Bull

AIX 5L Technical Reference
Kernel and Subsystems

Volume 1/2

AlIX

ORDER REFERENCE
86 A2 51EF 02

Bull

AIX 5L Technical Reference
Kernel and Subsystems

Volume 1/2

AIX

Software

May 2003

BULL CEDOC

357 AVENUE PATTON
B.P.20845

49008 ANGERS CEDEX 01
FRANCE

ORDER REFERENCE
86 A2 51EF 02

The following copyright notice protects this book under the Copyright laws of the United States of America
and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

Copyright © Bull S.A. 1992, 2003

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of
this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX® is a registered trademark of International Business Machines Corporation, and is being used under
licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Linux is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Groupe Bull will not be liable for errors
contained herein, or for incidental or consequential damages in connection with the use of this material.

Contents

About This Book . . .
Who Should Use This Book
Highlighting
Case-Sensitivity in AIX

ISO 9000

32-Bit and 64-Bit Support for the UNIX98 Specmcatlon

Related Publications

Chapter 1. Kernel Services .
__pag_getid System Call .
__pag_getname System Call.
__pag_getvalue System Call.
__pag_setname System Call.
__pag_setvalue System Call .
Alphabetical List of Kernel Services .
add_domain_af Kernel Service
add_input_type Kernel Service
add_netisr Kernel Service
add_netopt Macro .

as_att Kernel Service .
as_att64 Kernel Service .
as_det Kernel Service.
as_det64 Kernel Service .
as_geth Kernel Service
as_geth64 Kernel Service
as_getsrval Kernel Service .
as_getsrval64 Kernel Service .
as_puth Kernel Service
as_puth64 Kernel Service
as_remap64 Kernel Service.
as_seth Kernel Service
as_seth64 Kernel Service
as_unremap64 Kernel Service.
attach Device Queue Management Routlne
audit_svcbcopy Kernel Service
audit_svcfinis Kernel Service .
audit_svcstart Kernel Service .
bawrite Kernel Service

bdwrite Kernel Service

bflush Kernel Service . .
bindprocessor Kernel Service .
binval Kernel Service .
blkflush Kernel Service

bread Kernel Service .

breada Kernel Service.

brelse Kernel Service .

bwrite Kernel Service .

cancel Device Queue Management Routlne
cfgnadd Kernel Service

cfgncb Configuration Notification Control Block.

cfgndel Kernel Service
check Device Queue Management Routme
clrbuf Kernel Service .

© Copyright IBM Corp. 1997, 2003

. Xxiii
. Xiii
. Xiii
. Xiii
. Xiv
. Xiv
. Xiv

clrjmpx Kernel Service. . . . e TS)
common_reclock Kernel Serwce ¥4
compare_and_swap Kernel Service. .. .49
copyin Kernel Service.5
copyiné4 Kernel Service5
copyinstr Kernel Service52
copyinstr64 Kernel Service53
copyout Kernel Service54
copyout64 Kernel Service .55
crcopy Kernel Service.56
crdup Kernel Service5b6
creatp Kernel Service57
CRED_GETEUID, CRED_ GETRUID CRED GETSUID CRED GETLUID CRED GETEGID
CRED_GETRGID, CRED_GETSGID and CRED_GETNGRPS Macros58
crexport Kernel Service0B9
crfree Kernel Service60
crget Kernel Service00
crhold Kernel Service6
crref Kernel Service82
crset Kernel Service o82
curtime Kernel Service83
d_align Kernel Service . . . o
d_alloc_dmamem Kernel Serwce 1
d_cflush Kernel Service66
d_clear Kernel Service67
d_complete Kernel Service68
delay Kernel Service . . . R o 1 |
del_domain_af Kernel Serwce e 4 0]
del_input_type Kernel Service.00
del_netisr Kernel Service. L L .00 s, T2
del_netopt Macro . . . e e e e s T8
detach Device Queue Management Routlne e
devdump Kernel Service. L . L L L ..o T4
devstrat Kernel Service76
devswadd Kernel Serviceo T
devswchg Kernel Service78
devswdel Kernel Service. o007
devswqgry Kernel Service.o Lo o8
d_free_dmamem Kernel Service8
d_init Kernel Service83
disable_lock Kernel Service.8
d_map_clear Kernel Service85
d_map_disable Kernel Service85
d_map_enable Kernel Service.86
d_map_init Kernel Service86
d_map_list Kernel Service L L 0L L oL L. .87
d_map_page Kernel Service8
d_map_slave Kernel Service L .. L0 oo
d_mask Kernel Service L L L0 L0922
d_master Kernel Service. ...09
d_move Kernel Service9
dmp_add Kernel Service. L L0 97
dmp_ctl Kernel Service .. .098
dmp_del Kernel Service 2102
dmp_prinit Kernel Service .103
d_roundup Kernel Service. .. .104

iV Technical Reference: Kernel and Subsystems, Volume 1

d_slave Kernel Service .
d_sync_mem Kernel Service .
DTOM Macro for mbuf Kernel Serwces
d_unmap_list Kernel Service .
d_unmap_slave Kernel Service .
d_unmap_page Kernel Service .
d_unmask Kernel Service .
dr_reconfig System Call.
e_assert_wait Kernel Service.
e_block_thread Kernel Service .
e_clear_wait Kernel Service .
enque Kernel Service
errresume Kernel Service .
errsave or errlast Kernel Service
e_sleep Kernel Service .
e_sleepl Kernel Service. .
e_sleep_thread Kernel Service .
et_post Kernel Service .

et_wait Kernel Service .

e_wakeup, e_wakeup_one, or e wakeup w_ result Kernel Serwce .

e_wakeup_w_sig Kernel Service

fetch_and_add Kernel Service .
fetch_and_and or fetch_and_or Kernel Serwce .

fidtovp Kernel Service .

find_input_type Kernel Service .

fp_access Kernel Service .

fp_close Kernel Service. .
fp_close Kernel Service for Data Lmk Control (DLC) Dewces .
fp_fstat Kernel Service .

fp_fsync Kernel Service.

fp_getdevno Kernel Service .

fp_getf Kernel Service .

fp_hold Kernel Service .

fp_ioctl Kernel Service .

fp_ioctl Kernel Service for Data Llnk Control (DLC) Dewces
fp_ioctlx Kernel Service.

fp_Iseek, fp_liseek Kernel Serwce

fp_open Kernel Service. .
fp_open Kernel Service for Data L|nk Control (DLC) Dewces .
fp_opendev Kernel Service

fp_poll Kernel Service

fp_read Kernel Service .

fp_readv Kernel Service

fp_rwuio Kernel Service.

fp_select Kernel Service .

fp_select Kernel Service notify Routlne .

fp_write Kernel Service . .
fp_write Kernel Service for Data L|nk Control (DLC) Dewces .
fp_writev Kernel Service

fubyte Kernel Service

fubyte64 Kernel Service

fuword Kernel Service

fuword64 Kernel Service

getadsp Kernel Service .

getblk Kernel Service

getc Kernel Service .

. 104
. 106
. 107
. 107
. 108
. 109
. 110
.11
. 113
. 114
. 114
. 115
. 117
. 117
. 118
. 120
. 121
. 123
. 124
. 125
. 126
. 127
. 128
. 129
. 130
. 130
. 131
. 132
. 133
. 133
. 134
. 135
. 136
. 137
. 137
. 139
. 140
. 141
. 142
. 143
. 145
. 147
. 148
. 149
. 150
. 153
. 154
. 155
. 157
. 158
. 159
. 160
. 161
. 162
. 162
. 163

Contents

\'}

getcb Kernel Service.
getcbp Kernel Service
getcf Kernel Service .
getcx Kernel Service .
geteblk Kernel Service .
geterror Kernel Service .
getexcept Kernel Service .
getfslimit Kernel Service
getpid Kernel Service
getppidx Kernel Service.
getuerror Kernel Service

getufdflags and setufdflags Kernel Serwces

get_umask Kernel Service.
get64bitparm Kernel Service .
gfsadd Kernel Service

gfsdel Kernel Service

i_clear Kernel Service
i_disable Kernel Service
i_enable Kernel Service.
ifa_ifwithaddr Kernel Service .
ifa_ifwithdstaddr Kernel Service.
ifa_ifwithnet Kernel Service
if_attach Kernel Service.
if_detach Kernel Service
if_down Kernel Service .
if_nostat Kernel Service.
ifunit Kernel Service .

i_init Kernel Service .

i_mask Kernel Service .
init_heap Kernel Service

initp Kernel Service

initp Kernel Service func Subroutlne .

io_att Kernel Service.
io_det Kernel Service
io_map Kernel Service .
io_map_clear Kernel Service .
io_map_init Kernel Service
io_unmap Kernel Service .
iodone Kernel Service
iomem_att Kernel Service .
iomem_det Kernel Service.
iostadd Kernel Service .
iostdel Kernel Service
iowait Kernel Service.

ip_fltr_in_hook, ip_fltr_out_ hook |psec decap hook mbound fw outbound fw Kernel Serwce

i_pollsched Kernel Service.
i_reset Kernel Service
i_sched Kernel Service .
i_unmask Kernel Service .
1IS64U Kernel Service

kcap_is_set and kcap_is_set_cr Kernel Serwce

kcred_getcap Kernel Service .
kcred_getgroups Kernel Service
kcred_getpag Kernel Service.
kcred_getpagid Kernel Service .
kcred_getpagname Kernel Service.

Vi Technical Reference: Kerel and Subsystems, Volume 1

. 164
. 165
. 166
. 166
. 167
. 168
. 169
. 169
. 170
. 170
.17
. 172
. 173
. 173
. 174
. 176
177
. 177
. 179
. 180
. 181
. 181
. 182
. 183
. 184
. 184
. 185
. 186
. 188
. 188
. 189
. 191
. 192
. 193
. 193
. 194
. 195
. 196
. 197
. 198
. 200
. 200
. 203
. 204
. 205
. 208
. 208
. 209
. 210
.21
. 212
. 212
. 213
. 214
. 214
. 215

kcred_getpriv Kernel Service .
kcred_setcap Kernel Service .
kcred_setgroups Kernel Service.
kcred_setpag Kernel Service .
kcred_setpagname Kernel Service.
kcred_setpriv Kernel Service .
kgethostname Kernel Service
kgettickd Kernel Service
kmod_entrypt Kernel Service.
kmod_load Kernel Service.
kmod_unload Kernel Service .
kmsgctl Kernel Service .

kmsgget Kernel Service.

kmsgrcv Kernel Service.

kmsgsnd Kernel Service
kra_attachrset Subroutine .
kra_creatp Subroutine
kra_detachrset Subroutine.
kra_getrset Subroutine .

krs_alloc Subroutine .

krs_free Subroutine . .
krs_getassociativity Subroutlne .
krs_getinfo Subroutine .
krs_getpartition Subroutine
krs_getrad Subroutine

krs_init Subroutine

krs_numrads Subroutine

krs_op Subroutine.

krs_setpartition Subroutine
ksettickd Kernel Service

ksettimer Kernel Service
kthread_kill Kernel Service
kthread_start Kernel Service .
kvmgetinfo Kernel Service.
limit_sigs or sigsetmask Kernel Serwce
lock_alloc Kernel Service . .
lock_clear_recursive Kernel Serwce .
lock_done Kernel Service .
lock_free Kernel Service

lock_init Kernel Service .
lock_islocked Kernel Service .

lockl Kernel Service .

lock_mine Kernel Service .
lock_read or lock_try_read Kernel Serwce

lock_read_to_write or lock_try_read_to_write Kernel Serwce .

lock_set_recursive Kernel Service .
lock_write or lock_try_write Kernel Serwce
lock_write_to_read Kernel Service .

loifp Kernel Service

longjmpx Kernel Service

lookupvp Kernel Service

looutput Kernel Service .

Itpin Kernel Service

ltunpin Kernel Service

m_adj Kernel Service

mbreq Structure for mbuf Kernel Serwces

Contents

. 216
. 216
. 217
. 218
. 219
. 220
. 220
. 221
. 222
. 223
. 226
. 227
. 229
. 230
. 232
. 233
. 235
. 236
. 237
. 238
. 239
. 239
. 240
. 242
. 243
. 243
. 244
. 245
. 246
. 247
. 248
. 249
. 250
. 251
. 252
. 253
. 254
. 255
. 256
. 256
. 257
. 258
. 259
. 260
. 261
. 262
. 263
. 264
. 264
. 265
. 266
. 267
. 268
. 269
. 270
. 270

Vii

mbstat Structure for mbuf Kernel Services .
m_cat Kernel Service

m_clattach Kernel Service.

m_clget Macro for mbuf Kernel Serwces
m_clgetm Kernel Service .

m_collapse Kernel Service

m_copy Macro for mbuf Kernel Serwces
m_copydata Kernel Service .

m_copym Kernel Service .

m_dereg Kernel Service

m_free Kernel Service .

m_freem Kernel Service

m_get Kernel Service

m_getclr Kernel Service

m_getclust Macro for mbuf Kernel Serwces
m_getclustm Kernel Service .

m_gethdr Kernel Service . . .
M_HASCL Macro for mbuf Kernel Serwces
m_pullup Kernel Service

m_reg Kernel Service
md_restart_block_read Kernel Serwce
md_restart_block_upd Kernel Service
MTOCL Macro for mbuf Kernel Services
MTOD Macro for mbuf Kernel Services .

M_XMEMD Macro for mbuf Kernel Services .

net_attach Kernel Service .
net_detach Kernel Service.
net_error Kernel Service
net_sleep Kernel Service .
net_start Kernel Service
net_start_done Kernel Service .
net_wakeup Kernel Service
net_xmit Kernel Service.
net_xmit_trace Kernel Service
NLuprintf Kernel Service .
ns_add_demux Network Kernel Serwce.
ns_add_filter Network Service
ns_add_status Network Service.
ns_alloc Network Service .
ns_attach Network Service
ns_del_demux Network Service.
ns_del_filter Network Service.
ns_del_status Network Service .
ns_detach Network Service
ns_free Network Service

panic Kernel Service .

pci_cfgrw Kernel Service
pfctlinput Kernel Service
pffindproto Kernel Service .
pgsignal Kernel Service.

pidsig Kernel Service.

pin Kernel Service.

pincf Kernel Service .

pincode Kernel Service .

pinu Kernel Service .
pio_assist Kernel Service .

Viii Technical Reference: Kernel and Subsystems, Volume 1

. 27
. 272
. 272
. 273
. 274
. 275
. 276
. 276
. 277
. 278
. 279
. 280
. 280
. 281
. 282
. 283
. 284
. 285
. 285
. 286
. 287
. 288
. 288
. 289
. 290
. 290
. 291
. 292
. 293
. 293
. 294
. 295
. 296
. 297
. 297
. 301
. 302
. 303
. 304
. 305
. 306
. 306
. 307
. 308
. 309
. 309
. 310
. 31
. 312
. 313
. 313
. 314
. 315
. 316
. 317
. 318

Process State-Change Notification Routine
proch_reg Kernel Service .
proch_unreg Kernel Service .
prochadd Kernel Service
prochdel Kernel Service

probe or kprobe Kernel Service .
purblk Kernel Service

putc Kernel Service .

putcb Kernel Service.

putcbp Kernel Service

putcf Kernel Service .

putcfl Kernel Service .

putcx Kernel Service .

raw_input Kernel Service .
raw_usrreq Kernel Service.

reconfig_reqister, reconfig_ unreglster or reconflg complete Kernel Serwce

register_HA_handler Kernel Service .
rmalloc Kernel Service .

rmfree Kernel Service
rmmap_create Kernel Service
rmmap_create64 Kernel Service
rmmap_getwimg Kernel Service.
rmmap_remove Kernel Service .
rmmap_remove64 Kernel Service .
rtalloc Kernel Service

rtalloc_gr Kernel Service

rtfree Kernel Service .

rtinit Kernel Service .

rtredirect Kernel Service
rtrequest Kernel Service
rtrequest_gr Kernel Service
rusage_incr Kernel Service
saveretval64 Kernel Service .
schednetisr Kernel Service
selnotify Kernel Service.

selreg Kernel Service

setjmpx Kernel Service .

setpinit Kernel Service .
setuerror Kernel Service
sig_chk Kernel Service .
simple_lock or simple_lock_try Kernel Serwce
simple_lock_init Kernel Service .
simple_unlock Kernel Service
sleep Kernel Service .

subyte Kernel Service

subyte64 Kernel Service

suser Kernel Service.

suword Kernel Service .
suword64 Kernel Service .
syncvfs Kernel Service .

talloc Kernel Service .

tfree Kernel Service . .
thread_create Kernel Service.
thread_self Kernel Service.
thread_setsched Kernel Service.
thread_terminate Kernel Service

. 321
. 322
. 323
. 324
. 325
. 326
. 328
. 329
. 330
. 330
. 331
. 332
. 333
. 333
. 334
. 336
. 338
. 340
. 341
. 341
. 344
. 346
. 347
. 348
. 349
. 350
. 351
. 351
. 352
. 353
. 355
. 356
. 357
. 358
. 359
. 361
. 362
. 363
. 364
. 365
. 366
. 366
. 367
. 368
. 369
. 370
. 371
. 372
. 373
. 374
. 375
. 376
. 376
. 377
. 378
. 379

Contents

ix

timeout Kernel Service .

timeoutcf Subroutine for Kernel Serwces
trcgenk Kernel Service .

trcgenkt Kernel Service .

trcgenkt Kernel Service for Data L|nk Control (DLC) DeV|ces .

tstart Kernel Service .
tstop Kernel Service .

tuning_register_handler, tunlng reg|ster b|nt32 tunmg reglster b|nt64 tunlng reglster bumt32
tuning_register_buint64, tuning_get_context, or tuning_deregister System Call.

ue_proc_check Kernel Service .
ue_proc_register Subroutine .
ue_proc_unregister Subroutine .
uexadd Kernel Service .

User-Mode Exception Handler for the uexadd Kernel Serwce

uexblock Kernel Service
uexclear Kernel Service.
uexdel Kernel Service
ufdcreate Kernel Service
ufdgetf Kernel Service .
ufdhold and ufdrele Kernel Serwce
uiomove Kernel Service.
unlock_enable Kernel Service
unlockl Kernel Service .
unpin Kernel Service.
unpincode Kernel Service .
unpinu Kernel Service
unregister_ HA_handler Kernel Serwce
untimeout Kernel Service .
uphysio Kernel Service . .
uphysio Kernel Service mincnt Routlne .
uprintf Kernel Service

ureadc Kernel Service .
uwritec Kernel Service .
vec_clear Kernel Service .
vec_init Kernel Service .
visrele Kernel Service

vm_att Kernel Service
vm_cflush Kernel Service .
vm_det Kernel Service .
vm_galloc Kernel Service .
vm_gfree Kernel Service
vm_handle Kernel Service.
vm_makep Kernel Service.
vm_mount Kernel Service .
vm_move Kernel Service .
vm_protectp Kernel Service .
vm_gmodify Kernel Service
vm_release Kernel Service
vm_releasep Kernel Service .
vms_create Kernel Service
vms_delete Kernel Service
vms_iowait Kernel Service.
vm_uiomove Kernel Service .
vm_umount Kernel Service
vm_write Kernel Service
vm_writep Kernel Service .

X Technical Reference: Kernel and Subsystems, Volume 1

. 380
. 381
. 382
. 383
. 384
. 387
. 389

. 390
. 392
. 393
. 394
. 395
. 396
. 397
. 398
. 399
. 399
. 403
. 404
. 405
. 406
. 407
. 409
. 409
. 410
. 411
. 412
. 413
. 417
. 417
. 419
. 420
. 421
. 422
. 423
. 424
. 425
. 425
. 426
. 427
. 428
. 429
. 430
. 430
. 432
. 433
. 434
. 435
. 436
. 437
. 438
. 439
. 440
. 441
. 442

vn_free Kernel Service .
vn_get Kernel Service
waitcfree Kernel Service
waitq Kernel Service .
w_clear Kernel Service .
w_init Kernel Service.
w_start Kernel Service .
w_stop Kernel Service .
xlate_create Kernel Service .
xlate_pin Kernel Service
xlate_remove Kernel Service .
xlate_unpin Kernel Service
xm_det Kernel Service .
xm_mapin Kernel Service .
xmalloc Kernel Service .
xmattach Kernel Service
xmattach64 Kernel Service
xmdetach Kernel Service .
xmemdma Kernel Service .
xmemdma64 Kernel Service .
xmempin Kernel Service
xmemunpin Kernel Service
xmemin Kernel Service .
xmemout Kernel Service
xmfree Kernel Service .

Chapter 2. Device Driver Operations .

Standard Parameters to Device Driver Entry Pomts
buf Structure. .

Character Lists Structure .

uio Structure .

ddclose Device Driver Entry Pomt

ddconfig Device Driver Entry Point.

dddump Device Driver Entry Point.

ddioctl Device Driver Entry Point

ddmpx Device Driver Entry Point

ddopen Device Driver Entry Point .

ddread Device Driver Entry Point .

ddrevoke Device Driver Entry Point

ddselect Device Driver Entry Point.

ddstrategy Device Driver Entry Point .

ddwrite Device Driver Entry Point . .
Select/Poll Logic for ddwrite and ddread Routlnes .

Chapter 3. File System Operations .
List of Virtual File System Operations
vfs_cntl Entry Point

vfs_hold or vfs_unhold Kernel Serwce
vfs_init Entry Point

vfs_mount Entry Point

vfs_root Entry Point .

vfs_search Kernel Service.

vfs_statfs Entry Point

vfs_sync Entry Point .

vfs_umount Entry Point .

vfs_vget Entry Point .

. 443
. 443
. 444
. 445
. 446
. 447
. 448
. 449
. 450
. 451
. 452
. 453
. 453
. 454
. 455
. 456
. 457
. 459
. 460
. 461
. 463
. 464
. 465
. 466
. 467

. 469
. 469
. 470
. 472
. 473
. 475
. 477
. 479
. 481
. 483
. 485
. 487
. 489
. 490
. 492
. 493
. 495

. 497
. 497
. 498
. 499
. 499
. 500
. 501
. 502
. 503
. 504
. 505
. 506

Contents

Xi

vn_access Entry Point .
vn_close Entry Point .
vn_create Entry Point
vn_create_attr Entry Point.
vn_fclear Entry Point.
vn_fid Entry Point .
vn_finfo Entry Point .
vn_fsync Entry Point .

vn_fsync_range Entry Point .

vn_ftrunc Entry Point.
vn_getacl Entry Point
vn_getattr Entry Point
vn_hold Entry Point .
vn_ioctl Entry Point
vn_link Entry Point
vn_lockctl Entry Point
vn_lookup Entry Point
vh_map Entry Point .
vn_map_lloff Entry Point
vn_mkdir Entry Point.
vn_mknod Entry Point
vn_open Entry Point .
vn_rdwr Entry Point .
vn_rdwr_attr Entry Point
vn_readdir Entry Point .

vn_readdir_eofp Entry Point .

vn_readlink Entry Point .
vn_rele Entry Point
vn_remove Entry Point .
vn_rename Entry Point .
vn_revoke Entry Point
vn_rmdir Entry Point .
vn_seek Entry Point .
vn_select Entry Point.
vn_setacl Entry Point.
vn_setattr Entry Point
vn_strategy Entry Point .
vn_symlink Entry Point .
vnh_unmap Entry Point .

Appendix. Notices .
Trademarks .

Index

Xii Technical Reference: Kernel and Subsystems, Volume 1

. 507
. 508
. 509
. 510
. 511
. 512
. 513
. 514
. 515
. 516
. 517
. 518
. 519
. 519
. 520
. 521
. 523
. 524
. 525
. 526
. 527
. 528
. 529
. 530
. 531
. 532
. 533
. 534
. 535
. 536
. 537
. 538
. 539
. 539
. 540
. 541
. 543
. 543
. 544

. 547
. 548

. 549

About This Book

This book provides information about kernel services, device driver operations, file system operations,
subroutines, the configuration subsystem, the communications subsystem, the low function terminal (LFT)
subsystem, the logical volume subsystem, the M-audio capture and playback adapter subsystem, the
printer subsystem, the SCSI subsystem, and the serial DASD subsystem.

This book is part of the six-volume technical reference set, AIX 5L Version 5.2 Technical Reference, that
provides information on system calls, kernel extension calls, and subroutines in the following volumes:

* AIX 5L Version 5.2 Technical Reference: Base Operating System and Extensions Volume 1 and AIX 5L
Version 5.2 Technical Reference: Base Operating System and Extensions Volume 2 provide information
on system calls, subroutines, functions, macros, and statements associated with base operating system
runtime services.

* AIX 5L Version 5.2 Technical Reference: Communications Volume 1 and AIX 5L Version 5.2 Technical
Reference: Communications Volume 2 provide information on entry points, functions, system calls,
subroutines, and operations related to communications services.

* AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems Volume 1 and AIX 5L Version 5.2
Technical Reference: Kernel and Subsystems Volume 2 provide information about kernel services,
device driver operations, file system operations, subroutines, the configuration subsystem, the
communications subsystem, the low function terminal (LFT) subsystem, the logical volume subsystem,
the M-audio capture and playback adapter subsystem, the printer subsystem, the SCSI subsystem, and
the serial DASD subsystem.

This edition supports the release of AIX 5L Version 5.2 with the 5200-01 Recommended Maintenance
package. Any specific references to this maintenance package are indicated as A/X 5.2 with 5200-01.

Who Should Use This Book

This book is intended for system programmers wishing to extend the kernel. To use the book effectively,
you should be familiar with operating system concepts and kernel programming.

Highlighting

The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files,
structures, directories, and other items whose names are

predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to
be supplied by the user.
Monospace Identifies examples of specific data values, examples of

text similar to what you might see displayed, examples of
portions of program code similar to what you might write
as a programmer, messages from the system, or
information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the Is command to list files. If you type LS, the
system responds that the command is "not found.” Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

© Copyright IBM Corp. 1997, 2003 xiii

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

32-Bit and 64-Bit Support for the UNIX98 Specification

Beginning with Version 4.3, the operating system is designed to support The Open Group’s UNIX98
Specification for portability of UNIX-based operating systems. Many new interfaces, and some current
ones, have been added or enhanced to meet this specification, making Version 4.3 even more open and
portable for applications.

At the same time, compatibility with previous releases of the operating system is preserved. This is
accomplished by the creation of a new environment variable, which can be used to set the system
environment on a per-system, per-user, or per-process basis.

To determine the proper way to develop a UNIX98-portable application, you may need to refer to The
Open Group’s UNIX98 Specification, which can be obtained on a CD-ROM by ordering Go Solo 2: The
Authorized Guide to Version 2 of the Single UNIX Specification, a book which includes The Open Group’s
UNIX98 Specification on a CD-ROM.

Related Publications

The following books contain information about or related to application programming interfaces:
« [AIX 5L Version 5.2 General Programming Concepts: Writing and Debugging Programs

« |AIX 5L Version 5.2 Communications Programming Concepts|

« [AIX 5L Version 5.2 Kernel Extensions and Device Support Programming Concepts|

XiV Technical Reference: Kerel and Subsystems, Volume 1

Chapter 1. Kernel Services

__pag_getid System Call

Purpose
Invokes the kcred_getpagid kernel service and returns the PAG identifier for that PAG name.

Syntax
int __pag_getid
char *name;

Description

Given a PAG type name, the __pag_getid invokes the kcred_getpagid kernel service and returns the
PAG identifier for that PAG name.

Parameters

name A char * value which references a NULL-terminated string of not more than
PAG_NAME_LENGTH_MAX characters.

Return Values

If successful, a value greater than or equal to 0 is returned and represents the PAG type. This value may
be used in subsequent calls to other PAG system calls that require a type parameter on input. If
unsuccessful, -1 is returned and the errno global variable is set to a value reflecting the cause of the error.

Error Codes

ENOENT The name parameter doesn’t refer to an existing PAG type.
ENAMETOOLONG The name parameter refers to a string that is longer than PAG_NAME_LENGTH_MAX.

Related Information

[pag_getname System Call’} [pag_getvalue System Call”’ on page 2| | pag_setname System Call]
fon page 3| [_pag_setvalue System Call” on page 3, ['kcred_getpagid Kernel Service” on page 214}
[‘kcred_getpagname Kernel Service” on page 215, and[‘kcred_setpagname Kernel Service” on page 219,

__pag_getname System Call

Purpose
Retrieves the name of a PAG type.

Syntax
int __pag_getname ,

int type;
char *buf;
int size;

Description

The __pag_getname system call retrieves the name of a PAG type given its integer value by invoking the
kcred_getpagname kernel service with the given parameters.

© Copyright IBM Corp. 1997, 2003 1

Parameters

type A numerical PAG identifier.
buf A char * value that points to an array at least PAG_NAME_LENGTH_MAX+1 bytes in length.
size An int value that gives the size of buf in bytes.

Return Values

If successful, 0 is returned and the buf parameter contains the PAG name associated with the type
parameter. If unsuccessful, -1 is returned and the errno global variable is set to a value reflecting the
cause of the error.

Error Codes

EINVAL The value of the type parameter is less than 0 or greater than the maximum PAG identifier.

ENOENT There is no PAG associated with the type parameter.

ENOSPC The value of the size parameter is insuffient to hold the PAG name and its terminating NULL
character.

Related Information

“ pag_getid System Call” on page 1} [pag getvalue System Call’,[* pag_setname System Call” on|
page 3, |“ pag_setvalue System Call” on page 3, [‘kcred_getpagid Kernel Service” on page 214
“kcred_getpagname Kernel Service” on page 215, and|“kcred_setpagname Kernel Service” on page 219,

__pag_getvalue System Call

Purpose

Invokes the kcred_getpag kernel service and returns the PAG value.
Syntax

int __pag_getvalue

int type;

Description

Given a PAG type, the __pag_getvalue system call invokes the kcred_getpag kernel service and returns
the PAG value for the value of the fype parameter.

Parameters

type An int value indicating the desired PAG.

Return Values

If successful, the value of the PAG (or 0 when there is no value for that PAG type) is returned. If
unsuccessful, -1 is returned and the errno global variable is set to a value reflecting the cause of the error.

Error Codes

EINVAL The type parameter is less than 0 or greater than the maximum PAG type value.
ENOENT The type parameter doesn’t reference and existing PAG type.

2 Technical Reference: Kerel and Subsystems, Volume 1

Note: It is not an error for a defined PAG to not have a value in the current process’ credentials.

Related Information

“ _pag_getid System Call” on page 1} [pag_getname System Call’ on page 1} [pag_setname System|
Calll[* pag_setvalue System Call’] ['kcred_getpagid Kernel Service” on page 214} [‘kcred_getpagname]
Kernel Service” on page 215| and|‘kcred_setpagname Kernel Service” on page 219

__pag_setname System Call

Purpose
Invokes the kcred_setpagname kernel service and returns the PAG type identifier.

Syntax
int _ pag_setname ,

char *name;
int flags;

Description

The __pag_setname system call invokes the kcred_setpagname kernel service to register the name of a
PAG and returns the PAG type identifier. The value of the func parameter to kcred_setpagname will be
NULL. The other parameters to this system call are the same as with the underlying kernel service. This
system call requires the SYS_CONFIG privilege.

Parameters
name A char * value giving the symbolic name of the requested PAG.
flags Either PAG_UNIQUEVALUE or PAG_MULTIVALUED 1 .

Return Values

A return value greater than or equal to 0 is the PAG type associated with the name parameter. This value
may be used with other PAG-related system calls which require a numerical PAG identifier. If
unsuccessful, -1 is returned and the errno global variable is set to indicate the cause of the error.

Error Codes

ENOSPC The PAG name table is full.

EINVAL The named PAG type already exists in the table, and the flags and func parameters do not match
their earlier values.

EPERM The calling process does not have the SYS_CONFIG privilege.

Related Information

“ _pag_getid System Call” on page 1} |[* pag_getname System Call’ on page 1} [pag_getvalue System|
Call” on page 2| [pag_setvalue System Call’],[*kcred_getpagid Kernel Service” on page 214
“kcred_getpagname Kernel Service” on page 215, and|‘kcred_setpagname Kernel Service” on page 219|.

__pag_setvalue System Call

Purpose
Invokes the kcred_setpag kernel service and sets the value of PAG type to pag.

Chapter 1. Kernel Services 3

Syntax
int _ pag_setvalue

int type;
int pag;

Description

Given a PAG type and value, the __pag_setvalue system call invokes the kcred_setpag kernel service
and sets the value of PAG type to pag. This system call requires the SET_PROC_DAC privilege.

Parameters
type An int value indicating the desired PAG.
pag An int value containing the new PAG value.

Return Values

If successful, 0 is returned. If unsuccessful, -1 is returned and the errno global variable is set to a value
reflecting the cause of the error.

Error Codes

ENOENT The type parameter doesn’t reference an existing PAG type.
EINVAL The value of pag is -1.
EPERM The calling process lacks the appropriate privilege.

Related Information

“__pag_getid System Call’ on page 1} [* pag_getname System Call’ on page 1| [_pag_getvalue System|
Call” on page 2} |*__pag_setname System Call’ on page 3} [‘kcred_getpagid Kernel Service” on page 214,
“kcred_getpagname Kernel Service” on page 215, and|kcred_setpagname Kernel Service” on page 219,

Alphabetical List of Kernel Services

This list provides the names of all available kernel services. It is divided by the [execution environment|
from which each kernel service can be called:

 [Both process and interrupt environments|

 [Process environment only|

[System Calls Available to Kernel Extensions|in AIX 5L Version 5.2 Kernel Extensions and Device Support
Programming Concepits lists the systems calls that can be called by kernel extensions.

Kernel Services Available in Process and Interrupt Environments

Kernel Service Purpose

Adds an address family to the Address Family domain switch table.

Adds a new input type to the Network Input table.

i Adds a network software interrupt service to the Network Interrupt table.

Adds a network option structure to the list of network options.

Releases the specified buffer after marking it for delayed write.

Frees the specified buffer.

Sets the memory for the specified buffer structure’s buffer to all zeros.
Removes a saved context by popping the most recently saved jump buffer from
the list of saved contexts.

Reads the current time into a time structure.

4 Technical Reference: Kernel and Subsystems, Volume 1

Kernel Service

d_align
d_cflush

q
d
d
d
D

el_neto

evdump

evstrat|
evswq ryl
TOM| macro
< D

! _wakeu p|

errsave and errlast|

find_ingut_tyge|

.

c[z|

;

getox
geterrof
getexcept

etpid

ifa_ifwithadd
ifa_ifwithdstaddr

Purpose

Assists in allocation of Direct Memory Access (DMA) buffers.

Flushes the processor and I/O controller (IOCC) data caches when using the
long term DMA_WRITE_ONLY mapping of DMA buffers approach to bus device
DMA.

Frees a DMA channel.

Cleans up after a DMA transfer.

Initializes a DMA channel.

Disables a DMA channel.

Initializes a block-mode DMA transfer for a DMA master.

Provides consistent access to system memory that is accessed asynchronously
by a device and by the processor.

Assists in allocation of DMA buffers.

Initializes a block-mode DMA transfer for a DMA slave.

Enables a DMA channel.

Deletes an address family from the Address Family domain switch table.
Deletes an input type from the Network Input table.

Deletes a network software interrupt service routine from the Network Interrupt
table.

Deletes a network option structure from the list of network options.

Calls a device driver dump-to-device routine.

Calls a block device driver’s strategy routine.

Checks the status of a device switch entry in the device switch table.
Converts an address anywhere within an mbuf structure to the head of that
mbuf structure.

Notifies a kernel thread of the occurrence of one or more events.

Notifies processes waiting on a shared event of the event’s occurrence.
Allows the kernel and kernel extensions to write to the error log.

Finds the given packet type in the Network Input Interface switch table and
distributes the input packet according to the table entry for that type.
Retrieves a character from a character list.

Removes the first buffer from a character list and returns the address of the
removed buffer.

Retrieves multiple characters from a character buffer and places them at a
designated address.

Retrieves a free character buffer.

Returns the character at the end of a designated list.

Determines the completion status of the buffer.

Allows kernel exception handlers to retrieve additional exception information.
Gets the process ID of the current process.

Disables all of the interrupt levels at a particular interrupt priority and all
interrupt levels at a less-favored interrupt priority.

Enables all of the interrupt levels at a particular interrupt priority and all interrupt
levels at a more-favored interrupt priority.

Disables an interrupt level.

Resets the system’s hardware interrupt latches.

Schedules off-level processing.

Enables an interrupt level.

Adds a network interface to the network interface list.

Deletes a network interface from the network interface list.

Marks an interface as down.

Zeroes statistical elements of the interface array in preparation for an attach
operation.

Locates an interface based on a complete address.

Locates the point-to-point interface with a given destination address.
Locates an interface on a specific network.

Chapter 1. Kernel Services 5

Kernel Service
ifunit
io_att

ksettickd
loifp
long mEx|

Iooutput|

m_adj

M_HASCL| macro

MTOCL|macro
macro

Purpose

Returns a pointer to the ifnet structure of the requested interface.

Selects, allocates, and maps a region in the current address space for 1/0
access.

Unmaps and deallocates the region in the current address space at the given
address.

Performs block 1/0 completion processing.

Determines if the current user-address space is 64-bit or not.

Retrieves the name of the current host.

Retrieves the current status of the systemwide time-of-day timer-adjustment
values.

Sets the current status of the systemwide timer-adjustment values.

Returns the address of the software loopback interface structure.

Allows exception handling by causing execution to resume at the most recently
saved context.

Sends data through a software loopback interface.

Adjusts the size of an mbuf chain.

Appends one mbuf chain to the end of another.

Allocates an mbuf structure and attaches an external cluster.

Allocates a page-sized mbuf structure cluster.

Allocates and attaches an external buffer.

Guarantees that an mbuf chain contains no more than a given number of mbuf
structures.

Creates a copy of all or part of a list of mbuf structures.

Copies data from an mbuf chain to a specified buffer.

Creates a copy of all or part of a list of mbuf structures.

Frees an mbuf structure and any associated external storage area.

Frees an entire mbuf chain.

Allocates a memory buffer from the mbuf pool.

Allocates and zeros a memory buffer from the mbuf pool.

Allocates an mbuf structure from the mbuf buffer pool and attaches a
page-sized cluster.

Allocates an mbuf structure from the mbuf buffer pool and attaches a cluster of
the specified size.

Allocates a header memory buffer from the mbuf pool.

Determines if an mbuf structure has an attached cluster.

Adjusts an mbuf chain so that a given number of bytes is in contiguous
memory in the data area of the head mbuf structure.

Converts a pointer to an mbuf structure to a pointer to the head of an attached
cluster.

Converts a pointer to an mbuf structure to a pointer to the data stored in that
mbuf structure.

Returns the address of an mbuf cross-memory descriptor.

Handles errors for communication network interface drivers.

Starts the done notification handler for communications 1/0 device handlers.
Wakes up all sleepers waiting on the specified wait channel.

Transmits data using a communications I/O device handler.

Traces transmit packets. This kernel service was added for those network
interfaces that choose not to use the net_xmit kernel service to trace transmit
packets.

Crashes the system.

Invokes the ctlinput function for each configured protocol.

Returns the address of a protocol switch table entry.

Sends a signal to a process.

Sends a signal to a process group.

6 Technical Reference: Kernel and Subsystems, Volume 1

Kernel Service Purpose

Provides a standardized programmed I/O exception handling mechanism for all
routines performing programmed 1/0.

Places a character at the end of a character list.

Places a character buffer at the end of a character list.

Places several characters at the end of a character list.

Frees a specified buffer.

Frees the specified list of buffers.

Places a character on a character list.

Builds a raw_header structure for a packet and sends both to the raw protocol
handler.

Implements user requests for raw protocols.

Allocates a route.

Frees the routing table entry.

Sets up a routing table entry, typically for a network interface.

Forces a routing table entry with the specified destination to go through the
given gateway.

Carries out a request to change the routing table.

Schedules or invokes a network software interrupt service routine.

Wakes up processes waiting in a poll or select subroutine or the fp_poll kernel
service.

Allows saving the current execution state or context.

Sets the parent of the current kernel process to the init process.

Deallocates a timer request block.

Schedules a function to be called after a specified interval.

Records a trace event for a generic trace channel.

Records a trace event, including a time stamp, for a generic trace channel.
Submits a timer request.

Cancels a pending timer request.

Makes a process non-runnable when called from a user-mode exception
handler.

Makes a process blocked by the uexblock service runnable again.

Unpins the address range in system (kernel) address space.

Unpins the specified address range in user or system memory.

Cancels a pending timer request.

Maps a specified virtual memory object to a region in the current address
space.

Unmaps and deallocates the region in the current address space that contains
a given address.

Detaches from a user buffer used for cross-memory operations.

Prepares a page for DMA I/O or processes a page after DMA 1/O is complete.
Performs a cross-memory move by copying data from the specified address
space to kernel global memory.

Performs a cross-memory move by copying data from kernel global memory to
a specified address space.

Kernel Services Available in the Process Environment Only

Kernel Service Purpose

Selects, allocates, and maps a region in the specified address space for the specified
virtual memory object.

as_att64] Allocates and maps a specified region in the current user address space.

as_det Unmaps and deallocates a region in the specified address space that was mapped with

the as_att kernel service.

Chapter 1. Kernel Services 7

Kernel Service

delay|
devswadd|
devswdel
dmp_add

dmp_ctl
dmp_del

Purpose

Unmaps and deallocates a region in the current user address space that was mapped
with the as_att64 kernel service.

Obtains a handle to the virtual memory object for the specified address.

Obtains a handle to the virtual memory object for the specified address.

Indicates that no more references will be made to a virtual memory object obtained using
the as_geth64 kernel service.

Remaps an additional 64-bit address to a 32-bit address that can be used by the kernel.
Maps a specified region for the specified virtual memory object.

Returns the 64-bit original or unremapped address associated with a 32-bit remapped
address.

Appends event information to the current audit event buffer.

Writes an audit record for a kernel service.

Initiates an audit record for a system call.

Writes the specified buffer's data without waiting for I/O to complete.

Flushes all write-behind blocks on the specified device from the buffer cache.
Invalidates all of a specified device’s data in the buffer cache.

Flushes the specified block if it is in the buffer cache.

Reads the specified block’s data into a buffer.

Reads in the specified block and then starts I/O on the read-ahead block.

Writes the specified buffer's data.

Registers a notification routine to be called when system-configurable variables are
changed.

Removes a notification routine for receiving broadcasts of changes to system
configurable variables.

Copies data between user and kernel memory.

Copies data between user and kernel memory.

Copies a character string (including the terminating NULL character) from user to kernel
space.

Copies data between user and kernel memory.

Copies data between user and kernel memory.

Copies data between user and kernel memory.

Creates a new kernel process.

Suspends the calling process for the specified number of timer ticks.

Adds a device entry to the device switch table.

Deletes a device driver entry from the device switch table.

Specifies data to be included in a system dump by adding an entry to the master dump
table. The dmp_ctl kernel service should now be used.

Adds and removes entries to the master dump table.

Deletes an entry from the master dump table. The dmp_ctl kernel service should now be
used.

Initializes the remote dump protocol.

Forces a process to wait for the occurrence of a shared event.

Forces a process to wait for the occurrence of a shared event.

Forces a process to wait for the occurrence of an event.

Sends a request queue element to a device queue.

Checks for access permission to an open file.

Closes a file.

Gets the attributes of an open file.

Gets the device number and/or channel number for a device.

Retrieves a pointer to a file structure.

Increments the open count for a specified file pointer.

Issues a control command to an open device or file.

Changes the current offset in an open file.

Opens a regular file or directory.

Opens a device special file.

8 Technical Reference: Kernel and Subsystems, Volume 1

Kernel Service

iowai
kmod_entry

net_start

NLuprint]

Purpose

Checks the 1/0O status of multiple file pointers/descriptors and message queues.
Performs a read on an open file with arguments passed.

Performs a read operation on an open file with arguments passed in iovec elements.
Performs read and write on an open file with arguments passed in a uio structure.
Provides for cascaded, or redirected, support of the select or poll request.

Performs a write operation on an open file with arguments passed.

Performs a write operation on an open file with arguments passed in iovec elements.
Fetches, or retrieves, a byte of data from user memory.

Retrieves a byte of data from user memory.

Fetches, or retrieves, a word of data from user memory.

Retrieves a word of data from user memory.

Obtains a pointer to the current process’s address space structure for use with the as_att
and as_det kernel services.

Assigns a buffer to the specified block.

Allocates a free buffer.

Gets the parent process ID of the specified process.

Allows kernel extensions to retrieve the current value of the u_error field.

Adds a file system type to the gfs table.

Removes a file system type from the gfs table.

Removes an interrupt handler from the system.

Defines an interrupt handler to the system, connects it to an interrupt level, and assigns
an interrupt priority to the level.

Initializes a new heap to be used with kernel memory management services.

Changes the state of a kernel process from idle to ready.

Registers an 1/O statistics structure used for updating 1/O statistics reported by the iostat
subroutine.

Removes the registration of an 1/O statistics structure used for maintaining 1/O statistics
on a particular device.

Waits for block I/0O completion.

Returns a function pointer to a kernel module’s entry point.

Loads an object file into the kernel or queries for an object file already loaded.
Unloads a kernel object file.

Provides message queue control operations.

Obtains a message queue identifier.

Reads a message from a message queue.

Sends a message using a previously defined message queue.

Sets the systemwide time-of-day timer.

Locks a conventional process lock.

Retrieves the vnode that corresponds to the named path.

Unregisters expected mbuf structure usage.

Registers expected mbuf usage.

Opens a communications 1/O device handler.

Closes a communications 1/O device handler.

Sleeps on the specified wait channel.

Starts network IDs on a communications 1/O device handler.

Submits a request to print an internationalized message to the controlling terminal of a
process.

Pins the address range in the system (kernel) space.

Manages the list of free character buffers.

Pins the code and data associated with an object file.

Pins the specified address range in user or system memory.

Registers a callout handler.

Unregisters a callout handler that was previously registered using the proch_reg kernel
service.

Adds a systemwide process state-change notification routine.

Chapter 1. Kernel Services 9

Kernel Service Purpose

Erochdel| Deletes a process state change notification routine.

purbl Invalidates a specified block’s data in the buffer cache.

rmmap_create64| Defines an Effective Address [EA] to Real Address [RA] translation region for either 64-bit
or 32-bit Effective Addresses.

[rmmap_remove64| Destroys an effective address to real address translation region.

Allows kernel extensions to set the u_error field in the u area.

Provides a kernel process the ability to poll for receipt of signals.

Forces the calling process to wait on a specified channel.

Stores a byte of data in user memory.

Stores a byte of data in user memory.

Determines the privilege state of a process.

Stores a word of data in user memory.

Stores a word of data in user memory.

Allocates a timer request block before starting a timer request.

Allocates or deallocates callout table entries for use with the timeout kernel service.
Adds a systemwide exception handler for catching user-mode process exceptions.
Deletes a previously added systemwide user-mode exception handler.

Provides a file interface to kernel services.

Moves a block of data between kernel space and a space defined by a uio structure.
Unlocks a conventional process lock.

Unpins the code and data associated with an object file.

Submits a request to print a message to the controlling terminal of a process.
Performs character I/O for a block device using a uio structure.

Writes a character to a buffer described by a uio structure.

Retrieves a character from a buffer described by a uio structure.

Removes a virtual interrupt handler.

Defines a virtual interrupt handler.

Points to a virtual file system structure.

vm_cflush Flushes the processor’s cache for a specified address range.
vm_galloc Allocates a region of global memory in the 64-bit kernel.
vm gfreel Frees a region of global memory in the kernel previously allocated with the vm_galloc

kernel service.

Constructs a virtual memory handle for mapping a virtual memory object with specified
access level.

Makes a page in client storage.

Adds a file system to the paging device table.

Moves data between a virtual memory object and a buffer specified in the uio structure.
Sets the page protection key for a page range.

Determines whether a mapped file has been changed.

Releases virtual memory resources for the specified address range.

Releases virtual memory resources for the specified page range.

Moves data between a virtual memory object and a buffer specified in the uio structure.
Removes a file system from the paging device table.

Initiates page-out for a page range in the address space.

Initiates page-out for a page range in a virtual memory object.

Creates a virtual memory object of the type and size and limits specified.

Deletes a virtual memory object.

Waits for the completion of all page-out operations for pages in the virtual memory object.
Frees a vnode previously allocated by the vn_get kernel service.

Allocates a virtual node and inserts it into the list of vnodes for the designated virtual file
system.

Checks the availability of a free character buffer.

Waits for a queue element to be placed on a device queue.

Removes a watchdog timer from the list of watchdog timers known to the kernel.
Registers a watchdog timer with the kernel.

10 Technical Reference: Kernel and Subsystems, Volume 1

Kernel Service Purpose

Starts a watchdog timer.

Stops a watchdog timer.

Allocates memory.

Attaches to a user buffer for cross-memory operations.
Attaches to a user buffer for cross-memory operations.
Frees allocated memory.

add_domain_af Kernel Service

Purpose
Adds an address family to the Address Family domain switch table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/domain.h>

int add_domain_af (

struct domain *domain;

Parameter

domain Specifies the domain of the address family.

Description

The add_domain_af kernel service adds an address family domain to the Address Family domain switch
table.

Execution Environment
The add_domain_af kernel service can be called from either the [process| or interrupf environment.

Return Values

0 Indicates that the address family was successfully added.

EEXIST Indicates that the address family was already added.

EINVAL Indicates that the address family number to be added is out of range.
Example

To add an address family to the Address Family domain switch table, invoke the add_domain_af kernel
service as follows:

add_domain_af(&inetdomain);

In this example, the family to be added is inetdomain.

Related Information
The |del_domain_af| kernel service.

[Network Kernel Services|in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepits.

Chapter 1. Kernel Services 11

add_input_type

Purpose

Kernel Service

Adds a new input type to the Network Input table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

#include <net/if.h>
#include <net/netisr.h>

int add_input_type (type, service_level, isr, ifq, af)
u_short |t
u_short [service_level;

int (* s 0);
struct if@eue * ;

u_short

Parameters
type

service_level

isr

af

Description
To enable the reception

Specifies which type of protocol a packet contains. A value of X FFFF’ indicates that this
input type is a wildcard type and matches all input packets.

Determines the processing level at which the protocol input handler is called. If the
service_level parameter is set to NET_OFF_LEVEL, the input handler specified by the isr
parameter is called directly. Setting the service_level parameter to NET_KPROC schedules
a network dispatcher. This dispatcher calls the subroutine identified by the isr parameter.
Identifies the routine that serves as the input handler for an input packet type.

Specifies an input queue for holding input buffers. If this parameter has a non-null value, an
input buffer (mbuf) is enqueued. The ifq parameter must be specified if the processing level
specified by the service_level parameter is NET_KPROC. Specifying null for this parameter
generates a call to the input handler specified by the isr parameter, as in the following:
Specifies the address family of the calling protocol. The af parameter must be specified if
the ifg parameter is not a null character.

(*isr) (CommonPortion,Buffer);

In this example, CommonPortion points to the network common portion (the arpcom
structure) of a network interface and Buffer is a pointer to a buffer (mbuf) containing an
input packet.

of packets, an address family calls the add_input_type kernel service to register

a packet type in the Network Input table. Multiple packet types require multiple calls toAl/X 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts the add_input_type kernel service.

Execution Environment

The add_input_type ke

Return Values

0 Indicates that
EEXIST Indicates that
ENOSPC Indicates that
EINVAL Indicates that

rnel service can be called from either the [process|or finterrupt| environment.

the type was successfully added.

the type was previously added to the Network Input table.
no free slots are left in the table.

an error occurred in the input parameters.

12 Technical Reference: Kernel and Subsystems, Volume 1

Examples

1. To register an Internet packet type (TYPE_IP), invoke the add_input_type service as follows:
add_input_type(TYPE_IP, NET_KPROC, ipintr, &ipintrq, AF_INET);

This packet is processed through the network kproc. The input handler is ipintr. The input queue is
ipintrq.

2. To specify the input handler for ARP packets, invoke the add_input_type service as follows:
add_input_type(TYPE_ARP, NET_OFF _LEVEL, arpinput, NULL, NULL);

Packets are not queued and the arpinput subroutine is called directly.

Related Information
The |del_input_type| kernel service, [find_input_type| kernel service.

|Network Kernel Services| in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepits.

add_netisr Kernel Service

Purpose
Adds a network software interrupt service to the Network Interrupt table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/netisr.h>

int add_netisr ([soft_intr_level,[service_level,
u_short soft_intr_level;

u_short service level,

int (*isr) ();

Parameters

soft_intr_level Specifies the software interrupt level to add. This parameter must be greater than or
equal to 0 and less than NETISR_MAX.

service_level Specifies the processing level of the network software interrupt.

isr Specifies the interrupt service routine to add.

Description

The add_netisr kernel service adds the software-interrupt level specified by the soft_intr_level parameter
to the Network Software Interrupt table.

The processing level of a network software interrupt is specified by the service_level parameter. If the
interrupt level specified by the service_level parameter equals NET_KPROC, a network interrupt scheduler
calls the function specified by the isr parameter. If you set the service_level parameter to
NET_OFF_LEVEL, the schednetisr service calls the interrupt service routine directly.

Execution Environment
The add_netisr kernel service can be called from either the [process] or interruptl environment.

Chapter 1. Kernel Services 13

Return Values

0 Indicates that the interrupt service routine was successfully added.

EEXIST Indicates that the interrupt service routine was previously added to the table.

EINVAL Indicates that the value specified for the soft_intr_level parameter is out of range or at a service level that
is not valid.

Related Information

The kernel service.

|Network Kernel Services| in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

add_netopt Macro

Purpose
Adds a network option structure to the list of network options.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <net/netopt.h>

add_netopt (|option_name_symbol, |print_format)
option_name_symbol,

char *print_format;

Parameters

option_name_symbol Specifies the symbol name used to construct the netopt structure and default
names.

print_format Specifies the string representing the print format for the network option.

Description

The add_netopt macro adds a network option to the linked list of network options. The@ command can
then be used to show or alter the variable’s value.

The add_netopt macro has no return values.

Execution Environment
The add_netopt macro can be called from either the |process or interrup{ environment.

Related Information

Thecommand.
The macro.

INetwork Kernel Services|in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

14 Technical Reference: Kernel and Subsystems, Volume 1

as_att Kernel Service

Purpose

Selects, allocates, and maps a region in the specified address space for the specified virtual memory
object.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>

caddr_t as_att (adspacep, vmhandle, offset)
adspace_t *|adspacep;
vmhandle_t [vmhandle;

caddr_t |offse_f;

Parameters

adspacep Points to the address space structure that defines the address space where the region for the virtual
memory object is to be allocated. The getadsp kernel service can obtain this pointer.

vmhandle Describes the virtual memory object being made addressable within a region of the specified address
space.

offset Specifies the offset in the virtual memory object and the region being mapped. On this system, the

upper 4 bits of this offset are ignored.

Description

The as_att kernel service:

» Selects an unallocated region within the address space specified by the adspacep parameter.
» Allocates the region.

* Maps the virtual memory object selected by the vmhandle parameter with the access permission
specified in the handle.

» Constructs the address of the offset specified by the offset parameter in the specified address space.

If the specified address space is the current address space, the region becomes immediately addressable.
Otherwise, it becomes addressable when the specified address space next becomes the active address
space.

Kernel extensions use the as_att kernel service to manage virtual memory object addressability within a
region of a particular address space. They are also used by base operating system subroutines such as
the [shmat] and [shmdt| subroutines.

Subroutines executed by a kernel extension may be executing under a process, with a process address
space, or executing under a kernel process, entirely in the current address space. (The as_att service
never switches to a user-mode address space.) Thekernel service should be used to get the
correct address-space structure pointer in either case.

The as_att kernel service assumes an address space model of fixed-size virtual memory objects and
address space regions.

Note: the as_att kernel service is not supported on the 64-bit kernel.

Chapter 1. Kernel Services 15

Execution Environment
The as_att kernel service can be called from the [process environment| only.

Return Values

If successful, the as_att service returns the address of the offset (specified by the offset parameter) within
the region in the specified address space where the virtual memory object was made addressable.

If there are no more free regions within the specified address space, the as_att service will not allocate a
region and returns a null address.

Related Information
The |as_det| kernel service, kernel service, kernel service, kernel service,

getadsp| kernel service.

IMemory Kernel Services|and [Understanding Virtual Memory Manager Interfaces| in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

as_att64 Kernel Service

Purpose
Allocates and maps a specified region in the current user address space.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>

unsigned long long as_att64 (vmhandle, offset)
vmhandle_t vmhandle;

int offset;

Parameters

vmhandle Describes the virtual memory object being made addressable in the address space.

offset Specifies the offset in the virtual memory object. The upper 4-bits of this offset are ignored.
Description

The as_att64 kernel service: Selects an unallocated region within the current user address space.

Allocates the region.

Maps the virtual memory object selected by the vmhandle parameter
with the access permission specified in the handle.

Constructs the address of the offset specified by the offset parameter
within the user-address space.

The as_att64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

16 Technical Reference: Kernel and Subsystems, Volume 1

Note: This service only operates on the current process’s address space. It is not allowed to operate on
another address space.

Execution Environment
The as_att64 kernel service can be called from the process environment only.

Return Values

On successful completion, this service returns the base address plus the input offset (offset) into the
allocated region.

NULL An error occurred and ernno indicates the cause:
EINVAL Address specified is out of range, or
ENOMEM Could not allocate due to insufficient resources.

Related Information

The [as_seth64| kernel service, [as_det64] kernel service, kernel service, fas_getsrval64| kernel
service, las_puth64| kernel service.

as_det Kernel Service

Purpose

Unmaps and deallocates a region in the specified address space that was mapped with the as_att kernel
service.

Syntax

#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>
int as_det (|adspacep) leaddr)
adspace_t *adspacep;
caddr_t eaddr,

Parameters

adspacep Points to the address space structure that defines the address space where the region for the virtual
memory object is defined. For the current process, the getadsp kernel service can obtain this pointer.
eaddr Specifies the effective address within the region to be deallocated in the specified address space.

Description

The as_det kernel service unmaps the virtual memory object from the region containing the specified
effective address (specified by the eaddr parameter) and deallocates the region from the address space
specified by the adspacep parameter. This region is added to the free list for the specified address space.

The as_det kernel service assumes an address space model of fixed-size virtual memory objects and
address space regions.

Note: This service should not be used to deallocate a base kernel region, process text, process private or
unallocated region: an EINVAL return code will result. For this system, the upper 4 bits of the eadadr
effective address parameter must never be 0, 1, 2, OxE, or specify an unallocated region.

Note: The as_det kernel service is not supported on the 64-bit kernel.

Chapter 1. Kernel Services 17

Execution Environment
The as_det kernel service can be called from the |[process environment only.

Return Values

0 The region was successfully unmapped and deallocated.
EINVAL An attempt was made to deallocate a region that should not have been deallocated (that is, a base
kernel region, process text region, process private region, or unallocated region).

Related Information

| ice, [0 vice.
The kernel service, [getadsp| kernel service

[Memory Kernel Services|and [Understanding Virtual Memory Manager Interfaced in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

as_det64 Kernel Service

Purpose

Unmaps and deallocates a region in the current user address space that was mapped with the as_att64
kernel service.

Syntax

#include <sys/errno.h>
#include <sys/adspace.h>
int as_det64 (addr64)
unsigned long long addré64;

Parameters

addr64 Specifies an effective address within the region to be deallocated.

Description

The as_det64 kernel service unmaps the virtual memory object from the region containing the specified
effective address (specified by the addr64 parameter).

The as_det64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service should not be used to deallocate a base kernel region, process text, process private or an
unallocated region. An EINVAL return code will result.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on
another address space.

Execution Environment
The as_det64 kernel service can be called from the process environment only.

18 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

0 The region was successfully unmapped and deallocated.

EINVAL An attempt was made to deallocate a region that should not have been deallocated (that is, a base
kernel region, process text region, process private region, or unallocated region).

EINVAL Input address out of range.

Related Information

The |as_att64] kernel service, kernel service, [as_geth64{ kernel service, [as_getsrval64| kernel
service, @as_puth64| kernel service.

as_geth Kernel Service

Purpose

Obtains a handle to the virtual memory object for the specified address given in the specified address
space.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>
vmhandle_t as_geth (Adspacep, Adadr)
adspace_t *Adspacep;

caddr_t Addr,

Parameters

Adspacep Points to the address space structure to obtain the virtual memory object handle from. The getadsp
kernel service can obtain this pointer.

Adadr Specifies the virtual memory address that should be used to determine the virtual memory object

handle for the specified address space.

Description

The as_geth kernel service is used to obtain a handle to the virtual memory object corresponding to a
virtual memory address in a particular address space. This handle can then be used with the as_att or
vm_att kernel services to make the object addressable in another address space.

After the last use of the handle and after it is detached from all address spaces, the as_puth kernel
service must be used to indicate this fact. Failure to call the as_puth kernel service may result in
resources being permanently unavailable for reuse.

If the handle obtained refers to a virtual memory segment, then that segment is protected from deletion
until the as_puth kernel service is called.

If for some reason it is known that the virtual memory object cannot be deleted, the as_getsrval kernel

service may be used. This kernel service does not require that the as_puth kernel service be used. This
service can also be called from the interrupt environment.

Execution Environment
The as_geth kernel service can be called from the process environment only.

Chapter 1. Kernel Services 19

Return Values
The as_geth kernel service always succeeds and returns the appropriate handle.

Related Information

The |getadsp| kernel service, kernel service, vm_att|kernel service, kernel service, and

s_getsrval| kernel service.

as_geth64 Kernel Service

Purpose
Obtains a handle to the virtual memory object for the specified address.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>

vmhandle_t as_geth64 (addr64)
unsigned Tlong long addré64;

Parameter

addr64 Specifies the virtual memory address for which the corresponding handle should be returned.

Description

The as_geth64 kernel service is used to obtain a handle to the virtual memory object corresponding to the
input address (addr64). This handle can then be used with the as_att64 or vm_att kernel service to make
the object addressable at a different location.

After the last use of the handle and after it is detached accordingly, the as_puth64 kernel service must be
used to indicate this fact. Failure to call the as_puth64 service may result in resources being permanently
unavailable for re-use.

If the handle returned refers to a virtual memory segment, then that segment is protected from deletion
until the as_puth64 kernel service is called.

If, for some reason, it is known that the virtual memory object cannot be deleted, then the as_getsrval64
kernel service may be used instead of the as_geth64 service.

The as_geth64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on
another address space.

Execution Environment
The as_geth64 kernel service can be called from the process environment only.

20 Technical Reference: Kernel and Subsystems, Volume 1

Return Values
On successful completion, this routine returns the appropriate handle.

On error, this routine returns the value INVLSID defined in sys/seg.h. This is caused by an address out of
range.

Errors include: Input address out of range.

Related Information
The [as_att64] kernel service, [as_seth64| kernel service, kernel service, [as_getsrval64| kernel

service, and |as_puth64| kernel service.

as_getsrval Kernel Service

Purpose

Obtains a handle to the virtual memory object for the specified address given in the specified address
space.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>

vmhandle_t as_getsrval (Adspacep, Addr)
adspace_t *Adspacep;
caddr_t Addr;

Parameters

Adspacep Points to the address space structure to obtain the virtual memory object handle from. The getadsp
kernel service can obtain this pointer.

Adadr Specifies the virtual memory address that should be used to determine the virtual memory object

handle for the specified address space.

Description

The as_getsrval kernel service is used to obtain a handle to the virtual memory object corresponding to a
virtual memory address in a particular address space. This handle can then be used with the as_att or
vm_att kernel services to make the object addressable in another address space.

This should only be used when it is known that the virtual memory object cannot be deleted, otherwise the
as_geth kernel service must be used.

The as_puth kernel service must not be called for handles returned by the as_getsrval kernel service.

Execution Environment
The as_getsrval kernel service can be called from both the interrupt and the process environments.

Return Values
The as_getsrval kernel service always succeeds and returns the appropriate handle.

Chapter 1. Kernel Services 21

Related Information

The [getadsp] kernel service, kernel service, [vm_att| kernel service, kernel service, and
as_puth| kernel service.

as_getsrval64 Kernel Service

Purpose
Obtains a handle to the virtual memory object for the specified address.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>
vmhandle_t as_getsrval64 (addr64)
unsigned long long addré64;

Parameters

addré64 Specifies the virtual memory address for which the corresponding handle should be returned.

Description

The as_getsrval64 kernel service is used to obtain a handle to the virtual memory object corresponding to
the input address(addr64). This handle can then be used with the as_att64 or vm_att kernel services to
make the object addressable at a different location.

This service should only be used when it is known that the virtual memory object cannot be deleted,
otherwise the as_geth64 kernel service must be used.

The as_puth64 kernel service must not be called for handles returned by the as_getsrval64 kernel
service.

The as_getsrval64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on
another address space.

Execution Environment

The as_getsrval64 kernel service can be called from the process environment only when the current user
address space is 64-bits. If the current user address space is 32-bits, or is a kproc, then as_getsrval64
may be called from an interrupt environment.

Return Values
On successful completion this routine returns the appropriate handle.

On error, this routine returns the value INVLSID defined in sys/seg.h. This is caused by an address out of
range.

22 Technical Reference: Kernel and Subsystems, Volume 1

Errors include: Input address out of range.

Related Information
The |as_att64) kernel service, kernel service, [as_geth64] kernel service, and [as_puth64 kernel

service, as_seth64] kernel service.

as_puth Kernel Service

Purpose

Indicates that no more references will be made to a virtual memory object obtained using the as_geth
kernel service.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>

void as_puth (Adspacep,Vmhandie)
adspace_t *Adspacep;

vmhandle_t Vmhandle;

Parameters

Adspacep Points to the address space structure that the virtual memory object handle was obtained from. This
must be the same address space pointer that is given to the as_geth kernel service.

Vmhandle Describes the virtual memory object that will no longer be referenced. This handle must have been

returned by the as_geth kernel service.

Description

The as_puth kernel service is used to indicate that no more references will be made to the virtual memory
object returned by a call to the as_geth kernel service. The virtual memory object must be detached from
all address spaces it may have been attached to using the as_att or vm_att kernel services.

Failure to call the as_puth kernel service may result in resources being permanently unavailable for
re-use.

If for some reason it is known that the virtual memory object cannot be deleted, the as_getsrval kernel
service may be used instead of the as_geth kernel service. This kernel service does not require that the
as_puth kernel service be used. This service can also be called from the interrupt environment.

Execution Environment
The as_puth kernel service can be called from the process environment only.

Return Values
The as_puth kernel service always succeeds and returns nothing.

Related Information
The |getadsp| kernel service, kernel service, kernel service, kernel service, and

kernel service.

Chapter 1. Kernel Services 23

as_puth64 Kernel Service

Purpose

Indicates that no more references will be made to a virtual memory object obtained using the as_geth64
kernel service.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>
#include <sys/adspace.h>

int as_puth64 (addr64, vmhandle)
unsigned long long addré4;
vmhandle_t vmhandle;

Parameters

addré4 Specifies the virtual memory address that the virtual memory object handle was obtained from. This
must be the same address that was given to the as_geth64 kernel service previously.

vmhandle Describes the virtual memory object that will no longer be referenced. This handle must have been

returned by the as_geth64 kernel service.

Description

The as_puth64 kernel service is used to indicate that no more references will be made to the virtual
memory object returned by a call to the as_geth64 kernel service. The virtual memory object must be
detached from the address space already, using either as_det64 or vm_det service.

Failure to call the as_puth64 kernel service may result in resources being permanently unavailable for
re-use.

If, for some reason, it is known that the virtual memory object cannot be deleted, the as_getsrval64 kernel
service may be used instead of the as_geth64 kernel service. This kernel service does not require that the
as_puth64 kernel service be used.

The as_puth64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on
another address space.

Execution Environment
The as_puth64 kernel service can be called from the process environment only.

Return Values

0 Successful completion.
EINVAL Input address out of range.

24 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

The [as_att64] kernel service, [as_det64] kernel service, [as_getsrval64] kernel service, [as_geth64] kernel
service, and|as_seth64| kernel service.

as_remap64 Kernel Service

Purpose
Maps a 64-bit address to a 32-bit address that can be used by the 32-bit PowerPC kernel.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/remap.h>

int as_remap64 (addr64, len, addr32)
unsigned long long addré4;
unsigned int /en;

unsigned int*addr3z;

Parameters

addr64 Specifies the 64-bit, effective address of start of range to be mapped.

len Specifies the number of bytes in the range to be mapped.

addr32 Specifies the location where the mapped, 32—bit address will be saved by as_remap64.
Description

The as_remap64 service maps a 64-bit address into a 32-bit address. This service allows other kernel
services to continue using 32-bit addreses, even for 64-bit processes. If the 32-bit address is passed to a
[user-memory-access kernel service| the original 64-bit address is obtained and used. The original 64-bit
address can also be obtained by calling the |as_unremap64| kernel service.

The as_remap64 kernel service may be called for either a 32-bit or 64-bit process. If called for a 32-bit
process and addr64 is a valid 32-bit address, then this address is simply returned in the addr32
parameter.

Note: The as_remap64 kernel service is not supported on the 64-bit kernel.

Execution Environment
The as_remap64 kernel service can be called from the process environment only.

Return Values

0 Successful completion.
EINVAL The process is 32-bit, and addr64 is not a valid 32-bit address

or

Too many address ranges have already been mapped.

Related Information
The [as_unremap64] kernel service.

Chapter 1. Kernel Services 25

[Memory Kernel Services|and [Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

as_seth Kernel Service

Purpose
Maps a specified region in the specified address space for the specified virtual memory object.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/vmuser.h>

#include <sys/adspace.h>

void as_seth (adspacep, vmhandle, addr)
adspace_t *adspacep;

vmhandle_t vmhandle;

caddr_t addr;

Parameters

adspacep Points to the address space structure that defines the address space where the region for the virtual
memory object is to be allocated. The getadsp kernel service can obtain this pointer.

vmhandle Describes the virtual memory object being made addressable within a region of the specified address
space.

addr Specifies the virtual memory address which identifies the region of the specified address space to
allocate. On this system, the upper 4 bits of this address are used to determine which region to
allocate.

Description

The as_seth kernel service:

» Allocates the region within the address space specified by the adspacep parameter and the adar
parameter. Any virtual memory object previously mapped in this region of the address space is
unmapped.

* Maps the virtual memory object selected by the vmhandle parameter with the access permission
specified in the handle.

The as_seth kernel service should only be used when it is necessary to map a virtual memory object at a
fixed address within an address space. The as_att kernel service should be used when it is not absolutely
necessary to map the virtual memory object at a fixed address.

Note: The as_seth kernel service is not supported on the 64-bit kernel.

Execution Environment
The as_seth kernel service can be called from the process environment only.

Return Values
The as_seth kernel service always succeeds and returns nothing.

Related Information

The |getadsp| kernel service, kernel service, [vm_att| kernel service, kernel service, and
as_getsrval|kernel service.

26 Technical Reference: Kernel and Subsystems, Volume 1

as_seth64 Kernel Service

Purpose
Maps a specified region for the specified virtual memory object.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/vmuser.h>
#include <sys/adspace.h>

int as_seth64 (addré64,vmhandle)
unsigned long long addré4;
vmhandle_t vmhandle;

Parameters

addré64 The region covering this input virtual memory address will be mapped.
vmhandle Describes the virtual memory object being made addressable within a region of the address space.

Description

The as_seth64 kernel service maps the region covering the input addr64 parameter. Any virtual memory
object previously mapped within this region is unmapped.

The virtual memory object specified with the vmhandle parameter is then mapped with the access
permission specified in the handle.

The as_seth64 kernel service should only be used when it is necessary to map a virtual memory object at
a fixed address. The as_att64 kernel service should be used when it is not absolutely necessary to map
the virtual memory object at a fixed address.

The as_seth64 kernel service assumes an address space model of fixed-size virtual memory objects.

This service will operate correctly for both 32-bit and 64-bit user address spaces. It will also work for
kernel processes (kprocs).

Note: This service only operates on the current process’s address space. It is not allowed to operate on
another address space.

Execution Environment
The as_seth64 kernel service can be called from the process environment only.

Return Values

0 Successful completion.
EINVAL Input address out of range.

Related Information
The|as_att67|| kernel service, |5s_det64—l| kernel service, jas_getsrval64| kernel service, |as_geth64 kernel

service, and |as_puth64| kernel service.

Chapter 1. Kernel Services 27

as_unremap64 Kernel Service

Purpose
Returns the original 64-bit address associated with a 32-bit mapped address.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/remap.h>

unsigned long long as_unremap (addr32)
caddr_t addr32;

Parameter

addr32 Specifies the 32-bit mapped address to be converted to its corresponding 64-bit address.

Description

The as_unremap64 service returns the original 64-bit address associated with a given 32-bit mapped
address.

Note: For a 64-bit process, the addr32 parameter must specify an address in a range mapped by the
as_remap64 service. Otherwise, the returned value is unpredictable.

For a 32-bit process, as_unremap64 casts the 32-bit address to 64 bits.

Note: The as_unremap64 kernel service is not supported on the 64-bit kernel.

Execution Environment
The as_unremap64 kernel service can be called from the process environment only.

Return Values
The 64-bit address corresponding to the 32-bit mapped address, addr32.

Related Information
The kernel service.

[Memory Kernel Services|and [Understanding Virtual Memory Manager Interfaces in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

attach Device Queue Management Routine

Purpose
Provides a means for performing device-specific processing when the attchq kernel service is called.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

28 Technical Reference: Kernel and Subsystems, Volume 1

int attach (|dev_parms, |path_id))
caddr_t dev_parms;
cba_id path_id;

Parameters

dev_parms Passed to the creatd kernel service when the attach routine is defined.
path_id Specifies the path identifier for the queue being attached to.

Description

The attach routine is part of the Device Queue Management kernel extension. Each device queue can
have an attach routine. This routine is optional and must be specified when the creatd kernel service
defines the device queue. The attchq service calls the attach routine each time a new path is created to
the owning device queue. The processing performed by this routine is dependent on the server function.

The attach routine executes under the process under which the attchq kernel service is called. The kernel
does not serialize the execution of this service with the execution of any other server routines.

Execution Environment
The attach-device routine can be called from the [process environment| only.

Return Values

RC_GOOD Indicates a successful completion.

RC_NONE Indicates that resources such as pinned memory are unavailable.

RC_MAX Indicates that the server already has the maximum number of users that it
supports.

Greater than or equal to RC_DEVICE Indicates device-specific errors.

audit_svcbcopy Kernel Service

Purpose
Appends event information to the current audit event buffer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int audit_svcbcopy ([but

char *buf;
int /en;

Parameters

buf Specifies the information to append to the current audit event record buffer.
len Specifies the number of bytes in the buffer.

Description

The audit_svcbcopy kernel service appends the specified buffer to the event-specific information for the
current switched virtual circuit (SVC). System calls should initialize auditing with the kernel
service, which creates a record buffer for the named event.

Chapter 1. Kernel Services 29

The audit_svcbcopy kernel service can then be used to add additional information to that buffer. This
information usually consists of system call parameters passed by reference.

If auditing is enabled, the information is written by the kernel service after the record buffer
is complete.

Execution Environment
The audit_svcbcopy kernel service can be called from the [process environment] only.

Return Values

0 Indicates a successful operation.
ENOMEM Indicates that the kernel service is unable to allocate space for the new buffer.

Related Information
The [audit_svcfinis| kernel service, kernel service.

[Security Kernel Services|in AlX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepits.

audit_svcfinis Kernel Service

Purpose
Writes an audit record for a kernel service.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/audit.h>
int audit_svcfinis ()

Description

The audit_svcfinis kernel service completes an audit record begun earlier by the kernel
service and writes it to the kernel audit logger. Any space allocated for the record and associated buffers is
freed.

If the system call terminates without calling the audit_svcfinis service, the switched virtual circuit (SVC)
handler exit routine writes the records. This exit routine calls the audit_svcfinis kernel service to complete
the records.

Execution Environment
The audit_svcfinis kernel service can be called from the [process environment only.

Return Values
The audit_svcfinis kernel service always returns a value of 0.

Related Information
The |audit_svcbcopy|kernel service, kernel service.

30 Technical Reference: Kernel and Subsystems, Volume 1

[Security Kernel Services|in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

audit_svcstart Kernel Service

Purpose

Initiates an audit record for a system call.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/audit.h>
int audit_svcstart (eventnam, eventnum, numargs, argl, arg2, ...)

char *|eventnan;

int * leventnum

int

int ,

int argz;

Parameters

eventnam Specifies the name of the event. In the current implementation, event names must be
less than 17 characters, including the trailing null character. Longer names are
truncated.

eventnum Specifies the number of the event. This is an internal table index meaningful only to the

kernel audit logger. The system call should initialize this parameter to 0. The first time
the audit_svcstart kernel service is called, this parameter is set to the actual table
index. The system call should not reset the parameter. The parameter should be
declared a static.

numargs Specifies the number of parameters to be included in the buffer for this record. These
parameters are normally zero or more of the system call parameters, although this is
not a requirement.

argl, arg2, ... Specifies the parameters to be included in the buffer.

Description

The audit_svcstart kernel service initiates auditing for a system call event. It dynamically allocates a
buffer to contain event information. The arguments to the system call (which should be specified as
parameters to this kernel service) are automatically added to the buffer, as is the internal number of the
event. You can use the|audit_svcbcopy| service to add additional information that cannot be passed by
value.

The system call commits this record with the kernel service. The system call should call
the audit_svcfinis kernel service before calling another system call.

Execution Environment
The audit_svcstart kernel service can be called from the [process environmenf only.

Return Values

Nonzero Indicates that auditing is on for this routine.
0 Indicates that auditing is off for this routine.

Chapter 1. Kernel Services 31

Example

svccrash(int x, int y, int z)

{
static int eventnum;
if (audit_svcstart("crashed", &eventnum, 2, x, y))

{

audit_svcfinis();

body of svccrash

}

The preceding example allocates an audit event record buffer for the crashed event and copies the first
and second arguments into it. The third argument is unnecessary and not copied.

Related Information
The [audit_svcbcopy| kernel service, kernel service.

[Security Kernel Services|in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

bawrite Kernel Service

Purpose
Writes the specified buffer data without waiting for 1/0 to complete.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>
int bawrite ([bd)

struct buf *bp;

Parameter

bp Specifies the address of the buffer structure.

Description

The bawrite kernel service sets the asynchronous flag in the specified buffer and calls the kernel
service to write the buffer.

For a description of how the three buffer-cache write subroutines work, see|”BIock I/0O Buffer Cache|
|Services: Overview”l in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming Concepts.

Execution Environment
The bawrite kernel service can be called from the [process environment] only.

Return Values

0 Indicates successful completion.
ERRNO Returns an error number from the /usr/include/sys/errno.h file on error.

32 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The kernel service.

[Block I/O Buffer Cache Kernel Services: Overview| and[I/O Kernel Serviced in AIX 5L Version 5.2 Kernel
Extensions and Device Support Programming Concepts.

bdwrite Kernel Service

Purpose
Releases the specified buffer after marking it for delayed write.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void bdwrite (pp)
struct buf =*bp;

Parameter

bp Specifies the address of the buffer structure for the buffer to be written.

Description

The bdwrite kernel service marks the specified buffer so that the block is written to the device when the
buffer is stolen. The bdwrite service marks the specified buffer as delayed write and then releases it (that
is, puts the buffer on the free list). When this buffer is reassigned or reclaimed, it is written to the device.

The bdwrite service has no return values.

For a description of how the three buffer-cache write subroutines work, see|"Block I/O Buffer Cache Kernell
[Services: Overview'|in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming Concepts.

Execution Environment
The bdwrite kernel service can be called from the [process environment only.

Related Information
The [brelse] kernel service.

[Block I/0 Buffer Cache Kernel Services: Overview] and [I/O Kernel Services in AIX 5L Version 5.2 Kernel
Extensions and Device Support Programming Concepts.

bflush Kernel Service

Purpose
Flushes all write-behind blocks on the specified device from the buffer cache.

Chapter 1. Kernel Services 33

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void bflush ([gev)

dev_t dev;

Parameter

dev Specifies which device to flush. A value of NODEVICE flushes all devices.

Description

The bflush kernel service runs the free list of buffers. It notes as busy or writing any dirty buffer whose
block is on the specified device. When a value of NODEVICE is specified, the bflush service flushes all
write-behind blocks for all devices. The bflush service has no return values.

Execution Environment
The bflush kernel service can be called from the jprocess environment| only.

Related Information
The kernel service.

[Block I/0 Buffer Cache Kernel Services: Overview| and|[l/O Kernel Serviced in AIX 5L Version 5.2 Kernel
Extensions and Device Support Programming Concepts.

bindprocessor Kernel Service

Purpose
Binds or unbinds kernel threads to a processor.

Syntax

#include <sys/processor.h>

int bindprocessor ()

int What;
int Who;
cpu_t Where;

Parameters

What Specifies whether a process or a kernel thread is being bound to a processor. The What parameter can
take one of the following values:

BINDPROCESS
A process is being bound to a processor.

BINDTHREAD
A kernel thread is being bound to a processor.
Who Indicates a process or kernel thread identifier, as appropriate for the What parameter, specifying the
process or kernel thread which is to be bound to a processor.

34 Technical Reference: Kernel and Subsystems, Volume 1

Where If the Where parameter is in the range 0-n (where n is the number of online processors in the system), it
represents a bind CPU identifier to which the process or kernel thread is to be bound. Otherwise, it
represents a processor class, from which a processor will be selected. A value of
PROCESSOR_CLASS_ANY unbinds the specified process or kernel thread, which will then be able to run
on any processor.

Description

The bindprocessor kernel service binds a single kernel thread, or all kernel threads in a process, to a
processor, forcing the bound threads to be scheduled to run on that processor only. It is important to
understand that a process itself is not bound, but rather its kernel threads are bound. Once kernel threads
are bound, they are always scheduled to run on the chosen processor, unless they are later unbound.
When a new thread is created using the thread_create kernel service, it has the same bind properties as
its creator.

Programs that use processor bindings should become Dynamic Logical Partitioning (DLPAR) aware. Refer
to[Dynamic Logical Partitioning in AIX 5L Version 5.2 General Programming Concepts: Writing and
Debugging Programs for more information.

Return Values

On successful completion, the bindprocessor kernel service returns 0. Otherwise, a value of -1 is
returned and the error code can be checked by calling the kernel service.

Error Codes
The bindprocessor kernel service is unsuccessful if one of the following is true:

EINVAL The What parameter is invalid, or the Where parameter indicates an invalid processor number or a
processor class which is not currently available.

ESRCH The specified process or thread does not exist.

EPERM The caller does not have root user authority, and the Who parameter specifies either a process, or a

thread belonging to a process, having a real or effective user ID different from that of the calling process.

Execution Environment
The bindprocessor kemel service can be called from the [process| environment only.

Related Information
The [bindprocessor|command.

The subroutine, subroutine, subroutine.

The|Dynamic Logical Panitionind article in AIX 5L Version 5.2 General Programming Concepts: Writing
and Debugging Programs.

binval Kernel Service

Purpose
Makes nonreclaimable all blocks in the buffer cache of a specified device.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

Chapter 1. Kernel Services 35

void binval (

dev_t dev;

Parameter

dev Specifies the device to be purged.

Description

The binval kernel service makes nonreclaimable all blocks in the buffer cache of a specified device.
Before removing the device from the system, use the binval service to remove the blocks.

All of blocks of the device to be removed need to be flushed before you call the binval service. Typically,
these blocks are flushed after the last close of the device.

Execution Environment
The binval kernel service can be called from the [process environment| only.

Return Values
The binval service has no return values.

Related Information
The kernel service, kernel service.

[Block I/O Buffer Cache Kernel Services: Overview| and|[l/O Kernel Serviced in AIX 5L Version 5.2 Kernel
Extensions and Device Support Programming Concepts.

blkflush Kernel Service

Purpose
Flushes the specified block if it is in the buffer cache.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

int blkflush ([dev],

dev_t dev;
daddr_t blkno;

Parameters

dev Specifies the device containing the block to be flushed.
blkno Specifies the block to be flushed.

Description

The blkflush kernel service checks to see if the specified buffer is in the buffer cache. If the buffer is not
in the cache, then the blkflush service returns a value of 0. If the buffer is in the cache, but is busy, the
blkflush service calls the service to wait until the buffer is no longer in use. Upon waking, the
blkflush service tries again to access the buffer.

36 Technical Reference: Kernel and Subsystems, Volume 1

If the buffer is in the cache and is not busy, but is dirty, then it is removed from the free list. The buffer is
then marked as busy and synchronously written to the device. If the buffer is in the cache and is neither
busy nor dirty (that is, the buffer is already clean and therefore does not need to be flushed), the blkflush
service returns a value of 0.

Execution Environment
The blkflush kernel service can be called from the [process environment only.

Return Values

1 Indicates that the block was successfully flushed.
0 Indicates that the block was not flushed. The specified buffer is either not in the buffer cache or is in the buffer
cache but neither busy nor dirty.

Related Information
The kernel service.

[Block /0 Buffer Cache Kernel Services: Overview|[l/O Kernel Services in AIX 5L Version 5.2 Kernel
Extensions and Device Support Programming Concepts.

bread Kernel Service

Purpose
Reads the specified block data into a buffer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

struct buf xbread (

dev_t dev;
daddr_t blkno;

Parameters

dev Specifies the device containing the block to be read.
blkno Specifies the block to be read.

Description

The bread kernel service assigns a buffer to the given block. If the specified block is already in the buffer
cache, then the block buffer header is returned. Otherwise, a free buffer is assigned to the specified block
and the data is read into the buffer. The bread service waits for I/O to complete to return the buffer
header.

The buffer is allocated to the caller and marked as busy.

Execution Environment
The bread kernel service can be called from the [process environment| only.

Chapter 1. Kernel Services 37

Return Values

The bread service returns the address of the selected buffer's header. A nonzero value for B_ERROR in
the b_flags field of the buffer's header (buf structure) indicates an error. If this occurs, the caller should
release the buffer associated with the block using the brelse kernel service.

Related Information
The kernel service, kernel service.

[Block 1/0 Buffer Cache Kernel Services: Overview|in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts describes how the buffer cache services manage the block I/O buffer
cache mechanism.

|I/O Kernel Services| in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming Concepts.

breada Kernel Service

Purpose
Reads in the specified block and then starts 1/0 on the read-ahead block.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

struct buf *breada (biknol, [rablknd))
dev_t dev;

daddr_t blkno;

daddr_t rablkno;

Parameters

dev Specifies the device containing the block to be read.
blkno Specifies the block to be read.
rablkno Specifies the read-ahead block to be read.

Description

The breada kernel service assigns a buffer to the given block. If the specified block is already in the buffer
cache, then the|bread|service is called to:
* Obtain the block.

¢ Return the buffer header.

Otherwise, the service is called to assign a free buffer to the specified block and to read the data
into the buffer. The breada service waits for I/O to complete and then returns the buffer header.

I/0 is also started on the specified read-ahead block if the free list is not empty and the block is not
already in the cache. However, the breada service does not wait for I/O to complete on this read-ahead
block.

['Block 1/0 Buffer Cache Kernel Services: Overview'| in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts summarizes how the betbl@‘, |breag, breada, and services
uniquely manage the block 1/O buffer cache.

38 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The breada kernel service can be called from the [process environment| only.

Return Values

The breada service returns the address of the selected buffer's header. A nonzero value for B_ERROR in
the b_flags field of the buffer header (buf structure) indicates an error. If this occurs, the caller should
release the buffer associated with the block using the brelse kernel service.

Related Information
The kernel service, kernel service.

The device driver entry point.

Block I/0 Buffer Cache Kernel Services: Overview] and /O Kernel Serviceg in AIX 5L Version 5.2 Kernel
Extensions and Device Support Programming Concepts.

brelse Kernel Service

Purpose
Frees the specified buffer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

void brelse (pp)
struct buf *bp;

Parameter

bp Specifies the address of the buf structure to be freed.

Description

The brelse kernel service frees the buffer to which the bp parameter points.

The brelse kernel service awakens any processes waiting for this buffer or for another free buffer. The
buffer is then put on the list of available buffers. The buffer is also marked as not busy so that it can either
be reclaimed or reallocated.

The brelse service has no return values.

Execution Environment
The brelse kernel service can be called from either the [process] or finterrupt environment.

Related Information
The kernel service.

The |buf structure

Chapter 1. Kernel Services 39

[Block 1/0 Buffer Cache Kernel Services: Overview| and [I/O Kernel Serviced in AIX 5L Version 5.2 Kernel
Extensions and Device Support Programming Concepts.

bwrite Kernel Service

Purpose
Writes the specified buffer data.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/buf.h>

int bwrite (@
struct buf =*bp;

Parameter

bp Specifies the address of the buffer structure for the buffer to be written.

Description

The bwrite kernel service writes the specified buffer data. If this is a synchronous request, the bwrite
service waits for the 1/0 to complete.

['Block I/0 Buffer Cache Kernel Services: Overview'| in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts describes how the three buffer-cache write routines work.

Execution Environment
The bwrite kernel service can be called from the [process environment only.

Return Values

0 Indicates a successful operation.
ERRNO Returns an error number from the /usr/include/sys/errno.h file on error.

Related Information
The kernel service, kernel service.

|I/O Kernel Services| in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming Concepts.

cancel Device Queue Management Routine

Purpose

Provides a means for cleaning up queue element-related resources when a pending queue element is
eliminated from the queue.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

40 Technical Reference: Kernel and Subsystems, Volume 1

void cancel (ptr)

struct req_qge *ptr;

Parameter

ptr Specifies the address of the queue element.

Description

The kernel calls the cancel routine to clean up resources associated with a queue element. Each device
queue can have a cancel routine. This routine is optional and must be specified when the device queue is
created with the creatq service.

The cancel routine is called when a pending queue element is eliminated from the queue. This occurs
when the path is destroyed or when the canclq service is called. The device manager should unpin any
data and detach any cross-memory descriptor.

Any operations started as a result of examining the queue with the peekq service must be stopped.

The cancel routine is also called when a queue is destroyed to get rid of any pending or active queue
elements.

Execution Environment
The cancel-queue-element routine can be called from the [process environment| only.

cfgnadd Kernel Service

Purpose
Registers a notification routine to be called when system-configurable variables are changed.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sysconfig.h>

void cfgnadd

([ebe)

struct cfgncb *cbp;

Parameter

cbp Points to a cfgncb configuration notification control block.

Description

The cfgnadd kernel service adds a Iﬂncb control block to the list of cfgneb structures that the kernel
maintains. A cfgncb control block contains the address of a notification routine (in its cfgnch. func field) to
be called when a configurable variable is being changed.

The SYS_SETPARMS sysconfig operation allows a user with sufficient authority to change the values of
configurable system parameters. The cfgnadd service allows kernel routines and extensions to register
the notification routine that is called whenever these configurable system variables have been changed.

Chapter 1. Kernel Services 41

This notification routine is called in a two-pass process. The first pass performs validity checks on the
proposed changes to the system parameters. During the second pass invocation, the notification routine
performs whatever processing is needed to make these changes to the parameters. This two-pass
procedure ensures that variables used by more than one kernel extension are correctly handled.

To use the cfgnadd service, the caller must define a cfgncb control block using the structure found in the
lusr/include/sys/sysconfig.h file.

Execution Environment
The cfgnadd kernel service can be called from the process environment| only.

The cfgncb.func notification routine is called in a process environment only.

Related Information
The subroutine.

Theconfiguration notification control block.
The kernel service.

[Kernel Extension and Device Driver Management Kernel Services|in AIX 5L Version 5.2 Kernel Extensions
and Device Support Programming Concepts.

cfgncb Configuration Notification Control Block

Purpose

Contains the address of a notification routine that is invoked each time the sysconfig subroutine is called
with the SYS_SETPARMS command.

Syntax

int func (cmd, cur, new)
int cmd;

struct var =*cur;

struct var *new;

Parameters
cmd Indicates the current operation type. Possible values are CFGV_PREPARE and CFGV_COMMIT, as defined in
the /usr/include/sys/sysconfig.h file.

cur Points to a var structure representing the current values of system-configurable variables.
new Points to a var structure representing the new or proposed values of system-configurable variables.

The cur and new var structures are both in the system address space.

Description

The configuration notification control block contains the address of a notification routine. This structure is
intended to be used as a list element in a list of similar control blocks maintained by the kernel.

Each control block has the following definition:

42 Technical Reference: Kernel and Subsystems, Volume 1

struct cfgncb {

struct cfgncb *chnext; /* next block on chain */
struct cfgncb *Chprev; /* prev control block on chain x/
in (*func) () ; /* notification function x/

}s

The [cfgndel| or [cfgnadd| kernel service can be used to add or delete a cfgneb control block from the
cfgncb list. To use either of these kernel services, the calling routine must define the efgneb control block.
This definition can be done using the /usr/include/sys/sysconfig.h file.

Every time a [SYS_SETPARMS sysconfig command|is issued, the sysconfig subroutine iterates through
the kernel list of cfgncb blocks, invoking each notification routine with a CFGV_PREPARE command. This
call represents the first pass of what is for the notification routine a two-pass process.

On a CFGV_PREPARE command, the cfgncb.func notification routine should determine if any values of
interest have changed. All changed values should be checked for validity. If the values are valid, a return
code of 0 should be returned. Otherwise, a return value indicating the byte offset of the first field in error in
the new var structure should be returned.

If all registered notification routines create a return code of 0, then no value errors have been detected
during validity checking. In this case, the sysconfig subroutine issues its second pass call to the
cfgncb.func routine and sends the same parameters, although the cmd parameter contains a value of
CFGV_COMMIT. This indicates that the new values go into effect at the earliest opportunity.

An example of notification routine processing might be the following. Suppose the user wishes to increase
the size of the block I/O buffer cache. On a CFGV_PREPARE command, the block I/O natification routine
would verify that the proposed new size for the cache is legal. On a CFGV_COMMIT command, the
notification routine would then make the additional buffers available to the user by chaining more buffers
onto the existing list of buffers.

Related Information
The kernel service, kernel service.

The|SYS_SETPARMS|sysconfig operation.

[Kernel Extension and Device Driver Management Kernel Services|in AIX 5L Version 5.2 Kernel Extensions
and Device Support Programming Concepts.

cfgndel Kernel Service

Purpose
Removes a notification routine for receiving broadcasts of changes to configurable system variables.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/sysconfig.h>
void cfgndel (.@
struct cfgncb *cbp;

Parameter

cbp Points to a cfgncb configuration notification control block.

Chapter 1. Kernel Services 43

Description

The cfgndel kernel service removes a previously registered [cfgncb configuration notification control block|
from the list of efgncb structures maintained by the kernel. This service thus allows kernel routines and
extensions to remove their notification routines from the list of those called when a configurable system
variable has been changed.

The address of the cfgneb structure passed to the cfgndel kernel service must be the same address
used to call the |cfgnadd| service when the structure was originally added to the list. The
lusr/include/sys/sysconfig.h file contains a definition of the cfgneb structure.

Execution Environment
The cfgndel kernel service can be called from the [process environment only.

Return Values
The cfgndel service has no return values.

Related Information
The subroutine.

Theconfiguration notification control block.

The kernel service.

[Kernel Extension and Device Driver Management Kernel Services|in AIX 5L Version 5.2 Kernel Extensions
and Device Support Programming Concepts.

check Device Queue Management Routine

Purpose

Provides a means for performing device-specific validity checking for parameters included in request
queue elements.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int check (, ,
int type;

struct req_qe *ptr;

int length;

Parameters

type Specifies the type of call. The following values are used when the kernel calls the check routine:

CHECK_PARMS + SEND_CMD
Send command queue element.

CHECK_PARMS + START_IO
Start I/O CCB queue element.

CHECK_PARMS + GEN_PURPOSE
General purpose queue element.

44 Technical Reference: Kernel and Subsystems, Volume 1

ptr Specifies the address of the queue element.
length Specifies the length of the queue element.

Description

The check routine is part of the Device Queue Management Kernel extension. Each device queue can
have a check routine. This routine is optional and must be specified when the device queue is created
with the creatq service. Theservice calls the check routine before a request queue element is put
on the device queue. The kernel uses the routine’s return value to determine whether to put the queue
element on the device queue or to stop the request.

The kernel does not call the check routine when an acknowledgment or control queue element is sent.
Therefore, the check routine is only called while executing within a process.

The address of the actual queue element is passed to this routine. In the check routine, take care to alter
only the fields that were meant to be altered. This routine does not need to be serialized with the rest of
the server’s routines, because it is only checking the parameters in the queue element.

The check routine can check the request before the request queue element is placed on the device
queue. The advantage of using this routine is that you can filter out unacceptable commands before they
are put on the device queue.

The routine looks at the queue element and returns RC_GOOD if the request is acceptable. If the return
code is not RC_GOOD, the kernel does not place the queue element in a device queue.

Execution Environment

The check routine executes under the [process environment] of the requester. Therefore, access to data
areas must be handled as if the routine were in an |interrugﬂ handler environment. There is, however, no
requirement to pin the code and data as in a normal interrupt handler environment.

Return Values

RC_GOOD Indicates successful completion.

All other return values are device-specific.

Related Information
The kernel service.

clrbuf Kernel Service

Purpose
Sets the memory for the specified buffer structure’s buffer to all zeros.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void clrbuf (@
struct buf *pp;

Chapter 1. Kernel Services 45

Parameter

bp Specifies the address of the buffer structure for the buffer to be cleared.

Description

The clrbuf kernel service clears the buffer associated with the specified buffer structure. The clrbuf
service does this by setting to 0 the memory for the buffer that contains the specified buffer structure.

Execution Environment
The clrbuf kernel service can be called from either the [process| or [interrupt| environment.

Return Values
The clrbuf service has no return values.

Related Information

[Block /0O Buffer Cache Kernel Services: Overview| and|[l/O Kernel Serviced in AlX 5L Version 5.2 Kernel
Extensions and Device Support Programming Concepts.

clrjmpx Kernel Service

Purpose
Removes a saved context by popping the last saved jump buffer from the list of saved contexts.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void clrjmpx ([jump buffer|

label_t *jump_buffer;

Parameter

jump_buffer Specifies the address of the caller-supplied jump buffer that was specified on the call to the
setjmpx service.

Description

The clrjmpx kernel service pops the most recent context saved by a call to the kernel service.
Since each call automatically pops the jump buffer for the context to resume, the clrjmpx kernel
service should be called only following:

* A normal return from the setjmpx service when the saved context is no longer needed
* Any code to be run that requires the saved context to be correct

The clrjmpx service takes the address of the jump buffer passed in the corresponding setjmpx service.

Execution Environment
The clrjmpx kernel service can be called from either the [process or [interrupf environment.

Return Values
The clrjmpx service has no return values.

46 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The kernel service, kernel service.

[Process and Exception Management Kernel Services| and|{Understanding Exception Handling in A/X 5L

Version 5.2 Kernel Extensions and Device Support Programming Concepts.

common_reclock Kernel Service

Purpose

Implements a generic interface to the record locking functions.

Syntax

#include <sys/types.h>
#include <sys/flock.h>

common_reclock(gp, size, offset,
lckdat, cmd, retray fcn, retry_id, lock_fcn,

rele_fcn)

struct gnode *gp;
offset_t size;
offset_t offset;

struct eflock *lckdat;

int cmd;

int (xretry fcn)();

ulong *retry_id;

int (*lock _fcn)();
int (*rele _fcn)();

Parameters

gap

Points to the gnode that represents the file to lock.

size Identifies the current size of the file in bytes.
offset Specifies the current file offset. The system uses the offset parameter to establish where the lock
region is to begin.
Ickdat Points to an eflock structure that describes the lock operation to perform.
cmd Defines the type of operation the kernel service performs. This parameter is a bit mask consisting
of the following bits:
SETFLCK
If set, the system sets or clears a lock. If not set, the lock information is returned.
SLPFLCK
If the lock cannot be granted immediately, wait for it. This is only valid when SETFLCK
flag is set.
INOFLCK

The caller is holding a lock on the object referred to by the gnode. The common_reclock
kernel service calls the release function before sleeping, and the lock function on return
from sleep.

When the cmd parameter is set to SLPFLCK, it indicates that if the lock cannot be granted
immediately, the service should wait for it. If the retry_fcn parameter contains a valid pointer, the
common_reclock kernel service does not sleep, regardless of the SLPFLCK flag.

Chapter 1. Kernel Services 47

retry_fcn Points to a retry function. This function is called when the lock is retried. The retry function is not
used if the lock is granted immediately. When the requested lock is blocked by an existing lock, a
sleeping lock is established with the retry function address stored in it. The common_reclock
kernel service then returns a correlating ID (see the retry_id parameter) to the calling routine, along
with an exit value of EAGAIN. When the sleeping lock is awakened, the retry function is called with
the correlating ID as its ID argument.

If this argument is not NULL, then the common_ reclock kernel service does not sleep, regardless
of the SLPFLCK command flag.

retry_id Points to location to store the correlating ID. This ID is used to correlate a retry operation with a
specific lock or set of locks. This parameter is used only in conjunction with retry function. The
value stored in this location is an opaque value. The caller should not use this value for any
purpose other than lock correlation.

lock_fen Points to a lock function. This function is invoked by the common_ reclock kernel service to lock a
data structure used by the caller. Typically this is the data structure containing the gnode to lock.
This function is necessary to serialize access to the object to lock. When the common_reclock
kernel service invokes the lock function, it is passed the private data pointer from the gnode as its
only argument.

rele_fcn Points to a release function. This function releases the lock acquired with the lock function. When
the release function is invoked, it is passed the private data pointer from the gnode as its only
argument.

Description

The common_reclock routine implements a generic interface to the record-locking functions. This service
allows distributed file systems to use byte-range locking. The kernel service does the following when a
requested lock is blocked by an existing lock:

» Establishes a sleeping lock with the retry function in the lock structure. The address of the retry function
is specified by the retry_fcn parameter.

* Returns a correlating ID value to the caller along with an exit value of EAGAIN. The ID is stored in the
retry_id parameter.

« Calls the retry function when the sleeping lock is later awakened, the retry function is called with the
retry_id parameter as its argument.

Note: Before a call to the common_ reclock subroutine, the eflock structure must be completely filled
in. The Ickdat parameter points to the eflock structure.

The caller can hold a serialization lock on the data object pointed to by the gnode. However, if the caller
expects to sleep for a blocking-file lock and is holding the object lock, the caller must specify a lock
function with the lock_fcn parameter and a release function with the rele_fcn parameter.

The lock is described by a eflock structure. This structure is identified by the Ickdat parameter. If a read

lock (F_RDLCK) or write lock (F_WRLCK) is set with a length of 0, the entire file is locked. Similarly, if

unlock (F_UNLCK) is set starting at 0 for 0 length, all locks on this file are unlocked. This method is how
locks are removed when a file is closed.

To allow the common_reclock kernel service to update the per-gnode lock list, the service takes a
GN_RECLK_LOCK lock during processing.

Execution Environment
The common_reclock kernel service can be called from the [process environment| only.

Return Values

0 Indicates successful completion.

48 Technical Reference: Kernel and Subsystems, Volume 1

EAGAIN Indicates a lock cannot be granted because of a blocking lock and the caller did not request that the
operation sleep.
ERRNO Indicates an error. Refer to the fentl system call for the list of possible values.

Related Information

The@ subroutine.
The [flock.H file.

compare_and_swap Kernel Service

Purpose
Conditionally updates or returns a single word variable atomically.

Syntax

#include <sys/atomic_op.h>

boolean_t compare_and_swap (word addr, lold val addr], |new val)
atomic_p word addr;

int *old val addr;

int new_val;

Parameters

word_addr Specifies the address of the single word variable.

old_val_addr Specifies the address of the old value to be checked against (and conditionally updated with)
the value of the single word variable.

new_val Specifies the new value to be conditionally assigned to the single word variable.

Description

The compare_and_swap kernel service performs an atomic (uninterruptible) operation which compares
the contents of a single word variable with a stored old value; if equal, a new value is stored in the single
word variable, and TRUE is returned, otherwise the old value is set to the current value of the single word
variable, and FALSE is returned.

The compare_and_swap kernel service is particularly useful in operations on singly linked lists, where a
list pointer must not be updated if it has been changed by another thread since it was read.

Note: The word variable must be aligned on a full word boundary.

Execution Environment
The compare_and_swap kernel service can be called from either the [process or interrupt environment.

Return Values

TRUE Indicates that the single word variable was equal to the old value, and has been set to the new value.
FALSE Indicates that the single word variable was not equal to the old value, and that its current value has been
returned in the location where the old value was stored.

Chapter 1. Kernel Services 49

Related Information
Thelfetch_and_add|kernel service, [fetch_and_and| kernel service, [fetch_and_or| kernel service.

[Locking Kernel Services|in AlIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts

copyin Kernel Service

Purpose
Copies data between user and kernel memory.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int copyin (laddrl, |addrl |count])
char *uaddr;

char *kaddr;

int count;

Parameters

uaddr Specifies the address of user data.
kaddr Specifies the address of kernel data.
count Specifies the number of bytes to copy.

Description

The copyin kernel service copies the specified number of bytes from user memory to kernel memory. This
service is provided so that system calls and device driver top half routines can safely access user data.
The copyin service ensures that the user has the appropriate authority to access the data. It also provides
recovery from paging 1/O errors that would otherwise cause the system to crash.

The copyin service should be called only while executing in kernel mode in the user process.

Execution Environment
The copyin kernel service can be called from the [process environment] only.

Return Values

1] Indicates a successful operation.

EFAULT Indicates that the user has insufficient authority to access the data, or the address
specified in the vaddr parameter is not valid.

EIO Indicates that a permanent 1/O error occurred while referencing data.

ENOMEM Indicates insufficient memory for the required paging operation.

ENOSPC Indicates insufficient file system or paging space.

Related Information

IAccessing User-Mode Data While in Kernel Mode| and [Memory Kernel Services|in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

The [copyinstd kernel service, [copyout] kernel service.

50 Technical Reference: Kernel and Subsystems, Volume 1

copyin64 Kernel Service

Purpose
Copies data between user and kernel memory.

Syntax

#include <sys/types.h>

#include <sys/ernno.h>

#include <sys/uio.h>

int copyin64 (uaddr64, kaddr, count);
unsigned long long uaddr64;

char * kaddr;

int count;

Parameters

uaddré4 Specifies the address of user data.
kaddr Specifies the address of kernel data.
count Specifies the number of bytes to copy.
Description

The copyin64 kernel service copies the specified number of bytes from user memory to kernel memory.
This service is provided so that system calls and device driver top half routines can safely access user
data. The copyin64 service ensures that the user has the appropriate authority to access the data. It also
provides recovery from paging 1/O errors that would otherwise cause the system to crash.

This service will operate correctly for both 32-bit and 64-bit user address spaces. The uaddr64 parameter
is interpreted as being a non-remapped 32-bit address for the case where the current user address space
is 32- bits. If the current user address space is 64-bits, then uaddr64 is treated as a 64-bit address.

The copyin64 service should be called only while executing in kernel mode in the user process.

Execution Environment
The copyin64 kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.

EFAULT Indicates that the user has insufficient authority to access the data, or the address
specified in the uaddr64 parameter is not valid.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOMEM Indicates insufficient memory for the required paging operation.

ENOSPC Indicates insufficient file system or paging space.

Related Information
The kernel service and [copyout64] kernel service.

IAccessing User-Mode Data While in Kernel Mode| and [Memory Kernel Services|in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 51

copyinstr Kernel Service

Purpose
Copies a character string (including the terminating null character) from user to kernel space.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

On the 32-bit kernel, the syntax for the copyinstr Kernel Service is:

int copyinstr , ,
caddr_t from;

caddr_t to;

uint max;

uint *actual;

On the 64-bit kernel, the syntax for the copyinstr subroutine is:

int copyinstr (from, to, max, actual)
void *from;

void *to;

size_t max;

size_t *actual;

Parameters

from Specifies the address of the character string to copy.

to Specifies the address to which the character string is to be copied.

max Specifies the number of characters to be copied.

actual Specifies a parameter, passed by reference, that is updated by the copyinstr service with the actual

number of characters copied.

Description

The copyinstr kernel service permits a user to copy character data from one location to another. The
source location must be in user space or can be in kernel space if the caller is a kernel process. The
destination is in kernel space.

Execution Environment
The copyinstr kernel service can be called from the [process environment| only.

Return Values

0 Indicates a successful operation.

E2BIG Indicates insufficient space to complete the copy.

EIO Indicates that a permanent I/O error occurred while referencing data.

ENOSPC Indicates insufficient file system or paging space.

EFAULT Indicates that the user has insufficient authority to access the data or the address specified in the vadadr

parameter is not valid.

Related Information

[Accessing User-Mode Data While in Kernel Mode| and[Memory Kernel Services|in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

52 Technical Reference: Kernel and Subsystems, Volume 1

copyinstr64 Kernel Service

Purpose
Copies data between user and kernel memory.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/uio.h>

On the 32-bit kernel, the syntax for the copyinstr64 subroutine is:

int copyinstré64 , ,

unsigned long long from64;
caddr_t to;

uint max;

uint *actual;

On the 64-bit kernel, the syntax for the copyinstr64 subroutine is:

int copyinstré64 (from64, to, max, actual)
void *from64;

void *to;

size_t max;

size_t *actual;

Parameters

fromé64 Specifies the address of character string to copy.

to Specifies the address to which the character string is to be copied.

max Specifies the number of characters to be copied.

actual Specifies a parameter, passed by reference, that is updated by the copyinstr64 service with the actual

number of characters copied.

Description

The copyinstr64 service permits a user to copy character data from one location to another. The source
location must be in user space or can be in kernel space if the caller is a kernel process. The destination

is in kernel space.

This service will operate correctly for both 32-bit and 64-bit user address spaces. The from64 parameter is
interpreted as being a non-remapped 32-bit address for the case where the current user address space is
32- bits. If the current user address space is 64-bits, then from64 is treated as a 64-bit address.

Execution Environment

The copyinstr64 kernel service can be called from the process environment only.

Return Values

0 Indicates a successful operation.
E2BIG Indicates insufficient space to complete the copy.
EIO Indicates that a permanent I/O error occurred while referencing data.

ENOSPC Indicates insufficient file system or paging space.

EFAULT Indicates that the user has insufficient authority to access the data, or the address specified in the

from64 parameter is not valid.

Chapter 1. Kernel Services

Related Information
The kernel service and kernel service.

|Accessing User-Mode Data While in Kernel Mode| and [Memory Kernel Services|in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

copyout Kernel Service

Purpose
Copies data between user and kernel memory.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int copyout (|kaddrl, Waddrl, |ount)
char *kaddr;

char *uaddr;

int count;

Parameters

kaddr Specifies the address of kernel data.
uaddr Specifies the address of user data.
count Specifies the number of bytes to copy.

Description

The copyout service copies the specified number of bytes from kernel memory to user memory. It is
provided so that system calls and device driver top half routines can safely access user data. The
copyout service ensures that the user has the appropriate authority to access the data. This service also
provides recovery from paging 1/O errors that would otherwise cause the system to crash.

The copyout service should be called only while executing in kernel mode in the user process.

Execution Environment
The copyout kernel service can be called from the process environment] only.

Return Values

1] Indicates a successful operation.

EFAULT Indicates that the user has insufficient authority to access the data or the address
specified in the uaddr parameter is not valid.

EIO Indicates that a permanent 1/O error occurred while referencing data.

ENOMEM Indicates insufficient memory for the required paging operation.

ENOSPC Indicates insufficient file system or paging space.

Related Information
The [copyin| kemel service, kernel service.

|[Accessing User-Mode Data While in Kernel Mode] and[Memory Kernel Services|in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

54 Technical Reference: Kernel and Subsystems, Volume 1

copyout64 Kernel Service

Purpose

Copies data between user and kernel memory.

Syntax

#include <sys/types.h>

#include <sys/ernno.h>

#include <sys/uio.h>

int copyout64 (kaddr, uaddré4, count);
char * kaddr,

unsigned long long vaddré4;

int count;

Parameters

kaddr Specifies the address of kernel data.
uaddré4 Specifies the address of user data.
count Specifies the number of bytes to copy.
Description

The copyout64 service copies the specified number of bytes from kernel memory to user memory. It is
provided so that system calls and device driver top half routines can safely access user data. The
copyout64 service ensures that the user has the appropriate authority to access the data. This service
also provides recovery from paging I/O errors that would otherwise cause the system to crash.

This service will operate correctly for both 32-bit and 64-bit user address spaces. The uaddr64 parameter
is interpreted as being a non-remapped 32-bit address for the case where the current user address space

is 32- bits. If the current user address space is 64-bits, then uaddr64 is treated as a 64-bit address.

The copyout64 service should be called only while executing in kernel mode in the user process.

Execution Environment

The copyout64 kernel service can be called from the process environment only.

Return Values

EFAULT Indicates that the user has insufficient authority to access the data, or the address

0 Indicates a successful operation.

specified in the uaddr64 parameter is not valid.
EIO Indicates that a permanent I/O error occurred while referencing data.
ENOMEM Indicates insufficient memory for the required paging operation.
ENOSPC Indicates insulfficient file system or paging space.

Related Information

The |copyinstr64] kernel service and kernel service.

IAccessing User-Mode Data While in Kernel Mode| and [Memory Kernel Services|in AIX 5L Version 5.2

Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services

55

crcopy Kernel Service

Purpose
Copies a credentials structure to a new one and frees the old one.

Syntax

#include <sys/cred.h>

struct ucred * crcopy (
struct ucred * cr;

Parameter

cr Pointer to the credentials structure that is to be copied and then freed.

Description

The crcopy kernel service allocates a new credentials structure that is initialized from the contents of the
cr parameter. The reference to cris then freed and a pointer to the new structure returned to the caller.

Note: The cr parameter must have been obtained by an earlier call to the crcopy kernel service, crdup
kernel service, crget kernel service, or the crref kernel service.

Execution Environment
The crcopy kernel service can be called from the [process environment| only.

Return Values

Nonzero value A pointer to a newly allocated and initialized credentials structure.

Related Information

[Security Kernel Services|in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

crdup Kernel Service

Purpose
Copies a credentials structure to a new one.

Syntax

#include <sys/cred.h>

struct ucred * crdup (
struct ucred * cr;

56 Technical Reference: Kernel and Subsystems, Volume 1

Parameter

cr Pointer to the credentials structure that is to be copied.

Description

The crdup kernel service allocates a new credentials structure that is initialized from the contents of the cr
parameter.

Execution Environment
The crdup kernel service can be called from the [process environment| only.

Return Values

Nonzero value A pointer to a newly allocated and initialized credentials structure.

Related Information

[Security Kernel Services|in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepits.

creatp Kernel Service

Purpose
Creates a new kernel process.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

pid_t creatp()

Description

The creatp kernel service creates a|kernel process| It also allocates and initializes a process block for the
new process. Initialization involves these three tasks:

» Assigning an identifier to the kernel process.
» Setting the process state to idle.
* Initializing its parent, child, and sibling relationships.

|”Using Kernel Processes”| in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts has a more detailed discussion of how the creatp kernel service creates and initializes kernel
processes.

The process calling the creatp service must subsequently call the kernel service to complete the
process initialization. The initp service also makes the newly created process runnable.

Execution Environment
The creatp kernel service can be called from the [process environment| only.

Return Values

-1 Indicates an error.

Chapter 1. Kernel Services 57

Upon successful completion, the creatp kernel service returns the process identifier for the new kernel
process.

Related Information
The kernel service.

CRED_GETEUID, CRED_GETRUID, CRED_GETSUID, CRED_GETLUID,
CRED_GETEGID, CRED_GETRGID, CRED_GETSGID and
CRED GETNGRPS Macros

Purpose
Credentials structure field accessing macros.

Syntax

#include <sys/cred.h>

uid_t CRED_GETEUID
uid_t CRED_GETRUID
uid_t CRED_GETSUID
uid_t CRED_GETLUID
gid_t CRED_GETEGID
gid_t CRED_GETRGID
gid_t CRED_GETSGID
int CRED_GETNGRPS (

N N N N N N N

Parameter

crp Pointer to a credentials structure

Description

These macros provide a means for accessing the user and group identifier fields within a credentials
structure. The fields within a ucred structure should not be accessed directly as the field names and their
locations are subject to change.

The CRED_GETEUID macro returns the effective user ID field from the credentials structure referenced by
crp.

The CRED_GETRUID macro returns the real user ID field from the credentials structure referenced by crp.

The CRED_GETSUID macro returns the saved user ID field from the credentials structure referenced by
crp.

The CRED_GETLUID macro returns the login user ID field from the credentials structure referenced by
crp.

The CRED_GETEUID macro returns the effective group ID field from the credentials structure referenced
by crp.

The CRED_GETRUID macro returns the real group ID field from the credentials structure referenced by
crp.

58 Technical Reference: Kernel and Subsystems, Volume 1

The CRED_GETSUID macro returns the saved group ID field from the credentials structure referenced by
crp.

The CRED_GETNGRPS macro returns the number of concurrent group ID values stored within the
credentials structure referenced by crp.

These macros are defined in the system header file <sys/cred.h>.

Execution Environment
The credentials macros called with any valid credentials pointer.

Related Information

|Security Kernel Services| in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepits.

crexport Kernel Service

Purpose
Copies an internal format credentials structure to an external format credentials structure.

Syntax

#include <sys/cred.h>

void crexport ,

struct ucred * src;
struct ucred_ext * dst;

Parameter

src Pointer to the internal credentials structure.
dst Pointer to the external credentials structure.
Description

The crexport kernel service copies from the internal credentials structure referenced by src into the
external credentials structure referenced by dst. The external credentials structure is guaranteed to be
compatible between releases. Fields within a ucred structure must not be referenced directly as the field
names and locations within that structure are subject to change.

Execution Environment
The crexport kernel service can be called from the process environment only.

Return Values
This kernel service does not have a return value.

Related Information

|Security Kernel Services| in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepits.

Chapter 1. Kernel Services 59

crfree Kernel Service

Purpose
Releases a reference count on a credentials structure.

Syntax

#include <sys/cred.h>

void crfree (

struct ucred * cr;

Parameter

cr Pointer to the credentials structure that is to have a reference freed.

Description

The crfree kernel service deallocates a reference to a credentials structure. The credentials structure is
deallocated when no references remain.

Note: The cr parameter must have been obtained by an earlier call to the crcopy kernel service, crdup
kernel service, crget kernel service, or the crref kernel service.

Execution Environment
The crfree kernel service can be called from the [process environment| only.

Return Values
No value is returned by this kernel service.

Related Information

[Security Kernel Services|in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepits.

crget Kernel Service

Purpose
Allocates a new, uninitialized credentials structure to a new one and frees the old one.

Syntax

#include <sys/cred.h>
struct ucred * crget (void)

Parameter
This kernel service does not require any parameters.

60 Technical Reference: Kernel and Subsystems, Volume 1

Description

The crget kernel service allocates a new credentials structure. The structure is initialized to all zero
values, and the reference count is set to 1.

Execution Environment
The crget kernel service can be called from the [process environment only.

Return Values

Nonzero value A pointer to a newly allocated and initialized credentials structure.

Related Information

|Security Kernel Services| in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

crhold Kernel Service

Purpose
Increments the reference count for a credentials structure.

Syntax

#include <sys/cred.h>

void crhold (

struct ucred * cr;

Parameter

cr Pointer to the credentials structure that will have its reference count incremented.

Description
The crhold kernel service increments the reference count of a credentials structure.

Note: Reference counts that are incremented with the crhold kernel service must be decremented with
the crfree kernel service.

Execution Environment
The crhold kernel service can be called from the [process environment only.

Return Values
No value is returned by this kernel service.

Related Information

|Security Kernel Services| in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

Chapter 1. Kernel Services 61

crref Kernel Service

Purpose
Increments the reference count for the current credentials structure.

Syntax

#include <sys/cred.h>

struct ucred * crref (void)

Parameter
This kernel service does not require any parameters.

Description

The crref kernel service increments the reference count of the current credentials structure and returns a
pointer to the current credentials structure to the invoker.

Note: References that are allocated with the crref kernel service must be released with the crfree kernel
service.

Execution Environment
The crref kernel service can be called from the [process environment] only.

Return Values

Nonzero value A pointer to the current credentials structure.

Related Information

[Security Kernel Services|in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

crset Kernel Service

Purpose
Sets the current security credentials.

Syntax

#include <sys/cred.h>

void crset (

struct ucred * cr;

Parameter

cr Pointer to the credentials structure that will become the new, current security credentials.

62 Technical Reference: Kernel and Subsystems, Volume 1

Description

The crset kernel service replaces the current security credentials with the supplied value. The existing
structure will be deallocated.

Note: The cr parameter must have been obtained by an earlier call to the crcopy kernel service, crdup
kernel service, crget kernel service, or the crref kernel service.

Execution Environment
The crset kernel service can be called from the jprocess environment| only.

Return Values
No value is returned by this kernel service.

Related Information

[Security Kernel Services|in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

curtime Kernel Service

Purpose
Reads the current time into a time structure.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/time.h>

void curtime ([timestruct)

struct timestruc_t *timestruct;

Parameter

timestruct Points to a timestruc_t time structure defined in the /usr/include/sys/time.h file. The curtime
kernel service updates the fields in this structure with the current time.

Description

The curtime kernel service reads the current time into a time structure defined in the
lusr/include/sys/time.h file. This service updates the tv_sec and tv_nsec fields in the time structure,
pointed to by the timestruct parameter, from the hardware real-time clock. The kernel also maintains and
updates a memory-mapped time tod structure. This structure is updated with each clock tick.

The kernel also maintains two other in-memory time values: the Ibolt and time values. The three
in-memory time values that the kernel maintains (the tod, Ibolt, and time values) are available to kernel
extensions. The Ibolt in-memory time value is the number of timer ticks that have occurred since the
system was booted. This value is updated once per timer tick. The time in-memory time value is the
number of seconds since Epoch. The kernel updates the value once per second.

Note: POSIX 1003.1 defines "seconds since Epoch” as a "value interpreted as the number of seconds
between a specified time and the Epoch”. It further specifies that a "Coordinated Universal Time
name specified in terms of seconds (fm_sec), minutes (tm_min), hours (fm_hour), and days since
January 1 of the year (tm_yday), and calendar year minus 1900 (tm_year) is related to a time

Chapter 1. Kernel Services 63

represented as seconds since the Epoch, according to the following expression: tm_sec + tm_min *
60 tm_hour<3600 + tm_yday * 86400 + (tm_year - 70) * 31536000 ((tm_year - 69) / 4) * 86400 if
the year is greater than or equal to 1970, otherwise it is undefined.”

The curtime kernel service does not page-fault if a pinned stack and input time structure are used. Also,
accessing the Ibolt, time, and tod in-memory time values does not cause a page fault since they are in
pinned memory.

Execution Environment
The curtime kernel service can be called from either the [process| or finterrupt| environment.

The tod, time, and Ibolt memory-mapped time values can also be read from the process or interrupt
handler environment. The timestruct parameter and stack must be pinned when the curtime service is
called in an interrupt handler environment.

Return Values
The curtime kernel service has no return values.

Related Information

[Timer and Time-of-Day Kernel Services|in AIX 5L Version 5.2 Kernel Extensions and Device Support
Programming Concepits.

d_align Kernel Service

Purpose
Provides needed information to align a buffer with a processor cache line.

Library

Kernel Extension Runtime Routines Library (libsys.a)

Syntax

int d_align()

Description

To maintain cache consistency with system memory, buffers must be aligned. The d_align kernel service
helps provide that function by returning the maximum processor cache-line size. The cache-line size is
returned in log2 form.

Execution Environment
The d_align service can be called from either the process or interrupt environment.

Related Information
The [d_cflush| kernel service, [d_clear] kernel service, [d_roundup] kernel service.

|Understanding Direct Memory Access (DMA) Transfed in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts.

64 Technical Reference: Kernel and Subsystems, Volume 1

d_alloc_dmamem Kernel Service

Purpose
Allocates an area of “dma-able” memory.

Syntax

void *
d_alloc_dmamem(d_handle t [device handle|, |size t size|,int falign])

Description

Exported, documented kernel service supported on PCl-based systems only. The d_alloc_dmamem
kernel service allocates an area of “dma-able” memory which satisfies the constraints associated with a
DMA handle, specified via the device_handle parameter. The constraints (such as need for contiguous
physical pages or need for 32-bit physical address) are intended to guarantee that a given adapter will be
able to access the physical pages associated with the allocated memory. A driver associates such
constraints with a dma handle via the flags parameter on its d_map_init call.

The area to be allocated is the number of bytes in length specified by the size parameter, and is aligned
on the byte boundary specified by the align parameter. The align parameter is actually the log base 2 of
the desired address boundary. For example, an align value of 12 requests that the allocated area be
aligned on a 4096 byte boundary.

d_alloc_dmamem is appropriate to be used for long-term mappings. Depending on the system
configuration and the constraints encoded in the device_handle, the underlying storage will come from
either the real_heap (rmalloc service) or pinned_heap (xmalloc service).

Notes:

1. The d_free_dmamem service should be called to free allocation from a previous d_alloc_dmamem
call.

2. The d_alloc_dmamem kernel service can be called from the process environment only.

Parameters

device_handle Indicates the dma handle.

align Specifies alignment characteristics.
size_t size Specifies number of bytes to allocate.

Return Values

Address of allocated Indicates that d_alloc_dmamem was successful.
area
NULL Requested memory could not be allocated.

Related Information
The|d_free_dmamem|kernel service, kernel service, kernel service, kernel
ce.

serv

Chapter 1. Kernel Services 65

d_cflush Kernel Service

Purpose

Flushes the processor and I/0O channel controller (IOCC) data caches when mapping bus device DMA with
the long-term DMA_WRITE_ONLY option.

Syntax

int d_cflush (channel id, baddr, count, daddr)

it [channel id

caddr_t
size_t
caddr_t

Parameters

channel_id Specifies the DMA channel ID returned by the kernel service.
baddr Designates the address of the memory buffer.

count Specifies the length of the memory buffer transfer in bytes.

dadadr Designates the address of the device corresponding to the transfer.

Description

The d_cflush kernel service should be called after data has been modified in a buffer that will undergo
direct memory access (DMA) processing. Through DMA processing, this data is sent to a device where the
kernel service with the DMA_WRITE_ONLY option has already mapped the buffer for device
DMA. The d_cflush kernel service is not required if the DMA_WRITE_ONLY option is not used or if the
buffer is mapped before each DMA operation by calling the d_master kernel service.

The d_cflush kernel service flushes the processor cache for the involved cache lines and invalidates any
previously retrieved data that may be in the IOCC buffers for the designated channel. This most frequently
occurs when using long-term buffer mapping for DMA support to or from a device.

Long-Term DMA Buffer Mapping

The long-term DMA buffer mapping approach is frequently used when a pool of buffers is defined for
sending commands and obtaining responses from an adapter using bus master DMA. This approach is
also used frequently in the communications field where buffers can come from a common pool such as the
mbuf pool or a pool used for protocol headers.

When using a fixed pool of buffers, the d_master kernel service is used only once to map the pool’s
address and range. The device driver then modifies the data in the buffers. It must also flush the data from
the processor and invalidate the IOCC data cache involved in transfers with the device. The IOCC cache
must be invalidated because the data in the IOCC data cache may be stale due to the last DMA operation
to or from the buffer area that has just been modified for the next operation.

The d_cflush kernel service permits the flushing of the processor cache and making the required IOCC
cache not valid. The device driver should use this service after modifying the data in the buffer and before
sending the command to the device to start the DMA operation.

Once DMA processing has been completed, the device driver should call the |d_complete|service to check
for errors and ensure that any data read from the device has been flushed to memory.

Note: The d_cflush kernel service is not supported on the 64-bit kernel.

66 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The d_cflush kernel service can be called from either the [process| or [interrupt environment.

Return Values

0 Indicates that the transfer was successfully completed.
EINVAL Indicates the presence of an invalid parameter.

Related Information
The kernel service, kernel service, kernel service.

/0 Kernel Services|and [Understanding Direct Memory Access (DMA) Transfer|in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

d_clear Kernel Service

Purpose
Frees a direct memory access (DMA) channel.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dma.h>

void d_clear (fchannel id)

int channel_id;

Parameter

channel_id DMA channel identifier returned by the service.

Description

The d_clear kernel service cleans up a DMA channel. To clean up the DMA channel:
1. Mark the DMA channel specified by the channel_id parameter as free.

2. Reset the DMA channel.

The d_clear service is typically called by a device driver in its close routine. It has no return values.

Attention: The d_clear service, as with all DMA services, should not be called unless the DMA

channel has been successfully allocated with the d_init service. The [d_complete| service must have
been called to clean up after any DMA transfers. Otherwise, data will be lost and the system integrity

will be compromised.

Note: The d_clear kernel service is not supported on the 64-bit kernel.

Execution Environment
The d_clear kernel service can be called from either the [process| or finterrupt| environment.

Return Values
The d_clear kernel service has no return values.

Chapter 1. Kernel Services

67

Related Information
The kernel service, kernel service.

(10 Kernel Services| and [Understanding Direct Memory Access (DMA) Transfers|in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

d_complete Kernel Service

Purpose
Cleans up after a direct memory access (DMA) transfer.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dma.h>

#include <sys/xmem.h>

int d_complete
(channel_id, flags, baddr,
count, dp, daddr)

channel id]s

struzt xmem * |dpl;
caddr_t |daddrf;

Parameters

channel_id Specifies the DMA channel identifier returned by the [d_init] service.

flags Describes the DMA transfer. The /ust/include/dma.h file describes these flags.

baddr Designates the address of the memory buffer.

count Specifies the length of the transfer in bytes.

dp Specifies the address of the cross-memory descriptor.

daddr Designates the address used to program the A value of null is specified for DMA]
Description

The d_complete kernel service completes the processing of a DMA transfer. It also indicates any DMA
error detected by the system hardware. The d_complete service must be called after each DMA transfer.

The d_complete service performs machine-dependent processing, which entails:
* Flushing system DMA buffers
» Making the DMA buffer accessible to the processor

Note: When calling the service several times for one or more of the same pages of memory,
the corresponding number of d_complete calls must be made to reveal successfully the page or
pages involved in the DMA transfers. Pages are not hidden from the processor during the DMA
mapping if the DMA_WRITE_ONLY flag is specified on the call to the d_master service.

["Understanding Direct Memory Access (DMA) Transfers’|in AIX 5L Version 5.2 Kernel Extensions and
Device Support Programming Concepts further describes DMA transfers.

68 Technical Reference: Kernel and Subsystems, Volume 1

Note: The d_complete kernel service is not supported on the 64-bit kernel.

Execution Environment
The d_complete kernel service can be called from either the [procesg or [interrupf environment.

Return Values

DMA_SUCC
DMA_INVALID

DMA_LIMIT
DMA_NO_RESPONSE
DMA_CONFLICT
DMA_AUTHORITY
DMA_PAGE_FAULT

DMA_BAD_ADDR

DMA_CHECK
DMA_DATA
DMA_ADDRESS
DMA_EXTRA

DMA_SYSTEM

Indicates a successful completion.

Indicates an operation that is not valid. A load or store that was not valid was
performed to the 1/O bus.

Indicates a limit check. A load or store to the I/O bus occurred that was not sufficiently
authorized to access the 1/0O bus address.

Indicates no response. No device responded to the 1/O bus access.

Indicates an address conflict. A daddr parameter was specified to the[d_master] service
for a system memory transfer, where this transfer conflicts with the bus memory
address of an 1/0O bus device.

Indicates an authority error. A protection exception occurred while accessing an 1/O bus
memory address.

Indicates a page fault. A reference was made to a page not currently located in system
memory.

Indicates an address that is not valid. A bus address that is not valid or was
unsupported was used. A daddr parameter that was not valid was specified to the
d_master service.

Indicates a channel check. A channel check was generated during the bus cycle. This
typically occurs when a device detects a data parity error.

Indicates a system-detected data parity error.

Indicates a system-detected address parity error.

Indicates an extra request. This typically occurs when the count parameter was
specified incorrectly to the service.

Indicates a system error. The system detected an internal error in system hardware.
This is typically a parity error on an internal bus or register.

Related Information
The [d_init] kernel service, [d_master] kernel service, kernel service.

(/0 Kernel Services| and [Understanding Direct Memory Access (DMA) Transfers|in AIX 5L Version 5.2

Kernel Extensions and Device Support Programming Concepts.

delay Kernel Service

Purpose

Suspends the calling process for the specified number of timer ticks.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

void delay
(fricks)
int ticks;

Chapter 1. Kernel Services 69

Parameter

ticks Specifies the number of timer ticks that must occur before the process is reactivated. Many timer ticks can
occur per second.

Description

The delay kernel service suspends the calling process for the number of timer ticks specified by the ticks
parameter.

The HZ value in the /usr/include/sys/m_param.h file can be used to determine the number of ticks per
second.

Execution Environment
The delay kernel service can be called from the |process environment| only.

Return Values
The delay service has no return values.

Related Information

[Timer and Time-of-Day Kernel Services|in AIX 5L Version 5.2 Kernel Extensions and Device Support
Programming Concepits.

del_domain_af Kernel Service

Purpose
Deletes an address family from the Address Family domain switch table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/domain.h>

int

del_domain_af (

struct domain *domain;

Parameter

domain Specifies the address family.

Description

The del_domain_af kernel service deletes the address family specified by the domain parameter from the
Address Family domain switch table.

Execution Environment
The del_domain_af kernel service can be called from either the [process| or finterrupt| environment.

70 Technical Reference: Kernel and Subsystems, Volume 1

Return Value

EINVAL Indicates that the specified address is not found in the Address Family domain switch table.

Example

To delete an address family from the Address Family domain switch table, invoke the del_domain_af
kernel service as follows:

del_domain_af(&inetdomain);

In this example, the family to be deleted is inetdomain.

Related Information
The ladd_domain_af|kernel service.

INetwork Kernel Services|in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

del_input_type Kernel Service

Purpose
Deletes an input type from the Network Input table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/if.h>

int del_input_type

(fee)

u_short type;

Parameter

type Specifies which type of protocol the packet contains. This parameter is a field in a packet.

Description

The del_input_type kernel service deletes an input type from the Network Input table to disable the
reception of the specified packet type.

Execution Environment
The del_input_type kernel service can be called from either the [process or [interrupf environment.

Return Values

0 Indicates that the type was successfully deleted.
ENOENT Indicates that the del_input_type service could not find the type in the Network Input table.

Chapter 1. Kernel Services 71

Examples

1. To delete an input type from the Network Input table, invoke the del_input_type kernel service as
follows:

del_input_type(ETHERTYPE IP);

In this example, ETHERTYPE_IP specifies that Ethernet IP packets should no longer be processed.

2. To delete an input type from the Network Input table, invoke the del_input_type kernel service as
follows:

del_input_type(ETHERTYPE_ARP);

In this example, ETHERTYPE_ARP specifies that Ethernet ARP packets should no longer be processed.

Related Information
The |add_input_type| kernel service, ffind_input_type| kernel service.

[Network Kernel Services|in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepits.

del _netisr Kernel Service

Purpose
Deletes a network software interrupt service routine from the Network Interrupt table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/netisr.h>

int del_netisr (lsoft intr level)
u_short soft_intr_level;

Parameter

soft_intr_level Specifies the software interrupt service to delete. The value of soft_intr_level should be
greater than or equal to 0 and less than a value of NETISR_MAXS.

Description

The del_netisr kernel service deletes the network software interrupt service routine specified by the
soft_intr_level parameter from the Network Software Interrupt table.

Execution Environment
The del_netisr kernel service can be called from either the [process| or interrupt| environment.

Return Values

0 Indicates that the software interrupt service was successfully deleted.
ENOENT Indicates that the software interrupt service was not found in the Network Software Interrupt table.

72 Technical Reference: Kernel and Subsystems, Volume 1

Example

To delete a software interrupt service from the Network Software Interrupt table, invoke the kernel service
as follows:

del netisr(NETISR_IP);

In this example, the software interrupt routine to be deleted is NETISR_IP.

Related Information
The kernel service.

|Network Kernel Services| in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepits.

del_netopt Macro

Purpose
Deletes a network option structure from the list of network options.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <net/netopt.h>

del_netopt (foption name symboll)
option_name_symbol;

Parameter

option_name_symbol Specifies the symbol name used to construct the netopt structure and default
names.

Description

The del_netopt macro deletes a network option from the linked list of network options. After the
del_netopt service is called, the option is no longer available to thecommand.

Execution Environment
The del_netopt macro can be called from either the |process| or [interrupt environment.

Return Values
The del_netopt macro has no return values.

Related Information
Thecommand.

The macro.

|Network Kernel Services| in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepits.

Chapter 1. Kernel Services 73

detach Device Queue Management Routine

Purpose
Provides a means for performing device-specific processing when the detchq kernel service is called.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/deviceq.h>

int detach([dev parms|, |path id)
caddr_t dev_parms;
cba_id path_id;

Parameters

dev_parms Passed to creatd service when the detach routine is defined.
path_id Specifies the path identifier for the queue that is being detached from.

Description

The detach routine is part of the Device Queue Management kernel extension. Each device queue can
have a detach routine. This routine is optional and must be specified when the device queue is defined
with the creatd service. The detchq service calls the detach routine each time a path to the device queue
is removed.

To ensure that the detach routine is not called while a queue element from this client is still in the device
queue, the kernel puts a detach control queue element at the end of the device queue. The server knows
by convention that a detach control queue element signifies completion of all pending queue elements for
that path. The kernel calls the detach routine after the detach control queue element is processed.

The detach routine executes under the process under which the detchq service is called. The kernel does
not serialize the execution of this service with the execution of any of the other server routines.

Execution Environment
The detach routine can be called from the [process environmen{ only.

Return Values

RC_GOOD Indicates successful completion.

A return value other than RC_GOOD indicates an irrecoverable condition causing system failure.

devdump Kernel Service

Purpose
Calls a device driver dump-to-device routine.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

74 Technical Reference: Kernel and Subsystems, Volume 1

int devdump
(devno, uiop, cmd, arg, chan, ext)

dev_t ;

struct uio * uiopf

it Ed bk bih

Parameters

devno Specifies the [major and minor device numbers}

uiop Points to the uio structure containing write parameters.

cmd Specifies which dump command to perform.

arg Specifies a parameter or address to a parameter block for the specified command.
chan Specifies the |channel ID|

ext Specifies the [extended system call parameter]

Description

The kernel or kernel extension calls the devdump kernel service to initiate a memory dump to a device
when writing dump data and then to terminate the dump to the target device.

The devdump service calls the device driver’s routine, which is found in the device switch table
for the device driver associated with the specified device number. If the device number (specified by the
devno parameter) is not valid or if the associated device driver does not have a dddump routine, an
ENODEV return value is returned.

If the device number is valid and the specified device driver has a dddump routine, the routine is called.

If the device driver's dddump routine is successfully called, the return value for the devdump service is
set to the return value provided by the device’s dddump routine.

Execution Environment

The devdump kernel service can be called in either [the process| or [interrupt environment, as described
under the conditions described in the dddump routine.

Return Values

0 Indicates a successful operation.
ENODEV Indicates that the device number is not valid or that no dddump routine is registered for this device.

The dddump device driver routine provides other return values.

Related Information
The [dddump| device driver entry point.

The kernel service.

IKernel Extension and Device Driver Management Kernel Services|and How Device Drivers are Accessed
in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Kernel Services 75

devstrat Kernel Service

Purpose
Calls a block device driver’s strategy routine.

Syntax

#include <sys/types.h>
#include <sys/errno.h>

int devstrat (@
struct buf *bp;

Parameter

bp Points to the structure specifying the block transfer parameters.

Description

The kernel or kernel extension calls the devstrat kernel service to request a block data transfer to or from
the device with the specified device number. This device number is found in the structure. The
devstrat service can only be used for the block class of device drivers.

The devstrat service calls the device driver’s routine. This routine is found in the device
switch table for the device driver associated with the specified device number found in the The
b_dev field is found in the buf structure pointed to by the bp parameter. The caller of the devstrat service
must have an iodone routine specified in theof the buf structure. Following the return from
the device driver's ddstrategy routine, the devstrat service returns without waiting for the 1/0 to be
performed.

On multiprocessor systems, all iodone routines run by default on the first processor started when the
system was booted. This ensures compatibility with uniprocessor device drivers. If the iodone routine has
been designed to be multiprocessor-safe, set the B_MPSAFE flag in the b_f1lags field of the buf structure
passed to the devstrat kernel service. The iodone routine will then run on any available processor.

If the device major number is not valid or the specified device is not a block device driver, the devstrat
service returns the ENODEV return code. If the device number is valid, the device driver's ddstrategy
routine is called with the pointer to the buf structure (specified by the bp parameter).

Execution Environment
The devstrat kernel service can be called from either the [process| or [interrupt environment.

Note: The devstrat kernel service can be called in the interrupt environment only if its priority level is
INTIODONE or lower.

Return Values

0 Indicates a successful operation.

ENODEV Indicates that the device number is not valid or that no ddstrategy routine registered. This value is also
returned when the specified device is not a block device driver. If this error occurs, the devstrat service
can cause a page fault.

76 Technical Reference: Kernel and Subsystems, Volume 1

Related Information
The kernel service.

The |ddstategy]| routine.
The structure.

[Kernel Extension and Device Driver Management Kernel Services|and How Device Drivers are Accessed
in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming Concepts.

devswadd Kernel Service

Purpose
Adds a device entry to the device switch table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>

int devswadd ([devnol, [swptr)
dev_t devno;
struct devsw *dswptr;

Parameters

devno Specifies the |major and minor device numbers|to be associated with the specified entry in the device
switch table.
dswptr Points to the device switch structure to be added to the device switch table.

Description

The devswadd kernel service is typically called by a device driver’s routine to add or replace
the device driver’s entry points in the device switch table. The device switch table is a table of device
switch (devsw) structures indexed by the device driver's major device number. This table of structures is
used by the device driver interface services in the kernel to facilitate calling device driver routines.

The major device number portion of the devno parameter is used to specify the index in the device switch
table where the devswadd service must place the specified device switch entry. Before this service copies
the device switch structure into the device switch table, it checks the existing entry to determine if any
opened device is using it. If an opened device is currently occupying the entry to be replaced, the
devswadd service does not perform the update. Instead, it returns an EEXIST error value. If the update is
successful, it returns a value of 0.

Entry points in the device switch structure that are not supported by the device driver must be handled in
one of two ways. If a call to an unsupported entry point should result in the return of an error code, then
the entry point must be set to the nodev routine in the structure. As a result, any call to this entry point
automatically invokes the nodev routine, which returns an ENODEYV error code. The kernel provides the
nodev routine.

Otherwise, a call to an unsupported entry point should be treated as a no-operation function. Then the

corresponding entry point should be set to the nulldev routine. The nulldev routine, which is also provided
by the kernel, performs no operation if called and returns a 0 return code.

Chapter 1. Kernel Services 77

On multiprocessor systems, all device driver routines run by default on the first processor started when the
system was booted. This ensures compatibility with uniprocessor device drivers. If the device driver being
added has been designed to be multiprocessor-safe, set the DEV_MPSAFE flag in the d_opts field of the
devsw structure passed to the devswadd kernel service. The device driver routines will then run on any
available processor.

All other fields within the structure that are not used should be set to 0. Some fields in the structure are for
kernel use; the devswadd service does not copy these fields into the device switch table. These fields are
documented in the /usr/include/device.h file.

Execution Environment
The devswadd kernel service can be called from the [process environment only.

Return Values

0 Indicates a successful operation.

EEXIST Indicates that the specified device switch entry is in use and cannot be replaced.

ENOMEM Indicates that the entry cannot be pinned due to insufficient real memory.

EINVAL Indicates that the major device number portion of the devno parameter exceeds the maximum permitted

number of device switch entries.

Related Information
The kernel service, kernel service, kernel service.

The device driver entry point.

[Kernel Extension and Device Driver Management Kernel Services|in AIX 5L Version 5.2 Kernel Extensions
and Device Support Programming Concepts.

devswchg Kernel Service

Purpose
Alters a device switch entry point in the device switch table.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>

int devswchg (|devn0|, |type|, hewfund, |oldfunc|);
dev_t devno;

int type;

int (*newfunc) ();

int (**oldfunc)();

Parameters

devno Specifies the [major and minor device numbers| of the device to be changed.

78 Technical Reference: Kernel and Subsystems, Volume 1

type Specifies the device switch entry point to alter. The type parameter can have one of the following
values:

DSW_BLOCK
Alters the |ddstrategy entry point}

DSW_CONFIG
Alters the|ddconfig entry point]

DSW_CREAD
Alters the|ddread entry point]

DSW_CWRITE
Alters the [ddwrite entry point}

DSW_DUMP
Alters the |[dddump entry pointl

DSW_MPX
Alters the [ddmpx entry point

DSW_SELECT
Alters the |ddselect entry point]

DSW_TCPATH
Alters the |ddrevoke entry point|
newfunc Specifies the new value for the device switch entry point.
oldfunc Specifies that the old value of the device switch entry point be returned here.

Description

The devswchg kernel service alters the value of a device switch entry point (function pointer) after a
device switch table entry has been added by the kernel service. The device switch entry point
specified by the type parameter is set to the value of the newfunc parameter. lts previous value is returned
in the memory addressed by the oldfunc parameter. Only one device switch entry can be altered per call.

If the devswchg kernel service is unsuccessful, the value referenced by the oldfunc parameter is not
defined.

Execution Environment
The devswchg kernel service can be called from the environment only.

Return Values

0 Indicates a successful operation.
EINVAL Indicates the Type command was not valid.
ENODEV Indicates the device switch entry specified by the devno parameter is not defined.

Related Information
The kernel service.

LList of Kernel Extension and Device Driver Management Kernel Services| and How Device Drivers are
Accessed in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming Concepts.

devswdel Kernel Service

Purpose
Deletes a device driver entry from the device switch table.

Chapter 1. Kernel Services 79

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/device.h>

int devswdel

([evn)

dev_t devno;

Parameter

devno Specifies the [major and minor device numbers| of the device to be deleted.

Description

The devswdel kernel service is typically called by a device driver’s routine on termination to
remove the device driver’s entry points from the device switch table.The device switch table is a table of
device switch (devsw) structures indexed by the device driver's major device number. The device driver
interface services use this table of structures in the kernel to facilitate calling device driver routines.

The major device number portion of the devno parameter is used to specify the index into the device
switch table for the entry to be removed. Before the device switch structure is removed, the existing entry
is checked to determine if any opened device is using it.

If an opened device is currently occupying the entry to be removed, the devswdel service does not
perform the update. Instead, it returns an EEXIST return code. If the removal is successful, a return code
of 0 is set.

The devswdel service removes a device switch structure entry from the table by marking the entry as
undefined and setting all of the entry point fields within the structure to a nodev value. As a result, any
callers of the removed device driver return an ENODEV error code. If the specified entry is already marked
undefined, the devswdel service returns an ENODEV error code.

Execution Environment
The devswdel kernel service can be called from the [process environment| only.

Return Values

0 Indicates a successful operation.

EEXIST Indicates that the specified device switch entry is in use and cannot be removed.

ENODEV Indicates that the specified device switch entry is not defined.

EINVAL Indicates that the major device number portion of the devno parameter exceeds the maximum permitted

number of device switch entries.

Related Information
The kernel service, kernel service, kernel service.

IKernel Extension and Device Driver Management Kernel Services|in AIX 5L Version 5.2 Kernel Extensions
and Device Support Programming Concepts.

80 Technical Reference: Kernel and Subsystems, Volume 1

devswqry Kernel Service

Purpose
Checks the status of a device switch entry in the device switch table.

Syntax

#include <sys/types.h>

#include <sys/errno.h>

#include <sys/device.h>int devswqry (|devnd, |statusL |dsdptrb
dev_t devno;

uint *status;

caddr_t *dsdptr;

Parameters

devno Specifies the [major and minor device numbers|of the device to be queried.

status Points to the status of the specified device entry in the device switch table. This parameter is passed by
reference.

dsdptr Points to device-dependent information for the specified device entry in the device switch table. This

parameter is passed by reference.

Description

The devswqry kernel service returns the status of a specified device entry in the device switch table. The
entry in the table to query is determined by the major portion of the device number specified in the devno
parameter. The status of the entry is returned in the status parameter that is passed by reference on the
call. If this pointer is null on entry to the devswqry service, then the status is not returned to the caller.

The devswqry service also returns the address of device-dependent information for the specified device
entry in the device switch table. This address is taken from the d_dsdptr field for the entry and returned in
the dsdptr parameter, which is passed by reference. If this pointer is null on entry to the devswqry
service, then the service does not return the address from the d_dsdptr field to the caller.

Status Parameter Flags
The status parameter comprises a set of flags that can indicate the following conditions:

DSW_BLOCK Device switch entry is defined by a block device driver. This flag is set when the device
driver has a|ddstrategy entry poinf

DSW_CONFIG Device driver in this device switch entry provides an entry point for configuration.

DSW_CREAD Device driver in this device switch entry is providing a routine for character reads or raw
input. This flag is set when the device driver has a|ddread entry point

DSW_CWRITE Device driver in this device switch entry is providing a routine for character writes or raw
output. This flag is set when the device driver has a[ddwrite entry point

DSW_DEFINED Device switch entry is defined.

DSW_DUMP Device driver defined by this device switch entry provides the capability to support one or

more of its devices as targets for a kernel dump. This flag is set when the device driver has
provided a |[dddump entry point.

DSW_MPX Device switch entry is defined by a multiplexed device driver. This flag is set when the
device driver has a|ddmpx entry point|

DSW_OPENED Device switch entry is in use and the device has outstanding opens. This flag is set when
the device driver has at least one outstanding open.

DSW_SELECT Device driver in this device switch entry provides a routine for handling the select or poll

subroutines. This flag is set when the device driver has provided alddselect entry point

Chapter 1. Kernel Services 81

DSW_TCPATH Device driver in this device switch entry supports devices that are considered to be in the
trusted computing path and provide support for the revoke function. This flag is set when
the device driver has provided a|[ddrevoke entry point

DSW_TTY Device switch entry is in use by a tty device driver. This flag is set when the pointer to the
d_ttys structure is not a null character.
DSW_UNDEFINED Device switch entry is not defined.

The status parameter is set to the DSW_UNDEFINED flag when a device switch entry is not in use. This
is the case if either of the following are true:

+ The entry has never been used. (No previous call to the service was made.)

* The entry has been used but was later deleted. (A call to the devswadd service was issued, followed
by a call to the service.)

No other flags are set when the DSW_UNDEFINED flag is set.

Note: The status parameter must be a null character if called from the environment.

Execution Environment
The devswaqry kernel service can be called from either the [process| orinterrupt| environment.

Return Values

0 Indicates a successful operation.
EINVAL Indicates that the major device number portion of the devno parameter exceeds the maximum permitted
number of device switch entries.

Related Information
The |devswadd|kernel service, kernel service, kernel service.

[Kernel Extension and Device Driver Management Kernel Services|

d_free_dmamem Kernel Service

Purpose
Frees an area of memory.

Syntax

int d_free_dmamem(d_handle t [evice handle|, void * addr|, [size t size]

Description

Exported, documented kernel service supported on PCl-based systems only. The d_free_dmamem kernel
service frees the area of memory pointed to by the addr parameter. This area of memory must be
allocated with the d_alloc_dmamem kernel service using the same device_handle, and the addr must be
the address returned from the corresponding d_alloc_dmamem call. Also, the size must be the same size
that was used on the corresponding d_alloc_dmamem call.

Notes:

1. Any memory allocated in a prior d_alloc_dmamem call must be explicitly freed with a
d_free_dmamem call.

2. This service can be called from the process environment only.

82 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

device_handle Indicates the dma handle.
size_t size Specifies size of area to free.
void * addr Specifies address of area to free.

Return Values

0 Indicates successful completion.
-1 Indicates underlying free service (xmfree or rmalloc) failed.

Related Information
The|d_alloc_dmamem| kernel service.

d_init Kernel Service

Purpose
Initializes a direct memory access (DMA) channel.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dma.h>
#include <sys/adspace.h>

int d_init ([channell, |flagsl |us id)
int channel;

int flags;

vmhandle_t bus_id;

Parameters

channel Specifies the DMA channel number.

flags Specifies the flags that describe how the DMA channel is used. These flags are described in the
lusr/include/sys/dma.h file.

bus_id Identifies the 1/0 bus that the channel is to be allocated on. This parameter is normally passed to the

device driver in the [Device-Dependent Structure|at driver initialization time.

Description

The d_init kernel service initializes a DMA channel. A device driver must call this service before using the
DMA channel. Initializing the DMA channel entails:

» Designating the DMA channel specified by the channel parameter as allocated
» Personalizing the DMA channel as specified by the flags parameter

The d_init service is typically called by a device driver in its open routine when the device is not already in
the opened state. A device driver must call the d_init service before using the DMA channel.

Note: The d_init kernel service is not supported on the 64-bit kernel.

Chapter 1. Kernel Services 83

Execution Environment
The d_init kernel service can be called from either the jprocess|or finterrupt| environment.

Return Values

channel_id Indicates a successful operation. This value is used as an input parameter to the other DMA
routines.
DMA_FAIL Indicates that the DMA channel is not available because it is currently allocated.

Related Information

The kernel service.

[/O Kernel Services| and [Understanding Direct Memory Access (DMA) Transfers|in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

[Device-Dependent Structure (DDS) Overview|

disable lock Kernel Service

Purpose
Raises the interrupt priority, and locks a simple lock if necessary.

Syntax

#include <sys/lock_def.h>

int disable_lock ([int pril, [lock addr)
int int_pri;
simple_Tlock_t lock_addr;

Parameters

int_pri Specifies the interrupt priority to set.
lock_addr Specifies the address of the lock word to lock.

Description

The disable_lock kernel service raises the interrupt priority, and locks a simple lock if necessary, in order
to provide optimized thread-interrupt critical section protection for the system on which it is executing. On a
multiprocessor system, calling the disable_lock kernel service is equivalent to calling the and
kernel services. On a uniprocessor system, the call to the simple_lock service is not
necessary, and is omitted. However, you should still pass a valid lock address to the disable_lock kernel
service. Never pass a NULL lock address.

Execution Environment
The disable_lock kernel service can be called from either the [process| or [interrupt environment.

Return Values
The disable_lock kernel service returns the previous interrupt priority.

84 Technical Reference: Kernel and Subsystems, Volume 1

Related Information

Thei_disable| kernel service, [simple_lock _init kernel service, kernel service,
unlock_enable| kernel service.

Understanding Locking)Locking Kernel Services Understanding Interrupts}J/O Kernel Services|and
Interrupt Environment. in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

d_map_clear Kernel Service

Purpose
Deallocates resources previously allocated on a d_map_init call.

Syntax

#include <sys/dma.h>

void d_map_clear (xhandle)
struct d_handle *handle

Parameters

handle Indicates the unique handle returned by the d_map_init kernel service.

Description

The d_map_clear kernel service is a bus-specific utility routine determined by the d_map_init service that

deallocates resources previously allocated on a d_map_init call. This includes freeing the d_handle

structure that was allocated by d_map_init.

Note: You can use the D_MAP_CLEAR macro provided in the /usr/include/sys/dma.h file to code calls

to the d_map_clear kernel service.

Related Information
The [d_map_init| kernel service.

d_map_disable Kernel Service

Purpose
Disables DMA for the specified handle.

Syntax

#include <sys/dma.h>

int d_map_disable(*handle)
struct d_handle *handle;

Parameters

handle Indicates the unique handle returned by d_map_init.

Chapter 1. Kernel Services

85

Description

The d_map_disable kernel service is a bus-specific utility routine determined by the d_map_init kernel
service that disables DMA for the specified handle with respect to the platform.

Note: You can use the D_MAP_DISABLE macro provided in the /usr/include/sys/dma.h file to code
calls to the d_map_disable kernel service.

Return Values

DMA_SUCC Indicates the DMA is successfully disabled.
DMA_FAIL Indicates the DMA could not be explicitly disabled for this device or bus.

Related Information
The kernel service.

d_map_enable Kernel Service

Purpose
Enables DMA for the specified handle.

Syntax

#include <sys/dma.h>

int d_map_enable(*handle)
struct d_handle *handle;

Parameters

handle Indicates the unique handle returned by d_map_init.

Description

The d_map_enable kernel service is a bus-specific utility routine determined by the d_map_init kernel
service that enables DMA for the specified handle with respect to the platform.

Note: You can use the D_MAP_ENABLE macro provided in the /usr/include/sys/dma.h file to code calls
to the d_map_enable kernel service.

Return Values

DMA_SUCC Indicates the DMA is successfully enabled.
DMA_FAIL Indicates the DMA could not be explicitly enabled for this device or bus.

Related Information

The kernel service.

d_map_init Kernel Service

Purpose
Allocates and initializes resources for performing DMA with PCI and ISA devices.

86 Technical Reference: Kernel and Subsystems, Volume 1

Syntax

#include <sys/dma.h>

struct d_handle* d_map_init (bid, flags, bus_flags, channel)
int bid;

int flags;

int bus_flags;

uint channel;

Parameters

bid Specifies the bus identifier.

flags Describes the mapping.

bus_flags Specifies the target bus flags.

channel Indicates the channel assignment specific to the bus.
Description

The d_map_init kernel service allocates and initializes resources needed for managing DMA operations
and returns a unique handle to be used on subsequent DMA service calls. The handle is a pointer to a
d_handle structure allocated by d_map_init from the pinned heap for the device. The device driver uses
the function addresses provided in the handle for accessing the DMA services specific to its host bus. The
d_map_init service returns a DMA_FAIL error when resources are unavailable or cannot be allocated.

The channel parameter is the assigned channel number for the device, if any. Some devices and or buses
might not have the concept of channels. For example, an ISA device driver would pass in its assigned
DMA channel in the channel parameter.

Note: The possible flag values for the flags parameter can be found in /usr/include/sys/dma.h. These
flags can be logically ORed together to reflect the desired characteristics.

Execution Environment
The d_map_init kernel service should only be called from the process environment.

Return Values

DMA_FAIL Indicates that the resources are unavailable. No registration was completed.
struct d_handle * Indicates successful completion.

Related Information

The|d_map_clear kernel service, ﬁ_map_page| kernel service,ld_unmap_pagj kernel service,
id_map_list kernel service,[d_unmap_list|kernel service, |d_map_slave] kernel service, [d_unmap_slave|
kernel service, |d_map_disable| kernel service, |c_i_map_enable| kernel service.

d_map_list Kernel Service

Purpose
Performs platform-specific DMA mapping for a list of virtual addresses.

Syntax

#include <sys/dma.h>

Chapter 1. Kernel Services 87

int d_map_list (*handle, flags, minxfer, *virt _list, *bus_list)
struct d_handle *handle;

int flags;

int minxfer;

struct dio *virt_list;

struct dio *bus_list;

Note: The following is the interface definition for d_map_list when the DMA_ADDRESS_64 and
DMA_ENABLE_64 flags are set on the d_map_init call.

int d_map_list (*handle, flags, minxfer, *virt_list, *bus_list)
struct d_handle *handle;

int flags;

int minxfer;

struct dio_64 *virt list;

struct dio_64 *bus_list;

Parameters
handle Indicates the unique handle returned by the d_map_init kernel service.
flags Specifies one of the following flags:
DMA_READ
Transfers from a device to memory.
BUS_DMA
Transfers from one device to another device.
DMA_BYPASS
Do not check page access.
minxfer Specifies the minimum transfer size for the device.
virt_list Specifies a list of virtual buffer addresses and lengths.
bus_list Specifies a list of bus addresses and lengths.
Description

The d_map_list kernel service is a bus-specific utility routine determined by the d_map_init kernel service
that accepts a list of virtual addresses and sizes and provides the resulting list of bus addresses. This
service fills out the corresponding bus address list for use by the device in performing the DMA transfer.
This service allows for scatter/gather capability of a device and also allows the device to combine multiple
requests that are contiguous with respect to the device. The lists are passed via the dio structure. If the
d_map_list service is unable to complete the mapping due to exhausting the capacity of the provided dio
structure, the DMA_DIOFULL error is returned. If the d_map_list service is unable to complete the
mapping due to exhausting resources required for the mapping, the DMA_NORES error is returned. In
both of these cases, the bytes_done field of the dio virtual list is set to the number of bytes successfully
mapped. This byte count is a multiple of the minxfer size for the device as provided on the call to
d_map_list. The resid_iov field is set to the index of the remaining d_iovec fields in the list. Unless the
DMA_BYPASS flag is set, this service verifies access permissions to each page. If an access violation is
encountered on a page with the list, the DMA_NOACC error is returned, and the bytes_done field is set to
the number of bytes preceding the faulting iovec.

Note:

1. When the DMA_NOACC return value is received, no mapping is done, and the bus list is
undefined. In this case, the resid_iov field is set to the index of the d_iovec that encountered
the access violation.

2. You can use the D_MAP_LIST macro provided in the /usr/include/sys/dma.h file to code calls
to the d_map_list kernel service.

88 Technical Reference: Kernel and Subsystems, Volume 1

Return Values

DMA_NORES Indicates that resources were exhausted during mapping.

Note: d_map_list possible partial transfer was mapped. Device driver may continue with partial transfer
and submit the remainer on a subsequent d_map_list call, or call d_unmap_list to undo the partial
mapping. If a partial transfer is issued, then the driver must call d_unmap_list when the 1/O is
complete.

DMA_DIOFULL Indicates that the target bus list is full.

Note: d_map_list possible partial transfer was mapped. Device driver may continue with partial transfer
and submit the remainder on a subsequent d_map_list call, or call d_unmap_list to undo the
partial mapping. If a partial transfer is issued, then the driver must call d_unmap_list when the 1/0
is complete.

DMA_NOACC Indicates no access permission to a page in the list.

Note: d_map_list no mapping was performed. No need for the device driver to call d_unmap_list, but
the driver must fail the faulting I/O request, and resubmit any remainder in a subsequent
d_map_list call.

DMA_SUCC Indicates that the entire transfer successfully mapped.

Note: d_map_list successful mapping was performed. Device driver must call d_unmap_list when the
I/0O is complete. In the case of a long-term mapping, the driver must call d_unmap_list when the
long-term mapping is no longer needed.

Related Information
The|d_map_init| kernel service.

d_map_page Kernel Service

Purpose
Performs platform-specific DMA mapping for a single page.

Syntax

#include <sys/dma.h>
#include <sys/xmem.h>

int d_map_page(*handle, flags, baddr, *busaddr, xxmp)
struct d_handle *handle;

int flags;

caddr_t baddr;

uint *busaddr;

struct xmem *xmp;

Note: The following is the interface definition for d_map_page when the DMA_ADDRESS_64 and
DMA_ENABLE_64 flags are set on the d_map_init call.

Chapter 1. Kernel Services 89

int d_map_page(*handle, flags, baddr, *busaddr, *xmp)
struct d_handle *handle;

int flags;

unsigned long long baddr;

unsigned long long *busaddr;

struct xmem *xmp;

Parameters
handle Indicates the unique handle returned by the d_map_init kernel service.
flags Specifies one of the following flags:
DMA_READ
Transfers from a device to memory.
BUS_DMA
Transfers from one device to another device.
DMA_BYPASS
Do not check page access.
baddr Specifies the buffer address.
busaddr Points to the busaddr field.
Xmp Cross-memory descriptor for the buffer.
Description

The d_map_page kernel service is a bus-specific utility routine determined by the d_map_init kernel
service that performs platform specific mapping of a single 4KB or less transfer for DMA master devices.
The d_map_page kernel service is a fast-path version of the d_map_list service. The entire transfer
amount must fit within a single page in order to use this service. This service accepts a virtual address
and completes the appropriate bus address for the device to use in the DMA transfer. Unless the
DMA_BYPASS flag is set, this service also verifies access permissions to the page.

If the buffer is a global kernel space buffer, the cross-memory descriptor can be set to point to the
exported GLOBAL cross-memory descriptor, xmem_global.

If the transfer is unable to be mapped due to resource restrictions, the d_map_page service returns
DMA_NORES. If the transfer is unable to be mapped due to page access violations, this service returns
DMA_NOACC.

Note: You can use the D_MAP_PAGE macro provided in the /usr/include/sys/dma.h file to code calls to
the d_map_page kernel service.

Return Values

DMA_NORES Indicates that resources are unavailable.

Note: d_map_page no mapping is done, device driver must wait until resources are freed and attempt
the d_map_page call again.

DMA_NOACC Indicates no access permission to the page.

Note: d_map_page no mapping is done, device driver must fail the corresponding 1/O request.

DMA_SUCC Indicates that the busaddr parameter contains the bus address to use for the device transfer.

90 Technical Reference: Kernel and Subsystems, Volume 1

Note: d_map_page successful mapping was done, device driver must call d_unmap_page when /O is
complete, or when device driver is finished with the mapped area in the case of a long-term

mapping.

Related Information

The|d_a||oc_dmamem| kernel service kernel service, kernel service.

d_map_slave Kernel Service

Purpose
Accepts a list of virtual addresses and sizes and sets up the slave DMA controller.

Syntax
#include <sys/dma.h>

int d_map_slave (*handle, flags, minxfer, *vlist, chan_flag)
struct d_handle *handle;

int flags;

int minxfer;

struct dio *vlist;

uint chan_flag;

Parameters
handle Indicates the unique handle returned by the d_map_init kernel service.
flags Specifies one of the following flags:
DMA_READ
Transfers from a device to memory.
BUS_DMA
Transfers from one device to another device.
DMA_BYPASS
Do not check page access.
minxfer Specifies the minimum transfer size for the device.
vlist Specifies a list of buffer addresses and lengths.
chan_flag Specifies the device and bus specific flags for the transfer.
Description

The d_map_slave kernel service accepts a list of virtual buffer addresses and sizes and sets up the slave
DMA controller for the requested DMA transfer. This includes setting up the system address generation
hardware for a specific slave channel to indicate the specified data buffers, and enabling the specific
hardware channel. The d_map_slave kernel service is not an exported kernel service, but a bus-specific
utility routine determined by the d_map_init kernel service and provided to the caller through the
d_handle structure.

This service allows for scatter/gather capability of the slave DMA controller and also allows the device
driver to coalesce multiple requests that are contiguous with respect to the device. The list is passed with
the dio structure. If the d_map_slave kernel service is unable to complete the mapping due to resource,
an error, DMA_NORES is returned, and the bytes_done field of the dio list is set to the number of bytes
that were successfully mapped. This byte count is guaranteed to be a multiple of the minxfer parameter
size of the device as provided to d_map_slave. Also, the resid_iov field is set to the index of the
remaining d_iovec that could not be mapped. Unless the DMA_BYPASS flag is set, this service will verify
access permissions to each page. If an access violation is encountered on a page within the list, an error,

Chapter 1. Kernel Services 91

DMA_NOACC is returned and no mapping is done. The bytes_done field of the virtual list is set to the
number of bytes preceding the faulting iovec. Also in this case, the resid_iov field is set to the index of the
d_iovec entry that encountered the access violation.

The virtual addresses provided in the vlist parameter can be within multiple address spaces, distinguished
by the cross-memory structure pointed to for each element of the dio list. Each cross-memory pointer can
point to the same cross-memory descriptor for multiple buffers in the same address space, and for global
space buffers, the pointers can be set to the address of the exported GLOBAL cross-memory descriptor,
xmem_global.

The minxfer parameter specifies the absolute minimum data transfer supported by the device(the device
blocking factor). If the device supports a minimum transfer of 512 bytes (floppy and disks, for example),
the minxfer parameter would be set to 512. This allows the underlying services to map partial transfers to
a correct multiple of the device block size.

Note:

1. The d_map_slave kernel service does not support more than one outstanding DMA transfer per
channel. Attempts to do multiple slave mappings on a single channel will corrupt the previous
mappings.

2. You can use the D_MAP_SLAVE macro provided in the /usr/include/sys/dma.h file to code
calls to the d_map_clear kernel service.

3. The possible flag values for the chan_flag parameter can be found in /usr/include/sys/dma.h.
These flags can be logically ORed together to reflect the desired characteristics of the device
and channel.

4. If the CH_AUTOINIT flag is used then the transfer described by the vlist pointer is limited to a
single buffer address with a length no greater than 4K bytes.

Return Values

DMA_NORES Indicates that resources were exhausted during the mapping.
DMA_NOACC Indicates no access permission to a page in the list.
DMA_BAD_MODE Indicates that the mode specified by the chan_flag parameter is not supported.

Related Information
The kernel service.

d_mask Kernel Service

Purpose
Disables a direct memory access (DMA) channel.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dma.h>

void d_mask ([channel id)

int channel id;

Parameter

channel_id Specifies the DMA channel. This parameter is returned by the service.

92 Technical Reference: Kernel and Subsystems, Volume 1

Description

The d_mask kernel service disables the DMA channel specified by the channel_id parameter.

The d_mask kernel service is typically called by a device driver deallocating the resources associated with
its device. Some devices require it to be used during normal device operation to control DMA requests and
avoid spurious DMA operations.

Note: The d_mask service, like all DMA services, should not be called unless the d_init service has
allocated the DMA channel.

Note: The d_mask kernel service is not supported on the 64-bit kernel.

Execution Environment
The d_mask kernel service can be called from either the [process]| or finterrupt| environment.

Return Values
The d_mask service has no return values.

Related Information
The [d_init] kernel service, [d_unmask| kernel service.

(10 Kernel Services| and [Understanding Direct Memory Access (DMA) Transfers|in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

d_master Kernel Service

Purpose
Initializes a block-mode direct memory access (DMA) transfer for a DMA master.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dma.h>

#include <sys/xmem.h>

void d_master
(channel_id, flags, baddr, count,
dp, daddr
int |[channel id);
int |flagsj
caddr_t
size_t
struct xmem * ldpj;
caddr_t Eaddr-

Parameters

channel_id Specifies the DMA channel identifier returned by theservice.

flags Specifies the flags that control the DMA transfer. These flags are described in the
lusr/include/sys/dma.h file.

baddr Designates the address of the memory buffer.

Chapter 1. Kernel Services 93

count Indicates the length of the transfer in bytes.

dp Specifies the address of the cross-memory descriptor.
daddr Specifies the address used to program the DMA master.
Description

The d_master kernel service sets up the DMA channel specified by the channel_id parameter to perform a
block-mode DMA transfer for a DMA master. The flags parameter controls the operation of the d_master
service. ['Understanding Direct Memory Access (DMA) Transfers'| in AIX 5L Version 5.2 Kernel Extensions
and Device Support Programming Concepts describes DMA slaves and masters.

The d_master service initializes all the hardware facilities for a DMA transfer, but does not initiate the
DMA transfer itself. The d_master service makes the specified system memory buffer available to the
DMA device. The service may need to be called before the DMA transfer is initiated. The
d_master service does not enable or disable the specified DMA channel.

The d_master service supports three different buffer locations:

» A transfer between a buffer in user memory and the device. With this type of transfer, the dp parameter
specifies the cross-memory descriptor used with the service to attach to the user buffer. The
baddr and count parameters must be the same values as the uaddr and count parameters specified to
the xmattach service.

» A transfer between a global kernel memory buffer and the device. With this type of transfer, the
dp->aspace_id variable has an XMEM_GLOBAL value.

» A transfer between I/O bus memory and the device. The BUS_DMA flag distinguishes this type of
transfer from the other two types. The dp parameter is ignored with this type of transfer and should be
set to null.

The DMA transfer starts at the daddr parameter bus address. The device driver should allocate only a bus
address in the window associated with its DMA channel. The size and location of the window are assigned
to the device during the configuration process.

Note: The device driver should ensure that the daddr parameter bus address provided to the device
includes the page offset (low 12 bits) of the baddr parameter memory-buffer address.

The d_master service performs any required machine-dependent processing, including the following tasks:
* Managing processor memory cache.

» Updating the referenced and changed bits of memory pages involved in the transfer.

* Making the DMA buffer in memory inaccessible to the processor.

If the DMA_WRITE_ONLY flag is set in the flags parameter, the pages involved in the DMA transfer can
be read by the device but cannot be written. In addition, the pages involved in the transfer are not hidden
from the processor and remain accessible while the pages are a source for DMA.

If the DMA_WRITE_ONLY flag is not set, the pages mapped for the DMA transfer are hidden from the
processor. The pages remain inaccessible to the processor until the corresponding service
has been issued once the pages are no longer required for DMA processing.

Note:

1. When calling the d_master service several times for one or more of the same pages of
memory, the corresponding number of d_complete calls must be made to unhide successfully
the page or pages involved in the DMA transfers. Pages are not hidden from the processor
during the DMA mapping if the DMA_WRITE_ONLY flag is specified on the call to the
d_master service.

94 Technical Reference: Kernel and Subsystems, Volume 1

2. The memory buffer must remain pinned once the d_master service is called until the DMA
transfer is completed and the service is called.

3. The device driver must not access the buffer once the d_master service is called until the DMA
transfer is completed and the d_complete service is called.

4. The d_master service, as with all DMA services, should not be called unless the DMA channel
has been allocated with the service.

Execution Environment
The d_master kernel service can be called from either the |process] or finterrupt environment.

Related Information
The kernel service, kernel service, kernel service, kernel service.

[/O Kernel Services|and [Understanding Direct Memory Access (DMA) Transfers|in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

d_move Kernel Service

Purpose

Provides consistent access to system memory that is accessed asynchronously by both a device and the
processor on the system.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dma.h>

int d_move
(channel id, flags, baddr, count, dp, daddr)
int |channel id};

int s

struzt xmem * @;

void * [daddrl;

Parameters
channel_id Specifies the DMA channel ID returned by theservice.
flags Specifies the flags that designate the direction of the move. The flags parameter should be set to

0 if the move is to be a write into system memory shared by a bus master device. The flags
parameter should be set to the DMA_READ value if the move is to be a read from system
memory shared by a bus master device. These flag values are defined in the
lusrlinclude/sys/dma.h file.

baddr Specifies the address of the nonshared buffer. This buffer is either the source buffer for a move
to the shared buffer or the destination buffer for a move from the shared buffer. This buffer area
must have an associated cross-memory descriptor attached, which is specified by the dp

parameter.
count Specifies the length of the transfer in bytes.
dp Specifies the address of the cross-memory descriptor associated with the buffer that is not

shared by a device. This buffer is the source buffer for a move to the shared buffer and is the
destination buffer for a move from the shared buffer.

Chapter 1. Kernel Services 95

daddr Specifies the address of the system memory buffer that is shared with the bus master device. A
bus address region containing this address (which consists of the address specified by the dadadr
parameter plus at least the number of bytes specified by the count parameter) must have been
mapped for direct memory access (DMA) by using the service.

Description

Device handlers can use the d_move kernel service to access a data area in system memory that is also
being accessed by a|(DMA) direct memory access master| The d_move service uses the same 1/0
controller data buffers that the DMA master uses when accessing data from the shared data area in
system memory. Using the same buffer keeps the processor data accesses and device data access
consistent. On the system platform, this is necessary since the 1/O controller provides buffer caching of
data accessed by bus master devices.

A cross-memory descriptor obtained by using the Emattach service and a buffer address must be provided
for the nonshared buffer involved in the data transfer. The d_move service moves the data from the
nonshared buffer to the shared buffer when the flags parameter is set to 0. A move of the data from the
shared buffer to the nonshared buffer occurs if the flags parameter is specified with a value of
DMA_READ. Once the d_move service has returned, a call to theservice with the specified

channel_id parameter ensures that the d_move service has successfully moved the data.

Note: The d_move service is not supported on all the system models. If the system model is
cache-consistent, the d_move service returns an EINVAL value indicating that the service is not
supported. The caller should assume the system model is I/0O Channel Controller (IOCC)
cache-consistent and perform a direct access to the target memory.

Note: The d_move kernel service is not supported on the 64-bit kernel.

Execution Environment
The d_move kernel service can be called from either the [process| or [interrupt| environment.

Return Values

EINVAL Indicates that the d_move service is not supported.
XMEM_SUCC Indicates successful completion.
XMEM_FAIL Indicates one of these errors:

« The caller does not have appropriate access authority for the nonshared buffer.
* The nonshared buffer is located in an address range that is not valid.

* The memory region containing the nonshared buffer has been deleted.

* The cross-memory descriptor is not valid.

» A paging I/O error occurred while accessing the nonshared buffer.

An error can also occur when the d_move kernel service executes on an interrupt level if the nonshared
buffer is not in memory.

Related Information
The kernel service, [d_init]| kernel service, [d_master] kerel service, kernel service.

[/O Kernel Services|and [Understanding Direct Memory Access (DMA) Transfers|in AIX 5L Version 5.2
Kernel Extensions and Device Support Programming Concepts.

96 Technical Reference: Kernel and Subsystems, Volume 1

dmp_add Kernel Service

Purpose

Specifies data to be included in a system dump by adding an entry to the master dump table. Callers
should use the [‘dmp_ctl Kernel Service” on page 98| This service is provided for compatibility purposes.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dump.h>

int dmp add

([cdt_func)

struct cdt * ((*cdt_func) ());

Description

Kernel extensions use the dmp_add service to register data areas to be included in a system dump. The
dmp_add service adds an entry to the master dump table. A master dump table entry is a pointer to a
function provided by the kernel extension that will be called by the kernel dump routine when a system
dump occurs. The function must return a pointer to a component dump table structure.

When a dump occurs, the kernel dump routine calls the function specified by the cdt func parameter
twice. On the first call, an argument of 1 indicates that the kernel dump routine is starting to dump the data
specified by the component dump table. On the second call, an argument of 2 indicates that the kernel
dump routine has finished dumping the data specified by the component dump table. Kernel extensions
should allocate and pin their component dump tables and call the dmp_add service during initialization.
The entries in the component dump table can be filled in later. The cdt_func routine must not attempt to
allocate memory when it is called.

The Component Dump Table

The component dump table structure specifies memory areas to be included in the system dump. The
structure type (struct cdt) is defined in the /usr/include/sys/dump.h file. A cdt structure consists of a
fixed-length header (cdt_head structure) and an array of one or more cdt_entry structures. The cdt_head
structure contains a component name field, which should be filled in with the name of the kernel extension,
and the length of the component dump table. Each cdt_entry structure describes a contiguous data area,
giving a pointer to the data area, its length, a segment register, and a name for the data area.

Use of the Formatting Routine

Each kernel extension that includes data in the system dump can install a unique formatting routine in the
Ivar/adm/ras/dmprtns directory. The name of the formatting routine must match the component name field
of the corresponding component dump table.

The dump image file includes a copy of each component dump table used to dump memory.A sample
dump formatter is shipped with bos.sysmgt.serv_aid in the /usr/samples/dumpfmt directory.

Organization of the Dump Image File

Memory dumped for each kernel extension is laid out as follows in the dump image file. The component
dump table is followed by a bit map for the first data area, then the first data area itself, then a bit map for
the next data area, the next data area itself, and so on.

The bit map for a given data area indicates which pages of the data area are actually present in the dump
image and which are not. Pages that were not in memory when the dump occurred were not dumped. The
least significant bit of the first byte of the bit map is set to 1 (one) if the first page is present. The next
least significant bit indicates the presence or absence of the second page and so on.

Chapter 1. Kernel Services 97

A macro for determining the size of a bit map is provided in the /usr/include/sys/dump.h file.

Parameters

cdt_func Specifies a function that returns a pointer to a component dump table entry. The function
and the component dump table entry both must reside in pinned global memory.

Execution Environment
The dmp_add kernel service can be called from the [process environment only.

Return Values

0 Indicates a successful operation.
-1 Indicates that the function pointer to be added is already present in the master dump table.

Related Information
[‘dmp_del Kernel Service” on page 102 and|[‘dmp_ctl Kernel Service’|

The [exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine|in AIX 5L Version 5.2
Technical Reference: Base Operating System and Extensions Volume 1.

[RAS Kernel Services|in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

dmp_ctl Kernel Service

Purpose
Adds and removes entries to the master dump table.

Syntax

#include <sys/types.h>
#include <errno.h>
#include <sys/dump.h>

int dmp_ct1(op, parmp)
int op;
struct dmpctl_data *parmp;

Description

The dmp_ctl kernel service is used to manage dump routines. It replaces the dmp_add and dmp_del
kernel services which are still supported for compatibility reasons. The major differences between routines
added with the dmp_add() command and those added with the dmp_ctl() command are:

* The routines are invoked differently from routines added with the dmp_add kernel service. Routines
added using the dmp_ctl kernel service return a void pointer, to a dump table or to a dump size
estimate.

* Routines added with the dmp_ctl kernel service are expected to ignore functions they don’t support.
For example, they should not trap if they receive an unrecognized request. This allows future
functionality to be added without all users needing to change.

The dmp_ctl kernel service is used to request that an amount of memory be set aside in a global buffer.
This will then be used by the routine to store data not resident in memory. An example of such data is

98 Technical Reference: Kernel and Subsystems, Volume 1

dump data provided by an adapter. Without a global buffer, the data would need to be placed into a pinned
buffer allocated at configuration time. Each component would need to allocate its own pinned buffer.

The system dump facility maintains a global buffer for such data. This buffer is allocated when it is first
requested, with the requested size. Another dump routine requesting more data causes the buffer to be
reallocated with the larger size. Since this buffer must be maintained in pinned storage for the life of the
system, only ask for as much memory as is required. Asking for an excessive amount of storage will
compromise system performance by reserving too much pinned storage.

Any dump routine using the global buffer is called whenever dump data is required. Routines are only
called once to provide such data. Their dump table addresses are saved and used if the dump is
restarted.

Note: The dmp_ctl kernel service can also be used by a dump routine to report a routine failure. This
may be necessary if the routine detects that it can’t dump what needs to be dumped for some
reason such as corruption of a data structure.

Dump Tables

A dump routine returns a component dump table that begins with DMP_MAGIC, which is the magic
number for the 32- or 64-bit dump table. If the unlimited sized dump table is used, the magic number is
DMP_MAGIC_U and the edt_u structure is used. If this is the case, the dump routine is called repeatedly
until it returns a null edt_u pointer. The purpose of the unlimited size dump table is to provide a way to
dump an unknown number of data areas without having to preallocate the largest possible array of
cdt_entry elements as is required for the classic dump table. The definitions for dump tables are in the
sys/dump.h include file.

Parameters
dmp_ctl operations and the dmpctl_data structure are defined in the dump.h text file.

op Specifies the operation to perform.

parmp Points to a dmpctl_data structure containing values for the specified operation. The dmpctl_data
structure is defined in the /usr/include/sys/dump.h file as follows:

/* Dump Routine failures data. */
struct __ rtnf {

int rv; /* error code. */
ulong vaddr; /* address. */
vmhandle_t handle; /* handle */
1
typedef void *((*__ CDTFUNCENH) (int op, void *buf));
struct dmpctl_data {
int dmpc_magic; /* magic number */
int dmpc_flags; /* dump routine flags. */
__CDTFUNCENH dmpc_func;
union {

u_longlong_t bsize; /* Global buffer size requested. */
struct _ rtnf rtnf;

} dmpc_us
}s
#define DMPC_MAGIC1 OxdcdcdcO1
#define DMPC_MAGIC DMPC_MAGIC1
#define dmpc_bsize dmpc_u.bsize

#define dmpcf_rv dmpc_u.rtnf.rv
#define dmpcf_vaddr dmpc_u.rtnf.vaddr
#define dmpcf_handle dmpc_u.rtnf.handle

The supported operations and their associated data are:

Chapter 1. Kernel Services 99

DMPCTL_ADD

Adds the specified dump routine to the master dump table. This requires a pointer to the
function and function type flags. Supported type flags are:

DMPFUNC_CALL_ON_RESTART
Call this function again if the dump is restarted. A dump function is only called once
to provide dump data. If the function must be called and the dump is restarted on
the secondary dump device, then this flag must be set. The
DMPFUNC_CALL_ON_RESTART flag must be set if this function uses the global
dump buffer. It also must be set if the function uses an unlimited size dump table, a
table with DMP_MAGIC_U as the magic number.

DMPFUNC_GLOBAL_BUFFER
this function uses the global dump buffer. The size is specified using the
dmpc_bsize field.

DMPCTL_DEL

Deletes the specified dump function from the master dump table.

DMPCTL_RTNFAILUREReports an inability to dump required data. The routine must set the dmpc_func, dmpcf_rV,

dmpcf_vaddr, and dmpcf_handle fields.

Dump function invocation parameters:

operation code

Specifies the operation the routine is to perform. Operation codes are:

DMPRTN_START
The dump is starting for this dump table. Provide data.

DMPRTN_DONE
The dump is finished. This call is provided so that a dump routine can do any cleanup
required after a dump. This is specific to a device for which information was gathered.
It does not free memory, since such memory must be allocated before the dump is
taken.

DMPRTN_AGAIN
Provide more data for this unlimited dump table. The routine must have first passed
back a dump table beginning with DMP_MAGIC_U. When finished, the function must
return a NULL.

DMPRTN_SIZE
Provide a size estimate. The function must return a pointer to an item of type
dmp_sizeest_t. See the examples later in this article.

buffer pointer

This is a pointer to the global buffer, or NULL if no global buffer space was requested.

Return Values

0 Returned if successful.

EINVAL Returned if one or more parameter values are invalid.
ENOMEM Returned if the global buffer request can’t be satisfied.
EEXIST Returned if the dump function has already been added.
Examples

1. To add a dump routine (dmprtn) that can be called once to provide data, type:

void *dmprtn(int op, void *buf);
struct cdt cdt;
dmp_sizeest_t estimate;

config()

{

struct dmpctl_data parm;

100 Technical Reference: Kernel and Subsystems, Volume 1

parm.dmpc_magic = DMPC_MAGICI;
parm.dmpc_func = dmprtn;
parm.dmpc_flags = 0;

ret = dmp_ct1(DMPCTL_ADD, &parm);

/*

* Dump routine.

*

* input:

* op - dump routine operation.

* buf - NULL since no global buffer is used.
*

* returns:

* A pointer to the component dump table.
*/

void *

dmprtn(int op, void buf)

{

}

void *ret;

switch(op) {
case DMPOP_DATA: /* Provide dump data. */

ret = (void *)&cdt;
break;

case DMPOP_ESTIMATE:
ret = (void *)&estimate;
break;

default:

}

return(ret);

break;

2. To add a dump routine (dmprtn) that requests 16 kb of global buffer space, type:

#define BSIZ 16%1024
dmp_sizeest_t estimate;

config()

{

parm.dmpc_magic = DMPC_MAGIC1;
parm.dmpc_func = dmprtn;

parm.dmpc_flags = DMPFUNC_CALL_ON_RESTART|DMPC_GLOBAL_ BUFFER;

parm.dmpc_bsize = BSIZ;
ret = dmp_ct1(DMPCTL_ADD, &parm);

/*

* Dump routine.

*

* input:

* op - dump routine operation.

* buf - points to the global buffer.
*

* output:

* Return a pointer to the dump table or to the estimate.
*/
void *

Chapter 1. Kernel Services

101

dmprtn(int op, void *buf)
{
void #ret;

switch(op) {
case DMPOP_DATA: /* Provide dump data. */

(Put data in buffer at buf.)
ret = (void *)&cdt;
break;

case DMPOP_ESTIMATE:
ret = (void *)&estimate;
break;

default:

}

return(ret);

break;

Related Information
The|‘dmp_add Kernel Service” on page 97|and [‘dmp_del Kernel Service] kernel services.

The [Dump Special File|in AIX 5L Version 5.2 Files Reference.

[RAS Kernel Services| and|[System Dump Facility|in AIX 5L Version 5.2 Kernel Extensions and Device
Support Programming Concepts.

The [‘Alphabetical List of Kernel Services” on page 4|

dmp_del Kernel Service

Purpose

Deletes an entry from the master dump table. Callers should use the [‘dmp_ctl Kernel Service” on page 98,
This service is provided for compatibility purposes.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dump.h>

amp_del (T 7une_pr)
struct cdt * ((*cdt_func ptr) ());

Description

Kernel extensions use the dmp_del kernel service to unregister data areas previously registered for
inclusion in a system dump. A kernel extension that uses the [‘dmp_add Kernel Service” on page 97to
register such a data area can use the dmp_del service to remove this entry from the master dump table.

Parameters

cdt_func_ptr Specifies a function that returns a pointer to a component dump table. The
function and the component dump table must both reside in pinned global
memory.

102 Technical Reference: Kernel and Subsystems, Volume 1

Execution Environment
The dmp_del kernel service can be called from the [process environment only.

Return Values

0 Indicates a successful operation.
-1 Indicates that the function pointer to be deleted is not in the master dump table.

Related Information
[‘dmp_add Kernel Service” on page 97, and [‘dmp_ctl Kernel Service” on page 98|

|RAS Kernel Servicesl in AIX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

dmp_prinit Kernel Service

Purpose
Initializes the remote dump protocol.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dump.h>

void dmp prinit

(ldmp protol, |proto info)
int dmp_proto;

void *proto_info;

Parameters

dmp_proto Identifies the protocol. The values for the dmp_proto parameter are defined in the
lusr/include/sys/dump.h file.

proto_info Points to a protocol-specific structure containing information required by the system dump

services. For the TCP/IP protocol, the proto_info parameter contains a pointer to the ARP table.

Description

When a communications subsystem is configured, it makes itself known to the system dump services by
calling the dmp_prinit kernel service. The dmp_prinit kernel service identifies the protocol and passes
protocol-specific information, which is required for a remote dump.

Execution Environment
The dmp_prinit kernel service can be called from the environment only.

Related Information
The kernel service.

The |[dddump|device driver entry point.

Chapter 1. Kernel Services 103

[RAS Kernel Services|in AlX 5L Version 5.2 Kernel Extensions and Device Support Programming
Concepts.

d_roundup Kernel Service

Purpose
Rounds the value length up to a given number of cache lines.

Syntax

int d_roundup(length)
int length;

Parameter

length Specifies the size in bytes to be rounded.

Description

To maintain cache consistency, buffers must occupy entire cache lines. The d_roundup service helps
provide that function by rounding the value length up to a given number in integer form.

Execution Environment
The d_roundup service can be called from either the process or interrupt environment.

Related Information
The kernel service, kernel service, kernel service.

[Understanding Direct Memory Access (DMA) Transferd in AIX 5L Version 5.2 Kernel Extensions and
Device Support Programming Concepts.

d_slave Kernel Service

Purpose
Initializes a block-mode direct memory access (DMA) transfer for a DMA slave.

Syntax

#include <sys/types.h>
#include <sys/errno.h>
#include <sys/dma.h>

#include <sys/xmem.h>

void d_slave
(channel_id, flags, baddr,
count, dp)
channel idl;

struct xmem * EZ}

104 Technical Reference: Kernel and Subsystems, Volume 1

Parameters

channel_id Specifies the DMA channel identifier returned by theservice.

flags Control the DMA transfer. The /usr/include/sys/dma.h file contains valid values for these flags.
baddr Designates the address of the memory buffer.

count Specifies the length of the transfer in bytes.

ap Designates the address of the cross-memory descriptor.

Description

The d_slave kernel service sets up the DMA channel specified by the channel_id parameter to perform a
block-mode DMA transfer for a DMA slave. The flags parameter controls the operation of the d_slave
service. [’Understanding Direct Memory Access (DMA)”| in AIX 5L Version 5.2 Kernel Extensions and
Device Support Programming Concepts describes DMA slaves and masters.

The d_slave service does not initiate the DMA transfer. The device initiates all DMA memory references.
The d_slave service sets up the system address-generation hardware to indicate the specified buffer.

The d_slave service supports three different buffer locations:

» A transfer between a buffer in user memory and the device. With this type of transfer, the dp parameter
specifies the cross-memory descriptor used with the service to attach to the kernel buffer.
The baddr and count parameters must be the same values as the vaddr and count parameters
specified to the xmattach service.

» A transfer between a global kernel memory buffer and the device. With this type of transfer, the
dp->aspace_id variable has an XMEM_GLOBAL value.

» A transfer between I/O bus memory and the device. The BUS_DMA flag distinguishes this type of
transfer from the other two types. The dp parameter is ignored with this type of transfer and should be
set to null.

The [d_unmask|and [d_mask| services typically do not need to be called for the DMA slave transfers. The
DMA channel is automatically enabled by the d_slave service and automatically disabled by the hardware
when the last byte specified by the count parameter is transferred.

The d_slave service performs machine-dependent processing, including the following tasks:
* Flushing the processor cache

* Updating the referenced and changed bits of memory pages involved in the transfer

* Making the buffer inaccessible to the processor

Note:

1. The memory buffer must remain pinned from the time the d_slave service is called until the
DMA transfer is completed and the |d_complete|service is called.

2. The device driver or device handle