameter on the SYS_CFGDD operation points to a cfg_dd structure defined in the
sys/sysconfig.h file. The parmlen parameter on the sysconfig system call should be set to the size of
this structure.

If the kmid variable in the cfg_dd structure is 0, the desired device driver is assumed to be already
installed in the device switch table. The major portion of the device number (passed in the devno field in
the cfg_dd structure) is used as an index into the device switch table. The device switch table entry
indexed by this devno field contains the device driver's ddconfig entry point to be called.

If the kmid variable is not 0, it contains the module ID to use in calling the device driver. Astructure is
used to pass the address and length of the [device-dependent structure, specified by the cfg_dd.ddsptr
and cfg_dd.dds1en fields, to the device driver being called.

The ddconfig device driver entry point provides information on how to define the ddconfig subroutine.

The device driver to be called is responsible for using the appropriate routines to copy the
device-dependent structure (DDS) from user to kernel space.

Return Values

If the SYS_CFGDD operation successfully calls the specified device driver, the return code from the
ddconfig subroutine determines the value returned by this subroutine. If the ddconfig routine’s return
code is 0, then the value returned by the sysconfig subroutine is 0. Otherwise the value returned is a -1,
and the errno global variable is set to the return code provided by the device driver ddconfig subroutine.

Error Codes

Errors detected by the SYS_CFGDD operation result in the following values for the errno global variable:

EACESS The calling process does not have the required privilege.

EFAULT The calling process does not have sufficient authority to access the data area described by the parmp
and parmlen parameters provided on the system call. This error is also returned if an 1/O error occurred
when accessing data in this area.

EINVAL Invalid module ID.

ENODEV Module ID specified by the cfg_dd.kmid field was 0, and an invalid or undefined devno value was
specified.

Related Information
The sysconfig (]“sysconfig Subroutine” on page 315[) subroutine.

The device driver entry point.

The @ structure.

[Device Configuration Subsystem Programming Introduction|, |[Device Dependent Structure (DDS) Overview|
Device Driver Kernel Extension Overview, |Programming in the Kernel Environment Overview]

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 317

[Understanding Kernel Extension Binding] Understanding the Device Switch Table in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

SYS_CFGKMOD sysconfig Operation

Purpose
Invokes a previously loaded kernel object file at its module entry point.

Description

The SYS_CFGKMOD sysconfig operation invokes a previously loaded kernel object file at its module entry
point, typically for initialization or termination functions. The SYS_CFGDD d“SYS_CFGDD sysconfigl
|Operation” on page 316b operation performs a similar function for device drivers.

The parmp parameter on the sysconfig subroutine points to a c¢fg_kmod structure, which is defined in the
sys/sysconfig.h file. The kmid field in this structure specifies the kernel module ID of the module to
invoke. This value is returned when using the SYS_KLOAD (‘SYS_KLOAD sysconfig Operation” on|

or SYS_SINGLELOAD (‘SYS_SINGLELOAD sysconfig Operation” on page 328) operation to
load the object file.

The cmd field in the efg_kmod structure is a module-dependent parameter specifying the action that the
routine at the module’s entry point should perform. This is typically used for initialization and termination
commands after loading and prior to unloading the object file.

The mdiptr field in the cfg_kmod structure points to a module-dependent structure whose size is specified
by the mdilen field. This field is used to provide module-dependent information to the module to be called.
If no such information is needed, the mdiptr field can be null.

If the mdiptr field is not null, then the SYS_CFGKMOD operation builds a @ structure describing the
address and length of the module-dependent information in the caller's address space. The mdiptr and
mdiTlen fields are used to fill in the fields of this uio structure. The module is then called at its module entry
point with the cmd parameter and a pointer to the uio structure. If there is no module-dependent
information to be provided, the uiop parameter passed to the module’s entry point is set to null.

The module’s entry point should be defined as follows:

int module_entry(cmd, uiop)
int cmd;
struct uio *uiop;

The definition of the module-dependent information and its length is specific to the module being
configured. The called module is responsible for using the appropriate routines to copy the
module-dependent information from user to kernel space.

Return Values

If the kernel module to be invoked is successfully called, its return code determines the value that is
returned by the SYS_CFGKMOD operation. If the called module’s return code is 0, then the value returned
by the sysconfig subroutine is 0. Otherwise the value returned is -1 and the errno global variable is set to
the called module’s return code.

Error Codes

Errors detected by the SYS_CFGKMOD operation result in the following values for the errno global
variable:

EINVAL Invalid module ID.

318 Technical Reference, Volume 2: Base Operating System and Extensions

EACESS The calling process does not have the required privilege.

EFAULT The calling process does not have sufficient authority to access the data area described by the parmp
and parmlen parameters provided on the system call. This error is also returned if an 1/O error occurred
when accessing data in this area.

File

sys/sysconfig.h Contains structure definitions.

Related Information
The sysconfig ('sysconfig Subroutine” on page 315) subroutine.

The SYS_CFGDD (‘SYS_CFGDD sysconfig Operation” on page 316[) sysconfig operation, SYS_KLOAD
“SYS_KLOAD sysconfig Operation” on page 321) sysconfig operation, SYS_SINGLELOAD
“SYS_SINGLELOAD sysconfig Operation” on page 328) sysconfig operation.

The @ structure.

[Device Configuration Subsystem Programming Introduction|in AIX 5L Version 5.2 Kernel Extensions and
Device Support Programming Concepts

[Programming in the Kernel Environment Overview| in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts

[Understanding Kernel Extension Binding|in AIX 5L Version 5.2 Kernel Extensions and Device Support
Programming Concepts

SYS_GETLPAR_INFO sysconfig Operation

Purpose
Copies the system LPAR information into a user-allocated buffer.

Description

The SYS_GETLPAR_INFO sysconfig operation copies the system LPAR information into a user-allocated
buffer.

The parmp parameter on the sysconfig subroutine points to a structure of type getlpar_info. Within the
getlpar_info structure, the Ipar_namelen field must be set by the user to the maximum length of the
character buffer pointed to by Ipar_name. On return, the Ipar_namelen field will have its value replaced by
the acual length of the Ipar_name field. However, only the minimum of the actual length or the length
provided by the user will be copied into the buffer pointed to by Ipar_name. The Ipar_namesz, lpar_num,
and /par_name fields will contain valid data on returning from the call only if the system is running as an
LPAR as indicated by the value of the Ipar_flags field being equal to LPAR_ENABLED.

If a value of 0 is specified for the Ipar_namesz field, the partition name will not be copied out.

If the system is not an LPAR (namely it is running as an SMP system), but it is LPAR-capable, the
LPAR_CAPABLE flag will be set on return.

The getlpar_info structure is defined below:

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 319

lpar_flags unsigned short LPAR_ENABLED: System is LPAR enabled.
LPAR_CAPABLE: System is LPAR capable, but running in SMP mode.

lpar_namesz unsigned short Size of partition name.
lpar_num int Partition Number.
lpar_name char * Partition Name.

Note: The parmlen parameter (which is the third parameter to the sysconfig system call) is ignored by
the SYS_GETLPAR_INFO sysconfig operation.

Error Codes
The SYS_GETLPAR_INFO operation returns a value of -1 if an error occurs and the errno global variable
is set to one of the following error codes:

EFAULT The calling process does not have sufficient authority to access the data area described by the parmp
and parmlen parameters provided on the subroutine or the Ipar_name field in the getlpar_info
structure. This error is also returned if an 1/O error occurred when accessing data in any of these
areas.

EINVAL Invalid command parameter to the sysconfig subroutine.

Files

sys/sysconfig.h Contains structure definitions and flags.

Related Information
The [“sysconfig Subroutine” on page 315}

[Programming in the Kernel Environment Overview| in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts.

SYS_GETPARMS sysconfig Operation

Purpose
Copies the system parameter structure into a user-specified buffer.

Description

The SYS_GETPARMS sysconfig operation copies the system parameter var structure into a
user-allocated buffer. This structure may be used for informational purposes alone or prior to setting
specific system parameters.

In order to set system parameters, the required fields in the var structure must be modified, and then the
SYS_SETPARMS (‘SYS_SETPARMS sysconfig Operation” on page 327) operation can be called to
change the system run-time operating parameters to the desired state.

The parmp parameter on the sysconfig subroutine points to a buffer that is to contain all or part of the var
structure defined in the sys/var.h file. The fields in the var_hdr part of the var structure are used for
parameter update control.

The parmlen parameter on the system call should be set to the length of the var structure or to the

number of bytes of the structure that is desired. The complete definition of the system parameters
structure can be found in the sys/var.h file.

320 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values

The SYS_GETPARMS operation returns a value of -1 if an error occurs and the errno global variable is
set to one of the following error codes.

Error Codes

EACCES The calling process does not have the required privilege.

EFAULT The calling process does not have sufficient authority to access the data area described by the parmp
and parmlen parameters provided on the subroutine. This error is also returned if an I/O error occurred
when accessing data in this area.

File

sys/var.h Contains structure definitions.

Related Information

The sysconfig (‘sysconfig Subroutine” on page 315) subroutine and sys_parm (‘sys_parm Subroutine” on|
subroutine.

The SYS_SETPARMS (‘SYS_SETPARMS sysconfig Operation” on page 327) sysconfig operation.

[Programming in the Kernel Environment Overview| in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts.

SYS_KLOAD sysconfig Operation

Purpose
Loads a kernel extension into the kernel.

Description

The SYS_KLOAD sysconfig operation is used to load a kernel extension object file specified by a path
name into the kernel. A kernel module ID for that instance of the module is returned. The SYS_KLOAD
operation loads a new copy of the object file into the kernel even though one or more copies of the
specified object file may have already been loaded into the kernel. The returned module ID can then be
used for any of these three functions:

 Subsequent invocation of the module’s entry point (using the SYS_CFGKMOD (‘SYS_CFGKMOD]
[sysconfig Operation” on page 318) operation)

* Invocation of a device driver’s subroutine (using the SYS_CFGDD (‘SYS_CFGDD sysconfig|
[Operation” on page 316) operation)

+ Unloading the kernel module (using the SYS_KULOAD (‘SYS_KULOAD sysconfig Operation” on|
page 323) operation).

The parmp parameter on the sysconfig subroutine must point to a cfg_load structure, (defined in the
sys/sysconfig.h file), with the path field specifying the path name for a valid kernel object file. The
parmlen parameter should be set to the size of the cfg_load structure.

Note: A separate sysconfig operation, the SYS_SINGLELOAD ('SYS_SINGLELOAD sysconfig|
|Operation” on page 328) operation, also loads kernel extensions. This operation, however, only
loads the requested object file if not already loaded.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 321

Loader Symbol Binding Support

The following information describes the symbol binding support provided when loading kernel object files.

Importing Symbols

Symbols imported from the kernel name space are resolved with symbols that exist in the kernel name
space at the time of the load. (Symbols are imported from the kernel name space by specifying the
#!/unix character string as the first field in an import list at link-edit time.)

Kernel modules can also import symbols from other kernel object files. These other kernel object files are
loaded along with the specified object file if they are required to resolve the imported symbols.

Finding Directory Locations for Unqualified File Names: If the module header contains an unqualified
base file name for the symbol (that is, no / [slash] characters in the name), a libpath search string is used
to find the location of the shared object file required to resolve imported symbols. This libpath search string
can be taken from one of two places. If the Tibpath field in the cfg_load structure is not null, then it points
to a character string specifying the libpath to be used. However, if the Tibpath field is null, then the libpath
is taken from the module header of the object file specified by the path field in the same (cfg_load)
structure.

The libpath specification found in object files loaded in order to resolve imported symbols is not used.

The kernel loader service does not support deferred symbol resolution. The load of the kernel object file is
terminated with an error if any imported symbols cannot be resolved.

Exporting Symbols

Any symbols exported by the specified kernel object file are added to the kernel name space. This makes
these symbols available to other subsequently loaded kernel object files. Any symbols specified with the
SYSCALL keyword in the export list at link-edit time are added to the system call table at load time. These
symbols are then available to application programs as a system call. Symbols can be added to the 32-bit
and 64-bit system call tables separately by using the syscall32 and syscall64 keywords. Symbols can be
added to both system call tables by using the syscall3264 keyword. A kernel extension that just exports
32-bit system calls can have all its system calls exported to 64-bit as well by passing the SYS_64BIT flag
or'ed with the SYS_KLOAD command to sysconfig.

Kernel object files loaded on behalf of the specified kernel object file to resolve imported symbols do not
have their exported symbols added to the kernel name space.

These object files are considered private since they do not export symbols to the global kernel name
space. For these types of object files, a new copy of the object file is loaded on each SYS_KLOAD
operation of a kernel extension that imports symbols from the private object file. In order for a kernel
extension to add its exported symbols to the kernel name space, it must be explicitly loaded with the
SYS_KLOAD operation before any other object files using the symbols are loaded. For kernel extensions
of this type (those exporting symbols to the kernel name space), typically only one copy of the object file
should ever be loaded.

Return Values

If the object file is loaded without error, the module ID is returned in the kmid variable within the cfg_load
structure and the subroutine returns a value of 0.

Error Codes

On error, the subroutine returns a value of -1 and the errno global variable is set to one of the following
values:

322 Technical Reference, Volume 2: Base Operating System and Extensions

EACESS One of the following reasons applies:
* The calling process does not have the required privilege.
* An object module to be loaded is not an ordinary file.

* The mode of the object module file denies read-only permission.

EFAULT The calling process does not have sufficient authority to access the data area described by the parmp
and parmlen parameters provided on the system call. This error is also returned if an I/O error occurred
when accessing data in this area.

ENOEXEC The program file has the appropriate access permission, but has an invalid XCOFF object file indication
in its header. The SYS_KLOAD operation only supports loading of XCOFF object files. This error is
also returned if the loader is unable to resolve an imported symbol.

EINVAL The program file has a valid XCOFF indicator in its header, but the header is damaged or is incorrect
for the machine on which the file is to be run.
ENOMEM The load requires more kernel memory than is allowed by the system-imposed maximum.

ETXTBSY The object file is currently open for writing by some process.

File

sys/sysconfig.h Contains structure definitions.

Related Information
The sysconfig (‘sysconfig Subroutine” on page 315) subroutine.

The SYS_SINGLELOAD (‘SYS_SINGLELOAD sysconfig Operation” on page 328) sysconfig operation,
SYS_KULOAD (‘SYS_KULOAD sysconfig Operation”) sysconfig operation, SYS_CFGDD (I“SYS_CFGDD|
sysconfig Operation” on page 316) sysconfig operation, SYS_CFGKMOD ({'SYS_CFGKMOD sysconfig|
Operation” on page 318) sysconfig operation.

The device driver entry point.

[Device Configuration Subsystem Programming Introduction|in AIX 5L Version 5.2 Kernel Extensions and
Device Support Programming Concepts.

[Programming in the Kernel Environment Overview| in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts.

[Understanding Kernel Extension Binding|in AIX 5L Version 5.2 Kernel Extensions and Device Support
Programming Concepts.

SYS_KULOAD sysconfig Operation

Purpose
Unloads a loaded kernel object file and any imported kernel object files that were loaded with it.

Description

The SYS_KULOAD sysconfig operation unloads a previously loaded kernel file and any imported kernel
object files that were automatically loaded with it. It does this by decrementing the load and use counts of
the specified object file and any object file having symbols imported by the specified object file.

The parmp parameter on the sysconfig subroutine should point to a cfg_load structure, as described for
the SYS_KLOAD (‘SYS_KLOAD sysconfig Operation” on page 321) operation. The kmid field should
specify the kernel module ID that was returned when the object file was loaded by the SYS_KLOAD or

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 323

SYS_SINGLELOAD (“SYS_SINGLELOAD sysconfig Operation” on page 328) operation. The path and
libpath fields are not used for this command and can be set to null. The parmlen parameter should be set
to the size of the cfg_load structure.

Upon successful completion, the specified object file (and any other object files containing symbols that
the specified object file imports) will have their load and use counts decremented. If there are no users of
any of the module’s exports and its load count is 0, then the object file is immediately unloaded.

However, if there are users of this module (that is, modules bound to this module’s exported symbols), the
specified module is not unloaded. Instead, it is unloaded on some subsequent unload request, when its
use and load counts have gone to 0. The specified module is not in fact unloaded until all current users
have been unloaded.

Notes:

1. Care must be taken to ensure that a subroutine has freed all of its system resources before being
unloaded. For example, a device driver is typically prepared for unloading by using the SYS_CFGDD
(‘SYS_CFGDD sysconfig Operation” on page 316) operation and specifying termination.

2. If the use count is not 0, and you cannot force it to 0, the only way to terminate operation of the kernel
extension is to reboot the machine.

[‘Loader Symbol Binding Support” on page 322| explains the symbol binding support provided when loading
kernel object files.

Return Values

If the unload operation is successful or the specified object file load count is successfully decremented, a
value of 0 is returned.

Error Codes

On error, the specified file and any imported files are not unloaded, nor are their load and use counts
decremented. A value of -1 is returned and the errno global variable is set to one of the following:

EACESS The calling process does not have the required privilege.

EINVAL Invalid module ID or the specified module is no longer loaded or already has a load count of 0.

EFAULT The calling process does not have sufficient authority to access the data area described by the parmp
and parmlen parameters provided to the subroutine. This error is also returned if an 1/O error occurred
when accessing data in this area.

Related Information

The SYS_CFGDD (‘SYS_CFGDD sysconfig Operation” on page 316) sysconfig operation, SYS_KLOAD
“SYS_KLOAD sysconfig Operation” on page 321) sysconfig operation, SYS_SINGLELOAD
“SYS_SINGLELOAD sysconfig Operation” on page 328) sysconfig operation.

The sysconfig (]“sysconfig Subroutine” on page 315[) subroutine.

[Device Configuration Subsystem Programming Introduction|in AIX 5L Version 5.2 Kernel Extensions and
Device Support Programming Concepts.

[Programming in the Kernel Environment Overview| in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepits.

[Understanding Kernel Extension Binding|in AIX 5L Version 5.2 Kernel Extensions and Device Support
Programming Concepits.

324 Technical Reference, Volume 2: Base Operating System and Extensions

SYS_QDVSW sysconfig Operation

Purpose
Checks the status of a device switch entry in the device switch table.

Description

The SYS_QDVSW sysconfig operation checks the status of a device switch entry in the device switch
table.

The parmp parameter on the sysconfig subroutine points to a qry_devsw structure defined in the
sys/sysconfig.h file. The parmlen parameter on the subroutine should be set to the length of the
qry_devsw structure.

The gry_devsw field in the qry_devsw structure is modified to reflect the status of the device switch entry
specified by the qry_devsw field. (Only the major portion of the devno field is relevant.) The following flags
can be returned in the status field:

DSW_UNDEFINED The device switch entry is not defined if this flag has a value of 0 on return.

DSW_DEFINED The device switch entry is defined.

DSW_CREAD The device driver in this device switch entry provides a routine for character reads or raw
input. This flag is set when the device driver provides a|ddread| entry point.

DSW_CWRITE The device driver in this device switch entry provides a routine for character writes or raw
output. This flag is set when the device driver provides a entry point.

DSW_BLOCK The device switch entry is defined by a block device driver. This flag is set when the device
driver provides a entry point.

DSW_MPX The device switch entry is defined by a multiplexed device driver. This flag is set when the
device driver provides a entry point.

DSW_SELECT The device driver in this device switch entry provides a routine for handling the select

(“select Subroutine” on page 115) or|poll| subroutines. This flag is set when the device
driver provides a bdselecﬂ entry point.

DSW_DUMP The device driver defined by this device switch entry provides the capability to support one
or more of its devices as targets for a kernel dump. This flag is set when the device driver

has provided a[dddump]entry point.

DSW_CONSOLE The device switch entry is defined by the device driver.
DSW_TCPATH The device driver in this device switch entry supports devices that are considered to be in

the trusted computing path and provides support for the revoke (‘revoke Subroutine” on|

page 45) and ffrevoke|subroutines. This flag is set when the device driver provides a

ddrevoke] entry point.

DSW_OPENED The device switch entry is defined and the device has outstanding opens. This flag is set
when the device driver has at least one outstanding open.

The DSW_UNDEFINED condition is indicated when the device switch entry has not been defined or has
been defined and subsequently deleted. Multiple status flags may be set for other conditions of the device
switch entry.

Return Values

If no error is detected, this operation returns with a value of 0. If an error is detected, the return value is
set to a value of -1.

Error Codes
When an error is dected, the errno global variable is also set to one of the following values:

EACESS The calling process does not have the required privilege.
EINVAL Device number exceeds the maximum allowed by the kernel.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 325

EFAULT The calling process does not have sufficient authority to access the data area described by the parmp
and parmlen parameters provided on the system call. This error is also returned if an 1/O error occurred
when accessing data in this area.

File

sys/sysconfig.h Contains structure definitions.

Related Information
The sysconfig (]"sysconfig Subroutine” on page 315|) subroutine.

The |[ddread|device driver entry point, [ddwrite] device driver entry point, |[ddstrategy| device driver entry
point, device driver entry point, [ddselect|device driver entry point, [dddump| device driver entry
point, ddrevoke| device driver entry point.

The special file.

[Device Configuration Subsystem Programming Introduction|in AIX 5L Version 5.2 Kernel Extensions and
Device Support Programming Concepts.

[Programming in the Kernel Environment Overview| in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts.

[Understanding Kernel Extension Binding|in AlIX 5L Version 5.2 Kernel Extensions and Device Support
Programming Concepts.

SYS_QUERYLOAD sysconfig Operation

Purpose
Determines if a kernel object file has already been loaded.

Description

The SYS_QUERYLOAD sysconfig operation performs a query operation to determine if a given object file
has been loaded. This object file is specified by the path field in the cfg_load structure passed in with the
parmp parameter. This operation utilizes the same cfg_load structure that is specified for the
SYS_KLOAD (“SYS_KLOAD sysconfig Operation” on page 321 operation.

If the specified object file is not loaded, the kmid field in the cfg_load structure is set to a value of 0 on
return. Otherwise, the kernel module ID of the module is returned in the kmid field. If multiple instances of
the module have been loaded into the kernel, the module ID of the one most recently loaded is returned.

The 1ibpath field in the cfg_load structure is not used for this option.
Note: A path-name comparison is done to determine if the specified object file has been loaded. However,

this operation will erroneously return a not loaded condition if the path name to the object file is
expressed differently than it was on a previous load request.

|“Loader Symbol Binding Support” on page 322| explains the symbol binding support provided when loading
kernel object files.

326 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values

If the specified object file is found, the module ID is returned in the kmid variable within the cfg_load
structure and the subroutine returns a 0. If the specified file is not found, a kmid variable of 0 is returned
with a return code of 0.

Error Codes
On error, the subroutine returns a -1 and the errno global variable is set to one of the following values:

EACCES The calling process does not have the required privilege.

EFAULT The calling process does not have sufficient authority to access the data area described by the parmp
and parmlen parameters provided on the subroutine. This error is also returned if an I/O error occurred
when accessing data in this area.

EFAULT The path parameter points to a location outside of the allocated address space of the process.

EIO An 1/O error occurred during the operation.

Related Information
The sysconfig (‘sysconfig Subroutine” on page 315) subroutine.

The SYS_SINGLELOAD (‘SYS_SINGLELOAD sysconfig Operation” on page 328) sysconfig operation,
SYS_KLOAD (“SYS_KLOAD sysconfig Operation” on page 321) sysconfig operation.

[Programming in the Kernel Environment Overview| in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts.

[Understanding Kernel Extension Binding Overview| in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts.

SYS_SETPARMS sysconfig Operation

Purpose
Sets the kernel run-time tunable parameters.

Description

The SYS_SETPARMS sysconfig operation sets the current system parameters from a copy of the system
parameter var structure provided by the caller. Only the run-time tunable parameters in the var structure
can be set by this subroutine.

If the var_vers and var_gen values in the caller-provided structure do not match the var_vers and var_gen
values in the current system var structure, no parameters are modified and an error is returned. The
var_vers, var_gen, and var_size fields in the structure should not be altered. The var_vers value is
assigned by the kernel and is used to insure that the correct version of the structure is being used. The
var_gen value is a generation number having a new value for each read of the structure. This provides
consistency between the data read by the SYS_GETPARMS (“SYS_GETPARMS sysconfig Operation” on|
operation and the data written by the SYS_SETPARMS operation.

The parmp parameter on the sysconfig subroutine points to a buffer that contains all or part of the var
structure as defined in the sys/var.h file.

The parmlen parameter on the subroutine should be set either to the length of the var structure or to the
size of the structure containing the parameters to be modified. The number of system parameters modified
by this operation is determined either by the parmlen parameter value or by the var_size field in the
caller-provided var structure. (The smaller of the two values is used.)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 327

The structure provided by the caller must contain at least the header fields of the var structure. Otherwise,
an error will be returned. Partial modification of a parameter in the var structure can occur if the caller’s
data area does not contain enough data to end on a field boundary. It is up to the caller to ensure that this
does not happen.

Return Values
The SYS_SETPARMS sysconfig operation returns a value of -1 if an error occurred.

Error Codes
When an error occurs, the errno global variable is set to one of the following values:

EACESS The calling process does not have the required privilege.
EINVAL One of the following error situations exists:

* The var_vers version number of the provided structure does not match the version number of the
current var structure.

» The structure provided by the caller does not contain enough data to specify the header fields within
the var structure.

* One of the specified variable values is invalid or not allowed. On the return from the subroutine, the
var_vers field in the caller-provided buffer contains the byte offset of the first variable in the structure
that was detected in error.

EAGAIN The var_gen generation number in the structure provided does not match the current generation number
in the kernel. This occurs if consistency is lost between reads and writes of this structure. The caller
should repeat the read, modify, and write operations on the structure.

EFAULT The calling process does not have sufficient authority to access the data area described by the parmp
and parmlen parameters provided to the subroutine. This error is also returned if an I/O error occurred
when accessing data in this area.

File

sys/var.h Contains structure definitions.

Related Information
The sysconfig (‘sysconfig Subroutine” on page 315) subroutine and sys_parm (‘sys_parm Subroutine” on|

page 336)) subroutine.
The SYS_GETPARMS (“SYS_GETPARMS sysconfig Operation” on page 320)) sysconfig operation.

[Programming in the Kernel Environment Overview| in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts.

SYS_SINGLELOAD sysconfig Operation

Purpose
Loads a kernel extension module if it is not already loaded.

Description

The SYS_SINGLELOAD sysconfig operation is identical to the SYS_KLOAD (“SYS_KLOAD sysconfig|
|Operation” on page 321b operation, except that the SYS_SINGLELOAD operation loads the object file only
if an object file with the same path name has not already been loaded into the kernel.

328 Technical Reference, Volume 2: Base Operating System and Extensions

If an object file with the same path name has already been loaded, the module ID for that object file is
returned in the kmid field and its load count incremented. If the object file is not loaded, this operation
performs the load request exactly as defined for the SYS_KLOAD operation.

This option is useful in supporting global kernel routines where only one copy of the routine and its data
can be present. Typically routines that export symbols to be added to the kernel name space are of this

type.

Note: A path name comparison is done to determine if the same object file has already been loaded.
However, this function will erroneously load a new copy of the object file into the kernel if the path
name to the object file is expressed differently than it was on a previous load request.

|“Loader Symbol Binding Support” on page 322| explains the symbol binding support provided when loading
kernel object files.

Return Values

The SYS_SINGLELOAD operation returns the same set of error codes that the SYS_KLOAD operation
returns.

Related Information
The sysconfig (‘sysconfig Subroutine” on page 315) subroutine.

The SYS_KLOAD (‘SYS_KLOAD sysconfig Operation” on page 321) sysconfig operation.

[Programming in the Kernel Environment Overview, and [Understanding Kernel Extension Binding|in ALX 5L
Version 5.2 Kernel Extensions and Device Support Programming Concepts.

syslog, openlog, closelog, or setlogmask Subroutine
Purpose
Controls the system log.

Library
Standard C Library (libc.a)

Syntax

#include <syslog.h>

void openlog ([/0, [LogOptior] [Facility)
const char */D;
int LogOption, Facility;

void syslog (,...)

int Priority;
const char *Value;

void closelog ()

int setlogmask((MaskPriority)

int MaskPriority;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 329

void bsdlog (Priority, Value,...)
int Priority;
const char *Value;

Description

Attention: Do not use the syslog, openlog, closelog, or setlogmask subroutine in a multithreaded
environment. See the multithread alternatives in the syslog_r (‘syslog_r, openlog_r, closelog_r, od
|set|ogmask_r Subroutine” on page 332b, openlog_r, closelog_r, or setlogmask_r subroutine article. The
syslog subroutine is not threadsafe; for threadsafe programs the syslog_r subroutine should be used
instead.

The syslog subroutine writes messages onto the system log maintained by the syslogd command.

Note: Messages passed to syslog that are longer than 900 bytes may be truncated by syslogd before
being logged.

The message is similar to the printf fmt string, with the difference that %m is replaced by the current error

message obtained from the errno global variable. A trailing new-line can be added to the message if
needed.

Messages are read by the command and written to the system console or log file, or forwarded to
the syslogd command on the appropriate host.

If special processing is required, the openlog subroutine can be used to initialize the log file.
Messages are tagged with codes indicating the type of Priority for each. A Priority is encoded as a Facility,
which describes the part of the system generating the message, and as a level, which indicates the

severity of the message.

If the syslog subroutine cannot pass the message to the syslogd command, it writes the message on the
/dev/console file, provided the LOG_CONS option is set.

The closelog subroutine closes the log file.

The setlogmask subroutine uses the bit mask in the MaskPriority parameter to set the new log priority
mask and returns the previous mask.

The LOG_MASK and LOG_UPTO macros in the sys/syslog.h file are used to create the priority mask.

Calls to the syslog subroutine with a priority mask that does not allow logging of that particular level of
message causes the subroutine to return without logging the message.

Parameters

ID Contains a string that is attached to the beginning of every message. The Facility parameter
encodes a default facility from the previous list to be assigned to messages that do not have
an explicit facility encoded.

330 Technical Reference, Volume 2: Base Operating System and Extensions

LogOption

Facility

Specifies a bit field that indicates logging options. The values of LogOption are:

LOG_CONS
Sends messages to the console if unable to send them to the syslogd command.
This option is useful in daemon processes that have no controlling terminal.

LOG_NDELAY
Opens the connection to the syslogd command immediately, instead of when the
first message is logged. This option is useful for programs that need to manage the
order in which file descriptors are allocated.

LOG_NOWAIT
Logs messages to the console without waiting for forked children. Use this option for
processes that enable notification of child termination through SIGCHLD; otherwise,
the syslog subroutine may block, waiting for a child process whose exit status has
already been collected.

LOG_ODELAY
Delays opening until the syslog subroutine is called.

LOG_PID
Logs the process ID with each message. This option is useful for identifying
daemons.

Specifies which of the following values generated the message:

LOG_AUTH
Indicates the security authorization system: the login command, the su command,
and so on.

LOG_DAEMON
Logs system daemons.

LOG_KERN

Logs messages generated by the kernel. Kernel processes should use the bsdlog
routine to generate syslog messages. The syntax of bsdlog is identical to syslog.
The bsdlog messages can only be created by kernel processes and must be of
LOG_KERN priority. The syslog subroutine cannot log LOG_KERN facility
messages. Instead it will log LOG_USER facility messages.

LOG_LPR
Logs the line printer spooling system.

LOG_LOCALO through LOG_LOCAL7
Reserved for local use.

LOG_MAIL
Logs the mail system.

LOG_NEWS
Logs the news subsystem.

LOG_UUCP
Logs the UUCP subsystem.

LOG_USER
Logs messages generated by user processes. This is the default facility when none
is specified.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 331

Priority Specifies the part of the system generating the message, and as a level, indicates the
severity of the message. The level of severity is selected from the following list:

LOG_ALERT
Indicates a condition that should be corrected immediately; for example, a corrupted
database.
LOG_CRIT
Indicates critical conditions; for example, hard device errors.
LOG_DEBUG
Displays messages containing information useful to debug a program.
LOG_EMERG
Indicates a panic condition reported to all users; system is unusable.
LOG_ERR
Indicated error conditions.
LOG_INFO
Indicates general information messages.
LOG_NOTICE
Indicates a condition requiring special handling, but not an error condition.
LOG_WARNING
Logs warning messages.
MaskPriority Enables logging for the levels indicated by the bits in the mask that are set and disabled
where the bits are not set. The default mask allows all priorities to be logged.
Value Specifies the values given in the Value parameters and follows the the same syntax as the
subroutine Format parameter.

Examples

1. To log an error message concerning a possible security breach, such as the following, enter:
syslog (LOG_ALERT, "who:internal error 23");
2. To initialize the log file, set the log priority mask, and log an error message, enter:

openlog ("ftpd", LOG_PID, LOG_DAEMON);
setlogmask (LOG_UPTO (LOG_ERR));
syslog (LOG_INFO);

3. To log an error message from the system, enter:
syslog (LOG_INFO | LOG_LOCAL2, "foobar error: %m");

Related Information
The [profil| subroutine.

The command.

The |syslogd| daemon.

[end, _etext, or edata| identifiers.

[Subroutines Overview|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

syslog_r, openlog_r, closelog_r, or setlogmask_r Subroutine

Purpose
Controls the system log.

332 Technical Reference, Volume 2: Base Operating System and Extensions

Library
Standard C Library (libc.a)

Syntax

#include <syslog.h>

int syslog r (Priority, SyslLogData, Format, . . .)
int Priorich
struct syslog data * EysLogData;

const char * |Format)

const char *
int |LogOption|;
int |Facilityf

int open1og_rj{f0, LogOption, Facility, SyslLogData)
1D

struct syslog data *SyslogData;
void closelog_r (SysLogData)
struct syslog_data *SyslLogData;

int setlogmask r (MaskPriority, SysLogData)
int MaskPriority;
struct syslog_data *SyslLogData;

Description
The syslog_r subroutine writes messages onto the system log maintained by the daemon.

The messages are similar to the Format parameter in the subroutine, except that the %m field is
replaced by the current error message obtained from the errno global variable. A trailing new-line
character can be added to the message if needed.

Messages are read by the syslogd daemon and written to the system console or log file, or forwarded to
the syslogd daemon on the appropriate host.

If a program requires special processing, you can use the openlog_r subroutine to initialize the log file.

The syslog_r subroutine takes as a second parameter a variable of the type struct syslog_data, which
should be provided by the caller. When that variable is declared, it should be set to the
SYSLOG_DATA_INIT value, which specifies an initialization macro defined in the sys/syslog.h file.
Without initialization, the data structure used to support the thread safety is not set up and the syslog_r
subroutine does not work properly.

Messages are tagged with codes indicating the type of Priority for each. A Priority is encoded as a Facility,
which describes the part of the system generating the message, and as a level, which indicates the
severity of the message.

If the syslog_r subroutine cannot pass the message to the syslogd daemon, it writes the message the
/dev/console file, provided the LOG_CONS option is set.

The closelog_r subroutine closes the log file.

The setlogmask_r subroutine uses the bit mask in the MaskPriority parameter to set the new log priority
mask and returns the previous mask.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 333

The LOG_MASK and LOG_UPTO macros in the sys/syslog.h file are used to create the priority mask.
Calls to the syslog_r subroutine with a priority mask that does not allow logging of that particular level of
message causes the subroutine to return without logging the message.

Programs using this subroutine must link to the libpthreads.a library.

Parameters

Priority

SysLogData

Format
ID

LogOption

Specifies the part of the system generating the message and indicates the level of severity of
the message. The level of severity is selected from the following list:

» A condition that should be corrected immediately, such as a corrupted database.
e A critical condition, such as hard device errors.

* A message containing information useful to debug a program.

» A panic condition reported to all users, such as an unusable system.

* An error condition.

* A general information message.

» A condition requiring special handling, other than an error condition.

» A warning message.
Specifies a structure that contains the following information:

» The file descriptor for the log file.

» The status bits for the log file.

» A string for tagging the log entry.

» The mask of priorities to be logged.
* The default facility code.

* The address of the local logger.

Specifies the format, given in the same format as for the printf subroutine.

Contains a string attached to the beginning of every message. The Facility parameter
encodes a default facility from the previous list to be assigned to messages that do not have
an explicit facility encoded.

Specifies a bit field that indicates logging options. The values of LogOption are:

LOG_CONS
Sends messages to the console if unable to send them to the syslogd command.
This option is useful in daemon processes that have no controlling terminal.

LOG_NDELAY
Opens the connection to the syslogd command immediately, instead of when the
first message is logged. This option is useful for programs that need to manage the
order in which file descriptors are allocated.

LOG_NOWAIT
Logs messages to the console without waiting for forked children. Use this option for
processes that enable notification of child termination through SIGCHLD; otherwise,
the syslog subroutine may block, waiting for a child process whose exit status has
already been collected.

LOG_ODELAY
Delays opening until the syslog subroutine is called.

LOG_PID
Logs the process ID with each message. This option is useful for identifying
daemons.

334 Technical Reference, Volume 2: Base Operating System and Extensions

Facility Specifies which of the following values generated the message:

MaskPriority

LOG_AUTH

Indicates the security authorization system: the login command, the su command,

and so on.

LOG_DAEMON
Logs system daemons.

LOG_KERN

Logs messages generated by the kernel. Kernel processes should use the bsdlog
routine to generate syslog messages. The syntax of bsdlog is identical to syslog.

The bsdlog messages can only be created by kernel processes and must be of

LOG_KERN priority.

LOG_LPR
Logs the line printer spooling system.

LOG_LOCALO through LOG_LOCAL7
Reserved for local use.

LOG_MAIL
Logs the mail system.

LOG_NEWS
Logs the news subsystem.

LOG_UUCP
Logs the UUCP subsystem.

LOG_USER

Logs messages generated by user processes. This is the default facility when none

is specified.
* Remote file systems, such as the Andrew File System (AFS).
e The UUCP subsystem.

* Messages generated by user processes. This is the default facility when none is

specified.

logging where the bits are not set. The default mask allows all priorities to be logged.

Return Values

0 Indicates that the subroutine was successful.
-1 Indicates that the subroutine was not successful.
Examples
1. To log an error message concerning a possible security breach, enter:
syslog_r (LOG_ALERT, syslog_data_struct, "%s", "who:internal error 23");
2. To initialize the log file, set the log priority mask, and log an error message, enter:
openlog r ("ftpd", LOG_PID, LOG_DAEMON, syslog_data_struct);
setlogmask_r (LOG_UPTO (LOG_ERR), syslog data_struct);
syslog r (LOG_INFO, syslog data_struct, "");
3. To log an error message from the system, enter:

syslog_r (LOG_INFO | LOG_LOCAL2, syslog data_struct, "system error: %m");

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2)

Enables logging for the levels indicated by the bits in the mask that are set, and disables

335

Related Information
Thecommand.

The |syslogd| daemon.

The|printf, fprintf, sprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf| subroutine.

[Subroutines Overview| and [List of Multithread Subroutines|in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

sys_parm Subroutine

Purpose
Provides a service for examining or setting kernel run-time tunable parameters.

Library
Standard C Library (libc.a)

Syntax

#include <sys/types.h>
#include <sys/var.h>

int sys_parm ([cmd |parmflagl, parmp))
int cmd;

int parmflag;

struct vario *parmp;

Description
The sys_parm subroutine is used to query and/or customize run-time operating system parameters.

Note: This is a replacement service for sysconfig with respect to querying or changing information in the
var structure.

The sys_parm subroutine:
* Works on both 32 bit and 64 bit platforms
* Requires appropriate privilege for its use.

The following operations are supported:

SYSP_GET Returns a structure containing the current value of the
specified run-time parameter found in the var structure.
SYSP_SET Sets the value of the specfied run-time parameter.

The run-time parameters that can be returned or set are found in the var structure as defined in var.h

Parameters

cmd Specifies the SYSP_GET or SYSP_SET function.
parmflag Specifies the parameter upon which the function will act.
parmp Points to the user specified structure from which or to

which the system parameter value is copied. parmp points
to a structure of type vario as defined in var.h.

336 Technical Reference, Volume 2: Base Operating System and Extensions

The vario structure is an abstraction of the various fields in the var structure for which each field is size
invariant. The size of the data does not depend on the execution environment of the kernel being 32 or 64
bit or the calling application being 32 or 64 bit.

Examples

1. To examine the value of v.v_iostrun (collect disk usage statistics).

#include <sys/var.h>
#include <stdio.h>
struct vario myvar;
rc=sys_parm(SYSP_GET,SYSP_V_IOSTRUN,);
if(rc==0)
printf("v.v_iostrun is set to %d\n",myvar.v.v_iostrun.value);
2. To change the value of v.v_iostrun (collect disk usage statistics).

#include <sys/var.h>
#include <stdio.h>
struct vario myvar;
myvar.v.v_iostrun.value=0; /* initialize to false */
rc=sys_parm(SYSP_SET,SYSP_V_IOSTRUN,);
if(rc==0)
printf("disk usage statistics are not being collected\n");

Other parameters may be examined or set by changing the parmflag parameter.

Return Values

These operations return a value of 0 upon succesful completion of the subroutine. Otherwise or a value of
-1 is returned and the errno global variable is set to indicate the error.

Error Codes

EACCES The calling process does not have the required privilege.
EINVAL One of the following is true:

* The command is neither SYSP_GET nor SYSP_SET
» parmflag is out of range of parameters defined in var.h

* The value specified in the parmp parameter is not a
valid value for the field indicated by the parmflag

parameter.
EFAULT An invalid address was specified by the parmp parameter.
File
sys/var.h Contains structure definitions.

Related Information

The SYS_GETPARMS (“‘SYS_GETPARMS sysconfig Operation” on page 32d) sysconfig Operation, and
SYS_SETPARMS ('SYS_SETPARMS sysconfig Operation” on page 327) sysconfig Operation

system Subroutine

Purpose
Runs a shell command.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 337

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int system (

const char *String;

Description

The system subroutine passes the String parameter to the sh command as input. Then the sh command
interprets the String parameter as a command and runs it.

The system subroutine calls the fork subroutine to create a child process that in turn uses the exec |
subroutine to run the /usr/bin/sh command, which interprets the shell command contained in the String
parameter. When invoked on the Trusted Path, the system subroutine runs the Trusted Path shell
(/usr/bin/tsh). The current process waits until the shell has completed, then returns the exit status of the
shell. The exit status of the shell is returned in the same manner as a call to the wait or waitpid
subroutine, using the structures in the sys/wait.h file.

The system subroutine ignores the SIGINT and SIGQUIT signals, and blocks the SIGCHILD signal while
waiting for the command specified by the String parameter to terminate. If this might cause the application
to miss a signal that would have killed it, the application should use the value returned by the system
subroutine to take the appropriate action if the command terminated due to receipt of a signal. The
system subroutine does not affect the termination status of any child of the calling process unless that
process was created by the system subroutine. The system subroutine does not return until the child
process has terminated.

Parameters

String Specifies a valid sh shell command.

Note: The system subroutine runs only sh shell commands. The results are unpredictable if the String
parameter is not a valid sh shell command.

Return Values

Upon successful completion, the system subroutine returns the exit status of the shell. The exit status of
the shell is returned in the same manner as a call to the wait or waitpid subroutine, using the structures
in the sys/wait.h file.

If the String parameter is a null pointer and a command processor is available, the system subroutine
returns a nonzero value. If the fork subroutine fails or if the exit status of the shell cannot be obtained, the
system subroutine returns a value of -1. If the exec | subroutine fails, the system subroutine returns a
value of 127. In all cases, the errno global variable is set to indicate the error.

Error Codes
The system subroutine fails if any of the following are true:

EAGAIN The system-imposed limit on the total number of running processes, either systemwide or by a single
user ID, was exceeded.

EINTR The system subroutine was interrupted by a signal that was caught before the requested process was
started. The EINTR error code will never be returned after the requested process has begun.

ENOMEM Insufficient storage space is available.

338 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information

The|exec|| subroutine,|exii| subroutine,|forE| subroutine, [pipe| subroutine, wait (‘wait, waitpid, wait3, of
wait364 Subroutine” on page 440[) subroutine, waitpid (“wait, waitpid, wait3, or wait364 Subroutine” on|

page 4490 subroutine.

The @ command.

[List of Security and Auditing Subroutines} [Subroutines Overview|in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

tan, tanf, or tanl Subroutine

Purpose
Computes the tangent.

Syntax
#include <math.h>

float tanf (B)
float x;

lTong double tanl (x)
Tong double x;

double tan (x)
double x;

Description

The tan, tanf, and tanl subroutines compute the tangent of the x parameter, measured in radians.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

X Specifies the value to be computed.

Return Values
Upon successful completion, the tan, tanf, and tanl subroutines return the tangent of x.

If the correct value would cause underflow, and is not representable, a range error may occur, and 0.0 is
returned.

If xis NaN, a NaN is returned.
If xis £0, x is returned.

If x is subnormal, a range error may occur and x should be returned.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 339

If xis =Inf, a domain error occurs, and a NaN returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct
value is returned.

If the correct value would cause overflow, a range error occurs and the tan, tanf, and tanl subroutines
return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

Error Codes

The tan, tanf, and tanl subroutines lose accuracy when passed a large value for the x parameter. Since
the machine value of pi can only approximate its infinitely precise value, the remainder of x/(2 * p1)
becomes less accurate as x becomes larger. Similar loss of accuracy occurs for the tan, tanf, and tanl
subroutines during argument reduction of large arguments.

Related Information

atanf or atanl Subroutine] ffeclearexcept Subroutine] [fetestexcept Subrouting] and|class, _class, finite)
isnan, or unordered Subroutines|in AIX 5L Version 5.2 Technical Reference: Base Operating System and
Extensions Volume 1.

in AIX 5L Version 5.2 Files Reference.

tanh, tanhf, or tanhl Subroutine

Purpose
Computes the hyperbolic tangent.

Syntax

#include <math.h>

float tanhf @)
float x;

long double tanhl (x)
double x;

double tanh (x)
double x;

Description

The tanhf, tanhl, and tanh subroutines compute the hyperbolic tangent of the x .

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

X Specifies the value to be computed.

340 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values
Upon successful completion, the tanhf, tanhl, and tanh subroutines return the hyperbolic tangent of x.

If xis NaN, a NaN is returned.
If xis 0, x is returned.
If xis =Inf, =1 is returned.

If x is subnormal, a range error may occur and x should be returned.

Related Information
The [“sin, sinf, or sinl Subroutine” on page 193]

atanf or atanl Subroutine} [feclearexcept Subroutine} [fetestexcept Subroutine}, and|[class, _class, finite |
isnan, or unordered Subroutines|in AIX 5L Version 5.2 Technical Reference: Base Operating System and
Extensions Volume 1.

in AIX 5L Version 5.2 Files Reference.

tcb Subroutine

Purpose
Alters the Trusted Computing Base (TCB) status of a file.

Library
Security Library (libc.a)

Syntax

#include <sys/tch.h>

int tcb (path]
char *Path;
int Flag;

Description

The tcb subroutine provides a mechanism to query or set the TCB attributes of a file.

This subroutine is not safe for use with multiple threads. To call this subroutine from a threaded
application, enclose the call with the _libs_rmutex lock. See "Making a Subroutine Safe for Multiple

Threads” in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging Programs for
more information about this lock.

Parameters

Path Specifies the path name of the file whose TCB status is to be changed.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 341

Flag Specifies the function to be performed. Valid values are defined in the sys/tcb.h file and include the
following:

TCB_ON
Enables the TCB attribute of a file.

TCB_OFF
Disables the Trusted Process and TCB attributes of a file.

TCB_QUERY
Queries the TCB status of a file. This function returns one of the preceding values.

Return Values

Upon successful completion, the tcb subroutine returns a value of 0 if the Flags parameter is either
TCB_ON or TCB_OFF. If the Flags parameter is TCB_QUERY, the current status is returned. If the tcb
subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The tcb subroutine fails if one of the following is true:

EINVAL The Flags parameter is not one of TCB_ON, TCB_OFF, or TCB_QUERY.
EPERM Not authorized to perform this operation.

ENOENT The file specified by the Path parameter does not exist.

EROFS The file system is read-only.

EBUSY The file specified by the Path parameter is currently open for writing.
EACCES Access permission is denied for the file specified by the Path parameter.

Security

Access Control: The calling process must have search permission for the object named by the Path
parameter. Only the root user can set the tcb attributes of a file.

Related Information

The [chmod or fchmod|subroutine, statx, stat, Istat, fstatx, fstat, fullstat, or ffullstat (‘statx, stat, Istat,|
fstatx, fstat, fullstat, ffullstat, stat64, Istat64, or fstat64 Subroutine” on page 277) subroutine.

The command.

[List of Security and Auditing Subroutines] [Subroutines Overview|in AIX 5L Version 5.2 General
Programming Concepts: Writing and Debugging Programs.

tcdrain Subroutine

Purpose
Waits for output to complete.

Library
Standard C Library (libc.a)

Syntax

#include <termios.h>

342 Technical Reference, Volume 2: Base Operating System and Extensions

int tcdrain(|FileDescriptor)
int FileDescriptors;

Description

The tedrain subroutine waits until all output written to the object referred to by the FileDescriptor
parameter has been transmitted.

Parameter

FileDescriptor Specifies an open file descriptor.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tedrain subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.
EINTR A signal interrupted the tedrain subroutine.
EIO The process group of the writing process is orphaned, and the writing process does not ignore or block

the SIGTTOU signal.
ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Example
To wait until all output has been transmitted, enter:
rc = tcdrain(stdout);

Related Information

The tcflow (‘tcflow Subroutine”) subroutine, teflush (“tcflush Subroutine” on page 344) subroutine,
tcsendbreak (‘tcsendbreak Subroutine” on page 348) subroutine.

The [Input and Output Handling Programmer’s Overview| in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

tcflow Subroutine

Purpose
Performs flow control functions.

Library
Standard C Library (libc.a)

Syntax

#include <termios.h>

int tcflow([FileDescriptor, Wction))
int FileDescriptors;
int Action;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 343

Description

The tcflow subroutine suspends transmission or reception of data on the object referred to by the
FileDescriptor parameter, depending on the value of the Action parameter.

Parameters
FileDescriptor Specifies an open file descriptor.
Action Specifies one of the following:
TCOOFF
Suspend output.
TCOON
Restart suspended output.
TCIOFF

Transmit a STOP character, which is intended to cause the terminal device to
stop transmitting data to the system. See the description of IXOFF in the Input
Modes section of the termios.h file.

TCION Transmit a START character, which is intended to cause the terminal device to
start transmitting data to the system. See the description of IXOFF in the Input
Modes section of the termios.h file.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tcflow subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.
EINVAL The Action parameter does not specify a proper value.
EIO The process group of the writing process is orphaned, and the writing process does not ignore or block

the SIGTTOU signal.
ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Example
To restart output from a terminal device, enter:
rc = tcflow(stdout, TCION);

Related Information
The tedrain (“tcdrain Subroutine” on page 342) subroutine, teflush (“tcflush Subroutine’) subroutine,
tcsendbreak (“tcsendbreak Subroutine” on page 348) subroutine.

The|lnput and Output Handling Programmer’s Overvievv| in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

tcflush Subroutine

Purpose
Discards data from the specified queue.

344 Technical Reference, Volume 2: Base Operating System and Extensions

Library
Standard C Library (libc.a)

Syntax

#include <termios.h>

int tcflush(FiZeDescriptorL pueueSelectorD
int FileDescriptor;
int QueueSelector;

Description

The tcflush subroutine discards any data written to the object referred to by the FileDescriptor parameter,
or data received but not read by the object referred to by FileDescriptor, depending on the value of the
QueueSelector parameter.

Parameters

FileDescriptor Specifies an open file descriptor.
QueueSelector Specifies one of the following:

TCIFLUSH
Flush data received but not read.

TCOFLUSH
Flush data written but not transmitted.

TCIOFLUSH
Flush both of the following:

* Data received but not read
* Data written but not transmitted

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tcflush subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.
EINVAL The QueueSelector parameter does not specify a proper value.
EIO The process group of the writing process is orphaned, and the writing process does not ignore or block

the SIGTTOU signal.
ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Example
To flush the output queue, enter:
rc = tcflush(2, TCOFLUSH);

Related Information

The tedrain (“tcdrain Subroutine” on page 342) subroutine, teflow (“tcflow Subroutine” on page 343)
subroutine, tcsendbreak (‘tcsendbreak Subroutine” on page 348) subroutine.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 345

The [Input and Output Handling Programmer’s Overview in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

tcgetatir Subroutine

Purpose
Gets terminal state.

Library
Standard C Library (libc.a)

Syntax

#include <termios.h>

int tcgetattr (|FileDescriptor|, |TermiosPointer|)
int FileDescriptors;
struct termios *TermiosPointers;

Description

The tcgetattr subroutine gets the parameters associated with the object referred to by the FileDescriptor
parameter and stores them in the ftermios structure| referenced by the TermiosPointer parameter. This
subroutine is allowed from a background process; however, the terminal attributes may subsequently be
changed by a foreground process.

Whether or not the terminal device supports differing input and output baud rates, the baud rates stored in
the termios structure returned by the tcgetattr subroutine reflect the actual baud rates, even if they are
equal.

Note: If differing baud rates are not supported, returning a value of 0 as the input baud rate is obsolete.

Parameters
FileDescriptor Specifies an open file descriptor.
TermiosPointer Points to a termios structure.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tcgetattr subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.
ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Examples
To get the current terminal state information, enter:
rc = tcgetattr(stdout, &my_ termios);

346 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information
The tcsetattr (“tcsetattr Subroutine” on page 349) subroutine.

The [Input and Output Handling Programmer’s Overview| in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

tcgetpgrp Subroutine

Purpose
Gets foreground process group ID.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

pid_t tcgetpgrp ([FileDescriptor))

int FileDescriptor;

Description

The tcgetpgrp subroutine returns the value of the process group ID of the foreground process group
associated with the terminal. The function can be called from a background process; however, the
foreground process can subsequently change the information.

Parameters

FileDescriptor Indicates the open file descriptor for the terminal special file.

Return Values

Upon successful completion, the process group ID of the foreground process is returned. If there is no
foreground process group, a value greater than 1 that does not match the process group ID of any existing
process group is returned. Otherwise, a value of -1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The tcgetpgrp subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor argument is not a valid file descriptor.
EINVAL The function is not appropriate for the file associated with the FileDescriptor argument.
ENOTTY The calling process does not have a controlling terminal or the file is not the controlling terminal.

Related Information
The setpgid (“setpgid or setpgrp Subroutine” on page 146)) subroutine, setsid d“setsid Subroutine” od
page 150) subroutine, tcsetpgrp (‘tcsetpgrp Subroutine” on page 351) subroutine.

The|lnput and Output Handling Programmer’s Overview| in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 347

tcsendbreak Subroutine

Purpose
Sends a break on an asynchronous serial data line.

Library
Standard C Library (libc.a)

Syntax

#include <termios.h>

int tcsendbreak(|FileDescriptor, |Duration])
int FileDescriptors;
int Duration;

Description

If the terminal is using asynchronous serial data transmission, the tecsendbreak subroutine causes
transmission of a continuous stream of zero-valued bits for a specific duration.

If the terminal is not using asynchronous serial data transmission, the tcsendbreak subroutine returns
without taking any action.

Pseudo-terminals and LFT do not generate a break condition. They return without taking any action.

Parameters
FileDescriptor Specifies an open file descriptor.
Duration Specifies the number of milliseconds that zero-valued bits are transmitted. If the value of

the Duration parameter is 0, it causes transmission of zero-valued bits for at least 250
milliseconds and not longer than 500 milliseconds. If Duration is not 0, it sends
zero-valued bits for Duration milliseconds.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tecsendbreak subroutine is unsuccessful if one or both of the following are true:

EBADF The FileDescriptor parameter does not specify a valid open file descriptor.

EIO The process group of the writing process is orphaned, and the writing process does not ignore or block
the SIGTTOU signal.

ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Examples

1. To send a break condition for 500 milliseconds, enter:
rc = tcsendbreak(stdout,500);

2. To send a break condition for 25 milliseconds, enter:
rc = tcsendbreak(1,25);

348 Technical Reference, Volume 2: Base Operating System and Extensions

This could also be performed using the default Duration by entering:
rc = tcsendbreak(1l, 0);

Related Information
The tedrain (“tcdrain Subroutine” on page 342) subroutine, teflow (‘tcflow Subroutine” on page 343)
subroutine, tcflush (‘tcflush Subroutine” on page 344) subroutine.

The|lnput and Output Handling Programmer’s Overvievv| in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

tcsetattr Subroutine

Purpose
Sets terminal state.

Library
Standard C Library (libc.a)

Syntax

#include <termios.h>

int tcsetattr (FileDescriptor, OptionalActions, TermiosPointer)
int [FileDescriptor|, PptionalActions|;

const struct termios * |TermiosPointed;

Description

The tcsetattr subroutine sets the parameters associated with the object referred to by the FileDescriptor
parameter (unless support required from the underlying hardware is unavailable), from the termios
structure referenced by the TermiosPointer parameter.

The value of the OptionalActions parameter determines how the tcsetattr subroutine is handled.

The 0 baud rate (BO) is used to terminate the connection. If BO is specified as the output baud rate when
the tesetattr subroutine is called, the modem control lines are no longer asserted. Normally, this
disconnects the line.

Using 0 as the input baud rate in the termios structure to cause tcsetattr to change the input baud rate to
the same value as that specified by the value of the output baud rate, is obsolete.

If an attempt is made using the tcsetattr subroutine to set:
* An unsupported baud rate

* Baud rates, such that the input and output baud rates differ and the hardware does not support that
combination

» Other features not supported by the hardware

but the tcsetattr subroutine is able to perform some of the requested actions, then the subroutine returns
successfully, having set all supported attributes and leaving the above unsupported attributes unchanged.

If no part of the request can be honored, the tcsetattr subroutine returns a value of -1 and the errno
global variable is set to EINVAL.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 349

If the input and output baud rates differ and are a combination that is not supported, neither baud rate is
changed. A subsequent call to the tcgetattr subroutine returns the actual state of the terminal device
(reflecting both the changes made and not made in the previous tcsetattr call). The tesetattr subroutine
does not change the values in the termios structure whether or not it actually accepts them.

If the tecsetattr subroutine is called by a process which is a member of a background process group on a
FileDescriptor associated with its controlling terminal, a SIGTTOU signal is sent to the background process
group. If the calling process is blocking or ignoring SIGTTOU signals, the process performs the operation
and no signal is sent.

Parameters

FileDescriptor Specifies an open file descriptor.
OptionalActions Specifies one of the following values:

TCSANOW
The change occurs immediately.

TCSADRAIN
The change occurs after all output written to the object referred to by
FileDescriptor has been transmitted. This function should be used when
changing parameters that affect output.

TCSAFLUSH
The change occurs after all output written to the object referred to by
FileDescriptor has been transmitted. All input that has been received but not
read is discarded before the change is made.
TermiosPointer Points to a termios structure.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tesetattr subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.

EINTR A signal interrupted the tcsetattr subroutine.

EINVAL The OptionalActions argument is not a proper value, or an attempt was made to change an attribute
represented in the termios structure to an unsupported value.

EIO The process group of the writing process is orphaned, and the writing process does not ignore or block

the SIGTTOU signal.
ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Example
To set the terminal state after the current output completes, enter:
rc = tcsetattr(stdout, TCSADRAIN, &my_termios);

Related Information
The |cfgetispeed| subroutine, tcgetattr d“tcgetattr Subroutine” on page 346|) subroutine.

The|lnput and Output Handling Programmer’s OvervieM in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

350 Technical Reference, Volume 2: Base Operating System and Extensions

tcsetpgrp Subroutine

Purpose
Sets foreground process group ID.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int tcsetpgrp ([FileDescriptor) |ProcessGroupID))
int FileDescriptors;
pid_t ProcessGroupID;

Description

If the process has a controlling terminal, the tesetpgrp subroutine sets the foreground process group 1D
associated with the terminal to the value of the ProcessGrouplD parameter. The file associated with the
FileDescriptor parameter must be the controlling terminal of the calling process, and the controlling
terminal must be currently associated with the session of the calling process. The value of the
ProcessGrouplD parameter must match a process group ID of a process in the same session as the
calling process.

Parameters
FileDescriptor Specifies an open file descriptor.
ProcessGrouplD Specifies the process group identifier.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
This function is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

EINVAL The ProcessGrouplD parameter is invalid.

ENOTTY The calling process does not have a controlling terminal, or the file is not the controlling terminal, or the
controlling terminal is no longer associated with the session of the calling process.

EPERM The ProcessGrouplD parameter is valid, but does not match the process group ID of a process in the
same session as the calling process.

Related Information
The tcgetpgrp (]“tcgetpgrp Subroutine” on page 347b subroutine.

The|lnput and Output Handling Programmer’s Overview| in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 351

termdef Subroutine

Purpose
Queries terminal characteristics.

Library
Standard C Library (libc.a)

Syntax

char *termdef (|FileDescriptorl, [Characteristic])
int FileDescriptors;
char Characteristic;

Description

The termdef subroutine returns a pointer to a null-terminated, static character string that contains the
value of a characteristic defined for the terminal specified by the FileDescriptor parameter.

Asynchronous Terminal Support
Shell profiles usually set the TERM environment variable each time you log in. The command allows

you to change the lines and columns (by using the lines and cols options). This is preferred over changing
the LINES and COLUMNS environment variables, since the termdef subroutine examines the
environment variables last. You consider setting LINES and COLUMNS environment variables if:

* You are using an asynchronous terminal and want to override the lines and cols setting in the terminfo
database
OR

* Your asynchronous terminal has an unusual number of lines or columns and you are running an
application that uses the termdef subroutine but not an application which uses the terminfo database
(for example, curses).

This is because the curses initialization subroutine, setupterm (“setupterm Subroutine” on page 624),
calls the termdef subroutine to determine the number of lines and columns on the display. If the
termdef subroutine cannot supply this information, the setupterm subroutine uses the values in the
terminfo database.

Parameters

FileDescriptor Specifies an open file descriptor.

352 Technical Reference, Volume 2: Base Operating System and Extensions

Characteristic

Examples

Specifies the characteristic that is to be queried. The following values can be specified:

[

Causes the termdef subroutine to query for the number of "columns” for the
terminal. This is determined by performing the following actions:

1.

It requests a copy of the terminal’s winsize structure by issuing the
TIOCGWINSZ ioctl. If ws_col is not 0, the ws_col value is used.

If the TIOCGWINSZ ioctl is unsuccessful or if ws_col is 0, the termdef
subroutine attempts to use the value of the COLUMNS environment variable.

If the COLUMNS environment variable is not set, the termdef subroutine
returns a pointer to a null string.

Causes the termdef subroutine to query for the number of "lines” (or rows) for
the terminal. This is determined by performing the following actions:

1.

It requests a copy of the terminal’s winsize structure by issuing the
TIOCGWINSZ ioctl. If ws_row is not 0, the ws_row value is used.

If the TIOCGWINSZ ioctl is unsuccessful or if ws_row is 0, the termdef
subroutine attempts to use the value of the LINES environment variable.

If the LINES environment variable is not set, the termdef subroutine returns
a pointer to a null string.

Characters other than c or |
Cause the termdef subroutine to query for the "terminal type” of the terminal.
This is determined by performing the following actions:

1.

2.

The termdef subroutine attempts to use the value of the TERM environment
variable.

If the TERM environment variable is not set, the termdef subroutine returns
a pointer to string set to "dumb”.

1. To display the terminal type of the standard input device, enter:

printf("%s\n", termdef(0, 't'));

2. To display the current lines and columns of the standard output device, enter:
printf("lines\tcolumns\n%s\t%s\n", termdef(2, '1'),

termdef(2, 'c'));

Note: If the termdef subroutine is unable to determine a value for lines or columns, it returns pointers

to null strings.

Related Information

The setupterm (“setupterm Subroutine” on page 624) subroutine.

The @ command.

The|lnput and Output Handling Programmer’s Overvievv| in AIX 5L Version 5.2 General Programming

Concepts: Writing and Debugging Programs.

test_and_set Subroutine

Purpose

Atomically tests and sets a memory location.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 353

Library
Standard C library (libc.a)

Syntax

#include <sys/atomic_op.h>

boolean_t test_and_set (yord addr],

atomic_p word_addr;
int mask;

Description

The test_and_set subroutine attempts to atomically OR the value stored at word_addr with the value
specified by mask. If any bit in mask was already set in the value stored at word_addr, no update is made.

Parameters
word_addr Specifies the address of the memory location to be set.
mask Specifies the mask value to be used to set the memory location specified by word_addr.

Return Values

The test_and_set subroutine returns true if the the value stored at word_addr was updated. Otherwise, it
returns false.

Related Information

Thelfetch_and_and or fetch_and_or Subroutine|in AIX 5L Version 5.2 Technical Reference: Base
Operating System and Extensions Volume 1.

tgamma, tgammaf, or tgammal Subroutine

Purpose
Computes the gamma.

Syntax

#include <math.h>

double tgamma @
double x;

float tgammaf (x)
float x;

long double tgammal (x)
Tong double x;

Description
The tgamma, tgammaf, and tgammal subroutines compute the gamma function of x.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

354 Technical Reference, Volume 2: Base Operating System and Extensions

Parameters

X Specifies the value to be computed.

Return Values
Upon successful completion, the tgamma, tgammaf, and tgammal subroutines return Gamma(x).

If x is a negative integer, a domain error occurs, and either a NaN (if supported), or an
implementation-defined value is returned.

If the correct value would cause overflow, a range error occurs and the tgamma, tgammaf, and tgammal
subroutines return the value of the macro HUGE_VAL, HUGE_VALF, or HUGE_VALL, respectively.

If xis NaN, a NaN is returned.
If xis +Inf, x is returned.

If x is 0, a pole error occurs, and the tgamma, tgammaf, and tgammal subroutines return tHUGE_VAL,
+HUGE_VALF, and +tHUGE_VALL, respectively.

If x is —Inf, a domain error occurs, and either a NaN (if supported), or an implementation-defined value is
returned.

Related Information

ffeclearexcept Subroutine] [fetestexcept Subrouting] and [lgamma, lgammal, or gamma Subroutine|in AIX 5L
Version 5.2 Technical Reference: Base Operating System and Extensions Volume 1.

in AIX 5L Version 5.2 Files Reference.

times Subroutine

Purpose
Gets process and waited-for child process times

Syntax

#include <sys/times.h>

clock t times (buffer]

struct tms *buffer;

Description

The times subroutine fills the tms structure pointed to by buffer with time-accounting information. The tms
structure is defined in <sys/times.h>.

All times are measured in terms of the number of clock ticks used.

The times of a terminated child process is included in the tms_cutime and tms_cstime elements of the
parent when the wait or waitpid subroutine returns the process ID of the terminated child. If a child
process has not waited for its children, their times are not included in its times.

* The tms_utime structure member is the CPU time charged for the execution of user instructions of the
calling process.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 355

* The tms_stime structure member is the CPU time charged for execution by the system on behalf of the
calling process.

* The tms_cutime structure member is the sum of the tms_utime and tms_cutime times of the child
processes.

¢ The tms_cstime structure member is the sum of the tms_stime and tms_cstime times of the child
processes.

Applications should use sysconf(_SC_CLK_TCK) to determine the number of clock ticks per second as it
may vary from system to system.

Parameters

*buffer Points to the tms structure.

Return Values

Upon successful completion, the times subroutine returns the elapsed real time, in clock ticks, since an
arbitrary point in the past (for example, system startup time). This point does not change from one
invocation of the times subroutine within the process to another. The return value may overflow the
possible range of type clock_t. If the times subroutine fails, (clock t)-1 is returned, and the errno global
variable is set to indicate the error.

Examples
Timing a Database Lookup

The following example defines two functions, start_clock and end_clock, that are used to time a lookup.
It also defines variables of type clock_t and tms to measure the duration of transactions. The start_clock
function saves the beginning times given by the times subroutine. The end_clock function gets the ending
times and prints the difference between the two times.

#include <sys/times.h>
#include <stdio.h>

void start_clock(void);
void end_clock(char *msg);

static clock_t st_time;
static clock_t en_time;
static struct tms st_cpu;
static struct tms en_cpu;
void

start_clock()

{

}

/* This example assumes that the result of each subtraction is within the range of values that can
be represented in an integer type. */

st_time = times(&st_cpu);

void
end_clock(char *msg)

{

en_time = times(&en_cpu);

fputs(msg,stdout);

printf("Real Time: %jd, User Time %jd, System Time %jd\n",
(intmax_t) (en_time - st_time),
(intmax_t) (en_cpu.tms_utime - st_cpu.tms_utime),
(intmax_t) (en_cpu.tms_stime - st_cpu.tms_stime));

356 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information
[‘sysconf Subroutine” on page 311|and [‘wait, waitpid, wait3, or wait364 Subroutine” on page 440|

The [gettimer, settimer, restimer, stime, or time Subroutine} [getinterval, incinterval, absinterval, resinc)|
resabs, alarm, ualarm, getitimer or setitimer Subroutine), fexec: execl, execle, execlp, execv, execve,|
execvp, or exect Subroutine], and|[fork, f_fork, or vfork Subroutine{in AIX 5L Version 5.2 Technical
Reference: Base Operating System and Extensions Volume 1.

timezone Subroutine

Attention: Do not use the tzset subroutine, from libc.a, when linkning libc.a libbsd.a. The tzset
subroutine uses the global external variable timezone which conflicts with the timezone subroutine in
libbsd.a. This name collision can cause unpredictable results.

Purpose
Returns the name of the timezone associated with the first arguement.

Library

Berkeley compatability library (libbsd.a) (for timezone only)

Syntax

#include <time.h>

char *timezone(zone, dst)
int zone;

int dst;

#include <time.h>
#include <limits.h>

int zone;

int dst;

char czone[TZNAME_MAX+1] ;

Description
The timezone subroutine returns the name of the timezone associated with the first argument which is

measured in minutes westward frow Greenwich. If the environment variable TZ is set, the first argument is

ignored and the current timezone is calculated from the value of TZ. If the second argument is 0, the

standard name is returned otherwise the Daylight Saving Time name is returned. If TZ is not set, then the

internal table is searched for a matching timezone. If the timezone does not appear in the built in table
then difference from GMT is produced.

Timezone returns a pointer to static data that will be overwritten by subsequent calls.

Parameters
zone Specifies minutes westward from Greenwich.
dst Specifies whether to return Standard time or Daylight Savings time.

czone Specifies a buffer of size TZNAME_MAX+1, that the result is placed in.

Return Values
timezone returns a pointer to static data that contains the name of the timezone.

Errors
There are no errors defined.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2)

357

Related Information
[Subroutines Overview|

[List of Multi-threaded Programming Subroutines|

thread_post Subroutine

Purpose
Posts a thread of an event completion.

Library
Standard C library (libc.a)

Syntax

#include <sys/thread.h>

int thread post(
tid_t

Description

The thread_post subroutine posts the thread whose thread ID is indicated by the value of the tid
parameter, of the occurrence of an event. If the posted thread is waiting in thread_wait, it will be
awakened immediately. If it not waiting in thread_wait, the next call to thread_wait does not block but
returns with success immediately.

Multiple posts to the same thread without an intervening wait by the specified thread will only count as a
single post. The posting remains in effect until the indicated thread calls the thread_wait subroutine upon
which the posting gets cleared.

The thread_wait and the thread_post subroutine can be used by applications to implement a fast IPC
mechanism between threads in different processes.

Parameters

tid Specifies the thread ID of the thread to be posted.

Return Values

On successful completion, the thread_post subroutine returns a value of 0. If unsuccessful, a value of -1
is returned and the global variable errno is set to indicate the error.

Error Codes

ESRCH This indicated thread is non-existent or the thread has
exited or is exiting.
EPERM The real or effective user ID does not match the real or

effective user ID of the thread being posted, or else the
calling process does not have root user authority.

358 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information

The thread_wait (“thread_wait Subroutine” on page 362) subroutine, and thread_post_many
(“thread_post_many Subroutine”) subroutine.

thread_post_many Subroutine

Purpose
Posts one or more threads of an event completion.

Library
Standard C library (libc.a)

Syntax

#include <sys/thread.h>

int thread_post_many(hthreads), |tidp|, lerridp)
int nthreads;

tid_t = |tidp}

tid_t * ferridpf;

Description

The thread_post_many subroutine posts one or more threads of the occurrence of the event. The
number of threads to be posted is specified by the value of the nthreads parameter, while the tidp
parameter points to an array of thread IDs of threads that need to be posted. The subroutine works just
like the thread_post subroutine but can be used to post to multiple threads at the same time.

A maximum of 512 threads can be posted in one call to the thread_post_many subroutine.

An optional address to a thread ID field may be passed in the erridp parameter. This field is normally
ignored by the kernel unless the subroutine fails because the calling process has no permissions to post to
any one of the specified threads. In this case, the kernel posts all threads in the array pointed at by the
tidp parameter up to the first failing thread and fills the erridp parameter with the failing thread’s ID.

Parameters

nthreads Specifies the number of threads to be posted.

tidp Specifies the address of an array of thread IDs
corresponding to the list of threads to be posted.

erridp Either NULL or specifies the pointer to a thread ID

variable in which the kernel will return the thread ID of the
first failing thread when an errno of EPERM is set.

Return Values

On successful completion, the thread_post_many subroutine returns a value of 0. If unsuccessful, a value
of -1 is returned and the global variable errno is set to indicate the error.

Error Codes
The thread_post_many subroutine is unsuccessful when one of the following is true:
ESRCH None of the indicated threads are existent or they have all

exited or are exiting.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 359

EPERM The real or effective user ID does not match the real or
effective user ID of one or more threads being posted, or
else the calling process does not have root user authority.

EFAULT The tidp parameter points to a location outside of the
address space of the process.
EINVAL A negative value or a value greater than 512 was was

specified in the nthreads parameter.

Related Information

The thread_wait (“thread_wait Subroutine” on page 362[) subroutine, and thread_post (‘thread_post
[Subroutine” on page 358) subroutine.

thread_self Subroutine

Purpose
Returns the caller’'s kernel thread ID.

Library
Standard C library (libc.a)

Syntax

#include <sys/thread.h>
tid_t thread_self ()

Description

The thread_self subroutine returns the caller’'s kernel thread ID. The kernel thread ID may be useful for
the bindprocessor and ptrace subroutines. The ps, trace, and vmstat commands also report kernel
thread IDs, thus this subroutine can be useful for debugging multi-threaded programs.

The kernel thread ID is unrelated with the thread ID used in the threads library (libpthreads.a) and
returned by the pthread_self subroutine.

Return Values
The thread_self subroutine returns the caller’s kernel thread ID.

Related Information
The [bindprocessor] subroutine, pthread_self| subroutine, subroutine.

thread_setsched Subroutine

Purpose
Changes the scheduling policy and priority of a kernel thread.

Library
Standard C library (libc.a)

Syntax

#include <sys/sched.h>
#include <sys/pri.h>

360 Technical Reference, Volume 2: Base Operating System and Extensions

#include <sys/types.h>

int thread_setsched ([tid, priority, [policy)
tid t tid;

int priority;

int policy;

Description

The thread_setsched subroutine changes the scheduling policy and priority of a kernel thread. User
threads (pthreads) have their own scheduling attributes that in some cases allow a pthread to execute on
top of multiple kernel threads. Therefore, if the policy or priority change is being granted on behalf of a
pthread, then the pthreads contention scope should be PTHREAD_SCOPE_SYSTEM.

Note: Caution must be exercised when using the thread_setsched subroutine, since improper use may
result in system hangs. See sys/pri.h for restrictions on thread priorities.

Parameters
tid Specifies the kernel thread ID of the thread whose priority and policy are to be changed.
priority Specifies the priority to use for this kernel thread. The priority parameter is ignored if the policy is

being set to SCHED_OTHER. The priority parameter must have a value in the range 0 to PRI_LOW.
PRI_LOW is defined in sys/pri.h. See sys/pri.h for more information on thread priorities.

policy Specifies the policy to use for this kernel thread. The policy parameter can be one of the following
values, which are defined in sys/sched.h:

SCHED_OTHER
Default operating system scheduling policy.

SCHED_FIFO
First in-first out scheduling policy.

SCHED_FIFO2
Allows a thread that sleeps for a relatively short amount of time to be requeued to the head,
rather than the tail, of its priority run queue.

SCHED_FIFO3
Causes threads to be enqueued to the head of their run queues.

SCHED_RR
Round-robin scheduling policy.

Return Values

Upon successful completion, the thread_setsched subroutine returns a value of zero. If the
thread_setsched subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set
to indicate the error.

Error Codes
The thread_setsched subroutine is unsuccessful if one or more of the following is true:

ESRCH The kernel thread id fid is invalid.
EINVAL The policy or priority is invalid.
EPERM The caller does not have enough privilege to change the policy or priority.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 361

thread_wait Subroutine

Purpose
Suspends the thread until it receives a post or times out.

Library
Standard C library (libc.a)

Syntax

#include <sys/thread.h>

int thread wait(|t1'meout|@

int |t1'meout|;

Description

The thread_wait subroutine allows a thread to wait or block until another thread posts it with the
thread_post or the thread_post_many subroutine or until the time limit specified by the timeout value
expires. It returns immediately if there is a pending post for this thread or if a timeout value of 0 is
specified.

If the event for which the thread is waiting and for which it will be posted will occur only in the future, the
thread_wait subroutine may be called with a timeout value of 0 to clear any pending posts.

The thread_wait and the thread_post subroutine can be used by applications to implement a fast IPC
mechanism between threads in different processes.

Parameters

timeout Specifies the maximum length of time, in milliseconds, to
wait for a posting. If the fimeout parameter value is -1, the
thread_wait subroutine does not return until a posting
actually occurs. If the value of the timeout parameter is 0,
the thread_wait subroutine does not wait for a post to
occur but returns immediately, even if there are no
pending posts. For a non-privileged user, the minimum
timeout value is 10 msec and any value less than that is
automatically increased to 10 msec.

Return Values

On successful completion, the thread_wait subroutine returns a value of 0. The thread_wait subroutine
completes successfully if there was a pending post or if the calling thread was posted before the time limit
specified by the timeout parameter expires.

A return value of THREAD_ WAIT_TIMEDOUT indicates that the thread_wait subroutine timed out.

If unsuccessful, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes
The thread_wait subroutine is unsuccessful when one of the following is true:
EINTR This subroutine was terminated by receipt of a signal.

ENOMEM There is not enough memory to allocate a timer

362 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information

The thread_post (‘thread_post Subroutine” on page 358) subroutine, and thread_post_many
(‘thread_post_many Subroutine” on page 359) subroutine.

tmpfile Subroutine

Purpose
Creates a temporary file.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>
FILE *tmpfile ()

Description

The tmpfile subroutine creates a temporary file and opens a corresponding stream. The file is opened for
update. The temporary file is automatically deleted when all references (links) to the file have been closed.

The stream refers to a file which has been unlinked. If the process ends in the period between file creation
and unlinking, a permanent file may remain.

Return Values

The tmpfile subroutine returns a pointer to the stream of the file that is created if the call is successful.
Otherwise, it returns a null pointer and sets the errno global variable to indicate the error.

Error Codes
The tmpfile subroutine fails if one of the following occurs:

EINTR A signal was caught during the tmpfile subroutine.
EMFILE The number of file descriptors currently open in the calling process is already equal to OPEN_MAX.
ENFILE The maximum allowable number of files is currently open in the system.

ENOSPEC The directory or file system which would contain the new file cannot be expanded.

Related Information

The [fopen, freopen, fdopen|subroutines, |mktemp| subroutine, tmpnam or tempnam
tempnam Subroutine’) subroutine, unlink (Funlink Subroutine” on page 423) subroutine.

|Fi|es, Directories, and File Systems for Programmers| in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

tmpnam or tempnam Subroutine

Purpose
Constructs the name for a temporary file.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z2) 363

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>
char xtmpnam (
char *String;

char *tempnam (Directoryl, [FileXPointer)
const char *Directory, *FileXPointer;

Description

Attention: The tmpnam and tempnam subroutines generate a different file name each time they are
called. If called more than 16,384 (TMP_MAX) times by a single process, these subroutines recycle
previously used names.

The tmpnam and the tempnam subroutines generate file names for temporary files. The tmpnam
subroutine generates a file name using the path name defined as P_tmpdir in the stdio.h file.

Files created using the tmpnam subroutine reside in a directory intended for temporary use. The file
names are unique. The application must create and remove the file.

The tempnam subroutine enables you to define the directory. The Directory parameter points to the name
of the directory in which the file is to be created. If the Directory parameter is a null pointer or points to a
string that is not a name for a directory, the path prefix defined as P_tmpdir in the stdio.h file is used. For
an application that has temporary files with initial letter sequences, use the FileXPointer parameter to
define the sequence. The FileXPointer parameter (a null pointer or a string of up to 5 bytes) is used as the
beginning of the file name.

Between the time a file name is created and the file is opened, another process can create a file with the
same name. Name duplication is unlikely if the other process uses these subroutines or the mktemp
subroutine, and if the file names are chosen to avoid duplication by other means.

Parameters

String Specifies the address of an array of at least the number of bytes specified by L_tmpnam, a
constant defined in the stdio.h file.
If the String parameter has a null value, the tmpnam subroutine places its result into an
internal static area and returns a pointer to that area. The next call to this subroutine destroys
the contents of the area.
If the String parameter’s value is not null, the tmpnam subroutine places its results into the
specified array and returns the value of the String parameter.

Directory Points to the path name of the directory in which the file is to be created.

The tempnam subroutine controls the choice of a directory. If the Directory parameter is a
null pointer or points to a string that is not a path name for an appropriate directory, the path
name defined as P_tmpdir in the stdio.h file is used. If that path name is not accessible, the
/tmp directory is used. You can bypass the selection of a path name by providing an
environment variable, TMPDIR, in the user’s environment. The value of the TMPDIR
environment variable is a path name for the desired temporary-file directory.

FileXPointer A pointer to an initial character sequence with which the file name begins. The FileXPointer
parameter value can be a null pointer, or it can point to a string of characters to be used as
the first characters of the temporary-file name. The number of characters allowed is file
system dependent, but 5 bytes is the maximum allowed.

364 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values

Upon completion, the tempnam subroutine allocates space for the string using the malloc subroutine,
puts the generated path name in that space, and returns a pointer to the space. Otherwise, it returns a null
pointer and sets the errno global variable to indicate the error. The pointer returned by tempnam may be
used in the free subroutine when the space is no longer needed.

Error Codes
The tempnam subroutine returns the following error code if unsuccessful:

ENOMEM Insufficient storage space is available.

ENINVAL Indicates an invalid string value.

Related Information

The [fopen, freopen, fdopen|subroutine, jmalloc, free, realloc, calloc, mallopt, mallinfo, or allocal
subroutine, Imktemp or mkstemp| subroutine, lopenx, open, creat subroutine, tmpfile (‘tmpfile Subroutine’]
|gn page 363b subroutine, unlink (“‘unlink Subroutine” on page 423) subroutine.

The lenvironment] file.

[Files, Directories, and File Systems for Programmers|in AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs.

[Input and Output Handling Programmer’s Overview|in AIX 5L Version 5.2 General Programming Concepts:
Writing and Debugging Programs.

towctrans Subroutine

Purpose
Character transliteration.

Library
Standard library (libc.a)

Syntax

#include <wctype.h>
wint_t towctrans (wint_t wc, wctrans_t desc) ;

Description

The towctrans function transliterates the wide-character code wc using the mapping described by desc.
The current setting of the LC_CTYPE category should be the same as during the call to wetrans that
returned the value desc. If the value of desc is invalid (that is, not obtained by a call to wetrans or desc is
invalidated by a subsequent call to setlocale that has affected category LC_CTYPE) the result is
implementation-dependent.

Return Values

If successful, the towetrans function returns the mapped value of wc using the mapping described by
desc. Otherwise it returns wc unchanged.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 365

Error Codes
The towctrans function may fail if:

EINVAL desc contains an invalid transliteration descriptor.

Related Information
The towlower (“towlower Subroutine”) subroutine, towupper (]“towupper Subroutine” on page 367b
subroutine, wetrans (‘wctrans Subroutine” on page 469) subroutine.

The |wetype.h|file.

towlower Subroutine

Purpose
Converts an uppercase wide character to a lowercase wide character.

Library
Standard C Library (libc.a)

Syntax

#include <wchar.h>

wint_t towlower (
wint_t WC;

Description

The towlower subroutine converts the uppercase wide character specified by the WC parameter into the
corresponding lowercase wide character. The LC_CTYPE category affects the behavior of the towlower
subroutine.

Parameters

WC Specifies the wide character to convert to lowercase.

Return Values

If the WC parameter contains an uppercase wide character that has a corresponding lowercase wide
character, that wide character is returned. Otherwise, the WC parameter is returned unchanged.

Related Information

The |iswa|num| subroutine, |iswa|pha| subroutine, |iswcntr|| subroutine, |iswcty €| subroutine, |iswdigiﬂ

subroutine, iswgraph| subroutine, [iswlower subroutine, [iswprint| subroutine, fiswpunct| subroutine,
iswsEac§ subroutine, [iswupper| subroutine, [iswxdigit| subroutine, setlocale (*setlocale Subroutine” onj
page 136) subroutine, towupper (‘towupper Subroutine” on page 367) subroutine, wctype (“‘wetype or|
get_wctype Subroutine” on page 470) subroutine.

|Subroutines, Example Programs, and Libraries| in AIX 5L Version 5.2 General Programming Concepts:
Writing and Debugging Programs.

366 Technical Reference, Volume 2: Base Operating System and Extensions

[National Language Support Overview] and [Wide Character Classification Subroutines|in AIX 5L Version 5.2
National Language Support Guide and Reference.

towupper Subroutine

Purpose

Converts a lowercase wide character to an uppercase wide character.

Library
Standard C Library (libc.a)

Syntax

#include <wchar.h>

wint_t towupper (
wint_t WC;

Description

The towupper subroutine converts the lowercase wide character specified by the WC parameter into the
corresponding uppercase wide character. The LC_CTYPE category affects the behavior of the towupper
subroutine.

Parameters

WC Specifies the wide character to convert to uppercase.

Return Values

If the WC parameter contains a lowercase wide character that has a corresponding uppercase wide
character, that wide character is returned. Otherwise, the WC parameter is returned unchanged.

Related Information
The [iswalnum| subroutine, fiswalpha| subroutine, fiswentrl| subroutine, fiswctype] subroutine, fiswdigit]

subroutine, iswgraph| subroutine, [iswlower| subroutine, [iswprint| subroutine, jiswpunct| subroutine,
iswspace]| subroutine, iswupper| subroutine, [iswxdigit| subroutine, setlocale (‘setlocale Subroutine” on
page 136) subroutine, towlower (‘towlower Subroutine” on page 366) subroutine, wctype 4“wctype o[|
get_wctype Subroutine” on page 470) subroutine.

[Subroutines Overview|in AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging
Programs.

t_rcvreldata Subroutine

Purpose
Receive an orderly release indication or confirmation containing user data.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 367

Library
Syntax

#include <xti.h>

int t_rcvreldata(
int fd,
struct t_discon *discon)

Description

This function is used to receive an orderly release indication for the incoming direction of data transfer and
to retrieve any user data sent with the release. The argument fd identifies the local transport endpoint
where the connection exists, and discon points to a t_discon structure containing the following members:
struct netbuf udata;

int reason;
int sequence;

After receipt of this indication, the user may not attempt to receive more data via@or t_rcvv
[Subroutine” on page 369). Such an attempt will fail with t_error set to [TOUTSTATE]. However, the user

may continue to send data over the connection if or t_sndreldata (“t_sndreldata Subroutine” on|
h

8) has not been called by the user.

The field reason specifies the reason for the disconnection through a protocol-dependent reason code, and
udata identifies any user data that was sent with the disconnection; the field sequence is not used.

If a user does not care if there is incoming data and does not need to know the value of reason, discon
may be a null pointer, and any user data associated with the disconnection will be discarded.

If discon->udata.maxlen is greater than zero and less than the length of the value, t_rcvreldata fails with
t_errno set to [TBUFOVFLW].

This function is an optional service of the transport provider, only supported by providers of service type
T_COTS_ORD. The flag T_ORDRELDATA in the info->flag field returned by t_open| or [t_getinfo|indicates
that the provider supports orderly release user data; when the flag is not set, this function behaves as
ft_rcvrelland no user data is returned.

This function may not be available on all systems.

Parameters Before call After call
fd X /
discon-> udata.maxlen X
discon-> udata.len /
discon-> udata.buf ?
discon-> reason /
discon-> sequence /

Valid States
T_DATAXFER, T_OUTREL

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and t_errno is
set to indicate an error.

368 Technical Reference, Volume 2: Base Operating System and Extensions

Error Codes
On failure, the t_errno subroutine is set to one of the following:

TBADF
The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW
The number of bytes allocated for incoming data (maxlen) is greater than 0 but not sufficient to
store the data, and the disconnection information to be returned in discon will be discarded. The
provider state, as seen by the user, will be changed as if the data was successfully retrieved.

TLOOK

An asynchronous event has occurred on this transport endpoint and requires immediate attention.
TNOREL

No orderly release indication currently exists on the specified transport endpoint.
TNOTSUPPORT

Orderly release is not supported by the underlying transport provider.
TOUTSTATE

The communications endpoint referenced by fd is not in one of the states in which a call to this
function is valid.

TPROTO
This error indicates that a communication problem has been detected between XTI and the
transport provider for which there is no other suitable XTI error (t_errno).

TSYSERR
A system error has occurred during execution of this function.

Related Information

The [t_getinfo| t_open] t_sndreldata (‘t_sndreldata Subroutine” on page 376), t_rcvrel| t_sndrel]
subroutines.

t_rcvv Subroutine

Purpose

Receive data or expedited data sent over a connection and put the data into one or more non-contiguous
buffers.

Library
libxti.*

Syntax
#include <xti.h>

int t_rcvv (int fd, struct t_iovec *iov, unsigned int iovcount, int *flags) ;

Description

This function receives either normal or expedited data. The argument fd identifies the local transport
endpoint through which data will arrive, iov points to an array of buffer address/buffer size pairs (iov_base,
iov_len). The t_rcvv function receives data into the buffers specified by iov/0].iov_base, iov[1].iov_base,
through iovfiovcount-1].iov_base, always filling one buffer before proceding to the next.

Note: The limit on the total number of bytes available in all buffers passed (that is, iov(0).iov_len + . . +
iov(iovcount-1).iov_len) may be constrained by implementation limits. If no other constraint applies,

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 369

it will be limited by [INT_MAX]. In practice, the availability of memory to an application is likely to
impose a lower limit on the amount of data that can be sent or received using scatter/gather
functions.

The argument jiovcount contains the number of buffers which is limited to T_IOV_MAX (an
implementation-defined value of at least 16). If the limit is exceeded, the function will fail with
[TBADDATA].

The argument flags may be set on return from t_rcvv and specifies optional flags as described below.

By default, t_rcvv operates in synchronous mode and will wait for data to arrive if none is currently
available. However, if O_NONBLOCK is set (via t_open or fentl, t_rcvv will execute in asynchronous
mode and will fail if no data is available (see [TNODATA] below).

On return from the call, if T_MORE is set in flags, this indicates that there is more data, and the current
transport service data unit (TSDU) or expedited transport service data unit (ETSDU) must be received in
multiple t_revv or t_rcv calls. In the asynchronous mode, or under unusual conditions (for example, the
arrival of a signal or T_EXDATA event), the T_MORE flag may be set on return from the t_rcvv call even
when the number of bytes received is less than the total size of all the receive buffers. Each t_rcvv with
the T_MORE flag set indicates that another t_rcvv must follow to get more data for the current TSDU. The
end of the TSDU is identified by the return of a t_rcvv call with the T_MORE flag not set. If the transport
provider does not support the concept of a TSDU as indicated in the info argument on return from t_open
ort_getinfo , the T_MORE flag is not meaningful and should be ignored. If the amount of buffer space
passed in iov is greater than zero on the call to t_rcvv, then t_rcvv will return 0 only if the end of a TSDU
is being returned to the user.

On return, the data is expedited if T_EXPEDITED is set in flags. If T_MORE is also set, it indicates that
the number of expedited bytes exceeded nbytes, a signal has interrupted the call, or that an entire ETSDU
was not available (only for transport protocols that support fragmentation of ETSDUSs). The rest of the
ETSDU will be returned by subsequent calls to t_revv which will return with T_EXPEDITED set in flags.
The end of the ETSDU is identified by the return of a t_rcvv call with T_EXPEDITED set and T_MORE
cleared. If the entire ETSDU is not available it is possible for normal data fragments to be returned
between the initial and final fragments of an ETSDU.

If a signal arrives, t_revv returns, giving the user any data currently available. If no data is available,
t_rcvv returns -1, sets t_errno to [TSYSERR] and errno to [EINTR]. If some data is available, t_rcvv
returns the number of bytes received and T_MORE is set in flags.

In synchronous mode, the only way for the user to be notified of the arrival of normal or expedited data is
to issue this function or check for the T_DATA or T_EXDATA events using the t_look function. Additionally,
the process can arrange to be notified via the EM interface.

Parameters Before call After call
fd X /

iov X/

iovcount X /
iov[0].iov_base X(/) =(X)
iov[0].iov_len X =
iov[iovcount-1].iov_base X(/) =(X)
iov[iovcount-1].iov_len X =

370 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values

On successful completion, t_rcvv returns the number of bytes received. Otherwise, it returns -1 on failure
and t_errno is set to indicate the error.

Error Codes
On failure, t_errno is set to one of the following:

TBADDATA iovcount is greater than T_IOV_MAX.

TBADF The specified file descriptor does not refer to a transport endpoint.

TLOOK An asynchronous event has occurred on this transport endpoint and requires immediate
attention.

TNODATA O_NONBLOCK was set, but no data is currently available from the transport provider.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in which a call to this
function is valid.

TPROTO This error indicates that a communication problem has been detected between XTI and the
transport provider for which there is no other suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information
The @ subroutine, |t_§etinfo| subroutine, [t_look] subroutine, t_open]| subroutine, @ subroutine,

subroutine, and t_sndv (‘t_sndv Subroutine” on page 373) subroutine.

t_rcvvudata Subroutine

Purpose
Receive a data unit into one or more noncontiguous buffers.

Library
Standard library (libxti.a)

Syntax

#include <xti.h>
int t_rcvvudata (
int fd, struct t_unitdata *unitdata, struct t_iovec *iov, unsigned int jovcount, int *flags)

Description

This function is used in connectionless mode to receive a data unit from another transport user. The
argument fd identifies the local transport endpoint through which data will be received, unitdata holds
information associated with the received data unit, iovcount contains the number of non-contiguous udata
buffers which is limited to T_IOV_MAX (an implementation-defined value of at least 16), and flags is set
on return to indicate that the complete data unit was not received. If the limit on iovcount is exceeded, the
function fails with [TBADDATA]. The argument unitdata points to a t_unitdata structure containing the
following members:

struct netbuf addr;

struct netbuf opt;
struct netbuf udata;

The maxlen field of addr and opt must be set before calling this function to indicate the maximum size of
the buffer for each. The udata field of t_unitdata is not used. The iov_len and iov_base fields of iov[0]

Chapter 1. Base Operating System (BOS) Runtime Services (Q-z) 371

through iov[iovecount-1] must be set before calling t_rcvvudata to define the buffer where the userdata
will be placed. If the maxlen field of addr or opt is set to zero then no information is returned in the buf
field for this parameter.

On return from this call, addr specifies the protocol address of the sending user, opt identifies options that
were associated with this data unit, and iov[0].iov_base through iov[iovcount-1]. iov_base contains the

user data that was received. The return value of t_rcvvudata is the number of bytes of user data given to
the user.

Note: The limit on the total number of bytes available in all buffers passed (that is,
iov(0).iov_len + . . + iov(iovcount-1).iov_len) may be constrained by implementation limits. If no
other constraint applies, it will be limited by [INT_MAX]. In practice, the availability of memory to an
application is likely to impose a lower limit on the amount of data that can be sent or received using
scatter/gather functions.

By default, t_rcvvudata operates in synchronous mode and waits for a data unit to arrive if none is
currently available. However, if O_NONBLOCK is set (via t_open or fentl), t_rcvvudata executes in
asynchronous mode and fails if no data units are available. If the buffers defined in the iov[] array are not
large enough to hold the current data unit, the buffers will be filled and T_MORE will be set in flags on
return to indicate that another t_rcvvudata should be called to retrieve the rest of the data unit.
Subsequent calls to t_rcvvudata will return zero for the length of the address and options, until the full
data unit has been received.

Parameters Before call After call
fd X /
unitdata->addr.maxlen X =
unitdata->addr.len / X
unitdata->addr.buf 2(/) =(/)
unitdata->opt.maxlen X =
unitdata->opt.len / X
unitdata->opt.buf ?2(/) =(?7)
unitdata->udata.maxlen / =
unitdata->udata.len / =
unitdata->udata.buf / =
iov[0].iov_base X =(X)
iov[0].iov_len X =
iov[iovcount-1].iov_base X(/) =(X)
iov[iovcount-1].iov_len X =
iovcoun X /
flags / /

Return Values

On successful completion, t_rcvvudata returns the number of bytes received. Otherwise, it returns -1 on
failure and t_errno is set to indicate the error.

372 Technical Reference, Volume 2: Base Operating System and Extensions

Error Codes
On failure, t_errno is set to one of the following:

TBADDATA iovcount is greater than T_IOV_MAX.
TBADF The specified file descriptor does not refer to a transport endpoint.
TBUFOVFLW The number of bytes allocated for the incoming protocol address or options (maxlen) is greater

than 0 but not sufficient to store the information. The unit data information to be returned in
unitdata will be discarded.

TLOOK An asynchronous event has occurred on this transport endpoint and requires immediate
attention.

TNODATA O_NONBLOCK was set, but no data units are currently available from the transport provider.

TNOTSUPPORT This function is not supported by the underlying transport provider.

TOUTSTATE The communications endpoint referenced by fd is not in one of the states in which a call to this
function is valid.

TPROTO This error indicates that a communication problem has been detected between XTI and the
transport provider for which there is no other suitable XTI error (t_errno).

TSYSERR A system error has occurred during execution of this function.

Related Information
The |fcnti subroutine, |t_a||oc| subroutine, E_open| subroutine, E_rcvudata| subroutine, |t_rcvuderF|

subroutine, |!_sndudata| subroutine, t_sndvudata (“t_sndvudata Subroutine” on page 377) subroutine.

t_sndv Subroutine

Purpose
Send data or expedited data, from one or more non-contiguous buffers, on a connection.

Library
Standard library (libxti.a)

Syntax

#include <xti.h>
int t_sndv (int fd, const struct t_iovec *iov, unsigned it iovcount, int flags)

Description

Parameters Before call After call
fd X /

iovec X /

iovcount X /
iov[0].iov_base X(X) /
iov[0].iov_len X /
iov[iovcount-1].iov_base X(X) /
iov[iovcount-1].iov_len X =

flags X /

This function is used to send either normal or expedited data. The argument fd identifies the local
transport endpoint over which data should be sent, iov points to an array of buffer address/buffer length

Chapter 1. Base Operating System (BOS) Runtime Services (Q-2) 373

pairs. t_sndv sends data contained in buffers iov[0], iov[1], through io