Bull

AIX 5L Technical Reference: Base Operating
System and Extensions

AlX

ORDER REFERENCE
86 A2 77EM 02

Bull

AIX 5L Technical Reference: Base Operating
System and Extensions

AlX

Software

October 2005

BULL CEDOC

357 AVENUE PATTON
B.P.20845

49008 ANGERS CEDEX 01
FRANCE

ORDER REFERENCE
86 A2 77EM 02

The following copyright notice protects this book under the Copyright laws of the United States of America
and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and
making derivative works.

Copyright © Bull S.A. 1992, 2005

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of
this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX® is a registered trademark of International Business Machines Corporation, and is being used under
licence.

UNIXis a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Linux is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Bull will not be liable for errors contained
herein, or for incidental or consequential damages in connection with the use of this material.

Contents

About This Book .

Highlighting

Case-Sensitivity in AIX

ISO 9000 .
32-Bit and 64-Bit Support for the Slngle UNIX Specrf|cat|on .
Related Publications e e e

Base Operating System (BOS) Runtime Services (A-P).
a64l or I64a Subroutine. . . o
abort Subroutine .

abs, div, labs, Idiv, imul dbl umuI dbl Ilabs or IId|v Subroutme:

access, accessx, or faccessx Subroutine
acct Subroutine. .

acl_chg or acl_fchg Subroutlne
acl_get or acl_fget Subroutine .

acl_put or acl_fput Subroutine .

acl_set or acl_fset Subroutine .
aclx_convert Subroutine . .
aclx_get or aclx_fget Subroutine .
aclx_gettypeinfo Subroutine.
aclx_gettypes Subroutine .
aclx_print or aclx_printStr Subroutlne .
aclx_put or aclx_fput Subroutine .
aclx_scan or aclx_scanStr Subroutine .
acos, acosf, or acosl Subroutine .
acosh, acoshf, or acoshl Subroutine
addproj Subroutine .

addprojdb Subroutine .

addssys Subroutine.

adjtime Subroutine .

agg_proc_stat, agg_lpar_stat, agg arm stat or free agg Ilst Subroutme

aio_cancel or aio_cancel64 Subroutine
aio_error or aio_error64 Subroutine .
aio_fsync Subroutine .

aio_nwait Subroutine .

aio_nwait_timeout Subroutme

aio_read or aio_read64 Subroutine .
aio_return or aio_return64 Subroutine .
aio_suspend or aio_suspend64 Subroutine .
aio_write or aio_write64 Subroutine .

alloc, dealloc, print, read_data, read_regs, symbol addrs erte data and wrlte regs Subroutlne .

allocimb Subroutine.

arm_end Subroutine

arm_end Dual Call Subroutlne
arm_getid Subroutine .
arm_getid Dual Call Subroutlne
arm_init Subroutine. .
arm_init Dual Call Subroutine .
arm_start Subroutine .
arm_start Dual Call Subroutlne
arm_stop Subroutine .
arm_stop Dual Call Subroutlne
arm_update Subroutine .

© Copyright IBM Corp. 1994, 2005

. XiX
. XiX
. XiX
. XiX
. XX
. XX

arm_update Dual Call Subroutine
asinh, asinhf, or asinhl Subroutine
asinf, asinl, or asin Subroutine.
assert Macro . .
atan2f, atan2l, or atan2 Subroutlne .
atan, atanf, or atanl Subroutine .
atanh, atanhf, or atanhl Subroutine .
atof atoff Subroutine

atol or atoll Subroutine

audit Subroutine .

auditbin Subroutine .

auditevents Subroutine .

auditlog Subroutine

auditobj Subroutine

auditpack Subroutine.

auditproc Subroutine . . .
auditread, auditread_| rSubroutmes.
auditwrite Subroutine.

authenticate Subroutine .
authenticatex Subroutine

basename Subroutine

bcopy, bcmp, bzero or ffs Subroutlne

bessel: j0, j1, jn, y0, y1, or yn Subroutine .

bindprocessor Subroutine .
brk or sbrk Subroutine .
bsearch Subroutine .
btowc Subroutine .
buildproclist Subroutine .
buildtranlist or freetranlist Subroutme
_check_lock Subroutine.

_clear_lock Subroutine .
cabs, cabsf, or cabsl Subroutme
cacos, cacosf, or cacosl Subroutine .
cacosh, cacoshf, or cacoshl Subroutines
carg, cargf, or cargl Subroutine .
casin, casinf, or casinl Subroutine .
casinh, casinfh, or casinlh Subroutine
catan, catanf, or catanl Subroutine.
catanh, catanhf, or catanhl Subroutine
catclose Subroutine .
catgets Subroutine
catopen Subroutine .
cbrtf, cbrtl, or cbrt Subroutlne
ccos, ccosf, or ccosl Subroutine.
ccosh, ccoshf, or ccoshl Subroutine .
ccsidtocs or cstoccsid Subroutine .
ceil, ceilf, or ceill Subroutine .
cexp, cexpf, or cexpl Subroutine

cfgetospeed, cfsetospeed, cfgetispeed, or cfsetlspeed Subroutlne .

chacl or fchacl Subroutine .
chdir Subroutine
chmod or fchmod Subroutme

chown, fchown, Ichown, chownx, or fchownx Subroutlne

chpass Subroutine
chpassx Subroutine .
chprojattr Subroutine .

iV Technical Reference, Volume 1: Base Operating System and Extensions

. 87
. 88
. 89
. 90
.9
.92
. 93
. 94
. 96
. 96
. . 98
. 100
. 102
. 103
. 106
. 107
. 109
. 110
11
. 113
. 115
. 116
.17
. 118
. 120
121
. 122
. 123
. 124
. 125
. 126
. 127
. 127
. 128
. 129
. 129
. 130
. 130
. 131
. 132
. 133
. 134
. 135
. 136
. 137
. 137
. 138
. 139
. 140
. 142
. 145
. 146
. 149
. 152
. 154
. 156

chprojattrdb Subroutine .

chroot Subroutine .

chssys Subroutine. .

cimag, cimagf, or cimagl Subroutme .

ckuseracct Subroutine .

ckuserlD Subroutine .

class, _class, finite, isnan, or unordered Subroutlnes

clock Subroutine

clock_getcpuclockid Subroutlne .
clock_getres, clock_gettime, and clock_ sett|me Subroutlne.
clock_nanosleep Subroutine .

clog, clogf, or clogl Subroutine .

close Subroutine

compare_and_swap Subroutlne

compile, step, or advance Subroutine

confstr Subroutine. .

conj, conijf, or conjl Subroutme .

conv Subroutines .

copysign, copysignf, or copyS|gnI Subroutlne

coredump Subroutine

cosf, cosl, or cos Subroutine .

cosh, coshf, or coshl Subroutine

cpow, cpowf, or cpowl Subroutine .

cproj, cprojf, or cprojl Subroutine

creal, crealf, or creall Subroutine

crypt, encrypt, or setkey Subroutine .

csid Subroutine..

csin, csinf, or csinl Subroutme

csinh, csinhf, or csinhl Subroutine .

csqrt, csqrtf, or csqrtl Subroutine

ctan, ctanf, or ctanl Subroutine .

ctanh, ctanhf, or ctanhl Subroutine.

ctermid Subroutine .
ctime, localtime, gmtime, mktlme dlfftlme asctlme or tzset Subroutlne . .
ctime64, localtime64, gmtime64, mktime64, difftime64, or asctime64 Subroutine .
ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine
ctime_r, localtime_r, gmtime_r, or asctime_r Subroutine .

ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, |spunct |spr|nt |sgraph |scntrl or

isascii Subroutines.
cuserid Subroutine
defssys Subroutine
delssys Subroutine
dirname Subroutine .
disclaim Subroutine .
dladdr Subroutine .
diclose Subroutine.
dlerror Subroutine .
dlopen Subroutine.
disym Subroutine .
drand48, erand48, jrand48 Icong48 Irand48 mrand48 nrand48 seed48 or srand48 Subroutme
drem Subroutine ..
_end, _etext, or _edata Ident|f|er
ecvt, fcvt, or gevt Subroutine .
EnableCriticalSections, BengrltlcaISectlon and EndCrltlcaISectlon Subroutme
erf, erff, or erfl Subroutine .
erfc, erfcf, or erfcl Subroutine

Contents

. 157
. 158
. 160
. 161
. 162
. 164
. 165
. 167
. 167
. 168
. 170
. 172
. 173
. 174
. 175
. 179
. 180
. 181
. 183
. 184
. 185
. 186
. 187
. 187
. 188
. 189
. 190
. 191
. 192
. 192
. 193
. 194
. 194
. 195
. 198
. 200
. 202

. 203
. 205
. 206
. 207
. 209
. 210
. 210
. 212
. 213
. 213
. 215

217

. 219
. 220
. 221
. 222
. 223
. 224

\'}

errlog Subroutine .

errlog_close Subroutine.

errlog_find_first, errlog_find_next, and errlog flnd sequence Subroutmes
errlog_open Subroutine . . .

errlog_set_direction Subroutine .

errlog_write Subroutine .

exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutme
exit, atexit, unatexit, _exit, or _Exit Subroutine

exp, expf, or expl Subroutine.

exp2, exp2f, or exp2l Subroutine

expm1, expm1f, or expm1l Subroutine

fabsf, fabsl, or fabs Subroutine .

fattach Subroutine .

fchdir Subroutine .

fclear or fclear64 Subroutlne

fclose or fflush Subroutine .

fentl, dup, or dup2 Subroutine

fdetach Subroutine .

fdim, fdimf, or fdiml Subroutme .

feclearexcept Subroutine

fegetenv or fesetenv Subroutine

fegetexceptflag or fesetexceptflag Subroutlne

fegetround or fesetround Subroutine .

feholdexcept Subroutine

fence Subroutine .

feof, ferror, clearerr, or flleno Macro

feraiseexcept Subroutine

fetch_and_add Subroutine.

fetch_and_and or fetch_and_or Subroutlne

fetestexcept Subroutine.

feupdateenv Subroutine.

finfo or ffinfo Subroutine .

flockfile, ftrylockfile, funlockfile Subroutlne . .

floor, floorf, floorl, nearest, trunc, itrunc, or uitrunc Subroutme.

fma, fmaf, or fmal Subroutine

fmax, fmaxf, or fmaxl Subroutine

fminf or fminl Subroutine .

fmod, fmodf, or fmodl Subroutine .

fmtmsg Subroutine

fnmatch Subroutine . .

fopen, fopen64, freopen, freopen64 or fdopen Subroutlne .

fork, f_fork, or vfork Subroutine .

fp_any_enable, fp_is_enabled, fp_enable aII fp_enable fp_dlsable aII or fp dlsable Subroutlne
fp_clr_flag, fp_set_flag, fp_read flag, or fp swap flag Subroutine .
fp_cpusync Subroutine . . .
fp_flush_imprecise Subroutine .
fp_invalid_op, fp_divbyzero, fp_ overflow fp_underflow fp_mexact fp_any xcp Subroutlne .

fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr, fp iop_invemp, fp iop_sqrt,

fp_iop_convert, or fp_iop_vxsoft Subroutines .
fp_raise_xcp Subroutine
fp_read_rnd or fp_swap_rnd Subroutme .
fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutlne .
fp_trap Subroutine. .o
fp_trapstate Subroutine .
fpclassify Macro .
fread or fwrite Subroutine .

Vi Technical Reference, Volume 1: Base Operating System and Extensions

. 225
. 227
. 228
. 230
. 231
. 231
. 232
. 239
. 241
. 243
. 244
. 245
. 246
. 247
. 248
. 249
. 251
. 257
. 258
. 259
. 260
. 260
. 261
. 262
. 262
. 264
. 265
. 265
. 266
. 267
. 268
. 269
. 270
. 271
. 273
. 274
. 275
. 276
. 277
. 279
. 281
. 284

287

. 289
. 291
. 292
. 293

. 294
. 295
. 296
. 297
. 299
. 301
. 303
. 304

freehostent Subroutine .

freelmb Subroutine

frevoke Subroutine .

frexpf, frexpl, or frexp Subroutlne .

fscntl Subroutine

fseek, fseeko, fseekob4, rewmd fteII ftello fteII064 fgetpos fgetpos64 fsetpos or fsetpos64
Subroutine. Coe G

fsync or fsync_range Subroutme

ftok Subroutine . .

ftw or ftw64 Subroutine .

fwide Subroutine

fwprintf, wprintf, swprintf Subroutlnes

fwscanf, wscanf, swscanf Subroutines

gai_strerror Subroutine .

gamma Subroutine .

gencore or coredump Subroutme .

genpagvalue Subroutine

get_malloc_log Subroutine.

get_malloc_log_live Subroutine .

get_speed, set_speed, or reset_speed Subroutlnes

getargs Subroutine

getaudithostattr, IDtohost, hosttoID nexthost or putaudlthostattr Subroutlne

getauthdb or getauthdb_r Subroutine .

getc, getchar, fgetc, or getw Subroutine .

getc_unlocked, getchar_unlocked, putc_unlocked, putchar unlocked Subroutlnes

getconfattr or putconfattr Subroutine . .

getconfattrs Subroutine .

getcontext or setcontext Subroutme

getcwd Subroutine

getdate Subroutine

getdtablesize Subroutine

getea Subroutine .

getenv Subroutine.

getevars Subroutine .

getfilehdr Subroutine .

geffirstprojdb Subroutine

getfsent, getfsspec, getfsfile, getfstype setfsent or endfsent Subroutlne

getgid, getegid or gegidx Subroutine .

getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutme

getgrgid_r Subroutine Coe

getgrnam_r Subroutine . .

getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutlne

getgroupattrs Subroutine Coe

getgroups Subroutine .

getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutlne .

getgrset Subroutine .

getinterval, incinterval, absmterval resinc, resabs alarm ualarm getltlmer or setltlmer Subroutlne

getipnodebyaddr Subroutine .

getipnodebyname Subroutine

getlogin Subroutine

getlogin_r Subroutine

getnextprojdb Subroutine .

getopt Subroutine .

getpagesize Subroutine.

getpaginfo Subroutine .

getpagvalue or getpagvalue64 Subroutlne .

Contents

. 306
. 307
. 307
. 308
. 309

. 31
. 314
. 315
. 317
. 319
. 320
. 324
. 328
. 329
. 330
. 332
. 333
. 334
. 335
. 336
. 337
. 339
. 340
. 342
. 343
. 347
. 350
. 351
. 352
. 355
. 356
. 357
. 358
. 359
. 360
. 361
. 362
. 363
. 365
. 366
. 367
. 370
. 375
. 376
. 377

378

. 381
. 382
. 385
. 386
. 387
. 388
. 390
. 391
. 392

Vii

getpass Subroutine

getpcred Subroutine .

getpeereid Subroutine

getpenv Subroutine .

getpgid Subroutine . . .

getpid, getpgrp, or getppid Subroutlne

getportattr or putportattr Subroutine

getpri Subroutine .

getpriority, setpriority, or nice Subroutlne

getproclist, getlparlist, or getarmlist Subroutine .

getprocs Subroutine .

getproj Subroutine.

getprojdb Subroutine .

getprojs Subroutine

getpw Subroutine .

getpwent, getpwuid, getpwnam putpwent setpwent or endpwent Subroutlne
getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine .

getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or endrpcent Subroutlne
getrusage, getrusage64, times, or vtimes Subroutine .

getroleattr, nextrole or putroleattr Subroutine .

gets or fgets Subroutine

getfsent_r, getfsspec_r, getfsfile_r, getfstype r, setfsent r, or endfsent rSubroutlne
getsid Subroutine . Ce e i

getssys Subroutine

getsubopt Subroutine

getsubsvr Subroutine . .

gettcbattr or puttcbattr Subroutlne .

getthrds Subroutine . .

gettimeofday, settimeofday, or ftlme Subroutlne .

gettimer, settimer, restimer, stime, or time Subroutine .

gettimerid Subroutine .

getttyent, getttynam, setttyent, or endttyent Subroutlne

getuid, geteuid, or getuidx Subroutine

getuinfo Subroutine .

getuinfox Subroutine .

getuserattr, IDtouser, nextuser, or putuserattr Subroutlne

getuserattrs Subroutine .

GetUserAuths Subroutine .

getuserpw, putuserpw, or putuserpwh|st Subroutme

getuserpwx Subroutine .

getusraclattr, nextusracl or putusraclattr Subroutme .
getutent, getutid, getutline, pututline, setutent, endutent, or utmpname Subroutme .

getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent Subroutine .

getwc, fgetwce, or getwchar Subroutine .

getwd Subroutine .

getws or fgetws Subroutlne

glob Subroutine.

globfree Subroutine .

grantpt Subroutine. .

HBA_CloseAdapter Subroutlne .

HBA_FreeLibrary Subroutine .

HBA_GetAdapterAttributes, HBA_ GetPortAttrlbutes HBA GetDlscoveredPortAttrlbutes
HBA_GetPortAttributesByWWN Subroutine. e e

HBA_GetAdapterName Subroutine

HBA_GetEventBuffer Subroutine .

HBA_GetFC4Statistics Subroutine .

Viii Technical Reference, Volume 1: Base Operating System and Extensions

. 393
. 394
. 396
. 396
. 398
. 398
. 399
. 402
. 403
. 405
. 406
. 409
. 410
. 411
. 412
. 413
. 415
. 418
. 419
. 422
. 425
. 426
. 427
. 428
. 429
. 430
. 431
. 434
. 436
. 437
. 440
. 441
. 443
. 444
. 444
. 445
. 451
. 458
. 459
. 461
. 462
. 464
. 467
. 468
. 470
. 471
. 472
. 475
. 476
. 477
. 477

. 478
. 480
. 482
. 483

HBA_GetFcpPersistentBinding Subroutine .

HBA_GetFCPStatistics Subroutine.

HBA_GetFcpTargetMappingV2 Subroutine .

HBA_GetFcpTargetMapping Subroutine .
HBA_GetNumberOfAdapters Subroutine

HBA_GetPersistentBindingV2 Subroutine .

HBA_GetPortStatistics Subroutine .
HBA_GetRNIDMgmtinfo Subroutine .
HBA_GetVersion Subroutine .
HBA_LoadLibrary Subroutine. .
HBA_OpenAdapter Subroutine . . .
HBA_OpenAdapterByWWN Subroutlne
HBA_Refreshinformation Subroutine .
HBA_ScsilnquiryV2 Subroutine . .
HBA_ScsiReadCapacityV2 Subroutine .
HBA_ScsiReportLunsV2 Subroutine .
HBA_SendCTPassThru Subroutine .
HBA_SendCTPassThruV2 Subroutine
HBA_SendReadCapacity Subroutine .
HBA_SendReportLUNs Subroutine
HBA_SendRLS Subroutine .
HBA_SendRNID Subroutine . .
HBA_SendRNIDV2 Subroutine .
HBA_SendRPL Subroutine
HBA_SendRPS Subroutine
HBA_SendScsilnquiry Subroutine .
HBA_SetRNIDMgmtinfo Subroutine

. 484
. 485
. 486
. 487
. 488
. 489
. 490
. 491
. 492
. 493
. 493
. 494
. 495
. 496
. 498
. 499
. 501
. 502
. 503
. 504
. 505
. 506
. 508
. 509
. 51
. 512
. 513

hpminit, f_hpminit, hpmStart, f_hpmstart, hpmStop,f hpmstop, hmestart f hpmtstart hmestop,

f_hpmtstop, hpmGetTimeAndCounters, f_hpmgettimeandcounters, hpmGetCounters,
f_hpmgetcounters, hpmTerminate, and f_hpmterminate Subroutine .
hsearch, hcreate, or hdestroy Subroutine .

hypot, hypotf, or hypotl Subroutine.
iconv Subroutine . .o
iconv_close Subroutine .

iconv_open Subroutine .

ilogbf, ilogbl, or ilogb Subroutlne
imaxabs Subroutine . .
imaxdiv Subroutine

IMAIXMapping Subroutine . .
IMAuxCreate Callback Subroutine .
IMAuxDestroy Callback Subroutine
IMAuxDraw Callback Subroutine
IMAuxHide Callback Subroutine.
IMBeep Callback Subroutine .
IMClose Subroutine .

IMCreate Subroutine .

IMDestroy Subroutine

IMFilter Subroutine

IMFreeKeymap Subroutine .
IMIndicatorDraw Callback Subroutine.
IMIndicatorHide Callback Subroutine .
IMInitialize Subroutine .
IMInitializeKeymap Subroutine .
IMloctl Subroutine. . .
IMLookupString Subroutlne
IMProcess Subroutine

. 515
. 517
. 519
. 520
. 522
. 523
. 524
. 525
. 526
. 527
. 527
. 528
. 529
. 529
. 530
. 531
. 531
. 532
. 533
. 534
. 534
. 535
. 535
. 537
. 538
. 540
. 540

Contents

ix

IMProcessAuxiliary Subroutine .
IMQueryLanguage Subroutine
IMSimpleMapping Subroutine
IMTextCursor Callback Subroutine .
IMTextDraw Callback Subroutine
IMTextHide Callback Subroutine
IMTextStart Callback Subroutine
inet_aton Subroutine .

initgroups Subroutine.

initialize Subroutine

insque or remque Subroutme
install_Iwcf_handler Subroutine .

ioctl, ioctlx, ioctl32, or ioctl32x Subroutine .

isblank Subroutine.
isendwin Subroutine .
isfinite Macro
isgreater Macro.
isgreaterequal Subroutlne
isinf Subroutine.
isless Macro .
islessequal Macro .
islessgreater Macro .
isnormal Macro .
isunordered Macro

iswalnum, iswalpha, iswcntrl, |swd|g|t |swgraph |szower |swpr|nt |swpunct |swspace |swupper or

iswxdigit Subroutine .
iswblank Subroutine . .
iswctype or is_wctype Subroutlne .
jcode Subroutines . .
Japanese conv Subroutmes .
Japanese ctype Subroutines .
kill or killpg Subroutine .
kleenup Subroutine
knlist Subroutine
kpidstate Subroutine .

_lazySetErrorHandler Subroutlne
I3tol or Itol3 Subroutine .

I64a_r Subroutine .
LAPI_Addr_get Subroutlne
LAPI_Addr_set Subroutine
LAPI_Address Subroutine. . .
LAPI_Address_init Subroutine .
LAPI_Address_init64 Subroutine
LAPI_Amsend Subroutine.
LAPI_Amsendv Subroutine
LAPI_Fence Subroutine
LAPI_Get Subroutine
LAPI_Getcntr Subroutine .
LAPI_Getv Subroutine .
LAPI_Gfence Subroutine .
LAPI_Init Subroutine.
LAPI_Msg_string Subroutine.
LAPI_Msgpoll Subroutine .
LAPI_Nopoll_wait Subroutine
LAPI_Probe Subroutine .
LAPI_Purge_totask Subroutine .

X Technical Reference, Volume 1: Base Operating System and Extensions

. 542
. 543
. 543
. 544
. 545
. 546
. 546
. 547
. 548
. 549
. 550
. 551
. 552
. 555
. 556
. 556
. 557
. 558
. 558
. 559
. 560
. 560
. 561
. 562

. 562
. 564
. 565
. 566
. 567
. 569
. 570
. 572
. 573
. 575
. 575
. 577
. 578
. 579
. 580
. 582
. 583
. 585
. 587
. 592
. 600
. 601
. 604
. 605
. 609
. 610
. 615
. 617
. 619
. 620
. 621

LAPI_Put Subroutine .

LAPI_Putv Subroutine .

LAPI_Qenv Subroutine. .
LAPI_Resume_totask Subroutine .
LAPI_Rmw Subroutine . .

LAPI_Rmw64 Subroutine .

LAPI_Senv Subroutine .

LAPI_Setcntr Subroutine . .
LAPI_Setcntr_wstatus Subroutine .
LAPI_Term Subroutine .

LAPI_Util Subroutine .

LAPI_Waitcntr Subroutine .

LAPI_Xfer Subroutine
layout_object_create Subroutlne
layout_object_editshape or wcslayout_ object edltshape Subroutlne
layout_object_getvalue Subroutine.
layout_object_setvalue Subroutine .
layout_object_shapeboxchars Subroutine .

layout_object_transform or wcslayout_object_ transform Subroutlne.

layout_object_free Subroutine
Idahread Subroutine .

Idclose or Idaclose Subroutlne
Idexp, Idexpf, or Idexpl Subroutine .
Idfhread Subroutine . .o
Idgetname Subroutine

IdIread, Idlinit, or Idlitem Subroutme
Idilseek or ldnlseek Subroutine
Idohseek Subroutine .

Idopen or Idaopen Subroutlne
Idrseek or ldnrseek Subroutine .
Idshread or Idnshread Subroutine .
Idsseek or ldnsseek Subroutine .
Idtbindex Subroutine .

Idtbread Subroutine .

Idtbseek Subroutine .

lgamma, Igammaf, or Igammal Subroutlne
lineout Subroutine .

link Subroutine . .
lio_listio or lio_listio64 Subroutlne .
listea Subroutine .
lIrint, llrintf, or llrintl Subroutme .
llround, llroundf, or llroundl Subroutine
load Subroutine.

loadbind Subroutine .

loadquery Subroutine

localeconv Subroutine

lockfx, lockf, flock, or lockf64 Subroutlne
log10, log10f, or log10l Subroutine.
log1p, log1pf, or log1pl Subroutine.
log2, log2f, or log2l Subroutine .
logbf, logbl, or logb Subroutine .
log, logf, or logl Subroutine
loginfailed Subroutine
loginrestrictions Subroutine
loginrestrictionsx Subroutine .
loginsuccess Subroutine

. 623
. 625
. 629
. 632
. 633
. 637
. 641
. 643
. 645
. 646
. 648
. 659
. 661
. 674
. 675
. 678
. 680
. 682
. 683
. 686
. 687
. 688
. 689
. 690
. 692
. 694
. 695
. 696
. 697
. 699
. 700
. 702
. 703
. 704
. 705
. 706
. 707
. 708
. 709
. 714
. 715
. 716
. 717
. 721
. 722
. 724
. 728
. 732
. 733
. 734
. 735
. 736
. 737
. 739
. 742
. 744

Contents

Xi

Ipar_get_info Subroutine
Ipar_set_resources Subroutine .

Irint, Irintf, or Irintl Subroutine .

Iround, Iroundf, or Iroundl Subroutine .
Isearch or Ifind Subroutine.

Iseek, liseek or Iseek64 Subroutine
Ivm_querylv Subroutine .

Ivm_querypv Subroutine

Ivm_queryvg Subroutine
Ivm_queryvgs Subroutine .

malloc, free, realloc, calloc, mallopt malllnfo malhnfo heap, aIIoca vaIIoc or p03|x memallgn

Subroutine.

madd, msub, mult, deV pow gcd mvert rpow msqrt mcmp, move, min, omin, fm|n m_in, mout

omout, fmout, m_out, sdiv, or itom Subroutine.
madvise Subroutine .
makecontext or swapcontext Subroutlne
matherr Subroutine

MatchAllAuths, MatchAnyAuths MatchAIIAuthsL|st or MatchAnyAuthsL|st Subroutlne

mblen Subroutine .

mbrlen Subroutine.

mbrtowc Subroutine .

mbsadvance Subroutine

mbscat, mbscmp, or mbscpy Subroutlne
mbschr Subroutine

mbsinit Subroutine

mbsinvalid Subroutine

mbslen Subroutine .
mbsncat, mbsncmp, or mbsncpy Subroutlne .
mbspbrk Subroutine .

mbsrchr Subroutine .

mbsrtowcs Subroutine .

mbstomb Subroutine .

mbstowcs Subroutine

mbswidth Subroutine.

mbtowc Subroutine

memccpy, memchr, memcmp, memcpy, memset or memmove Subroutlne .

mincore Subroutine .

mkdir Subroutine . .
mknod or mkfifo Subroutlne .
mktemp or mkstemp Subroutine
mlock and munlock Subroutine .
mlockall and munlockall Subroutine
mmap or mmap64 Subroutine
mntctl Subroutine . .
modf, modff, or modfl Subroutme .
moncontrol Subroutine .

monitor Subroutine

monstartup Subroutine .

mprotect Subroutine .

mq_close Subroutine. .
mq_getattr Subroutine .

mq_notify Subroutine

mq_open Subroutine. .
mq_receive Subroutine .

mq_send Subroutine .

mgq_setattr Subroutine

Xii Technical Reference, Volume 1: Base Operating System and Extensions

. 746
. 747
. 748
. 749
. 750
. 751
. 753
. 757
. 760
. 763

. 764

. 771
. 773
. 774
. 775
. 776
. 777
. 778
. 779
. 780
. 781
. 782
. 783
. 784
. 784
. 785
. 786
. 787
. 788
. 789
. 790
. 791
. 791
. 793
. 794
. 795
. 797
. 799
. 800
. 802
. 803
. 807
. 808
. 809
. 810
. 816
. 819
. 820
. 821
. 822
. 824
. 826
. 827
. 828

mq_receive, mq_timedreceive Subroutine .
mq_send, mq_timedsend Subroutine .
mq_unlink Subroutine

msem_init Subroutine

msem_lock Subroutine .

msem_remove Subroutine.

msem_unlock Subroutine .

msgctl Subroutine .

msgget Subroutine

msgrcv Subroutine

msgsnd Subroutine

msgxrcv Subroutine .

msleep Subroutine

msync Subroutine .

mt__trce Subroutine .

munmap Subroutine .

mwakeup Subroutine.

nan, nanf, or nanl Subroutine

nanosleep Subroutine

nearbyint, nearbyintf, or nearbymtl Subroutlne

nextafter, nextafterf, nextafterl, nexttoward, nexttowardf or nexttowardl Subroutlne

newpass Subroutine .
newpassx Subroutine

nftw or nftw64 Subroutine .
nl_langinfo Subroutine .
nlist, nlist64 Subroutine .
ns_addr Subroutine .
ns_ntoa Subroutine .
odm_add_obj Subroutine .
odm_change_obj Subroutine .
odm_close_class Subroutine .
odm_create_class Subroutine
odm_err_msg Subroutine .
odm_free_list Subroutine .
odm_get_by_id Subroutine
odm_get_list Subroutine

odm_get_obj, odm_get_first, or odm get next Subroutlne .

odm_initialize Subroutine .

odm_lock Subroutine.

odm_mount_class Subroutine

odm_open_class or odm_open_class rdonly Subroutlne
odm_rm_by_id Subroutine.

odm_rm_class Subroutine .

odm_rm_obj Subroutine

odm_run_method Subroutine.

odm_set_path Subroutine .

odm_set_perms Subroutine .

odm_terminate Subroutine.

odm_unlock Subroutine.

open, openx, open6é4, creat, or creat64 Subroutme

opendir, readdir, telldir, seekdir, rewinddir, closedir, opend|r64 readd|r64 teIId|r64 seekd|r64

rewinddir64, or closedir64 Subroutine.
pam_acct_mgmt Subroutine .
pam_authenticate Subroutine
pam_chauthtok Subroutine
pam_close_session Subroutine .

. 830
. 831
. 833
. 834
. 835
. 836
. 837
. 838
. 841
. 842
. 845
. 847
. 849
. 850
. 851
. 853
. 854
. 855
. 856
. 857
. 858
. 860
. 862
. 863
. 866
. 867
. 869
. 870
. 870
. 872
. 873
. 874
. 875
. 876
. 877
. 878
. 880
. 882
. 882
. 884
. 885
. 886
. 887
. 888
. 890
. 891
. 892
. 892
. 893
. 894

. 902
. 905
. 906
. 908
. 909

xiii

pam_end Subroutine . .
pam_get_data Subroutine .
pam_get_item Subroutine .
pam_get_user Subroutine .
pam_getenv Subroutine. .
pam_getenvlist Subroutine.
pam_open_session Subroutine .
pam_putenv Subroutine.
pam_set_data Subroutine .
pam_set_item Subroutine .
pam_setcred Subroutine
pam_sm_acct_mgmt Subroutine
pam_sm_authenticate Subroutine .
pam_sm_chauthtok Subroutine .
pam_sm_close_session Subroutine
pam_sm_open_session Subroutine
pam_sm_setcred Subroutine .
pam_start Subroutine
pam_strerror Subroutine
passwdexpired Subroutine.
passwdexpiredx Subroutine .
passwdpolicy Subroutine
passwdstrength Subroutine
pathconf or fpathconf Subroutine
pause Subroutine .

pcap_close Subroutine .
pcap_compile Subroutine .
pcap_datalink Subroutine .
pcap_dispatch Subroutine .
pcap_dump Subroutine .
pcap_dump_close Subroutine
pcap_dump_open Subroutine
pcap_file Subroutine .
pcap_fileno Subroutine .
pcap_geterr Subroutine .
pcap_is_swapped Subroutine
pcap_lookupdev Subroutine .
pcap_lookupnet Subroutine
pcap_loop Subroutine .
pcap_major_version Subroutine .
pcap_minor_version Subroutine.
pcap_next Subroutine
pcap_open_live Subroutine
pcap_open_offline Subroutine
pcap_perror Subroutine.
pcap_setfilter Subroutine
pcap_snapshot Subroutine
pcap_stats Subroutine .
pcap_strerror Subroutine

pclose Subroutine .

perfstat_cpu Subroutine.
perfstat_cpu_total Subroutine
perfstat_disk Subroutine
perfstat_diskadapter Subroutine.
perfstat_diskpath Subroutine .
perfstat_disk_total Subroutine

XiV Technical Reference, Volume 1: Base Operating System and Extensions

. 910
. 9N
. 912
. 913
. 914
. 915
. 916
. 917
. 918
. 919
. 920
. 922
. 923
. 924
. 926
. 927
. 928
. 929
. 932
. 932
. 933
. 935
. 937
. 938
. 941
. 941
. 942
. 943
. 943
. 945
. 945
. 946
. 947
. 947
. 948
. 949
. 949
. 950
. 951
. 952
. 953
. 954
. 954
. 955
. 956
. 957
. 958
. 958
. 959
. 960
. 961
. 962
. 964
. 965
. 966
. 968

perfstat_memory_total Subroutine .
perfstat_netbuffer Subroutine .
perfstat_netinterface Subroutine.
perfstat_netinterface_total Subroutine
perfstat_pagingspace Subroutine .
perfstat_partial_reset Subroutine
perfstat_partition_total Subroutine .
perfstat_protocol Subroutine .
perfstat_reset Subroutine .

perror Subroutine .

pipe Subroutine.

plock Subroutine .

pm_cycles Subroutine
pm_delete_program Subroutme .
pm_delete_program_group Subroutine .
pm_delete_program_mygroup Subroutine .
pm_delete_program_mythread Subroutine .
pm_delete_program_pgroup Subroutine.
pm_delete_program_pthread Subroutine
pm_delete_program_thread Subroutine .
pm_error Subroutine .

pm_get_data, pm_get_tdata, pm get data cpu and pm get tdata cpu Subroutlne

pm_get_data_group and pm_get_tdata_group Subroutine .
pm_get_data_mygroup or pm_get_tdata_mygroup Subroutine
pm_get_data_mythread or pm_get_tdata_mythread Subroutine .
pm_get_data_pgroup and pm_get_tdata_pgroup Subroutine .
pm_get_data_pthread or pm_get_tdata_pthread Subroutine
pm_get_data_thread or pm_get_tdata_thread Subroutine .
pm_get_program Subroutine

pm_get_program_group Subroutine .
pm_get_program_mygroup Subroutine.
pm_get_program_mythread Subroutine
pm_get_program_pgroup Subroutine
pm_get_program_pthread Subroutine .
pm_get_program_thread Subroutine.

pm_init Subroutine .

pm_initialize Subroutine .

pm_reset_data Subroutine .

pm_reset_data_group Subroutine

pm_reset_data_mygroup Subroutine
pm_reset_data_mythread Subroutine .
pm_reset_data_pgroup Subroutine .
pm_reset_data_pthread Subroutine .
pm_reset_data_thread Subroutine

pm_set_program Subroutine

pm_set_program_group Subroutine .
pm_set_program_mygroup Subroutine.
pm_set_program_mythread Subroutine
pm_set_program_pgroup Subroutine
pm_set_program_pthread Subroutine .
pm_set_program_thread Subroutine.

pm_start Subroutine

pm_start_group Subroutine .

pm_start_mygroup Subroutine .

pm_start_mythread Subroutine

pm_start_pgroup Subroutine

. 969
. 970
. 971
. 973
. 974
. 975
. 977
. 978
. 980
. 980
. 981
. 982
. 984
. 984
. 985
. 986
. 987
. 988
. 989
. 990
. 991
. 992
. 994
. 995
. 997
. 998
.. 999
. 1001
. 1002
. 1004
. 1005
. 1007
. 1008
. 1009
. 101
. 1012
. 1014
. 1016
. 1017
. 1018
. 1019
. 1020
. 1021
. 1023
. 1024
. 1025
. 1027
. 1028
. 1030
. 1031
. 1033
. 1035
. 1035
. 1037
. 1038
. 1038

Contents XV

pm_start_pthread Subroutine .

pm_start_thread Subroutine.

pm_stop Subroutine

pm_stop_group Subroutine .

pm_stop_mygroup Subroutine .

pm_stop_mythread Subroutine.

pm_stop_pgroup Subroutine

pm_stop_pthread Subroutine

pm_stop_thread Subroutine.

poll Subroutine .

pollset_create, pollset_ ctl pollset destroy, pollset poII and poIIset_query Subroutlnes .

popen Subroutine

posix_fadvise Subroutine.

posix_fallocate Subroutine .

posix_madvise Subroutine .

posix_openpt Subroutine .

posix_spawn or posix_spawnp Subroutme .

posix_spawn_file_actions_addclose or posix_spawn_ f|Ie actlons addopen Subroutme .

posix_spawn_file_actions_adddup2 Subroutine

posix_spawn_file_actions_destroy or posix_spawn_file_ actlons |n|t Subroutme

posix_spawnattr_destroy or posix_spawnattr_init Subroutine.

posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine.

posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine . .

posix_spawnattr_getschedparam or posix_spawnattr_setschedparam Subroutme .

posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine

posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine .

posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine . .

posix_trace_getnext_event, posix_trace_timedgetnext_event, posix_trace trygetnext event
Subroutine . e

powf, powl, or pow Subroutlne .

printf, fprintf, sprintf, snprintf, wsprintf, vprlntf vfpnntf vspnntf or vwsprlntf Subroutlne .

profil Subroutine . .

proj_execve Subroutine .

projdballoc Subroutine.

projdbfinit Subroutine .

projdbfree Subroutine .

psdanger Subroutine

psignal Subroutine or sys_: S|gI|st Vector

pthdb_attr, pthdb_cond, pthdb_condattr, pthdb_| key, pthdb mutex pthdb mutexattr pthdb pthread
pthdb_pthread_key, pthdb_rwlock, or pthdb_rwlockattr Subroutine . ..

pthdb_attr_detachstate,pthdb_attr_addr, pthdb_attr_guardsize,pthdb_attr_| mhentsched
pthdb_attr_schedparam,pthdb_attr_schedpolicy, pthdb_attr_schedpriority,pthdb_attr_scope,
pthdb_attr_stackaddr,pthdb_attr_stacksize, or pthdb_attr_suspendstate Subroutine

pthdb_condattr_pshared, or pthdb_condattr_addr Subroutine .

pthdb_cond_addr, pthdb_cond_mutex or pthdb_cond_pshared Subroutlne

pthdb_mutexattr_addr, pthdb_mutexattr_prioceiling, pthdb_mutexattr_protocol,
pthdb_mutexattr_pshared or pthdb_mutexattr_type Subroutine .

pthdb_mutex_addr, pthdb_mutex_lock_count, pthdb_mutex_owner, pthdb_ mutex pshared
pthdb_mutex_prioceiling, pthdb_mutex_protocol, pthdb_mutex_state or pthdb_mutex_type
Subroutine .

pthdb_mutex_waiter, pthdb cond walter pthdb rwlock read wa|ter or pthdb rwlock wrlte walter
Subroutine .

pthdb_pthread_arg Subroutlne .

pthdb_pthread_context or pthdb_pthread_ setcontext Subroutme Co .

pthdb_pthread_hold, pthdb_pthread_holdstate or pthdb_pthread_unhold Subroutlne .

pthdb_pthread_sigmask, pthdb_pthread_sigpend or pthdb_pthread_sigwait Subroutine .

XVi Technical Reference, Volume 1: Base Operating System and Extensions

. 1040
. 1041
. 1042
. 1043
. 1044
. 1045
. 1046
. 1047
. 1048
. 1049
. 1052
. 1055
. 1056
. 1057
. 1058
. 1059
. 1060
. 1064
. 1065
. 1066
. 1067
. 1068
. 1069
. 1070
. 1071
. 1072
. 1073

. 1074
. 1077
. 1079
. 1086
. 1088
. 1089
. 1090
. 1091
. 1092
. 1093

. 1094

. 1096
. 1098
. 1099

. 1100

. 1102

. 1103
. 1105
. 1108
. 1109
. 1110

pthdb_pthread_specific Subroutine

pthdb_pthread_tid or pthdb_tid_pthread Subroutlne .

pthdb_rwlockattr_addr, or pthdb_rwlockattr_pshared Subroutme

pthdb_rwlock_addr, pthdb_rwlock_lock_count, pthdb_rwlock_owner, pthdb rwlock pshared or
pthdb_rwlock_state Subroutine . C e e e

pthdb_session_committed Subroutines .

pthread_atfork Subroutine

pthread_attr_destroy Subroutine . .

pthread_attr_getguardsize or pthread_attr setguardsnze Subroutmes

pthread_attr_getinheritsched, pthread_attr_setinheritsched Subroutine .

pthread_attr_getschedparam Subroutine .

pthread_attr_getschedpolicy, pthread_attr setschedpollcy Subroutlne

pthread_attr_getstackaddr Subroutine . e e

pthread_attr_getstacksize Subroutine

pthread_attr_init Subroutine .

pthread_attr_getdetachstate or pthread attr setdetachstate Subroutlnes

pthread_attr_getscope and pthread_attr_setscope Subroutines .

pthread_attr_setschedparam Subroutine .

pthread_attr_setstackaddr Subroutine .

pthread_attr_setstacksize Subroutine .

pthread_attr_setsuspendstate_np and pthread_ attr getsuspendstate np Subroutme .

pthread_barrier_destroy or pthread_barrier_init Subroutine

pthread_barrier_wait Subroutine . .

pthread_barrierattr_destroy or pthread_ barnerattr |n|t Subroutme .

pthread_barrierattr_getpshared or pthread_barrierattr_setpshared Subroutlne

pthread_cancel Subroutine . .

pthread_cleanup_pop or pthread_. cleanup push Subroutme .

pthread_cond_destroy or pthread_cond_init Subroutine.

PTHREAD_COND_INITIALIZER Macro

pthread_cond_signal or pthread_cond_broadcast Subroutlne

pthread_cond_wait or pthread_cond_timedwait Subroutine

pthread_condattr_destroy or pthread_condattr_init Subroutine .

pthread_condattr_getclock, pthread_condattr_setclock Subroutine.

pthread_condattr_getpshared Subroutine .

pthread_condattr_setpshared Subroutine .

pthread_create Subroutine .

pthread_create_withcred_np Subroutlne

pthread_delay_np Subroutine .

pthread_equal Subroutine

pthread_exit Subroutine .

pthread_get_expiration_np Subroutlne

pthread_getconcurrency or pthread_ setconcurrency Subroutme

pthread_getcpuclockid Subroutine

pthread_getrusage_np Subroutine

pthread_getschedparam Subroutine . .

pthread_getspecific or pthread_setspecific Subroutlne .

pthread_getthrds_np Subroutine .

pthread_getunique_np Subroutine .

pthread_join or pthread_detach Subroutine .

pthread_key_create Subroutine

pthread_key_delete Subroutine

pthread_kill Subroutine .

pthread_lock_global_np Subroutlne .

pthread_mutex_init or pthread_mutex_destroy Subroutme

pthread_mutex_getprioceiling or pthread_mutex_setprioceiling Subroutlne

PTHREAD_MUTEX_INITIALIZER Macro .

Contents

111
L1112
. 1113

. 1114
. 1116
. 1119
. 1120
. 1121
. 1123
. 1124
. 1125
. 1126
. 1127
. 1128
. 1129
. 1130
. 1132
. 1133
. 1134
. 1135
. 1136
. 1137
. 1138
. 1139
. 1140
. 1142
. 1143
. 1144
. 1145
. 1146
. 1148
. 1149
. 1150
. 1152
. 1153
. 1155
. 1156
. 1157
. 1158
. 1159
. 1160
. 1162
. 1162
. 1165
. 1166
. 1168
. 1170
1171
. 1172
. 1173
. 1174
. 1175
. 1176
. 1178
. 1179

Xvii

pthread_mutex_lock, pthread_mutex_trylock, or pthread_mutex_unlock Subroutine
pthread_mutex_timedlock Subroutine

pthread_mutexattr_destroy or pthread_ mutexattr |n|t Subroutlne
pthread_mutexattr_getkind_np Subroutine

pthread_mutexattr_getprioceiling or pthread_| mutexattr setprlocelllng Subroutlne
pthread_mutexattr_getprotocol or pthread_mutexattr_setprotocol Subroutine .
pthread_mutexattr_getpshared or pthread_mutexattr_setpshared Subroutine .
pthread_mutexattr_gettype or pthread_mutexattr_settype Subroutine.
pthread_mutexattr_setkind_np Subroutine

pthread_once Subroutine. .

PTHREAD_ONCE_INIT Macro.

pthread_rwlock_init or pthread_rwlock destroy Subroutlne
pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines
pthread_rwlock_timedrdlock Subroutine

pthread_rwlock_timedwrlock Subroutine

pthread_rwlock_unlock Subroutine .
pthread_rwlock_wrlock or pthread_rwlock trywrlock Subroutlnes .
pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines. .
pthread_rwlockattr_getpshared or pthread_rwlockattr_setpshared Subroutlnes .
pthread_self Subroutine .

pthread_setcancelstate, pthread_: setcanceltype or pthread testcancel Subroutmes
pthread_setschedparam Subroutine .

pthread_setschedprio Subroutine.

pthread_sigmask Subroutine

pthread_signal_to_cancel_np Subroutlne .

pthread_spin_destroy or pthread_spin_init Subroutme .

pthread_spin_lock or pthread_spin_trylock Subroutine .

pthread_spin_unlock Subroutine . .
pthread_suspend_np and pthread_ contmue np Subroutlne .
pthread_unlock_global_np Subroutine .

pthread_yield Subroutine.

ptrace, ptracex, ptrace64 Subroutlne

ptsname Subroutine

putc, putchar, fputc, or putw Subroutlne

putconfattrs Subroutine

putenv Subroutine

putgrent Subroutine.

putgroupattrs Subroutine .

puts or fputs Subroutine .

putuserattrs Subroutine

putuserpwx Subroutine

putwc, putwchar, or fputwc Subroutme

putws or fputws Subroutine .

pwdrestrict_method Subroutine

Appendix A. Base Operating System Error Codes for Services That Require Path-Name

Resolution .
Related Information .

Appendix B. ODM Error Codes .
Related Information . .

Index .

XViii Technical Reference, Volume 1: Base Operating System and Extensions

. 1179
. 1181
. 1182
. 1184
. 1185
. 1186
. 1188
. 1189
. 1190
. 1192
. 1193
. 1193
. 1195
. 1196
. 1198
. 1199
. 1200
. 1202
. 1203
. 1204
. 1205
. 1206
. 1208
. 1209
. 1209
. 1210
. 1211
. 1212
. 1213
. 1214
. 1215
. 1215
. 1226
. 1227
. 1229
. 1231
. 1232
. 1233
. 1236
. 1238
. 1242
. 1244
. 1246
. 1247

. 1251
. 1251

. 1253
. 1254

. 1257

About This Book

This book provides experienced C programmers with complete detailed information about Base Operating
System runtime services for the AIX® operating system. Runtime services are listed alphabetically, and
complete descriptions are given for them. This volume contains AIX services that begin with the letters A
through P. To use the book effectively, you should be familiar with commands, system calls, subroutines,
file formats, and special files. This publication is also available on the documentation CD that is shipped
with the operating system.

This book is part of the six-volume technical reference set, AIX 5L Version 5.3 Technical Reference, that
provides information on system calls, kernel extension calls, and subroutines in the following volumes:

* AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 1 and AIX 5L
Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2 provide information
on system calls, subroutines, functions, macros, and statements associated with base operating system
runtime services.

* AIX 5L Version 5.3 Technical Reference: Communications Volume 1 and AIX 5L Version 5.3 Technical
Reference: Communications Volume 2 provide information on entry points, functions, system calls,
subroutines, and operations related to communications services.

* AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 1 and AIX 5L Version 5.3
Technical Reference: Kernel and Subsystems Volume 2 provide information about kernel services,
device driver operations, file system operations, subroutines, the configuration subsystem, the
communications subsystem, the low function terminal (LFT) subsystem, the logical volume subsystem,
the M-audio capture and playback adapter subsystem, the printer subsystem, the SCSI subsystem, and
the serial DASD subsystem.

Highlighting

The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files,
structures, directories, and other items whose names are

predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to
be supplied by the user.
Monospace Identifies examples of specific data values, examples of

text similar to what you might see displayed, examples of
portions of program code similar to what you might write
as a programmer, messages from the system, or
information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between
uppercase and lowercase letters. For example, you can use the Is command to list files. If you type LS, the
system responds that the command is "not found.” Likewise, FILEA, FiLea, and filea are three distinct file
names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,
always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 1994, 2005 Xix

32-Bit and 64-Bit Support for the Single UNIX Specification

Beginning with Version 5.2, the operating system is designed to support The Open Group’s Single UNIX
Specification Version 3 (UNIX 03) for portability of UNIX-based operating systems. Many new interfaces,
and some current ones, have been added or enhanced to meet this specification, making Version 5.2 even
more open and portable for applications, while remaining compatible with previous releases of AlX.

To determine the proper way to develop a UNIX 03-portable application, you may need to refer to The
Open Group’s UNIX 03 specification, which can be accessed online or downloaded from
http://www.unix.org/ .

Related Publications

The following books contain information about or related to application programming interfaces:
« |AIX 5L Version 5.3 System Management Guide: Operating System and Deviced

« |AIX 5L Version 5.3 System Management Guide: Communications and Networkd

[AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programg

[AIX 5L Version 5.3 Communications Programming Concepts

[AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts

[AIX 5L Version 5.3 Files Reference

XX Technical Reference, Volume 1: Base Operating System and Extensions

Base Operating System (BOS) Runtime Services (A-P)

a64l or 164a Subroutine

Purpose
Converts between long integers and base-64 ASCII strings.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

long a641 (

char *String;

char *164a (|LongInteger|)

long LongIntegers;

Description

The a64l and 164a subroutines maintain numbers stored in base-64 ASCII characters. This is a notation in
which long integers are represented by up to 6 characters, each character representing a digit in a
base-64 notation.

The following characters are used to represent digits:

Character Description

. Represents 0.

/ Represents 1.

0-9 Represents the numbers 2-11.

A-Z Represents the numbers 12-37.

a-z Represents the numbers 38-63.
Parameters

String Specifies the address of a null-terminated character string.
Longinteger Specifies a long value to convert.

Return Values

The a64l subroutine takes a pointer to a null-terminated character string containing a value in base-64
representation and returns the corresponding long value. If the string pointed to by the String parameter
contains more than 6 characters, the a64l subroutine uses only the first 6.

Conversely, the 164a subroutine takes a long parameter and returns a pointer to the corresponding
base-64 representation. If the Longlnteger parameter is a value of 0, the 164a subroutine returns a pointer
to a null string.

The value returned by the 164a subroutine is a pointer into a static buffer, the contents of which are
overwritten by each call.

© Copyright IBM Corp. 1994, 2005 1

If the *String parameter is a null string, the a64l subroutine returns a value of OL.

If Longinteger is OL, the 164a subroutine returns a pointer to a null string.

Related Information

[Subroutines Overview|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

[List of Multithread Subroutines|in AlX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

abort Subroutine

Purpose
Sends a SIGIOT signal to end the current process.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>
int abort (void)

Description

The abort subroutine sends a SIGIOT signal to the current process to terminate the process and produce
a memory dump. If the signal is caught and the signal handler does not return, the abort subroutine does
not produce a memory dump.

If the SIGIOT signal is neither caught nor ignored, and if the current directory is writable, the system
produces a memory dump in the core file in the current directory and prints an error message.

The abnormal-termination processing includes the effect of the fclose subroutine on all open streams and
message-catalog descriptors, and the default actions defined as the SIGIOT signal. The SIGIOT signal is
sent in the same manner as that sent by the raise subroutine with the argument SIGIOT.

The status made available to the wait or waitpid subroutine by the abort subroutine is the same as a
process terminated by the SIGIOT signal. The abort subroutine overrides blocking or ignoring the SIGIOT
signal.

Note: The SIGABRT signal is the same as the SIGIOT signal.

Return Values
The abort subroutine does not return a value.

Related Information

The exit (‘exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239), atexit (‘exit, atexit, unatexit, _exit]
[or _Exit Subroutine” on page 239), or _exit (‘exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239)
subroutine, fclose (‘fclose or fflush Subroutine” on page 249) subroutine, kill {“kill or killpg Subroutine” on|

[bage 570), or killpg (“kill or killpg Subroutine” on page 570) subroutine, |raisg| subroutine, [sigaction]
[sigvec] [signal subroutine, [wait] or [waidtpid| subroutine.

The command.

2 Technical Reference, Volume 1: Base Operating System and Extensions

[Subroutines Overview|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

abs, div, labs, Idiv, imul_dbl, umul_dbl, llabs, or lidiv Subroutine

Purpose
Computes absolute value, division, and double precision multiplication of integers.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>
int abs (i)

int i;

#include <stdlib.h>

long labs (i)
Tong i;

#include <stdlib.h>

div_t div ([\umerator|, |Denominator]
int Numerator: Denominators;

#include <stdlib.h>

void imul_db1 ([i], [].
long i, Jj;

long *Result;

#include <stdlib.h>

1div_t 1div (Numerator, Denominator)
long Numerator: Denominators;
#include <stdlib.h>

void umul_db1 (i, j, Result)
unsigned long i, J;

unsigned long *Result;

#include <stdlib.h>

long long int 1labs(i)

long long int i;

#include <stdlib.h>

11div_t 11div (Numerator, Denominator)
long long int Numerator, Denominators;

Description
The abs subroutine returns the absolute value of its integer operand.

Note: A twos-complement integer can hold a negative number whose absolute value is too large for the
integer to hold. When given this largest negative value, the abs subroutine returns the same value.

The div subroutine computes the quotient and remainder of the division of the number represented by the
Numerator parameter by that specified by the Denominator parameter. If the division is inexact, the sign of
the resulting quotient is that of the algebraic quotient, and the magnitude of the resulting quotient is the
largest integer less than the magnitude of the algebraic quotient. If the result cannot be represented (for
example, if the denominator is 0), the behavior is undefined.

Base Operating System (BOS) Runtime Services (A-P) 3

The labs and Idiv subroutines are included for compatibility with the ANSI C library, and accept long
integers as parameters, rather than as integers.

The imul_dbl subroutine computes the product of two signed longs, i and j, and stores the double long
product into an array of two signed longs pointed to by the Result parameter.

The umul_dbl subroutine computes the product of two unsigned longs, i and j, and stores the double
unsigned long product into an array of two unsigned longs pointed to by the Result parameter.

The llabs and lldiv subroutines compute the absolute value and division of long long integers. These
subroutines operate under the same restrictions as the abs and div subroutines.

Note: When given the largest negative value, the llabs subroutine (like the abs subroutine) returns the

same value.

Parameters

i Specifies, for the abs subroutine, some integer; for labs and imul_dbl, some long integer; for
the umul_dbl subroutine, some unsigned long integer; for the llabs subroutine, some long long
integer.

Numerator Specifies, for the div subroutine, some integer; for the Idiv subroutine, some long integer; for
lidiv, some long long integer.

j Specifies, for the imul_dbl subroutine, some long integer; for the umul_dbl subroutine, some
unsigned long integer.

Denominator Specifies, for the div subroutine, some integer; for the Idiv subroutine, some long integer; for
lidiv, some long long integer.

Result Specifies, for the imul_dbl subroutine, some long integer; for the umul_dbl subroutine, some

unsigned long integer.

Return Values

The abs, labs, and llabs subroutines return the absolute value. The imul_dbl and umul_dbl subroutines
have no return values. The div subroutine returns a structure of type div_t. The Idiv subroutine returns a
structure of type Idiv_t, comprising the quotient and the remainder. The structure is displayed as:
struct 1div_t {

int quot; /* quotient */

int rem; /* remainder */

1

The lldiv subroutine returns a structure of type lldiv_t, comprising the quotient and the remainder.

access, accessx, or faccessx Subroutine

Purpose
Determines the accessibility of a file.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int access (|PathName|, Mode)

char *PathName

4 Technical Reference, Volume 1: Base Operating System and Extensions

int Mode;

int accessx (PathName, [Model,

char *PathName ;
int Mode, Who;

int faccessx (|FileDescriptor|, Mode, Who)

int FileDescriptors;

int Mode, Who;

Description

The access, accessx, and faccessx subroutines determine the accessibility of a file system object. The
accessx and faccessx subroutines allow the specification of a class of users or processes for whom

access is to be checked.

The caller must have search permission for all components of the PathName parameter.

Parameters

PathName

FileDescriptor
Mode

Who

Specifies the path name of the file. If the PathName parameter refers to a symbolic link,
the access subroutine returns information about the file pointed to by the symbolic link.
Specifies the file descriptor of an open file.

Specifies the access modes to be checked. This parameter is a bit mask containing 0 or
more of the following values, which are defined in the sys/access.h file:

R_OK Check read permission.
W_OK Check write permission.
X_OK Check execute or search permission.

F_OK Check the existence of a file.

If none of these values are specified, the existence of a file is checked.
Specifies the class of users for whom access is to be checked. This parameter must be
one of the following values, which are defined in the sys/access.h file:

ACC_SELF
Determines if access is permitted for the current process. The effective user and
group IDs, the concurrent group set and the privilege of the current process are
used for the calculation.

ACC_INVOKER
Determines if access is permitted for the invoker of the current process. The real
user and group IDs, the concurrent group set, and the privilege of the invoker
are used for the calculation.

Note: The expression access (PathName, Mode) is equivalent to accessx
(PathName, Mode, ACC_INVOKER).

ACC_OTHERS
Determines if the specified access is permitted for any user other than the object
owner. The Mode parameter must contain only one of the valid modes. Privilege
is not considered in the calculation.

ACC_ALL
Determines if the specified access is permitted for all users. The Mode
parameter must contain only one of the valid modes. Privilege is not considered
in the calculation .
Note: The accessx subroutine shows the same behavior by both the user and
root with ACC_ALL.

Base Operating System (BOS) Runtime Services (A-P) 5

Return Values

If the requested access is permitted, the access, accessx, and faccessx subroutines return a value of 0.
If the requested access is not permitted or the function call fails, a value of -1 is returned and the errno
global variable is set to indicate the error.

The access subroutine indicates success for X_OK even if none of the execute file permission bits are
set.

Error Codes
The access and accessx subroutines fail if one or more of the following are true:

EACCES Search permission is denied on a component of the PathName prefix.

EFAULT The PathName parameter points to a location outside the allocated address space of
the process.

ELOOP Too many symbolic links were encountered in translating the PathName parameter.

ENOENT A component of the PathName does not exist or the process has the disallow
truncation attribute set.

ENOTDIR A component of the PathName is not a directory.

ESTALE The process root or current directory is located in a virtual file system that has been
unmounted.

ENOENT The named file does not exist.

ENOENT The PathName parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG A component of the PathName parameter exceeded 255 characters or the entire

PathName parameter exceeded 1022 characters.

The faccessx subroutine fails if the following is true:

EBADF The value of the FileDescriptor parameter is not valid.

The access, accessx, and faccessx subroutines fail if one or more of the following is true:

EIO An 1/O error occurred during the operation.
EACCES The file protection does not allow the requested access.
EROFS Write access is requested for a file on a read-only file system.

If Network File System (NFS) is installed on your system, the accessx and faccessx subroutines can also
fail if the following is true:

ETIMEDOUT The connection timed out.
ETXTBSY Write access is requested for a shared text file that is being executed.
EINVAL The value of the Mode argument is invalid.

Related Information

The acl_get (“acl_get or acl_fget Subroutine” on page 10) subroutine, chacl {‘chacl or fchacl Subroutine’]
on page 142 subroutine,|statx| subroutine, |statac|| subroutine.

The command, command, command, command.

[Files, Directories, and File Systems for Programmers|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

6 Technical Reference, Volume 1: Base Operating System and Extensions

acct Subroutine

Purpose
Enables and disables process accounting.

Library
Standard C Library (libc.a)

Syntax
int acct (

char *Path;

Description

The acct subroutine enables the accounting routine when the Path parameter specifies the path name of
the file to which an accounting record is written for each process that terminates. When the Path
parameter is a 0 or null value, the acct subroutine disables the accounting routine.

If the Path parameter refers to a symbolic link, the acct subroutine causes records to be written to the file
pointed to by the symbolic link.

If Network File System (NFS) is installed on your system, the accounting file can reside on another node.

Note: To ensure accurate accounting, each node must have its own accounting file. Although no two
nodes should share accounting files, a node’s accounting files can be located on any node in the
network.

The calling process must have root user authority to use the acct subroutine.

Parameters

Path Specifies a pointer to the path name of the file or a null pointer.

Return Values

Upon successful completion, the acct subroutine returns a value of 0. Otherwise, a value of -1 is returned
and the global variable errno is set to indicate the error.

Error Codes
The acct subroutine is unsuccessful if one or more of the following are true:

EACCES Write permission is denied for the named accounting file.

EACCES The file named by the Path parameter is not an ordinary file.
EBUSY An attempt is made to enable accounting when it is already enabled.
ENOENT The file named by the Path parameter does not exist.

EPERM The calling process does not have root user authority.

EROFS The named file resides on a read-only file system.

If NFS is installed on the system, the acct subroutine is unsuccessful if the following is true:

ETIMEDOUT The connection timed out.

Base Operating System (BOS) Runtime Services (A-P) 7

acl_chg or acl_fchg Subroutine

Purpose

Changes the AIXC ACL type access control information on a file.

Library
Security Library (libc.a)

Syntax

#include <sys/access.h>

int acl chg
char *
int
int
int

(Path, How, Mode, Who)

int acl fchg (FileDescriptor, How, Mode, Who)

int [FileDescriptor)
int How;
int Mode;
int Who;

Description

The acl_chg and acl_fchg subroutines modify the AIXC ACL-type-based access control information of a
specified file. This call can fail for file system objects with any non-AIXC ACL.

Parameters

FileDescriptor
How

Mode

Path

Specifies the file descriptor of an open file.
Specifies how the permissions are to be altered for the affected entries of the Access
Control List (ACL). This parameter takes one of the following values:

ACC_PERMIT
Allows the types of access included in the Mode parameter.

ACC_DENY
Denies the types of access included in the Mode parameter.

ACC_SPECIFY
Grants the access modes included in the Mode parameter and restricts the
access modes not included in the Mode parameter.
Specifies the access modes to be changed. The Mode parameter is a bit mask containing
zero or more of the following values:

R_ACC
Allows read permission.

W_ACC
Allows write permission.

X_ACC Allows execute or search permission.
Specifies a pointer to the path name of a file.

8 Technical Reference, Volume 1: Base Operating System and Extensions

Who Specifies which entries in the ACL are affected. This parameter takes one of the following
values:

ACC_OBJ_OWNER
Changes the owner entry in the base ACL.

ACC_OBJ_GROUP
Changes the group entry in the base ACL.

ACC_OTHERS
Changes all entries in the ACL except the base entry for the owner.

ACC_ALL
Changes all entries in the ACL.

Return Values

On successful completion, the acl_chg and acl_fchg subroutines return a value of 0. Otherwise, a value
of -1 is returned and the errno global variable is set to indicate the error.

Error Codes

The acl_chg subroutine fails and the access control information for a file remains unchanged if one or
more of the following is true:

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the
process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path
parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see
the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file system that has been
unmounted.

The acl_fchg subroutine fails and the file permissions remain unchanged if the following is true:

EBADF The FileDescriptor value is not valid.

The acl_chg or acl_fchg subroutine fails and the access control information for a file remains unchanged
if one or more of the following is true:

EINVAL The How parameter is not one of ACC_PERMIT, ACC_DENY, or ACC_SPECIFY.
EINVAL The Who parameter is not ACC_OWNER, ACC_GROUP, ACC_OTHERS, or ACC_ALL.
EROFS The named file resides on a read-only file system.

The acl_chg or acl_fchg subroutine fails and the access control information for a file remains unchanged
if one or more of the following is true:

EIO An 1/O error occurred during the operation.
EPERM The effective user ID does not match the ID of the owner of the file and the invoker does not
have root user authority.

Base Operating System (BOS) Runtime Services (A-P) 9

If Network File System (NFS) is installed on your system, the acl_chg and acl_fchg subroutines can also
fail if the following is true:

ETIMEDOUT The connection timed out.

Related Information

The acl_get (“acl_get or acl_fget Subroutine”) subroutine, acl_put (“acl_put or acl_fput Subroutine” on|
page 12) subroutine, acl_set (“acl_set or acl_fset Subroutine” on page 14) subroutine, chacl (“‘chacl of
fchacl Subroutine” on page 142) subroutine, chmod (‘chmod or fchmod Subroutine” on page 146)

subroutine, [stat| subroutine, [statacl| subroutine.

The command, command, command.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

acl_get or acl_fget Subroutine

Purpose
Gets the access control information of a file if the ACL associated is of the AIXC type.

Library
Security Library (libc.a)

Syntax

#include <sys/access.h>

char *acl get (Path)

char * ;

char *acl fget (FileDescriptor)
int |FileDescriptory;

Description

The acl_get and acl_fget subroutines retrieve the access control information for a file system object. This
information is returned in a buffer pointed to by the return value. The structure of the data in this buffer is

unspecified. The value returned by these subroutines should be used only as an argument to the acl_put
or acl_fput subroutines to copy or restore the access control information. Note that acl_get and acl_fget

subroutines could fail if the ACL associated with the file system object is of a different type than AIXC. It is
recommended that applications make use of aclx_get and aclx_fget subroutines to retrieve the ACL.

The buffer returned by the acl_get and acl_fget subroutines is in allocated memory. After usage, the caller
should deallocate the buffer using the free subroutine.

Parameters
Path Specifies the path name of the file.
FileDescriptor Specifies the file descriptor of an open file.

10 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

On successful completion, the acl_get and acl_fget subroutines return a pointer to the buffer containing
the access control information. Otherwise, a null pointer is returned and the errno global variable is set to
indicate the error.

Error Codes
The acl_get subroutine fails if one or more of the following are true:

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the
process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path
parameter exceeded 1023 characters.

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or the process has the disallow truncation
attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ESTALE The process’ root or current directory is located in a virtual file system that has been
unmounted.

The acl_fget subroutine fails if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

The acl_get or acl_fget subroutine fails if the following is true:

EIO An 1/O error occurred during the operation.

If Network File System (NFS) is installed on your system, the acl_get and acl_fget subroutines can also
fail if the following is true:

ETIMEDOUT The connection timed out.

Security

Access Control The invoker must have search permission for all components of the Path prefix.
Audit Events None.

Related Information

The acl_chg or acl_fchg (‘acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_put or acl_fput
(“acl_put or acl_fput Subroutine” on page 12) subroutine, acl_set or acl_fset (‘acl_set or acl_fsef]
[Subroutine” on page 14) subroutine, chacl (“‘chacl or fchacl Subroutine” on page 142) subroutine, chmod
(‘chmod or fchmod Subroutine” on page 146) subroutine, [stat] subroutine, [statacl| subroutine.

[‘aclx_get or aclx_fget Subroutine” on page 17 |[‘aclx_put or aclx_fput Subroutine” on page 25|

The command, command, command.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 11

acl_put or acl_fput Subroutine

Purpose
Sets AIXC ACL type access control information of a file.

Library
Security Library (libc.a)

Syntax

#include <sys/access.h>

int acl put (Path, Access, Free)
char * s

Description

The acl_put and acl_fput subroutines set the access control information of a file system object. This
information is contained in a buffer returned by a call to the acl_get or acl_fget subroutine. The structure
of the data in this buffer is unspecified. However, the entire Access Control List (ACL) for a file cannot
exceed one memory page (4096 bytes) in size. Note that acl_put/acl_fput operation could fail if the
existing ACL associated with the file system object is of a different kind or if the underlying physical file
system does not support AIXC ACL type. It is recommended that applications make use of aclx_put and
aclx_fput subroutines to set the ACL instead of acl_put/acl_fput routines.

Parameters

Path Specifies the path name of a file.

FileDescriptor Specifies the file descriptor of an open file.

Access Specifies a pointer to the buffer containing the access control information.

Free Specifies whether the buffer space is to be deallocated. The following values are valid:
0 Space is not deallocated.
1 Space is deallocated.

Return Values

On successful completion, the acl_put and acl_fput subroutines return a value of 0. Otherwise, -1 is
returned and the errno global variable is set to indicate the error.

Error Codes

The acl_put subroutine fails and the access control information for a file remains unchanged if one or
more of the following are true:

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the
process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

12 Technical Reference, Volume 1: Base Operating System and Extensions

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path
parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see
the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file system that has been
unmounted.

The acl_fput subroutine fails and the file permissions remain unchanged if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

The acl_put or acl_fput subroutine fails and the access control information for a file remains unchanged if
one or more of the following are true:

EINVAL The Access parameter does not point to a valid access control buffer.
EINVAL The Free parameter is not 0 or 1.

EIO An 1/O error occurred during the operation.

EROFS The named file resides on a read-only file system.

If Network File System (NFS) is installed on your system, the acl_put and acl_fput subroutines can also
fail if the following is true:

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events:

Event Information
chacl Path
fchacl FileDescriptor

Related Information

The acl_chg (‘acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_get (“acl_get or acl_fget]
[Subroutine” on page 10) subroutine, acl_set (‘acl_set or acl_fset Subroutine” on page 14) subroutine,
chacl (‘chacl or fchacl Subroutine” on page 142) subroutine, chmod (‘chmod or fchmod Subroutine” on|

|page 146[) subroutine, |sta!| subroutine, |statacl|subroutine.

[‘aclx_get or aclx_fget Subroutine” on page 17 |[‘aclx_put or aclx_fput Subroutine” on page 25|

The command, command, command.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 13

acl_set or acl_fset Subroutine

Purpose
Sets the AIXC ACL type access control information of a file.

Library
Security Library (libc.a)

Syntax

#include <sys/access.h>

int acl set (Path, OwnerMode, GroupMode, DefaultMode)
char * W;

int [OwnerModel;
int |GroupModel;

int [Defaul tMode|;

int acl fset (FileDescriptor, OwnerMode, GroupMode, DefaultMode)
int « [FileDescriptor}

int OwnerMode;

int GroupMode;

int DefaultMode;

Description

The acl_set and acl_fset subroutines set the base entries of the Access Control List (ACL) of the file. All
other entries are discarded. Other access control attributes are left unchanged. Note that if the file system
object is associated with any other ACL type access control information, it will be replaced with just the
Base mode bits information. It is strongly recommended that applications stop using these interfaces and
instead make use of aclx_put and aclx_fput subroutines to set the ACL.

Parameters

DefaultMode Specifies the access permissions for the default class.
FileDescriptor Specifies the file descriptor of an open file.

GroupMode Specifies the access permissions for the group of the file.
OwnerMode Specifies the access permissions for the owner of the file.
Path Specifies a pointer to the path name of a file.

The mode parameters specify the access permissions in a bit mask containing zero or more of the
following values:

R_ACC Authorize read permission.
W_ACC Authorize write permission.
X_ACC Authorize execute or search permission.

Return Values

Upon successful completion, the acl_set and acl_fset subroutines return the value 0. Otherwise, the value
-1 is returned and the errno global variable is set to indicate the error.

14 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The acl_set subroutine fails and the access control information for a file remains unchanged if one or
more of the following are true:

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the
process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path
parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see
the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file system that has been
unmounted.

The acl_fset subroutine fails and the file permissions remain unchanged if the following is true:

EBADF The file descriptor FileDescriptor is not valid.

The acl_set or acl_fset subroutine fails and the access control information for a file remains unchanged if
one or more of the following are true:

EIO An 1/O error occurred during the operation.

EPERM The effective user ID does not match the ID of the owner of the file and the invoker does
not have root user authority.

EROFS The named file resides on a read-only file system.

If Network File System (NFS) is installed on your system, the acl_set and acl_fset subroutines can also
fail if the following is true:

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events:

Event Information
chacl Path
fchacl FileDescriptor

Related Information

The acl_chg (‘acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_get (“acl_get or acl_fgef]
[Subroutine” on page 10) subroutine, acl_put (“‘acl_put or acl_fput Subroutine” on page 12) subroutine,
chacl (‘chacl or fchacl Subroutine” on page 142) subroutine, chmod (‘chmod or fchmod Subroutine” on|

|page 146b subroutine, |sta!| subroutine, |statac||subroutine.

[‘aclx_get or aclx_fget Subroutine” on page 17 |[‘aclx_put or aclx_fput Subroutine” on page 25

Base Operating System (BOS) Runtime Services (A-P) 15

The command, command, command.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

aclx_convert Subroutine

Purpose
Converts the access control information from one ACL type to another.

Library
Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_convert (from_ acl, from_ sz, from_type, to_acl, to_sz, to_type, fs_obj_path)

Description

The aclx_convert subroutine converts the access control information from the binary input given in
from_acl of the ACL type from_type into a binary ACL of the type fo_type and stores it in to_acl. Values
from_type and to_type can be any ACL types supported in the system.

The ACL conversion takes place with the help of an ACL type-specific algorithm. Because the conversion
is approximate, it can result in a potential loss of access control. Therefore, the user of this call must make
sure that the converted ACL satisfies the required access controls. The user can manually review the
access control information after the conversion for the file system object to ensure that the conversion was
successful and satisfied the requirements of the intended access control.

Parameters

from_acl Points to the ACL that has to be converted.

from_sz Indicates the size of the ACL information pointed to by from_acl.

from_type Indicates the ACL type information of the ACL. The acl_type is 64 bits in size and is
unique on the system. If the given acl_type is not supported in the system, this function
fails and errno is set to EINVAL.

to_acl Points to a buffer in which the target binary ACL has to be stored. The amount of memory
available in this buffer is indicated by the fo_sz parameter.

to_sz Indicates the amount of memory, in bytes, available in to_acl. If to_sz contains less than

the required amount of memory for storing the converted ACL, *fo_sz is set to the
required amount of memory and ENOSPC is returned by errno.

to_type Indicates the ACL type to which conversion needs to be done. The ACL type is 64 bits in
size and is unique on the system. If the given acl_type is not supported in the system,
this function fails and errno is set to EINVAL

fs_obj_path File System Object Path for which the ACL conversion is being requested. Gets
information about the object, such as whether it is file or directory.

16 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

On successful completion, the aclx_convert subroutine returns a value of 0. Otherwise, -1 is returned and
the errno global variable is set to indicate the error.

Error Codes
The aclx_convert subroutine fails if one or more of the following is true:

EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is specified as input
to this routine, either in from_type or in to_type. This errno could also be returned if the binary
ACL given in from_acl is not the type specified by from_type.

ENOSPC Insufficient storage space is available in to_acl.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events: If the auditing subsystem has been properly configured and is enabled, the aclx_convert
subroutine generates the following audit record (event) every time the command is executed:

Event Information
FILE_Acl Lists access controls.

Related Information
The command, command, [aclconvert| command.

[List of Security and Auditing Subroutines| and [Subroutines Overviewin AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

aclx_get or aclx_fget Subroutine

Purpose
Gets the access control information for a file system object.

Library
Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_get (Path, ctl flags, acl_type, acl, acl_sz, mode_info)

uint64_t ;
acl_type_t = |ocl_typel;
void * jaclf;

size_t

mode_t ode infol;

int aclx fget (FileDescriptor, ctl flags, acl type, acl, acl_sz, mode_info)
int |FileDescriptory;

uintéd_t ctl_flags;
acl_type_t =* acl_type;

Base Operating System (BOS) Runtime Services (A-P) 17

void * acl;
size_t * acl sz;
mode_t * mode_info;

Description

The aclx_get and aclx_fget subroutines retrieve the access control information for a file system object in
the native ACL format. Native ACL format is the format as defined for the particular ACL type in the
system. These subroutines are advanced versions of the acl_get and acl_fget subroutines and should be
used instead of the older versions. The aclx_get and aclx_fget subroutines provide for more control for
the user to interact with the underlying file system directly.

In the earlier versions (acl_get or acl_fget), OS libraries found out the ACL size from the file system and
allocated the required memory buffer space to hold the ACL information. The caller does all this now with
the aclx_get and aclx_fget subroutines. Callers are responsible for finding out the size and allocating
memory for the ACL information, and later freeing the same memory after it is used. These subroutines
allow for an acl_type input and output argument. The data specified in this argument can be set to a
particular ACL type and a request for the ACL on the file system object of the same type. Some physical
file systems might do emulation to return the ACL type requested, if the ACL type that exists on the file
system object is different. If the acl_type pointer points to a data area with a value of ACL_ANY or 0, then
the underlying physical file system has to return the type of the ACL associated with the file system object.

The ctl_flags parameter is a bit mask that allows for control over the aclx_get requests.

The value returned by these subroutines can be use as an argument to the aclx_get or aclx_fget
subroutines to copy or restore the access control information.

Parameters

Path Specifies the path name of the file system object.

FileDescriptor Specifies the file descriptor of an open file.

ctl_flags This 64-bit sized bit mask provides control over the ACL retrieval. The following flag

values are defined:

GET_ACLINFO_ONLY
Gets only the ACL type and length information from the underlying file system.
When this bit is set, arguments such as acl and mode_info can be set to NULL.
In all other cases, these should be valid buffer pointers (or else an error is
returned). If this bit is not specified, then all the other information about the ACL,
such as ACL data and mode information, is returned.
acl_type Points to a buffer that will hold ACL type information. The ACL type is 64 bits in size and
is unique on the system. The caller can provide an ACL type in this area and a request
for the ACL on the file system object of the same type. If the ACL type requested does
not match the one on the file system object, the physical file system might return an error
or emulate and provide the ACL information in the ACL type format requested. If the caller
does not know the ACL type and wants to retrieve the ACL associated with the file
system object, then the caller should set the buffer value pointed to by acl_type to

ACL_ANY or 0.

acl Points to a buffer where the ACL retrieved is stored. The size of this buffer is indicated by
the acl_sz parameter.

acl_sz Indicates the size of the buffer area passed through the acl parameter.

mode_info Pointer to a buffer where the mode word associated with the file system object is

returned. Note that this mode word’s meaning and formations depend entirely on the ACL
type concerned.

18 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

On successful completion, the aclx_put and aclx_fput subroutines return a value of 0. Otherwise, -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The aclx_get subroutine fails if one or more of the following is true:

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the
process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path
parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see
the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file system that has been
unmounted.

The aclx_fget subroutine fails if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

The aclx_get or aclx_fget subroutine fails if one or more of the following is true:

EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is specified as input
to this routine.

EIO An 1/O error occurred during the operation.

ENOSPC Input buffer size acl_sz is not sufficient to store the ACL data in acl.

If Network File System (NFS) is installed on your system, the aclx_get and aclx_fget subroutines can
also fail if the following condition is true:

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events: None

Related Information

The acl_chg (‘acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_put (‘acl_get or acl_fge|
[Subroutine” on page 10) subroutine, acl_set (‘acl_set or acl_fset Subroutine” on page 14) subroutine,
chacl (‘chacl or fchacl Subroutine” on page 142) subroutine, chmod (‘chmod or fchmod Subroutine” on|
lpage 146) subroutine, [stat| subroutine, [statacl| subroutine, [‘aclx_convert Subroutine” on page 16

The command, command, command.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 19

aclx_gettypeinfo Subroutine

Purpose
Retrieves the ACL characteristics given to an ACL type.

Library
Security Library (libc.a)

Syntax

#include <sys/acl.h>

char * H
acl_type_t |acl types
caddr_t H

size_t = puffer sz;

Description

The aclx_gettypeinfo subroutine helps obtain characteristics and capabilities of an ACL type on the file
system. The buffer space provided by the caller is where the ACL type-related information is returned. If
the length of this buffer is not enough to fit the characteristics for the ACL type requested, then
aclx_gettypeinfo returns an error and sets the buffer_len field to the amount of buffer space needed.

int aclx_gettypeinfo (Path, acl _type, buffer, buffer sz)

Parameters

Path Specifies the path name of the file.

acl_type ACL type for which the characteristics are sought.

buffer Specifies the pointer to a buffer space, where the characteristics of acl_type for the file

system is returned. The structure of data returned is ACL type-specific. Refer to the ACL
type-specific documentation for more details.

buffer_sz Points to an area that specifies the length of the buffer buffer in which the characteristics
of acl_type are returned by the file system. This is an input/output parameter. If the length
of the buffer provided is not sufficient to store all the ACL type characteristic information,
then the file system returns an error and indicates the length of the buffer required in this
variable. The length is specified in number of bytes.

Return Values

On successful completion, the aclx_gettypeinfo subroutine returns a value of 0. Otherwise, -1 is returned
and the errno global variable is set to indicate the error.

Error Codes

The aclx_gettypeinfo subroutine fails and the access control information for a file remains unchanged if
one or more of the following is true:

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the
process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path
parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see

the ulimit subroutine).

20 Technical Reference, Volume 1: Base Operating System and Extensions

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOSPC Buffer space provided is not enough to store all the acl_type characteristics of the file
system.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file system that has been
unmounted.

If Network File System (NFS) is installed on your system, the acl_gettypeinfo subroutine can also fail if
the following condition is true:

ETIMEDOUT The connection timed out.

Security
Auditing Events: None

Related Information
The [‘aclx_get or aclx_fget Subroutine” on page 17 |[‘aclx_put or aclx_fput Subroutine” on page 25/

The command, command.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

aclx_gettypes Subroutine

Purpose
Retrieves the list of ACL types supported for the file system associated with the path provided.

Library
Security Library (libc.a)

Syntax

#include <sys/acl.h>

char * [Path|;
acl_type t = locl type list
size t *acl type list len);

int aclx_gettypes (Path, acl type list, acl type list len)
| h|

Description

The aclx_gettypes subroutine helps obtain the list of ACL types supported on the particular file system. A
file system can implement policies to support one to many ACL types simultaneously. The first ACL type in
the list is the default ACL type for the file system. This default ACL type is used in ACL conversions if the
target ACL type is not supported on the file system. Each file system object in the file system is associated
with only one piece of ACL data of a particular ACL type.

Base Operating System (BOS) Runtime Services (A-P) 21

Parameters

Path Specifies the path name of the file system object within the file system for which the list
of supported ACLs are being requested.
acl_type_list Specifies the pointer to a buffer space, where the list of ACL types is returned. This list is

an array of ACL types, each member occupying 64-bit space to define one ACL type. The
size of this buffer is indicated using the acl_type_list_len argument in bytes.
acl_type_list_len Pointer to a buffer that specifies the length of the buffer acl_type_list in which the list of
ACLs is returned by the file system. This is an input/output parameter. If the length of the
buffer is not sufficient to store all the ACL types, the file system returns an error and
indicates the length of the buffer required in this same area. The length is specified in
bytes.
If the subroutine call is successful, this field contains the number of bytes of information
stored in the acl_type_list buffer. This information can be used by the caller to get the
number of ACL type entries returned.

Return Values

On successful completion, the aclx_gettypes subroutine returns a value of 0. Otherwise, -1 is returned
and the errno global variable is set to indicate the error.

Error Codes

The aclx_gettypes subroutine fails and the access control information for a file remains unchanged if one
or more of the following is true:

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the
process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path
parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see
the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOSPC The acl_type_list buffer provided is not enough to store all the ACL types supported
by this file system.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file system that has been
unmounted.

If Network File System (NFS) is installed on your system, the acl_gettypes subroutine can also fail if the
following condition is true:

ETIMEDOUT The connection timed out.

Security
Access Control: Caller must have search permission for all components of the Path prefix.

Auditing Events: None

Related Information
The command, command.

22 Technical Reference, Volume 1: Base Operating System and Extensions

[List of Security and Auditing Subroutines| and [Subroutines Overviewin AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

aclx_print or aclx_printStr Subroutine

Purpose
Converts the binary access control information into nonbinary, readable format.

Library
Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_print (acl file, acl, acl sz, acl_type, fs_obj path, flags)
FILE * [ocl file]

void * s

size_t

acl_type t facl typej;

char = s

int32_t

int aclx_printStr (str, str sz, acl, acl sz, acl _type, fs_obj path, flags)
char = [stri;
size t * [str szls

void =* acl;

size_t acl_sz;
acl_type_t acl type;
char =* fs obj path;
int32_t flags;

Description

The aclx_print and aclx_printStr subroutines print the access control information in a nonbinary, readable
text format. These subroutines take the ACL information in binary format as input, convert it into text
format, and print that text format output to either a file or a string. The aclx_print subroutine prints the
ACL text to the file specified by acl_file. The aclx_printStr subroutine prints the ACL text to sir. The
amount of space available in stris specified in str_sz. If this memory is insufficient, the subroutine sets
str_sz to the needed amount of memory and returns an ENOSPC error.

Parameters

acl_file Points to the file into which the textual output is printed.

str Points to the string into which the textual output should be printed.

str_sz Indicates the amount of memory in bytes available in str. If the text representation of ac/
requires more space than str_sz, this subroutine updates the str_sz with the amount of
memory required and fails by setting errno to ENOSPC.

acl Points to a buffer which contains the binary ACL data that has to be printed. The size of
this buffer is indicated by the acl_sz parameter.

acl_sz Indicates the size of the buffer area passed through the acl parameter.

acl_type Indicates the ACL type information of the acl. The ACL type is 64 bits in size and is

unique on the system. If the given ACL type is not supported in the system, this function
fails and errno is set to EINVAL.

Base Operating System (BOS) Runtime Services (A-P) 23

fs_obj_path File System Object Path for which the ACL data format and print are being requested.
Gets information about the object (such as whether the object is a file or directory, who
the owner is, and the associated group ID).

flags Allows for control over the print operation. A value of ACL_VERBOSE indicates whether
additional information has to be printed in text format in comments. This bit is set when
the aclget command is issued with the -v (verbose) option.

Return Values

On successful completion, the aclx_print and aclx_printStr subroutines return a value of 0. Otherwise, -1
is returned and the errno global variable is set to indicate the error.

Error Codes
The aclx_print subroutine fails if one or more of the following is true:

Note: The errors in the following list occur only because aclx_print calls the fprintf subroutine internally.
For more information about these errors, refer to the fprintf subroutine.

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the file specified by
the acl_file parameter, and the process would be delayed in the write operation.

EBADF The file descriptor underlying the file specified by the acl_file parameter is not a valid
file descriptor open for writing.

EFBIG An attempt was made to write to a file that exceeds the file size limit of this process
or the maximum file size. For more information, refer to the ulimit subroutine.

EINTR The write operation terminated because of a signal was received, and either no data
was transferred or a partial transfer was not reported.

EIO The process is a member of a background process group attempting to perform a

write to its controlling terminal, the TOSTOP flag is set, the process is neither ignoring
nor blocking the SIGTTOU signal, and the process group of the process has no
parent process.

ENOSPC No free space remains on the device that contains the file.

ENOSPC Insufficient storage space is available.

ENXIO A request was made of a nonexistent device, or the request was outside the
capabilities of the device.

EPIPE An attempt was made to write to a pipe or first-in-first-out (FIFO) that is not open for

reading by any process. A SIGPIPE signal is sent to the process.

The aclx_printStr subroutine fails if the following is true:

ENOSPC Input buffer size strSz is not sufficient to store the text representation of acl in str.
ENOSPC Insufficient storage space is available. This error is returned by sprintf, which is called by the
aclx_printStr subroutine internally.

The aclx_print or aclx_printStr subroutine fails if the following is true:

EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is specified as input
to this routine. This errno can also be returned if the acl is not of the type specified by acl_type.

Related Information

The [‘printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1079
[‘aclx_scan or aclx_scanStr Subroutine” on page 27 |

The command, command.

24 Technical Reference, Volume 1: Base Operating System and Extensions

[List of Security and Auditing Subroutines| and [Subroutines Overviewin AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

aclx_put or aclx_fput Subroutine

Purpose
Stores the access control information for a file system object.

Library
Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx
char *
uint64_t
acl_type_t lacl_typel;
void * |aclf;
size_t
mode_t

put (Path, ctl flags, acl_type, acl, acl sz, mode_info)

mode infol;

int aclx_fput (FileDescriptor, ctl flags, acl _type, acl, acl sz, mode_info)
int |FileDescriptory;

uintéd_t ctl_flags;
acl_type_t acl_type;
void * acl;

size_t acl sz;
mode_t mode info;

Description

The aclx_put and aclx_fput subroutines store the access control information for a file system object in the
native ACL format. Native ACL format is the format as defined for the particular ACL type in the system.
These subroutines are advanced versions of the acl_put and acl_fput subroutines and should be used
instead of the older versions. The aclx_put and aclx_fput subroutines provide for more control for the
user to interact with the underlying file system directly.

A caller specifies the ACL type in the acl_type argument and passes the ACL information in the ac/
argument. The acl_sz parameter indicates the size of the ACL data. The ctl_flags parameter is a bitmask
that allows for variation of aclx_put requests.

The value provided to these subroutines can be obtained by invoking aclx_get or aclx_fget subroutines to
copy or restore the access control information.

The aclx_put and aclx_fput subroutines can also be used to manage the special bits (such as SGID and
SUID) in the mode word associated with the file system object. For example, you can set the mode_info
value to any special bit mask (as in the mode word defined for the file system), and a request can be

made to set the same bits using the ctl_flags argument. Note that special privileges (such as root) might
be required to set these bits.

Parameters

Path Specifies the path name of the file system object.

Base Operating System (BOS) Runtime Services (A-P) 25

FileDescriptor Specifies the file descriptor of an open file system object. This 64-bit sized bit mask
provides control over the ACL retrieval. These bits are divided as follows:

Lower 16 bits
System-wide (nonphysical file-system-specific) ACL control flags

32 bits Reserved.

Last 16 bits
Any physical file-system-defined options (that are specific to physical file system
ACL implementation).
ctl_flags Bit mask with the following system-wide flag values defined:

SET_MODE_S_BITS
Indicates that the mode_info value is set by the caller and the ACL put
operation needs to consider this value while completing the ACL put operation.

SET_ACL
Indicates that the ac/ argument points to valid ACL data that needs to be
considered while the ACL put operation is being performed.

Note: Both of the preceding values can be specified by the caller by ORing the two

masks.

acl_type Indicates the type of ACL to be associated with the file object. If the acl_type specified is
not among the ACL types supported for the file system, then an error is returned.

acl Points to a buffer where the ACL information exists. This ACL information is associated
with the file system object specified. The size of this buffer is indicated by the acl sz
parameter.

acl_sz Indicates the size of the ACL information sent through the acl parameter.

mode_info This value indicates any mode word information that needs to be set for the file system

object in question as part of this ACL put operation. When mode bits are being altered by
specifying the SET_MODE_S_BITS flag (in ctl_flags) ACL put operation fails if the caller
does not have the required privileges.

Return Values

On successful completion, the aclx_put and aclx_fput subroutines return a value of 0. Otherwise, -1 is
returned and the errno global variable is set to indicate the error.

Error Codes

The aclx_put subroutine fails and the access control information for a file remains unchanged if one or
more of the following are true:

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the
process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path
parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see
the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file system that has been
unmounted.

26 Technical Reference, Volume 1: Base Operating System and Extensions

The aclx_fput subroutine fails and the file permissions remain unchanged if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

The aclx_put or aclx_fput subroutine fails if one or more of the following is true:

EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is specified as input
to this routine.

EIO An 1/O error occurred during the operation.

EROFS The named file resides on a read-only file system.

If Network File System (NFS) is installed on your system, the acl_put and acl_fput subroutines can also
fail if the following condition is true:

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events:

Event Information
chacl Path-based event
fchacl FileDescriptor-based event

Related Information

The acl_chg (‘acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_get (“acl_get or acl_fgef]
[Subroutine” on page 10) subroutine, acl_set (‘acl_set or acl_fset Subroutine” on page 14) subroutine,
chacl (‘chacl or fchacl Subroutine” on page 142) subroutine, chmod (“‘chmod or fchmod Subroutine” on|

|page 146b subroutine, |staﬂ subroutine, |statac|| subroutine.
The command, command, command.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

aclx_scan or aclx_scanStr Subroutine

Purpose

Reads the access control information that is in nonbinary, readable text format, and converts it into ACL
type-specific native format binary ACL data.

Library
Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_scan (acl file, acl, acl sz, acl _type, err file)

void =* |acl);

Base Operating System (BOS) Runtime Services (A-P) 27

size_t *

acl_szs
acl_type t
FILE * ferr_file]

int aclx_scanStr (str, acl, acl sz, acl_type)
char * ;

void =* acl;

size_t * acl_sz;

acl_type_t acl type;

Description

The aclx_scan and aclx_scanStr subroutines read the access control information from the input given in
nonbinary, readable text format and return a binary ACL data in the ACL type-specific native format. The
aclx_scan subroutine provides the ACL data text in the file specified by acl_file. In the case of
aclx_scanStr, the ACL data text is provided in the string pointed to by str. When the err_file parameter is
not Null, it points to a file to which any error messages are written out by the aclx_scan subroutine in
case of syntax errors in the input ACL data. The errors can occur if the syntax of the input text data does
not adhere to the required ACL type-specific data specifications.

Parameters

acl_file Points to the file from which the ACL text output is read.

str Points to the string from which the ACL text output is printed.

acl Points to a buffer in which the binary ACL data has to be stored. The amount of memory
available in this buffer is indicated by the acl_sz parameter.

acl_sz Indicates the amount of memory, in bytes, available in the acl parameter.

acl_type Indicates the ACL type information of the acl. The ACL type is 64 bits in size and is

unique on the system. If the given ACL type is not supported in the system, this function
fails and errno is set to EINVAL.

err_file File pointer to an error file. When this pointer is supplied, the subroutines write out any
errors in the syntax/composition of the ACL input data.

Return Values

On successful completion, the aclx_scan and aclx_scanStr subroutines return a value of 0. Otherwise, -1
is returned and the errno global variable is set to indicate the error.

Error Codes
The aclx_scan subroutine fails if one or more of the following is true:

Note: The errors in the following list occur only because aclx_scan calls the fscanf subroutine internally.
For more information about these errors, refer to the fscanf subroutine.

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the file specified by
the acl_file parameter, and the process would be delayed in the write operation.

EBADF The file descriptor underlying the file specified by the acl_file parameter is not a valid
file descriptor open for writing.

EINTR The write operation terminated because of a signal was received, and either no data
was transferred or a partial transfer was not reported.

EIO The process is a member of a background process group attempting to perform a

write to its controlling terminal, the TOSTOP flag is set, the process is neither ignoring
nor blocking the SIGTTOU signal, and the process group of the process has no
parent process.

ENOSPC Insufficient storage space is available.

28 Technical Reference, Volume 1: Base Operating System and Extensions

The aclx_scanStr subroutine fails if the following is true:

ENOSPC Insufficient storage space is available. This error is returned by sscanf, which is called by
the aclx_scanStr subroutine internally.

The aclx_scan or aclx_scanStr subroutine fails if the following is true:

EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is specified as input
to this routine. This errno can also be returned if the text ACL given in the input/file string is not of
the type specified by acl_type.

Related Information
The [‘aclx_print or aclx_printStr Subroutine” on page 23 [fscanf Subroutine}

The command, command.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

acos, acosf, or acosl Subroutine

Purpose
Computes the inverse cosine of a given value.

Syntax

#include <math.h>

float acosf @)
float x;

long double acosl (x)
Tong double x;

double acos (x)
double x;

Description

The acosf, acosl, and acos subroutines compute the principal value of the arc cosine of the x parameter.
The value of x should be in the range [-1,1].

An application wishing to check for error situations should set the errno global variable to zero and call
fetestexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

X Specifies the value to be computed.

Base Operating System (BOS) Runtime Services (A-P) 29

Return Values
Upon successful completion, these subroutines return the arc cosine of x, in the range [0, pi] radians.

For finite values of x not in the range [-1,1], a domain error occurs, and a NaN is returned.
If xis NaN, a NaN is returned.
If xis +1, 0 is returned.

If x is +Inf, a domain error occurs, and a NaN is returned.

Related Information
The [acosh, acoshf, or acoshl Subroutine.”|

in AIX 5L Version 5.3 Files Reference.

acosh, acoshf, or acoshl Subroutine

Purpose
Computes the inverse hyperbolic cosine.

Syntax

#include <math.h>

float acoshf @)
float x;

long double acoshl (X)
Tong double x;

double acosh (x)
double x;

Description
The acoshf, or acoshl subroutine computes the inverse hyperbolic cosine of the x parameter.

The acosh subroutine returns the hyperbolic arc cosine specified by the x parameter, in the range 1 to the
+HUGE_VAL value.

An application wishing to check for error situations should set errno to zero and call
fetestexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if the errno global variable

is nonzero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is
nonzero, an error has occurred.

Parameters

X Specifies the value to be computed.

Return Values

Upon successful completion, the acoshf, or acoshl subroutine returns the inverse hyperbolic cosine of the
given argument.

For finite values of x < 1, a domain error occurs, and a NaN is returned.

30 Technical Reference, Volume 1: Base Operating System and Extensions

If xis NaN, a NaN is returned.
If xis +1, O is returned.
If xis +Inf, +Inf is returned.

If xis —=Inf, a domain error occurs, and a NaN is returned.

Error Codes

The acosh subroutine returns NaNQ (not-a-number) and sets errno to EDOM if the x parameter is less
than the value of 1.

Related Information
in AIX 5L Version 5.3 Files Reference.

addproj Subroutine

Purpose
Adds an API-based project definition to the kernel project registry.

Library

The libaacct.a library.

Syntax

<sys/aacct.h>

addproj(struct *)

Description

The addproj subroutine defines the application-based project definition to the kernel repository. An
application can assign a project defined in this way using the proj_execve system call.

Projects that are added this way are marked as being specified by applications so that they do not overlap
with system administrator-specified projects defined using the projctl command. The PROJFLAG_API flag
is turned on in the structure project to indicate that the project definition was added by an application.

Projects added by a system administrator using the projctl command are flagged as being derived from
the local or LDAP-based project repositories by the PROJFLAGS_LDAP or PROJFLAGS_PDF flag. If one
of these flags is specified, the addproj subroutine fails with EPERM.

The getproj routine can be used to determine the origin of a loaded project.

The addproj validates the input project number to ensure that it is within the expected range of
0x00000001 - 0x0O0ffffff. It also validates that the project name is a POSIX compliant alphanumeric

character string. If any invalid input is found errno will be set to EINVAL and the addproj subroutine
returns -1.

Parameters

project Points to a project structure that holds the definition of the project to be added.

Base Operating System (BOS) Runtime Services (A-P) 31

Security

Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values

0 Success
-1 Failure

Error Codes

EINVAL Invalid Project Name / Number or the passed pointer is NULL
EEXIST Project Definition exists
EPERM Permission Denied, not a privileged user

Related Information

The [‘addprojdb Subroutine,|[‘chprojattr Subroutine” on page 156 |[‘getproj Subroutine” on page 409
[‘getprojs Subroutine” on page 411 [[rmproj Subroutine]

addprojdb Subroutine

Purpose
Adds a project definition to the specified project database.

Library

The libaacct.a library.

Syntax

<sys/aacct.h>

addprojdb(void , struct *project, char

Description

The addprojdb subroutine appends the project definition stored in the struct project variable into the
project database named by the handle parameter. The project database must be initialized before calling
this subroutine. The projdballoc subroutine is provided for this purpose. This routine verifies whether the
supplied project definition already exists. If it does exist, the addprojdb subroutine sets errno to EEXIST
and returns -1.

The addprojdb subroutine validates the input project number to ensure that it is within the expected range
0x00000001 - Ox0Offffff and validates that the project name is a POSIX-compliant alphanumeric character
string. If any invalid input is found, the addprojdb subroutine sets errno to EINVAL and returns -1.

If the user does not have privilege to add an entry to project database, the addprojdb subroutine sets
errno to EACCES and returns -1.

There is an internal state (that is, the current project) associated with the project database. When the
project database is initialized, the current project is the first project in the database. The addprojdb
subroutine appends the specified project to the end of the database. It advances the current project
assignment to the next project in the database, which is the end of the project data base. At this point, a
call to the getnextprojdb subroutine would fail, because there are no additional project definitions. To read

32 Technical Reference, Volume 1: Base Operating System and Extensions

the project definition that was just added, use the getprojdb subroutine. To read other projects, first call
getfirstprojdb subroutine to reset the internal current project assignment so that subsequent reads can be
performed.

The format of the records added to the project database are given as follows:
ProjectName:ProjectNumber:AggregationStatus:Comment::

Example:
Biology:4756:n0:Project Created by projctl command::

Parameters

handle Pointer to project database handle

project Pointer to a project structure that holds the definition of the project to be added
comment Pointer to a character string that holds the comments about the project
Security

Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values

0 Success
-1 Failure

Error Codes

EINVAL Invalid project name or number, or the passed pointer is NULL.
EEXIST Project definition already exists.
EPERM Permission denied. The user is not a privileged user.

Related Information

The [‘addproj Subroutine” on page 31 |[‘chprojattrdb Subroutine” on page 157 |[‘getfirstprojdb Subroutine’]
on page 360),|[‘getnextprojdb Subroutine” on page 387 J|‘getprojdb Subroutine” on page 410 [[‘projdballo
Subroutine” on page 1089 |[‘projdbfinit Subroutine” on page 1090]|‘projdbfree Subroutine” on page 1091
rmprojdb Subroutine]

addssys Subroutine

Purpose
Adds the SRCsubsys record to the subsystem object class.

Library

System Resource Controller Library (libsrc.a)
Syntax

#include <sys/srcobj.h>
#include <spc.h>

Base Operating System (BOS) Runtime Services (A-P) 33

int addssys (|SRCSubsystem|)

struct SRCsubsys *SRCSubsystem;

Description

The addssys subroutine adds a record to the subsystem object class. You must call the defssys
subroutine to initialize the SRCSubsystem buffer before your application program uses the SRCsubsys
ﬂ

structure. The SRCsubsys structure is defined in the /ust/include/sys

file.

The executable running with this subroutine must be running with the group system.

Parameters

SRCSubsystem

Return Values

A pointer to the SRCsubsys structure.

Upon successful completion, the addssys subroutine returns a value of 0. Otherwise, it returns a value of
-1 and the odmerrno variable is set to indicate the error, or an SRC error code is returned.

Error Codes

The addssys subroutine fails if one or more of the following are true:

SRC_BADFSIG
SRC_BADNSIG
SRC_CMDARG2BIG
SRC_GRPNAM2BIG
SRC_NOCONTACT
SRC_NONAME
SRC_NOPATH
SRC_PATH2BIG
SRC_STDERR2BIG
SRC_STDIN2BIG
SRC_STDOUT2BIG
SRC_SUBEXIST
SRC_SUBSYS2BIG
SRC_SYNEXIST
SRC_SYN2BIG

Security

Invalid stop force signal.

Invalid stop normal signal.

Command arguments too long.

Group name too long.

Contact not signal, sockets, or message queue.
No subsystem name specified.

No subsystem path specified.

Subsystem path too long.

stderr path too long.

stdin path too long.

stdout path too long.

New subsystem name already on file.
Subsystem name too long.

New subsystem synonym name already on file.
Synonym name too long.

Privilege Control: This command has the Trusted Path attribute. It has the following kernel privilege:

SET_PROC_AUDIT
Files Accessed:

Mode
644
Auditing Events:

letc/objrepos/SRCsubsys

If the auditing subsystem has been properly configured and is enabled, the addssys subroutine generates
the following audit record (event) each time the subroutine is executed:

34 Technical Reference, Volume 1: Base Operating System and Extensions

Event Information
SRC_addssys Lists the SRCsubsys records added.

See ['Setting Up Auditing|in AIX 5L Version 5.3 Security Guide for details about selecting and grouping
audit events, and configuring audit event data collection.

Files

letc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.
ust/include/spc.h| Defines external interfaces provided by the SRC subroutines.
usr/include/sys/srcobij.h| Defines object structures used by the SRC.

Related Information

The chssys (‘chssys Subroutine” on page 160) subroutine, defssys (“defssys Subroutine” on page 206)
subroutine, delssys (“delssys Subroutine” on page 207) subroutine.

The command, command, command, @ command.

Auditing Overview (‘audit Subroutine” on page 96) and [System Resource Controller Overview|in A/X 5L
Version 5.3 System Management Concepts: Operating System and Devices.

[Defining Your Subsystem to the SRC} [System Resource Controller (SRC) Overview for Programmers|in
AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

[List of SRC Subroutines|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

adjtime Subroutine

Purpose
Corrects the time to allow synchronization of the system clock.

Library
Standard C Library (libc.a)

Syntax

#include <sys/time.h>

int adjtime (|Delta], [0lddeltal
struct timeval *Delta;

struct timeval *0Olddelta;

Description

The adjtime subroutine makes small adjustments to the system time, as returned by the gettimeofday
subroutine, advancing or retarding it by the time specified by the Delta parameter of the timeval structure.
If the Delta parameter is negative, the clock is slowed down by periodically subtracting a small amount
from it until the correction is complete. If the Delta parameter is positive, a small amount is periodically
added to the clock until the correction is complete. The skew used to perform the correction is generally
ten percent. If the clock is sampled frequently enough, an application program can see time apparently
jump backwards. For information on a way to avoid this, see “gettimeofday, settimeofday, or ftime

Base Operating System (BOS) Runtime Services (A-P) 35

[Subroutine” on page 436.A time correction from an earlier call to the adjtime subroutine may not be
finished when the adjtime subroutine is called again. If the Olddelta parameter is nonzero, then the
structure pointed to will contain, upon return, the number of microseconds still to be corrected from the
earlier call.

This call may be used by time servers that synchronize the clocks of computers in a local area network.
Such time servers would slow down the clocks of some machines and speed up the clocks of others to
bring them to the average network time.

The adjtime subroutine is restricted to the users with root user authority.

Parameters
Delta Specifies the amount of time to be altered.
Olddelta Contains the number of microseconds still to be corrected from an earlier call.

Return Values

A return value of 0 indicates that the adjtime subroutine succeeded. A return value of -1 indicates than an
error occurred, and errno is set to indicate the error.

Error Codes

The adjtime subroutine fails if the following are true:

EFAULT An argument address referenced invalid memory.
EPERM The process’s effective user ID does not have root user
authority.

agg_proc_stat, agg_lpar_stat, agg_arm_stat, or free_agg_list
Subroutine

Purpose
Aggregate advanced accounting data.

Library

The libaacct.a library.

Syntax

#define <sys/aacct.h>

int agg_arm_stat(tran list|, form list);

struct aacct_tran_rec *tran_list

struct agg_arm_stat *xarm list

int agg_proc_stat(sortcritl], [sortcritd), [sortcrit3|, [sortcrit4], tran list, |proc list);
int sortcritl, sortcrit2, sortcrit3, sortcrit4

struct aacct_tran_rec *tran_list

struct agg_proc_stat **proc_list

int agg_]par_stat, *xtran_list, ;
int 1 type

struct aacct_tran_rec *tran_list

union agg_lpar_rec *I list

void free_agg_h’st;

void *list

36 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The agg_proc_stat, agg_lpar_stat, and agg_arm_stat subroutines return a linked list of aggregated
transaction records for process, LPAR, and ARM, respectively.

The agg_proc_stat subroutine performs the process record aggregation based on the criterion values
passed as input parameters. The aggregated process transaction records are sorted based on the sorting
criteria values sortcrit1, sortcrit2, sortcrit3, and sortcrit4. These four can be one of the following values
defined in the sys/aacct.h file:

« CRIT_UID

 CRIT_GID

+ CRIT_PROJ

« CRIT_CMD

+ CRIT_NONE

The order of their usage determines the sorting order applied to the retrieved aggregated list of process
transaction records. For example, the sort criteria values of PROJ_GID, PROJ_PROJ, PROJ_UID,

PROJ_NONE first sorts the aggregated list on group IDs, which are further sorted based on project IDs,
followed by another level of sorting based on user IDs.

Some of the process transaction records (of type TRID_agg_proc) cannot be aggregated based on group
IDs and command names. For such records, agg_proc_stat returns an asterisk (*) character as the
command name and a value of -2 as the group ID. This indicates to the caller that these records cannot
be aggregated.

If the aggregation is not necessary on a specific criteria, agg_proc_stat returns a value of -1 in the
respective field. For example, if the aggregation is not necessary on the group ID (CRIT_GID), the
retrieved list of aggregation records has a value of -1 filled in the group ID fields.

The agg_lpar_stat retrieves an aggregated list of LPAR transaction records. Because there are several
types of LPAR transaction records, the caller must specify the type of LPAR transaction record that is to
be aggregated. The transaction record type can be one of the following values, defined in the sys/aacct.h
file:

* AGG_CPUMEM
* AGG_FILESYS

* AGG_NETIF

*+ AGG_DISK

« AGG_VTARGET
* AGG_VCLIENT

The agg_lpar_stat subroutine uses a union argument of type struct agg_lpar_rec. For this argument, the
caller must provide the address of the linked list to which the aggregated records should be returned.

The agg_arm_list retrieves an aggregated list of ARM transaction records from the list of transaction
records provided as input. The aggregated transaction records are returned to the caller through the
structure pointer of type struct agg_arm_stat.

The free_agg_list subroutine frees the memory allocated to the aggregated records returned by the
agg_proc_stat, agg_lpar_stat, or agg_arm_stat subroutine.

Parameters

arm_list Pointer to the linked list of struct agg_arm_stat nodes to be returned.

Base Operating System (BOS) Runtime Services (A-P) 37

[_list Pointer to union agg_Ilpar_rec address to which the aggregated LPAR records are

returned.
|_type Integer value that represents the type of LPAR resource to be aggregated.
list Pointer to the aggregated list to be freed.
proc_list Pointer to the linked list of struct agg_proc_stat nodes to be returned.

sortcrit1, sortcrit2, sortcrit3, Integer values that represent the sorting criteria to be passed to agg_proc_stat.
sortcrit4

tran_list Pointer to the input list of transaction records
Security
No restrictions. Any user can call this function.

Return Values

0 The call to the subroutine was successful.
-1 The call to the subroutine failed.

Error Codes

EINVAL The passed pointer is NULL.
ENOMEM Insufficient memory.
EPERM Permission denied. Unable to read the data file.

Related Information

The [‘buildproclist Subroutine” on page 123 |[‘buildtranlist or freetranlist Subroutine” on page 124
[‘getproclist, getlparlist, or getarmlist Subroutine” on page 405

[Understanding the Advanced Accounting Subsystem|

aio_cancel or aio_cancel64 Subroutine

The aio_cancel or aio_cancel64 subroutine includes information for the [POSIX AlO aio_cancell
(as defined in the IEEE std 1003.1-2001), and the [Legacy AlO aio_cancel subroutine]

POSIX AIO aio_cancel Subroutine

Purpose
Cancels one or more outstanding asynchronous 1/O requests.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_cancel (fildes|, [aiochp)
int fildes;
struct aiocb *aiochp;

38 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The aio_cancel subroutine cancels one or more asynchronous 1/O requests currently outstanding against
the fildes parameter. The aiocbp parameter points to the asynchronous I/O control block for a particular
request to be canceled. If aiocbp is NULL, all outstanding cancelable asynchronous I/O requests against
fildes are canceled.

Normal asynchronous notification occurs for asynchronous 1/0O operations that are successfully canceled. If
there are requests that cannot be canceled, the normal asynchronous completion process takes place for
those requests when they are completed.

For requested operations that are successfully canceled, the associated error status is set to
ECANCELED, and a -1 is returned. For requested operations that are not successfully canceled, the
aiocbp parameter is not modified by the aio_cancel subroutine.

If aiocbp is not NULL, and if fildes does not have the same value as the file descriptor with which the
asynchronous operation was initiated, unspecified results occur.

The implementation of the subroutine defines which operations are cancelable.

Parameters
fildes Identifies the object to which the outstanding asynchronous 1/0 requests were originally queued.
aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes
off_t aio_offset
char *ajo_buf

size_t aio_nbytes

int aio_reqprio
struct sigevent ajo_sigevent
int aio_lio_opcode

Execution Environment
The aio_cancel and aio_cancel64 subroutines can be called from the process environment only.

Return Values

The aio_cancel subroutine returns AIO_CANCELED to the calling process if the requested operation(s)
were canceled. AIO_NOTCANCELED is returned if at least one of the requested operations cannot be
canceled because it is in progress. In this case, the state of the other operations, referenced in the call to
aio_cancel is not indicated by the return value of aio_cancel. The application may determine the state of
affairs for these operations by using the aio_error subroutine. AIO_ALLDONE is returned if all of the
operations are completed. Otherwise, the subroutine returns -1 and sets the errno global variable to
indicate the error.

Error Codes

EBADF The fildes parameter is not a valid file descriptor.

Related Information

“aio_error or aio_error64 Subroutine” on page 42 [[‘aio_nwait Subroutine” on page 46 |[‘aio_nwait_timeout|
Subroutine” on page 48 [[‘aio_read or aio_read64 Subroutine” on page 50, “aio_return or aio_returné4

Base Operating System (BOS) Runtime Services (A-P) 39

Subroutine” on page 54|[‘aio_suspend or aio_suspend64 Subroutine” on page 57 |[‘aio_write o1
aio_write64 Subroutine” on page 60, and [‘lio_listio or lio_listio4 Subroutine” on page 709

The|Asynchronous 1/0 Subsystem|and [Communications I/0O Subsystem|in AIX 5L Version 5.3 Kernel
Extensions and Device Support Programming Concepts.

The [Input and Output Handling|in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs describes the files, commands, and subroutines used for low-level, stream, terminal,
and asynchronous 1/O interfaces.

Legacy AlO aio_cancel Subroutine

Purpose
Cancels one or more outstanding asynchronous I/O requests.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

aio_cancel (|FileDescriptor], |aiochp)
int FileDescriptors;
struct aiocb *aiocbp;

aio_cancel64 ([FileDescriptor], |aiochpl)
int FileDescriptors;
struct aioch64 *aiocbp;

Description

The aio_cancel subroutine attempts to cancel one or more outstanding asynchronous I/O requests issued
on the file associated with the FileDescriptor parameter. If the pointer to the aio control block (aiocb)
structure (the aiocbp parameter) is not null, then an attempt is made to cancel the 1/0 request associated
with this aiocb. The aiocbp parameter used by the thread calling aix_cancel must have had its request
initiated by this same thread. Otherwise, a -1 is returned and errno is set to EINVAL. However, if the
aiocbp parameter is null, then an attempt is made to cancel all outstanding asynchronous I/O requests
associated with the FileDescriptor parameter without regard to the initiating thread.

The aio_cancel64 subroutine is similar to the aio_cancel subroutine except that it attempts to cancel
outstanding large file enabled asynchronous I/O requests. Large file enabled asynchronous I/O requests
make use of the aiocb64 structure instead of the aiocb structure. The aiocb64 structure allows
asynchronous 1/O requests to specify offsets in excess of OFF_MAX (2 gigbytes minus 1).

In the large file enabled programming environment, aio_cancel is redefined to be aio_cancel64.

When an /O request is canceled, the aio_error (“aio_error or aio_error64 Subroutine” on page 42)
subroutine called with the handle to the corresponding aiocb structure returns ECANCELED.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for
an application with the POSIX AIO definitions. In the source file enter:

#define AIO_AIX_SOURCE
#include <sys/aio.h>

40 Technical Reference, Volume 1: Base Operating System and Extensions

or, on the command line when compiling enter:

->x1c ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c
Parameters
FileDescriptor Identifies the object to which the outstanding asynchronous 1/0 requests were originally queued.
aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_whence
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_reqprio
struct event aio_event
struct osigevent aio_event
int aio_flag
aiohandle_t aio_handle

Execution Environment
The aio_cancel and aio_cancel64 subroutines can be called from the process environment only.

Return Values

AIO_CANCELED Indicates that all of the asynchronous I/O requests were canceled successfully. The
aio_error subroutine call with the handle to the aiocb structure of the request will return
ECANCELED.

AIO_NOTCANCELED Indicates that the aio_cancel subroutine did not cancel one or more outstanding /O
requests. This may happen if an 1/O request is already in progress. The corresponding error
status of the I/O request is not modified.

AIO_ALLDONE Indicates that none of the 1/0 requests is in the queue or in progress.
-1 Indicates that the subroutine was not successful. Sets the errno global variable to identify
the error.

A return code can be set to the following errno value:

EBADF Indicates that the FileDescriptor parameter is not valid.

Related Information

“aio_error or aio_error64 Subroutine” on page 42 |[‘aio_nwait Subroutine” on page 46))[“aio_nwait_timeout|
Subroutine” on page 48 [[‘aio_read or aio_read64 Subroutine” on page 50,[‘aio_return or aio_return64|
Subroutine” on page 54,/[‘aio_suspend or aio_suspend64 Subroutine” on page 57, and [‘aio_write or
aio_write64 Subroutine” on page 60,[lio_listio or lio_listio64 Subroutine” on page 709

The [Asynchronous I/0 Subsystem| and [Communications /O Subsystem|in AIX 5L Version 5.3 Kernel
Extensions and Device Support Programming Concepts.

The [Input and Output Handling|in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs describes the files, commands, and subroutines used for low-level, stream, terminal,
and asynchronous 1/O interfaces.

Base Operating System (BOS) Runtime Services (A-P) 41

aio_error or aio_error64 Subroutine

The aio_error or aio_error64 subroutine includes information for the [POSIX AIO aio_error subrouting| (as
defined in the IEEE std 1003.1-2001), and the [Legacy AlO aio_error subroutine]

POSIX AIO aio_error Subroutine

Purpose
Retrieves error status for an asynchronous 1/0O operation.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_error (aiochp)
const struct aioch *aiocbp;

Description

The aio_error subroutine returns the error status associated with the aiocb structure. This structure is
referenced by the aiocbp parameter. The error status for an asynchronous 1/O operation is the
synchronous I/O errno value that would be set by the corresponding read, write, or fsync subroutine. If
the subroutine has not yet completed, the error status is equal to EINPROGRESS.

Parameters

aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes

off t aio_offset
char *aio_buf

size_t aio_nbytes

int aio_reqprio
struct sigevent aio_sigevent
int aio_lio_opcode

Execution Environment
The aio_error and aio_error64 subroutines can be called from the [process environment only.

Return Values

If the asynchronous 1/O operation has completed successfully, the aio_error subroutine returns a 0. If
unsuccessful, the error status (as described for the read, write, and fsync subroutines) is returned. If the
asynchronous /O operation has not yet completed, EINPROGRESS is returned.

Error Codes

EINVAL The aiocbp parameter does not refer to an asynchronous operation whose return status has not yet
been retrieved.

42 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38|“aio_fsync Subroutine” on page 44 |[‘aio_nwaif
Subroutine” on page 46 [[‘aio_nwait_timeout Subroutine” on page 48 ||‘aio_read or aio_read64 Subroutine’]
on page 50,/[‘aio_return or aio_return64 Subroutine” on page 54 [[‘aio_write or aio_write64 Subroutine” on|
page 60 [[‘close Subroutine” on page 173 [[‘exec: execl, execle, execlp, execv, execve, execvp, or exect
Subroutine” on page 232 |[‘exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239 ,|[fork, f fork, on
vfork Subroutine” on page 284 ||‘tsync or fsync_range Subroutine” on page 314 [[‘lio_listio or lio_listio64|
Subroutine” on page 709,/ and [Iseek, llseek or Iseek64 Subroutine” on page 751

[read, readx, readv, readvx, or pread Subroutine| and |write, writex, writev, writevx or pwrite Subroutines]in
AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2.

Legacy AlO aio_error Subroutine

Purpose
Retrieves the error status of an asynchronous I/O request.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int
aio_error(handle|

aio_handle_t handle;

int aio_error64(handle)
aio_handle_t handle;

Description

The aio_error subroutine retrieves the error status of the asynchronous request associated with the
handle parameter. The error status is the errno value that would be set by the corresponding 1/0
operation. The error status is EINPROG if the I/O operation is still in progress.

The aio_error64 subroutine is similar to the aio_error subroutine except that it retrieves the error status
associated with an aiocb64 control block.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for
an application with the POSIX AIO definitions. In the source file enter:

#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:

->xTc ... -D_AIO AIX SOURCE ... legacy aio _program.c
Parameters
handle The handle field of an aio control block (aiocb or aiocb64) structure set by a previous call of the

aio_read, aio_read64, aio_write, aio_write64, lio_listio, aio_listio64 subroutine. If a random memory
location is passed in, random results are returned.

Base Operating System (BOS) Runtime Services (A-P) 43

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_whence
off t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_reqprio
struct event aio_event
struct osigevent aio_event
int aio_flag
aiohandle_t aio_handle

Execution Environment
The aio_error and aio_error64 subroutines can be called from the [process environment only.

Return Values

0 Indicates that the operation completed successfully.
ECANCELED Indicates that the 1/0 request was canceled due to an aio_cancel subroutine call.
EINPROG Indicates that the 1/0 request has not completed.

An errno value described in the aio_read (“aio_read or aio_read64 Subroutine” on page 50),
aio_write (“aio_write or aio_write64 Subroutine” on page 60)), and lio_listio {“lio_listio or lio_listio64|
[Subroutine” on page 709) subroutines: Indicates that the operation was not queued successfully.
For example, if the aio_read subroutine is called with an unusable file descriptor, it (aio_read)
returns a value of -1 and sets the errno global variable to EBADF. A subsequent call of the
aio_error subroutine with the handle of the unsuccessful aio control block (aiocb) structure
returns EBADF.

An errno value of the corresponding I/O operation: Indicates that the operation was initiated
successfully, but the actual I/O operation was unsuccessful. For example, calling the aio_write
subroutine on a file located in a full file system returns a value of 0, which indicates the request
was queued successfully. However, when the I/O operation is complete (that is, when the aio_error
subroutine no longer returns EINPROG), the aio_error subroutine returns ENOSPC. This indicates
that the I/O was unsuccessful.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38)[‘aio_read or aio_read64 Subroutine” on page 50|
“aio_nwait Subroutine” on page 46 [[‘aio_nwait_timeout Subroutine” on page 48 [‘aio_return or]
aio_return64 Subroutine” on page 54 [[‘aio_suspend or aio_suspend64 Subroutine” on page 57 |[‘aio_write]
or aio_write64 Subroutine” on page 60),[lio_listio or lio_listio64 Subroutine” on page 709,/ and [“lio_listio or
lio_listioB4 Subroutine” on page 709

The [Asynchronous I/0 Overview| and the [Communications 1/0 Subsystem: Programming Introduction|in
AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The [Input and Output Handling Programmer’s Overview|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous 1/O interfaces.

aio_fsync Subroutine

Purpose
Synchronizes asynchronous files.

44 Technical Reference, Volume 1: Base Operating System and Extensions

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_fsync (opl, [oiochp)
int op;
struct aiocb *aiochp;

Description

The aio_fsync subroutine asynchronously forces all I/O operations to the synchronized 1/0 completion
state. The function call returns when the synchronization request has been initiated or queued to the file or
device (even when the data cannot be synchronized immediately).

If the op parameter is set to O_DSYNC, all currently queued 1/O operations are completed as if by a call to
the fdatasync subroutine. If the op parameter is set to O_SYNC, all currently queued I/O operations are
completed as if by a call to the fsync subroutine. If the aio_fsync subroutine fails, or if the operation
queued by aio_fsync fails, outstanding I/O operations are not guaranteed to be completed.

If aio_fsync succeeds, it is only the 1/0 that was queued at the time of the call to aio_fsync that is
guaranteed to be forced to the relevant completion state. The completion of subsequent 1/0 on the file
descriptor is not guaranteed to be completed in a synchronized fashion.

The aiocbp parameter refers to an asynchronous 1/0O control block. The aiocbp value can be used as an
argument to the aio_error and aio_return subroutines in order to determine the error status and return
status, respectively, of the asynchronous operation while it is proceeding. When the request is queued, the
error status for the operation is EINPROGRESS. When all data has been successfully transferred, the
error status is reset to reflect the success or failure of the operation. If the operation does not complete
successfully, the error status for the operation is set to indicate the error. The aio_sigevent member
determines the asynchronous notification to occur when all operations have achieved synchronized 1/0
completion. All other members of the structure referenced by the aiocbp parameter are ignored. If the
control block referenced by aiocbp becomes an illegal address prior to asynchronous 1/0O completion, the
behavior is undefined.

If the aio_fsync subroutine fails or aiocbp indicates an error condition, data is not guaranteed to have
been successfully transferred.

Parameters
op Determines the way all currently queued 1/O operations are completed.
aiocbp Points to the aiocb structure associated with the 1/0 operation.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes

off t aio_offset
char *aio_buf

size_t aio_nbytes

int aio_reqgprio
struct sigevent aio_sigevent
int aio_lio_opcode

Execution Environment
The aio_error and aio_error64 subroutines can be called from the [process environment only.

Base Operating System (BOS) Runtime Services (A-P) 45

Return Values

The aio_fsync subroutine returns a 0 to the calling process if the I/O operation is successfully queued.
Otherwise, it returns a -1, and sets the errno global variable to indicate the error.

Error Codes

EAGAIN The requested asynchronous operation was not queued due to temporary resource limitations.
EBADF The aio_fildes member of the aiocb structure referenced by the aiocbp parameter is not a valid
file descriptor open for writing.

In the event that any of the queued I/O operations fail, the aio_fsync subroutine returns the error condition
defined for the read and write subroutines. The error is returned in the error status for the asynchronous
fsync subroutine, which can be retrieved using the aio_error subroutine.

Related Information

“fentl, dup, or dup2 Subroutine” on page 251 ,|[sync or fsync_range Subroutine” on page 314, and [‘open)
openx, open64, creat, or creat64 Subroutine” on page 894

[read, readx, readv, readvx, or pread Subroutine| and |write, writex, writev, writevx or pwrite Subroutines]in
AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2.

aio_nwait Subroutine

Purpose
Suspends the calling process until a certain number of asynchronous 1/O requests are completed.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_nwait , ,
int cnt;

int nwait;

struct aioch *xlist;

Description

Although the aio_nwait subroutine is included with POSIX AlQO, it is not part of the standard definitions for
POSIX AlO.

The aio_nwait subroutine suspends the calling process until a certain number (nwait) of asynchronous 1/O
requests are completed. These requests are initiated at an earlier time by the lio_listio subroutine, which
uses the LIO_NOWAIT_AIOWAIT cmd parameter. The aio_nwait subroutine fills in the aiocb pointers to
the completed requests in list and returns the number of valid entries in list. The cnt parameter is the
maximum number of aiocb pointers that list can hold (cnt >= nwait). The subroutine also returns when
less than nwait number of requests are done if there are no more pending aio requests.

Note: If the lio_listio64 subroutine is used, the aiocb structure changes to aiocb64.

Note: The aio control block’s errno field continues to have the value EINPROG until after the aio_nwait
subroutine is completed. The aio_nwait subroutine updates this field when the lio_listio subroutine

46 Technical Reference, Volume 1: Base Operating System and Extensions

has run with the LIO_NOWAIT_AIOWAIT cmd parameter. No utility, such as aio_error, can be used
to look at this value until after the aio_nwait subroutine is completed.

The aio_suspend subroutine returns after any one of the specified requests gets done. The aio_nwait
subroutine returns after a certain number (nwait or more) of requests are completed.

There are certain limitations associated with the aio_nwait subroutine, and a comparison between it and
the aio_suspend subroutine is necessary. The following table is a comparison of the two subroutines:

aio_suspend: aio_nwait:
Requires users to build a list of control blocks, each ~ Requires the user to provide an array to put aiocb address
associated with an I/O operation they want to wait for. information into. No specific aio control blocks need to be

known.
Returns when any one of the specified control blocks Returns when nwait amount of requests are done or no other
indicates that the 1/0O associated with that control requests are to be processed.
block completed.
The aio control blocks may be updated before the Updates the aio control blocks itself when it is called. Other

subroutine is called. Other polling methods (such as polling methods can’t be used until after the aio_nwait

the aio_error subroutine) can also be used to view subroutine is called enough times to cover all of the aio

the aio control blocks. requests specified with the lio_listio subroutine.
Is only used in accordance with the LIO_NOWAIT_AIOWAIT
command, which is one of the commands associated with the
lio_listio subroutine. If the lio_listio subroutine is not first
used with the LIO_NOWAIT_AIOWAIT command, aio_nwait
can not be called. The aio_nwait subroutine only affects those
requests called by one or more lio_listio calls for a specified

process.
Parameters
cnt Specifies the number of entries in the list array.
nwait Specifies the minimal number of requests to wait on.
list An array of pointers to aio control structures defined in the aio.h file.

Return Values

The return value is the total number of requests the aio_nwait subroutine has waited on to complete. It
can not be more than cnt. Although nwait is the desired amount of requests to find, the actual amount
returned could be less than, equal to, or greater than nwait. The return value indicates how much of the
list array to access.

The return value may be greater than the nwait value if the lio_listio subroutine initiated more than nwait
requests and the cnt variable is larger than nwait. The nwait parameter represents a minimal value desired
for the return value, and cnt is the maximum value possible for the return.

The return value may be less than the nwait value if some of the requests initiated by the lio_listio
subroutine occur at a time of high activity, and there is a lack of resources available for the number of
requests. EAGAIN (error try again later) may be returned in some request’s aio control blocks, but these
requests will not be seen by the aio_nwait subroutine. In this situation aiocb addresses not found on the
list have to be accessed by using the aio_error subroutine after the aio_nwait subroutine is called. You
may need to increase the aio parameters max servers or max requests if this occurs. Increasing the
parameters will ensure that the system is well tuned, and an EAGAIN error is less likely to occur.

In the event of an error, the aio_nwait subroutine returns a value of -1 and sets the errno global variable
to identify the error. Return codes can be set to the following errno values:

Base Operating System (BOS) Runtime Services (A-P) 47

EBUSY An aio_nwait call is in process.

EINVAL The application has retrieved all of the aiocb pointers, but the user buffer does not have enough space
for them.
EINVAL There are no outstanding async 1/O calls.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38|[‘aio_error or aio_error64 Subroutine” on page 42
“aio_nwait_timeout Subroutine,”|[‘aio_read or aio_read64 Subroutine” on page 50 [|‘aio_return o
aio_return64 Subroutine” on page 54,/[‘aio_suspend or aio_suspend64 Subroutine” on page 57 [[‘aio_write]
or aio_write64 Subroutine” on page 60,/ and [‘lio_listio or lio_listio64 Subroutine” on page 709

The [Asynchronous I/0O Overview| and the [Communications 1/0 Subsystem: Programming Introduction|in
AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The [Input and Output Handling Programmer’s Overview|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous 1/O interfaces.

aio_nwait_timeout Subroutine

Purpose

Extends the capabilities of the aio_nwait subroutine by specifying timeout values.
Library

Standard C library (libc.a).

Syntax

int aio_nwait_timeout (cnt], fwait], [List], [timeout)

int cnt;

int nwait;

struct aiocbp **list;
int timeout;

Description

The aio_nwait_timeout subroutine waits for a certain number of asynchronous I/O operations to complete
as specified by the nwait parameter, or until the call has blocked for a certain duration specified by the
timeout parameter.

Parameters

cnt Indicates the maximum number of pointers to the aiocbp structure that can be copied into the list array.
list An array of pointers to aio control structures defined in the aio.h file.

nwait Specifies the number of asynchronous I/O operations that must complete before the aio_nwait_timout

subroutine returns.

48 Technical Reference, Volume 1: Base Operating System and Extensions

timeout Specified in units of milliseconds.

A timeout value of -1 indicates that the subroutine behaves like the aio_nwait subroutine, blocking until
all of the requested 1/O operations complete or until there are no more asynchronous I/O requests
pending from the process.

A timeout value of 0 indicates that the subroutine returns immediately with the current completed number
of asynchronous /O requests. All other positive timeout values indicate that the subroutine must block
until either the timeout value is reached or the requested number of asynchronous 1/0 operations
complete.

Return Values

The return value is the total number of requests the aio_nwait subroutine has waited on to complete. It
can not be more than cnt. Although nwait is the desired amount of requests to find, the actual amount
returned could be less than, equal to, or greater than nwait. The return value indicates how much of the
list array to access.

The return value may be greater than the nwait value if the lio_listio subroutine initiated more than nwait
requests and the cnt variable is larger than nwait. The nwait parameter represents a minimal value desired
for the return value, and cnt is the maximum value possible for the return.

The return value may be less than the nwait value if some of the requests initiated by the lio_listio
subroutine occur at a time of high activity, and there is a lack of resources available for the number of
requests. The EAGAIN return code (error try again later) might be returned in some request’s aio control
blocks, but these requests will not be seen by the aio_nwait subroutine. In this situation, theaiocb
structure addresses that are not found on the list must be accessed using the aio_error subroutine after
the aio_nwait subroutine is called. You might need to increase the aio parameters max servers or max
requests if this occurs. Increasing the parameters will ensure that the system is well tuned, and an
EAGAIN error is less likely to occur. The return value might be less than the nwait value due to the setting
of the new timeout parameter in the following cases:

» timeout > 0 and a timeout has occurred before nwait requests are done

» timeout = 0 and the current requests completed at the time of the aio_nwait_timeout call are less then
nwait parameter

In the event of an error, the aio_nwait subroutine returns a value of -1 and sets the errno global variable
to identify the error. Return codes can be set to the following errno values:

EBUSY An aio_nwait call is in process.

EINVAL The application has retrieved all of the aiocb pointers, but the user buffer does not have enough space
for them.

EINVAL There are no outstanding async 1/O calls.

Related Information

“aio_nwait Subroutine” on page 46)[aio_suspend or aio_suspend64 Subroutine” on page 57)|‘aio_cancell
or aio_cancel64 Subroutine” on page 38,[[‘aio_error or aio_error64 Subroutine” on page 42,/[‘aio_read o1
aio_read64 Subroutine” on page 50 |[‘aio_return or aio_return64 Subroutine” on page 54 [[‘aio_write of
aio_write64 Subroutine” on page 60,/ and [‘lio_listio or lio_listio64 Subroutine” on page 709

The [Asynchronous I/0O Overview| and the [Communications 1/0 Subsystem: Programming Introduction|in
AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The [Input and Output Handling Programmer’s Overview|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous I/O interfaces.

Base Operating System (BOS) Runtime Services (A-P) 49

aio_read or aio_read64 Subroutine

The aio_read or aio_read64 subroutine includes information for the [POSIX AIO aio_read subroutine] (as
defined in the IEEE std 1003.1-2001), and the |Legacy AlO aio_read subroutine|

POSIX AIO aio_read Subroutine

Purpose
Asynchronously reads a file.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_read (giochp)
struct aiocb *aiochp;

Description

The aio_read subroutine reads aio_nbytes from the file associated with aio_fildes into the buffer pointed to
by aio_buf. The subroutine returns when the read request has been initiated or queued to the file or device
(even when the data cannot be delivered immediately).

The aiocbp value may be used as an argument to the aio_error and aio_return subroutines in order to
determine the error status and return status, respectively, of the asynchronous operation while it is
proceeding. If an error condition is encountered during queuing, the function call returns without having
initiated or queued the request. The requested operation takes place at the absolute position in the file as
given by aio_offset , as if the Iseek subroutine were called immediately prior to the operation with an offset
equal to aio_offset and a whence equal to SEEK_SET. After a successful call to enqueue an
asynchronous /O operation, the value of the file offset for the file is unspecified.

The aio_lio_opcode field is ignored by the aio_read subroutine.

If prioritized I/O is supported for this file, the asynchronous operation is submitted at a priority equal to the
scheduling priority of the process minus aiocbp->aio_reqprio.

The aiocbp parameter points to an aiocb structure. If the buffer pointed to by aio_buf or the control block
pointed to by aiocbp becomes an illegal address prior to asynchronous 1/0O completion, the behavior is
undefined.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If synchronized I/O is enabled on the file associated with aio_fildes, the behavior of this subroutine is
according to the definitions of synchronized I/O data integrity completion and synchronized 1/O file integrity
completion.

For any system action that changes the process memory space while an asynchronous /O is outstanding,
the result of that action is undefined.

For regular files, no data transfer occurs past the offset maximum established in the open file description.

If you use the aio_read or aio_read64 subroutine with a file descriptor obtained from a call to the
shm_open subroutine, it will fail with EINVAL.

50 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes
off_t aio_offset
char *aio_buf

size_ t aio_nbytes

int aio_reqprio
struct sigevent ajo_sigevent
int aio_lio_opcode

Execution Environment
The aio_read and aio_read64 subroutines can be called from the [process environment| only.

Return Values

The aio_read subroutine returns 0 to the calling process if the I/O operation is successfully queued.
Otherwise, it returns a -1 and sets the errno global variable to indicate the error.

Error Codes

EAGAIN The requested asynchronous 1/O operation was not queued due to system resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to the aio_read
subroutine, or asynchronously. If any of the conditions below are detected synchronously, the aio_read
subroutine returns -1 and sets the errno global variable to the corresponding value. If any of the
conditions below are detected asynchronously, the return status of the asynchronous operation is set to -1,
and the error status of the asynchronous operation is set to the corresponding value.

EBADF The aio_fildes parameter is not a valid file descriptor open for reading.

EINVAL The file offset value implied by aio_offset is invalid, aio_reqprio is an invalid value, or aio_nbytes is
an invalid value. The aio_read or aio_read64 subroutine was used with a file descriptor obtained
from a call to the shm_open subroutine.

If the aio_read subroutine successfully queues the 1/0 operation but the operation is subsequently
canceled or encounters an error, the return status of the asynchronous operation is one of the values
normally returned by the read subroutine. In addition, the error status of the asynchronous operation is set
to one of the error statuses normally set by the read subroutine, or one of the following values:

EBADF The aio_fildes argument is not a valid file descriptor open for reading.
ECANCELED The requested 1/0O was canceled before the I/O completed due to an explicit aio_cancel request.
EINVAL The file offset value implied by aio_offset is invalid.

The following condition may be detected synchronously or asynchronously:

EOVERFLOW The file is a regular file, aio_nbytes is greater than 0, and the starting offset in aio_offset is before
the end-of-file and is at or beyond the offset maximum in the open file description associated with
aio_fildes.

Base Operating System (BOS) Runtime Services (A-P) 51

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38 [“aio_error or aio_error64 Subroutine” on page 42)
“aio_nwait Subroutine” on page 46 [[‘aio_nwait_timeout Subroutine” on page 48[‘lio_listio or lio_listio64]
Subroutine” on page 709 [[‘aio_return or aio_return64 Subroutine” on page 54,|[‘aio_suspend of
aio_suspend64 Subroutine” on page 57 [[‘aio_write or aio_write64 Subroutine” on page 60,/|‘close]
Subroutine” on page 173 [[‘'exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on|
page 232 [[‘exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239 ||‘fork, f fork, or vfork Subroutine’|
on page 284|and [‘lseek, liseek or Iseek64 Subroutine” on page 751 |

The Jread, readx, readyv, readvx, or pread Subroutine|in AIX 5L Version 5.3 Technical Reference: Base
Operating System and Extensions Volume 2.

Legacy AlO aio_read Subroutine

Purpose
Reads asynchronously from a file.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_read(|FileDescriptor], |aiochp)
int FileDescriptor;
struct aiocb *aiochp;

int aio_read64(|FileDescriptor], |aiochpl)
int FileDescriptors;
struct aioch64 *aiocbp;

Description

The aio_read subroutine reads asynchronously from a file. Specifically, the aio_read subroutine reads
from the file associated with the FileDescriptor parameter into a buffer.

The aio_read64 subroutine is similar to the aio_read subroutine execpt that it takes an aiocb64 reference
parameter. This allows the aio_read64 subroutine to specify offsets in excess of OFF_MAX (2 gigbytes
minus 1).

In the large file enabled programming environment, aio_read is redefined to be aio_read64 .

If you use the aio_read or aio_read64 subroutine with a file descriptor obtained from a call to the
shm_open subroutine, it will fail with EINVAL.

The details of the read are provided by information in the aiocb structure, which is pointed to by the
aiocbp parameter. This information includes the following fields:

aio_buf Indicates the buffer to use.
aio_nbytes Indicates the number of bytes to read.

When the read request has been queued, the aio_read subroutine updates the file pointer specified by the
aio_whence and aio_offset fields in the aiocb structure as if the requested I/O were already completed. It
then returns to the calling program. The aio_whence and aio_offset fields have the same meaning as the

52 Technical Reference, Volume 1: Base Operating System and Extensions

whence and offset parameters in the Iseek (‘Iseek, llseek or Iseek64 Subroutine” on page 751)) subroutine.
The subroutine ignores them for file objects that are not capable of seeking.

If an error occurs during the call, the read request is not queued. To determine the status of a request, use
the aio_error (“aio_error or aio_error64 Subroutine” on page 42) subroutine.

To have the calling process receive the SIGIO signal when the I/O operation completes, set the
AIO_SIGNAL bit in the aio_flag field in the aiocb structure.

Note: The event structure in the aiocb structure is currently not in use but is included for future
compatibility.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for
an application with the POSIX AIO definitions. In the source file enter:

#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:
->x1c ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Since prioritized 1/O is not supported at this time, the aio_reqprio field of the structure is not presently
used.

Parameters
FileDescriptor Identifies the object to be read as returned from a call to open.
aiocbp Points to the asynchronous 1/O control block structure associated with the 1/0 operation.

aiocb Structure
The aiocb and the aiocb64 structures are defined in the aio.h file and contains the following members:

int aio_whence
off_t aio_offset
char *aio_buf
size_t aio_nbytes
int aio_reqgprio
struct event aio_event
struct osigevent aio_event
int aio_flag
aiohandle_t aio_handle

Execution Environment
The aio_read and aio_read64 subroutines can be called from the [process environment only.

Return Values

When the read request queues successfully, the aio_read subroutine returns a value of 0. Otherwise, it
returns a value of -1 and sets the global variable errno to identify the error.

Return codes can be set to the following errno values:

EAGAIN Indicates that the system resources required to queue the request are not available. Specifically, the
transmit queue may be full, or the maximum number of opens may be reached.

EBADF Indicates that the FileDescriptor parameter is not valid.

EFAULT Indicates that the address specified by the aiocbp parameter is not valid.

Base Operating System (BOS) Runtime Services (A-P) 53

EINVAL Indicates that the aio_whence field does not have a valid value, or that the resulting pointer is not valid.
The aio_read or aio_read64 subroutine was used with a file descriptor obtained from a call to the
shm_open subroutine.

Note: Other error codes defined in the sys/errno.h file can be returned by aio_error if an error during the
I/O operation is encountered.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38)|“aio_nwait Subroutine” on page 46 |
“aio_nwait_timeout Subroutine” on page 48[“aio_error or aio_error64 Subroutine” on page 42 |[‘aio_return|
or aio_return64 Subroutine,[‘aio_suspend or aio_suspend64 Subroutine” on page 57 [[‘aio_write o1
aio_write64 Subroutine” on page 60,|[lio_listio or lio_listio64 Subroutine” on page 709.

The [Asynchronous I/0 Overview| and the [Communications 1/0 Subsystem: Programming Introduction|in
AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The [Input and Output Handling Programmer’s Overview|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous /O interfaces.

aio_return or aio_return64 Subroutine

The aio_return or aio_return64 subroutine includes information for the [POSIX AIO aio_return subroutine|
(as defined in the IEEE std 1003.1-2001), and the [Legacy AIO aio_return subroutine]

POSIX AIO aio_return Subroutine

Purpose
Retrieves the return status of an asynchronous I/O operation.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

size_t aio_return (aiocbp);

struct aiocb *aiochp;

Description

The aio_return subroutine returns the return status associated with the aiocb structure. The return status
for an asynchronous I/O operation is the value that would be returned by the corresponding read, write, or
fsync subroutine call. If the error status for the operation is equal to EINPROGRESS, the return status for
the operation is undefined. The aio_return subroutine can be called once to retrieve the return status of a
given asynchronous operation. After that, if the same aiocb structure is used in a call to aio_return or
aio_error, an error may be returned. When the aiocb structure referred to by aiocbp is used to submit
another asynchronous operation, the aio_return subroutine can be successfully used to retrieve the return
status of that operation.

Parameters

aiocbp Points to the aiocb structure associated with the 1/O operation.

54 Technical Reference, Volume 1: Base Operating System and Extensions

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes

off t aio_offset
char *aio_buf

size_t aio_nbytes

int aio_reqgprio
struct sigevent aio_sigevent
int aio_lio_opcode

Execution Environment
The aio_return and aio_return64 subroutines can be called from the [process environment only.

Return Values

If the asynchronous I/O operation has completed, the return status (as described for the read, write, and
fsync subroutines) is returned. If the asynchronous I/O operation has not yet completed, the results of the
aio_return subroutine are undefined.

Error Codes

EINVAL The aiocbp parameter does not refer to an asynchronous operation whose return status has not yet
been retrieved.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38 [“aio_error or aio_error64 Subroutine” on page 42)
“aio_nwait Subroutine” on page 46 |[‘aio_nwait_timeout Subroutine” on page 48 |“aio_read or aio_read64
Subroutine” on page 50 ,[[‘aio_suspend or aio_suspend64 Subroutine” on page 57 [[‘aio_write of
aio_write64 Subroutine” on page 60][‘close Subroutine” on page 173 [[‘exec: execl, execle, execlp, execv,|
execve, execvp, or exect Subroutine” on page 232 ||“exit, atexit, unatexit, _exit, or _Exit Subroutine” on|
page 239 [[fork, f fork, or vfork Subroutine” on page 284 ||lio_listio or lio_listio4 Subroutine” on page 709)|
and [‘lseek, liseek or Iseek64 Subroutine” on page 751 |

The Jread, readx, readyv, readvx, or pread Subrouting|in AIX 5L Version 5.3 Technical Reference: Base
Operating System and Extensions Volume 2.

Legacy AlO aio_return Subroutine

Purpose
Retrieves the return status of an asynchronous 1/O request.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_return(|handle)

aio_handle_t handle;

int aio_return64(|handle)

aio_handle_t handle;

Base Operating System (BOS) Runtime Services (A-P) 55

Description

The aio_return subroutine retrieves the return status of the asynchronous 1/O request associated with the
aio_handle_t handle if the I/O request has completed. The status returned is the same as the status that
would be returned by the corresponding read or write function calls. If the 1/0O operation has not
completed, the returned status is undefined.

The aio_return64 subroutine is similar to the aio_return subroutine except that it retrieves the error status
associated with an aiocb64 control block.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for
an application with the POSIX AlO definitions. In the source file enter:

#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:

->x1c ... -D_AIO_AIX_SOURCE ... Tegacy_aio_program.c
Parameters
handle The handle field of an aio control block (aiocb or aiocb64) structure is set by a previous call of the

aio_read, aio_read64, aio_write, aio_write64, lio_listio, aio_listio64 subroutine. If a random memory
location is passed in, random results are returned.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_whence
off_t aio_offset
char *ajo_buf
size_t aio_nbytes
int aio_reqgprio
struct event aio_event
struct osigevent aio_event
int aio_flag
aiohandle_t aio_handle

Execution Environment
The aio_return and aio_return64 subroutines can be called from the [process environment only.

Return Values

The aio_return subroutine returns the status of an asynchronous 1/O request corresponding to those
returned by read or write functions. If the error status returned by the aio_error subroutine call is
EINPROG, the value returned by the aio_return subroutine is undefined.

Examples

An aio_read request to read 1000 bytes from a disk device eventually, when the aio_error subroutine

returns a 0, causes the aio_return subroutine to return 1000. An aio_read request to read 1000 bytes

from a 500 byte file eventually causes the aio_return subroutine to return 500. An aio_write request to
write to a read-only file system results in the aio_error subroutine eventually returning EROFS and the
aio_return subroutine returning a value of -1.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38,|[‘aio_error or aio_error64 Subroutine” on page 42
“aio_nwait Subroutine” on page 46 |[‘aio_nwait_timeout Subroutine” on page 48| “aio_read or aio_read64

56 Technical Reference, Volume 1: Base Operating System and Extensions

Subroutine” on page 50 |[‘aio_suspend or aio_suspend64 Subroutine,”|[‘aio_write or aio_write64]
Subroutine” on page 60 |[‘close Subroutine” on page 173 [[‘exec: execl, execle, execlp, execv, execve)
execvp, or exect Subroutine” on page 232 |[‘exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239
“fork, f_fork, or vfork Subroutine” on page 284 [[lio_listio or lio_listio64 Subroutine” on page 709, and
“Iseek, llseek or Iseek64 Subroutine” on page 751

The [Asynchronous I/0O Overview| and the [Communications 1/0 Subsystem: Programming Introduction|in
AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The [Input and Output Handling Programmer’s Overview|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous I/O interfaces.

aio_suspend or aio_suspend64 Subroutine

The aio_suspend subroutine includes information for the [POSIX AlO aio_suspend subrouting| (as defined
in the IEEE std 1003.1-2001), and the [Legacy AlO aio_suspend subroutine]

POSIX AlIO aio_suspend Subroutine

Purpose
Waits for an asynchronous 1/O request.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_suspend , ,

t imeout)

const struct aioch * const list[];
int nent;

const struct timespec *timeout;

Description

The aio_suspend subroutine suspends the calling thread until at least one of the asynchronous 1/0
operations referenced by the list parameter has completed, until a signal interrupts the function, or, if
timeout is not NULL, until the time interval specified by timeout has passed. If any of the aiocb structures
in the list correspond to completed asynchronous I/O operations (the error status for the operation is not
equal to EINPROGRESS) at the time of the call, the subroutine returns without suspending the calling
thread. The list parameter is an array of pointers to asynchronous 1/O control blocks. The nent parameter
indicates the number of elements in the array. Each aiocb structure pointed to has been used in initiating
an asynchronous I/O request through the aio_read, aio_write, or lio_listio subroutine. This array may
contain NULL pointers, which are ignored. If this array contains pointers that refer to aiocb structures that
have not been used in submitting asynchronous 1/0O, the effect is undefined.

If the time interval indicated in the timespec structure pointed to by timeout passes before any of the 1/0
operations referenced by list are completed, the aio_suspend subroutine returns with an error. If the
Monotonic Clock option is supported, the clock that is used to measure this time interval is the
CLOCK_MONOTONIC clock.

Base Operating System (BOS) Runtime Services (A-P) 57

Parameters

list Array of asynchronous I/O operations.
nent Indicates the number of elements in the list array.
timeout Specifies the time the subroutine has to complete the operation.

Execution Envrionment
The aio_suspend and aio_suspend64 subroutines can be called from the [process environment] only.

Return Values

If the aio_suspend subroutine returns after one or more asynchronous 1/O operations have completed, it
returns a 0. Otherwise, it returns a -1 and sets the errno global variable to indicate the error.

The application can determine which asynchronous 1/0 completed by scanning the associated error and
returning status using the aio_error and aio_return subroutines, respectively.

Error Codes

EAGAIN No asynchronous I/O indicated in the list referenced by list completed in the time interval indicated by
timeout.
EINTR A signal interrupted the aio_suspend subroutine. Since each asynchronous 1/0O operation may possibly

provoke a signal when it completes, this error return may be caused by the completion of one (or more)
of the very I/O operations being awaited.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38,|[‘aio_error or aio_error64 Subroutine” on page 42)
“aio_nwait Subroutine” on page 46 |‘aio_nwait_timeout Subroutine” on page 48|“aio_read or aio_read64|
Subroutine” on page 50,|[‘aio_return or aio_return64 Subroutine” on page 54 |“aio_write or aio_write64]
Subroutine” on page 60,/ and [‘lio_listio or lio_listio64 Subroutine” on page 709

Legacy AlO aio_suspend Subroutine

Purpose
Suspends the calling process until one or more asynchronous 1/O requests is completed.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

aio_suspend(|count|, |aiocbpal)
int count;
struct aiocb *aiocbpal 1;

aio_suspend64([count|, |aiocbpa)
int count;
struct aioch64 *aiocbpal 1;

58 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The aio_suspend subroutine suspends the calling process until one or more of the count parameter
asynchronous I/O requests are completed or a signal interrupts the subroutine. Specifically, the
aio_suspend subroutine handles requests associated with the aio control block (aiocb) structures
pointed to by the aiocbpa parameter.

The aio_suspend64 subroutine is similar to the aio_suspend subroutine except that it takes an array of
pointers to aiocb64 structures. This allows the aio_suspend64 subroutine to suspend on asynchronous
I/0 requests submitted by either the aio_read64, aio_write64, or the lio_listio64 subroutines.

In the large file enabled programming environment, aio_suspend is redefined to be aio_suspend64.

The array of aiocb pointers may include null pointers, which will be ignored. If one of the 1/O requests is
already completed at the time of the aio_suspend call, the call immediately returns.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for
an application with the POSIX AlO definitions. In the source file enter:

#define _AIO_AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:

->x1c ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c
Parameters
count Specifies the number of entries in the aiocbpa array.

aiocbpa Points to the aiocb or aiocb64 structures associated with the asynchronous I/O operations.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_whence
off_t aio_offset
char *ajo_buf
size_t aio_nbytes
int aio_reqgprio
struct event aio_event
struct osigevent aio_event
int aio_flag
aiohandle_t aio_handle

Execution Envrionment
The aio_suspend and aio_suspend64 subroutines can be called from the [process environment| only.

Return Values

If one or more of the I/O requests completes, the aio_suspend subroutine returns the index into the
aiocbpa array of one of the completed requests. The index of the first element in the aiocbpa array is 0. If
more than one request has completed, the return value can be the index of any of the completed requests.

In the event of an error, the aio_suspend subroutine returns a value of -1 and sets the errno global
variable to identify the error. Return codes can be set to the following errno values:

EINTR Indicates that a signal or event interrupted the aio_suspend subroutine call.
EINVAL Indicates that the aio_whence field does not have a valid value or that the resulting pointer is not valid.

Base Operating System (BOS) Runtime Services (A-P) 59

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38 |“aio_error or aio_error64 Subroutine” on page 42)
“aio_nwait Subroutine” on page 46 |[‘aio_nwait_timeout Subroutine” on page 48]|“aio_read or aio_read64|
Subroutine” on page 50,[[aio_return or aio_return64 Subroutine” on page 54 [‘aio_write or aio_write64]
Subroutine,” and [lio_listio or lio_listio4 Subroutine” on page 709

The [Asynchronous I/0 Overview| and the [Communications 1/0 Subsystem: Programming Introduction|in
AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The [Input and Output Handling Programmer’s Overview|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous /O interfaces.

aio_write or aio_write64 Subroutine

The aio_write subroutine includes information for the [POSIX AlO aio_write subroutine| (as defined in the
IEEE std 1003.1-2001), and the |Legacy AlO aio_write subroutine]

POSIX AIO aio_write Subroutine

Purpose
Asynchronously writes to a file.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_write (giocbp)

struct aiocb *aiochp;

Description

The aio_write subroutine writes aio_nbytes to the file associated with aio_fildes from the buffer pointed to
by aio_buf. The subroutine returns when the write request has been initiated or queued to the file or
device.

The aiocbp parameter may be used as an argument to the aio_error and aio_return subroutines in order
to determine the error status and return status, respectively, of the asynchronous operation while it is
proceeding.

The aiocbp parameter points to an aiocb structure. If the buffer pointed to by aio_buf or the control block
pointed to by aiocbp becomes an illegal address prior to asynchronous 1/0O completion, the behavior is
undefined.

If O_APPEND is not set for the aio_fildes file descriptor, the requested operation takes place at the
absolute position in the file as given by aio_offset. This is done as if the Iseek subroutine were called
immediately prior to the operation with an offset equal to aio_offset and a whence equal to SEEK_SET. If
O_APPEND is set for the file descriptor, write operations append to the file in the same order as the calls
were made. After a successful call to enqueue an asynchronous I/O operation, the value of the file offset
for the file is unspecified.

The aio_lio_opcode field is ignored by the aio_write subroutine.

60 Technical Reference, Volume 1: Base Operating System and Extensions

If prioritized 1/0O is supported for this file, the asynchronous operation is submitted at a priority equal to the
scheduling priority of the process minus aiocbp->aio_reqprio.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.
If synchronized 1/O is enabled on the file associated with aio_fildes, the behavior of this subroutine is
according to the definitions of synchronized I/O data integrity completion, and synchronized 1/O file integrity

completion.

For any system action that changes the process memory space while an asynchronous /O is outstanding,
the result of that action is undefined.

For regular files, no data transfer occurs past the offset maximum established in the open file description
associated with aio_fildes.

If you use the aio_write or aio_write64subroutine with a file descriptor obtained from a call to the
shm_open subroutine, it will fail with EINVAL.

Parameters

aiocbp Points to the aiocb structure associated with the 1/O operation.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes
off_t aio_offset
char *aio_buf

size t aio_nbytes

int aio_reqprio
struct sigevent ajo_sigevent
int aio_lio_opcode

Execution Environment
The aio_write and aio_write64 subroutines can be called from the process environment only.

Return Values

The aio_write subroutine returns a 0 to the calling process if the 1/0 operation is successfully queued.
Otherwise, a -1 is returned and the errno global variable is set to indicate the error.

Error Codes

EAGAIN The requested asynchronous 1/O operation was not queued due to system resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to aio_write, or
asynchronously. If any of the conditions below are detected synchronously, the aio_write subroutine
returns a -1 and sets the errno global variable to the corresponding value. If any of the conditions below
are detected asynchronously, the return status of the asynchronous operation is set to -1, and the error
status of the asynchronous operation is set to the corresponding value.

EBADF The aio_fildes parameter is not a valid file descriptor open for writing.

EINVAL The file offset value implied by aio_offset is invalid, aio_reqprio is an invalid value, or aio_nbytes is
an invalid value. The aio_write or aio_write64 subroutine was used with a file descriptor obtained
from a call to the shm_open subroutine.

Base Operating System (BOS) Runtime Services (A-P) 61

If the aio_write subroutine successfully queues the I/O operation, the return status of the asynchronous
operation is one of the values normally returned by the write subroutine call. If the operation is
successfully queued but is subsequently canceled or encounters an error, the error status for the
asynchronous operation contains one of the values normally set by the write subroutine call, or one of the
following:

EBADF The aio_fildes parameter is not a valid file descriptor open for writing.
EINVAL The file offset value implied by aio_offset would be invalid.
ECANCELED The requested I/0 was canceled before the 1/0 completed due to an aio_cancel request.

The following condition may be detected synchronously or asynchronously:

EFBIG The file is a regular file, aio_nbytes is greater than 0, and the starting offset in aio_offset is at or
beyond the offset maximum in the open file description associated with aio_fildes.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38 ||“aio_error or aio_error64 Subroutine” on page 42)
“aio_nwait Subroutine” on page 46 /[‘aio_nwait_timeout Subroutine” on page 48 J|lio_listio or lio_listio64]
Subroutine” on page 709,/[‘aio_read or aio_read64 Subroutine” on page 50)[‘aio_suspend ot
aio_suspend64 Subroutine” on page 57 [aio_return or aio_return64 Subroutine” on page 54)|“close]
Subroutine” on page 173 [[‘'exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on|
page 232 [[‘exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239 ||‘fork, f_fork, or vfork Subroutine’|
on page 284, and [Iseek, liseek or Iseek64 Subroutine” on page 751

Thelread, readx, readyv, readvx, or pread Subroutine| in AIX 5L Version 5.3 Technical Reference: Base
Operating System and Extensions Volume 2.

Legacy AlO aio_write Subroutine

Purpose
Writes to a file asynchronously.

Library
Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_write(|FileDescriptor|, |aiochp))
int FileDescriptors;
struct aiocb *aiochp;

int aio write64(|FileDescriptor], laiochp)
int FileDescriptor;
struct aioch64 *aiocbp;

Description

The aio_write subroutine writes asynchronously to a file. Specifically, the aio_write subroutine writes to
the file associated with the FileDescriptor parameter from a buffer. To handle this, the subroutine uses
information from the aio control block (aiocb) structure, which is pointed to by the aiocbp parameter. This
information includes the following fields:

62 Technical Reference, Volume 1: Base Operating System and Extensions

aio_buf Indicates the buffer to use.
aio_nbytes Indicates the number of bytes to write.

The aio_write64 subroutine is similar to the aio_write subroutine except that it takes an aiocb64
reference parameter. This allows the aio_write64 subroutine to specify offsets in excess of OFF_MAX (2
gigbytes minus 1).

In the large file enabled programming environment, aio_read is redefined to be aio_read64.

If you use the aio_write or aio_write64 subroutine with a file descriptor obtained from a call to the
shm_open subroutine, it will fail with EINVAL.

When the write request has been queued, the aio_write subroutine updates the file pointer specified by
the aio_whence and aio_offset fields in the aiocb structure as if the requested 1/O completed. It then
returns to the calling program. The aio_whence and aio offset fields have the same meaning as the
whence and offset parameters in the Iseek (‘Iseek, llseek or Iseek64 Subroutine” on page 751) subroutine.
The subroutine ignores them for file objects that are not capable of seeking.

If an error occurs during the call, the write request is not initiated or queued. To determine the status of a
request, use the aio_error (“aio_error or aio_erroré4 Subroutine” on page 42) subroutine.

To have the calling process receive the SIGIO signal when the I/O operation completes, set the
AIO_SIGNAL bit in the aio_flag field in the aiocb structure.

Note: The event structure in the aiocb structure is currently not in use but is included for future
compatibility.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio
application with the Legacy AIO function definitions. The default compile using the aio.h file is for
an application with the POSIX AlO definitions. In the source file enter:

#define AIO AIX_SOURCE
#include <sys/aio.h>

or, on the command line when compiling enter:
->x1c ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Since prioritized I/O is not supported at this time, the aio_regprio field of the structure is not presently
used.

Parameters
FileDescriptor Identifies the object to be written as returned from a call to open.
aiocbp Points to the asynchronous 1/O control block structure associated with the I/O operation.

aiocb Structure
The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_whence
off_t aio_offset
char *aio_buf
size_ t aio_nbytes
int aio_reqprio
struct event aio_event
struct osigevent aio_event
int aio_flag
aiohandle_t aio_handle

Base Operating System (BOS) Runtime Services (A-P) 63

Execution Environment
The aio_write and aio_write64 subroutines can be called from the process environment only.

Return Values

When the write request queues successfully, the aio_write subroutine returns a value of 0. Otherwise, it
returns a value of -1 and sets the errno global variable to identify the error.

Return codes can be set to the following errno values:

EAGAIN Indicates that the system resources required to queue the request are not available. Specifically, the
transmit queue may be full, or the maximum number of opens may have been reached.

EBADF Indicates that the FileDescriptor parameter is not valid.

EFAULT Indicates that the address specified by the aiocbp parameter is not valid.

EINVAL Indicates that the aio_whence field does not have a valid value or that the resulting pointer is not

valid. The aio_write or aio_write64 subroutine was used with a file descriptor obtained from a call to
the shm_open subroutine.

Note: Other error codes defined in the /usr/include/sys/errno.h file may be returned by the aio_error
subroutine if an error during the I/O operation is encountered.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38 ||“aio_error or aio_error64 Subroutine” on page 42)
“aio_nwait Subroutine” on page 46 |‘aio_nwait_timeout Subroutine” on page 48 |“aio_read or aio_read64|
Subroutine” on page 50,/[‘aio_return or aio_return64 Subroutine” on page 54 [[‘aio_suspend o1
aio_suspend64 Subroutine” on page 57 |[‘lio_listio or lio_listio64 Subroutine” on page 709 |

The [Asynchronous I/0O Overview| and the [Communications 1/0 Subsystem: Programming Introduction|in
AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The [Input and Output Handling Programmer’s Overview|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for
low-level, stream, terminal, and asynchronous 1/O interfaces.

alloc, dealloc, print, read_data, read_regs, symbol_addrs, write_data,
and write_regs Subroutine

Purpose

Provide access to facilities needed by the pthread debug library and supplied by the debugger or
application.

Library
pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int alloc (e, [fen
pthdb_user_t user;

size_t len;

void **bufp;

int dealloc ,

pthdb_user_t user;
void *buf;

64 Technical Reference, Volume 1: Base Operating System and Extensions

int print ,
pthdb_user_t user;
char *str;

int read_data (user], puf, [oddr}, [size)
pthdb_user_t user;

void *buf;

pthdb_addr_t addr;

int size;

int read_regs (user], [tid}, [flags], [context)
pthdb_user_t user;

tid_t tid;

unsigned Tong long flags;

struct context64 *context;

int symbol_addrs (user], [symbols|[1.fcount)
pthdb_user_t user;

pthdb_symbol_t symbols[];

int count;

int write_data , , ,
pthdb_user_t user;

void *buf;

pthdb_addr_t addr;

int size;

int write_regs (user], [tid, [flags]
pthdb_user_t user;

tid_t tid;

unsigned Tong long flags;

struct context64 *context;

Description

int alloc()
Allocates len bytes of memory and returns the address. If successful, 0 is returned; otherwise, a
nonzero number is returned. This call back function is always required.

int dealloc()
Takes a buffer and frees it. If successful, 0 is returned; otherwise, a nonzero number is returned.
This call back function is always required.

int print()
Prints the character string to the debugger’s stdout. If successful, 0 is returned; otherwise, a
nonzero number is returned. This call back is for debugging the library only. If you aren’t
debugging the pthread debug library, pass a NULL value for this call back.

int read_data()
Reads the requested number of bytes of data at the requested location from an active process or
core file and returns the data through a buffer. If successful, 0 is returned; otherwise, a nonzero
number is returned. This call back function is always required.

int read_regs()
Reads the context information of a debuggee kernel thread from an active process or from a core
file. The information should be formatted in context64 form for both a 32-bit and a 64-bit process.
If successful, 0 is returned; otherwise, a nonzero number is returned. This function is only required
when using the pthdb_pthread_context and pthdb_pthread_setcontext subroutines.

int symbol_addrs()
Resolves the address of symbols in the debuggee. The pthread debug library calls this subroutine
to get the address of known debug symbols. If the symbol has a name of NULL or "”, set the
address to OLL instead of doing a lookup or returning an error. If successful, 0 is returned;
otherwise, a nonzero number is returned. In introspective mode, when the
PTHDB_FLAG_SUSPEND flag is set, the application can use the pthread debug library by
passing NULL, or it can use one of its own.

Base Operating System (BOS) Runtime Services (A-P) 65

int write_data()
Writes the requested number of bytes of data to the requested location. The libpthdebug.a library
may use this to write data to the active process. If successful, 0 is returned; otherwise, a nonzero
number is returned. This call back function is required when the PTHDB_FLAG_HOLD flag is set
and when using the pthdb_pthread_setcontext subroutine.

int write_regs()
Writes requested context information to specified debuggee’s kernel thread id. If successful, 0 is
returned; otherwise, a nonzero number is returned. This subroutine is only required when using
the pthdb_pthread_setcontext subroutine.

Note: If the write_data and write_regs subroutines are NULL, the pthread debug library will not try to
write data or regs. If the pthdb_pthread_set_context subroutine is called when the write_data
and write_regs subroutines are NULL, PTHDB_NOTSUP is returned.

Parameters

user User handle.

symbols Array of symbols.

count Number of symbols.

buf Buffer.

adadr Address to be read from or wrote to.

size Size of the buffer.

flags Session flags, must accept PTHDB_FLAG_GPRS,
PTHDB_FLAG_SPRS, PTHDB_FLAG_FPRS, and
PTHDB_FLAG_REGS.

tid Thread id.

flags Flags that control which registers are read or wrote.

context Context structure.

len Length of buffer to be allocated or reallocated.

bufp Pointer to buffer.

str String to be printed.

Return Values
If successful, these subroutines return 0; otherwise they return a nonzero value.

Related Information

The [‘malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign|
[Subroutine” on page 764

allocimb Subroutine

Purpose

Allocates a contiguous block of contiguous real memory for exclusive use by the caller. The block of
memory reserved will be the size of a system LMB.

Syntax

#include <sys/dr.h>

int allocimb(long long Aladdr], int |flags))

66 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The alloclmb() subroutine reserves an LMB sized block of contiguous real memory for exclusive use by
the caller. It returns the partition logical address of that memory in */adadr.

alloclmb() is only valid in an LPAR environment, and it fails (with ENOTSUP) if called in another
environment.

Only a privileged user should call allocimb().

Parameters
laddr On successful return, contains the logical address of the allocated LMB.
flags Must be 0.

Execution Environment
This alloclmb() interface should only be called from the process environment.

Return Values

0 The LMB is successfully allocated.

Error Codes

ENOTSUP LMB allocation not supported on this system.
EINVAL Invalid flags value.

EINVAL Not in the process environment.

ENOMEM A free LMB could not be made available.

Related Information
[freelmb Subroutine” on page 307|

arm_end Subroutine

Purpose

The arm_end subroutine is used to mark the end of an application. This subroutine call must always be
called when a program that issued an arm_init (“arm_init Subroutine” on page 75) subroutine call

terminates. In the PTX® implementation of ARM, application data structures may persist after arm_end is

issued.
Library
ARM Library (libarm.a).
Syntax
#include arm.h
arm_ret_stat_t ARM_API arm_end(arm_appl_id_t appl_id, /* application id
*/
arm_flag_t flags, /* Reserved = 0 */
arm_data_t *data, /* Reserved = NULL */
arm_data sz _t data_size); /* Reserved = 0 */

Base Operating System (BOS) Runtime Services (A-P)

67

Description

By calling the arm_end subroutine, an application program signals to the ARM library that it has ceased
issuing ARM subroutine calls for the application specified and that the library code can remove references
to the application. As far as the calling program is concerned, all references to transactions defined for the
named application can be removed as well.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AlX licensed
product.

Note that, in the PTX implementation of ARM, multiple processes can issue arm_init
[Subroutine” on page 75) subroutine calls for a given application with the effect that multiple simultaneous
definitions of the application are effective. The ARM library code points all these definitions to a single
application structure in the ARM private shared memory area. A use-count keeps track of the number of
simultaneous definitions. Each time arm_init is issued for the application name, the counter is
incremented and each time the arm_end subroutine call is issued for the associated appl_id, the counter
is decremented. No call to arm_end is permitted to decrement the counter less than zero.

Only when the counter reaches zero is the application structure inactivated. As long as the counter is
non-zero, transactions defined for the application remain active and new transactions can be defined for
the application. It does not matter which process created the definition of the application.

This implementation was chosen because it makes perfect sense in a PTX environment. Any more

restrictive implementation would have increased memory use significantly and would be useless for PTX
monitoring purposes.

Parameters
appl_id

The identifier is returned by an earlier call to arm_init, [‘arm_init Subroutine” on page 75| The PTX
implementation does not require that the arm_init subroutine call was issued by the same
program or process now issuing the arm_end subroutine call. However, each time the arm_end
subroutine call is issued against an appl_id, the use-count of the transaction structure is
decremented. When the count reaches zero, the application structure and all associated
transaction structures are marked as inactive. Subsequent arm_init calls can reactivate the
application structure but transaction structures formerly associated with the application are not
automatically activated. Each transaction must be reactivated through the arm_getid
[Subroutine” on page 71) subroutine call.

The appl_id is used to look for an application structure. If none is found, no action is taken and the
function returns -1. If one is found, the use-count of the application structure is decremented. If
that makes the counter zero, the use-counts of all associated transaction structures are set to
zero. The total number of application structures that have been initialized for the calling process
but not ended is decremented. If this count reaches zero, access to the shared memory from the
process is released and the count of users of the shared memory area is decremented. If the
count of users of the shared memory segment reaches zero, the shared memory segment is
deleted.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

Return Values
If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned.

68 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

lusr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Related Information

1109] arm_init (“arm_init Subroutine” on page 75) subroutine, arm_getid (“arm_getid Subroutine” on page]
71) subroutine.

arm_end Dual Call Subroutine

Purpose

The arm_end subroutine is used to mark the end of an application. This subroutine call must always be
called when a program that issued an arm_init (“arm_init Dual Call Subroutine” on page 77) subroutine
call terminates. In the PTX implementation of ARM, application data structures may persist after arm_end
is issued. This may not be the case for the lower library implementation.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret _stat t ARM_API arm_end(arm appl _id t appl_id, /* application id

*/
arm_flag_t flags, /* Reserved = 0 */
arm_data_t *data, /* Reserved = NULL */
arm_data_sz_t data _size); /* Reserved = 0 */

Description

By calling the arm_end subroutine, an application program signals to the ARM library that it has ceased
issuing ARM subroutine calls for the application specified and that the library code can remove references
to the application. As far as the calling program is concerned, all references to transactions defined for the
named application can be removed as well.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value of
zero, that return value is passed to the caller. If the value returned by the lower library is non-zero, the
return value is the one generated by the PTX library code.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product.

Note that, in the PTX implementation of ARM, multiple processes can issue arm_init (‘arm_init Dual Call
[Subroutine” on page 77) subroutine calls for a given application with the effect that multiple simultaneous
definitions of the application are effective. The ARM library code points all these definitions to a single
application structure in the ARM private shared memory area. A use-count keeps track of the number of
simultaneous definitions. Each time arm_init is issued for the application name, the counter is
incremented and each time the arm_end subroutine call is issued for the associated appl_id, the counter
is decremented. No call to arm_end is permitted to decrement the counter less than zero.

Base Operating System (BOS) Runtime Services (A-P) 69

Only when the counter reaches zero is the application structure inactivated. As long as the counter is
non-zero, transactions defined for the application remain active and new transactions can be defined for
the application. It does not matter which process created the definition of the application.

This implementation was chosen because it makes perfect sense in a PTX environment. Any more
restrictive implementation would have increased memory use significantly and would be useless for PTX
monitoring purposes.

For the implementation of arm_end in the lower library, other restrictions may exist.

Parameters
appl_id

The identifier returned by an earlier call to arm_init (“arm_init Dual Call Subroutine” on page 77).
The identifier is passed to the arm_end function of the lower library. If the lower library returns a
zero, a zero is returned to the caller. After the invocation of the lower library, the

PTX implementation attempts to translate the appl_id argument to its own identifier from the
cross-reference table created by arm_init (“‘arm_init Dual Call Subroutine” on page 77). If one can
be found, it is used for the PTX implementation; if no cross reference is found, the appl_id is used
as passed in. The PTX implementation does not require that the arm_init subroutine call was
issued by the same program or process now issuing the arm_end subroutine call. However, each
time the arm_end subroutine call is issued against an appl_id, the use-count of the transaction
structure is decremented. When the count reaches zero, the application structure and all
associated transaction structures are marked as inactive. Subsequent arm_init calls can reactivate
the application structure but transaction structures formerly associated with the application are not
automatically activated. Each transaction must be reactivated through the arm_getid (‘arm_getid
[Dual Call Subroutine” on page 73) subroutine call.

In the PTX implementation, the appl_id (as retrieved from the cross-reference table) is used to
look for an application structure. If none is found, no action is taken and the PTX function is
considered to have failed. If one is found, the use-count of the application structure is
decremented. If that makes the counter zero, the use-counts of all associated transaction
structures are set to zero. The total number of application structures that have been initialized for
the calling process but not ended is decremented. If this count reaches zero, access to the shared
memory from the process is released and the count of users of the shared memory area is
decremented. If the count of users of the shared memory segment reaches zero, the shared
memory segment is deleted.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

Return Values

If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned. If the
call to the lower library was successful, a zero is returned. If the subroutine call to the lower library failed
but the PTX implementation didn’t fail, a zero is returned. If both implementations failed, a value less than
zero is returned.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

70 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information
+ [‘arm_init Dual Call Subroutine” on page 77|
+ [‘arm_getid Dual Call Subroutine” on page 73|

arm_getid Subroutine

Purpose

The arm_getid subroutine is used to register a transaction as belonging to an application and assign a
unique identifier to the application/transaction pair. In the PTX implementation of ARM, multiple instances
of a transaction within one application can’t be defined. A transaction must be registered before any ARM
measurements can begin.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_tran_id_t arm_getid(arm_appl_id t appl_id, /* application handle

*/
arm_ptr_t xtran_name, /* transaction name */
arm_ptr_t xtran_detail, /* transaction additional info =/
arm_flag t flags, /* Reserved = 0 */
arm_data_t xdata, /* Reserved = NULL */
arm_data_sz_t data _size); /* Reserved = 0 */

Description

Each transaction needs to be defined by a unique name within an application. Transactions can be defined
so they best fit the application environment. For example, if a given environment has thousands of unique
transactions, it may be feasible to define groups of similar transactions to prevent data overload. In other
situations, you may want to use generated transaction names that reflect what data a transaction carries
along with the transaction type. For example, the type of SQL query could be analyzed to group customer
query transactions according to complexity, such as customer_simple, customer, customer_complex.
Whichever method is used to name transactions, in the PTX implementation of the ARM API,
measurements are always collected for each unique combination of:

1. Hostname of the machine where the instrumented application executes.
2. Unique application name.
3. Unique transaction name.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product.

Note that the use-count for a transaction structure is either one or zero. This ensures that as long as the
application structure is active, so are all transactions for which an arm_getid call was issued after the
application was activated by an arm_init (“arm_init Subroutine” on pageg7_5|) call. The transaction
use-count is reset to zero by the arm_end (‘arm_end Subroutine” on page 67) call if this call causes the
application use-count to go to zero.

Note that the implementation of arm_getid doesn’t allow unique instances of a transaction to be defined.
The tran_id associated with a transaction is stored in the ARM shared memory area and will remain
constant throughout the life of the shared memory area. Consequently, subsequent executions of a

Base Operating System (BOS) Runtime Services (A-P) 71

program that defines one or more transactions under a given application will usually have the same

ID returned for the transactions each time. The same is true when different programs define the same
transaction within an application: As long as the shared memory area exists, they will all have the same
ID returned. This is done to minimize the use of memory for transaction definitions and because it makes
no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate transaction
names to pass on the arm_getid subroutine call.

Parameters
appl_id

The identifier returned by an earlier call to arm_init (“arm_init Subroutine” on page 75). The PTX
implementation does not require that the arm_init subroutine call was issued by the same
program or process now issuing the arm_getid subroutine call. However, the number of issued
arm_init subroutine calls for the application name must exceed the number of issued arm_end
subroutine calls for this appl_id.

The appl_id is used to look for an application structure. If one is not found or if the use-count of
the one found is zero, no action is taken and the function returns -1.

tran_name

A unique transaction name. The name only needs to be unique within the appl_id. The maximum
length is 128 characters including the terminating zero. The argument is converted to a key by
removing all blanks and truncating the string to 32 characters, including a terminating zero. This
key is used to look for a transaction structure (that belongs to the application identified in the first
argument) in the library’s private shared memory area. If a transaction structure is found, its
use-count is set to one and the transaction ID stored in the structure is returned to the caller. If the
structure is not found, one is created and assigned the next free transaction ID, given a use-count
of one and added to the application’s linked list of transactions. The new assigned transaction ID
is returned to the caller.

Up-to 64 bytes, including the terminating zero, of the tran_name parameter is saved as the
description of the SpmiCx context that represents the transaction in the Spmi hierarchy. The key
is used as the short name of the context.

tran_detail

Can be passed in as NULL or some means of specifying a unique instance of the transaction. In
the PTX implementation of the ARM API, this parameter is ignored. Consequently, it is not
possible to define unique instances of a transaction. If specified as non-NULL, this parameter must
be a string not exceeding 128 bytes in length, including the terminating zero.

For the implementation to take this argument in use, another context level would have to be
defined between the application context and the transaction context. This was deemed excessive.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

Return Values

If successful, the subroutine returns an tran_id application identifier. If the subroutine fails, a value less
than zero is returned. In compliance with the ARM API specifications, the error return value can be passed
to the arm_start (‘arm_start Subroutine” on page 79) subroutine, which will cause arm_start to function
as a no-operation.

72 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

lusr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Related Information

arm_init (“arm_init Subroutine” on page 75) subroutine, arm_end (‘arm_end Subroutine” on page 67)
subroutine.

arm_getid Dual Call Subroutine

Purpose

The arm_getid subroutine is used to register a transaction as belonging to an application and assign a
unique identifier to the application/transaction pair. In the PTX implementation of ARM, multiple instances
of a transaction within one application can’t be defined. The lower library implementation of this subroutine
may provide support for instances of transactions. A transaction must be registered before any ARM
measurements can begin.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_tran_id _t arm_getid(arm_appl_id_t appl_id, /* application handle

*/
arm_ptr_t *tran_name, /* transaction name */
arm_ptr_t xtran_detail, /* transaction additional info =/
arm_flag_t flags, /* Reserved = 0 */
arm_data_t *data, /* Reserved = NULL */
arm_data_sz_t data_size); /* Reserved = 0 */

Description

Each transaction needs to be defined by a unique name within an application. Transactions can be defined
so they best fit the application environment. For example, if a given environment has thousands of unique
transactions, it may be feasible to define groups of similar transactions to prevent data overload. In other
situations, you may want to use generated transaction names that reflect what data a transaction carries
along with the transaction type. For example, the type of SQL query could be analyzed to group customer
query transactions according to complexity, such as customer_simple, customer, customer_complex.
Whichever method is used to name transactions, in the PTX implementation of the ARM API,
measurements are always collected for each unique combination of:

1. Hostname of the machine where the instrumented application executes.
2. Unique application name.
3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value

greater than zero, that return value is passed to the caller as the transaction ID. If the returned value from
the lower library is zero or negative, the return value is the one generated by the PTX library code.

Base Operating System (BOS) Runtime Services (A-P) 73

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AlX licensed
product.

Note that the use-count for a transaction structure is either one or zero. This ensures that as long as the
application structure is active, so are all transactions for which an arm_getid call was issued after the
application was activated by an arm_init (“arm_init Dual Call Subroutine” on page 77) call. The transaction
use-count is reset to zero by the arm_end (‘arm_end Dual Call Subroutine” on page 69) call if this call
causes the application use-count to go to zero.

Note that the implementation of arm_getid doesn’t allow unique instances of a transaction to be defined.
The tran_id associated with a transaction is stored in the ARM shared memory area and will remain
constant throughout the life of the shared memory area. Consequently, subsequent executions of a
program that defines one or more transactions under a given application will usually have the same

ID returned for the transactions each time. The same is true when different programs define the same
transaction within an application: As long as the shared memory area exists, they will all have the same
ID returned. This is done to minimize the use of memory for transaction definitions and because it makes
no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate transaction
names to pass on the arm_getid subroutine call.

Regardless of the implementation restrictions of the PTX library, the lower library may or may not have its
own implementation restrictions.

Parameters
appl_id

The identifier returned by an earlier call to arm_init (“arm_init Dual Call Subroutine” on page 77).
The identifier is passed to the arm_getid function of the lower library. If the lower library returns
an identifier greater than zero, that identifier is the one that’ll eventually be returned to the caller.
After the invocation of the lower library, the PTX implementation attempts to translate the appl_id
argument to its own identifier by consulting the cross-reference table created by arm_init. If one
can be found, it is used for the PTX implementation; if no cross reference is found, the appl_id is
used as passed in. The PTX implementation does not require that the arm_init subroutine call
was issued by the same program or process now issuing the arm_getid subroutine call. However,
the number of issued arm_init subroutine calls for the application name must exceed the number
of issued arm_end subroutine calls for this appl_id.

In the PTX implementation, the appl_id (as retrieved from the cross-reference table) is used to
look for an application structure. If one is not found or if the use-count of the one found is zero,
the PTX implementation is considered to have failed and no action is taken by the PTX library.

tran_name

A unique transaction name. The name only needs to be unique within the appl_id. The maximum
length is 128 characters including the terminating zero. In the PTX implementation, the argument
is converted to a key by removing all blanks and truncating the string to 32 characters, including a
terminating zero. This key is used to look for a transaction structure (that belongs to the
application identified in the first argument) in the library’s private shared memory area. If a
transaction structure is found, its use-count is set to one and the transaction ID stored in the
structure is saved. If the structure is not found, one is created and assigned the next free
transaction ID, given a use-count of one and added to the application’s linked list of transactions.
The new assigned transaction ID is saved. If the call to the lower library was successful, a
cross-reference is created from the lower library’s transaction ID to the PTX library’s transaction ID
for use by arm_start (“arm_start Dual Call Subroutine” on page 80).

74 Technical Reference, Volume 1: Base Operating System and Extensions

Up-to 64 bytes, including the terminating zero, of the tran_name parameter is saved as the
description of the SpmiCx context that represents the transaction in the Spmi hierarchy. The key
is used as the short name of the context.

tran_detail

Can be passed in as NULL or some means of specifying a unique instance of the transaction. In
the PTX implementation of the ARM API, this parameter is ignored. Consequently, it is not
possible to define unique instances of a transaction. If specified as non-NULL, this parameter must
be a string not exceeding 128 bytes in length, including the terminating zero.

For the implementation to take this argument in use, another context level would have to be
defined between the application context and the transaction context. This was deemed excessive.

For the lower library implementation of this subroutine call, the tran_detail argument may have
significance. If so, it's transparent to the PTX implementation.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.In the current API definition, the last three arguments are for future use and they
are ignored in the implementation.

Return Values

If successful, the subroutine returns an tran_id application identifier. If the subroutine fails, a value less
than zero is returned. In compliance with the ARM API specifications, the error return value can be passed
to the arm_start (‘arm_start Dual Call Subroutine” on page 80) subroutine, which will cause arm_start to
function as a no-operation.

If the call to the lower library was successful, the tran_id transaction identifier returned is the one
assigned by the lower library. If the subroutine call to the lower library failed but the PTX implementation
didn’t fail, the tran_id returned is the one assigned by the PTX library. If both implementations fail, a value
less than zero is returned. In compliance with the ARM API specification, an error return value can be
passed to the arm_start (“arm_start Dual Call Subroutine” on page 80) subroutine, which will cause
arm_start to function as a no-operation.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

lusr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Related Information

arm_init (“arm_init Dual Call Subroutine” on page 77) subroutine, arm_end (‘arm_end Dual Call
[Subroutine” on page 69) subroutine.

arm_init Subroutine

Purpose

The arm_init subroutine is used to define an application or a unique instance of an application to the ARM
library. In the PTX implementation of ARM, instances of applications can’t be defined. An application must
be defined before any other ARM subroutine is issued.

Base Operating System (BOS) Runtime Services (A-P) 75

Library
ARM Library (libarm.a).

Syntax

#include arm.h

arm_appl_id_t arm_init(arm_ptr_t *appname, /* application name

*/
arm_ptr_t *appl_user_id, /* Name of the application user =/
arm_flag t flags, /* Reserved = 0 */
arm_data_t *data, /* Reserved = NULL */
arm_data_sz_t data _size); /* Reserved = 0 */

Description

Each application needs to be defined by a unique name. An application can be defined as loosely or as
rigidly as required. It may be defined as a single execution of one program, multiple (possibly
simultaneous) executions of one program, or multiple executions of multiple programs that together
constitute an application. Any one user of ARM may define the application so it best fits the measurement
granularity desired. Measurements are always collected for each unique combination of:

1. Hostname of the machine where the instrumented application executes.
2. Unique application name.
3. Unique transaction name.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product.

Note that the implementation of arm_init doesn’t allow unique instances of an application to be defined.
The appl_id associated with an application is stored in the ARM shared memory area and will remain
constant throughout the life of the shared memory area. Consequently, subsequent executions of a
program that defines one or more applications will usually have the same ID returned for the application
each time. The same is true when different programs define the same application: As long as the shared
memory area exists, they will all have the same ID returned. This is done to minimize the use of memory
for application definitions and because it makes no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate application
names to pass on the arm_init subroutine call.

Parameters

appname
A unique application name. The maximum length is 128 characters including the terminating zero.
The argument is converted to a key by removing all blanks and truncating the string to 32
characters, including a terminating zero. This key is used to look for an application structure in the
library’s private shared memory area. If a structure is found, its use-count is incremented and the
application ID stored in the structure is returned to the caller. If the structure is not found, one is
created, assigned the next free application ID and given a use-count of one. The new assigned
application ID is returned to the caller.

Up-to 64 bytes, including the terminating zero, of the appname parameter is saved as the
description of the SpmiCx context that represents the application in the Spmi hierarchy. The key
is used as the short name of the context.

appl_user_id

Can be passed in as NULL or some means of specifying a user ID for the application. This allows
the calling program to define unique instances of an application. In the PTX implementation of the

76 Technical Reference, Volume 1: Base Operating System and Extensions

ARM API, this parameter is ignored. Consequently, it is not possible to define unique instances of
an application. If specified as non-NULL, this parameter must be a string not exceeding 128 bytes
in length, including the terminating zero.

For the implementation to take this argument in use, another context level would have to be
defined between the application context and the transaction context. This was deemed excessive.

flags, data, data_size
In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

Return Values

If successful, the subroutine returns an appl_id application identifier. If the subroutine fails, a value less
than zero is returned.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

arm_init Dual Call Subroutine

Purpose

The arm_init subroutine is used to define an application or a unique instance of an application to the ARM
library. While, in the PTX implementation of ARM, instances of applications can’t be defined, the ARM
implementation in the lower library may permit this. An application must be defined before any other ARM
subroutine is issued.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_appl_id_t arm_init(arm ptr_t *appname, /* application name

*/
arm_ptr_t *appl_user_id, /* Name of the application user =*/
arm_flag_t flags, /* Reserved = */
arm_data_t *data, /* Reserved = NULL */
arm_data sz _t data_size); /* Reserved = 0 */

Description

Each application needs to be defined by a unique name. An application can be defined as loosely or as
rigidly as required. It may be defined as a single execution of one program, multiple (possibly
simultaneous) executions of one program, or multiple executions of multiple programs that together
constitute an application. Any one user of ARM may define the application so it best fits the measurement
granularity desired. For the PTX implementation, measurements are always collected for each unique
combination of:

1. Hostname of the machine where the instrumented application executes.
2. Unique application name.

Base Operating System (BOS) Runtime Services (A-P) 77

3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value
greater than zero, that return value is passed to the caller as the application ID. If the returned value from
the lower library is zero or negative, the return value is the one generated by the PTX library code.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AlX licensed
product.

Note that the implementation of arm_init doesn’t allow unique instances of an application to be defined.
The appl_id associated with an application is stored in the ARM shared memory area and will remain
constant throughout the life of the shared memory area. Consequently, subsequent executions of a
program that defines one or more applications will usually have the same ID returned for the application
each time. The same is true when different programs define the same application: As long as the shared
memory area exists, they will all have the same ID returned. This is done to minimize the use of memory
for application definitions and because it makes no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate application
names to pass on the arm_init subroutine call.

Regardless of the implementation restrictions of the PTX library, the lower library may or may not have its
own implementation restrictions.

Parameters

appname

A unique application name. The maximum length is 128 characters including the terminating zero.
The PTX library code converts this value to a key by removing all blanks and truncating the string
to 32 characters, including a terminating zero. This key is used to look for an application structure
in the library’s private shared memory area. If a structure is found, its use-count is incremented
and the application ID stored in the structure is saved. If the structure is not found, one is created,
assigned the next free application ID and given a use-count of one. The new assigned application
ID is saved. If the call to the lower library was successful, a cross-reference is created from the
lower library’s application ID to the PTX library’s application ID for use by arm_getid d“arm_getid|
[Dual Call Subroutine” on page 73) and arm_end (‘arm_end Dual Call Subroutine” on page 69).

Up-to 64 bytes, including the terminating zero, of the appname parameter is saved as the
description of the SpmiCx context that represents the application in the Spmi hierarchy. The key
is used as the short name of the context.

appl_user_id

Can be passed in as NULL or some means of specifying a user ID for the application. This allows
the calling program to define unique instances of an application. In the PTX implementation of the
ARM API, this parameter is ignored. Consequently, it is not possible to define unique instances of
an application. If specified as non-NULL, this parameter must be a string not exceeding 128 bytes
in length, including the terminating zero.

For the PTX implementation to take this argument in use, another context level would have to be
defined between the application context and the transaction context. This was deemed excessive.

For the lower library implementation of this subroutine call, the appl_user_id argument may have
significance. If so, it’s transparent to the PTX implementation.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

78 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

If the call to the lower library was successful, the subroutine returns an appl_id application identifier as
returned from the lower library. If the subroutine call to the lower library fails but the PTX implementation
doesn’t fail, the appl_id returned is the one assigned by the PTX library. If both implementations fail, a
value less than zero is returned.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

lusr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

arm_start Subroutine

Purpose

The arm_start subroutine is used to mark the beginning of the execution of a transaction. Measurement of
the transaction response time starts at the execution of this subroutine.

Library
ARM Library (libarm.a).

Syntax

#include arm.h

arm_start_handle_t arm_start(arm_tran_id t tran_id, /+ transaction name identifier

*/

arm_flag t flags, /* Reserved = 0 */

arm_data_t *data, /* Reserved = NULL */

arm_data_sz_t data _size); /* Reserved = 0 */
Description

Each arm_start subroutine call marks the beginning of another instance of a transaction within an
application. Multiple instances (simultaneous executions of the transaction) may exist. Control information
for the transaction instance is held until the execution of a matching arm_stop (‘arm_stop Subroutine” on|
subroutine call, at which time the elapsed time is calculated and used to update transaction
measurement metrics for the transaction. Metrics are accumulated for each unique combination of the
following three components:

1. Hostname of the machine where the instrumented application executes.
2. Unique application name.
3. Unique transaction name.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AlX licensed
product.

Parameters

tran_id

The identifier is returned by an earlier call to arm_getid, [‘arm_getid Subroutine” on page 71| The
PTX implementation does not require that the arm_getid subroutine call was issued by the same

Base Operating System (BOS) Runtime Services (A-P) 79

program or process now issuing the arm_start subroutine call. However, the transaction’s
application structure must be active, which means that the number of issued arm_init subroutine
calls for the application name must exceed the number of issued arm_end subroutine calls for the
application’s appl_id. If an application was inactivated by issuing a sufficient number of arm_end
calls, all transactions defined for that application will have their use_count set to zero. The count
remains zero (and the transaction inactive) until a new arm_getid subroutine is issued for the
transaction.

The tran_id argument is used to look for a transaction structure. If one is not found or if the
use-count of the one found is zero, no action is taken and the function returns -1. If one is found,
a transaction instance structure (called a slot structure) is allocated, assigned the next free
instance 1D, and updated with the start time of the transaction instance. The assigned instance 1D
is returned to the caller.

In compliance with the ARM API specifications, if the tran_id passed is one returned from a
previous arm_getid subroutine call that failed, the arm_start subroutine call functions as a
no-operation function. It will return a NULL start_handle, which can be passed to subsequent
arm_update (‘arm_update Subroutine” on page 86) and arm_stop (“arm_stop Subroutine” on|
|page 82|b subroutine calls with the effect that those calls are no-operation functions.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

Return Values

If successful, the subroutine returns a start_handle, which uniquely defines this transaction execution
instance. If the subroutine fails, a value less than zero is returned. In compliance with the ARM
API specifications, the error return value can be passed to the arm_update (‘arm_update Subroutine” on|

ge 86) and arm_stop (‘arm_stop Subroutine” on page 82) subroutines, which will cause those
subroutines to operate as no-operation functions.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information
arm_init (“arm_init Subroutine” on page 75) subroutine, arm_getid (“arm_getid Subroutine” on page 71)

subroutine, arm_end (“‘arm_end Subroutine” on page 67) subroutine.

arm_start Dual Call Subroutine

Purpose

The arm_start subroutine is used to mark the beginning of the execution of a transaction. Measurement of
the transaction response time starts at the execution of this subroutine.

Library
ARM Library (libarm.a).

80 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include arm.h

arm_start_handle_t arm_start(arm_tran_id t tran_id, /* transaction name identifier
*/

arm_flag_t flags, /* Reserved = 0 */

arm_data_t *data, /* Reserved = NULL */

arm_data_sz_t data _size); /* Reserved = 0 */
Description

Each arm_start subroutine call marks the beginning of another instance of a transaction within an
application. Multiple instances (simultaneous executions of the transaction) may exist. Control information
for the transaction instance is held until the execution of a matching arm_stop (‘arm_stop Dual Call|
[Subroutine” on page 84) subroutine call, at which time the elapsed time is calculated and used to update
transaction measurement metrics for the transaction. Metrics are accumulated for each unique combination
of the following three components:

1. Hostname of the machine where the instrumented application executes.
2. Unique application name.
3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value
greater than zero, that return value is passed to the caller as the start handle. If the value returned by the
lower library is zero or negative, the return value is the one generated by the PTX library code.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AlX licensed
product.

Parameters

tran_id

The identifier is returned by an earlier call to arm_getid, ['arm_getid Dual Call Subroutine” on page]
The identifier is passed to the arm_start function of the lower library. If the lower library
returns an identifier greater than zero, that identifier is the one that'll eventually be returned to the
caller. After the invocation of the lower library, the PTX implementation attempts to translate the
tran_id argument to its own identifier from the cross-reference table created by arm_getid. If one
can be found, it is used for the PTX implementation; if no cross reference is found, the tran_idis
used as passed in.The PTX implementation does not require that the arm_getid subroutine call
was issued by the same program or process now issuing the arm_start subroutine call. However,
the transaction’s application structure must be active, which means that the number of issued
arm_init subroutine calls for the application name must exceed the number of issued arm_end
subroutine calls for the application’s appl_id. If an application was inactivated by issuing a
sufficient number of arm_end calls, all transactions defined for that application will have their
use_count set to zero. The count remains zero (and the transaction inactive) until a new
arm_getid subroutine is issued for the transaction.

In the PTX implementation, the fran_id (as retrieved from the cross-reference table) is used to look
for a transaction structure. If one is not found or if the use-count of the one found is zero, the PTX
implementation is considered to have failed and no action is taken by the PTX library. If one is
found, a transaction instance structure (called a slot structure) is allocated, assigned the next free
instance 1D, and updated with the start time of the transaction instance. The assigned instance 1D
is saved as the start_handle. If the call to the lower library was successful, a cross-reference is
created from the lower library’s start_handle to the PTX library’s start_handle for use by
arm_update (‘arm_update Dual Call Subroutine” on page 87) and arm_stop (‘arm_stop Dual Call
[Subroutine” on page 84).

Base Operating System (BOS) Runtime Services (A-P) 81

In compliance with the ARM API specifications, if the fran_id passed is one returned from a
previous arm_getid subroutine call that failed, the arm_start subroutine call functions as a
no-operation function. It will return a NULL start_handle, which can be passed to subsequent
arm_update (‘arm_update Dual Call Subroutine” on page 87) and arm_stop (‘arm_stop Dual Call|
[Subroutine” on page 84) subroutine calls with the effect that those calls are no-operation functions.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.In the current API definition, the last three arguments are for future use and they
are ignored in the implementation.

Return Values

If successful, the subroutine returns a start_handle, which uniquely defines this transaction execution
instance. If the subroutine fails, a value less than zero is returned. In compliance with the ARM

API specifications, the error return value can be passed to the arm_update (‘arm_update Dual Call|
[Subroutine” on page 87) and arm_stop (‘arm_stop Dual Call Subroutine” on page 84) subroutines, which
will cause those subroutines to operate as no-operation functions.

If the call to the lower library was successful, the start_handle instance ID returned is the one assigned
by the lower library. If the subroutine call to the lower library failed but the PTX implementation didn’t fail,
the start_handle returned is the one assigned by the PTX library. If both implementations fail, a value less
than zero is returned.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Related Information

arm_init (“arm_init Dual Call Subroutine” on page 77) subroutine, arm_getid (“arm_getid Dual Call
[Subroutine” on page 73) subroutine, arm_end (“arm_end Dual Call Subroutine” on page 69) subroutine.

arm_stop Subroutine

Purpose

The arm_stop subroutine is used to mark the end of the execution of a transaction. Measurement of the
transaction response time completes at the execution of this subroutine.

Library
ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t arm_stop(arm_start_handle_t arm_handle,
const arm_status_t comp_status,
arm_flag_t flags,
arm_data_t * data,
arm_data_sz_t data size);

82 Technical Reference, Volume 1: Base Operating System and Extensions

Description

Each arm_stop subroutine call marks the end of an instance of a transaction within an application.
Multiple instances (simultaneous executions of the transaction) may exist. Control information for the
transaction instance is held from the execution of the arm_start (“arm_start Subroutine” on page 79)
subroutine call and until the execution of a matching arm_stop subroutine call, at which time the elapsed
time is calculated and used to update transaction measurement metrics for the transaction. Metrics are
accumulated for each unique combination of the following three components:

1. Hostname of the machine where the instrumented application executes.
2. Unique application name.
3. Unique transaction name.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AlX licensed
product.

Parameters

arm_handle

The identifier is returned by an earlier call to arm_start, [‘arm_start Subroutine” on page 79.| The
arm_handle argument is used to look for a slot structure created by the arm_start d“arm_sta[t]
[Subroutine” on page 79) call, which returned this arm_handle. If one is not found, no action is
taken and the function returns -1. If one is found, a post structure is allocated and added to the
linked list of post structures used to pass data to the SpmiArmd daemon. The post structure is
updated with the start time from the slot structure, the path to the transaction context, and the stop
time of the transaction instance.

In compliance with the ARM API specifications, if the start_handle passed is one returned from a
previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a
no-operation function, the arm_stop subroutine call executes as a no-operation function. It will
return a zero to indicate successful completion.

comp_status

User supplied transaction completion code. The following codes are defined:

« ARM_GOOD - successful completion. Response time is calculated. The response time is
calculated as a fixed point value in milliseconds and saved in the metric resptime. In addition,
the weighted average response time is calculated as a floating point value using a variable
weight that defaults to 75%. The average response time is calculated as weight percent of the
previous value of the average plus (100 - weight) percent of the latest response time
observation. The value of weight can be changed from the SpmiArmd daemon’s configuration
file /etc/perf/SpmiArmd.cf. In addition, the maximum and minimum response time for this
transaction is updated, if required. Finally the count of successful transaction executions is
incremented.

 ARM_ABORT - transaction aborted. The aborted counter is incremented. No other updates
occur.

 ARM_FAILED - transaction failed. The failed counter is incremented. No other updates occur.
flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

Return Values
If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned.

Base Operating System (BOS) Runtime Services (A-P) 83

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

lusr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Related Information

arm_init (“arm_init Subroutine” on page 75) subroutine, arm_getid (“arm_getid Subroutine” on page 71)
subroutine, arm_start (“arm_start Subroutine” on page 79) subroutine, arm_end (‘arm_end Subroutine” on|

subroutine.

arm_stop Dual Call Subroutine

Purpose

The arm_stop subroutine is used to mark the end of the execution of a transaction. Measurement of the
transaction response time completes at the execution of this subroutine.

Library
ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t arm_stop(arm_start_handle_t arm_handle, /* unique transaction handle
*/

const arm_status_t comp_status, /* Good=0, Abort=1, Failed=2 =/

arm_flag_t flags, /* Reserved = 0 */

arm_data_t *data, /* Reserved = NULL */

arm_data sz t data size); /* Reserved = 0 */
Description

Each arm_stop subroutine call marks the end of an instance of a transaction within an application.
Multiple instances (simultaneous executions of the transaction) may exist. Control information for the
transaction instance is held from the execution of the arm_start (“arm_start Dual Call Subroutine” on page
subroutine call and until the execution of a matching arm_stop subroutine call, at which time the
elapsed time is calculated and used to update transaction measurement metrics for the transaction.
Metrics are accumulated for each unique combination of the following three components:

1. Hostname of the machine where the instrumented application executes.
2. Unique application name.
3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value of
zero, that return value is passed to the caller. If the value returned by the lower library is non-zero, the
return value is the one generated by the PTX library code.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product.

84 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

arm_handle

The identifier is returned by an earlier call to arm_start, [‘arm_start Dual Call Subroutine” on page]
The identifier is passed to the arm_stop function of the lower library. If the lower library
returns a zero return code, that return code is returned to the caller. After the invocation of the
lower library, the PTX implementation attempts to translate the arm_handleargument to its own
identifier from the cross-reference table created by arm_start. If one can be found, it is used for
the PTX implementation; if no cross reference is found, the arm_handle is used as passed in. The
PTX implementation uses the start_handle argument to look for the slot structure created by the
arm_start subroutine call. If one is found, a post structure is allocated and added to the linked list
of post structures used to pass data to the SpmiArmd daemon. The post structure is updated with
the start time from the slot structure, the path to the transaction context, and the stop time of the
transaction instance. If no slot structure was found, the PTX implementation is considered to have
failed.

In compliance with the ARM API specifications, if the start_handle passed is one returned from a
previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a
no-operation function, the arm_stop subroutine call executes as a no-operation function. It will
return a zero to indicate successful completion.

comp_status

User supplied transaction completion code. The following codes are defined:

* ARM_GOOD - successful completion. Response time is calculated. The response time is
calculated as a fixed point value in milliseconds and saved in the metric resptime. In addition,
the weighted average response time (in respavg) is calculated as a floating point value using a
variable weight, that defaults to 75%. The average response time is calculated as weight
percent of the previous value of the average plus (100 - weight) percent of the latest response
time observation. The value of weight can be changed from the SpmiArmd daemon’s
configuration file /etc/perf/SpmiArmd.cf. In addition, the maximum and minimum response time
for this transaction is updated, if required. Finally the count of successful transaction executions
is incremented.

« ARM_ABORT - transaction aborted. The aborted counter is incremented. No other updates
occur.

 ARM_FAILED - transaction failed. The failed counter is incremented. No other updates occur.
flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.In the current API definition, the last three arguments are for future use and they
are ignored in the implementation.

Return Values

If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned. If the
call to the lower library was successful, a zero is returned. If the subroutine call to the lower library failed
but the PTX implementation didn’t fail, a zero is returned. If both implementations failed, a value less than
zero is returned.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

lusr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Base Operating System (BOS) Runtime Services (A-P) 85

Related Information

arm_init (“arm_init Dual Call Subroutine” on page 77) subroutine, arm_getid (‘arm_getid Dual Call
[Subroutine” on page 73) subroutine, arm_start (‘arm_start Dual Call Subroutine” on page 80) subroutine,
arm_end (‘arm_end Dual Call Subroutine” on page 69) subroutine.

arm_update Subroutine

Purpose

The arm_update subroutine is used to collect information about a transaction’s progress. It is a
no-operation subroutine in the PTX implementation.

Library
ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t arm_update(arm_start_handle_t arm_handle, /* unique transaction handle

*/

arm_flag_t flags, /* Reserved = 0 */

arm_data_t *data, /* Reserved = NULL */

arm_data szt data size); /* Reserved = 0 */
Description

The arm_update subroutine is implemented as a no-operation in the PTX version of the ARM API. It is
intended to be used for providing status information for a long-running transaction. Because there’s no
feasible way to display such information in current PTX monitors, the subroutine is a NULL function.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AlX licensed
product. It is implemented as a NULL subroutine call.

Parameters

start_handle

The identifier is returned by an earlier call to arm_start, [‘arm_start Subroutine” on page 79 The
start_handle argument is used to look for the slot structure created by the arm_start subroutine
call. If one is not found, no action is taken and the function returns -1. Otherwise a zero is
returned.

In compliance with the ARM API specifications, if the start_handle passed is one returned from a
previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a
no-operation function, the arm_update subroutine call executes as a no-operation function. It will
return a zero to indicate successful completion.

flags, data, data_size
In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.

Return Values
If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

86 Technical Reference, Volume 1: Base Operating System and Extensions

Files

/usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Related Information

arm_init (“arm_init Subroutine” on page 75) subroutine, arm_getid (“arm_getid Subroutine” on page 71)
subroutine, arm_start (“arm_start Subroutine” on page 79) subroutine, arm_stop (“arm_stop Subroutine’]
subroutine, arm_end (“arm_end Subroutine” on page 67) subroutine.

arm_update Dual Call Subroutine

Purpose

The arm_update subroutine is used to collect information about a transaction’s progress. It is a
no-operation subroutine in the PTX implementation but may be fully implemented by the lower library.

Library
ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t arm_update(arm_start_handle_t arm_handle, /* unique transaction handle

*/

arm_flag_t flags, /* Reserved = 0 */

arm_data_t *data, /* Reserved = NULL */

arm_data_sz_t data size); /* Reserved = 0 */
Description

The arm_update subroutine is implemented as a no-operation in the PTX version of the ARM API. It is
intended to be used for providing status information for a long-running transaction. Because there’s no
feasible way to display such information in current PTX monitors, the subroutine is a NULL function.
The lower library implementation of the arm_update subroutine is always invoked.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed
product. It is implemented as a NULL subroutine call.

Parameters

start_handle

The identifier is returned by an earlier call to arm_start, [‘arm_start Dual Call Subroutine” on page|
The identifier is passed to the arm_update function of the lower library. If the lower library
returns a zero return code., that return code is returned to the caller. After the invocation of the
lower library, the PTX implementation attempts to translate the arm_handleargument to its own
identifier from the cross-reference table created by arm_start. If one can be found, it is used for
the PTX implementation; if no cross reference is found, the arm_handle is used as passed in. The
PTX implementation uses the start_handle argument to look for the slot structure created by the
arm_start subroutine call. If one is found the PTX implementation is considered to have
succeeded, otherwise it is considered to have failed.

Base Operating System (BOS) Runtime Services (A-P) 87

In compliance with the ARM API specifications, if the start_handle passed is one returned from a
previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a
no-operation function, the arm_update subroutine call executes as a no-operation function. It will
return a zero to indicate successful completion.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the
implementation.In the current API definition, the last three arguments are for future use and they
are ignored in the implementation.

Return Values

If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned. If the
call to the lower library was successful, a zero is returned. If the subroutine call to the lower library failed
but the PTX implementation didn’t fail, a zero is returned. If both implementations failed, a value less than
zero is returned.

Error Codes
No error codes are defined by the PTX implementation of the ARM API.

Files

lusr/include/arm.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the ARM library.

Related Information

arm_init (“arm_init Dual Call Subroutine” on page 77) subroutine, arm_getid (‘arm_getid Dual Call
[Subroutine” on page 73) subroutine, arm_start (‘arm_start Dual Call Subroutine” on page 80) subroutine,
arm_stop (‘arm_stop Dual Call Subroutine” on page 84) subroutine, arm_end (‘arm_end Dual Call
[Subroutine” on page 69) subroutine.

asinh, asinhf, or asinhl Subroutine

Purpose
Computes the inverse hyperbolic sine.

Syntax

#include <math.h>

float asinhf @)
float x;

long double asinhl (x)
Tong double x;

double asinh (x)
double x;

Description
The asinhf, asinhl, and asinh subroutines compute the inverse hyperbolic sine of thex parameter.

88 Technical Reference, Volume 1: Base Operating System and Extensions

An application wishing to check for error situations should set errno to zero and call
fetestexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if the errno global variable
is nonzero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is
nonzero, an error has occurred.

Parameters

X Specifies the value to be computed.

Return Values

Upon successful completion, the asinhf, asinhl, and asinh subroutines return the inverse hyperbolic sine
of the given argument.

If xis NaN, a NaN is returned.
If xis 0, or =Inf, x is returned.

If x is subnormal, a range error may occur and x will be returned.

Related Information
in AIX 5L Version 5.3 Files Reference.

asinf, asinl, or asin Subroutine

Purpose
Computes the arc sine.

Syntax

#include <math.h>

float asinf @)
float x;

long double asinl (x)
Tong double x;

double asin (x)
double x;

Description

The asinf, asinl, and asin subroutines compute the principal value of the arc sine of the x parameter. The
value of x should be in the range [-1,1].

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. On return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

X Specifies the value to be computed.

Base Operating System (BOS) Runtime Services (A-P) 89

Return Values

Upon successful completion, the asinf, asinl, and asin subroutines return the arc sine of x, in the range
[-pi /2, pi/2] radians.

For finite values of x not in the range [-1,1], a domain error occurs, and a NaN is returned.
If xis NaN, a NaN is returned.

If xis 0, x is returned.

If x is +Inf, a domain error occurs, and a NaN is returned.

If x is subnormal, a range error may occur and x is returned.

Related Information
The [‘asinh, asinhf, or asinhl Subroutine” on page 88|

in AIX 5L Version 5.3 Files Reference.

[Subroutines Overview|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

assert Macro

Purpose
Verifies a program assertion.

Library
Standard C Library (libc.a)

Syntax

#include <assert.h>

void assert (|[Expression)

int Expression;

Description

The assert macro puts error messages into a program. If the specified expression is false, the assert
macro writes the following message to standard error and stops the program:

Assertion failed: Expression, file FileName, line LineNumber

In the error message, the FileName value is the name of the source file and the LineNumber value is the
source line number of the assert statement.

Parameters

Expression Specifies an expression that can be evaluated as true or false. This expression is evaluated in
the same manner as the C language IF statement.

90 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information
The abort (“abort Subroutine” on page 2) subroutine.

The @ command.

[Subroutines Overview|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

atan2f, atan2l, or atan2 Subroutine

Purpose
Computes the arc tangent.

Syntax
#include <math.h>

float atan2f (El, E[)
float y, float x;

long double atan21 (y, x)
Tong double y, long double x;

double atan2 (y, x)
double y, x;

Description

The atan2f, atan2l, and atan2 subroutines compute the principal value of the arc tangent of y/x, using the
signs of both parameters to determine the quadrant of the return value.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters
y Specifies the value to compute.
X Specifies the value to compute.

Return Values

Upon successful completion, the atan2f, atan2l, and atan2 subroutines return the arc tangent of y/x in the
range [-pi, pi] radians.

If yis 0 and x is < 0, +pi is returned.

If yis 0 and xis > 0, O is returned.

If yis < 0 and x is 0, -pi/2 is returned.
If yis > 0 and x is 0, pi/2 is returned.

If xis 0, a pole error does not occur.

Base Operating System (BOS) Runtime Services (A-P) 91

If either x or y is NaN, a NaN is returned.

If the result underflows, a range error may occur and y/x is returned.
If yis 0 and x is -0, +x is returned.

If yis 0 and x is +0, 0 is returned.

For finite values of +y >0, if x is —Inf, +x is returned.

For finite values of +y >0, if x is +Inf, O is returned.

For finite values of x, if y is £Inf, +x/2 is returned.

If yis xInf and x is -Inf, £3pi/4 is returned.

If yis +Inf and x is +Inf, +pi/4 is returned.

If both arguments are 0, a domain error does not occur.

Related Information
in AIX 5L Version 5.3 Files Reference.

atan, atanf, or atanl Subroutine

Purpose
Computes the arc tangent.

Syntax

#include <math.h>

float atanf @)
float x;

long double atanl (x)
Tong double x;

double atan (x)
double x;

Description

The atanf, atanl, and atan subroutines compute the principal value of the arc tangent of the x parameter.
An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

X Specifies the value to be computed.

92 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, the atanf, atanl, and atan subroutines return the arc tangent of x in the
range [-pi /2, pi/2] radians.

If xis NaN, a NaN is returned.
If xis 0, xis returned.
If xis =Inf, +x/2 is returned.

If x is subnormal, a range error may occur and x is returned.

Related Information
The [‘atan2f, atan2l, or atan2 Subroutine” on page 91| and [‘atanh, atanhf, or atanhl Subroutine.’|

in AIX 5L Version 5.3 Files Reference.

atanh, atanhf, or atanhl Subroutine

Purpose
Computes the inverse hyperbolic tangent.

Syntax

#include <math.h>

float atanhf (El)
float x;

long double atanhl (x)
Tong double x;

double atanh (x)
double x;

Description
The atanhf, atanhl, and atanh subroutines compute the inverse hyperbolic tangent of the x parameter.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or
fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

X Specifies the value to be computed.

Return Values

Upon successful completion, the atanhf, atanhl, and atanh subroutines return the inverse hyperbolic
tangent of the given argument.

If xis =1, a pole error occurs, and atanhf, atanhl , and atanh return the value of the macro HUGE_VALF,
HUGE_VALL, and HUGE_VAL respectively, with the same sign as the correct value of the function.

Base Operating System (BOS) Runtime Services (A-P) 93

For finite IxI>1, a domain error occurs, and a NaN is returned.
If xis NaN, a NaN is returned.

If xis 0, x is returned.

If xis =Inf, a domain error shall occur, and a NaN is returned.

If x is subnormal, a range error may occur and x is returned.

Error Codes

The atanhf, atanhl, and atanh subroutines return NaNQ and set errno to EDOM if the absolute value of x
is greater than 1.

Related Information
[‘exp, expf, or expl Subroutine” on page 241|

in AIX 5L Version 5.3 Files Reference.

[Subroutines Overview|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

atof atoff Subroutine

Purpose
Converts an ASCII string to a floating-point or double floating-point number.

Libraries
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

double atof (NumberPointer)
const char *NumberPointer;

float atoff (NumberPointer)
char *NumberPointers;

Description

The atof subroutine converts a character string, pointed to by the NumberPointer parameter, to a
double-precision floating-point number. The atoff subroutine converts a character string, pointed to by the
NumberPointer parameter, to a single-precision floating-point number. The first unrecognized character
ends the conversion.

Except for behavior on error, the atof subroutine is equivalent to the strtod subroutine call, with the
EndPointer parameter set to (char**) NULL.

Except for behavior on error, the atoff subroutine is equivalent to the strtof subroutine call, with the
EndPointer parameter set to (char**) NULL.

These subroutines recognize a character string when the characters are in one of two formats: numbers or
numeric symbols.

» For a string to be recognized as a number, it should contain the following pieces in the following order:

94 Technical Reference, Volume 1: Base Operating System and Extensions

An optional string of white-space characters

An optional sign

A nonempty string of digits optionally containing a radix character

An optional exponent in E-format or e-format followed by an optionally signed integer.

» For a string to be recognized as a numeric symbol, it should contain the following pieces in the following
order:

1. An optional string of white-space characters
2. An optional sign
3. One of the strings: INF, infinity, NaNQ, NaNS, or NaN (case insensitive)

pPoODd~

The atoff subroutine is not part of the ANSI C Library. These subroutines are at least as accurate as
required by the IEEE Standard for Binary Floating-Point Arithmetic. The atof subroutine accepts at least 17
significant decimal digits. The atoff and subroutine accepts at least 9 leading 0’s. Leading O’s are not
counted as significant digits.

Parameters
NumberPointer Specifies a character string to convert.
EndPointer Specifies a pointer to the character that ended the scan or a null value.

Return Values

Upon successful completion, the atof, and atoff subroutines return the converted value. If no conversion
could be performed, a value of 0 is returned and the errno global variable is set to indicate the error.

Error Codes

If the conversion cannot be performed, a value of 0 is returned, and the errno global variable is set to
indicate the error.

If the conversion causes an overflow (that is, the value is outside the range of representable values), +/-
HUGE_VAL is returned with the sign indicating the direction of the overflow, and the errno global variable
is set to ERANGE.

If the conversion would cause an underflow, a properly signed value of 0 is returned and the errno global
variable is set to ERANGE.

The atoff subroutine has only one rounding error. (If the atof subroutine is used to create a
double-precision floating-point number and then that double-precision number is converted to a
floating-point number, two rounding errors could occur.)

Related Information
The subroutine, subroutine, |wstrtol, watol, or watoil subroutine.

[Subroutines Overview|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

[128-Bit long double Floating-Point Formatlin AIX 5L Version 5.3 General Programming Concepts: Writing
and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 95

atol or atoll Subroutine

Purpose
Converts a string to a long integer.

Syntax

#include <stdlib.h>

Tong long atoll (nptr)

const char *nptr;
long atol (nptr)

const char *nptr;

Description

The atoll and atol subroutines (str) are equivalent to strtol1(nptr, (char **)NULL, 10) and
strtol(nptr, (char *»*)NULL, 10), respectively. If the value cannot be represented, the behavior is
undefined.

Parameters

nptr Points to the string to be converted into a long integer.

Return Values
The atoll and atol subroutines return the converted value if the value can be represented.

Related Information

[strtol, strtoul, strtoll, strtoull, or atoi Subroutine|in AIX 5L Version 5.3 Technical Reference: Base Operating
System and Extensions Volume 2.

audit Subroutine

Purpose
Enables and disables system auditing.

Library
Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int audit (|Command|, Argument])
int Command;
int Argument;

Description
The audit subroutine enables or disables system auditing.

96 Technical Reference, Volume 1: Base Operating System and Extensions

When auditing is enabled, audit records are created for security-relevant events. These records can be
collected through the auditbin (“‘auditbin Subroutine” on page 98) subroutine, or through the /dev/audit
special file interface.

Parameters

Command Defined in the sys/audit.h file, can be one of the following values:

AUDIT_QUERY
Returns a mask indicating the state of the auditing subsystem. The mask is a logical
ORing of the AUDIT_ON, AUDIT_OFF, and AUDIT_PANIC flags. The Argument
parameter is ignored.

AUDIT_ON
Enables auditing. If auditing is already enabled, only the failure-mode behavior
changes. The Argument parameter specifies recovery behavior in the event of failure
and may be either 0 or the value AUDIT_PANIC.
Note: If AUDIT_PANIC is specified, bin-mode auditing must be enabled before the
audit subroutine call.

AUDIT_OFF
Disables the auditing system if auditing is enabled. If the auditing system is disabled,
the audit subroutine does nothing. The Argument parameter is ignored.

AUDIT_RESET
Disables the auditing system (as does AUDIT_OFF) and resets the auditing system. If
auditing is already disabled, only the system configuration is reset. Resetting the audit
configuration involves clearing the audit events and audited objects table, and
terminating bin and stream auditing. The Argument parameter is ignored.

AUDIT_EVENT_THRESHOLD
Audit event records will be buffered until a total of Argument records have been
saved, at which time the audit event records will be flushed to disk. An Argument
value of zero disables this functionality. This parameter only applies to AlX 4.1.4 and
later.

AUDIT_BYTE_THRESHOLD
Audit event data will be buffered until a total of Argument bytes of data have been
saved, at which time the audit event data will be flushed to disk. An Argument value
of zero disables this functionality. This parameter only applies to AlIX 4.1.4 and later.
Argument Specifies the behavior when a bin write fails (for AUDIT_ON) or specifies the size of the audit
event buffer (for AUDIT_EVENT_THRESHOLD and AUDIT_BYTE_THRESHOLD). For all
other commands, the value of Argument is ignored. The valid values are:

AUDIT_PANIC
The operating system halts abruptly if an audit record cannot be written to a bin.
Note: If AUDIT_PANIC is specified, bin-mode auditing must be enabled before the
audit subroutine call.

BufferSize
The number of bytes or audit event records which will be buffered. This parameter is
valid only with the command AUDIT_BYTE_THRESHOLD and
AUDIT_EVENT_THRESHOLD. A value of zero will disable either byte (for
AUDIT_BYTE_THRESHOLD) or event (for AUDIT_EVENT_THRESHOLD) buffering.

Return Values

For a Command value of AUDIT_QUERY, the audit subroutine returns, upon successful completion, a
mask indicating the state of the auditing subsystem. The mask is a logical ORing of the AUDIT_ON,
AUDIT_OFF, AUDIT_PANIC, and AUDIT_NO_PANIC flags. For any other Command value, the audit
subroutine returns 0 on successful completion.

Base Operating System (BOS) Runtime Services (A-P) 97

If the audit subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the
error.

Error Codes
The audit subroutine fails if either of the following is true:

EINVAL The Command parameter is not one of AUDIT_ON, AUDIT_OFF, AUDIT_RESET, or
AUDIT_QUERY.

EINVAL The Command parameter is AUDIT_ON and the Argument parameter specifies values other than
AUDIT_PANIC.

EPERM The calling process does not have root user authority.

Files

dev/audit Specifies the audit pseudo-device from which the audit records are read.

Related Information

The auditbin (“auditbin Subroutine”) subroutine, auditevents (‘auditevents Subroutine” on page 100)
subroutine, auditlog (‘auditiog Subroutine” on page 102) subroutine, auditobj (‘auditobj Subroutine” on|
page 103) subroutine, auditproc (‘auditproc Subroutine” on page 107) subroutine.

The command.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

auditbin Subroutine

Purpose
Defines files to contain audit records.

Library
Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditbin (Command, Current, Next, Threshold)
int |[Command|;
int |Current|;

int Vext|;
int |Threshold|;
Description

The auditbin subroutine establishes an audit bin file into which the kernel writes audit records. Optionally,
this subroutine can be used to establish an overflow bin into which records are written when the current
bin reaches the size specified by the Threshold parameter.

98 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

Command

Current
Next

Threshold

If nonzero, this parameter is a logical ORing of the following values, which are defined in the
sys/audit.h file:

AUDIT_EXCL
Requests exclusive rights to the audit bin files. If the file specified by the Current
parameter is not the kernel’s current bin file, the auditbin subroutine fails immediately
with the errno variable set to EBUSY.

AUDIT_WAIT
The auditbin subroutine should not return until:

bin full The kernel writes the number of bytes specified by the Threshold parameter to
the file descriptor specified by the Current parameter. Upon successful
completion, the auditbin subroutine returns a 0. The kernel writes subsequent
audit records to the file descriptor specified by the Next parameter.

bin failure
An attempt to write an audit record to the file specified by the Current
parameter fails. If this occurs, the auditbin subroutine fails with the errno
variable set to the return code from the auditwrite subroutine.

bin contention
Another process has already issued a successful call to the auditbin
subroutine. If this occurs, the auditbin subroutine fails with the errno variable
set to EBUSY.

system shutdown
The auditing system was shut down. If this occurs, the auditbin subroutine
fails with the errno variable set to EINTR.

A file descriptor for a file to which the kernel should immediately write audit records.

Specifies the file descriptor that will be used as the current audit bin if the value of the Threshold
parameter is exceeded or if a write to the current bin fails. If this value is -1, no switch occurs.
Specifies the maximum size of the current bin. If 0, the auditing subsystem will not switch bins. If
it is nonzero, the kernel begins writing records to the file specified by the Next parameter, if
writing a record to the file specified by the Cur parameter would cause the size of this file to
exceed the number of bytes specified by the Threshold parameter. If no next bin is defined and
AUDIT_PANIC was specified when the auditing subsystem was enabled, the system is shut
down. If the size of the Threshold parameter is too small to contain a bin header and a bin talil,
the auditbin subroutine fails and the errno variable is set to EINVAL.

Return Values
If the auditbin subroutine is successful, a value of 0 returns.

If the auditbin subroutine fails, a value of -1 returns and the errno global variable is set to indicate the
error. If this occurs, the result of the call does not indicate whether any records were written to the bin.

Error Codes
The auditbin subroutine fails if any of the following is true:

EBADF

EBUSY

EBUSY

EINTR

The Current parameter is not a file descriptor for a regular file open for writing, or the Next
parameter is neither -1 nor a file descriptor for a regular file open for writing.

The Command parameter specifies AUDIT_EXCL and the kernel is not writing audit records to the
file specified by the Current parameter.

The Command parameter specifies AUDIT_WAIT and another process has already registered a
bin.

The auditing subsystem is shut down.

Base Operating System (BOS) Runtime Services (A-P) 99

EINVAL The Command parameter specifies a nonzero value other than AUDIT_EXCL or AUDIT_WAIT.
EINVAL The Threshold parameter value is less than the size of a bin header and trailer.
EPERM The caller does not have root user authority.

Related Information

The audit (“audit Subroutine” on page 96) subroutine, auditevents (“auditevents Subroutine’) subroutine,
auditlog (“auditlog Subroutine” on page 102) subroutine, auditobj (‘auditobj Subroutine” on page 103)
subroutine, auditproc (“auditproc Subroutine” on page 107) subroutine.

The command.
The file format.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

auditevents Subroutine

Purpose
Gets or sets the status of system event auditing.

Library
Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditevents ([Command|, |Classes|, WClasses))
int Command;

struct audit_class *Classes;

int NClasses;

Description

The auditevents subroutine queries or sets the audit class definitions that control event auditing. Each
audit class is a set of one or more audit events.

System auditing need not be enabled before calling the auditevents subroutine. The audit
[Subroutine” on page 96)subroutine can be directed with the AUDIT_RESET command to clear all event
lists.

100 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

Command Specifies whether the event lists are to be queried or set. The values, defined in the sys/audit.h
file, for the Command parameter are:

AUDIT_SET
Sets the lists of audited events after first clearing all previous definitions.

AUDIT_GET
Queries the lists of audited events.

AUDIT_LOCK
Queries the lists of audited events. This value also blocks any other process attempting
to set or lock the list of audit events. The lock is released when the process holding the
lock dies or calls the auditevents subroutine with the Command parameter set to
AUDIT_SET.

Classes Specifies the array of a_event structures for the AUDIT_SET operation, or after an AUDIT_GET
or AUDIT_LOCK operation. The audit_class structure is defined in the sys/audit.h file and
contains the following members:

ae_name
A pointer to the name of the audit class.

ae list
A pointer to a list of null-terminated audit event names for this audit class. The list is
ended by a null name (a leading null byte or two consecutive null bytes).
Note: Event and class names are limited to 15 significant characters.

ae_len The length of the event list in the ae_list member. This length includes the terminating
null bytes. On an AUDIT_SET operation, the caller must set this member to indicate the
actual length of the list (in bytes) pointed to by ae_1ist. On an AUDIT_GET or
AUDIT_LOCK operation, the auditevents subroutine sets this member to indicate the
actual size of the list.

NClasses Serves a dual purpose. For AUDIT_SET, the NClasses parameter specifies the number of
elements in the events array. For AUDIT_GET and AUDIT_LOCK, the NClasses parameter
specifies the size of the buffer pointed to by the Classes parameter.

Attention: Only 32 audit classes are supported. One class is implicitly defined by the system to
include all audit events (ALL). The administrator of your system should not attempt to define more
than 31 audit classes.

Security
The calling process must have root user authority in order to use the auditevents subroutine.

Return Codes

If the auditevents subroutine completes successfully, the number of audit classes is returned if the
Command parameter is AUDIT_GET or AUDIT_LOCK. A value of 0 is returned if the Command parameter
is AUDIT_SET. If this call fails, a value of -1 is returned and the errno global variable is set to indicate the
error.

Error Codes
The auditevents subroutine fails if one or more of the following are true:

EPERM The calling process does not have root user authority.

EINVAL The value of Command is not AUDIT_SET, AUDIT_GET, or AUDIT_LOCK.

EINVAL The Command parameter is AUDIT_SET, and the value of the NClasses parameter is
greater than or equal to 32.

EINVAL A class name or event name is longer than 15 significant characters.

Base Operating System (BOS) Runtime Services (A-P) 101

ENOSPC The value of Command is AUDIT_GET or AUDIT_LOCK and the size of the buffer specified
by the NClasses parameter is not large enough to hold the list of event structures and
names. If this occurs, the first word of the buffer is set to the required buffer size.

EFAULT The Classes parameter points outside of the process’ address space.

EFAULT The ae_list member of one or more audit_class structures passed for an AUDIT_SET
operation points outside of the process’ address space.

EFAULT The Command value is AUDIT_GET or AUDIT_LOCK and the size of the Classes buffer is
not large enough to hold an integer.

EBUSY Another process has already called the auditevents subroutine with AUDIT_LOCK.

ENOMEM Memory allocation failed.

Related Information

The audit (“audit Subroutine” on page 96) subroutine, auditbin (‘auditbin Subroutine” on page 98)
subroutine, auditlog (“auditiog Subroutine” subroutine, auditobj (“auditobj Subroutine” on page 103)
subroutine, auditproc (“auditproc Subroutine” on page 107) subroutine, auditread (“auditread, auditread_n
[Subroutines” on page 109) subroutine, auditwrite (“auditwrite Subroutine” on page 110)subroutine.

The command.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

auditlog Subroutine

Purpose
Appends an audit record to the audit trail file.

Library
Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditlog (|[Event], [Result|, [Buffer|, |BufferSize)
char *Event;

int Result;

char *Buffer;

int BufferSize;

Description

The auditlog subroutine generates an audit record. The kernel audit-logging component appends a record
for the specified Event if system auditing is enabled, process auditing is not suspended, and the Event
parameter is in one or more of the audit classes for the current process.

The audit logger generates the audit record by adding the Event and Result parameters to the audit
header and including the resulting information in the Buffer parameter as the audit tail.

Parameters

Event The name of the audit event to be generated. This parameter should be the name of an audit
event. Audit event names are truncated to 15 characters plus null.

102 Technical Reference, Volume 1: Base Operating System and Extensions

Result

Buffer

BufferSize

Return Values

Describes the result of this event. Valid values are defined in the sys/audit.h file and include
the following:

AUDIT_OK
The event was successful.

AUDIT_FAIL
The event failed.

AUDIT_FAIL_ACCESS
The event failed because of any access control denial.

AUDIT_FAIL_DAC
The event failed because of a discretionary access control denial.

AUDIT_FAIL_PRIV
The event failed because of a privilege control denial.

AUDIT_FAIL_AUTH
The event failed because of an authentication denial.

Other nonzero values of the Result parameter are converted into the AUDIT_FAIL value.
Points to a buffer containing the tail of the audit record. The format of the information in this
buffer depends on the event name.

Specifies the size of the Buffer parameter, including the terminating null.

Upon successful completion, the auditlog subroutine returns a value of 0. If auditlog fails, a value of -1 is
returned and the errno global variable is set to indicate the error.

The auditlog subroutine does not return any indication of failure to write the record where this is due to
inappropriate tailoring of auditing subsystem configuration files or user-written code. Accidental omissions
and typographical errors in the configuration are potential causes of such a failure.

Error Codes

The auditlog subroutine fails if any of the following are true:

EFAULT
EINVAL
EINVAL
EPERM
ENOMEM

The Event or Buffer parameter points outside of the process’ address space.
The auditing system is either interrupted or not initialized.

The length of the audit record is greater than 32 kilobytes.

The process does not have root user authority.

Memory allocation failed.

Related Information

The audit (“audit Subroutine” on page 96) subroutine, auditbin (“‘auditbin Subroutine” on page 98)

subroutine, auditeve

|Subroutine”|b subrouti

nts (‘auditevents Subroutine” on page 100) subroutine, auditobj ¢‘auditobj|
ne, auditproc (“auditproc Subroutine” on page 107) subroutine, auditwrite

(‘auditwrite Subroutine” on page 110) subroutine.

[List of Security and Auditing Subroutines| and [Subroutines Overviewin AlX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

auditobj Subroutine

Purpose

Gets or sets the auditing mode of a system data object.

Base Operating System (BOS) Runtime Services (A-P) 103

Library
Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditobj ([Command|, |0bj Events|, |0bjSizel)
int Command;

struct o_event *0bj Events;

int 0ObjSize;

Description

The auditobj subroutine queries or sets the audit events to be generated by accessing selected objects.
For each object in the file system name space, it is possible to specify the event generated for each
access mode. Using the auditobj subroutine, an administrator can define new audit events in the system
that correspond to accesses to specified objects. These events are treated the same as system-defined
events.

System auditing need not be enabled to set or query the object audit events. The audit subroutine can be
directed with the AUDIT_RESET command to clear the definitions of object audit events.

Parameters
Command Specifies whether the object audit event lists are to be read or written. The valid values,
defined in the sys/audit.h file, for the Command parameter are:
AUDIT_SET
Sets the list of object audit events, after first clearing all previous definitions.
AUDIT_GET
Queries the list of object audit events.
AUDIT_LOCK

Queries the list of object audit events and also blocks any other process attempting
to set or lock the list of audit events. The lock is released when the process holding
the lock dies or calls the auditobj subroutine with the Command parameter set to
AUDIT_SET.

104 Technical Reference, Volume 1: Base Operating System and Extensions

Obj_Events Specifies the array of o_event structures for the AUDIT_SET operation or for after the
AUDIT_GET or AUDIT_LOCK operation. The o_event structure is defined in the
sys/audit.h file and contains the following members:

o_type Specifies the type of the object, in terms of naming space. Currently, only one
object-naming space is supported:

AUDIT_FILE
Denotes the file system naming space.

o_name Specifies the name of the object.

o_event
Specifies any array of event names to be generated when the object is accessed.
Note that event names are currently limited to 16 bytes, including the trailing null.
The index of an event name in this array corresponds to an access mode. Valid
indexes are defined in the audit.h file and include the following:
* AUDIT_READ
« AUDIT_WRITE

* AUDIT_EXEC

Note: The C++ compiler will generate a warning indicating that o_event is defined both as
a structure and a field within that structure. Although the o_event field can be used within
C++, the warning can by bypassed by defining O_EVENT_RENAME. This will replace the
o_event field with o_event_array. o_event is the default field.

ObjSize For an AUDIT_SET operation, the ObjSize parameter specifies the number of object audit
event definitions in the array pointed to by the Obj_Events parameter. For an AUDIT_GET or
AUDIT_LOCK operation, the ObjSize parameter specifies the size of the buffer pointed to by
the Obj_Events parameter.

Return Values

If the auditobj subroutine completes successfully, the number of object audit event definitions is returned if
the Command parameter is AUDIT_GET or AUDIT_LOCK. A value of 0 is returned if the Command
parameter is AUDIT_SET. If this call fails, a value of -1 is returned and the errno global variable is set to
indicate the error.

Error Codes
The auditobj subroutine fails if any of the following are true:

EFAULT The Obj_Events parameter points outside the address space of the process.

EFAULT The Command parameter is AUDIT_SET, and one or more of the o_name members points
outside the address space of the process.

EFAULT The Command parameter is AUDIT_GET or AUDIT_LOCK, and the buffer size of the
Obj_Events parameter is not large enough to hold the integer.

EINVAL The value of the Command parameter is not AUDIT_SET, AUDIT_GET or AUDIT_LOCK.

EINVAL The Command parameter is AUDIT_SET, and the value of one or more of the o_type
members is not AUDIT_FILE.

EINVAL An event name was longer than 15 significant characters.

ENOENT The Command parameter is AUDIT_SET, and the parent directory of one of the file-system
objects does not exist.

ENOSPC The value of the Command parameter is AUDIT_GET or AUDIT_LOCK, and the size of the

buffer as specified by the ObjSize parameter is not large enough to hold the list of event
structures and names. If this occurs, the first word of the buffer is set to the required buffer

size.
ENOMEM Memory allocation failed.
EBUSY Another process has called the auditobj subroutine with AUDIT_LOCK.

Base Operating System (BOS) Runtime Services (A-P) 105

EPERM The caller does not have root user authority.

Related Information

The audit (“audit Subroutine” on page 96)subroutine, auditbin (‘auditbin Subroutine” on page 98)
subroutine, auditevents (“auditevents Subroutine” on page 100) subroutine, auditlog (“auditlog|
[Subroutine” on page 102) subroutine, auditproc (‘auditproc Subroutine” on page 107) subroutine.

The command.
The file.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

auditpack Subroutine

Purpose
Compresses and uncompresses audit bins.

Library
Security Library (libc.a)

Syntax

#include <sys/audit.h>
#include <stdio.h>

char auditpack (|[Expand|, [Buffer)
int Expand;
char *Buffer;

Description
The auditpack subroutine can be used to compress or uncompress bins of audit records.

Parameters

Expand Specifies the operation. Valid values, as defined in the sys/audit.h header file, are one of the
following:

AUDIT_PACK
Performs standard compression on the audit bin.

AUDIT_UNPACK
Unpacks the compressed audit bin.
Buffer Specifies the buffer containing the bin to be compressed or uncompressed. This buffer must contain
a standard bin as described in the audit.h file.

Return Values

If the auditpack subroutine is successful, a pointer to a buffer containing the processed audit bin is
returned. If unsuccessful, a null pointer is returned and the errno global variable is set to indicate the
error.

106 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes
The auditpack subroutine fails if one or more of the following values is true:

EINVAL The Expand parameter is not one of the valid values (AUDIT_PACK or AUDIT_UNPACK).

EINVAL The Expand parameter is AUDIT_UNPACK and the packed data in Buffer does not unpack to its
original size.

EINVAL The Expand parameter is AUDIT_PACK and the bin in the Buffer parameter is already

compressed, or the Expand parameter is AUDIT_UNPACK and the bin in the Buffer parameter
is already unpacked.
ENOSPC The auditpack subroutine is unable to allocate space for a new buffer.

Related Information
The auditread (“auditread, auditread_r Subroutines” on page 109) subroutine.

The command.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

auditproc Subroutine

Purpose
Gets or sets the audit state of a process.

Library
Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditproc (ProcessID, Command, Argument, Length)
int |ProcessIDf;
int |Command);

char * |Argumentl;
int |Lengthl;

Description

The auditproc subroutine queries or sets the auditing state of a process. There are two parts to the
auditing state of a process:

* The list of classes to be audited for this process. Classes are defined by the auditevents
[Subroutine” on page 100) subroutine. Each class includes a set of audit events. When a process
causes an audit event, that event may be logged in the audit trail if it is included in one or more of the
audit classes of the process.

* The audit status of the process. Auditing for a process may be suspended or resumed. Functions that
generate an audit record can first check to see whether auditing is suspended. If process auditing is
suspended, no audit events are logged for a process. For more information, see the auditlog
[Subroutine” on page 102) subroutine.

Base Operating System (BOS) Runtime Services (A-P) 107

Parameters

ProcessID

Command

Argument

Length

Return Values

The process ID of the process to be affected. If ProcessID is 0, the auditproc subroutine
affects the current process.
The action to be taken. Defined in the audit.h file, valid values include:

AUDIT_KLIST_EVENTS
Sets the list of audit classes to be audited for the process and also sets the user’s
default audit classes definition within the kernel. The Argument parameter is a pointer
to a list of null-terminated audit class names. The Length parameter is the length of
this list, including null bytes.

AUDIT_QEVENTS
Returns the list of audit classes defined for the current process if ProcessiD is 0.
Otherwise, it returns the list of audit classes defined for the specified process ID. The
Argument parameter is a pointer to a character buffer. The Length parameter
specifies the size of this buffer. On return, this buffer contains a list of null-terminated
audit class names. A null name terminates the list.

AUDIT_EVENTS
Sets the list of audit classes to be audited for the process. The Argument parameter
is a pointer to a list of null-terminated audit class names. The Length parameter is the
length of this list, including null bytes.

AUDIT_QSTATUS
Returns the audit status of the current process. You can only check the status of the
current process. If the ProcessID parameter is nonzero, a -1 is returned and the
errno global variable is set to EINVAL. The Length and Argument parameters are
ignored. A return value of AUDIT_SUSPEND indicates that auditing is suspended. A
return value of AUDIT_RESUME indicates normal auditing for this process.

AUDIT_STATUS
Sets the audit status of the current process. The Length parameter is ignored, and
the ProcessID parameter must be zero. If Argumentis AUDIT_SUSPEND, the audit
status is set to suspend event auditing for this process. If the Argument parameter is
AUDIT_RESUME, the audit status is set to resume event auditing for this process.

A character pointer for the audit class buffer for an AUDIT_EVENT or AUDIT_QEVENTS value

of the Command parameter or an integer defining the audit status to be set for an

AUDIT_STATUS operation.

Size of the audit class character buffer.

The auditproc subroutine returns the following values upon successful completion:

* The previous audit status (AUDIT_SUSPEND or AUDIT_RESUME), if the call queried or set the audit
status (the Command parameter specified AUDIT_QSTATUS or AUDIT_STATUS)

* Avalue of 0 if the call queried or set audit events (the Command parameter specified
AUDIT_QEVENTS or AUDIT_EVENTS)

Error Codes

If the auditproc subroutine fails if one or more of the following are true:

EINVAL
EINVAL

EINVAI

ENOSPC

An invalid value was specified for the Command parameter.

The Command parameter is set to the AUDIT_QSTATUS or AUDIT_STATUS value and the
pid value is nonzero.

The Command parameter is set to the AUDIT_STATUS value and the Argument parameter
is not set to AUDIT_SUSPEND or AUDIT_RESUME.

The Command parameter is AUDIT_QEVENTS, and the buffer size is insufficient. In this
case, the first word of the Argument parameter is set to the required size.

108 Technical Reference, Volume 1: Base Operating System and Extensions

EFAULT The Command parameter is AUDIT_QEVENTS or AUDIT_EVENTS and the Argument
parameter points to a location outside of the process’ allocated address space.

ENOMEM Memory allocation failed.

EPERM The caller does not have root user authority.

Related Information

The audit (“audit Subroutine” on page 96) subroutine, auditbin (“‘auditbin Subroutine” on page 98)
subroutine, auditevents (‘auditevents Subroutine” on page 100) subroutine, auditlog (‘auditiog|
[Subroutine” on page 102) subroutine, auditobj (“‘auditobj Subroutine” on page 103) subroutine, auditwrite
(‘auditwrite Subroutine” on page 110) subroutine.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

auditread, auditread_r Subroutines

Purpose
Reads an audit record.

Library
Security Library (libc.a)

Syntax

#include <sys/audit.h>

#include <stdio.h>

char *auditread (|FilePointer], JuditRecord)
FILE *FilePointer;

struct aud_rec *AuditRecord;

char *auditread_r ([FilePointer|, WuditRecord], |RecordSize|, |StreamInfo])
FILE *FilePointers;

struct aud_rec *AuditRecord;

size_t RecordSize;

void **StreamInfo;

Description

The auditread subroutine reads the next audit record from the specified file descriptor. Bins on this input
stream are unpacked and uncompressed if necessary.

The auditread subroutine can not be used on more than one FilePointer as the results can be
unpredictable. Use the auditread_r subroutine instead.

The auditread_r subroutine reads the next audit from the specified file descriptor. This subroutine is
thread safe and can be used to handle multiple open audit files simultaneously by multiple threads of
execution.

The auditread_r subroutine is able to read multiple versions of audit records. The version information
contained in an audit record is used to determine the correct size and format of the record. When an input
record header is larger than AuditRecord, an error is returned. In order to provide for binary compatibility
with previous versions, if RecordSize is the same size as the original (struct aud_rec), the input record is
converted to the original format and returned to the caller.

Base Operating System (BOS) Runtime Services (A-P) 109

Parameters

FilePointer Specifies the file descriptor from which to read.

AuditRecord Specifies the buffer to contain the header. The first short in this buffer must contain a valid
number for the header.

RecordSize The size of the buffer referenced by AuditRecord.

Streaminfo A pointer to an opaque datatype used to hold information related to the current value of

Return Values

FilePointer. For each new value of FilePointer, a new Streaminfo pointer must be used.
Streaminfo must be initialized to NULL by the user and is initialized by auditread_r when
first used. When FilePointer has been closed, the value of Streaminfo can be passed to
the free subroutine to be deallocated.

If the auditread subroutine completes successfully, a pointer to a buffer containing the tail of the audit
record is returned. The length of this buffer is returned in the ah_length field of the header file. If this
subroutine is unsuccessful, a null pointer is returned and the errno global variable is set to indicate the

error.

Error Codes
The auditread subroutine fails if one or more of the following is true:

EBADF The FilePointer value is not valid.
ENOSPC The auditread subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the read subroutine.

Related Information
The auditpack (“auditpack Subroutine” on page 106) subroutine.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

auditwrite Subroutine

Purpose
Writes an audit record.

Library
Security Library (libc.a)

Syntax

#include <sys/audit.h>
#include <stdio.h>

int auditwrite (Event, Result, Bufferl, Lengthl, Buffer?, Length2, ...)

110 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The auditwrite subroutine builds the tail of an audit record and then writes it with the auditlog subroutine.
The tail is built by gathering the specified buffers. The last buffer pointer must be a null.

If the auditwrite subroutine is to be called from a program invoked from thefile, the

subroutine should be called first to establish the process’ credentials.

Parameters

Event Specifies the name of the event to be logged.

Result Specifies the audit status of the event. Valid values are defined in the sys/audit.h file
and are listed in the auditlog subroutine.

Buffer1, Buffer2 Specifies the character buffers containing audit tail information. Note that numerical
values must be passed by reference. The correct size can be computed with the
sizeof C function.

Length1, Length2 Specifies the lengths of the corresponding buffers.

Return Values

If the auditwrite subroutine completes successfully, a value of 0 is returned. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The auditwrite subroutine fails if the following is true:

ENOSPC The auditwrite subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the auditlog subroutine.

Related Information
The auditlog (“auditiog Subroutine” on page 102) subroutine, subroutine.

The file.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

authenticate Subroutine

Purpose
Verifies a user's name and password.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int authenticate (UserName], [Response|, |Reenter], WMessagel)
char *UserName;

char *Response;

int *Reenter;

char **Message;

Base Operating System (BOS) Runtime Services (A-P) 111

Description

The authenticate subroutine maintains requirements users must satisfy to be authenticated to the system.
It is a recallable interface that prompts for the user's name and password. The user must supply a
character string at the prompt issued by the Message parameter. The Response parameter returns the
user’s response to the authenticate subroutine. The calling program makes no assumptions about the
number of prompt messages the user must satisfy for authentication.

The Reenter parameter indicates when a user has satisfied all prompt messages. The parameter remains
nonzero until a user has passed all prompts. After the returned value of Reenter is 0, the return code
signals whether authentication has succeeded or failed. When progressing through prompts for a user, the
value of Reenter must be maintained by the caller between invocations of authenticate.

The authenticate subroutine ascertains the authentication domains the user can attempt. The subroutine
reads the SYSTEM line from the user’s stanza in the /etc/security/user file. Each token that appears in
the SYSTEM line corresponds to a method that can be dynamically loaded and processed. Likewise, the
system can provide multiple or alternate authentication paths.

The authenticate routine maintains internal state information concerning the next prompt message
presented to the user. If the calling program supplies a different user name before all prompts are
complete for the user, the internal state information is reset and prompt messages begin again. The calling
program maintains the value of the Reenter parameter while processing prompts for a given user.

If the user has no defined password, or the SYSTEM grammar explicitly specifies no authentication
required, the user is not required to respond to any prompt messages. Otherwise, the user is always
initially prompted to supply a password.

The authenticate subroutine can be called initially with the cleartext password in the Response parameter.
If the user supplies a password during the initial invocation but does not have a password, authentication
fails. If the user wants the authenticate subroutine to supply a prompt message, the Response parameter
is a null pointer on initial invocation.

The authenticate subroutine sets the AUTHSTATE environment variable used by name resolution
subroutines, such as the getpwnam subroutine. This environment variable indicates the registry to which
to user authenticated. Values for the AUTHSTATE environment variable include DCE, compat, and token
names that appear in a SYSTEM grammar. A null value can exist if the cron daemon or other utilities that
do not require authentication is called.

Parameters

UserName Points to the user's name that is to be authenticated.

Response Specifies a character string containing the user’s response to an authentication prompt.
Reenter Points to a Boolean value that signals whether the authenticate subroutine has completed

processing. If the Reenter parameter is a nonzero value, the authenticate subroutine expects the
user to satisfy the prompt message provided by the Message parameter. If the Reenter parameter is
0, the authenticate subroutine has completed processing.

Message Points to a pointer that the authenticate subroutine allocates memory for and fills in. This string is
suitable for printing and issues prompt messages (if the Reenter parameter is a nonzero value). It
also issues informational messages such as why the user failed authentication (if the Reenter
parameter is 0). The calling application is responsible for freeing this memory.

Return Values

Upon successful completion, the authenticate subroutine returns a value of 0. If this subroutine fails, it
returns a value of 1.

112 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes
The authenticate subroutine is unsuccessful if one of the following values is true:

ENOENT Indicates that the user is unknown to the system.
ESAD Indicates that authentication is denied.

EINVAL Indicates that the parameters are not valid.
ENOMEM Indicates that memory allocation (malloc) failed.

Note: The DCE mechanism requires credentials on successful authentication that apply only to the

authenticate process and its children.

Related Information
The ckuserlD (‘ckuserlD Subroutine” on page 164) subroutine.

authenticatex Subroutine

Purpose
Verifies a user's name and password.

Library
Security Library (libc.a)

Syntax

#include <usersec.h>

int authenticatex (UserName, Response, Reenter, Message, State)

char HUserName|;

char #Responsel;

Description

The authenticatex subroutine maintains requirements that users must satisfy to be authenticated to the
system. It is a recallable interface that prompts for the user's name and password. The user must supply a
character string at the prompt issued by the Message parameter. The Response parameter returns the
user’s response to the authenticatex subroutine. The calling program makes no assumptions about the
number of prompt messages the user must satisfy for authentication. The authenticatex subroutine
maintains information about the results of each part of the authentication process in the State parameter.
This parameter can be shared with the chpassx, loginrestrictionsx and passwdexpiredx subroutines.
The proper sequence of library routines for authenticating a user in order to create a new session is:

1.

Call the loginrestrictionsx subroutine to determine which administrative domains allow the user to log
in.

Call the authenticatex subroutine to perform authentication using those administrative domains that
grant login access.

Call the passwdexpiredx subroutine to determine if any of the passwords used during the
authentication process have expired and must be changed in order for the user to be granted access.
If the passwdexpiredx subroutine indicated that one or more passwords have expired and must be
changed by the user, call the chpassx subroutine to update all of the passwords that were used for
the authentication process.

Base Operating System (BOS) Runtime Services (A-P) 113

The Reenter parameter remains a nonzero value until the user satisfies all prompt messages or answers
incorrectly. When the Reenter parameter is 0, the return code signals whether authentication passed or
failed. The value of the Reenter parameter must be 0 on the initial call. A nonzero value for the Reenter
parameter must be passed to the authenticatex subroutine on subsequent calls. A new authentication can
be begun by calling the authenticatex subroutine with a 0 value for the Reenter parameter or by using a
different value for UserName.

The State parameter contains information about the authentication process. The State parameter from an
earlier call to loginrestrictionsx can be used to control how authentication is performed. Administrative
domains that do not permit the user to log in cause those administrative domains to be ignored during
authentication even if the user has the correct authentication information.

The authenticatex subroutine ascertains the authentication domains the user can attempt. The subroutine
uses the SYSTEM attribute for the user. Each token that is displayed in the SYSTEM line corresponds to a
method that can be dynamically loaded and processed. Likewise, the system can provide multiple or
alternate authentication paths.

The authenticatex subroutine maintains internal state information concerning the next prompt message
presented to the user. If the calling program supplies a different user name before all prompts are
complete for the user, the internal state information is reset and prompt messages begin again. The
authenticatex subroutine requires that the State parameter be initialized to reference a null value when
changing user names or that the State parameter from an earlier call to loginrestrictionsx for the new
user be provided.

If the user has no defined password, or the SYSTEM grammar explicitly specifies no authentication
required, the user is not required to respond to any prompt messages. Otherwise, the user is always
initially prompted to supply a password.

The authenticatex subroutine can be called initially with the cleartext password in the Response
parameter. If the user supplies a password during the initial invocation but does not have a password,
authentication fails. If the user wants the authenticatex subroutine to supply a prompt message, the
Response parameter is a null pointer on initial invocation.

The authenticatex subroutine sets the AUTHSTATE environment variable used by name resolution
subroutines, such as the getpwnam subroutine. This environment variable indicates the first registry to
which the user authenticated. Values for the AUTHSTATE environment variable include DCE, compat, and
token names that appear in a SYSTEM grammar. A null value can exist if the eron daemon or another
utility that does not require authentication is called.

Parameters

Message Points to a pointer that the authenticatex subroutine allocates memory for and fills in. This
string is suitable for printing and issues prompt messages (if the Reenter parameter is a
nonzero value). It also issues informational messages, such as why the user failed
authentication (if the Reenter parameter is 0). The calling application is responsible for
freeing this memory.

Reenter Points to an integer value that signals whether the authenticatex subroutine has completed
processing. If the integer referenced by the Reenter parameter is a nonzero value, the
authenticatex subroutine expects the user to satisfy the prompt message provided by the
Message parameter. If the integer referenced by the Reenter parameter is 0, the
authenticatex subroutine has completed processing. The initial value of the integer
referenced by Reenter must be 0 when the authenticatex function is initially invoked and
must not be modified by the calling application until the authenticationx subroutine has
completed processing.

Response Specifies a character string containing the user’s response to an authentication prompt.

114 Technical Reference, Volume 1: Base Operating System and Extensions

State Points to a pointer that the authenticatex subroutine allocates memory for and fills in. The
State parameter can also be the result of an earlier call to the loginrestrictionsx subroutine.
This parameter contains information about the results of the authentication process for each
term in the user's SYSTEM attribute. The calling application is responsible for freeing this
memory when it is no longer needed for a subsequent call to the passwdexpiredx or
chpassx subroutines.

UserName Points to the user’'s name that is to be authenticated.

Return Values

Upon successful completion, the authenticatex subroutine returns a value of 0. If this subroutine fails, it
returns a value of 1.

Error Codes
The authenticatex subroutine is unsuccessful if one of the following values is true:

EINVAL The parameters are not valid.
ENOENT The user is unknown to the system.
ENOMEM Memory allocation (malloc) failed.
ESAD Authentication is denied.

Note: Additional information about the behavior of a loadable authentication module can be found in the
documentation for that module.

Related Information

The [‘authenticate Subroutine” on page 111)|‘chpassx Subroutine” on page 154 |[‘loginrestrictionsx|
[Subroutine” on page 742 |[‘passwdexpiredx Subroutine” on page 933

basename Subroutine

Purpose
Return the last element of a path name.

Library
Standard C Library (libc.a)

Syntax

#include <libgen.h>

char *basename (char *path)

Description

Given a pointer to a character string that contains a path name, the basename subroutine deletes trailing
"[" characters from path, and then returns a pointer to the last component of path. The "/" character is
defined as trailing if it is not the first character in the string.

If path is a null pointer or points to an empty string, a pointer to a static constant ".” is returned.

Return Values
The basename function returns a pointer to the last component of path.

Base Operating System (BOS) Runtime Services (A-P) 115

The basename function returns a pointer to a static constant ".” if path is a null pointer or points to an
empty string.

The basename function may modify the string pointed to by path and may return a pointer to static
storage that may then be overwritten by a subsequent call to the basename subroutine.

Examples

Input string Output string
"lusr/lib” "lib”

"fusr/" "usr”

H/H H/H

Related Information
The dirname (‘dirname Subroutine” on page 209) subroutine.

bcopy, bcmp, bzero or ffs Subroutine

Purpose
Performs bit and byte string operations.

Library
Standard C Library (libc.a)

Syntax

#include <strings.h>

void bcopy (Source, Destination, Length)
const void *Source,

char *Destination;

size_t Length;

int becmp (String1, String2, Length)
const void *String1, *String2;
size_t Length;

void bzero (String,Length)

char *String;

int Length,;

int ffs (/ndex)
int /ndex;

Description
Note: The bcopy subroutine takes parameters backwards from the strcpy subroutine.

The bcopy, becmp, and bzero subroutines operate on variable length strings of bytes. They do not check
for null bytes as do the string routines.

The becopy subroutine copies the value of the Length parameter in bytes from the string in the Source
parameter to the string in the Destination parameter.

116 Technical Reference, Volume 1: Base Operating System and Extensions

The bemp subroutine compares the byte string in the String1 parameter against the byte string of the
String2 parameter, returning a zero value if the two strings are identical and a nonzero value otherwise.
Both strings are assumed to be Length bytes long.

The bzero subroutine zeroes out the string in the String parameter for the value of the Length parameter
in bytes.

The ffs subroutine finds the first bit set in the Index parameter passed to it and returns the index of that
bit. Bits are numbered starting at 1. A return value of 0 indicates that the value passed is 0.

Related Information

The memcmp, memccpy, memchr, memcpy, memmove, memset (‘memccpy, memchr, memcmp |
[memcpy, memset or memmove Subroutine” on page 793) subroutines, [strcat, strncat, strxfrm, strcpy)|
[strncpy, or strdup| subroutine, [stremp, strncmp, strcasecmp, strncasecmp, or strcoll subroutine,
[strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, or strtok| subroutine, |swat_)| subroutine.

[List of String Manipulation Subroutines| and [Subroutines, Example Programs, and Libraries|in AlX 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

bessel: jO, j1, jn, y0, y1, or yn Subroutine

Purpose
Computes Bessel functions.

Libraries

IEEE Math Library (1ibm.a)
or System V Math Library (libmsaa.a)

Syntax

#include <math.h>

double jO (x)
double El;

double jl1 (x)
double x;

double jn (n, x)
int s
double x;

double y0 (x)
double x;

double yl1 (x)
double x;

double yn (n, x)
int n;
double x;

Description
Bessel functions are used to compute wave variables, primarily in the field of communications.

The jO subroutine and j1 subroutine return Bessel functions of x of the first kind, of orders 0 and 1,
respectively. The jn subroutine returns the Bessel function of x of the first kind of order n.

Base Operating System (BOS) Runtime Services (A-P) 117

The y0 subroutine and y1 subroutine return the Bessel functions of x of the second kind, of orders 0 and
1, respectively. The yn subroutine returns the Bessel function of x of the second kind of order n. The value
of x must be positive.

Note: Compile any routine that uses subroutines from the libm.a library with the -Im flag. To compile the
jo.c file, for example:

cc jo.c -Im
Parameters
X Specifies some double-precision floating-point value.
n Specifies some integer value.

Return Values

When using libm.a (-Im), if x is negative, y0, y1, and yn return the value NaNQ. If x is 0, y0, y1, and yn
return the value -HUGE_VAL.

When using libmsaa.a (-Imsaa), values too large in magnitude cause the functions jo, j1, y0, and y1 to
return 0 and to set the errno global variable to ERANGE. In addition, a message indicating TLOSS error is
printed on the standard error output.

Nonpositive values cause y0, y1, and yn to return the value -HUGE and to set the errno global variable to
EDOM. In addition, a message indicating argument DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the matherr subroutine when using libmsaa.a
(-lmsaa).

Related Information
The matherr (‘matherr Subroutine” on page 775) subroutine.

[Subroutines Overview|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

bindprocessor Subroutine

Purpose
Binds kernel threads to a processor.

Library
Standard C library (libc.a)

Syntax

#include <sys/processor.h>

int bindprocessor (, ,
int What;

int Who;

cpu_t Where;

118 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The bindprocessor subroutine binds a single kernel thread, or all kernel threads in a process, to a
processor, forcing the bound threads to be scheduled to run on that processor. It is important to
understand that a process itself is not bound, but rather its kernel threads are bound. Once kernel threads
are bound, they are always scheduled to run on the chosen processor, unless they are later unbound.
When a new thread is created, it has the same bind properties as its creator. This applies to the initial
thread in the new process created by the fork subroutine: the new thread inherits the bind properties of
the thread which called fork. When the exec subroutine is called, thread properties are left unchanged.

The bindprocessor subroutine will fail if the target process has a Resource Attachment.
Programs that use processor bindings should become Dynamic Logical Partitioning (DLPAR) aware. Refer

to [Dynamic Logical Partitioning|in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs for more information.

Parameters
What Specifies whether a process or a thread is being bound to a processor. The What parameter can
take one of the following values:

BINDPROCESS
A process is being bound to a processor.

BINDTHREAD
A thread is being bound to a processor.
Who Indicates a process or thread identifier, as appropriate for the What parameter, specifying the
process or thread which is to be bound to a processor.
Where If the Where parameter is a bind CPU identifier, it specifies the processor to which the process or

thread is to be bound. A value of PROCESSOR_CLASS_ANY unbinds the specified process or
thread, which will then be able to run on any processor.

Thesubroutine can be used to retrieve information about the number of online processors
in the system.

Return Values

On successful completion, the bindprocessor subroutine returns 0. Otherwise, a value of -1 is returned,
and the errno global variable is set to indicate the error.

Error Codes
The bindprocessor subroutine is unsuccessful if one of the following is true:

EINVAL The What parameter is invalid, or the Where parameter indicates an invalid processor number or
a processor class which is not currently available.

ESRCH The specified process or thread does not exist.

EPERM The caller does not have root user authority, and the Who parameter specifies either a process,

or a thread belonging to a process, having a real or effective user ID different from that of the
calling process. The target process has a Resource Attachment.

Related Information
The command.

The exec (‘exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)
subroutine, fork (‘fork, f_fork, or vfork Subroutine” on page 284) subroutine, |s¥sconf| subroutine,

ﬂhread_selﬂ subroutine.

Base Operating System (BOS) Runtime Services (A-P) 119

[Dynamic Logical Partitioning|in AlIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

brk or sbrk Subroutine

Purpose
Changes data segment space allocation.

Library
Standard C Library (libc.a)

Syntax

#include <unistd .h>

int brk (|[EndDataSegment)

char *EndDataSegment ;

void *sbrk (|Increment])

intptr_t Increment;

Description

The brk and sbrk subroutines dynamically change the amount of space allocated for the data segment of
the calling process. (For information about segments, see the exec subroutine. For information about the
maximum amount of space that can be allocated, see the ulimit and getrlimit subroutines.)

The change is made by resetting the break value of the process, which determines the maximum space
that can be allocated. The break value is the address of the first location beyond the current end of the
data region. The amount of available space increases as the break value increases. The available space
is initialized to a value of 0 at the time it is used. The break value can be automatically rounded up to a
size appropriate for the memory management architecture.

The brk subroutine sets the break value to the value of the EndDataSegment parameter and changes the
amount of available space accordingly.

The sbrk subroutine adds to the break value the number of bytes contained in the Increment parameter
and changes the amount of available space accordingly. The Increment parameter can be a negative
number, in which case the amount of available space is decreased.

Parameters
EndDataSegment Specifies the effective address of the maximum available data.
Increment Specifies any integer.

Return Values

Upon successful completion, the brk subroutine returns a value of 0, and the sbrk subroutine returns the
old break value. If either subroutine is unsuccessful, a value of -1 is returned and the errno global variable
is set to indicate the error.

Error Codes

The brk subroutine and the sbrk subroutine are unsuccessful and the allocated space remains unchanged
if one or more of the following are true:

120 Technical Reference, Volume 1: Base Operating System and Extensions

ENOMEM The requested change allocates more space than is allowed by a system-imposed
maximum. (For information on the system-imposed maximum on memory space, see the
ulimit system call.)

ENOMEM The requested change sets the break value to a value greater than or equal to the start
address of any attached shared-memory segment. (For information on shared memory
operations, see the shmat subroutine.)

Related Information

The exec (‘exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)
subroutines, getrlimit (]“getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine” on page 415[)
subroutine, |[shmat| subroutine, |shmdt| subroutine, |u|imi§| subroutine.

The _end (*_end, _etext, or _edata Identifier’ on page 220), _etext (* end, _etext, or _edata Identifier” on|
lpage 220), or _edata (‘_end, _etext, or _edata Identifier” on page 220) identifier.

[Subroutine Overview|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

bsearch Subroutine

Purpose
Performs a binary search.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

void *bsearch ([keyl, [Basel, [umberoftlements|, [Size], [ComparisonPointer]

const void *Key;

const void *Base;

size_t NumberOfElements;

size_t Size;

int (*ComparisonPointer) (const void *, const void *);

Description
The bsearch subroutine is a binary search routine.

The bsearch subroutine searches an array of NumberOfElements objects, the initial member of which is
pointed to by the Base parameter, for a member that matches the object pointed to by the Key parameter.
The size of each member in the array is specified by the Size parameter.

The array must already be sorted in increasing order according to the provided comparison function
ComparisonPointer parameter.

Parameters

Key Points to the object to be sought in the array.

Base Points to the element at the base of the table.
NumberOfElements Specifies the number of elements in the array.

Base Operating System (BOS) Runtime Services (A-P) 121

ComparisonPointer Points to the comparison function, which is called with two arguments that point to
the Key parameter object and to an array member, in that order.
Size Specifies the size of each member in the array.

Return Values

If the Key parameter value is found in the table, the bsearch subroutine returns a pointer to the element
found.

If the Key parameter value is not found in the table, the bsearch subroutine returns the null value. If two
members compare as equal, the matching member is unspecified.

For the ComparisonPointer parameter, the comparison function compares its parameters and returns a
value as follows:

 If the first parameter is less than the second parameter, the ComparisonPointer parameter returns a
value less than 0.

 If the first parameter is equal to the second parameter, the ComparisonPointer parameter returns a
value of 0.

 If the first parameter is greater than the second parameter, the ComparisonPointer parameter returns a
value greater than 0.

The comparison function need not compare every byte, so arbitrary data can be contained in the elements
in addition to the values being compared.

The Key and Base parameters should be of type pointer-to-element and cast to type pointer-to-character.
Although declared as type pointer-to-character, the value returned should be cast into type
pointer-to-element.

Related Information

The hsearch (‘hsearch, hcreate, or hdestroy Subroutine” on page 517) subroutine, Isearch
find Subroutine” on page 750) subroutine, lasort| subroutine.

Knuth, Donald E.; The Art of Computer Programming, Volume 3. Reading, Massachusetts,
Addison-Wesley, 1981.

[Searching and Sorting Example Program| and [Subroutines Overview|in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

btowc Subroutine

Purpose
Single-byte to wide-character conversion.

Library
Standard Library (libc.a)

Syntax

#include <stdio.h>
#include <wchar.h>

wint_t btowc (intc);

122 Technical Reference, Volume 1: Base Operating System and Extensions

Description
The btfowc function determines whether ¢ constitutes a valid (one-byte) character in the initial shift state.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values

The btowc function returns WEOF if ¢ has the value EOF or if (unsigned char) ¢ does not constitute a
valid (one-byte) character in the initial shift state. Otherwise, it returns the wide-character representation of
that character.

Related Information
The subroutine.

buildproclist Subroutine

Purpose
Retrieves a list of process transaction records based on the criteria specified.

Library
The libaacct.a library.

Syntax

#define <sys/aacct.h>

int buildproclist(crit|, |crit list|, | crit], |p list], [sublist]
int crit;

union proc_crit *crit_list;

int n_crit;

struct aacct_tran_rec *p_list;

struct aacct_tran_rec *xsublist;

Description

The buildproclist subroutine retrieves a subset of process transaction records from the master process
transaction records that are given as input based on the selection criteria provided. This selection criteria
can be one of the following values defined in sys/aacct.h:

CRIT_UID

CRIT_GID

CRIT_PROJ

CRIT_CMD

For example, if the criteria is specified as CRIT_UID, the list of process transaction records for specific
user IDs will be retrieved. The list of user IDs are passed through the crit_list argument of type union

proc_crit. Based on the specified criteria, the caller has to pass an array of user IDs, group IDs, project
IDs or command names in this union.

Usually, the master list of transaction records is obtained by a prior call to the getproclist subroutine.

Parameters

crit Integer value representing the selection criteria for the process records.

crit_list Pointer to union proc_crit where the data for the selection criteria is passed.

n_crit Number of elements to be considered for the selection, such as the number of user IDs.
p_list Master list of process transaction records.

Base Operating System (BOS) Runtime Services (A-P) 123

sublist Pointer to the linked list of aacct_tran_rec structures, which hold the retrieved process
transaction records.

Security
No restrictions. Any user can call this function.

Return Values

0 The call to the subroutine was successful.
-1 The call to the subroutine failed.

Error Codes

EINVAL The passed pointer is NULL.
ENOMEM Insufficient memory.
EPERM Permission denied. Unable to read the data file.

Related Information
The [‘buildproclist Subroutine” on page 123 [[‘buildtranlist or freetranlist Subroutine,[‘getfilehdr Subroutine’]

|on page 359.|
The command.

[Understanding the Advanced Accounting Subsystem|

buildtranlist or freetranlist Subroutine

Purpose
Read the advanced accounting records from the advanced accounting data file.

Library
The libaacct.a library.

Syntax

#define <sys/aacct.h>

buildtranlist(filename|, [trid[]1, htrids|, lbegin time|, lend timel, [tran list)
char *filename;

unsigned int trid[];

unsigned int ntrids;

long long begin_time;

long long end time;

struct aacct_tran_rec *xtran_list;

freetranlist(tran_list)

struct aacct_tran_rec *tran_list;

Description

The buildtranlist subroutine retrieves the transaction records of the specified transaction type from the
accounting data file. The required transaction IDs are passed as arguments, and these IDs are defined in
sys/aacct.h. The list of transaction records are returned to the calling program through the tran_list pointer
argument.

124 Technical Reference, Volume 1: Base Operating System and Extensions

This API can be called multiple times with different accounting data file names to generate a consolidated
list of transaction records from multiple data files. It appends the new file data to the end of the linked list
pointed to by the tran_list argument. In addition, it internally sorts the transaction records based on the
time of transaction so users can get a time-sorted list of transaction records from this routine. This
subroutine can also be used to retrieve the intended transaction records for a particular interval of time by
specifying the begin and end times of this interval as arguments.

The freetranlist subroutine frees the memory allocated to these transaction records. It can be used to
deallocate memory that has been allocated to the transaction record lists created by routines such as
buildtranlist, getproclist, getlparlist, and getarmlist.

Parameters

begin_time Specifies the start timestamp for collecting records in a particular intervals. The input is
in seconds since EPOCH. Specifying -1 retrieves all the records.

end_time Specifies the end timestamp for collecting records in a particular intervals. The input is
in seconds since EPOCH. Specifying -1 retrieves all the records.

filename Name of the advanced accounting data file.

ntrids Count of transaction IDs passed in the array trid.

tran_list Pointer to the linked list of aacct_tran_rec structures that are to be returned to the
caller or freed.

trid An array of transaction record type identifiers.

Security

No restrictions. Any user can call this function.

Return Values

0 The call to the subroutine was successful.
-1 The call to the subroutine failed.

Error Codes

EINVAL The passed pointer is NULL.

ENOENT Specified data file does not exist.

ENOMEM Insufficient memory.

EPERM Permission denied. Unable to read the data file.

Related Information
The [‘buildproclist Subroutine” on page 123 [‘getproclist, getlparlist, or getarmlist Subroutine” on page 405

[Understanding the Advanced Accounting Subsystem]

_check_lock Subroutine

Purpose
Conditionally updates a single word variable atomically.

Library
Standard C library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 125

Syntax

#include <sys/atomic_op.h>

boolean_t _check_lock (word addr|, |loid vall, |new val)
atomic_p word_addr;

int old val;

int new_val;

Parameters

word_addr Specifies the address of the single word variable.

old_val Specifies the old value to be checked against the value of the single word variable.
new_val Specifies the new value to be conditionally assigned to the single word variable.
Description

The _check_lock subroutine performs an atomic (uninterruptible) sequence of operations. The
compare_and_swap subroutine is similar, but does not issue synchronization instructions and therefore is
inappropriate for updating lock words.

Note: The word variable must be aligned on a full word boundary.

Return Values

FALSE Indicates that the single word variable was equal to the old value and has been set to the new
value.

TRUE Indicates that the single word variable was not equal to the old value and has been left
unchanged.

Related Information
The _clear_lock (“_clear_lock Subroutine”) subroutine.

_clear_lock Subroutine

Purpose
Stores a value in a single word variable atomically.

Library
Standard C library (libc.a)

Syntax

#include <sys/atomic_op.h>

void _clear lock (ord addr], [value)
atomic_p word addr;

int value

Parameters

word_addr Specifies the address of the single word variable.
value Specifies the value to store in the single word variable.

126 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The _clear_lock subroutine performs an atomic (uninterruptible) sequence of operations.

This subroutine has no return values.

Note: The word variable must be aligned on a full word boundary.

Related Information

The _check_lock (“_check_lock Subroutine” on page 125) subroutine.

cabs, cabsf, or cabsl Subroutine

Purpose
Returns a complex absolute value.

Syntax

#include <complex.h>

double cabs dEb
double complex z;

float cabsf (2)
float complex z;

long double cabsl (z)
long double complex z;

Description

The cabs, cabsf, or cabsl subroutines compute the complex absolute value (also called norm, modulus,

or magnitude) of the z parameter.

Parameters

z Specifies the value to be computed.

Return Values
Returns the complex absolute value.

cacos, cacosf, or cacosl Subroutine

Purpose
Computes the complex arc cosine.

Syntax

#include <complex.h>

double complex cacos (Eb
double complex z;

float complex cacosf (z)

Base Operating System (BOS) Runtime Services (A-P)

127

float complex z;

long double complex cacosl (z)
Tong double complex z;

Description

The cacos, cacosf, or cacosl subroutine computes the complex arc cosine of z, with branch cuts outside
the interval [-1, +1] along the real axis.

Parameters

z Specifies the value to be computed.

Return Values

The cacos, cacosf, or cacosl subroutine returns the complex arc cosine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [0, pi] along the real axis.

cacosh, cacoshf, or cacoshl Subroutines

Purpose
Computes the complex arc hyperbolic cosine.

Syntax

#include <complex.h>

double complex cacosh @)
double complex z;

float complex cacoshf (z)
float complex z;

Tong double complex cacoshl (z)
Tong double complex z;

Description

The cacosh, cacoshf, or cacoshl subroutine computes the complex arc hyperbolic cosine of the z
parameter, with a branch cut at values less than 1 along the real axis.

Parameters

z Specifies the value to be computed.

Return Values

The cacosh, cacoshf, or cacoshl subroutine returns the complex arc hyperbolic cosine value, in the
range of a half-strip of non-negative values along the real axis and in the interval [-i pi , +i pi] along the
imaginary axis.

Related Information
The [‘ccosh, ccoshf, or ccoshl Subroutine” on page 137

128 Technical Reference, Volume 1: Base Operating System and Extensions

carg, cargf, or cargl Subroutine

Purpose
Returns the complex argument value.

Syntax

#include <complex.h>

double carg @)
double complex z;

float cargf (z)
float complex z;

long double cargl (z)
Tong double complex z;

Description

The carg, cargf, or cargl subroutine computes the argument (also called phase angle) of the z parameter,
with a branch cut along the negative real axis.

Parameters

z Specifies the value to be computed.

Return Values
The carg, cargf, or cargl subroutine returns the value of the argument in the interval [-pi, +pi].

Related Information

The [‘cimag, cimagf, or cimagl Subroutine” on page 161 [‘conj, conif, or conjl Subroutine” on page 180, and
[‘cproj, cprojf, or cprojl Subroutine” on page 187 |

casin, casinf, or casinl Subroutine

Purpose
Computes the complex arc sine.

Syntax

#include <complex.h>

double complex casin dEb
double complex z;

float complex casinf (z)
float complex z;

long double complex casinl (z)
long double complex z;

Description

The casin, casinf, or casinl subroutine computes the complex arc sine of the z parameter, with branch
cuts outside the interval [-1, +1] along the real axis.

Base Operating System (BOS) Runtime Services (A-P) 129

Parameters

z Specifies the value to be computed.

Return Values

The casin, casinf, or casinl subroutine returns the complex arc sine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [-pi/2, +pi/2] along the real axis.

Related Information
The [‘csin, csinf, or csinl Subroutine” on page 191

casinh, casinfh, or casinlh Subroutine

Purpose
Computes the complex arc hyperbolic sine.

Syntax

#include <complex.h>

double complex casinh @)
double complex z;

float complex casinhf (z)
float complex z;

lTong double complex casinhl (z)
long double complex z;

Description

The casinh, casinfh, and casinlh subroutines compute the complex arc hyperbolic sine of the z
parameter, with branch cuts outside the interval [-i, +i] along the imaginary axis.

Parameters

z Specifies the value to be computed.

Return Values

The casinh, casinfh, and casinlh subroutines return the complex arc hyperbolic sine value, in the range
of a strip mathematically unbounded along the real axis and in the interval [-i pi/2, +i pi/2] along the
imaginary axis.

Related Information
The [‘casin, casinf, or casinl Subroutine” on page 129

catan, catanf, or catanl Subroutine

Purpose
Computes the complex arc tangent.

130 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <complex.h>

double complex catan (El)
double complex z;

float complex catanf (z)
float complex z;

long double complex catanl (z)
long double complex z;

Description

The catan, catanf, and catanl subroutines compute the complex arc tangent of z, with branch cuts
outside the interval [-/, +i] along the imaginary axis.

Parameters

z Specifies the value to be computed.

Return Values

The catan, catanf, and catanl subroutines return the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [-pi/2, +pi/2] along the real axis.

Related Information
[‘catanh, catanhf, or catanhl Subroutine’]

catanh, catanhf, or catanhl Subroutine

Purpose
Computes the complex arc hyperbolic tangent.

Syntax

#include <complex.h>

double complex catanh @)
double complex z;

float complex catanhf (z)
float complex z;

long double complex catanhl (z)
Tong double complex z;

Description

The catanh, catanhf, and catanhl subroutines compute the complex arc hyperbolic tangent of z, with
branch cuts outside the interval [-1, +1] along the real axis.

Parameters

z Specifies the value to be computed.

Base Operating System (BOS) Runtime Services (A-P) 131

Return Values

The catanh, catanhf, and catanhl subroutines return the complex arc hyperbolic tangent value, in the
range of a strip mathematically unbounded along the real axis and in the interval [-i pi/2, +i pi/2] along the
imaginary axis.

Related Information
[‘catan, catanf, or catanl Subroutine” on page 130|

catclose Subroutine

Purpose
Closes a specified message catalog.

Library
Standard C Library (libc.a)

Syntax

#include <nl_types.h>

int catclose ([CatalogDescriptor]
nl_catd CatalogDescriptor;

Description

The catclose subroutine closes a specified message catalog. If your program accesses several message
catalogs and you reach the maximum number of opened catalogs (specified by the NL_MAXOPEN
constant), you must close some catalogs before opening additional ones. If you use a file descriptor to
implement the nl_catd data type, the catclose subroutine closes that file descriptor.

The catclose subroutine closes a message catalog only when the number of calls it receives matches the
total number of calls to the catopen subroutine in an application. All message buffer pointers obtained by
prior calls to the catgets subroutine are not valid when the message catalog is closed.

Parameters

CatalogDescriptor Points to the message catalog returned from a call to the catopen subroutine.

Return Values

The catclose subroutine returns a value of 0 if it closes the catalog successfully, or if the number of calls
it receives is fewer than the number of calls to the catopen subroutine.

The catclose subroutine returns a value of -1 if it does not succeed in closing the catalog. The catclose
subroutine is unsuccessful if the number of calls it receives is greater than the number of calls to the
catopen subroutine, or if the value of the CatalogDescriptor parameter is not valid.

Related Information

The catgets (‘catgets Subroutine” on page 133) subroutine, catopen (‘catopen Subroutine” on page 134)
subroutine.

For more information about the Message Facility, see [Message Facility Overview for Programming|in A/X
5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

132 Technical Reference, Volume 1: Base Operating System and Extensions

For more information about subroutines and libraries, see [Subroutines Overview|in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

catgets Subroutine

Purpose
Retrieves a message from a catalog.

Library
Standard C Library (libc.a)

Syntax

#include <nl_types>

char xcatgets (CatalogDescriptor, SetNumber, MessageNumber, String)
nl_catd |CatalogDescriptor}s
int [SetNumber|, WessageNumber;

const char * |§tring|;

Description

The catgets subroutine retrieves a message from a catalog after a successful call to the catopen
subroutine. If the catgets subroutine finds the specified message, it loads it into an internal character
string buffer, ends the message string with a null character, and returns a pointer to the buffer.

The catgets subroutine uses the returned pointer to reference the buffer and display the message.
However, the buffer can not be referenced after the catalog is closed.

Parameters

CatalogDescriptor Specifies a catalog description that is returned by the catopen subroutine.

SetNumber Specifies the set ID.

MessageNumber Specifies the message ID. The SetNumber and MessageNumber parameters
specify a particular message to retrieve in the catalog.

String Specifies the default character-string buffer.

Return Values

If the catgets subroutine is unsuccessful for any reason, it returns the user-supplied default message
string specified by the String parameter.

Related Information

The catclose (‘catclose Subroutine” on page 132) subroutine, catopen (‘catopen Subroutine” on page]
[134) subroutine.

For more information about the Message Facility, see [Message Facility Overview for Programming|in A/X
5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

For more information about subroutines and libraries, see [Subroutines Overview|in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 133

catopen Subroutine

Purpose
Opens a specified message catalog.

Library
Standard C Library (libc.a)

Syntax

#include <n1_types.h>

nl_catd catopen ([CatalogName|, |Parameter])
const char *CatalogName;
int Parameters;

Description

The catopen subroutine opens a specified message catalog and returns a catalog descriptor used to
retrieve messages from the catalog. The contents of the catalog descriptor are complete when the catgets
subroutine accesses the message catalog. The nl_catd data type is used for catalog descriptors and is
defined in the nl_types.h file.

If the catalog file name referred to by the CatalogName parameter contains a leading / (slash), it is
assumed to be an absolute path name. If the catalog file name is not an absolute path name, the user
environment determines which directory paths to search. The NLSPATH environment variable defines the
directory search path. When this variable is used, the setlocale subroutine must be called before the
catopen subroutine.

A message catalog descriptor remains valid in a process until that process or a successful call to one of
the exec functions closes it.

You can use two special variables, %N and %L, in the NLSPATH environment variable. The %N variable
is replaced by the catalog name referred to by the call that opens the message catalog. The %L variable
is replaced by the value of the LC_MESSAGES category.

The value of the LC_MESSAGES category can be set by specifying values for the LANG, LC_ALL, or
LC_MESSAGES environment variable. The value of the LC_MESSAGES category indicates which
locale-specific directory to search for message catalogs. For example, if the catopen subroutine specifies
a catalog with the name mycmd, and the environment variables are set as follows:

NLSPATH=../%N:./%N:/system/n1s/%L/%N:/system/n1s/%N LANG=fr_FR

then the application searches for the catalog in the following order:

../mycmd

. /mycmd
/system/n1s/fr_FR/mycmd
/system/nls/mycmd

If you omit the %N variable in a directory specification within the NLSPATH environment variable, the
application assumes that it defines a catalog name and opens it as such and will not traverse the rest of
the search path.

If the NLSPATH environment variable is not defined, the catopen subroutine uses the default path. See
the [letc/environment| file for the NLSPATH default path. If the LC_MESSAGES category is set to the

134 Technical Reference, Volume 1: Base Operating System and Extensions

default value C, and the LC__ FASTMSG environment variable is set to true, then subsequent calls to the
catgets subroutine generate pointers to the program-supplied default text.

The catopen subroutine treats the first file it finds as a message file. If you specify a non-message file in a
NLSPATH, for example, /usr/bin/ls, catopen treats /usr/bin/ls as a message catalog. Thus no messages
are found and default messages are returned. If you specify /tmp in a NLSPATH, /tmp is opened and
searched for messages and default messages are displayed.

Parameters
CatalogName Specifies the catalog file to open.
Parameter Determines the environment variable to use in locating the message catalog. If the value

of the Parameter parameter is 0, use the LANG environment variable without regard to
the LC_MESSAGES category to locate the catalog. If the value of the Parameter
parameter is the NL_CAT_LOCALE macro, use the LC_MESSAGES category to locate
the catalog.

Return Values

The catopen subroutine returns a catalog descriptor. If the LC_MESSAGES category is set to the default
value C, and the LC__FASTMSG environment variable is set to true, the catopen subroutine returns a
value of -1.

If the LC_MESSAGES category is not set to the default value C but the catopen subroutine returns a
value of -1, an error has occurred during creation of the structure of the nl_catd data type or the catalog
name referred to by the CatalogName parameter does not exist.

Related Information

The catclose (‘catclose Subroutine” on page 132) subroutine, catgets (‘catgets Subroutine” on page 133)
subroutine, exec (‘exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)
subroutines, |set|oca|e| subroutine.

The file.

For more information about the Message Facility, see the [Message Facility Overview for Programming in
AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

For more information about subroutines and libraries, see the [Subroutines Overview|in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

cbrtf, cbrtl, or cbrt Subroutine

Purpose
Computes the cube root.

Syntax
#include <math.h>

float cbrtf @)
float x;

long double chrtl (x)

Base Operating System (BOS) Runtime Services (A-P) 135

Tong double x;

double cbrt (x)
double x;

Description
The cbrtf, cbrtl, and cbrt subroutines compute the real cube root of the x argument.

Parameters

X Specifies the value to be computed.

Return Values
Upon successful completion, the cbrtf, cbrtl, and cbrt subroutines return the cube root of x.

If x is NaN, an NaN is returned.

If xis £0 or +Inf, x is returned.

Related Information
in AIX 5L Version 5.3 Files Reference.

ccos, ccosf, or ccosl Subroutine

Purpose
Computes the complex cosine.

Syntax

#include <complex.h>

double complex ccos (El)
double complex z;

float complex ccosf (z)
float complex z;

long double complex ccosl (z)
Tong double complex z;

Description

The ccos, ccosf, and ccosl subroutines compute the complex cosine of z.
Parameters

z Specifies the value to be computed.

Return Values
The ccos, ccosf, and ccosl subroutines return the complex cosine value.

Related Information
[‘cacos, cacosf, or cacosl Subroutine” on page 127|

136 Technical Reference, Volume 1: Base Operating System and Extensions

ccosh, ccoshf, or ccoshl Subroutine

Purpose
Computes the complex hyperbolic cosine.

Syntax

#include <complex.h>

double complex ccosh dEb
double complex z;

float complex ccoshf (z)
float complex z;

long double complex ccoshl (z)
Tong double complex z;

Description

The ccosh, ccoshf, and ccoshl subroutines compute the complex hyperbolic cosine of z
Parameters

z Specifies the value to be computed.

Return Values
The ccosh, ccoshf, and ccoshl subroutines return the complex hyperbolic cosine value.

Related Information
[‘cacosh, cacoshf, or cacoshl Subroutines” on page 128§|

ccsidtocs or cstoccsid Subroutine

Purpose
Provides conversion between coded character set IDs (CCSID) and code set names.

Library

The iconv Library (libiconv.a)

Syntax

#include <iconv.h>

CCSID cstoccsid (* [Codeset)

const char *Codeset;

char *ccsidtocs ([CCSID)

CCSID CCSID;

Description

The cstoccsid subroutine returns the CCSID of the code set specified by the Codeset parameter. The
ccsidtocs subroutine returns the code set name of the CCSID specified by CCSID parameter. CCSIDs
are registered IBM coded character set IDs.

Base Operating System (BOS) Runtime Services (A-P) 137

Parameters

Codeset Specifies the code set name to be converted to its corresponding CCSID.
CCSID Specifies the CCSID to be converted to its corresponding code set hame.

Return Values

If the code set is recognized by the system, the estoccsid subroutine returns the corresponding CCSID.
Otherwise, null is returned.

If the CCSID is recognized by the system, the ccsidtocs subroutine returns the corresponding code set
name. Otherwise, a null pointer is returned.

Related Information

For more information about code set conversion, see [Converters Overview for Programming|in AlIX 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

The |[National Language Support Overview for Programming|in AlX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

[Subroutines Overview|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

ceil, ceilf, or ceill Subroutine

Purpose
Computes the ceiling value.

Syntax

#include <math.h>

float ceilf @)
float x;

long double ceill (x)
Tong double x;

double ceil (x)
double x;

Description

The ceilf, ceill, and ceil subroutines compute the smallest integral value not less than x.

An application wishing to check for error situations should set the errno global variable to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

X Specifies the smallest integral value to be computed.

138 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, the ceilf, ceill , and ceil subroutines return the smallest integral value not
less than x, expressed as a type float, long double, or double, respectively.

If xis NaN, a NaN is returned.
If xis £0 or =Inf, x is returned.

If the correct value would cause overflow, a range error occurs and the ceilf, ceill, and ceil subroutines
return the value of the macro HUGE_VALF, HUGE_VALL, and HUGE_VAL, respectively.

Related Information

“feclearexcept Subroutine” on page 259 ||‘fetestexcept Subroutine” on page 267 ||‘floor, floorf, floorl |
nearest, trunc, itrunc, or uitrunc Subroutine” on page 271 |and|[‘class, _class, finite, isnan, or unordered|
Subroutines” on page 165,

in AIX 5L Version 5.3 Files Reference.

cexp, cexpf, or cexpl Subroutine

Purpose
Performs complex exponential computations.

Syntax

#include <complex.h>

double complex cexp (Eb
double complex z;

float complex cexpf (z)
float complex z;

long double complex cexpl (z)
Tong double complex z;

Description
The cexp, cexpf, and cexpl subroutines compute the complex exponent of z, defined as &* .

Parameters

z Specifies the value to be computed.
Return Values
The cexp, cexpf, and cexpl subroutines return the complex exponential value of z.

Related Information
The [‘clog, clogf, or clogl Subroutine” on page 172

Base Operating System (BOS) Runtime Services (A-P) 139

cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed Subroutine

Purpose
Gets and sets input and output baud rates.

Library
Standard C Library (libc.a)

Syntax

#include <termios.h>

speed_t cfgetospeed ([TermiosPointer]
const struct termios *TermiosPointers;

int cfsetospeed (TermiosPointer, [Speed)
struct termios *TermiosPointer;
speed_t Speed;

speed_t cfgetispeed (TermiosPointer)
const struct termios *TermiosPointer;

int cfsetispeed (TermiosPointer, Speed)
struct termios *TermiosPointers;
speed_t Speed;

Description

The baud rate subroutines are provided for getting and setting the values of the input and output baud
rates in the termios structure. The effects on the terminal device described below do not become effective
and not all errors are detected until the tesetattr function is successfully called.

The input and output baud rates are stored in the termios structure. The supported values for the baud
rates are shown in the that follows this discussion.

The termios.h file defines the type speed_t as an unsigned integral type.

The cfgetospeed subroutine returns the output baud rate stored in the termios structure pointed to by the
TermiosPointer parameter.

The cfsetospeed subroutine sets the output baud rate stored in the termios structure pointed to by the
TermiosPointer parameter to the value specified by the Speed parameter.

The cfgetispeed subroutine returns the input baud rate stored in the termios structure pointed to by the
TermiosPointer parameter.

The cfsetispeed subroutine sets the input baud rate stored in the termios structure pointed to by the
TermiosPointer parameter to the value specified by the Speed parameter.

Certain values for speeds have special meanings when set in the termios structure and passed to the
tcsetattr function. These values are discussed in the subroutine.

The following table lists possible baud rates:

Baud Rate Values

Name Description

BO Hang up

140 Technical Reference, Volume 1: Base Operating System and Extensions

Baud Rate Values

Name Description
B5 50 baud
B75 75 baud
B110 110 baud
B134 134 baud
B150 150 baud
B200 200 baud
B300 300 baud
B600 600 baud
B1200 1200 baud
B1800 1800 baud
B2400 2400 baud
B4800 4800 baud
B9600 9600 baud
B19200 19200 baud
B38400 38400 baud

The termios.h file defines the name symbols of the table.

Parameters
TermiosPointer Points to a termios structure.
Speed Specifies the baud rate.

Return Values

The cfgetospeed and cfgetispeed subroutines return exactly the value found in the termios data
structure, without interpretation.

Both the cfsetospeed and cfsetispeed subroutines return a value of 0 if successful and -1 if
unsuccessful.

Examples
To set the output baud rate to 0 (which forces modem control lines to stop being asserted), enter:

cfsetospeed (&my termios, BO);
tcsetattr (stdout, TCSADRAIN, &my_ termios);

Related Information
The subroutine.

The ftermios.hfile.

[Input and Output Handling Programmer’s Overview|in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 141

chacl or fchacl Subroutine

Purpose
Changes the AIXC ACL type access control information of a file.

Library
Standard C Library (libc.a)

Syntax

#include <sys/acl.h>
#include <sys/mode.h>

int chacl ([path], ci)

char *Path;
struct acl *ACL;
int ACLSize;

int fchacl ([FileDescriptor], ACL, ACLSize)
int FileDescriptors;

struct acl *ACL;

int ACLSize;

Description

The chacl and fchacl subroutines set the access control attributes of a file according to the AIXC ACL
Access Control List (ACL) structure pointed to by the ACL parameter. Note that these routines could fail if
the current ACL associated with the file system object is of a different type or if the underlying physical file
system does not support AIXC ACL type. It is strongly recommended that applications stop using these
interfaces and instead make use of aclx_get /aclx_fget and aclx_put/aclx_fput subroutines to change
the ACL.

Parameters

Path Specifies the path name of the file.

142 Technical Reference, Volume 1: Base Operating System and Extensions

ACL

FileDescriptor
ACLSize

Specifies the AIXC ACL to be established on the file. The format of an AIXC ACL is
defined in the sys/acl.h file and contains the following members:

acl_len
Specifies the size of the ACL (Access Control List) in bytes, including the base
entries.

Note: The entire ACL for a file cannot exceed one memory page (4096 bytes).

acl_mode
Specifies the file mode.

The following bits in the acl_mode member are defined in the sys/mode.h file and are
significant for this subroutine:

S_ISUID
Enables the setuid attribute on an executable file.

S_ISGID
Enables the setgid attribute on an executable file. Enables the group-inheritance
attribute on a directory.

S_ISVTX
Enables linking restrictions on a directory.

S_IXACL
Enables extended ACL entry processing. If this attribute is not set, only the base
entries (owner, group, and default) are used for access authorization checks.

Other bits in the mode, including the following, are ignored:

u_access
Specifies access permissions for the file owner.

g_access
Specifies access permissions for the file group.

o_access
Specifies access permissions for the default class of others.

acl_ext[]
Specifies an array of the extended entries for this access control list.

The members for the base ACL (owner, group, and others) can contain the following bits,
which are defined in the sys/access.h file:

R_ACC
Allows read permission.

W_ACC
Allows write permission.

X_ACC Allows execute or search permission.
Specifies the file descriptor of an open file.
Specifies the size of the buffer containing the ACL.

Note: The chacl subroutine requires the Path, ACL, and ACLSize parameters. The fchacl subroutine
requires the FileDescriptor, ACL, and ACLSize parameters.

ACL Data Structure for chacl
Each access control list structure consists of one struct acl structure containing one or more struct
acl_entry structures with one or more struct ace_id structures.

If the struct ace_id structure has id_type set to ACEID_USER or ACEID_GROUP, there is only one
id_data element. To add multiple IDs to an ACL you must specify multiple struct ace_id structures when
id_type is set to ACEID_USER or ACEID_GROUP. In this case, no error is returned for the multiple

Base Operating System (BOS) Runtime Services (A-P) 143

elements, and the access checking examines only the first element. Specifically, the errno value EINVAL
is not returned for acl_len being incorrect in the ACL structure although more than one uid or gid is
specified.

Return Values

Upon successful completion, the chacl and fchacl subroutines return a value of 0. If the chacl or fchacl
subroutine fails, a value of -1 is returned, and the errno global variable is set to indicate the error.

Error Codes

The chacl subroutine fails and the access control information for a file remains unchanged if one or more
of the following are true:

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see the
subroutine).

ENOENT The Path parameter was null.

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the
process.

ESTALE The process’ root or current directory is located in a virtual file system that has been
unmounted.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path parameter
exceeded 1023 characters.

The chacl or fchacl subroutine fails and the access control information for a file remains unchanged if one
or more of the following are true:

EROFS The file specified by the Path parameter resides on a read-only file system.

EFAULT The ACL parameter points to a location outside of the allocated address space of the process.
EINVAL The ACL parameter does not point to a valid ACL.

EINVAL The acl_len member in the ACL is not valid.

EIO An 1/O error occurred during the operation.

ENOSPC The size of the ACL parameter exceeds the system limit of one memory page (4KB).

EPERM The effective user ID does not match the ID of the owner of the file, and the invoker does not

have root user authority.

The fchacl subroutine fails and the file permissions remain unchanged if the following is true:

EBADF The file descriptor FileDescriptor is not valid.

If Network File System (NFS) is installed on your system, the chacl and fchacl subroutines can also fail if
the following is true:

ETIMEDOUT The connection timed out.

Security
Access Control: The invoker must have search permission for all components of the Path prefix.

144 Technical Reference, Volume 1: Base Operating System and Extensions

Auditing Events:

Event Information
chacl Path
fchacl FileDescriptor

Related Information

The acl_chg (‘acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_get (“acl_get or acl_fgef]
[Subroutine” on page 10) subroutine, acl_put (‘acl_put or acl_fput Subroutine” on page 12) subroutine,
acl_set (“acl_set or acl_fset Subroutine” on page 14) subroutine, chmod (‘chmod or fchmod Subroutine’|

|on page 14GD subroutine, |stat|subroutine, |statac||subroutine.

[‘aclx_get or aclx_fget Subroutine” on page 17,|[‘aclx_put or aclx_fput Subroutine” on page 25|

The command, command.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

chdir Subroutine

Purpose
Changes the current directory.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int chdir (

const char *Path;

Description
The chdir subroutine changes the current directory to the directory indicated by the Path parameter.

Parameters

Path A pointer to the path name of the directory. If the Path parameter refers to a symbolic link, the chdir
subroutine sets the current directory to the directory pointed to by the symbolic link. If Network File
System (NFS) is installed on the system, this path can cross into another node.

The current directory, also called the current working directory, is the starting point of searches for path
names that do not begin with a / (slash). The calling process must have search access to the directory
specified by the Path parameter.

Return Values

Upon successful completion, the chdir subroutine returns a value of 0. Otherwise, a value of -1 is returned
and the errno global variable is set to identify the error.

Base Operating System (BOS) Runtime Services (A-P) 145

Error Codes

The chdir subroutine fails and the current directory remains unchanged if one or more of the following are
true:

EACCES Search access is denied for the named directory.
ENOENT The named directory does not exist.
ENOTDIR The path name is not a directory.

The chdir subroutine can also be unsuccessful for other reasons. See Appendix A. Base Operating
System Error Codes for Services That Require Path-Name Resolution (Appendix A, “Base Operating|
[System Error Codes for Services That Require Path-Name Resolution,” on page 1251) for a list of
additional error codes.

If NFS is installed on the system, the chdir subroutine can also fail if the following is true:

ETIMEDOUT The connection timed out.

Related Information
The chroot (“chroot Subroutine” on page 158) subroutine.

The command.

Appendix A, “Base Operating System Error Codes for Services That Require Path-Name Resolution,” on|

page 1251|

[Files, Directories, and File Systems for Programmers|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

chmod or fchmod Subroutine

Purpose
Changes file system object’s base file mode bits.

Library
Standard C Library (libc.a)

Syntax
#include <sys/stat.h>

int chmod ([Path],

const char *Path;
mode_t Mode;

int fchmod ([FileDescriptor], Mode)
int FileDescriptors;
mode_t Mode;

Description

The chmod subroutine sets the access permissions of the file specified by the Path parameter. If Network
File System (NFS) is installed on your system, this path can cross into another node.

146 Technical Reference, Volume 1: Base Operating System and Extensions

Use the fchmod subroutine to set the access permissions of an open file pointed to by the FileDescriptor
parameter.

If FileDescriptor references a shared memory object, the fchmod subroutine affects the S_IRUSR,
S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits.

The access control information is set according to the Mode parameter. Note that these routines will
replace any existing ACL associated with the file system object.

Parameters

FileDescriptor Specifies the file descriptor of an open file or shared memory object.

Base Operating System (BOS) Runtime Services (A-P) 147

Mode Specifies the bit pattern that determines the access permissions. The Mode parameter

is constructed by logically ORing one or more of the following values, which are defined
in the file:

S_ISUID
Enables the setuid attribute for an executable file. A process executing this
program acquires the access rights of the owner of the file.

S_ISGID
Enables the setgid attribute for an executable file. A process executing this
program acquires the access rights of the group of the file. Also, enables the
group-inheritance attribute for a directory. Files created in this directory have a
group equal to the group of the directory.

The following attributes apply only to files that are directly executable. They have no
meaning when applied to executable text files such as shell scripts and awk scripts.

S_ISVTX
Enables the link/unlink attribute for a directory. Files cannot be linked to in
this directory. Files can only be unlinked if the requesting process has write
permission for the directory and is either the owner of the file or the directory.

S_ISVTX
Enables the save text attribute for an executable file. The program is not
unmapped after usage.

S_ENFMT
Enables enforcement-mode record locking for a regular file. File locks
requested with the lockf subroutine are enforced.

S_IRUSR
Permits the file’s owner to read it.

S_IWUSR
Permits the file’s owner to write to it.

S_IXUSR
Permits the file’s owner to execute it (or to search the directory).

S_IRGRP
Permits the file’s group to read it.

S_IWGRP
Permits the file’s group to write to it.

S_IXGRP
Permits the file’s group to execute it (or to search the directory).

S_IROTH
Permits others to read the file.

S_IWOTH
Permits others to write to the file.

S_IXOTH
Permits others to execute the file (or to search the directory).

Other mode values exist that can be set with the mknod subroutine but not with the
chmod subroutine.

Path Specifies the full path name of the file.

Return Values

Upon successful completion, the chmod subroutine and fchmod subroutines return a value of 0. If the
chmod subroutine or fchmod subroutine is unsuccessful, a value of -1 is returned, and the errno global
variable is set to identify the error.

148 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The chmod subroutine is unsuccessful and the file permissions remain unchanged if one of the following
is true:

ENOTDIR A component of the Path prefix is not a directory.

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the
process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENOENT The named file does not exist.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path parameter
exceeded 1023 characters.

The fchmod subroutine is unsuccessful and the file permissions remain unchanged if the following is true:

EBADF The value of the FileDescriptor parameter is not valid.

The chmod or fchmod subroutine is unsuccessful and the access control information for a file remains unchanged if

one of the following is true:

EPERM The effective user ID does not match the owner of the file, and the process does not have
appropriate privileges.

EROFS The named file resides on a read-only file system.

EIO An 1/O error occurred during the operation.

If NFS is installed on your system, the chmod and fchmod subroutines can also be unsuccessful if the following is
true:

ESTALE The root or current directory of the process is located in a virtual file system that has been
unmounted.

ETIMEDOUT The connection timed out.

Security

Access Control: The invoker must have search permission for all components of the Path prefix.

If you receive the EBUSY error, toggle the enforced locking attribute in the Mode parameter and retry
your operation. The enforced locking attribute should never be used on a file that is part of the Trusted
Computing Base.

Related Information

The acl_chg (‘acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_get (“acl_get or acl_fget]
[Subroutine” on page 10) subroutine, acl_put (‘acl_put or acl_fput Subroutine” on page 12) subroutine,
acl_set (“acl_set or acl_fset Subroutine” on page 14) subroutine, chacl (“chacl or fchacl Subroutine” on|

|page 142D subroutine, |statac|| subroutine, |staﬂ subroutine.

[‘aclx_get or aclx_fget Subroutine” on page 17,|[‘aclx_put or aclx_fput Subroutine” on page 25|

The command, command, command.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

chown, fchown, Ichown, chownx, or fchownx Subroutine

Purpose
Changes file ownership.

Library
Standard C Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 149

Syntax

Syntax for the chown, fchown, and Ichown Subroutines:

#include <sys/types.h>
#include <unistd.h>

int chown (|Path, [Owner, [Group)
const char *Path;

uid_t Owner,;

gid_t Group;

int fchown (|FileDescriptory, Owner, Group)

int FileDescriptor;
uid_t Owner,;
gid_t Group;

int Ichown ([Path, [Ownel, |Group)

const char *fname
uid_t uid
gid_tgid

Syntax for the chownx and fchownx Subroutines:

#include <sys/types.h>
#include <sys/chownx.h>

int chownx (Path, Owner, Group, |Flags)

char *Path;
uid_t Owner,;
gid_t Group;
int Flags;

int fchownx (FileDescriptor, Owner, Group, Flags)

int FileDescriptor;
uid_t Owner;
gid_t Group;

int Flags;

Description

The chown, chownx, fchown, fchownx, and Ichown subroutines set the file owner and group IDs of the
specified file system object. Root user authority is required to change the owner of a file.

A function Ichown function sets the owner ID and group ID of the named file similarity to chown function
except in the case where the named file is a symbolic link. In this case lchown function changes the

ownership of the symbolic link file itself, while chown function changes the ownership of the file or
directory to which the symbolic link refers.

Parameters

FileDescriptor Specifies the file descriptor of an open file.

150 Technical Reference, Volume 1: Base Operating System and Extensions

Flags Specifies whether the file owner ID or group ID should be changed. This parameter is
constructed by logically ORing the following values:

T_OWNER_AS_IS
Ignores the value specified by the Owner parameter and leaves the owner ID of
the file unaltered.

T_GROUP_AS_IS
Ignores the value specified by the Group parameter and leaves the group ID of
the file unaltered.

Group Specifies the new group of the file. For the chown, fchown, and Ichown commands, if
this value is -1, the group is not changed. (A value of -1 indicates only that the group is
not changed; it does not indicate a group that is not valid. An owner or group ID cannot
be invalid.) For the chownx and fchownx commands, the subroutines change the Group
to -1 if -1 is supplied for Group and T_GROUP_AS_IS is not set.

Owner Specifies the new owner of the file. For the chown, fchown, and Ichown commands, if
this value is -1, the group is not changed. (A value of -1 indicates only that the group is
not changed; it does not indicate a group that is not valid. An owner or group ID cannot
be invalid.) For the chownx and fchownx commands, the subroutines change the Owner
to -1 if -1 is supplied for Owner and T_OWNER_AS_IS is not set

Path Specifies the full path name of the file. If Path resolves to a symbolic link, the ownership
of the file or directory pointed to by the symbolic link is changed.

Return Values

Upon successful completion, the chown, chownx, fchown, fchownx, and Ichown subroutines return a
value of 0. If the chown, chownx, fchown, fchownx, or Ichown subroutine is unsuccessful, a value of -1
is returned and the errno global variable is set to indicate the error.

Error Codes

The chown, chownx, or Ichown subroutine is unsuccessful and the owner and group of a file remain
unchanged if one of the following is true:

EACCESS Search permission is denied on a component of the Path parameter.

EDQUOT The new group for the file system object cannot be set because the group’s quota of disk
blocks or i-nodes has been exhausted on the file system.

EFAULT The Path parameter points to a location outside of the allocated address space of the
process.

EINVAL The owner or group ID supplied is not valid.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path parameter
exceeded 1023 characters.

ENOENT A symbolic link was named, but the file to which it refers does not exist; or a component of
the Path parameter does not exist; or the process has the disallow truncation attribute set;
or the Path parameter is null.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user ID does not match the owner of the file, and the calling process does not
have the appropriate privileges.

EROFS The named file resides on a read-only file system.

ESTALE The root or current directory of the process is located in a virtual file system that has been
unmounted.

The fchown or fchownx subroutine is unsuccessful and the file owner and group remain unchanged if
one of the following is true:

EBADF The named file resides on a read-only file system.

Base Operating System (BOS) Runtime Services (A-P) 151

EDQUOT The new group for the file system object cannot be set because the group’s quota of disk
blocks or i-nodes has been exhausted on the file system.
EIO An 1/O error occurred during the operation.

Security
Access Control: The invoker must have search permission for all components of the Path parameter.

chpass Subroutine

Purpose
Changes user passwords.

Library
Standard C Library (libc.a)

Thread Safe Security Library (libs_r.a)

Syntax

int chpass (UserName|, |Response|, [Reenter|, Messagel)
char *UserName;

char *Response;

int *Reenter;

char **Message;

Description

The chpass subroutine maintains the requirements that the user must meet to change a password. This
subroutine is the basic building block for changing passwords and handles password changes for local,
NIS, and DCE user passwords.

The Message parameter provides a series of messages asking for old and new passwords, or providing
informational messages, such as the reason for a password change failing. The first Message prompt is a
prompt for the old password. This parameter does not prompt for the old password if the user has a real
user ID of 0 (zero) and is changing a local user, or if the user has no current password. The chpass
subroutine does not prompt a user with root authority for an old password. It informs the program that no
message was sent and that it should invoke chpass again. If the user satisfies the first Message
parameter’'s prompt, the system prompts the user to enter the new password. Each message is contained
in the Message parameter and is displayed to the user. The Response parameter returns the user’s
response to the chpass subroutine.

The Reenter parameter indicates when a user has satisfied all prompt messages. The parameter remains
nonzero until a user has passed all prompts. After the returned value of Reenter is 0, the return code
signals whether the password change has succeeded or failed. When progressing through prompts for a
user, the value of Reenter must be maintained by the caller between invocations of chpass.

The chpass subroutine maintains internal state information concerning the next prompt message to
present to the user. If the calling program supplies a different user name before all prompt messages are
complete for the user, the internal state information is reset and prompt messages begin again. State
information is also kept in the Reenter variable. The calling program must maintain the value of Reenter
between calls to chpass.

The chpass subroutine determines the administration domain to use during password changes. It
determines if the user is defined locally, defined in Network Information Service (NIS), or defined in

152 Technical Reference, Volume 1: Base Operating System and Extensions

Distributed Computing Environment (DCE). Password changes occur only in these domains. System
administrators may override this convention with the registry value in the /etc/security/user file. If the
registry value is defined, the password change can only occur in the specified domain. System
administrators can use this registry value if the user is administered on a remote machine that periodically
goes down. If the user is allowed to log in through some other authentication method while the server is
down, password changes remain to follow only the primary server.

The chpass subroutine allows the user to change passwords in two ways. For normal (non-administrative)
password changes, the user must supply the old password, either on the first call to the chpass
subroutine or in response to the first message from chpass. If the user is root, real user ID of 0, local
administrative password changes are handled by supplying a null pointer for the Response parameter
during the initial call

Users that are not administered locally are always queried for their old password.

The chpass subroutine is always in one of the following states:

1. Initial state: The caller invokes the chpass subroutine with NULL response parameter and receives the
initial password prompt in the message parameter.

2. Verify initial password: The caller invokes the chpass subroutine with the results of prompting the user
with earlier message parameter as the response parameter. The caller is given a prompt to enter the
new password in the message parameter.

3. Enter new password: The caller invokes the chpass subroutine with the results of prompting user with
the new password prompt in the response parameter. The caller will be given a prompt to repeat the
new password in the message parameter.

4. Verify new password: The caller invokes the chpass subroutine with the results of prompting the user
to repeat the new password in the response parameter. The chpass subroutine then performs the
actual password change.

Any step in the above process can result in the chpass subroutine terminating the dialog. This is signalled
when the reenter variable is set to 0. The return code indicates the nature of the failure.

Parameters

UserName Specifies the user's name whose password is to be changed.

Response Specifies a character string containing the user’s response to the last prompt.
Reenter Points to a Boolean value used to signal whether chpass subroutine has completed

processing. If the Reenter parameter is a nonzero value, the chpass subroutine expects the
user to satisfy the prompt message provided by the Message parameter. If the Reenter
parameter is 0, the chpass subroutine has completed processing.

Message Points to a pointer that the chpass subroutine allocates memory for and fills in. This
replacement string is then suitable for printing and issues challenge messages (if the Reenter
parameter is a nonzero value). The string can also issue informational messages such as why
the user failed to change the password (if the Reenter parameter is 0). The calling application
is responsible for freeing this memory.

Return Values
Upon successful completion, the chpass subroutine returns a value of 0. If the chpass subroutine is
unsuccessful, it returns the following values:

-1 Indicates the call failed in the thread safe library libs_r.a. ERRNO will indicate the failure code.
1 Indicates that the password change was unsuccessful and the user should attempt again. This return value
occurs if a password restriction is not met, such as if the password is not long enough.

Base Operating System (BOS) Runtime Services (A-P) 153

2 Indicates that the password change was unsuccessful and the user should not attempt again. This return
value occurs if the user enters an incorrect old password or if the network is down (the password change
cannot occur).

Error Codes
The chpass subroutine is unsuccessful if one of the following values is true:

ENOENT Indicates that the user cannot be found.

ESAD Indicates that the user did not meet the criteria to change the password.
EPERM Indicates that the user did not have permission to change the password.
EINVAL Indicates that the parameters are not valid.

ENOMEM Indicates that memory allocation (malloc) failed.

Related Information
The authenticate (‘authenticate Subroutine” on page 111) subroutine.

chpassx Subroutine

Purpose
Changes multiple method passwords.

Library
Standard C Library (libc.a)

Thread Safe Security Library (libs_r.a)

Syntax

int chpassx (UserName, Response, Reenter, Message, State)
char HUserNamel;
char HResponsel;
int xReenter];

char *¥Messagel;
void *#

Description

The chpassx subroutine maintains the requirements that the user must meet to change a password. This
subroutine is the basic building block for changing passwords, and it handles password changes for local,
NIS, and loadable authentication module user passwords. It uses information provided by the
authenticatex and passwdexpiredx subroutines to indicate which passwords were used when a user
authenticated and whether or not those passwords are expired.

The Message parameter provides a series of messages asking for old and new passwords, or providing
informational messages, such as the reason for a password change failing. The first Message prompt is a
prompt for the old password. This parameter does not prompt for the old password if the user has a real
user ID of 0 and is changing a local user, or if the user has no current password. The chpassx subroutine
does not prompt a user with root authority for an old password when only a local password is being
changed. It informs the program that no message was sent and that it should invoke chpass again. If the
user satisfies the first Message parameter's prompt, the system prompts the user to enter the new
password. Each message is contained in the Message parameter and is displayed to the user. The
Response parameter returns the user’s response to the chpass subroutine.

154 Technical Reference, Volume 1: Base Operating System and Extensions

The Reenter parameter remains a nonzero value until the user satisfies all of the prompt messages or until
the user incorrectly responds to a prompt message. When the Reenter parameter is 0, the return code
signals whether the password change completed or failed. The calling application must initialize the
Reenter parameter to 0 before the first call to the chpassx subroutine and the application cannot modify
the Reenter parameter until the sequence of chpassx subroutine calls has completed.

The authenticatex subroutine ascertains the authentication domains the user can attempt. The subroutine
uses the SYSTEM attribute for the user. Each token that is displayed in the SYSTEM line corresponds to a
method that can be dynamically loaded and processed. Likewise, the system can provide multiple or
alternate authentication paths.

The State parameter contains information from an earlier call to the authenticatex or passwdexpirex
subroutines. That information indicates which administration domains were used when the user was
authenticated and which passwords have expired and can be changed by the user. The State parameter
must be initialized to null when the chpassx subroutine is not being called after an earlier call to the
authenticatex or passwdexpiredx subroutines, or if the calling program does not wish to use the
information from an earlier call.

The chpassx subroutine maintains internal state information concerning the next prompt message to
present to the user. If the calling program supplies a different user name before all prompt messages are
complete for the user, the internal state information is reset and prompt messages begin again.

The chpassx subroutine determines the administration domain to use during password changes. It
determines if the user is defined locally, defined in Network Information Service (NIS), defined in
Distributed Computing Environment (DCE), or defined in another administrative domain supported by a
loadable authentication module. Password changes use the user's SYSTEM attribute and information in
the State parameter. When the State parameter includes information from an earlier call to the
authenticatex subroutine, only the administrative domains that were used for authentication are changed.
When the State parameter includes information from an earlier call to the passwdexpiredx subroutine,
only the administrative domains that have expired passwords are changed. The State parameter can
contain information from calls to both authenticatex and passwdexpiredx, in which case passwords that
were used for authentication are changed, even if they are not expired, so that passwords remain
synchronized between administrative domains.

The chpassx subroutine allows the user to change passwords in two ways. For normal (nonadministrative)
password changes, the user must supply the old password, either on the first call to the chpassx
subroutine or in response to the first message from chpassx. If the user is root (with a real user ID of 0),
local administrative password changes are handled by supplying a null pointer for the Response parameter
during the initial call.

Users that are not administered locally are always queried for their old password.

The chpassx subroutine is always in one of three states: entering the old password, entering the new
password, or entering the new password again. If any of these states do not need to be complied with, the
chpassx subroutine returns a null challenge.

Parameters

Message Points to a pointer that the chpassx subroutine allocates memory for and fills in. This
replacement string is then suitable for printing and issues challenge messages (if the Reenter
parameter is a nonzero value). The string can also issue informational messages, such as
why the user failed to change the password (if the Reenter parameter is 0). The calling
application is responsible for freeing this memory.

Base Operating System (BOS) Runtime Services (A-P) 155

Reenter Points to an integer value used to signal whether the chpassx subroutine has completed
processing. If the Reenter parameter is a nonzero value, the chpassx subroutine expects the
user to satisfy the prompt message provided by the Message parameter. If the Reenter
parameter is 0, the chpassx subroutine has completed processing.

Response Specifies a character string containing the user’s response to the last prompt.

State Points to a pointer that the chpassx subroutine allocates memory for and fills in. The State
parameter can also be the result of an earlier call to the authenticatex or passwdexpiredx
subroutines. This parameter contains information about each password that has been
changed for the user. The calling application is responsible for freeing this memory after the
chpassx subroutine has completed.

UserName Specifies the user's name whose password is to be changed.

Return Values

Upon successful completion, the chpassx subroutine returns a value of 0. If this subroutine fails, it returns
the following values:

-1 The call failed in the libs_r.a thread safe library. errno indicates the failure code.

1 The password change was unsuccessful and the user should try again. This return value occurs if a
password restriction is not met (for example, the password is not long enough).

2 The password change was unsuccessful and the user should not try again. This return value occurs if

the user enters an incorrect old password or if the network is down (the password change cannot occur).

Error Codes
The chpassx subroutine is unsuccessful if one of the following values is true:

EINVAL The parameters are not valid.

ENOENT The user cannot be found.

ENOMEM Memory allocation (malloc) failed.

EPERM The user did not have permission to change the password.
ESAD The user did not meet the criteria to change the password.

Related Information
The [‘authenticatex Subroutine” on page 113)[‘passwdexpiredx Subroutine” on page 933

chprojattr Subroutine

Purpose
Updates and modifies the project attributes in kernel project registry for the given project.

Library

The libaacct.a library.

Syntax

<sys/aacct.h>

chprojattr(struct %, int

Description

The chprojattr subroutine alters the attributes of a project defined in the kernel project registry. A pointer
to struct project containing the project definition and the operation command is sent as input arguments.
The following operations are permitted:

156 Technical Reference, Volume 1: Base Operating System and Extensions

« PROJ_ENABLE_AGGR - Enables aggregation for the specified project
+ PROJ_DISABLE_AGGR - Disables aggregation for the specified project

If PROJ_ENABLE_AGGR is passed, then the aggregation status bit is set to 1. If PROJ_DISABLE_AGGR
is passed, then the aggregation status bit set to 0.

Note: To initialize the project structure, the user must call the getprojdef subroutine before calling the
chprojattr subroutine.

Parameters

project Pointer containing the project definition.

cmd An integer command indicating whether to perform a set or clear operation.
Security

Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values

0 Success
-1 Failure

Error Codes

EINVAL Invalid arguments passed. The passed command flag is invalid or the passed pointer is NULL.
ENONENT Project not found.

Related Information

The [‘addproj Subroutine” on page 31 |[‘chprojattrdb Subroutine,”|[“getproj Subroutine” on page 409)
[‘getprojs Subroutine” on page 411 [[rmproj Subroutine]

chprojattrdb Subroutine

Purpose
Updates the project attributes in the project database.

Library
The libaacct.a library.

Syntax

<sys/aacct.h>

chprojattrdb(void , struct *project, int

Description

The chprojattrdb subroutine alters the attributes of the named project in the specified project database,
which is controlled through the handle parameter. The following commands are permitted:

« PROJ_ENABLE_AGGR — Enables aggregation for the specified project

Base Operating System (BOS) Runtime Services (A-P) 157

- PROJ_DISABLE_AGGR — Disables aggregation for the specified project

The project database must be initialized before calling this subroutine. The projdballoc subroutine is
provided for this purpose. The chprojattrdb subroutine must be called after the getprojdb subroutine,
which sets the record pointer to point to the project that needs to be modified.

Note: The chprojattrdb subroutine must be called after the getprojdb subroutine, which makes the
named project the current project.

Parameters

handle Pointer to the handle allocated for the project database.

project Pointer containing the project definition.

cmd An integer command indicating whether to perform a set or clear operation.
Security

Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT
capability to a user.

Return Values

0 Success
-1 Failure

Error Codes

EINVAL Invalid arguments passed. The passed command flag is invalid or the passed pointer is NULL.
ENONENT Project not found.

Related Information

The [‘addprojdb Subroutine” on page 32 |[‘chprojattr Subroutine” on page 156 ||‘getfirstprojdb Subroutine’
on page 360,[‘getnextprojdb Subroutine” on page 387 [[‘getprojdb Subroutine” on page 410 |‘projdballo
Subroutine” on page 1089 [[‘projdbfinit Subroutine” on page 1090 |[‘projdbfree Subroutine” on page 1091
rmprojdb Subroutine]

chroot Subroutine

Purpose
Changes the effective root directory.

Library
Standard C Library (libc.a)

Syntax

#include <unistd.h>

int chroot (const char * [Pathl)

char *Path;

158 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The chroot subroutine causes the directory named by the Path parameter to become the effective root
directory. If the Path parameter refers to a symbolic link, the chroot subroutine sets the effective root
directory to the directory pointed to by the symbolic link. If Network File System (NFS) is installed on your
system, this path can cross into another node.

The effective root directory is the starting point when searching for a file’s path name that begins with /
(slash). The current directory is not affected by the chroot subroutine.

The calling process must have root user authority in order to change the effective root directory. The
calling process must also have search access to the new effective root directory.

The .. (double period) entry in the effective root directory is interpreted to mean the effective root directory
itself. Thus, this directory cannot be used to access files outside the subtree rooted at the effective root
directory.

Parameters

Path Pointer to the new effective root directory.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes

The chroot subroutine fails and the effective root directory remains unchanged if one or more of the
following are true:

ENOENT The named directory does not exist.
EACCES The named directory denies search access.
EPERM The process does not have root user authority.

The chroot subroutine can be unsuccessful for other reasons. See Appendix A. Base Operating System
Error Codes for Services that Require Path-Name Resolution (Appendix A, “Base Operating System Error
[Codes for Services That Require Path-Name Resolution,” on page 1251) for a list of additional errors.

If NFS is installed on the system, the chroot subroutine can also fail if the following is true:

ETIMEDOUT The connection timed out.

Related Information
The chdir (‘chdir Subroutine” on page 145) subroutine.

The command.

Appendix A, “Base Operating System Error Codes for Services That Require Path-Name Resolution,” on|

page 1251 |

[Files, Directories, and File Systems for Programmers|in AIX 5L Version 5.3 General Programming
Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 159

chssys Subroutine

Purpose
Modifies the subsystem objects associated with the SubsystemName parameter.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>
#include <spc.h>

int chssys(|SubsystemName], [SRCSubsystem)
char *SubsystemName
struct SRCsubsys *SRCSubsystem;

Description

The chssys subroutine modifies the subsystem objects associated with the specified subsystem with the
values in the SRCsubsys structure. This action modifies the objects associated with subsystem in the
following object classes:

* Subsystem Environment
* Subserver Type
* Notify

The Subserver Type and Notify object classes are updated only if the subsystem name has been changed.
The SRCsubsys structure is defined in the /usr/include/sys/srcobij.h file.

The program running with this subroutine must be running with the group system.

Parameters
SRCSubsystem Points to the SRCsubsys structure.
SubsystemName Specifies the name of the subsystem.

Return Values

Upon successful completion, the chssys subroutine returns a value of 0. Otherwise, it returns a value of
-1 and the odmerrno variable is set to indicate the error, or a System Resource Controller (SRC) error
code is returned.

Error Codes
The chssys subroutine is unsuccessful if one or more of the following are true:

SRC_NONAME No subsystem name is specified.

SRC_NOPATH No subsystem path is specified.

SRC_BADNSIG Invalid stop normal signal.

SRC_BADFSIG Invalid stop force signal.

SRC_NOCONTACT Contact not signal, sockets, or message queues.
SRC_SSME Subsystem name does not exist.
SRC_SUBEXIST New subsystem name is already on file.
SRC_SYNEXIST New subsystem synonym name is already on file.

160 Technical Reference, Volume 1: Base Operating System and Extensions

SRC_NOREC The specified SRCsubsys record does not exist.

SRC_SUBSYS2BIG Subsystem name is too long.
SRC_SYN2BIG Synonym name is too long.
SRC_CMDARG2BIG Command arguments are too long.
SRC_PATH2BIG Subsystem path is too long.
SRC_STDIN2BIG stdin path is too long.
SRC_STDOUT2BIG stdout path is too long.
SRC_STDERR2BIG stderr path is too long.
SRC_GRPNAM2BIG Group name is too long.
Security

Privilege Control: This command has the Trusted Path attribute. It has the following kernel privilege:
SET_PROC_AUDIT kernel privilege

Files Accessed:

Mode File

644 letc/objrepos/SRCsubsys

644 letc/objrepos/SRCsubsvr

644 letc/objrepos/SRCnotify

Auditing Events:

Event Information

SRC_Chssys

Files

letc/objrepos/SRCsubsys SRC Subsystem Configuration object class.
/etc/objrepos/SRCsubsvr SRC Subserver Configuration object class.
letc/objrepos/SRCnotify SRC Notify Method object class.

/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information

The addssys (“addssys Subroutine” on page 33) subroutine, delssys (‘delssys Subroutine” on page 207)
subroutine.

The command, @ command, command.

[System Resource Controller Overview|in AIX 5L Version 5.3 System Management Concepts: Operating
System and Devices.

Defining Your Subsystem to the SRC} [List of SRC Subroutines} [System Resource Controller (SRC)|
Overview for Programmers|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

cimag, cimagf, or cimagl Subroutine

Purpose
Performs complex imaginary computations.

Base Operating System (BOS) Runtime Services (A-P) 161

Syntax

#include <complex.h>

double cimag @)
double complex z;

float cimagf (z)
float complex z;

long double cimagl (z)
long double complex z;

Description

The cimag, cimagf, and cimagl subroutines compute the imaginary part of z.
Parameters

z Specifies the value to be computed.

Return Values
The cimag, cimagf, and cimagl subroutines return the imaginary part value (as a real).

Related Information

“carg, cargf, or cargl Subroutine” on page 129)|‘conj, conjf, or conjl Subroutine” on page 180,|[‘cproj, cprojf,|
or cprojl Subroutine” on page 187 |and [‘creal, crealf, or creall Subroutine” on page 188

ckuseracct Subroutine

Purpose
Checks the validity of a user account.

Library
Security Library (libc.a)

Syntax

#include <login.h>

int ckuseracct (, ,

char *Name;
int Mode;
char *TTY;

Description

Note: This subroutine is obsolete and is provided only for backwards compatibility. Use the
loginrestrictions subroutine, which performs a superset of the functions of the ckuseracct
subroutine, instead.

The ckuseracct subroutine checks the validity of the user account specified by the Name parameter. The
Mode parameter gives the mode of the account usage, and the TTY parameter defines the terminal being
used for the access. The ckuseracct subroutine checks for the following conditions:

e Account existence

162 Technical Reference, Volume 1: Base Operating System and Extensions

* Account expiration

The Mode parameter specifies other mode-specific checks.

Parameters

Name Specifies the login name of the user whose account is to be validated.

Mode Specifies the manner of usage. Valid values as defined in the login.h file are listed below. The Mode
parameter must be one of these or 0:
S_LOGIN

Verifies that local logins are permitted for this account.

S_SU \Verifies that the su command is permitted and that the current process has a group ID that
can invoke the su command to switch to the account.

S_DAEMON
Verifies the account can be used to invoke daemon or batch programs using the src or cron
subsystems.

S_RLOGIN
Verifies the account can be used for remote logins using the rlogind or telnetd programs.
TTY Specifies the terminal of the originating activity. If this parameter is a null pointer or a null string, no
TTY origin checking is done.

Security

Files Accessed:

Mode File
r /etc/passwd
r /etc/security/user

Return Values

If the account is valid for the specified usage, the ckuseracct subroutine returns a value of 0. Otherwise,
a value of -1 is returned and the errno global variable is set to the appropriate error code.

Error Codes
The ckuseracct subroutine fails if one or more of the following are true:

ENOENT The user specified in the Name parameter does not have an account.

ESTALE The user’s account is expired.

EACCES The specified terminal does not have access to the specified account.

EACCES The Mode parameter is S_SU, and the current process is not permitted to use the su
command to access the specified user.

EACCES Access to the account is not permitted in the specified Mode.

EINVAL The Mode parameter is not one of S_LOGIN, S_SU, S_DAEMON, S_RLOGIN.

Related Information

The ckuserlD (‘ckuserlD Subroutine” on page 164) subroutine, getpcred (‘getpcred Subroutine” on page)
394) subroutine, getpenv (‘getpenv Subroutine” on page 396) subroutine, |setpcred| subroutine, |setpen!|
subroutine.

The command, command, [su] command, command.

Base Operating System (BOS) Runtime Services (A-P) 163

The daemon.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

ckuserID Subroutine

Purpose
Authenticates the user.

Note: This subroutine is obsolete and is provided for backwards compatibility. Use the authenticate
(‘authenticate Subroutine” on page 111) subroutine, instead.

Library
Security Library (libc.a)

Syntax

#include <login.h>

int ckuserID ([User],

int Mode;
char *User;

Description

The ckuserID subroutine authenticates the account specified by the User parameter. The mode of the
authentication is given by the Mode parameter. The and [su| commands continue to use the
ckuserlD subroutine to process the /etc/security/user auth1 and auth2 authentication methods.

The ckuserlD subroutine depends on the authenticate (‘authenticate Subroutine” on page 111) subroutine
to process the SYSTEM attribute in the /etc/security/user file. If authentication is successful, the
passwdexpired (‘passwdexpired Subroutine” on page 932) subroutine is called.

Errors caused by grammar or load modules during a call to the authenticate subroutine are displayed to
the user if the user was authenticated. These errors are audited with the USER_Login audit event if the
user failed authentication.

Parameters

User Specifies the name of the user to be authenticated.

Mode Specifies the mode of authentication. This parameter is a bit mask and may contain one or more of
the following values, which are defined in the login.h file:
S_PRIMARY

The primary authentication methods defined for the User parameter are checked. All
primary authentication checks must be passed.

S_SECONDARY
The secondary authentication methods defined for the User parameter are checked.
Secondary authentication checks are not required to be successful.

Primary and secondary authentication methods for each user are set in the /etc/security/user file
by defining the auth1 and auth2 attributes. If no primary methods are defined for a user, the
SYSTEM attribute is assumed. If no secondary methods are defined, there is no default.

164 Technical Reference, Volume 1: Base Operating System and Extensions

Security

Files Accessed:

Mode File

r /etc/passwd

r /etc/security/passwd
r /etc/security/user

r /etc/security/login.cfg

Return Values

If the account is valid for the specified usage, the ckuserlD subroutine returns a value of 0. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The ckuserID subroutine fails if one or more of the following are true:

ESAD Security authentication failed for the user.
EINVAL The Mode parameter is neither S_PRIMARY nor S_SECONDARY or the Mode parameter is both
S_PRIMARY and S_SECONDARY.

Related Information

The authenticate (‘authenticate Subroutine” on page 111) subroutine, ckuseracct d“ckuseraccﬂ
[Subroutine” on page 162) subroutine, getpcred (“‘getpcred Subroutine” on page 394) subroutine,getpenv
(‘getpenv Subroutine” on page 396) subroutine, passwdexpired (‘passwdexpired Subroutine” on page|

|932[) subroutine, |setpcred| subroutine, |setpen!| subroutine.
The command, @ command.

[List of Security and Auditing Subroutines| and [Subroutines Overview|in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

class, _class, finite, isnan, or unordered Subroutines

Purpose
Determines classifications of floating-point numbers.

Libraries

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax

#include <math.h>
#include <float.h>

int
class(EI)

double x;

#include <math.h>
#include <float.h>

Base Operating System (BOS) Runtime Services (A-P) 165

int

_class(EI)
double x;
#include <math.h>

int finite(x)
double x;

#include <math.h>
int isnan(x)
double x;
#include <math.h>

int unordered(x, |Z|)
double x, y;

Description

The class subroutine, _class subroutine, finite subroutine, isnan subroutine, and unordered subroutine
determine the classification of their floating-point value. The unordered subroutine determines if a
floating-point comparison involving x and y would generate the IEEE floating-point unordered condition
(such as whether x or y is a NaN).

The class subroutine returns an integer that represents the classification of the floating-point x parameter.
Since class is a reversed key word in C++. The class subroutine can not be invoked in a C++ program.
The _class subroutine is an interface for C++ program using the class subroutine. The interface and the
return value for class and _class subroutines are identical. The values returned by the class subroutine
are defined in the float.h header file. The return values are the following:

FP_PLUS_NORM Positive normalized, nonzero x
FP_MINUS_NORM Negative normalized, nonzero x
FP_PLUS_DENORM Positive denormalized, nonzero x
FP_MINUS_DENORM Negative denormalized, nonzero x
FP_PLUS_ZERO x =+0.0

FP_MINUS_ZERO x=-0.0

FP_PLUS_INF x = +INF

FP_MINUS_INF x = -INF

FP_NANS x = Signaling Not a Number (NaNS)
FP_NANQ x = Quiet Not a Number (NaNQ)

Since class is a reserved keyword in C++, the class subroutine cannot be invoked in a C++ program. The
_class subroutine is an interface for the C++ program using the class subroutine. The interface and the
return values for class and _class subroutines are identical.

The finite subroutine returns a nonzero value if the x parameter is a finite number; that is, if x is not +-,
INF, NaNQ, or NaNS.

The isnan subroutine returns a nonzero value if the x parameter is an NaNS or a NaNQ. Otherwise, it
returns 0.

The unordered subroutine returns a nonzero value if a floating-point comparison between x and y would
be unordered. Otherwise, it returns 0.

Note: Compile any routine that uses subroutines from the libm.a library with the -Im flag. To compile the
class.c file, for example, enter:

cc class.c -Im

166 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

X Specifies some double-precision floating-point value.
y Specifies some double-precision floating-point value.

Error Codes

The finite, isnan, and unordered subroutines neither return errors nor set bits in the floating-point
exception status, even if a parameter is an NaNS.

Related Information

[List of Numerical Manipulation Services| and [Subroutines Overview|in AIX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

clock Subroutine

Purpose
Reports central processing unit (CPU) time used.

Library
Standard C Library (libc.a)

Syntax

#include <time.h>
clock_t clock (void);

Description

The clock subroutine reports the amount of CPU time used. The reported time is the sum of the CPU time
of the calling process and its terminated child processes for which it has executed wait, system, or
pclose subroutines. To measure the amount of time used by a program, the clock subroutine should be
called at the beginning of the program, and that return value should be subtracted from the return value of
subsequent calls to the clock subroutine. To find the time in seconds, divide the value returned by the
clock subroutine by the value of the macro CLOCKS_PER_SEC, which is defined in the time.h file.

Return Values
The clock subroutine returns the amount of CPU time used.

Related Information

The getrusage, times (‘getrusage, getrusage64, times, or vtimes Subroutine” on page 419) subroutine,
pclose (‘pclose Subroutine” on page 960) subroutine, |system| subroutine, vtimes (‘getrusage)|
[getrusage64, times, or vtimes Subroutine” on page 419) subroutine, [wait, waitpid, wait3| subroutine.

[Subroutines Overview|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

clock_getcpuclockid Subroutine

Purpose
Accesses a process CPU-time clock.

Base Operating System (BOS) Runtime Services (A-P) 167

Syntax

#include <time.h>

int clock_getcpuclockid(pid_t [pid, clockid_t dclock_id);

Description

The clock_getcpuclockid subroutine returns the clock ID of the CPU-time clock of the process specified
by pid. If the process described by pid exists and the calling process has permission, the clock ID of this
clock returns in clock_id.

If pid is zero, the clock_getcpuclockid subroutine returns the clock ID specified in clock_id of the
CPU-time clock of the process making the call.

To obtain the CPU-time clock ID of other processes, the calling process should be root or have the same
effective or real user ID as the process that owns the targetted CPU-time clock.

Parameters
clock_id Specifies the clock ID of the CPU-time clock.
pid Specifies the process ID of the CPU-time clock.

Return Values

Upon successful completion, the clock_getcpuclockid subroutine returns 0; otherwise, an error code is
returned indicating the error.

Error Codes

ENOTSUP The function is not supported with checkpoint-restart processes.

EPERM The requesting process does not have permission to access the CPU-time clock for the
process.

ESRCH No process can be found corresponding to the process specified by pid.

Related Information
[‘clock_getres, clock_gettime, and clock_settime Subroutine,’|timer_create| subroutine.

clock_getres, clock_gettime, and clock_settime Subroutine

Purpose
Clock and timer functions.

Library
Standard C Library (libc.a)

Syntax

#include <time.h>

int clock_getres ,

clockid_t clock_id;
struct timespec *res;

int clock_gettime (clock_id,
clockid_t clock_id;
struct timespec *ip;

168 Technical Reference, Volume 1: Base Operating System and Extensions

int clock_settime (clock_id, tp)
clockid_t clock id;
const struct timespec *ip;

Description

The clock_getres subroutine returns the resolution of any clock. Clock resolutions are
implementation-defined and cannot be set by a process. If the res parameter is not NULL, the resolution of
the specified clock is stored in the location pointed to by the res parameter. If the res parameter is NULL,
the clock resolution is not returned. If the time parameter of the clock_settime subroutine is not a multiple
of the res parameter, the value is truncated to a multiple of the res parameter.

The clock_gettime subroutine returns the current value, tp, for the specified clock, clock_id.

The clock_settime subroutine sets the specified clock, clock_id, to the value specified by the tp
parameter. Time values that are between two consecutive non-negative integer multiples of the resolution
of the specified clock will be truncated down to the smaller multiple of the resolution.

A clock may be system-wide (visible to all processes) or per-process (measuring time that is meaningful
only within a process). All implementations support a clock_id of CLOCK_REALTIME as defined in the
time.h file. This clock represents the Realtime clock for the system. For this clock the values returned by
the clock_gettime subroutine and specified by the clock_settime subroutine represent the amount of
time (in seconds and nanoseconds) since the epoch.

If the value of the CLOCK_REALTIME clock is set through the clock_settime subroutine, the new value
of the clock is used to determine the time of expiration for absolute time services based upon the
CLOCK_REALTIME clock. This applies to the time at which armed absolute timers expire. If the absolute
time requested at the invocation of such a time service is before the new value of the clock, the time
service expires immediately as if the clock had reached the requested time normally.

Setting the value of the CLOCK_REALTIME clock through the clock_settime subroutine has no effect on
threads that are blocked waiting for a relative time service based upon this clock, including the nanosleep
subroutine; nor on the expiration of relative timers based upon this clock. Consequently, these time
services expire when the requested relative interval elapses, independently of the new or old value of the
clock.

A clock_id of CLOCK_MONOTONIC is defined in the time.h file. This clock represents the monotonic
clock for the system. For this clock, the value returned by the clock_gettime subroutine represents the
amount of time (in seconds and nanoseconds) since an unspecified point in the past. This point does not
change after system start time (for example, this clock cannot have backward jumps). The value of the
CLOCK_MONOTONIC clock cannot be set through the clock_settime subroutine. This subroutine fails if
it is invoked with a clock_id parameter of CLOCK_MONOTONIC.

The calling process should have SYS_OPER authority to set the value of the CLOCK_REALTIME clock.

Process CPU-time clocks are supported by the system. For these clocks, the values returned by
clock_gettime and specified by clock_settime represent the amount of execution time of the process
associated with the clock. Clockid_t values for CPU-time clocks are obtained by calling
clock_getcpuclockid. A special clockid_t value, CLOCK_PROCESS_CPUTIME_ID, is defined in the
time.h file. This value represents the CPU-time clock of the calling process when one of the clock_* or
timer_* functions is called.

To get or set the value of a CPU-time clock, the calling process must have root permissions or have the

same effective or real user ID as the process that owns the targeted CPU-time clock. The same rule
applies to a process that tries to get the resolution of a CPU-time clock.

Base Operating System (BOS) Runtime Services (A-P) 169

Thread CPU-time clocks are supported by the system. For these clocks, the values returned by
clock_gettime and specified by clock_settime represent the amount of execution time of the thread
associated with the clock. Clockid_t values for thread CPU-time clocks are obtained by calling the
pthread_getcpuclockid subroutine. A special clockid_t value, CLOCK_THREAD_CPUTIME_ID, is
defined in the time.h file. This value represents the thread CPU-time clock of the calling thread when one
of the clock_*() or timer_* functions is called.

To get or set the value of a thread CPU-time clock, the calling thread must be a thread in the same
process as the one that owns the targeted thread CPU-time clock. The same rule applies to a thread that
tries to get the resolution of a thread CPU-time clock.

Parameters

clock_id Specifies the clock.

res Stores the resolution of the specified clock.

to Stores the current value of the specified clock.

Return Values
If successful, 0 is returned. If unsuccessful, -1 is returned, and errno will be set to indicate the error.

Error Codes
The clock_getres, clock_gettime, and clock_settime subroutines falil if:

EINVAL The clock_id parameter does not specify a known clock.
ENOTSUP The function is not supported with checkpoint-restart processes.

The clock_settime subroutine fails if:

EINVAL The tp parameter to the clock_settime subroutine is outside the range for the given clock ID.

EINVAL The tp parameter specified a nanosecond value less than zero or greater than or equal to 1000
million.

EINVAL The value of the clock_id argument is CLOCK_MONOTONIC.

The clock_settime subroutine might fail if:

EPERM The requesting process does not have the appropriate privilege to set the specified clock.

Related Information

“clock_getcpuclockid Subroutine” on page 167)[‘ctime, localtime, gmtime, mktime, difftime, asctime, o1
tzset Subroutine” on page 195 [[‘pthread_getcpuclockid Subroutine” on page 1162,/ and [‘nanosleep|
Subroutine” on page 856.]

The [timer_create| and [timer_getoverrun| subroutines in AIX 5L Version 5.3 Technical Reference: Base
Operating System and Extensions Volume 2.

The in AIX 5L Version 5.3 Commands Reference, Volume 5.

clock_nanosleep Subroutine

Purpose
Specifies clock for high resolution sleep.

170 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <time.h>
int clock_nanosleep(clockid_t clock_id, int flags,
const struct timespec *rqtp, struct timespec *rmtp);

Description

If the TIMER_ABSTIME flag is not set in the flags argument, the clock_nanosleep subroutine causes the
current thread to be suspended from execution until either the time interval specified by the rgtp argument
has elapsed, or a signal is delivered to the calling thread and its action is to invoke a signal-catching
function, or the process is terminated. The clock_id argument specifies the clock used to measure the time
interval.

If the TIMER_ABSTIME flag is set in the flags argument, the clock_nanosleep subroutine causes the
current thread to be suspended from execution until either the time value of the clock specified by clock _id
reaches the absolute time specified by the rqip argument, or a signal is delivered to the calling thread and
its action is to invoke a signal-catching function, or the process is terminated. If, at the time of the call, the
time value specified by rqitp is less than or equal to the time value of the specified clock, then the
clock_nanosleep subroutine returns immediately and the calling process shall not be suspended.

The suspension time caused by this function might be longer than requested either because the argument
value is rounded up to an integer multiple of the sleep resolution, or because of the scheduling of other
activity by the system. Except for the case of being interrupted by a signal, the suspension time for the
relative clock_nanosleep subroutine (that is, with the TIMER_ABSTIME flag not set) shall not be less
than the time interval specified by the rqfp argument, as measured by the corresponding clock. The
suspension for the absolute clock_nanosleep subroutine (that is, with the TIMER_ABSTIME flag set) is in
effect at least until the value of the corresponding clock reaches the absolute time specified by the rqip
argument, except for the case of being interrupted by a signal.

The clock_nanosleep subroutine has no effect on the action or blocking of any signal.

The subroutine fails if the clock_id argument refers to a process or a thread CPU-time clock.

Parameters

clock_id Specifies the clock used to measure the time.

flags Identifies the type of timeout. If TIMER_ABSTIME is set, the time value pointed to by rqgtp is an
absolute time value; otherwise, it is a time interval.

rmip Points to the timespec structure used to return the remaining amount of time in an interval (the
requested time minus the time actually slept) if the sleep is interrupted.

rqtp Points to the timespec structure that contains requested sleep time.

Return Values

The clock_nanosleep subroutine returns 0 when the requested time has elapsed.

The clock_nanosleep subroutine returns the corresponding error value when it has been interrupted by a
signal. For the relative clock_nanosleepsubroutine, when the rmip argument is not NULL, the referenced
timespec structure is updated to contain the amount of time remaining in the interval (the requested time

minus the time actually slept). If the rmip argument is NULL, the remaining time is not returned. The
absolute clock_nanosleep subroutine has no effect on the structure referenced by the rmip argument.

Error Codes

EINTR The clock_nanosleep subroutine was interrupted by a signal.

Base Operating System (BOS) Runtime Services (A-P) 171

EINVAL The rqtp parameter specified a nanosecond value less than O or greater than or equal to 1000
million; or the TIMER_ABSTIME flag was specified in the flags parameter and the rqip parameter
is outside the range for the clock specified by clock_id; or the clock_id parameter does not specify
a known clock, or specifies the CPU-time clock of the calling thread.

ENOTSUP The clock_id argument specifies a clock for which the clock_nanosleep subroutine is not
supported, such as a CPU-time clock.

ENOTSUP The subroutine is not supported with checkpoint-restarted processes.

Files

timer.h

Related Information

“clock_getres, clock_gettime, and clock_settime Subroutine” on page 168,|[‘nanosleep Subroutine” on page
856 |[‘pthread_cond_wait or pthread_cond_timedwait Subroutine” on page 1146 [sleep| subroutine.

The timer.h file.

The Base Definitions volume of IEEE Std 1003.1-2001.

clog, clogf, or clogl Subroutine

Purpose
Computes the complex natural logarithm.

Syntax

#include <complex.h>

double complex clog @)
double complex z;

float complex clogf (z)
float complex z;

long double complex clogl (z)
long double complex z;

Description

The clog, clogf, and clogl subroutines compute the complex natural (base e) logarithm of z, with a
branch cut along the negative real axis.

Parameters

z Specifies the value to be computed.

Return Values

The clog, clogf, and clogl subroutines return the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the interval [-i pi, +i pi] along the imaginary axis.

Related Information
[‘cexp, cexpf, or cexpl Subroutine” on page 139

172 Technical Reference, Volume 1: Base Operating System and Extensions

close Subroutine

Purpose
Closes a file descriptor.

Syntax

#include <unistd.h>

int close (

FileDescriptor)

int FileDescriptors;

Description

The close subroutine closes the file or shared memory object associated with the FileDescriptor
parameter. If Network File System (NFS) is installed on your system, this file can reside on another node.

All file regions associated with the file specified by the FileDescriptor parameter that this process has
previously locked with the lockf or fentl subroutine are unlocked. This occurs even if the process still has
the file open by another file descriptor.

If the FileDescriptor parameter resulted from an open (‘open, openx, opené4, creat, or creat64|
[Subroutine” on page 894) subroutine that specified O_DEFER, and this was the last file descriptor, all
changes made to the file since the last fsync subroutine are discarded.

If the FileDescriptor parameter is associated with a mapped file, it is unmapped. The subroutine
provides more information about mapped files.

The close subroutine attempts to cancel outstanding [asynchronous I/O requests| on this file descriptor. If
the asynchronous I/O requests cannot be canceled, the application is blocked until the requests have
completed.

If the FileDescriptor parameter is associated with a shared memory object and the shared memory object
remains referenced at the last close (that is, a process has it mapped), the entire contents of the memory
object persists until the memory object becomes unreferenced. If this is the last close of a shared memory
object and the close results in the memory object becoming unreferenced, and the memory object has
been unlinked, the memory object is removed. The subroutine provides more information about
shared memory objects.

The close subroutine is blocked until all subroutines which use the file descriptor return to usr space. For
example, when a thread is calling close and another thread is calling select with the same file descriptor,
the close subroutine does not return until the select call returns.

When all file descriptors associated with a pipe or FIFO special file have been closed, any data remaining
in the pipe or FIFO is discarded. If the link count of the file is 0 when all file descriptors associated with
the file have been closed, the space occupied by the file is freed, and the file is no longer accessible.

Note: If the FileDescriptor parameter refers to a device and the close subroutine actually results in a
device close, and the device close routine returns an error, the error is returned to the application.
However, the FileDescriptor parameter is considered closed and it may not be used in any
subsequent calls.

All open file descriptors are closed when a process exits. In addition, file descriptors may be closed
during the exec subroutine if the close-on-exec flag has been set for that file descriptor.

Base Operating System (BOS) Runtime Services (A-P) 173

Parameters

FileDescriptor Specifies a valid open file descriptor.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to identify the error. If the close subroutine is interrupted by a signal that is caught, it
returns a value of -1, the errno global variable is set to EINTR and the state of the FileDescriptor
parameter is closed.

Error Codes
The close subroutine is unsuccessful if the following is true:

EBADF The FileDescriptor parameter does not specify a valid open file descriptor.
EINTR Specifies that the close subroutine was interrupted by a signal.

The close subroutine may also be unsuccessful if the file being closed is NFS-mounted and the server is
down under the following conditions:

* The file is on a hard mount.
* The file is locked in any manner.

The close subroutine may also be unsuccessful if NFS is installed and the following is true:

ETIMEDOUT The connection timed out.

Related Information

The exec (‘exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)
subroutines, fentl (“fentl, dup, or dup2 Subroutine” on page 251) subroutine, ioctl (“ioctl, ioctlx, ioctl32, on
ioctl32x Subroutine” on page 552) subroutine, lockfx (“lockix, lockf, flock, or lockf64 Subroutine” on page
728) subroutine, open, openx, or creat (‘open, openx, open64, creat, or creaté4 Subroutine” on page]
@K subroutine, pipe (‘pipe Subroutine” on page 981) subroutine, |socke§| subroutine.

The [Input and Output Handling|in AIX 5L Version 5.3 General Programming Concepts: Writing and
Debugging Programs.

compare_and_swap Subroutine

Purpose
Conditionally updates or returns a single word variable atomically.

Library
Standard C library (libc.a)

Syntax

#include <sys/atomic_op.h>

boolean_t compare_and swap (word addrl, lold val addr|, |new val)
atomic_p word_addr;

int *old val_addr;

int new_val;

174 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The compare_and_swap subroutine performs an atomic operation which compares the contents of a
single word variable with a stored old value. If the values are equal, a new value is stored in the single
word variable and TRUE is returned; otherwise, the old value is set to the current value of the single word
variable and FALSE is returned.

The compare_and_swap subroutine is useful when a word value must be updated only if it has not been
changed since it was last read.

Note: The word containing the single word variable must be aligned on a full word boundary.

Note: If compare_and_swap is used as a locking primitive, insert an isync at the start of any critical

sections.
Parameters
word_addr Specifies the address of the single word variable.
old_val_addr Specifies the address of the old value to be checked against (and conditionally updated
with) the value of the single word variable.
new_val Specifies the new value to be conditionally assigned to the single word variable.
Return Values
TRUE Indicates that the single word variable was equal to the old value, and has been set to the new
value.
FALSE Indicates that the single word variable was not equal to the old value, and that its current value has

been returned in the location where the old value was previously stored.

Related Information

The fetch_and_add (‘fetch_and_add Subroutine” on page 265) subroutine, fetch_and_and
(“fetch_and_and or fetch_and_or Subroutine” on page 266) subroutine, fetch_and_or (“fetch_and_and o1
[fetch_and_or Subroutine” on page 266) subroutine.

compile, step, or advance Subroutine

Purpose
Compiles and matches regular-expression patterns.

Note: Commands use the regcomp, regexec, regfree, and regerror subroutines for the functions
described in this article.

Library
Standard C Library (libc.a)

Syntax

#define INIT declarations

#define GETC() getc_code

#define PEEKC() peekc_code

#define UNGETC(c) ungetc_code
#define RETURN(pointer) return_code
#define ERROR(val) error_code

Base Operating System (BOS) Runtime Services (A-P) 175

#include <regexp.h>
#include <NLregexp.h>

char xcompile (InString, ExpBuffer, EndBuffer, EndOfFile)
char * |ExpBuffer

char = |[InString

, * [EndBuffer;

int [EndOfFilef;

int step (String, ExpBuffer)
const char * , *ExpBuffers

int advance (String, ExpBuffer)
const char *String, *ExpBuffer;

Description

The /usr/include/regexp.h file contains subroutines that perform regular-expression pattern matching.
Programs that perform regular-expression pattern matching use this source file. Thus, only the regexp.h
file needs to be changed to maintain regular expression compatibility between programs.

The interface to this file is complex. Programs that include this file define the following six macros before
the #include <regexp.h> statement. These macros are used by the compile subroutine:

INIT

GETC()

PEEKC()

UNGETC(c)

RETURN(pointer)

This macro is used for dependent declarations and initializations. It is
placed right after the declaration and opening { (left brace) of the compile
subroutine. The definition of the INIT buffer must end with a ; (semicolon).
INIT is frequently used to set a register variable to point to the beginning of
the regular expression so that this register variable can be used in the
declarations for the GETC, PEEKC, and UNGETC macros. Otherwise, you
can use INIT to declare external variables that GETC, PEEKC, and
UNGETC require.

This macro returns the value of the next character in the regular
expression pattern. Successive calls to the GETC macro should return
successive characters of the pattern.

This macro returns the next character in the regular expression.
Successive calls to the PEEKC macro should return the same character,
which should also be the next character returned by the GETC macro.
This macro causes the parameter c to be returned by the next call to the
GETC and PEEKC macros. No more than one character of pushback is
ever needed, and this character is guaranteed to be the last character read
by the GETC macro. The return value of the UNGETC macro is always
ignored.

This macro is used for normal exit of the compile subroutine. The pointer
parameter points to the first character immediately following the compiled
regular expression. This is useful for programs that have memory
allocation to manage.

176 Technical Reference, Volume 1: Base Operating System and Extensions

ERROR(val) This macro is used for abnormal exit from the compile subroutine. It
should never contain a return statement. The val parameter is an error
number. The error values and their meanings are:

Error Meaning

1 Interval end point too large

16 Bad number

25 \ digit out of range

36 lllegal or missing delimiter

41 No remembered search String

42 \ (?\) imbalance

43 Too many \.(

44 More than two numbers given in \{ \}
45 } expected after \.

46 First number exceeds second in \{ \}
49 [] imbalance

50 Regular expression overflow

70 Invalid endpoint in range

The compile subroutine compiles the regular expression for later use. The InString parameter is never
used explicitly by the compile subroutine, but you can use it in your macros. For example, you can use
the compile subroutine to pass the string containing the pattern as the InString parameter to compile and
use the INIT macro to set a pointer to the beginning of this string. The example in the [‘Examples” on pagel
178 section uses this technique. If your macros do not use InString, then call compile with a value of
((char *) 0) for this parameter.

The ExpBuffer parameter points to a character array where the compiled regular expression is to be
placed. The EndBuffer parameter points to the location that immediately follows the character array where
the compiled regular expression is to be placed. If the compiled expression cannot fit in
(EndBuffer-ExpBuffer) bytes, the call ERROR(50) is made.

The EndOfFile parameter is the character that marks the end of the regular expression. For example, in
the ed command, this character is usually / (slash).

The regexp.h file defines other subroutines that perform actual regular-expression pattern matching. One
of these is the step subroutine.

The String parameter of the step subroutine is a pointer to a null-terminated string of characters to be
checked for a match.

The Expbuffer parameter points to the compiled regular expression, obtained by a call to the compile
subroutine.

The step subroutine returns the value 1 if the given string matches the pattern, and 0 if it does not match.
If it matches, then step also sets two global character pointers: loc1, which points to the first character
that matches the pattern, and loc2, which points to the character immediately following the last character
that matches the pattern. Thus, if the regular expression matches the entire string, loc1 points to the first
character of the String parameter and loc2 points to the null character at the end of the String parameter.

Base Operating System (BOS) Runtime Services (A-P) 177

The step subroutine uses the global variable circf, which is set by the compile subroutine if the regular
expression begins with a A (circumflex). If this variable is set, step only tries to match the regular
expression to the beginning of the string. If you compile more than one regular expression before
executing the first one, save the value of circf for each compiled expression and set circf to that saved
value before each call to step.

Using the same parameters that were passed to it, the step subroutine calls a subroutine named
advance. The step function increments through the String parameter and calls the advance subroutine
until it returns a 1, indicating a match, or until the end of String is reached. To constrain the String
parameter to the beginning of the string in all cases, call the advance subroutine directly instead of calling
the step subroutine.

When the advance subroutine encounters an * (asterisk) or a \{ \} sequence in the regular expression, it
advances its pointer to the string to be matched as far as possible and recursively calls itself, trying to
match the rest of the string to the rest of the regular expression. As long as there is no match, the
advance subroutine backs up along the string until it finds a match or reaches the point in the string that
initially matched the * or \{ \}. You can stop this backing-up before the initial point in the string is reached.
If the locs global character is equal to the point in the string sometime during the backing-up process, the
advance subroutine breaks out of the loop that backs up and returns 0. This is used for global
substitutions on the whole line so that expressions such as s/yx//g do not loop forever.

Note: In 64-bit mode, these interfaces are not supported: they fail with a return code of 0. In order to use
the 64-bit version of this functionality, applications should migrate to the fnmatch, glob, regcomp,
and regexec functions which provide full internationalized regular expression functionality
compatible with ISO 9945-1:1996 (IEEE POSIX 1003.1) and with the UNIX98 specification.

Parameters

InString Specifies the string containing the pattern to be compiled. The InString parameter is not used
explicitly by the compile subroutine, but it may be used in macros.

ExpBuffer Points to a character array where the compiled regular expression is to be placed.

EndBuffer Points to the location that immediately follows the character array where the compiled regular
expression is to be placed.

EndOfFile Specifies the character that marks the end of the regular expression.

String Points to a null-terminated string of characters to be checked for a match.

Examples

The following is an example of the regular expression macros and calls:

#define INIT register char *sp=instring;

#define GETC() (*sptt)

#define PEEKC() (*sp)

#define UNGETC(c) (--sp)

#define RETURN(c) return;

#define ERROR(c) regerr()

#include <regexp.h>
compile (patstr,expbuf, &expbuf[ESIZE], '\0');

if (step (1linebuf, expbuf))
succeed();

Related Information

The [regcmp or regex| subroutine, subroutine, subroutine, subroutine,

subroutine.

178 Technical Reference, Volume 1: Base Operating System and Extensions

[List of String Manipulation Services|and [Subroutines, Example Programs, and Libraries|in AlX 5L Version
5.3 General Programming Concepts: Writing and Debugging Programs.

[National Language Support Overview|in AIX 5L Version 5.3 National Language Support Guide and
Reference.

confstr Subroutine

Purpose
Gets configurable variables.

Library
Standard C library (libc.a)

Syntax

#include <unistd.h>

size_t confstr (int name, char * buf, size_t len);

Description

The confstr subroutine determines the current setting of certain system parameters, limits, or options that
are defined by a string value. It is mainly used by applications to find the system default value for the
PATH environment variable. Its use and purpose are similar to those of the subroutine, but it
returns string values rather than numeric values.

If the Len parameter is not 0 and the Name parameter has a system-defined value, the confstr subroutine
copies that value into a Len-byte buffer pointed to by the Buf parameter. If the string returns a value longer
than the value specified by the Len parameter, including the terminating null byte, then the confstr
subroutine truncates the string to Len-1 bytes and adds a terminating null byte to the result. The
application can detect that the string was truncated by comparing the value returned by the confstr
subroutine with the value specified by the Len parameter.

Parameters

Name Specifies the system variable setting to be returned. Valid values for the Name parameter are defined
in the unistd.h file.

Buf Points to the buffer into which the confstr subroutine copies the value of the Name parameter.

Len Specifies the size of the buffer storing the value of the Name parameter.

Return Values

If the value specified by the Name parameter is system-defined, the confstr subroutine returns the size of
the buffer needed to hold the entire value. If this return value is greater than the value specified by the Len
parameter, the string returned as the Buf parameter is truncated.

If the value of the Len parameter is set to 0 and the Buf parameter is a null value, the confstr subroutine
returns the size of the buffer needed to hold the entire system-defined value, but does not copy the string
value. If the value of the Len parameter is set to 0 but the Buf parameter is not a null value, the result is
unspecified.

Base Operating System (BOS) Runtime Services (A-P) 179

Error Codes
The confstr subroutine will fail if:

EINVAL The value of the name argument is invalid.

Example
To find out what size buffer is needed to store the string value of the Name parameter, enter:
confstr(_CS_PATH, NULL, (size_t) 0)

The confstr subroutine returns the size of the buffer.

Files
usr/include/limits.h| Contains system-defined limits.
usr/include/unistd.h| Contains system-defined environment variables.

Related Information
The pathconf (‘pathconf or fpathconf Subroutine” on page 938) subroutine, subroutine.

The header file.

[Subroutines, Example Programs, and Libraries|in AlX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

conj, conjf, or conjl Subroutine

Purpose
Computes the complex conjugate.

Syntax

#include <complex.h>

double complex conj (EI)
double complex z;

float complex conjf (z)
float complex z;

long double complex conjl (z)
long double complex z;

Description

The conj, conjf, or conjl subroutines compute the complex conjugate of z, by reversing the sign of its
imaginary part.

Parameters

z Specifies the value to be computed.

Return Values
The conj, conijf, or conjl subroutines return the complex conjugate value.

180 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The [‘carg, cargf, or cargl Subroutine” on page 129 |[‘cimag, cimagf, or cimagl Subroutine” on page 161)|
[‘cproj, cprojf, or cprojl Subroutine” on page 187 [[‘creal, crealf, or creall Subroutine” on page 188

conv Subroutines

Purpose
Translates characters.

Library
Standard C Library (libc.a)

Syntax

#include <ctype.h>

int toupper ([Character)

int Character;

int tolower (Character)
int Character;

int _toupper (Character)
int Character;

int _tolower (Character)
int Character;

int toascii (Character)
int Character;

int NCesc (|Pointer|, [CharacterPointer)
NLchar *Pointer;
char *CharacterPointer;

int NCtoupper ([Xcharacter)

int Xcharacter;

int NCtolower (Xcharacter)
int Xcharacter;

int _NCtoupper (Xcharacter)
int Xcharacter;

int _NCtolower (Xcharacter)
int Xcharacter;

int NCtoNLchar (Xcharacter)
int Xcharacter;

int NCunesc (CharacterPointer, Pointer)

char *CharacterPointer;
NLchar *Pointers;

Base Operating System (BOS) Runtime Services (A-P) 181

int NCflatchr (Xcharacter)
int Xcharacter;

Description

The toupper and the tolower subroutines have as domain an int, which is representable as an unsigned
char or the value of EOF: -1 through 255.

If the parameter of the toupper subroutine represents a lowercase letter and there is a corresponding
uppercase letter (as defined by LC_CTYPE), the result is the corresponding uppercase letter. If the
parameter of the tolower subroutine represents an uppercase letter, and there is a corresponding
lowercase letter (as defined by LC_CTYPE), the result is the corresponding lowercase letter. All other
values in the domain are returned unchanged. If case-conversion information is not defined in the current
locale, these subroutines determine character case according to the "C” locale.

The _toupper and _tolower subroutines accomplish the same thing as the toupper and tolower
subroutines, but they have restricted domains. The _toupper routine requires a lowercase letter as its
parameter; its result is the corresponding uppercase letter. The _tolower routine requires an uppercase
letter as its parameter; its result is the corresponding lowercase letter. Values outside the domain cause
undefined results.

The NCxxxxxx subroutines translate all characters, including extended characters, as code points. The
other subroutines translate traditional ASCII characters only. The NCxxxxxx subroutines are obsolete and
should not be used if portability and future compatibility are a concern.

The value of the Xcharacter parameter is in the domain of any legal NLchar data type. It can also have a
special value of -1, which represents the end of file (EOF).

If the parameter of the NCtoupper subroutine represents a lowercase letter according to the current
collating sequence configuration, the result is the corresponding uppercase letter. If the parameter of the
NCtolower subroutine represents an uppercase letter according to the current collating sequence
configuration, the result is the corresponding lowercase letter. All other values in the domain are returned
unchanged.

The _NCtoupper and _NCtolower routines are macros that perform the same function as the NCtoupper
and NCtolower subroutines, but have restricted domains and are faster. The _NCtoupper macro requires
a lowercase letter as its parameter; its result is the corresponding uppercase letter. The _NCtolower
macro requires an uppercase letter as its parameter; its result is the corresponding lowercase letter.
Values outside the domain cause undefined results.

The NCtoNLchar subroutine yields the value of its parameter with all bits turned off that are not part of an
NLchar data type.

The NCesc subroutine converts the NLchar value of the Pointer parameter into one or more ASCII bytes
stored in the character array pointed to by the CharacterPointer parameter. If the NLchar data type
represents an extended character, it is converted into a printable ASCII escape sequence that uniquely
identifies the extended character. NCesc returns the number of bytes it wrote. The display symbol table
lists the escape sequence for each character.

The opposite conversion is performed by the NCunesc macro, which translates an ordinary ASCII byte or

escape sequence starting at CharacterPointer into a single NLchar at Pointer. NCunesc returns the
number of bytes it read.

182 Technical Reference, Volume 1: Base Operating System and Extensions

The NCflatchr subroutine converts its parameter value into the single ASCII byte that most closely
resembles the parameter character in appearance. If no ASCII equivalent exists, it converts the parameter
value to a ? (question mark).

Note: The setlocale subroutine may affect the conversion of the decimal point symbol and the thousands

separator.
Parameters
Character Specifies the character to be converted.
Xcharacter Specifies an NLchar value to be converted.
CharacterPointer Specifies a pointer to a single-byte character array.
Pointer Specifies a pointer to an escape sequence.

Related Information

The Japanese conv (“Japanese conv Subroutines” on page 567) subroutines, ctype d“ctype, isalpha,|
isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or isascii Subroutines” on|
age 203) subroutines, getc, fgetc, getchar, or getw (‘getc, getchar, fgetc, or getw Subroutine” on page]

340) subro df

utine, getwe, fgetwe, or getwchar (“getwc, fgetwc, or getwchar Subroutine” on page 468)
subroutine, subroutine.

[List of Character Manipulation Services| and [Subroutines, Example Programs, and Libraries|in A/X 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

[National Language Support Overview|in AIX 5L Version 5.3 National Language Support Guide and
Reference.

copysign, copysignf, or copysignl Subroutine

Purpose
Performs number manipulation.

Syntax

#include <math.h>

double copysign @, EI)
double x, double y;

float copysignf (x, y)
float x, float y;

long double copysignl (x, y)
Tong double x, Tong double y;

Description

The copysign, copysignf, and copysignl subroutines produce a value with the magnitude of x and the
sign of y.

Parameters
X Specifies the magnitude.
y Specifies the sign.

Base Operating System (BOS) Runtime Services (A-P) 183

Return Values

Upon successful completion, the copysign, copysignf and copysignl subroutines return a value with a
magnitude of x and a sign of y.

Related Information
in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2.

in AIX 5L Version 5.3 Files Reference.

coredump Subroutine

Purpose
Creates a core file without terminating the calling process.

Library
Standard C library (libc.a)

Syntax

#include <core.h>

int coredump(|coredumpinfop)

struct coredumpinfo *coredumpinfop ;

Description

The coredump subroutine creates a core file of the calling process without terminating the calling
process. The created core file contains the memory image of the process, and this can be used with the
dbx command for debugging purposes. In multithreaded processes, only one thread at a time should
attempt to call this subroutine. Subsequent calls to coredump while a core dump (initiated by another
thread) is in progress will fail.

Applications expected to use this facility need to be built with the -bM:UR binder flag, otherwise the
routine will fail with an error code of ENOTSUP.

The coredumpinfo structure has the following fields:

Member Type Member Name Description

unsigned int length Length of the core file name

char * name Points to a character string that
contains the name of the core file

int reserved[8] Reserved fields for future use

Parameters

coredumpinfop Points to the coredumpinfo structure

If a NULL pointer is passed as an argument, the default file named core in the current directory is used.

Return Values

Upon successful completion, the coredump subroutine returns a value of 0. If the coredump subroutine is
not successful, a value of -1 is returned and the errno global variable is set to indicate the error

184 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

EINVAL Invalid argument.

EACCESS Search permission is denied on a component of the path prefix, the file exists and
the pwrite permission is denied, or the file does not exist and write permission is
denied for the parent directory of the file to be created.

EINPROGRESS A core dump is already in progress.
ENOMEM Not enough memory.

ENOTSUP Routine not supported.

EFAULT Invalid user address.

Related Information
The command, command.

The file format.

cosf, cosl, or cos Subroutine

Purpose
Computes the cosine.

Syntax

#include <math.h>

float cosf @)
float x;

long double cosl (x)
Tong double x;

double cos (x)
double x;

Description

The cosf, cosl, and cos subroutines compute the cosine of the x, parameter (measured in radians).
An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

X Specifies the value to be computed.

Return Values
Upon successful completion, the cosf, cosl, and cos subroutines return the cosine of x.

If xis NaN, a NaN is returned.
If x is 0, the value 1.0 is returned.

If x is =Inf, a domain error occurs, and a NaN is returned.

Base Operating System (BOS) Runtime Services (A-P) 185

Related Information

“feclearexcept Subroutine” on page 259|[‘fetestexcept Subroutine” on page 267, and [‘class, _class, finite |
isnan, or unordered Subroutines” on page 165,

sin, sinl, cos, cosl, tan, or tanl Subroutine|in AIX 5L Version 5.3 Technical Reference: Base Operating
System and Extensions Volume 2.

in AIX 5L Version 5.3 Files Reference.

cosh, coshf, or coshl Subroutine

Purpose
Computes the hyperbolic cosine.

Syntax

#include <math.h>

float coshf @)
float x;

long double coshl (x)
Tong double x;

double cosh (x)
double x;

Description

The coshf, coshl, and cosh subroutines compute the hyperbolic cosine of the x parameter.

An application wishing to check for error situations should set errno to zero and call
feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error
has occurred.

Parameters

X Specifies the value to be computed.

Return Values
Upon successful completion, the coshf, coshl, and cosh subroutines return the hyperbolic cosine of x.

If the correct value would cause overflow, a range error occurs and the coshf, coshl, and cosh
subroutines return the value of the macro HUGE_VALF, HUGE_VALL, and HUGE_VAL, respectively.

If xis NaN, a NaN is returned.
If x is +0, the value 1.0 is returned.

If x is =Inf, +Inf is returned.

Related Information

“acosh, acoshf, or acoshl Subroutine” on page 30 |‘feclearexcept Subroutine” on page 259 |[‘fetestexcept|
Subroutine” on page 267,/ and [‘class, _class, finite, isnan, or unordered Subroutines” on page 165|

186 Technical Reference, Volume 1: Base Operating System and Extensions

[sinh, sinhf, or sinhl Subroutine| and [tanh, tanhf, or tanhl Subroutine|in AIX 5L Version 5.3 Technical
Reference: Base Operating System and Extensions Volume 2.

in AIX 5L Version 5.3 Files Reference.

cpow, cpowf, or cpowl Subroutine

Purpose
Computes the complex power.

Syntax

#include <complex.h>

double complex cpow @, EI)
double complex x;
double complex y;

float complex cpowf (x, y)
float complex x;
float complex y;

long double complex cpowl (x, y)
Tong double complex x;
long double complex y;

Description

The cpow, cpowf, and cpowl subroutines compute the complex power function X, with a branch cut for
the first parameter along the negative real axis.

Parameters
X Specifies the base value.
y Specifies the power the base value is raised to.

Return Values
The cpow, cpowf, and cpowl subroutines return the complex power function value.

Related Information
[‘cabs, cabsf, or cabsl Subroutine” on page 127|and [‘csqrt, csqrtf, or csqrtl Subroutine” on page 192

in AIX 5L Version 5.3 Files Reference.

cproj, cprojf, or cprojl Subroutine

Purpose
Computes the complex projection functions.

Syntax

#include <complex.h>

double complex cproj (El)
double complex z;

Base Operating System (BOS) Runtime Services (A-P) 187

float complex cprojf (z)
float complex z;

Tong double complex cprojl (z)
long double complex z;

Description

The cproj, cprojf, and cprojl subroutines compute a projection of z onto the Riemann sphere: z projects
to z, except that all complex infinities (even those with one infinite part and one NaN part) project to
positive infinity on the real axis. If z has an infinite part, cproj(z) shall be equivalent to:

INFINITY + I * copysign(0.0, cimag(z))

Parameters

z Specifies the value to be projected.

Return Values
The cproj, cprojf, and cprojl subroutines return the value of the projection onto the Riemann sphere.

Related Information

“carg, cargf, or cargl Subroutine” on page 129¥cimag, cimagf, or cimagl Subroutine” on page 161)[“conj|
conijf, or conjl Subroutine” on page 180, and [‘creal, crealf, or creall Subroutine.’]

in AIX 5L Version 5.3 Files Reference.

creal, crealf, or creall Subroutine

Purpose
Computes the real part of a specified value.

Syntax

#include <complex.h>

double creal @)
double complex z;

float crealf (z)
float complex z;

long double creall (z)
Tong double complex z;

Description

The creal, crealf, and creall subroutines compute the real part of the value specified by the z parameter.
Parameters

z Specifies the real to be computed.

Return Values
These subroutines return the real part value.

188 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

“carg, cargf, or cargl Subroutine” on page 129 [[‘cimag, cimagf, or cimagl Subroutine” on page 161 [‘conj|
conjf, or conjl Subroutine” on page 180,/ and [‘cproj, cprojf, or cprojl Subroutine” on page 187

crypt, encrypt, or setkey Subroutine

Purpose
Encrypts or decrypts data.

Library
Standard C Library (libc.a)

Syntax
char xcrypt (PW, Salt)

const char * , * ;

void encrypt (Block, EdFlag)
char [Block|[64];

int [EdFlag);

void setkey (Key)

const char =* ;

Description

The crypt and encrypt subroutines encrypt or decrypt data. The crypt subroutine performs a one-way
encryption of a fixed data array with the supplied PW parameter. The subroutine uses the Salt parameter
to vary the encryption algorithm.

The encrypt subroutine encrypts or decrypts the data supplied in the Block parameter using the key
supplied by an earlier call to the setkey subroutine. The data in the Block parameter on input must be an
array of 64 characters. Each character must be an char 0 or char 1.

If you need to statically bind functions from libc.a for crypt do the following:
1. Create a file and add the following:

#!
___setkey
___encrypt
__crypt
2. Perform the linking.
3. Add the following to the make file:

-bI:YourFileName

where YourFileName is the name of the file you created in step 1. It should look like the following:
LDFLAGS=bnoautoimp -bI:/1ib/syscalls.exp -bI:YourFileName -1c

These subroutines are provided for compatibility with UNIX® system implementations.

Parameters

Block Identifies a 64-character array containing the values (char) 0 and (char) 1. Upon return, this buffer
contains the encrypted or decrypted data.

Base Operating System (BOS) Runtime Services (A-P) 189

EdFlag Determines whether the subroutine encrypts or decrypts the data. If this parameter is 0, the data
is encrypted. If this is a nonzero value, the data is decrypted. If the /usr/lib/libdes.a file does not
exist and the EdFlag parameter is set to nonzero, the encrypt subroutine returns the ENOSYS
error code.

Key Specifies an 64-element array of 0’s and 1’s cast as a const char data type. The Key parameter
is used to encrypt or decrypt data.

PW Specifies up to an 8-character string to be encrypted.

Salt Specifies a 2-character string chosen from the following:

A-Z Uppercase alpha characters
a-z Lowercase alpha characters
0-9 Numeric characters

Period

/ Slash
The Salt parameter is used to vary the hashing algorithm in one of 4096 different ways.

Return Values

The crypt subroutine returns a pointer to the encrypted password. The static area this pointer indicates
may be overwritten by subsequent calls.

Error Codes
The encrypt subroutine returns the following:

ENOSYS The encrypt subroutine was called with the EdFlag parameter which was set to a nonzero value.
Also, the /usr/lib/libdes.a file does not exist.

Related Information
The newpass (‘newpass Subroutine” on page 860) subroutine.

The command, command, [su] command.

List of Security and Auditing Subroutines| and [Subroutines Overview|in AlX 5L Version 5.3 General
Programming Concepts: Writing and Debugging Programs.

csid Subroutine

Purpose
Returns the character set ID (charsetID) of a multibyte character.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int csid (

const char *String;

190 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The csid subroutine returns the charsetID of the multibyte character pointed to by the String parameter.
No validation of the character is performed. The parameter must point to a value in the character range of
the current code set defined in the current locale.

Parameters

String Specifies the character to be tested.

Return Values

Successful completion returns an integer value representing the charsetlD of the character. This integer
can be a number from 0 through n, where n is the maximum character set defined in the CHARSETID field of
the charmap. See ['Understanding the Character Set Description (charmap) Source File'|in AlX 5L
Version 5.3 System Management Concepts: Operating System and Devices for more information.

Related Information
The mbstowces (‘mbstowcs Subroutine” on page 790) subroutine, subroutine.

National Language Support Overview| and [Understanding the Character Set Description (charmap) Source
File]in AIX 5L Version 5.3 National Language Support Guide and Reference.

[Subroutines, Example Programs, and Libraries|in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

csin, csinf, or csinl Subroutine

Purpose
Computes the complex sine.

Syntax

#include <complex.h>

double complex csin (El)
double complex z;

float complex csinf (z)
float complex z;

long double complex csinl (z)
Tong double complex z;

Description

The esin, csinf, and csinl subroutines compute the complex sine of the value specified by the z
parameter.

Parameters

z Specifies the value to be computed.

Return Values
The esin, csinf, and csinl subroutines return the complex sine value.

Base Operating System (BOS) Runtime Services (A-P) 191

Related Information
[‘casin, casinf, or casinl Subroutine” on page 129

csinh, csinhf, or csinhl Subroutine

Purpose
Computes the complex hyperbolic sine.

Syntax

#include <complex.h>

double complex csinh dEb
double complex z;

float complex csinhf (z)
float complex z;

Tong double complex csinhl (z)
Tong double complex z;

Description

The csinh, csinhf, and csinhl subroutines compute the complex hyperbolic sine of the value specified by
the z parameter.

Parameters

z Specifies the value to be computed.
Return Values
The csinh, csinhf, and csinhl subroutines return the complex hyperbolic sine value.

Related Information
[‘casinh, casinfh, or casinlh Subroutine” on page 130|

csqrt, csqrtf, or csqrtl Subroutine

Purpose
Computes complex square roots.

Syntax

#include <complex.h>
double complex csqrt
double complex z;

float complex csqrtf (z)
float complex z;

Tong double complex csqrtl (z)
long double complex z;

192 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The csqrt, csqrtf, and csqrtl subroutines compute the complex square root of the value specified by the z
parameter, with a branch cut along the negative real axis.

Parameters

z Specifies the value to be computed.

Return Values

The csqrt, csqrtf, and csqrtl subroutines return the complex square root value, in the range of the right
half-plane (including the imaginary axis).

Related Information
[‘cabs, cabsf, or cabsl Subroutine” on page 127 |[‘cpow, cpowf, or cpowl Subroutine” on page 187

ctan, ctanf, or ctanl Subroutine

Purpose
Computes complex tangents.

Syntax

#include <complex.h>

double complex ctan (El)
double complex z;

float complex ctanf (z)
float complex z;

long double complex ctanl (z)
Tong double complex z;

Description

The ctan, ctanf, and ctanl subroutines compute the complex tangent of the value specified by the z
parameter.

Parameters

z Specifies the value to be computed.

Return Values
The ctan, ctanf, and ctanl subroutines return the complex tangent value.

Related Information
[‘catan, catanf, or catanl Subroutine” on page 130

in AIX 5L Version 5.3 Files Reference.

Base Operating System (BOS) Runtime Services (A-P) 193

ctanh, ctanhf, or ctanhl Subroutine

Purpose
Computes the complex hyperbolic tangent.

Syntax

#include <complex.h>

double complex ctanh (EI)
double complex z;

float complex ctanhf (z)
float complex z;

long double complex ctanhl (z)
Tong double complex z;

Description
The ctanh, ctanhf, and ctanhl subroutines compute the complex hyperbolic tangent of z

Parameters

z Specifies the value to be computed.

Return Values
The ctanh, ctanhf, and ctanhl subroutines return the complex hyperbolic tangent value.

Related Information
[‘catanh, catanhf, or catanhl Subroutine” on page 131|

ctermid Subroutine

Purpose
Generates the path name of the controlling terminal.

Library
Standard C Library (libc.a)

Syntax

#include <stdio.h>

char *ctermid ([String)

char *String;

Description

The ctermid subroutine generates the path name of the controlling terminal for the current process and
stores it in a string.

Note: File access permissions depend on user access. Access to a file whose path name the ctermid
subroutine has returned is not guaranteed.

194 Technical Reference, Volume 1: Base Operating System and Extensions

The difference between the ctermid and ttyname subroutines is that the ttyname subroutine must be
handed a file descriptor and returns the actual name of the terminal associated with that file descriptor.
The ctermid subroutine returns a string (the /devi/tty file) that refers to the terminal if used as a file name.
Thus, the ttyname subroutine is useful only if the process already has at least one file open to a terminal.

Parameters

String If the String parameter is a null pointer, the string is stored in an internal static area and the address
is returned. The next call to the ctermid subroutine overwrites the contents of the internal static
area.

If the String parameter is not a null pointer, it points to a character array of at least L_ctermid
elements as defined in the stdio.h file. The path name is placed in this array and the value of the
String parameter is returned.

Related Information
The [isatty| or fttyname| subroutine.

[Input and Output Handling Programmer’s Overview|in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine

Purpose
Converts the formats of date and time representations.

Library
Standard C Library (libc.a)

Syntax

#include <time.h>

char *ctime ([Clock]

const time_t *Clock;

struct tm *localtime (Clock)
const time_t *Clock;

struct tm *gmtime (Clock)
const time_t *Clock;

time t mktime([Timeptr)

struct tm *Timeptr;

double difftime([Timel], [Timed)

time_t Time0O, Timel;

char *asctime (

const struct tm *7Tm;

void tzset ()

extern long int timezone;
extern int daylight;
extern char *tzname[];

Base Operating System (BOS) Runtime Services (A-P) 195

Description

Attention: Do not use the tzset subroutine when linking with both libc.a and libbsd.a. The tzset
subroutine sets the global external variable called timezone, which conflicts with the timezone
subroutine in libbsd.a. This name collision may cause unpredictable results.

Attention: Do not use the ctime, localtime, gmtime, or asctime subroutine in a multithreaded
environment. See the multithread alternatives in the ctime_r d“ctime_r, localtime_r, gmtime_r, 0|1
lasctime_r Subroutine” on page 202), localtime_r, gmtime_r, or asctime_r subroutine article.

The ctime subroutine converts a time value pointed to by the Clock parameter, which represents the time
in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into a 26-character string
in the following form:

Sun Sept 16 01:03:52 1973\n\0
The width of each field is always the same as shown here.
The ctime subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime subroutine converts the long integer pointed to by the Clock parameter, which contains the
time in seconds since 00:00:00 UTC, 1 January 1970, into a tm structure. The localtime subroutine
adjusts for the time zone and for daylight-saving time, if it is in effect. Use the time-zone information as
though localtime called tzset.

The gmtime subroutine converts the long integer pointed to by the Clock parameter into a tm structure
containing the Coordinated Universal Time (UTC), which is the time standard the operating system uses.

Note: UTC is the international time standard intended to replace GMT.

The tm structure is defined in the time.h file, and it contains the following members:
int tm_sec; /* Seconds (0 - 59) =/

int tm_min; /* Minutes (0 - 59) =/

int tm_hour; /* Hours (0 - 23) =/

int tm_mday; /* Day of month (1 - 31) =/

int tm_mon; /* Month of year (0 - 11) */

int tm_year; /* Year - 1900 =/

int tm_wday; /* Day of week (Sunday = 0) =/

int tm_yday; /* Day of year (0 - 365) =*/

int tm_isdst; /* Nonzero = Daylight saving time */

The mktime subroutine is the reverse function of the localtime subroutine. The mktime subroutine
converts the tm structure into the time in seconds since 00:00:00 UTC, 1 January 1970. The tm_wday and
tm_yday fields are ignored, and the other components of the tm structure are not restricted to the ranges
specified in the /usr/include/time.h file. The value of the tm_isdst field determines the following actions of
the mktime subroutine:

0 Initially presumes that Daylight Savings Time (DST) is not in effect.
>0 Initially presumes that DST is in effect.
-1 Actively determines whether DST is in effect from the specified time and the local time zone. Local time zone

information is set by the tzset subroutine.

Upon successful completion, the mktime subroutine sets the values of the tm_wday and tm_yday fields
appropriately. Other fields are set to represent the specified time since January 1, 1970. However, the
values are forced to the ranges specified in the /usr/include/time.h file. The final value of the tm_mday
field is not set until the values of the tm_mon and tm_year fields are determined.

196 Technical Reference, Volume 1: Base Operating System and Extensions

Note: The mktime subroutine cannot convert time values before 00:00:00 UTC, January 1, 1970 and
after 03:14:07 UTC, January 19, 2038.

The difftime subroutine computes the difference between two calendar times: the Time1 and -Time0O
parameters.

The asctime subroutine converts a tm structure to a 26-character string of the same format as ctime.

If the TZ environment variable is defined, then its value overrides the default time zone, which is the U.S.
Eastern time zone. The environment facility contains the format of the time zone information specified by
TZ. TZ is usually set when the system is started with the value that is defined in either the
letc/environment or /etc/profile files. However, it can also be set by the user as a regular environment
variable for performing alternate time zone conversions.

The tzset subroutine sets the timezone, daylight, and tzname external variables to reflect the setting of
TZ. The tzset subroutine is called by ctime and localtime, and it can also be called explicitly by an
application program.

The timezone external variable contains the difference, in seconds, between UTC and local standard time.
For example, the value of timezone is 5 * 60 * 60 for U.S. Eastern Standard Time.

The daylight external variable is nonzero when a daylight-saving time conversion should be applied. By
default, this conversion follows the standard U.S. conventions; other conventions can be specified. The
default conversion algorithm adjusts for the peculiarities of U.S. daylight saving time in 1974 and 1975.

The tzname external variable contains the name of the standard time zone (tzname[0]) and of the time
zone when Daylight Savings Time is in effect (tzname[1]). For example:

char xtzname[2] = {"EST", "EDT"};

The time.h file contains declarations of all these subroutines and externals and the tm structure.

Parameters

Clock Specifies the pointer to the time value in seconds.
Timeptr Specifies the pointer to a tm structure.

Timet Specifies the pointer to a time_t structure.

TimeO Specifies the pointer to a time_t structure.

Tm Specifies the pointer to a tm structure.

Return Values
Attention: The return values point to static data that is overwritten by each call.

The tzset subroutine returns no value.

The mktime subroutine returns the specified time in seconds encoded as a value of type time_t. If the
time cannot be represented, the function returns the value (time_t)-1.

The localtime and gmtime subroutines return a pointer to the struct tm.
The ctime and asctime subroutines return a pointer to a 26-character string.

The difftime subroutine returns the difference expressed in seconds as a value of type double.

Base Operating System (BOS) Runtime Services (A-P) 197

Related Information

The getenv (‘getenv Subroutine” on page 357) subroutine, gettimer (‘gettimer, settimer, restimer, stime, of
ftime Subroutine” on page 437) subroutine, |strftimg| subroutine.

[List of Time Data Manipulation Services|in AIX 5L Version 5.3 System Management Concepts: Operating
System and Devices.

[National Language Support Overview for Programming|in AIX 5L Version 5.3 National Language Support
Guide and Reference.

[Subroutines, Example Programs, and Libraries|in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

ctime64, localtime64, gmtime64, mktime64, difftime64, or asctime64
Subroutine

Purpose
Converts the formats of date and time representations.

Library
Standard C Library (libc.a)

Syntax

#include <time.h>

char *ctime64 (Clock]
const time64_t =*Clock;

struct tm *Tocaltime64 (Clock)
const time64_t =Clock;

struct tm *gmtime64 (Clock)
const time64_t *Clock;

time64_t mktime64 (Timeptr))
struct tm *Timeptr;

double difftime64 (Timel],

time6d t TimeQ, Timel;

char xasctime64 (7m)
const struct tm *Tm;

Description

Attention: Do not use the ctime, localtime, gmtime, or asctime subroutine in a multithreaded
environment. See [‘ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine” on page 200| for
multithread alternatives.

The ctime64 subroutine converts a time value pointed to by the Clock parameter, which represents the
time in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into a 26-character
string in the following form:

Sun Sept 16 01:03:52 1973\n\0

The width of each field is always the same as shown here.

198 Technical Reference, Volume 1: Base Operating System and Extensions

The ctime64 subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime64 subroutine converts the 64 bit long pointed to by the Clock parameter, which contains the
time in seconds since 00:00:00 UTC, 1 January 1970, into a tm structure. The localtime64 subroutine
adjusts for the time zone and for daylight saving time, if it is in effect. Use the time-zone information as
though localtime64 called tzset.

The gmtime64 subroutine converts the 64 bit long pointed to by the Clock parameter into a tm structure
containing the Coordinated Universal Time (UTC), which is the time standard that the operating system
uses.

Note: UTC is the international time standard intended to replace GMT.

The mktime64 subroutine is the reverse function of the localtime64 subroutine. The mktime64 subroutine
converts the tm structure into the time in seconds since 00:00:00 UTC, 1 January 1970. The tm_wday
and tm_yday fields are ignored, and the other components of the tm structure are not restricted to the
ranges specified in the /usr/include/time.h file. The value of the tm_isdst field determines the following
actions of the mktime64 subroutine:

0 Initially presumes that Daylight Savings Time (DST) is not in effect.

>0 Initially presumes that DST is in effect.

-1 Actively determines whether DST is in effect from the specified time and the local
time zone. Local time zone information is set by the tzset subroutine.

Upon successful completion, the mktime64 subroutine sets the values of the tm_wday and tm_yday
fields appropriately. Other fields are set to represent the specified time since January 1, 1970. However,
the values are forced to the ranges specified in the /usr/include/time.h file. The final value of the
tm_mday field is not set until the values of the tm_mon and tm_year fields are determined.

Note: The mktime64 subroutine cannot convert time values before 00:00:00 UTC, January 1, 1970 and
after 23:59:59 UTC, December 31, 9999.

Note: The difftime64 subroutine computes the difference between two calendar times: the Time1 and
TimeO parameters.

Note: The asctime64 subroutine converts a tm structure to a 26-character string of the same format as

ctime64.
Parameters
Clock Specifies the pointer to the time value in seconds.
Timeptr Specifies the pointer to a tm structure.
Timet Specifies the pointer to a time64_t structure.
TimeO Specifies the pointer to a time64_t structure.
Tm Specifies the pointer to a tm structure.

Return Values
Attention: The return values point to static data that is overwritten by each call.

The mktime64 subroutine returns the specified time in seconds encoded as a value of type time64_t. If
the time cannot be represented, the function returns the value (time64_t)-1.

The localtime64 and gmtime64 subroutines return a pointer to the tm struct .

Base Operating System (BOS) Runtime Services (A-P) 199

The ctime64 and asctime64 subroutines return a pointer to a 26-character string.

The difftime64 subroutine returns the difference expressed in seconds as a value of type long double.

Related Information

“ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine,][‘getenv Subroutine” on page 357 |
“gettimer, settimer, restimer, stime, or time Subroutine” on page 437,||strftime| subroutine.

[List of Time Data Manipulation Services|in AIX 5L™ Version 5.3 System Management Concepts: Operating
System and Devices.

[National Language Support Overview for Programming|in AIX 5L Version 5.3 National Language Support
Guide and Reference.

[Subroutines, Example Programs, and Libraries|in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine

Purpose
Converts the formats of date and time representations.

Library
Thread-Safe C Library (libc_r.a)

Syntax

#include <time.h>

char *ctime64_r(Timer|, [BufferPointer]
const time64_t = Timer;
char * BufferPointer;

struct tm *localtime64_r(Timer, |CurrentTime)

const time64_t * Timer;
struct tm * CurrentTime;

struct tm *gmtime64 r (Timer, [XTime)
const time64 t = Timer;
struct tm * XTime;

char *asctime64_r (TimePointer], BufferPointer)

const struct tm * TimePointer;
char * BufferPointer;

Description

The ctime64_r subroutine converts a time value pointed to by the Timer parameter, which represents the
time in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into the character
array pointed to by the BufferPointer parameter. The character array should have a length of at least 26
characters so the converted time value fits without truncation. The converted time value string takes the
form of the following example:

Sun Sept 16 01:03:52 1973\n\0

The width of each field is always the same as shown here. Thus, ctime will only return dates up to
December 31, 9999.

200 Technical Reference, Volume 1: Base Operating System and Extensions

The ctime64_r subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime64_r subroutine converts the time64_t structure pointed to by the Timer parameter, which
contains the time in seconds since 00:00:00 UTC, January 1, 1970, into the tm structure pointed to by the
CurrentTime parameter. The localtime64_r subroutine adjusts for the time zone and for daylight saving
time, if it is in effect.

The gmtime64_r subroutine converts the time64_t structure pointed to by the Timer parameter into the tm
structure pointed to by the XTime parameter.

The tm structure is defined in the time.h header file. The time.h file contains declarations of these
subroutines, externals, and the tm structure.

The asctime64_r subroutine converts the tm structure pointed to by the TimePointer parameter into a
26-character string in the same format as the ctime64_r subroutine. The results are placed into the
character array, BufferPointer. The BufferPointer parameter points to the resulting character array, which
takes the form of the following example:

Sun Sept 16 01:03:52 1973\n\0

Programs using this subroutine must link to the libpthreads.a library.

Parameters

Timer Points to a time64_t structure, which contains the number of seconds since 00:00:00 UTC,
January 1, 1970.

BufferPointer Points to a character array at least 26 characters long.

CurrentTime Points to a tm structure. The result of the localtime64_r subroutine is placed here.

XTime Points to a tm structure used for the results of the gmtime64_r subroutine.

TimePointer Points to a tm structure used as input to the asctime64_r subroutine.

Return Values

The localtime64_r and gmtime64_r subroutines return a pointer to the tm structure. The asctime64_r
returns NULL if either TimePointer or BufferPointer is NULL.

The ctime64_r and asctime64_r subroutines return a pointer to a 26-character string. The ctime64_r
subroutine returns NULL if the BufferPointer is NULL.

The difftime64 subroutine returns the difference expressed in seconds as a value of type long double.

Files

/usr/include/time.h Defines time macros, data types, and structures.

Related Information
[‘ctime64, localtime64, gmtime64, mktime64, difftime64, or asctime64 Subroutine” on page 198

[Subroutines, Example Programs, and Libraries|in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 201

ctime_r, localtime_r, gmtime_r, or asctime_r Subroutine

Purpose
Converts the formats of date and time representations.

Library
Thread-Safe C Library (libc_r.a)

Syntax

#include <time.h>

char *ctime_r(Timer, BufferPointer)
const time t * |Timerj;
char * |BufferPointer(;

struct tm *localtime r(Timer, CurrentTime)
const time_ t * [Timerl;

struct tm * [CurrentTimel;

struct tm *gmtime r(Timer, XTime)
const time_t * [Timer);
struct tm * [XTimel;

char *asctime_r(TimePointer, BufferPointer)

const struct tm * |TimePointer|;
char * |§uffer‘Pointer‘|;

Description

The ctime_r subroutine converts a time value pointed to by the Timer parameter, which represents the
time in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into the character
array pointed to by the BufferPointer parameter. The character array should have a length of at least 26
characters so the converted time value fits without truncation. The converted time value string takes the
form of the following example:

Sun Sep 16 01:03:52 1973\n\0

The width of each field is always the same as shown here.

The ctime_r subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime_r subroutine converts the time_t structure pointed to by the Timer parameter, which
contains the time in seconds since 00:00:00 UTC, January 1, 1970, into the tm structure pointed to by the
CurrentTime parameter. The localtime_r subroutine adjusts for the time zone and for daylight saving time,
if it is in effect.

The gmtime_r subroutine converts the time_t structure pointed to by the Timer parameter into the tm
structure pointed to by the XTime parameter.

The tm structure is defined in the time.h header file. The time.h file contains declarations of these
subroutines, externals, and the tm structure.

202 Technical Reference, Volume 1: Base Operating System and Extensions

The asctime_r subroutine converts the tm structure pointed to by the TimePointer parameter into a
26-character string in the same format as the ctime_r subroutine. The results are placed into the character
array, BufferPointer. The BufferPointer parameter points to the resulting character array, which takes the
form of the following example:

Sun Sep 16 01:03:52 1973\n\0

Programs using this subroutine must link to the libpthreads.a library.

Parameters

Timer Points to a time_t structure, which contains the number of seconds since 00:00:00 UTC,
January 1, 1970.

BufferPointer Points to a character array at least 26 characters long.

CurrentTime Points to a tm structure. The result of the localtime_r subroutine is placed here.

XTime Points to a tm structure used for the results of the gmtime_r subroutine.

TimePointer Points to a tm structure used as input to the asctime_r subroutine.

Return Values

The localtime_r and gmtime_r subroutines return a pointer to the tm structure. The asctime_r returns
NULL if either TimePointer or BufferPointer are NULL.

The ctime_r and asctime_r subroutines return a pointer to a 26-character string. The ctime_r subroutine
returns NULL if the BufferPointer is NULL.

Files

lusr/include/time.h
Defines time macros, data types, and structures.

Related Information

The ctime, localtime, gmtime, mktime, difftime, asctime, or tzset (‘ctime, localtime, gmtime, mktime,|
[difftime, asctime, or tzset Subroutine” on page 195) subroutine.

[Subroutines, Example Programs, and Libraries| and [List of Multi-threaded Programming Subroutines|in AlX
5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

[National Language Support Overview|in AIX 5L Version 5.3 National Language Support Guide and
Reference

ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,
ispunct, isprint, isgraph, iscntrl, or isascii Subroutines

Purpose
Classifies characters.

Library
Standard Character Library (libc.a)

Syntax

#include <ctype.h>

Base Operating System (BOS) Runtime Services (A-P) 203

int isalpha ([Character)

int Character;

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

isupper (Character)
Character;

islower (Character)
Character;

isdigit (Character)
Character;

isxdigit (Character)
Characters;

isalnum (Character)
Character;

isspace (Character)
Character;

ispunct (Character)
Character;

isprint (Character)
Character;

isgraph (Character)
Character;

isentrl (Character)
Character;

isascii (Character)
Character;

Description

The ctype subroutines classify character-coded integer values specified in a table. Each of these
subroutines returns a nonzero value for True and 0 for False.

Note: The ctype subroutines should only be used on character data that can be represented by a single
byte value (0 through 255). Attempting to use the ctype subroutines on multi-byte locale data may
give inconsistent results. Wide character classification routines (such as iswprint, iswlower, etc.)
should be used with dealing with multi-byte character data.

Locale Dependent Character Tests
The following subroutines return nonzero (True) based upon the character class definitions for the current

locale.

isalnum

isalpha

isupper

islower

isspace

Returns nonzero for any character for which the isalpha or isdigit subroutine would return
nonzero. The isalnum subroutine tests whether the character is of the alpha or digit class.
Returns nonzero for any character for which the isupper or islower subroutines would return
nonzero. The isalpha subroutine also returns nonzero for any character defined as an alphabetic
character in the current locale, or for a character for which none of the isentrl, isdigit, ispunct,
or isspace subroutines would return nonzero. The isalpha subroutine tests whether the
character is of the alpha class.

Returns nonzero for any uppercase letter [A through Z]. The isupper subroutine also returns
nonzero for any character defined to be uppercase in the current locale. The isupper subroutine
tests whether the character is of the upper class.

Returns nonzero for any lowercase letter [a through z]. The islower subroutine also returns
nonzero for any character defined to be lowercase in the current locale. The islower subroutine
tests whether the character is of the lower class.

Returns nonzero for any white-space character (space, form feed, new line, carriage return,
horizontal tab or vertical tab). The isspace subroutine tests whether the character is of the
space class.

204 Technical Reference, Volume 1: Base Operating System and Extensions

ispunct Returns nonzero for any character for which the isprint subroutine returns nonzero, except the
space character and any character for which the isalnum subroutine would return nonzero. The
ispunct subroutine also returns nonzero for any locale-defined character specified as a
punctuation character. The ispunct subroutine tests whether the character is of the punct class.

isprint Returns nonzero for any printing character. Returns nonzero for any locale-defined character that
is designated a printing character. This routine tests whether the character is of the print class.

isgraph Returns nonzero for any character for which the isprint character returns nonzero, except the
space character. The isgraph subroutine tests whether the character is of the graph class.

iscntrl Returns nonzero for any character for which the isprint subroutine returns a value of False (0)

and any character that is designated a control character in the current locale. For the C locale,
control characters are the ASCII delete character (0177 or 0x7F), or an ordinary control character
(less than 040 or 0x20). The iscntrl subroutine tests whether the character is of the cntrl class.

Locale Independent Character Tests
The following subroutines return nonzero for the same characters, regardless of the locale:

isdigit Character is a digit in the range [0 through 9].

isxdigit Character is a hexadecimal digit in the range [0 through 9], [A through F], or [a through f].

isascii Character is an ASCII character whose value is in the range 0 through 0177 (0 through 0x7F),
inclusive.

Parameter

Character Indicates the character to be tested (integer value).

Return Codes

The ctype subroutines return nonzero (True) if the character specified by the Character parameter is a
member of the selected character class; otherwise, a 0 (False) is returned.

Related Information
The subroutine.

[List of Character Manipulation Services| and [Subroutines, Example Programs, and Libraries|in A/X 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

[National Language Support Overview|in AIX 5L Version 5.3 National Language Support Guide and
Reference.

cuserid Subroutine

Purpose
Gets the alphanumeric user name associated with the current process.

Library
Standard C Library (libc.a)

Use the libc_r.a library to access the thread-safe version of this subroutine.

Syntax

#include <stdio.h>

Base Operating System (BOS) Runtime Services (A-P) 205

char *cuserid (

char *Name;

Description

The cuserid subroutine gets the alphanumeric user name associated with the current process. This
subroutine generates a character string representing the name of a process’s owner.

Note: The cuserid subroutine duplicates functionality available with the getpwuid and getuid
subroutines. Present applications should use the getpwuid and getuid subroutines.

If the Name parameter is a null pointer, then a character string of size L_cuserid is dynamically allocated
with malloc, and the character string representing the name of the process owner is stored in this area.
The cuserid subroutine then returns the address of this area. Multithreaded application programs should
use this functionality to obtain thread specific data, and then continue to use this pointer in subsequent
calls to the curserid subroutine. In any case, the application program must deallocate any dynamically
allocated space with the free subroutine when the data is no longer needed.

If the Name parameter is not a null pointer, the character string is stored into the array pointed to by the
Name parameter. This array must contain at least the number of characters specified by the constant
L_cuserid. This constant is defined in the stdio.h file.

If the user name cannot be found, the cuserid subroutine returns a null pointer; if the Name parameter is
not a null pointer, a null character (\0’) is stored in Name [0].

Parameter

Name Points to a character string representing a user name.

Related Information

The endpwent (‘getpwent, getpwuid, getownam, putpwent, setpwent, or endpwent Subroutine” on page|
413) subroutine, getlogin (Fgetlogin Subroutine” on page 385), getpwent {“getpwent, getpwuid, getpwnam|
putpwent, setpwent, or endpwent Subroutine” on page 413), getpwnam (‘getpwent, getpwuid, getpwnam |
putpwent, setpwent, or endpwent Subroutine” on page 413), getpwuid (“‘getpwent, getpwuid, getpwnam |
putpwent, setpwent, or endpwent Subroutine” on page 413), or putpwent (‘getpwent, getpwuid|
getpwnam, putpwent, setpwent, or endpwent Subroutine” on page 413) subroutine.

[Input and Output Handling Programmer’s Overview|in AIX 5L Version 5.3 General Programming Concepts:
Writing and Debugging Programs.

defssys Subroutine

Purpose
Initializes the SRCsubsys structure with default values.

Library

System Resource Controller Library (libsrc.a)
Syntax

#include <sys/srcobj.h>
#include <spc.h>

206 Technical Reference, Volume 1: Base Operating System and Extensions

void defssys([SRCSubsystem)

struct SRCsubsys *SRCSubsystem;

Description

The defssys subroutine initializes the [SRCsubsys| structure of the /usr/include/sys/srcobj.h file with the
following default values:

Field Value
display SRCYES
multi SRCNO
contact SRCSOCKET
waittime TIMELIMIT
priority 20

action ONCE
standerr /dev/console
standin /dev/console
standout /dev/console

All other numeric fields are set to 0, and all other alphabetic fields are set to an empty string.

This function must be called to initialize the SRCsubsys structure before an application program uses this
structure to add records to the subsystem object class.

Parameters

SRCSubsystem Points to the SRCsubsys structure.

Related Information
The addssys (“addssys Subroutine” on page 33) subroutine.

Defining Your Subsystem to the SRC| [List of SRC Subroutines) [System Resource Controller (SRC)|
Overview for Programmers|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

delssys Subroutine

Purpose
Removes the subsystem objects associated with the SubsystemName parameter.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>
#include <spc.h>

int delssys (|SubsystemName)

char *SubsystemName;

Base Operating System (BOS) Runtime Services (A-P) 207

Description

The delssys subroutine removes the subsystem objects associated with the specified subsystem. This
removes all objects associated with that subsystem from the following object classes:

* Subsystem
» Subserver Type
* Notify

The program running with this subroutine must be running with the group system.

Parameter

SubsystemName Specifies the name of the subsystem.

Return Values

Upon successful completion, the delssys subroutine returns a positive value. If no record is found, a value
of 0 is returned. Otherwise, -1 is returned and the odmerrno variable is set to indicate the error. See
"Appendix B. ODM Error Codes (Appendix B, “ODM Error Codes,” on page 1253)" for a description of
possible odmerrno values.

Security
Privilege Control:

SET_PROC_AUDIT kernel privilege

Files Accessed:

Mode File

644 /etc/objrepos/SRCsubsys
644 /etc/objrepos/SRCsubsvr
644 letc/objrepos/SRCnotify

Auditing Events:

Event Information

SRC_Delssys Lists in an audit log the name of the subsystem being removed.

Files

letc/objrepos/SRCsubsys SRC Subsystem Configuration object class.
letc/objrepos/SRCsubsvr SRC Subsystem Configuration object class.
letc/objrepos/SRCnotify SRC Notify Method object class.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.
ust/include/sys/srcobj.h| Defines object structures used by the SRC.
ust/include/spc.h| Defines external interfaces provided by the SRC subroutines.

Related Information

The addssys (“addssys Subroutine” on page 33) subroutine, chssys (‘chssys Subroutine” on page 160)
subroutine.

208 Technical Reference, Volume 1: Base Operating System and Extensions

The command, command, command.

[List of SRC Subroutines|and [System Resource Controller (SRC) Overview for Programmers|in AIX 5L
Version 5.3 General Programming Concepts: Writing and Debugging Programs.

dirname Subroutine

Purpose
Report the parent directory name of a file path name.

Library
Standard C Library (libc.a)

Syntax

#include <libgen.h>

char *dirname (path)
char *path

Description

Given a pointer to a character string that contains a file system path name, the dirname subroutine
returns a pointer to a string that is the parent directory of that file. Trailing "/” characters in the path are not
counted as part of the path.

If path is a null pointer or points to an empty string, a pointer to a static constant ".” is returned.

The dirname and basename subroutines together yield a complete path name. dirname (path) is the
directory where basename (path) is found.

Parameters

path Character string containing a file system path name.

Return Values

The dirname subroutine returns a pointer to a string that is the parent directory of path. If path or *path is
a null pointer or points to an empty string, a pointer to a string ".” is returned. The dirname subroutine
may modify the string pointed to by path and may return a pointer to static storage that may then be
overwritten by sequent calls to the dirname subroutine.

Examples

A simple file name and the strings ".” and "..” all have "."” as their return value.
Input string Output string

/usr/lib usr

usr/ /

usr .

/ /

The following code reads a path name, changes directory to the appropriate directory, and opens the file.

Base Operating System (BOS) Runtime Services (A-P) 209

char path [MAXPATHEN], =*pathcopy;
int fd;

fgets (path, MAXPATHEN, stdin);
pathcopy = strdup (path);

chdir (dirname (pathcopy));

fd = open (basename (path), O _RDONLY);

Related Information

The basename (“‘basename Subroutine” on page 115) or chdir (‘chdir Subroutine” on page 145)
subroutine.

disclaim Subroutine

Purpose
Disclaims the content of a memory address range.

Syntax

#include <sys/shm.h>

int disclaim (|Address|, |Lengthl, [Flag)
char *Address;
unsigned int Length, Flag;

Description

The disclaim subroutine marks an area of memory having content that is no longer needed. The system
then stops paging the memory area. This subroutine cannot be used on memory that is mapped to a file
by the shmat subroutine.

Parameters

Address Points to the beginning of the memory area.

Length Specifies the length of the memory area in bytes.

Flag Must be the value ZERO_MEM, which indicates that each memory location in the address range

should be set to 0.

Return Values
When successful, the disclaim subroutine returns a value of 0.

Error Codes

If the disclaim subroutine is unsuccessful, it returns a value of -1 and sets the errno global variable to
indicate the error. The disclaim subroutine is unsuccessful if one or more of the following are true:

EFAULT The calling process does not have write access to the area of memory that begins at the
Address parameter and extends for the number of bytes specified by the Length parameter.

EINVAL The value of the Flag parameter is not valid.

EINVAL The memory area is mapped to a file.

dladdr Subroutine

Purpose
Translates address to symbolic information.

210 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <dlfcn.h>

int dladdr(void *address, D1_info *dlip);

Description

dladdr allows a process to obtain information about the symbol that most closely defines a given address.
dladdr first determines whether the specified address is located within one of the mapped objects
(executable or shared objects) that make up the process’ address space. An address is deemed to fall
within a mapped object when it is between the base address at which the object was mapped and the
highest virtual address mapped for that object, inclusive. If a mapped object fits this criteria, its dynamic
symbol table is searched to locate the nearest symbol to the specified address. The nearest symbol is the
one whose value is equal to, or closest to but less than, the specified address.

dlip is a pointer to a DI_info structure. The structure must be allocated by the user. The structure
members are set by dladdr if the specified address falls within one of the mapped objects. The DI_info
structure contains at least the following members:

const char *d11_fname;
void *d1i_fbase;
const char *d11_sname;
void *d11_saddr;
size_t dli_size;

int d1i_bind;
int dli_type;

Descriptions of these members appear below:

d1i_fname
Contains a pointer to the filename of the mapped object containing address.

dli_fbase
Contains the base address of the mapped object containing address.

d1i_sname
Contains a pointer to the name of the nearest symbol to the specified address. This symbol either
has the same address, or is the nearest symbol with a lower address.

d1i_saddr
Contains the actual address of the nearest symbol.

dli_size
Contains the size of the nearest symbol as defined in the dynamic symbol table.

If no symbol is found within the object containing address whose value is less than or equal to address,
the d1i_sname, d1i_saddr and d1i_size members are set to 0; the d1i_bind member is set to
STB_LOCAL, and the d1i_type member is set to STT_NOTYPE.

For the a.out, the symbol table created by Id for use by the dynamic linker might contain only a subset of
the symbols defined in the a.out [see dlopen (‘dlopen Subroutine” on page 213)]. This could cause
dladdr to return information for a symbol that is actually unrelated to the specified address.

The addresses and the strings pointed to by the members of the DI_info structure refer to locations within
mapped objects. These may become invalid if the objects are unmapped from the address space [see
diclose (‘diclose Subroutine” on page 212)]

Base Operating System (BOS) Runtime Services (A-P) 211

Return values

If the specified address does not fall within one of the mapped objects, 0 is returned; the contents of the
DI_info structure are unspecified. Otherwise, a non-zero value is returned and the associated DI_info
elements are set.

Related Information

The diclose (“diclose Subroutine” subroutine, dlerror (‘dlerror Subroutine” on page 213) subroutine,
dlopen (‘dlopen Subroutine” on page 213) subroutine, and disym (‘dladdr Subroutine” on page 210)
subroutine.

diclose Subroutine

Purpose
Closes and unloads a module loaded by the dlopen subroutine.

Syntax
#include <d1fcn.h>

int diclose(Data);
void *Data;

Description

The dlclose subroutine is used to remove access to a module loaded with the dlopen subroutine. In
addition, access to dependent modules of the module being unloaded is removed as well.

Modules being unloaded with the dlclose subroutine will not be removed from the process’s address
space if they are still required by other modules. Nevertheless, subsequent uses of Data are invalid, and
further uses of symbols that were exported by the module being unloaded result in undefined behavior.

Parameters

Data A loaded module reference returned from a previous call to dlopen.

Return Values

Upon successful completion, 0 (zero) is returned. Otherwise, errno is set to EINVAL, and the return value
is also EINVAL. Even if the dlclose subroutine succeeds, the specified module may still be part of the
process’s address space if the module is still needed by other modules.

Error Codes

EINVAL The Data parameter does not refer to a module opened by dlopen that is still open. The
parameter may be corrupt or the module may have been unloaded by a previous call to diclose.

Related Information

The dlerror (“dlerror Subroutine” on page 213) subroutine, dlopen (‘dlopen Subroutine” on page 213)

subroutine, disym (“dladdr Subroutine” on page 210) subroutine, load (‘load Subroutine” on page 717)
subroutine, loadquery (‘loadquery Subroutine” on page 722) subroutine, |un|oad| subroutine, loadbind
(‘loadbind Subroutine” on page 721) subroutine.

The |[ld| command.

212 Technical Reference, Volume 1: Base Operating System and Extensions

The [Shared Libraries and Shared Memory Overview| and [Subroutines Overviewin AlX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

dlerror Subroutine

Purpose
Returns a pointer to information about the last dlopen, disym, or diclose error.

Syntax

#include <d1fcn.h>
char *dlerror(void);

Description

The dlerror subroutine is used to obtain information about the last error that occurred in a dynamic
loading routine (that is, dlopen , disym , or diclose). The returned value is a pointer to a null-terminated
string without a final newline. Once a call is made to this function, subsequent calls without any intervening
dynamic loading errors will return NULL.

Applications can avoid calling the dlerror subroutine, in many cases, by examining errno after a failed call
to a dynamic loading routine. If errno is ENOEXEC, the dlerror subroutine will return additional
information. In all other cases, dlerror will return the string corresponding to the value of errno.

The dlerror function may invoke loadquery to ascertain reasons for a failure. If a call is made to load or
unload between calls to dlopen and dlerror, incorrect information may be returned.

Return Values

A pointer to a static buffer is returned; a NULL value is returned if there has been no error since the last call
to dlerror. Applications should not write to this buffer; they should make a copy of the buffer if they wish to
preserve the buffer's contents.

Related Information

The load (‘load Subroutine” on page 717) subroutine, loadbind (‘loadbind Subroutine” on page 721)
subroutine, loadquery (‘loadquery Subroutine” on page 722)subroutine, lunload| subroutine, dlopen
(‘dlopen Subroutine” subroutine, diclose (‘diclose Subroutine” on page 212) subroutine, disym
[Subroutine” on page 210) subroutine.

The [Ild| command.

The [Shared Libraries and Shared Memory Overview| and [Subroutines Overview|in AIX 5L Version 5.3
General Programming Concepts: Writing and Debugging Programs.

dlopen Subroutine

Purpose
Dynamically load a module into the calling process.

Syntax
#include <d1fcn.h>

void *dlopen (FilePath, Flags);
const char *FilePath;
int Flags;

Base Operating System (BOS) Runtime Services (A-P) 213

Description

The dlopen subroutine loads the module specified by FilePath into the executing process’s address
space. Dependents of the module are automatically loaded as well. If the module is already loaded, i t is
not loaded again, but a new, unique value will be returned by the dlopen subroutine.

The value returned by dlopen may be used in subsequent calls to disym and dlclose. If an error occurs
during the operation, dlopen returns NULL.

If the main application was linked with the -brtl option, then the runtime linker is invoked by dlopen. If the
module being loaded was linked with runtime linking enabled, both intra-module and inter-module
references are overridden by any symbols available in the main application. If runtime linking was enabled,
but the module was not built enabled, then all inter-module references will be overridden, but some
intra-module references will not be overridden.

If the module being opened with dlopen or any of its dependents is being loaded for the first time,
initialization routines for these newly-loaded routines are called (after runtime linking, if applicable) before
dlopen returns. Initialization routines are the functions specified with the -binitfini: linker option when the
module was built. (Refer to the Id command for more information about this option.)

Notes:
1. The initialization functions need not have any special names, and multiple functions per module are
allowed.

2. If the module being loaded has read-other permission, the module is loaded into the global shared
library segment. Modules loaded into the global shared library segment are not unloaded even if they
are no longer being used. Use the slibclean command to remove unused modules from the global
shared library segment.

The LIBPATH or LD_LIBRARY_PATH environment variables can be used to specify a list of directories in
which dlopen searches for the named module. The running application also contains a set of library
search paths that were specified when the application was linked; these paths are searched after any
paths found in LIBPATH or LD_LIBRARY_PATH.

FilePath Specifies the name of a file containing the loadable module. This parameter can be contain an
absolute path, a relative path, or no path component. If FilePath contains a slash character,
FilePath is used directly, and no directories are searched.

If the FilePath parameter is /unix, dlopen returns a value that can be used to look up symbols in
the current kernel image, including those symbols found in any kernel extension that was
available at the time the process began execution.

If the value of FilePath is NULL, a value for the main application is returned. This allows
dynamically loaded objects to look up symbols in the main executable, or for an application to
examine symbols available within itself.

Flags

Specifies variations of the behavior of dlopen. Either RTLD_NOW or RTLD_LAZY must always be
specified. Other flags may be OR’ed with RTLD_NOW or RTLD_LAZY.

RTLD_NOW Load all dependents of the module being loaded and resolve all symbols.

RTLD_LAZY Specifies the same behavior as RTLD_NOW. In a future release of the operating
system, the behavior of the RTLD_LAZY may change so that loading of dependent
modules is deferred of resolution of some symbols is deferred.

RTLD_GLOBAL Allows symbols in the module being loaded to be visible when resolving symbols
used by other dlopen calls. These symbols will also be visible when the main
application is opened with dlopen(NULL, mode).

214 Technical Reference, Volume 1: Base Operating System and Extensions

RTLD_LOCAL Prevent symbols in the module being loaded from being used when resolving
symbols used by other dlopen calls. Symbols in the module being loaded can only
be accessed by calling disym subroutine. If neither RTLD_GLOBAL nor
RTLD_LOCAL is specified, the default is RTLD_LOCAL. If both flags are specified,
RTLD_LOCAL is ignored.

RTLD_MEMBER The dlopen subroutine can be used to load a module that is a member of an archive.
The L_LOADMEMBER flag is used when the load subroutine is called. The module
name FilePath names the archive and archive member according to the rules outlined
in the load subroutine.

RTLD_NOAUTODEFER Prevents deferred imports in the module being loaded from being automatically
resolved by subsequent loads. The L_NOAUTODEFER flag is used when the load
subroutine is called.

Ordinarily, modules built for use by the dlopen and disym sub routines will not
contain deferred imports. However, deferred imports can be still used. A module
opened with dlopen may provide definitions for deferred imports in the main
application, for modules loaded with the load subroutine (if the L_NOAUTODEFER
flag was not used), and for other modules loaded with the dlopen subroutine (if the
RTLD_NOAUTODEFER flag was not used).

Return Values

Upon successful completion, dlopen returns a value that can be used in calls to the dlsym and diclose
subroutines. The value is not valid for use with the loadbind and unload subroutines.

If the dlopen call fails, NULL (a value of 0) is returned and the global variable errno is set. If errno
contains the value ENOEXEC, further information is available via the dlerror function.

Error Codes
See the load subroutine for a list of possible errno values and their meanings.

Related Information

The diclose (“diclose Subroutine” on page 212) subroutine, dlerror (“dlerror Subroutine” on page 213)
subroutine, disym (‘dladdr Subroutine” on page 210) subroutine, load (‘load Subroutine” on page 717)
subroutine, loadbind (‘loadbind Subroutine” on page 721) subroutine, loadquery (‘loadquery Subroutine’]

on page 722)subroutine, |un|oad| subroutine.

The |[ld| command.

[Subroutines Overview|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

disym Subroutine

Purpose
Looks up the location of a symbol in a module that is loaded with disym.

Syntax

#include <d1fcn.h>

void *d1sym(Handlel|, [Symbol]) ;
void *Handle;
const char *Symbol;

Base Operating System (BOS) Runtime Services (A-P) 215

Description

The disym subroutine looks up a hamed symbol exported from a module loaded by a previous call to the
dlopen subroutine. Only exported symbols are found by disym. See the command to see how to export
symbols from a module.

Handle Specifies a value returned by a previous call to dlopen or one of the special handles
RTLD_DEFAULT, RTLD_NEXT or RTLD_MYSELF.
Symbol Specifies the name of a symbol exported from the referenced module in the form of a

NULL-terminated string or the special symbol name RTLD_ENTRY.

Note: C++ symbol names should be passed to dlsym in mangled form; disym does not perform any
name demangling on behalf of the calling application.

In case of the special handle RTLD_DEFAULT, disym searches for the named symbol starting with the
first module loaded. It then proceeds through the list of initial loaded modules and any global modules
obtained with dlopen until a match is found. This search follows the default model employed to relocate all
modules within the process.

In case of the special handle RTLD_NEXT, dlsym searches for the named symbol in the modules that
were loaded following the module from which the dlsym call is being made.

In case of the special handle RTLD_MYSELF, disym searches for the named symbol in the modules that
were loaded starting with the module from which the disym call is being made.

In case of the special symbol name RTLD_ENTRY, disym returns the module’s entry point. The entry
point, if present, is the value of the module’s loader section symbol marked as entry point.

In case of RTLD_DEFAULT, RTLD_NEXT, and RTLD_MYSELF, if the modules being searched have
been loaded from dlopen calls, disym searches the module only if the caller is part of the same dlopen
dependency hierarchy, or if the module was given global search access. See dlopen for a discussion of
the RTLD_GLOBAL mode.

A search for the named symbol is based upon breadth-first ordering of the module and its dependants. If
the module was constructed using the -G or -brtl linker option, the module’s dependants will include all
modules named on the Id command line, in the original order. The dependants of a module that was not
linked with the -G or -brtl linker option will be listed in an unspecified order.

Return Values

If the named symbol is found, its address is returned. If the named symbol is not found, NULL is returned
and errno is set to 0. If Handle or Symbol is invalid, NULL is returned and errno is set to EINVAL .

If the first definition found is an export of an imported symbol, this definition will satisfy the search. The
address of the imported symbol is returned. If the first definition is a deferred import, the definition is
ignored and the search continues.

If the named symbol refers to a BSS symbol (uninitialized data structure), the search continues until an
initialized instance of the symbol is found or the module and all of its dependants have been searched. If
an initialized instance is found, its address is returned; otherwise, the address of the first uninitialized
instance is returned.

216 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

EINVAL If the Handle parameter does not refer to a module opened by dlopen that is still loaded or if the
Symbol parameter points to an invalid address, the dlsym subroutine returns NULL and errno is
set to EINVAL.

Related Information

The diclose (“diclose Subroutine” on page 212) subroutine, dlerror (“dlerror Subroutine” on page 213)
subroutine, dlopen (“dlopen Subroutine” on page 213) subroutine, load (‘load Subroutine” on page 717)
subroutine, loadbind (‘loadbind Subroutine” on page 721) subroutine, loadquery (‘loadquery Subroutine’]

on page 722)subroutine, |un|oad| subroutine.

The [Ild| command.

drand48, erand48, jrand48, Icong48, Irand48, mrand48, nrand48,
seed48, or srand48 Subroutine

Purpose
Generate uniformly distributed pseudo-random number sequences.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>
double drand48 (void)

double erand48 (

unsigned short int xsubi[3];

long int jrand48 (xsubi)
unsigned short int xsubi[3];

void 1cong48 ([Parameter)

unsigned short int Parameter([7];
long int 1rand48 (void)
long int mrand48 (void)

long int nrand48 (xsubi)
unsigned short int xsubi[3];

unsigned short int *seed48 ([Seedl6v)

unsigned short int Seedl6v[3];

void srand48 ([SeedValuel)

long int SeedValue;

Description

Attention: Do not use the drand48, erand48, jrand48, lcong48, Irand48, mrand48, nrand48,
seed48, or srand48 subroutine in a multithreaded environment.

This family of subroutines generates pseudo-random numbers using the linear congruential algorithm and
48-bit integer arithmetic.

Base Operating System (BOS) Runtime Services (A-P) 217

The drand48 subroutine and the erand48 subroutine return positive double-precision floating-point values
uniformly distributed over the interval [0.0, 1.0).

The Irand48 subroutine and the nrand48 subroutine return positive long integers uniformly distributed over
the interval [0,2**31).

The mrand48 subroutine and the jrand48 subroutine return signed long integers uniformly distributed over
the interval [-2**31, 2**31).

The srand48 subroutine, seed48 subroutine, and lcong48 subroutine initialize the random-number
generator. Programs must call one of them before calling the drand48, Irand48 or mrand48 subroutines.
(Although it is not recommended, constant default initializer values are supplied if the drand48, Irand48 or
mrand48 subroutines are called without first calling an initialization subroutine.) The erand48, nrand48,
and jrand48 subroutines do not require that an initialization subroutine be called first.

The previous value pointed to by the seed48 subroutine is stored in a 48-bit internal buffer, and a pointer
to the buffer is returned by the seed48 subroutine. This pointer can be ignored if it is not needed, or it can
be used to allow a program to restart from a given point at a later time. In this case, the pointer is
accessed to retrieve and store the last value pointed to by the seed48 subroutine, and this value is then
used to reinitialize, by means of the seed48 subroutine, when the program is restarted.

All the subroutines work by generating a sequence of 48-bit integer values, x{i], according to the linear
congruential formula:

x[n+1] = (ax[n] + c)mod m, n is > =10

The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless the lcong48 subroutine has
been called, the multiplier value a and the addend value c are:

a = HDEECE66D base 16 = 273673163155 base 8
c = B base 16 = 13 base 8

Parameters

xsubi Specifies an array of three shorts, which, when concatenated together, form a 48-bit integer.

SeedValue Specifies the initialization value to begin randomization. Changing this value changes the
randomization pattern.

Seed16v Specifies another seed value; an array of three unsigned shorts that form a 48-bit seed value.

Parameter Specifies an array of seven shorts, which specifies the initial xsubi value, the multiplier value a and

the add-in value c.

Return Values

The value returned by the drand48, erand48, jrand48, Irand48, nrand48, and mrand48 subroutines is
computed by first generating the next 48-bit x[/] in the sequence. Then the appropriate number of bits,
according to the type of data item to be returned, are copied from the high-order (most significant) bits of
x{/] and transformed into the returned value.

The drand48, Irand48, and mrand48 subroutines store the last 48-bit x{/] generated into an internal buffer;
this is why they must be initialized prior to being invoked.

The erand48, jrand48, and nrand48 subroutines require the calling program to provide storage for the
successive x[/] values in the array pointed to by the xsubi parameter. This is why these routines do not
have to be initialized; the calling program places the desired initial value of x[/] into the array and pass it
as a parameter.

218 Technical Reference, Volume 1: Base Operating System and Extensions

By using different parameters, the erand48, jrand48, and nrand48 subroutines allow separate modules of
a large program to generate independent sequences of pseudo-random numbers. In other words, the
sequence of numbers that one module generates does not depend upon how many times the subroutines
are called by other modules.

The lcong48 subroutine specifies the initial x{/] value, the multiplier value a, and the addend value c. The
Parameter array elements Parameter[0-2] specify x{i], Parameter[3-5] specify the multiplier a, and
Parameter[6] specifies the 16-bit addend c. After lcong48 has been called, a subsequent call to either the
srand48 or seed48 subroutine restores the standard a and c specified before.

The initializer subroutine seed48 sets the value of x{i] to the 48-bit value specified in the array pointed to
by the Seed16v parameter. In addition, seed48 returns a pointer to a 48-bit internal buffer that contains
the previous value of x{/] that is used only by seed48. The returned pointer allows you to restart the
pseudo-random sequence at a given point. Use the pointer to copy the previous x{/] value into a temporary
array. Then call seed48 with a pointer to this array to resume processing where the original sequence
stopped.

The initializer subroutine srand48 sets the high-order 32 bits of x{i] to the 32 bits contained in its
parameter. The low order 16 bits of x{i] are set to the arbitrary value 330E16.

Related Information
The [rand, srand| subroutine, random, srandom, initstate, or setstate] subroutine.

[Subroutines Overview|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

drem Subroutine

Purpose
Computes the IEEE Remainder as defined in the IEEE Floating-Point Standard.

Libraries

IEEE Math Library (libm.a)
or System V Math Library (libmsaa.a)

Syntax

#include <math.h>

double drem ([, [
double x, y;

Description

The drem subroutine calculates the remainder r equal to x minus n to the x power multiplied by y (r = x -
n *vy), where the n parameter is the integer nearest the exact value of x divided by y (x/y). If |n -x/y| =
1/2, then the n parameter is an even value. Therefore, the remainder is computed exactly, and the
absolute value of r (|r]|) is less than or equal to the absolute value of y divided by 2 (|y|/2).

The IEEE Remainder differs from the fmod subroutine in that the IEEE Remainder always returns an r
parameter such that |r| is less than or equal to |y|/2, while FMOD returns an r such that |r| is less than
or equal to |y|. The IEEE Remainder is useful for argument reduction for transcendental functions.

Note: Compile any routine that uses subroutines from the libm.a library with the -Im flag. For example:
compile the drem.c file:

Base Operating System (BOS) Runtime Services (A-P) 219

cc drem.c -1m

Note: For new development, the remainder subroutine is the preferred interface.

Parameters
X Specifies double-precision floating-point value.
y Specifies a double-precision floating-point value.

Return Values
The drem subroutine returns a NaNQ value for (x, 0) and (+/-INF, y).

Related Information

The floor, ceil, nearest, trunc, rint, itrunc, fmod, fabs, or uitruns d“floor, floorf, floorl, nearest, trunc,l
fitrunc, or uitrunc Subroutine” on page 271) subroutine.

[Subroutines Overview|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

_end, _etext, or _edata Identifier

Purpose
Define the first addresses following the program, initialized data, and all data.

Syntax
extern _end;
extern _etext;
extern _edata;

Description

The external names _end, _etext, and _edata are defined by the loader for all programs. They are not
subroutines but identifiers associated with the following addresses:

_etext The first address following the program text.
_edata The first address following the initialized data region.
_end The first address following the data region that is not initialized. The name end (with no

underscore) defines the same address as does _end (with underscore).

The break value of the program is the first location beyond the data. When a program begins running, this
location coincides with end. However, many factors can change the break value, including:

* The brk or sbrk subroutine

* The malloc subroutine

* The standard I/O subroutines

* The -p flag with the cc command

Therefore, use the brk or sbrk(0) subroutine, not the end address, to determine the break value of the
program.

220 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The brk or sbrk (“ork or sbrk Subroutine” on page 120) subroutine, malloc (“‘malloc, free, realloc, calloc)
[mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign Subroutine” on page 764) subroutine.

[Subroutines Overview|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

ecvt, fcvt, or gcvt Subroutine

Purpose
Converts a floating-point number to a string.

Library
Standard C Library (libc.a)

Syntax

#include <stdlib.h>

char *ecvt (|Value|, WumberOfDigits|, [DecimalPointer], |Sign;)
double Value;
int NumberOfDigits, *DecimalPointer, *Sign;

char *fcvt (Value, NumberOfDigits, DecimalPointer, Sign;)
double Value;
int NumberOfDigits, *DecimalPointer, *Sign;

char xgcvt (Value, NumberOfDigits, [Buffer};)
double Value;

int NumberOfDigits;

char *Buffer;

Description
The ecvt, fevt, and gevt subroutines convert floating-point numbers to strings.

The ecvt subroutine converts the Value parameter to a null-terminated string and returns a pointer to it.
The NumberOfDigits parameter specifies the number of digits in the string. The low-order digit is rounded
according to the current rounding mode. The ecvt subroutine sets the integer pointed to by the
DecimalPointer parameter to the position of the decimal point relative to the beginning of the string. (A
negative number means the decimal point is to the left of the digits given in the string.) The decimal point
itself is not included in the string. The ecvt subroutine also sets the integer pointed to by the Sign
parameter to a nonzero value if the Value parameter is negative and sets a value of 0 otherwise.

The fevt subroutine operates identically to the ecvt subroutine, except that the correct digit is rounded for
C or FORTRAN F-format output of the number of digits specified by the NumberOfDigits parameter.

Note: In the F-format, the NumberOfDigits parameter is the number of digits desired after the decimal
point. Large numbers produce a long string of digits before the decimal point, and then
NumberOfDigits digits after the decimal point. Generally, the gevt and ecvt subroutines are more
useful for large numbers.

The gcvt subroutine converts the Value parameter to a null-terminated string, stores it in the array pointed
to by the Buffer parameter, and then returns the Buffer parameter. The gevt subroutine attempts to
produce a string of the NumberOfDigits parameter significant digits in FORTRAN F-format. If this is not
possible, the E-format is used. The gevt subroutine suppresses trailing zeros. The string is ready for

Base Operating System (BOS) Runtime Services (A-P) 221

printing, complete with minus sign, decimal point, or exponent, as appropriate. The radix character is
determined by the current locale (see setlocale subroutine). If the setlocale subroutine has not been
called successfully, the default locale, POSIX, is used. The default locale specifies a . (period) as the radix
character. The LC_NUMERIC category determines the value of the radix character within the current
locale.

The ecvt, fevt, and gevt subroutines represent the following special values that are specified in
ANSI/IEEE standards 754-1985 and 854-1987 for floating-point arithmetic:

Quiet NaN Indicates a quiet not-a-number (NaNQ)
Signalling NaN Indicates a signaling NaNS
Infinity Indicates a INF value

The sign associated with each of these values is stored in the Sign parameter.

Note: A value of O can be positive or negative. In the IEEE floating-point, zeros also have signs and set
the Sign parameter appropriately.

Attention: All three subroutines store the strings in a static area of memory whose contents are
overwritten each time one of the subroutines is called.

Parameters

Value Specifies some double-precision floating-point value.

NumberOfDigits Specifies the number of digits in the string.

DecimalPointer Specifies the position of the decimal point relative to the beginning of the string.

Sign Specifies that the sign associated with the return value is placed in the Sign parameter. In
IEEE floating-point, since 0 can be signed, the Sign parameter is set appropriately for
signed 0.

Buffer Specifies a character array for the string.

Related Information

The atof, strtod, atoff, or strtof (“atof atoff Subroutine” on page 94) subroutine, fp_read_rnd, or
fp_swap_rnd (“fp_read_rnd or fp_swap_rnd Subroutine” on page 296) subroutine, printf d“printf, fprintf,|
[sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1079) subroutine, |scanﬂ
subroutine.

[Subroutines Overview|in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging
Programs.

EnableCriticalSections, BeginCriticalSection, and EndCriticalSection
Subroutine

Purpose
Enables a thread to be exempted from timeslicing and signal suspension, and protects critical sections.

Library
Standard C Library (libc.a)

222 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <sys/thread_ctl.h>

int EnableCriticalSections(void);
void BeginCriticalSection(void);
void EndCriticalSection(void);

Description

When called, the EnableCriticalSections subroutine enables the thread to be exempted from timeslicing
and signal suspension. Once that is done, the thread can call the BeginCriticalSection and
EndCriticalSection subroutines to protect critical sections. Calling the BeginCriticalSection and
EndCriticalSection subroutines with exemption disabled has no effect. The subroutines are safe for use
by multithreaded applications.

Once the service is enabled, the thread can protect critical sections by calling the BeginCriticalSection
and EndCriticalSection subroutines. Calling the BeginCriticalSection subroutine will exempt the thread
from timeslicing and suspension. Calling the EndCriticalSection subroutine will clear exemption for the
thread.

The BeginCriticalSection subroutine will not make a system call. The EndCriticalS