
Bull
AIX 5L Technical Reference: Base Operating

System and Extensions

AIX

86 A2 77EM 02

ORDER REFERENCE

Bull
AIX 5L Technical Reference: Base Operating

System and Extensions

AIX

Software

October 2005

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

86 A2 77EM 02

ORDER REFERENCE

The following copyright notice protects this book under the Copyright laws of the United States of America

and other countries which prohibit such actions as, but not limited to, copying, distributing, modifying, and

making derivative works.

Copyright Bull S.A. 1992, 2005

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of

this book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you

are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

AIX� is a registered trademark of International Business Machines Corporation, and is being used under

licence.

UNIX is a registered trademark in the United States of America and other countries licensed exclusively through

the Open Group.

Linux is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Bull will not be liable for errors contained

herein, or for incidental or consequential damages in connection with the use of this material.

Contents

About This Book . xix

Highlighting . xix

Case-Sensitivity in AIX . xix

ISO 9000 . xix

32-Bit and 64-Bit Support for the Single UNIX Specification xx

Related Publications . xx

Base Operating System (BOS) Runtime Services (A-P) 1

a64l or l64a Subroutine . 1

abort Subroutine . 2

abs, div, labs, ldiv, imul_dbl, umul_dbl, llabs, or lldiv Subroutine 3

access, accessx, or faccessx Subroutine . 4

acct Subroutine . 7

acl_chg or acl_fchg Subroutine . 8

acl_get or acl_fget Subroutine . 10

acl_put or acl_fput Subroutine . 12

acl_set or acl_fset Subroutine . 14

aclx_convert Subroutine . 16

aclx_get or aclx_fget Subroutine . 17

aclx_gettypeinfo Subroutine . 20

aclx_gettypes Subroutine . 21

aclx_print or aclx_printStr Subroutine . 23

aclx_put or aclx_fput Subroutine . 25

aclx_scan or aclx_scanStr Subroutine . 27

acos, acosf, or acosl Subroutine . 29

acosh, acoshf, or acoshl Subroutine . 30

addproj Subroutine . 31

addprojdb Subroutine . 32

addssys Subroutine . 33

adjtime Subroutine . 35

agg_proc_stat, agg_lpar_stat, agg_arm_stat, or free_agg_list Subroutine 36

aio_cancel or aio_cancel64 Subroutine . 38

aio_error or aio_error64 Subroutine . 42

aio_fsync Subroutine . 44

aio_nwait Subroutine . 46

aio_nwait_timeout Subroutine . 48

aio_read or aio_read64 Subroutine . 50

aio_return or aio_return64 Subroutine . 54

aio_suspend or aio_suspend64 Subroutine . 57

aio_write or aio_write64 Subroutine . 60

alloc, dealloc, print, read_data, read_regs, symbol_addrs, write_data, and write_regs Subroutine . . . 64

alloclmb Subroutine . 66

arm_end Subroutine . 67

arm_end Dual Call Subroutine . 69

arm_getid Subroutine . 71

arm_getid Dual Call Subroutine . 73

arm_init Subroutine . 75

arm_init Dual Call Subroutine . 77

arm_start Subroutine . 79

arm_start Dual Call Subroutine . 80

arm_stop Subroutine . 82

arm_stop Dual Call Subroutine . 84

arm_update Subroutine . 86

© Copyright IBM Corp. 1994, 2005 iii

arm_update Dual Call Subroutine . 87

asinh, asinhf, or asinhl Subroutine . 88

asinf, asinl, or asin Subroutine . 89

assert Macro . 90

atan2f, atan2l, or atan2 Subroutine . 91

atan, atanf, or atanl Subroutine . 92

atanh, atanhf, or atanhl Subroutine . 93

atof atoff Subroutine . 94

atol or atoll Subroutine . 96

audit Subroutine . 96

auditbin Subroutine . 98

auditevents Subroutine . 100

auditlog Subroutine . 102

auditobj Subroutine . 103

auditpack Subroutine . 106

auditproc Subroutine . 107

auditread, auditread_r Subroutines . 109

auditwrite Subroutine . 110

authenticate Subroutine . 111

authenticatex Subroutine . 113

basename Subroutine . 115

bcopy, bcmp, bzero or ffs Subroutine . 116

bessel: j0, j1, jn, y0, y1, or yn Subroutine . 117

bindprocessor Subroutine . 118

brk or sbrk Subroutine . 120

bsearch Subroutine . 121

btowc Subroutine . 122

buildproclist Subroutine . 123

buildtranlist or freetranlist Subroutine . 124

_check_lock Subroutine . 125

_clear_lock Subroutine . 126

cabs, cabsf, or cabsl Subroutine . 127

cacos, cacosf, or cacosl Subroutine . 127

cacosh, cacoshf, or cacoshl Subroutines . 128

carg, cargf, or cargl Subroutine . 129

casin, casinf, or casinl Subroutine . 129

casinh, casinfh, or casinlh Subroutine . 130

catan, catanf, or catanl Subroutine . 130

catanh, catanhf, or catanhl Subroutine . 131

catclose Subroutine . 132

catgets Subroutine . 133

catopen Subroutine . 134

cbrtf, cbrtl, or cbrt Subroutine . 135

ccos, ccosf, or ccosl Subroutine . 136

ccosh, ccoshf, or ccoshl Subroutine . 137

ccsidtocs or cstoccsid Subroutine . 137

ceil, ceilf, or ceill Subroutine . 138

cexp, cexpf, or cexpl Subroutine . 139

cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed Subroutine 140

chacl or fchacl Subroutine . 142

chdir Subroutine . 145

chmod or fchmod Subroutine . 146

chown, fchown, lchown, chownx, or fchownx Subroutine 149

chpass Subroutine . 152

chpassx Subroutine . 154

chprojattr Subroutine . 156

iv Technical Reference, Volume 1: Base Operating System and Extensions

chprojattrdb Subroutine . 157

chroot Subroutine . 158

chssys Subroutine . 160

cimag, cimagf, or cimagl Subroutine . 161

ckuseracct Subroutine . 162

ckuserID Subroutine . 164

class, _class, finite, isnan, or unordered Subroutines 165

clock Subroutine . 167

clock_getcpuclockid Subroutine . 167

clock_getres, clock_gettime, and clock_settime Subroutine 168

clock_nanosleep Subroutine . 170

clog, clogf, or clogl Subroutine . 172

close Subroutine . 173

compare_and_swap Subroutine . 174

compile, step, or advance Subroutine . 175

confstr Subroutine . 179

conj, conjf, or conjl Subroutine . 180

conv Subroutines . 181

copysign, copysignf, or copysignl Subroutine . 183

coredump Subroutine . 184

cosf, cosl, or cos Subroutine . 185

cosh, coshf, or coshl Subroutine . 186

cpow, cpowf, or cpowl Subroutine . 187

cproj, cprojf, or cprojl Subroutine . 187

creal, crealf, or creall Subroutine . 188

crypt, encrypt, or setkey Subroutine . 189

csid Subroutine . 190

csin, csinf, or csinl Subroutine . 191

csinh, csinhf, or csinhl Subroutine . 192

csqrt, csqrtf, or csqrtl Subroutine . 192

ctan, ctanf, or ctanl Subroutine . 193

ctanh, ctanhf, or ctanhl Subroutine . 194

ctermid Subroutine . 194

ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine 195

ctime64, localtime64, gmtime64, mktime64, difftime64, or asctime64 Subroutine 198

ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine 200

ctime_r, localtime_r, gmtime_r, or asctime_r Subroutine 202

ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or

isascii Subroutines . 203

cuserid Subroutine . 205

defssys Subroutine . 206

delssys Subroutine . 207

dirname Subroutine . 209

disclaim Subroutine . 210

dladdr Subroutine . 210

dlclose Subroutine . 212

dlerror Subroutine . 213

dlopen Subroutine . 213

dlsym Subroutine . 215

drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, seed48, or srand48 Subroutine 217

drem Subroutine . 219

_end, _etext, or _edata Identifier . 220

ecvt, fcvt, or gcvt Subroutine . 221

EnableCriticalSections, BeginCriticalSection, and EndCriticalSection Subroutine 222

erf, erff, or erfl Subroutine . 223

erfc, erfcf, or erfcl Subroutine . 224

Contents v

errlog Subroutine . 225

errlog_close Subroutine . 227

errlog_find_first, errlog_find_next, and errlog_find_sequence Subroutines 228

errlog_open Subroutine . 230

errlog_set_direction Subroutine . 231

errlog_write Subroutine . 231

exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine 232

exit, atexit, unatexit, _exit, or _Exit Subroutine . 239

exp, expf, or expl Subroutine . 241

exp2, exp2f, or exp2l Subroutine . 243

expm1, expm1f, or expm1l Subroutine . 244

fabsf, fabsl, or fabs Subroutine . 245

fattach Subroutine . 246

fchdir Subroutine . 247

fclear or fclear64 Subroutine . 248

fclose or fflush Subroutine . 249

fcntl, dup, or dup2 Subroutine . 251

fdetach Subroutine . 257

fdim, fdimf, or fdiml Subroutine . 258

feclearexcept Subroutine . 259

fegetenv or fesetenv Subroutine . 260

fegetexceptflag or fesetexceptflag Subroutine . 260

fegetround or fesetround Subroutine . 261

feholdexcept Subroutine . 262

fence Subroutine . 262

feof, ferror, clearerr, or fileno Macro . 264

feraiseexcept Subroutine . 265

fetch_and_add Subroutine . 265

fetch_and_and or fetch_and_or Subroutine . 266

fetestexcept Subroutine . 267

feupdateenv Subroutine . 268

finfo or ffinfo Subroutine . 269

flockfile, ftrylockfile, funlockfile Subroutine . 270

floor, floorf, floorl, nearest, trunc, itrunc, or uitrunc Subroutine 271

fma, fmaf, or fmal Subroutine . 273

fmax, fmaxf, or fmaxl Subroutine . 274

fminf or fminl Subroutine . 275

fmod, fmodf, or fmodl Subroutine . 276

fmtmsg Subroutine . 277

fnmatch Subroutine . 279

fopen, fopen64, freopen, freopen64 or fdopen Subroutine 281

fork, f_fork, or vfork Subroutine . 284

fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine 287

fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag Subroutine 289

fp_cpusync Subroutine . 291

fp_flush_imprecise Subroutine . 292

fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp Subroutine 293

fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr, fp_iop_invcmp, fp_iop_sqrt,

fp_iop_convert, or fp_iop_vxsoft Subroutines . 294

fp_raise_xcp Subroutine . 295

fp_read_rnd or fp_swap_rnd Subroutine . 296

fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutine 297

fp_trap Subroutine . 299

fp_trapstate Subroutine . 301

fpclassify Macro . 303

fread or fwrite Subroutine . 304

vi Technical Reference, Volume 1: Base Operating System and Extensions

freehostent Subroutine . 306

freelmb Subroutine . 307

frevoke Subroutine . 307

frexpf, frexpl, or frexp Subroutine . 308

fscntl Subroutine . 309

fseek, fseeko, fseeko64, rewind, ftell, ftello, ftello64, fgetpos, fgetpos64, fsetpos, or fsetpos64

Subroutine . 311

fsync or fsync_range Subroutine . 314

ftok Subroutine . 315

ftw or ftw64 Subroutine . 317

fwide Subroutine . 319

fwprintf, wprintf, swprintf Subroutines . 320

fwscanf, wscanf, swscanf Subroutines . 324

gai_strerror Subroutine . 328

gamma Subroutine . 329

gencore or coredump Subroutine . 330

genpagvalue Subroutine . 332

get_malloc_log Subroutine . 333

get_malloc_log_live Subroutine . 334

get_speed, set_speed, or reset_speed Subroutines 335

getargs Subroutine . 336

getaudithostattr, IDtohost, hosttoID, nexthost or putaudithostattr Subroutine 337

getauthdb or getauthdb_r Subroutine . 339

getc, getchar, fgetc, or getw Subroutine . 340

getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked Subroutines 342

getconfattr or putconfattr Subroutine . 343

getconfattrs Subroutine . 347

getcontext or setcontext Subroutine . 350

getcwd Subroutine . 351

getdate Subroutine . 352

getdtablesize Subroutine . 355

getea Subroutine . 356

getenv Subroutine . 357

getevars Subroutine . 358

getfilehdr Subroutine . 359

getfirstprojdb Subroutine . 360

getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent Subroutine 361

getgid, getegid or gegidx Subroutine . 362

getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine 363

getgrgid_r Subroutine . 365

getgrnam_r Subroutine . 366

getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine 367

getgroupattrs Subroutine . 370

getgroups Subroutine . 375

getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine 376

getgrset Subroutine . 377

getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer or setitimer Subroutine 378

getipnodebyaddr Subroutine . 381

getipnodebyname Subroutine . 382

getlogin Subroutine . 385

getlogin_r Subroutine . 386

getnextprojdb Subroutine . 387

getopt Subroutine . 388

getpagesize Subroutine . 390

getpaginfo Subroutine . 391

getpagvalue or getpagvalue64 Subroutine . 392

Contents vii

getpass Subroutine . 393

getpcred Subroutine . 394

getpeereid Subroutine . 396

getpenv Subroutine . 396

getpgid Subroutine . 398

getpid, getpgrp, or getppid Subroutine . 398

getportattr or putportattr Subroutine . 399

getpri Subroutine . 402

getpriority, setpriority, or nice Subroutine . 403

getproclist, getlparlist, or getarmlist Subroutine . 405

getprocs Subroutine . 406

getproj Subroutine . 409

getprojdb Subroutine . 410

getprojs Subroutine . 411

getpw Subroutine . 412

getpwent, getpwuid, getpwnam, putpwent, setpwent, or endpwent Subroutine 413

getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine 415

getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or endrpcent Subroutine 418

getrusage, getrusage64, times, or vtimes Subroutine 419

getroleattr, nextrole or putroleattr Subroutine . 422

gets or fgets Subroutine . 425

getfsent_r, getfsspec_r, getfsfile_r, getfstype_r, setfsent_r, or endfsent_r Subroutine 426

getsid Subroutine . 427

getssys Subroutine . 428

getsubopt Subroutine . 429

getsubsvr Subroutine . 430

gettcbattr or puttcbattr Subroutine . 431

getthrds Subroutine . 434

gettimeofday, settimeofday, or ftime Subroutine . 436

gettimer, settimer, restimer, stime, or time Subroutine 437

gettimerid Subroutine . 440

getttyent, getttynam, setttyent, or endttyent Subroutine 441

getuid, geteuid, or getuidx Subroutine . 443

getuinfo Subroutine . 444

getuinfox Subroutine . 444

getuserattr, IDtouser, nextuser, or putuserattr Subroutine 445

getuserattrs Subroutine . 451

GetUserAuths Subroutine . 458

getuserpw, putuserpw, or putuserpwhist Subroutine 459

getuserpwx Subroutine . 461

getusraclattr, nextusracl or putusraclattr Subroutine 462

getutent, getutid, getutline, pututline, setutent, endutent, or utmpname Subroutine 464

getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent Subroutine 467

getwc, fgetwc, or getwchar Subroutine . 468

getwd Subroutine . 470

getws or fgetws Subroutine . 471

glob Subroutine . 472

globfree Subroutine . 475

grantpt Subroutine . 476

HBA_CloseAdapter Subroutine . 477

HBA_FreeLibrary Subroutine . 477

HBA_GetAdapterAttributes, HBA_GetPortAttributes, HBA_GetDiscoveredPortAttributes,

HBA_GetPortAttributesByWWN Subroutine . 478

HBA_GetAdapterName Subroutine . 480

HBA_GetEventBuffer Subroutine . 482

HBA_GetFC4Statistics Subroutine . 483

viii Technical Reference, Volume 1: Base Operating System and Extensions

HBA_GetFcpPersistentBinding Subroutine . 484

HBA_GetFCPStatistics Subroutine . 485

HBA_GetFcpTargetMappingV2 Subroutine . 486

HBA_GetFcpTargetMapping Subroutine . 487

HBA_GetNumberOfAdapters Subroutine . 488

HBA_GetPersistentBindingV2 Subroutine . 489

HBA_GetPortStatistics Subroutine . 490

HBA_GetRNIDMgmtInfo Subroutine . 491

HBA_GetVersion Subroutine . 492

HBA_LoadLibrary Subroutine . 493

HBA_OpenAdapter Subroutine . 493

HBA_OpenAdapterByWWN Subroutine . 494

HBA_RefreshInformation Subroutine . 495

HBA_ScsiInquiryV2 Subroutine . 496

HBA_ScsiReadCapacityV2 Subroutine . 498

HBA_ScsiReportLunsV2 Subroutine . 499

HBA_SendCTPassThru Subroutine . 501

HBA_SendCTPassThruV2 Subroutine . 502

HBA_SendReadCapacity Subroutine . 503

HBA_SendReportLUNs Subroutine . 504

HBA_SendRLS Subroutine . 505

HBA_SendRNID Subroutine . 506

HBA_SendRNIDV2 Subroutine . 508

HBA_SendRPL Subroutine . 509

HBA_SendRPS Subroutine . 511

HBA_SendScsiInquiry Subroutine . 512

HBA_SetRNIDMgmtInfo Subroutine . 513

hpmInit, f_hpminit, hpmStart, f_hpmstart, hpmStop, f_hpmstop, hpmTstart, f_hpmtstart, hpmTstop,

f_hpmtstop, hpmGetTimeAndCounters, f_hpmgettimeandcounters, hpmGetCounters,

f_hpmgetcounters, hpmTerminate, and f_hpmterminate Subroutine 515

hsearch, hcreate, or hdestroy Subroutine . 517

hypot, hypotf, or hypotl Subroutine . 519

iconv Subroutine . 520

iconv_close Subroutine . 522

iconv_open Subroutine . 523

ilogbf, ilogbl, or ilogb Subroutine . 524

imaxabs Subroutine . 525

imaxdiv Subroutine . 526

IMAIXMapping Subroutine . 527

IMAuxCreate Callback Subroutine . 527

IMAuxDestroy Callback Subroutine . 528

IMAuxDraw Callback Subroutine . 529

IMAuxHide Callback Subroutine . 529

IMBeep Callback Subroutine . 530

IMClose Subroutine . 531

IMCreate Subroutine . 531

IMDestroy Subroutine . 532

IMFilter Subroutine . 533

IMFreeKeymap Subroutine . 534

IMIndicatorDraw Callback Subroutine . 534

IMIndicatorHide Callback Subroutine . 535

IMInitialize Subroutine . 535

IMInitializeKeymap Subroutine . 537

IMIoctl Subroutine . 538

IMLookupString Subroutine . 540

IMProcess Subroutine . 540

Contents ix

IMProcessAuxiliary Subroutine . 542

IMQueryLanguage Subroutine . 543

IMSimpleMapping Subroutine . 543

IMTextCursor Callback Subroutine . 544

IMTextDraw Callback Subroutine . 545

IMTextHide Callback Subroutine . 546

IMTextStart Callback Subroutine . 546

inet_aton Subroutine . 547

initgroups Subroutine . 548

initialize Subroutine . 549

insque or remque Subroutine . 550

install_lwcf_handler Subroutine . 551

ioctl, ioctlx, ioctl32, or ioctl32x Subroutine . 552

isblank Subroutine . 555

isendwin Subroutine . 556

isfinite Macro . 556

isgreater Macro . 557

isgreaterequal Subroutine . 558

isinf Subroutine . 558

isless Macro . 559

islessequal Macro . 560

islessgreater Macro . 560

isnormal Macro . 561

isunordered Macro . 562

iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, or

iswxdigit Subroutine . 562

iswblank Subroutine . 564

iswctype or is_wctype Subroutine . 565

jcode Subroutines . 566

Japanese conv Subroutines . 567

Japanese ctype Subroutines . 569

kill or killpg Subroutine . 570

kleenup Subroutine . 572

knlist Subroutine . 573

kpidstate Subroutine . 575

_lazySetErrorHandler Subroutine . 575

l3tol or ltol3 Subroutine . 577

l64a_r Subroutine . 578

LAPI_Addr_get Subroutine . 579

LAPI_Addr_set Subroutine . 580

LAPI_Address Subroutine . 582

LAPI_Address_init Subroutine . 583

LAPI_Address_init64 Subroutine . 585

LAPI_Amsend Subroutine . 587

LAPI_Amsendv Subroutine . 592

LAPI_Fence Subroutine . 600

LAPI_Get Subroutine . 601

LAPI_Getcntr Subroutine . 604

LAPI_Getv Subroutine . 605

LAPI_Gfence Subroutine . 609

LAPI_Init Subroutine . 610

LAPI_Msg_string Subroutine . 615

LAPI_Msgpoll Subroutine . 617

LAPI_Nopoll_wait Subroutine . 619

LAPI_Probe Subroutine . 620

LAPI_Purge_totask Subroutine . 621

x Technical Reference, Volume 1: Base Operating System and Extensions

LAPI_Put Subroutine . 623

LAPI_Putv Subroutine . 625

LAPI_Qenv Subroutine . 629

LAPI_Resume_totask Subroutine . 632

LAPI_Rmw Subroutine . 633

LAPI_Rmw64 Subroutine . 637

LAPI_Senv Subroutine . 641

LAPI_Setcntr Subroutine . 643

LAPI_Setcntr_wstatus Subroutine . 645

LAPI_Term Subroutine . 646

LAPI_Util Subroutine . 648

LAPI_Waitcntr Subroutine . 659

LAPI_Xfer Subroutine . 661

layout_object_create Subroutine . 674

layout_object_editshape or wcslayout_object_editshape Subroutine 675

layout_object_getvalue Subroutine . 678

layout_object_setvalue Subroutine . 680

layout_object_shapeboxchars Subroutine . 682

layout_object_transform or wcslayout_object_transform Subroutine 683

layout_object_free Subroutine . 686

ldahread Subroutine . 687

ldclose or ldaclose Subroutine . 688

ldexp, ldexpf, or ldexpl Subroutine . 689

ldfhread Subroutine . 690

ldgetname Subroutine . 692

ldlread, ldlinit, or ldlitem Subroutine . 694

ldlseek or ldnlseek Subroutine . 695

ldohseek Subroutine . 696

ldopen or ldaopen Subroutine . 697

ldrseek or ldnrseek Subroutine . 699

ldshread or ldnshread Subroutine . 700

ldsseek or ldnsseek Subroutine . 702

ldtbindex Subroutine . 703

ldtbread Subroutine . 704

ldtbseek Subroutine . 705

lgamma, lgammaf, or lgammal Subroutine . 706

lineout Subroutine . 707

link Subroutine . 708

lio_listio or lio_listio64 Subroutine . 709

listea Subroutine . 714

llrint, llrintf, or llrintl Subroutine . 715

llround, llroundf, or llroundl Subroutine . 716

load Subroutine . 717

loadbind Subroutine . 721

loadquery Subroutine . 722

localeconv Subroutine . 724

lockfx, lockf, flock, or lockf64 Subroutine . 728

log10, log10f, or log10l Subroutine . 732

log1p, log1pf, or log1pl Subroutine . 733

log2, log2f, or log2l Subroutine . 734

logbf, logbl, or logb Subroutine . 735

log, logf, or logl Subroutine . 736

loginfailed Subroutine . 737

loginrestrictions Subroutine . 739

loginrestrictionsx Subroutine . 742

loginsuccess Subroutine . 744

Contents xi

lpar_get_info Subroutine . 746

lpar_set_resources Subroutine . 747

lrint, lrintf, or lrintl Subroutine . 748

lround, lroundf, or lroundl Subroutine . 749

lsearch or lfind Subroutine . 750

lseek, llseek or lseek64 Subroutine . 751

lvm_querylv Subroutine . 753

lvm_querypv Subroutine . 757

lvm_queryvg Subroutine . 760

lvm_queryvgs Subroutine . 763

malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign

Subroutine . 764

madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move, min, omin, fmin, m_in, mout,

omout, fmout, m_out, sdiv, or itom Subroutine . 771

madvise Subroutine . 773

makecontext or swapcontext Subroutine . 774

matherr Subroutine . 775

MatchAllAuths, MatchAnyAuths, MatchAllAuthsList, or MatchAnyAuthsList Subroutine 776

mblen Subroutine . 777

mbrlen Subroutine . 778

mbrtowc Subroutine . 779

mbsadvance Subroutine . 780

mbscat, mbscmp, or mbscpy Subroutine . 781

mbschr Subroutine . 782

mbsinit Subroutine . 783

mbsinvalid Subroutine . 784

mbslen Subroutine . 784

mbsncat, mbsncmp, or mbsncpy Subroutine . 785

mbspbrk Subroutine . 786

mbsrchr Subroutine . 787

mbsrtowcs Subroutine . 788

mbstomb Subroutine . 789

mbstowcs Subroutine . 790

mbswidth Subroutine . 791

mbtowc Subroutine . 791

memccpy, memchr, memcmp, memcpy, memset or memmove Subroutine 793

mincore Subroutine . 794

mkdir Subroutine . 795

mknod or mkfifo Subroutine . 797

mktemp or mkstemp Subroutine . 799

mlock and munlock Subroutine . 800

mlockall and munlockall Subroutine . 802

mmap or mmap64 Subroutine . 803

mntctl Subroutine . 807

modf, modff, or modfl Subroutine . 808

moncontrol Subroutine . 809

monitor Subroutine . 810

monstartup Subroutine . 816

mprotect Subroutine . 819

mq_close Subroutine . 820

mq_getattr Subroutine . 821

mq_notify Subroutine . 822

mq_open Subroutine . 824

mq_receive Subroutine . 826

mq_send Subroutine . 827

mq_setattr Subroutine . 828

xii Technical Reference, Volume 1: Base Operating System and Extensions

mq_receive, mq_timedreceive Subroutine . 830

mq_send, mq_timedsend Subroutine . 831

mq_unlink Subroutine . 833

msem_init Subroutine . 834

msem_lock Subroutine . 835

msem_remove Subroutine . 836

msem_unlock Subroutine . 837

msgctl Subroutine . 838

msgget Subroutine . 841

msgrcv Subroutine . 842

msgsnd Subroutine . 845

msgxrcv Subroutine . 847

msleep Subroutine . 849

msync Subroutine . 850

mt__trce Subroutine . 851

munmap Subroutine . 853

mwakeup Subroutine . 854

nan, nanf, or nanl Subroutine . 855

nanosleep Subroutine . 856

nearbyint, nearbyintf, or nearbyintl Subroutine . 857

nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, or nexttowardl Subroutine 858

newpass Subroutine . 860

newpassx Subroutine . 862

nftw or nftw64 Subroutine . 863

nl_langinfo Subroutine . 866

nlist, nlist64 Subroutine . 867

ns_addr Subroutine . 869

ns_ntoa Subroutine . 870

odm_add_obj Subroutine . 870

odm_change_obj Subroutine . 872

odm_close_class Subroutine . 873

odm_create_class Subroutine . 874

odm_err_msg Subroutine . 875

odm_free_list Subroutine . 876

odm_get_by_id Subroutine . 877

odm_get_list Subroutine . 878

odm_get_obj, odm_get_first, or odm_get_next Subroutine 880

odm_initialize Subroutine . 882

odm_lock Subroutine . 882

odm_mount_class Subroutine . 884

odm_open_class or odm_open_class_rdonly Subroutine 885

odm_rm_by_id Subroutine . 886

odm_rm_class Subroutine . 887

odm_rm_obj Subroutine . 888

odm_run_method Subroutine . 890

odm_set_path Subroutine . 891

odm_set_perms Subroutine . 892

odm_terminate Subroutine . 892

odm_unlock Subroutine . 893

open, openx, open64, creat, or creat64 Subroutine . 894

opendir, readdir, telldir, seekdir, rewinddir, closedir, opendir64, readdir64, telldir64, seekdir64,

rewinddir64, or closedir64 Subroutine . 902

pam_acct_mgmt Subroutine . 905

pam_authenticate Subroutine . 906

pam_chauthtok Subroutine . 908

pam_close_session Subroutine . 909

Contents xiii

pam_end Subroutine . 910

pam_get_data Subroutine . 911

pam_get_item Subroutine . 912

pam_get_user Subroutine . 913

pam_getenv Subroutine . 914

pam_getenvlist Subroutine . 915

pam_open_session Subroutine . 916

pam_putenv Subroutine . 917

pam_set_data Subroutine . 918

pam_set_item Subroutine . 919

pam_setcred Subroutine . 920

pam_sm_acct_mgmt Subroutine . 922

pam_sm_authenticate Subroutine . 923

pam_sm_chauthtok Subroutine . 924

pam_sm_close_session Subroutine . 926

pam_sm_open_session Subroutine . 927

pam_sm_setcred Subroutine . 928

pam_start Subroutine . 929

pam_strerror Subroutine . 932

passwdexpired Subroutine . 932

passwdexpiredx Subroutine . 933

passwdpolicy Subroutine . 935

passwdstrength Subroutine . 937

pathconf or fpathconf Subroutine . 938

pause Subroutine . 941

pcap_close Subroutine . 941

pcap_compile Subroutine . 942

pcap_datalink Subroutine . 943

pcap_dispatch Subroutine . 943

pcap_dump Subroutine . 945

pcap_dump_close Subroutine . 945

pcap_dump_open Subroutine . 946

pcap_file Subroutine . 947

pcap_fileno Subroutine . 947

pcap_geterr Subroutine . 948

pcap_is_swapped Subroutine . 949

pcap_lookupdev Subroutine . 949

pcap_lookupnet Subroutine . 950

pcap_loop Subroutine . 951

pcap_major_version Subroutine . 952

pcap_minor_version Subroutine . 953

pcap_next Subroutine . 954

pcap_open_live Subroutine . 954

pcap_open_offline Subroutine . 955

pcap_perror Subroutine . 956

pcap_setfilter Subroutine . 957

pcap_snapshot Subroutine . 958

pcap_stats Subroutine . 958

pcap_strerror Subroutine . 959

pclose Subroutine . 960

perfstat_cpu Subroutine . 961

perfstat_cpu_total Subroutine . 962

perfstat_disk Subroutine . 964

perfstat_diskadapter Subroutine . 965

perfstat_diskpath Subroutine . 966

perfstat_disk_total Subroutine . 968

xiv Technical Reference, Volume 1: Base Operating System and Extensions

perfstat_memory_total Subroutine . 969

perfstat_netbuffer Subroutine . 970

perfstat_netinterface Subroutine . 971

perfstat_netinterface_total Subroutine . 973

perfstat_pagingspace Subroutine . 974

perfstat_partial_reset Subroutine . 975

perfstat_partition_total Subroutine . 977

perfstat_protocol Subroutine . 978

perfstat_reset Subroutine . 980

perror Subroutine . 980

pipe Subroutine . 981

plock Subroutine . 982

pm_cycles Subroutine . 984

pm_delete_program Subroutine . 984

pm_delete_program_group Subroutine . 985

pm_delete_program_mygroup Subroutine . 986

pm_delete_program_mythread Subroutine . 987

pm_delete_program_pgroup Subroutine . 988

pm_delete_program_pthread Subroutine . 989

pm_delete_program_thread Subroutine . 990

pm_error Subroutine . 991

pm_get_data, pm_get_tdata, pm_get_data_cpu, and pm_get_tdata_cpu Subroutine 992

pm_get_data_group and pm_get_tdata_group Subroutine 994

pm_get_data_mygroup or pm_get_tdata_mygroup Subroutine 995

pm_get_data_mythread or pm_get_tdata_mythread Subroutine 997

pm_get_data_pgroup and pm_get_tdata_pgroup Subroutine 998

pm_get_data_pthread or pm_get_tdata_pthread Subroutine 999

pm_get_data_thread or pm_get_tdata_thread Subroutine 1001

pm_get_program Subroutine . 1002

pm_get_program_group Subroutine . 1004

pm_get_program_mygroup Subroutine . 1005

pm_get_program_mythread Subroutine . 1007

pm_get_program_pgroup Subroutine . 1008

pm_get_program_pthread Subroutine . 1009

pm_get_program_thread Subroutine . 1011

pm_init Subroutine . 1012

pm_initialize Subroutine . 1014

pm_reset_data Subroutine . 1016

pm_reset_data_group Subroutine . 1017

pm_reset_data_mygroup Subroutine . 1018

pm_reset_data_mythread Subroutine . 1019

pm_reset_data_pgroup Subroutine . 1020

pm_reset_data_pthread Subroutine . 1021

pm_reset_data_thread Subroutine . 1023

pm_set_program Subroutine . 1024

pm_set_program_group Subroutine . 1025

pm_set_program_mygroup Subroutine . 1027

pm_set_program_mythread Subroutine . 1028

pm_set_program_pgroup Subroutine . 1030

pm_set_program_pthread Subroutine . 1031

pm_set_program_thread Subroutine . 1033

pm_start Subroutine . 1035

pm_start_group Subroutine . 1035

pm_start_mygroup Subroutine . 1037

pm_start_mythread Subroutine . 1038

pm_start_pgroup Subroutine . 1038

Contents xv

pm_start_pthread Subroutine . 1040

pm_start_thread Subroutine . 1041

pm_stop Subroutine . 1042

pm_stop_group Subroutine . 1043

pm_stop_mygroup Subroutine . 1044

pm_stop_mythread Subroutine . 1045

pm_stop_pgroup Subroutine . 1046

pm_stop_pthread Subroutine . 1047

pm_stop_thread Subroutine . 1048

poll Subroutine . 1049

pollset_create, pollset_ctl, pollset_destroy, pollset_poll, and pollset_query Subroutines 1052

popen Subroutine . 1055

posix_fadvise Subroutine . 1056

posix_fallocate Subroutine . 1057

posix_madvise Subroutine . 1058

posix_openpt Subroutine . 1059

posix_spawn or posix_spawnp Subroutine . 1060

posix_spawn_file_actions_addclose or posix_spawn_file_actions_addopen Subroutine 1064

posix_spawn_file_actions_adddup2 Subroutine . 1065

posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine 1066

posix_spawnattr_destroy or posix_spawnattr_init Subroutine 1067

posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine 1068

posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine 1069

posix_spawnattr_getschedparam or posix_spawnattr_setschedparam Subroutine 1070

posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine 1071

posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine 1072

posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine 1073

posix_trace_getnext_event, posix_trace_timedgetnext_event, posix_trace_trygetnext_event

Subroutine . 1074

powf, powl, or pow Subroutine . 1077

printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine 1079

profil Subroutine . 1086

proj_execve Subroutine . 1088

projdballoc Subroutine . 1089

projdbfinit Subroutine . 1090

projdbfree Subroutine . 1091

psdanger Subroutine . 1092

psignal Subroutine or sys_siglist Vector . 1093

pthdb_attr, pthdb_cond, pthdb_condattr, pthdb_key, pthdb_mutex, pthdb_mutexattr, pthdb_pthread,

pthdb_pthread_key, pthdb_rwlock, or pthdb_rwlockattr Subroutine 1094

pthdb_attr_detachstate,pthdb_attr_addr, pthdb_attr_guardsize,pthdb_attr_inheritsched,

pthdb_attr_schedparam,pthdb_attr_schedpolicy, pthdb_attr_schedpriority,pthdb_attr_scope,

pthdb_attr_stackaddr,pthdb_attr_stacksize, or pthdb_attr_suspendstate Subroutine 1096

pthdb_condattr_pshared, or pthdb_condattr_addr Subroutine 1098

pthdb_cond_addr, pthdb_cond_mutex or pthdb_cond_pshared Subroutine 1099

pthdb_mutexattr_addr, pthdb_mutexattr_prioceiling, pthdb_mutexattr_protocol,

pthdb_mutexattr_pshared or pthdb_mutexattr_type Subroutine 1100

pthdb_mutex_addr, pthdb_mutex_lock_count, pthdb_mutex_owner, pthdb_mutex_pshared,

pthdb_mutex_prioceiling, pthdb_mutex_protocol, pthdb_mutex_state or pthdb_mutex_type

Subroutine . 1102

pthdb_mutex_waiter, pthdb_cond_waiter, pthdb_rwlock_read_waiter or pthdb_rwlock_write_waiter

Subroutine . 1103

pthdb_pthread_arg Subroutine . 1105

pthdb_pthread_context or pthdb_pthread_setcontext Subroutine 1108

pthdb_pthread_hold, pthdb_pthread_holdstate or pthdb_pthread_unhold Subroutine 1109

pthdb_pthread_sigmask, pthdb_pthread_sigpend or pthdb_pthread_sigwait Subroutine 1110

xvi Technical Reference, Volume 1: Base Operating System and Extensions

pthdb_pthread_specific Subroutine . 1111

pthdb_pthread_tid or pthdb_tid_pthread Subroutine 1112

pthdb_rwlockattr_addr, or pthdb_rwlockattr_pshared Subroutine 1113

pthdb_rwlock_addr, pthdb_rwlock_lock_count, pthdb_rwlock_owner, pthdb_rwlock_pshared or

pthdb_rwlock_state Subroutine . 1114

pthdb_session_committed Subroutines . 1116

pthread_atfork Subroutine . 1119

pthread_attr_destroy Subroutine . 1120

pthread_attr_getguardsize or pthread_attr_setguardsize Subroutines 1121

pthread_attr_getinheritsched, pthread_attr_setinheritsched Subroutine 1123

pthread_attr_getschedparam Subroutine . 1124

pthread_attr_getschedpolicy, pthread_attr_setschedpolicy Subroutine 1125

pthread_attr_getstackaddr Subroutine . 1126

pthread_attr_getstacksize Subroutine . 1127

pthread_attr_init Subroutine . 1128

pthread_attr_getdetachstate or pthread_attr_setdetachstate Subroutines 1129

pthread_attr_getscope and pthread_attr_setscope Subroutines 1130

pthread_attr_setschedparam Subroutine . 1132

pthread_attr_setstackaddr Subroutine . 1133

pthread_attr_setstacksize Subroutine . 1134

pthread_attr_setsuspendstate_np and pthread_attr_getsuspendstate_np Subroutine 1135

pthread_barrier_destroy or pthread_barrier_init Subroutine 1136

pthread_barrier_wait Subroutine . 1137

pthread_barrierattr_destroy or pthread_barrierattr_init Subroutine 1138

pthread_barrierattr_getpshared or pthread_barrierattr_setpshared Subroutine 1139

pthread_cancel Subroutine . 1140

pthread_cleanup_pop or pthread_cleanup_push Subroutine 1142

pthread_cond_destroy or pthread_cond_init Subroutine 1143

PTHREAD_COND_INITIALIZER Macro . 1144

pthread_cond_signal or pthread_cond_broadcast Subroutine 1145

pthread_cond_wait or pthread_cond_timedwait Subroutine 1146

pthread_condattr_destroy or pthread_condattr_init Subroutine 1148

pthread_condattr_getclock, pthread_condattr_setclock Subroutine 1149

pthread_condattr_getpshared Subroutine . 1150

pthread_condattr_setpshared Subroutine . 1152

pthread_create Subroutine . 1153

pthread_create_withcred_np Subroutine . 1155

pthread_delay_np Subroutine . 1156

pthread_equal Subroutine . 1157

pthread_exit Subroutine . 1158

pthread_get_expiration_np Subroutine . 1159

pthread_getconcurrency or pthread_setconcurrency Subroutine 1160

pthread_getcpuclockid Subroutine . 1162

pthread_getrusage_np Subroutine . 1162

pthread_getschedparam Subroutine . 1165

pthread_getspecific or pthread_setspecific Subroutine 1166

pthread_getthrds_np Subroutine . 1168

pthread_getunique_np Subroutine . 1170

pthread_join or pthread_detach Subroutine . 1171

pthread_key_create Subroutine . 1172

pthread_key_delete Subroutine . 1173

pthread_kill Subroutine . 1174

pthread_lock_global_np Subroutine . 1175

pthread_mutex_init or pthread_mutex_destroy Subroutine 1176

pthread_mutex_getprioceiling or pthread_mutex_setprioceiling Subroutine 1178

PTHREAD_MUTEX_INITIALIZER Macro . 1179

Contents xvii

pthread_mutex_lock, pthread_mutex_trylock, or pthread_mutex_unlock Subroutine 1179

pthread_mutex_timedlock Subroutine . 1181

pthread_mutexattr_destroy or pthread_mutexattr_init Subroutine 1182

pthread_mutexattr_getkind_np Subroutine . 1184

pthread_mutexattr_getprioceiling or pthread_mutexattr_setprioceiling Subroutine 1185

pthread_mutexattr_getprotocol or pthread_mutexattr_setprotocol Subroutine 1186

pthread_mutexattr_getpshared or pthread_mutexattr_setpshared Subroutine 1188

pthread_mutexattr_gettype or pthread_mutexattr_settype Subroutine 1189

pthread_mutexattr_setkind_np Subroutine . 1190

pthread_once Subroutine . 1192

PTHREAD_ONCE_INIT Macro . 1193

pthread_rwlock_init or pthread_rwlock_destroy Subroutine 1193

pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines 1195

pthread_rwlock_timedrdlock Subroutine . 1196

pthread_rwlock_timedwrlock Subroutine . 1198

pthread_rwlock_unlock Subroutine . 1199

pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines 1200

pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines 1202

pthread_rwlockattr_getpshared or pthread_rwlockattr_setpshared Subroutines 1203

pthread_self Subroutine . 1204

pthread_setcancelstate, pthread_setcanceltype, or pthread_testcancel Subroutines 1205

pthread_setschedparam Subroutine . 1206

pthread_setschedprio Subroutine . 1208

pthread_sigmask Subroutine . 1209

pthread_signal_to_cancel_np Subroutine . 1209

pthread_spin_destroy or pthread_spin_init Subroutine 1210

pthread_spin_lock or pthread_spin_trylock Subroutine 1211

pthread_spin_unlock Subroutine . 1212

pthread_suspend_np and pthread_continue_np Subroutine 1213

pthread_unlock_global_np Subroutine . 1214

pthread_yield Subroutine . 1215

ptrace, ptracex, ptrace64 Subroutine . 1215

ptsname Subroutine . 1226

putc, putchar, fputc, or putw Subroutine . 1227

putconfattrs Subroutine . 1229

putenv Subroutine . 1231

putgrent Subroutine . 1232

putgroupattrs Subroutine . 1233

puts or fputs Subroutine . 1236

putuserattrs Subroutine . 1238

putuserpwx Subroutine . 1242

putwc, putwchar, or fputwc Subroutine . 1244

putws or fputws Subroutine . 1246

pwdrestrict_method Subroutine . 1247

Appendix A. Base Operating System Error Codes for Services That Require Path-Name

Resolution . 1251

Related Information . 1251

Appendix B. ODM Error Codes . 1253

Related Information . 1254

C. Notices . 1255

Index . 1257

xviii Technical Reference, Volume 1: Base Operating System and Extensions

About This Book

This book provides experienced C programmers with complete detailed information about Base Operating

System runtime services for the AIX® operating system. Runtime services are listed alphabetically, and

complete descriptions are given for them. This volume contains AIX services that begin with the letters A

through P. To use the book effectively, you should be familiar with commands, system calls, subroutines,

file formats, and special files. This publication is also available on the documentation CD that is shipped

with the operating system.

This book is part of the six-volume technical reference set, AIX 5L Version 5.3 Technical Reference, that

provides information on system calls, kernel extension calls, and subroutines in the following volumes:

v AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 1 and AIX 5L

Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2 provide information

on system calls, subroutines, functions, macros, and statements associated with base operating system

runtime services.

v AIX 5L Version 5.3 Technical Reference: Communications Volume 1 and AIX 5L Version 5.3 Technical

Reference: Communications Volume 2 provide information on entry points, functions, system calls,

subroutines, and operations related to communications services.

v AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 1 and AIX 5L Version 5.3

Technical Reference: Kernel and Subsystems Volume 2 provide information about kernel services,

device driver operations, file system operations, subroutines, the configuration subsystem, the

communications subsystem, the low function terminal (LFT) subsystem, the logical volume subsystem,

the M-audio capture and playback adapter subsystem, the printer subsystem, the SCSI subsystem, and

the serial DASD subsystem.

Highlighting

The following highlighting conventions are used in this book:

 Bold Identifies commands, subroutines, keywords, files,

structures, directories, and other items whose names are

predefined by the system. Also identifies graphical objects

such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to

be supplied by the user.

Monospace Identifies examples of specific data values, examples of

text similar to what you might see displayed, examples of

portions of program code similar to what you might write

as a programmer, messages from the system, or

information you should actually type.

Case-Sensitivity in AIX

Everything in the AIX operating system is case-sensitive, which means that it distinguishes between

uppercase and lowercase letters. For example, you can use the ls command to list files. If you type LS, the

system responds that the command is ″not found.″ Likewise, FILEA, FiLea, and filea are three distinct file

names, even if they reside in the same directory. To avoid causing undesirable actions to be performed,

always ensure that you use the correct case.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

© Copyright IBM Corp. 1994, 2005 xix

32-Bit and 64-Bit Support for the Single UNIX Specification

Beginning with Version 5.2, the operating system is designed to support The Open Group’s Single UNIX

Specification Version 3 (UNIX 03) for portability of UNIX-based operating systems. Many new interfaces,

and some current ones, have been added or enhanced to meet this specification, making Version 5.2 even

more open and portable for applications, while remaining compatible with previous releases of AIX.

To determine the proper way to develop a UNIX 03-portable application, you may need to refer to The

Open Group’s UNIX 03 specification, which can be accessed online or downloaded from

http://www.unix.org/ .

Related Publications

The following books contain information about or related to application programming interfaces:

v AIX 5L Version 5.3 System Management Guide: Operating System and Devices

v AIX 5L Version 5.3 System Management Guide: Communications and Networks

v AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs

v AIX 5L Version 5.3 Communications Programming Concepts

v AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts

v AIX 5L Version 5.3 Files Reference

xx Technical Reference, Volume 1: Base Operating System and Extensions

Base Operating System (BOS) Runtime Services (A-P)

a64l or l64a Subroutine

Purpose

Converts between long integers and base-64 ASCII strings.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

long a64l (String)

char *String;

char *l64a (LongInteger)

long LongInteger;

Description

The a64l and l64a subroutines maintain numbers stored in base-64 ASCII characters. This is a notation in

which long integers are represented by up to 6 characters, each character representing a digit in a

base-64 notation.

The following characters are used to represent digits:

 Character Description

. Represents 0.

/ Represents 1.

0 -9 Represents the numbers 2-11.

A-Z Represents the numbers 12-37.

a-z Represents the numbers 38-63.

Parameters

 String Specifies the address of a null-terminated character string.

LongInteger Specifies a long value to convert.

Return Values

The a64l subroutine takes a pointer to a null-terminated character string containing a value in base-64

representation and returns the corresponding long value. If the string pointed to by the String parameter

contains more than 6 characters, the a64l subroutine uses only the first 6.

Conversely, the l64a subroutine takes a long parameter and returns a pointer to the corresponding

base-64 representation. If the LongInteger parameter is a value of 0, the l64a subroutine returns a pointer

to a null string.

The value returned by the l64a subroutine is a pointer into a static buffer, the contents of which are

overwritten by each call.

© Copyright IBM Corp. 1994, 2005 1

If the *String parameter is a null string, the a64l subroutine returns a value of 0L.

If LongInteger is 0L, the l64a subroutine returns a pointer to a null string.

Related Information

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

List of Multithread Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

abort Subroutine

Purpose

Sends a SIGIOT signal to end the current process.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int abort (void)

Description

The abort subroutine sends a SIGIOT signal to the current process to terminate the process and produce

a memory dump. If the signal is caught and the signal handler does not return, the abort subroutine does

not produce a memory dump.

If the SIGIOT signal is neither caught nor ignored, and if the current directory is writable, the system

produces a memory dump in the core file in the current directory and prints an error message.

The abnormal-termination processing includes the effect of the fclose subroutine on all open streams and

message-catalog descriptors, and the default actions defined as the SIGIOT signal. The SIGIOT signal is

sent in the same manner as that sent by the raise subroutine with the argument SIGIOT.

The status made available to the wait or waitpid subroutine by the abort subroutine is the same as a

process terminated by the SIGIOT signal. The abort subroutine overrides blocking or ignoring the SIGIOT

signal.

Note: The SIGABRT signal is the same as the SIGIOT signal.

Return Values

The abort subroutine does not return a value.

Related Information

The exit (“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239), atexit (“exit, atexit, unatexit, _exit,

or _Exit Subroutine” on page 239), or _exit (“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239)

subroutine, fclose (“fclose or fflush Subroutine” on page 249) subroutine, kill (“kill or killpg Subroutine” on

page 570), or killpg (“kill or killpg Subroutine” on page 570) subroutine, raise subroutine, sigaction,

sigvec, signal subroutine, wait or waidtpid subroutine.

The dbx command.

2 Technical Reference, Volume 1: Base Operating System and Extensions

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

abs, div, labs, ldiv, imul_dbl, umul_dbl, llabs, or lldiv Subroutine

Purpose

Computes absolute value, division, and double precision multiplication of integers.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int abs (i)

int i;

#include <stdlib.h>

long labs (i)

long i;

#include <stdlib.h>

div_t div (Numerator, Denominator)

int Numerator: Denominator;

#include <stdlib.h>

void imul_dbl (i, j, Result)

long i, j;

long *Result;

#include <stdlib.h>

ldiv_t ldiv (Numerator, Denominator)

long Numerator: Denominator;

#include <stdlib.h>

void umul_dbl (i, j, Result)

unsigned long i, j;

unsigned long *Result;

#include <stdlib.h>

long long int llabs(i)

long long int i;

#include <stdlib.h>

lldiv_t lldiv (Numerator, Denominator)

long long int Numerator, Denominator;

Description

The abs subroutine returns the absolute value of its integer operand.

Note: A twos-complement integer can hold a negative number whose absolute value is too large for the

integer to hold. When given this largest negative value, the abs subroutine returns the same value.

The div subroutine computes the quotient and remainder of the division of the number represented by the

Numerator parameter by that specified by the Denominator parameter. If the division is inexact, the sign of

the resulting quotient is that of the algebraic quotient, and the magnitude of the resulting quotient is the

largest integer less than the magnitude of the algebraic quotient. If the result cannot be represented (for

example, if the denominator is 0), the behavior is undefined.

Base Operating System (BOS) Runtime Services (A-P) 3

The labs and ldiv subroutines are included for compatibility with the ANSI C library, and accept long

integers as parameters, rather than as integers.

The imul_dbl subroutine computes the product of two signed longs, i and j, and stores the double long

product into an array of two signed longs pointed to by the Result parameter.

The umul_dbl subroutine computes the product of two unsigned longs, i and j, and stores the double

unsigned long product into an array of two unsigned longs pointed to by the Result parameter.

The llabs and lldiv subroutines compute the absolute value and division of long long integers. These

subroutines operate under the same restrictions as the abs and div subroutines.

Note: When given the largest negative value, the llabs subroutine (like the abs subroutine) returns the

same value.

Parameters

 i Specifies, for the abs subroutine, some integer; for labs and imul_dbl, some long integer; for

the umul_dbl subroutine, some unsigned long integer; for the llabs subroutine, some long long

integer.

Numerator Specifies, for the div subroutine, some integer; for the ldiv subroutine, some long integer; for

lldiv, some long long integer.

j Specifies, for the imul_dbl subroutine, some long integer; for the umul_dbl subroutine, some

unsigned long integer.

Denominator Specifies, for the div subroutine, some integer; for the ldiv subroutine, some long integer; for

lldiv, some long long integer.

Result Specifies, for the imul_dbl subroutine, some long integer; for the umul_dbl subroutine, some

unsigned long integer.

Return Values

The abs, labs, and llabs subroutines return the absolute value. The imul_dbl and umul_dbl subroutines

have no return values. The div subroutine returns a structure of type div_t. The ldiv subroutine returns a

structure of type ldiv_t, comprising the quotient and the remainder. The structure is displayed as:

struct ldiv_t {

 int quot; /* quotient */

 int rem; /* remainder */

};

The lldiv subroutine returns a structure of type lldiv_t, comprising the quotient and the remainder.

access, accessx, or faccessx Subroutine

Purpose

Determines the accessibility of a file.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

int access (PathName, Mode)

char *PathName;

4 Technical Reference, Volume 1: Base Operating System and Extensions

int Mode;

int accessx (PathName, Mode, Who)

char *PathName;

int Mode, Who;

int faccessx (FileDescriptor, Mode, Who)

int FileDescriptor;

int Mode, Who;

Description

The access, accessx, and faccessx subroutines determine the accessibility of a file system object. The

accessx and faccessx subroutines allow the specification of a class of users or processes for whom

access is to be checked.

The caller must have search permission for all components of the PathName parameter.

Parameters

 PathName Specifies the path name of the file. If the PathName parameter refers to a symbolic link,

the access subroutine returns information about the file pointed to by the symbolic link.

FileDescriptor Specifies the file descriptor of an open file.

Mode Specifies the access modes to be checked. This parameter is a bit mask containing 0 or

more of the following values, which are defined in the sys/access.h file:

R_OK Check read permission.

W_OK Check write permission.

X_OK Check execute or search permission.

F_OK Check the existence of a file.

If none of these values are specified, the existence of a file is checked.

Who Specifies the class of users for whom access is to be checked. This parameter must be

one of the following values, which are defined in the sys/access.h file:

ACC_SELF

Determines if access is permitted for the current process. The effective user and

group IDs, the concurrent group set and the privilege of the current process are

used for the calculation.

ACC_INVOKER

Determines if access is permitted for the invoker of the current process. The real

user and group IDs, the concurrent group set, and the privilege of the invoker

are used for the calculation.

 Note: The expression access (PathName, Mode) is equivalent to accessx

(PathName, Mode, ACC_INVOKER).

ACC_OTHERS

Determines if the specified access is permitted for any user other than the object

owner. The Mode parameter must contain only one of the valid modes. Privilege

is not considered in the calculation.

ACC_ALL

Determines if the specified access is permitted for all users. The Mode

parameter must contain only one of the valid modes. Privilege is not considered

in the calculation .

Note: The accessx subroutine shows the same behavior by both the user and

root with ACC_ALL.

Base Operating System (BOS) Runtime Services (A-P) 5

Return Values

If the requested access is permitted, the access, accessx, and faccessx subroutines return a value of 0.

If the requested access is not permitted or the function call fails, a value of -1 is returned and the errno

global variable is set to indicate the error.

The access subroutine indicates success for X_OK even if none of the execute file permission bits are

set.

Error Codes

The access and accessx subroutines fail if one or more of the following are true:

 EACCES Search permission is denied on a component of the PathName prefix.

EFAULT The PathName parameter points to a location outside the allocated address space of

the process.

ELOOP Too many symbolic links were encountered in translating the PathName parameter.

ENOENT A component of the PathName does not exist or the process has the disallow

truncation attribute set.

ENOTDIR A component of the PathName is not a directory.

ESTALE The process root or current directory is located in a virtual file system that has been

unmounted.

ENOENT The named file does not exist.

ENOENT The PathName parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG A component of the PathName parameter exceeded 255 characters or the entire

PathName parameter exceeded 1022 characters.

The faccessx subroutine fails if the following is true:

 EBADF The value of the FileDescriptor parameter is not valid.

The access, accessx, and faccessx subroutines fail if one or more of the following is true:

 EIO An I/O error occurred during the operation.

EACCES The file protection does not allow the requested access.

EROFS Write access is requested for a file on a read-only file system.

If Network File System (NFS) is installed on your system, the accessx and faccessx subroutines can also

fail if the following is true:

 ETIMEDOUT The connection timed out.

ETXTBSY Write access is requested for a shared text file that is being executed.

EINVAL The value of the Mode argument is invalid.

Related Information

The acl_get (“acl_get or acl_fget Subroutine” on page 10) subroutine, chacl (“chacl or fchacl Subroutine”

on page 142) subroutine, statx subroutine, statacl subroutine.

The aclget command, aclput command, chmod command, chown command.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

6 Technical Reference, Volume 1: Base Operating System and Extensions

acct Subroutine

Purpose

Enables and disables process accounting.

Library

Standard C Library (libc.a)

Syntax

int acct (Path)

char *Path;

Description

The acct subroutine enables the accounting routine when the Path parameter specifies the path name of

the file to which an accounting record is written for each process that terminates. When the Path

parameter is a 0 or null value, the acct subroutine disables the accounting routine.

If the Path parameter refers to a symbolic link, the acct subroutine causes records to be written to the file

pointed to by the symbolic link.

If Network File System (NFS) is installed on your system, the accounting file can reside on another node.

Note: To ensure accurate accounting, each node must have its own accounting file. Although no two

nodes should share accounting files, a node’s accounting files can be located on any node in the

network.

The calling process must have root user authority to use the acct subroutine.

Parameters

 Path Specifies a pointer to the path name of the file or a null pointer.

Return Values

Upon successful completion, the acct subroutine returns a value of 0. Otherwise, a value of -1 is returned

and the global variable errno is set to indicate the error.

Error Codes

The acct subroutine is unsuccessful if one or more of the following are true:

 EACCES Write permission is denied for the named accounting file.

EACCES The file named by the Path parameter is not an ordinary file.

EBUSY An attempt is made to enable accounting when it is already enabled.

ENOENT The file named by the Path parameter does not exist.

EPERM The calling process does not have root user authority.

EROFS The named file resides on a read-only file system.

If NFS is installed on the system, the acct subroutine is unsuccessful if the following is true:

 ETIMEDOUT The connection timed out.

Base Operating System (BOS) Runtime Services (A-P) 7

acl_chg or acl_fchg Subroutine

Purpose

Changes the AIXC ACL type access control information on a file.

Library

Security Library (libc.a)

Syntax

#include <sys/access.h>

int acl_chg (Path, How, Mode, Who)

char * Path;

int How;

int Mode;

int Who;

int acl_fchg (FileDescriptor, How, Mode, Who)

int FileDescriptor;

int How;

int Mode;

int Who;

Description

The acl_chg and acl_fchg subroutines modify the AIXC ACL-type-based access control information of a

specified file. This call can fail for file system objects with any non-AIXC ACL.

Parameters

 FileDescriptor Specifies the file descriptor of an open file.

How Specifies how the permissions are to be altered for the affected entries of the Access

Control List (ACL). This parameter takes one of the following values:

ACC_PERMIT

Allows the types of access included in the Mode parameter.

ACC_DENY

Denies the types of access included in the Mode parameter.

ACC_SPECIFY

Grants the access modes included in the Mode parameter and restricts the

access modes not included in the Mode parameter.

Mode Specifies the access modes to be changed. The Mode parameter is a bit mask containing

zero or more of the following values:

R_ACC

Allows read permission.

W_ACC

Allows write permission.

X_ACC Allows execute or search permission.

Path Specifies a pointer to the path name of a file.

8 Technical Reference, Volume 1: Base Operating System and Extensions

Who Specifies which entries in the ACL are affected. This parameter takes one of the following

values:

ACC_OBJ_OWNER

Changes the owner entry in the base ACL.

ACC_OBJ_GROUP

Changes the group entry in the base ACL.

ACC_OTHERS

Changes all entries in the ACL except the base entry for the owner.

ACC_ALL

Changes all entries in the ACL.

Return Values

On successful completion, the acl_chg and acl_fchg subroutines return a value of 0. Otherwise, a value

of -1 is returned and the errno global variable is set to indicate the error.

Error Codes

The acl_chg subroutine fails and the access control information for a file remains unchanged if one or

more of the following is true:

 EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the

process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path

parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see

the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

The acl_fchg subroutine fails and the file permissions remain unchanged if the following is true:

 EBADF The FileDescriptor value is not valid.

The acl_chg or acl_fchg subroutine fails and the access control information for a file remains unchanged

if one or more of the following is true:

 EINVAL The How parameter is not one of ACC_PERMIT, ACC_DENY, or ACC_SPECIFY.

EINVAL The Who parameter is not ACC_OWNER, ACC_GROUP, ACC_OTHERS, or ACC_ALL.

EROFS The named file resides on a read-only file system.

The acl_chg or acl_fchg subroutine fails and the access control information for a file remains unchanged

if one or more of the following is true:

 EIO An I/O error occurred during the operation.

EPERM The effective user ID does not match the ID of the owner of the file and the invoker does not

have root user authority.

Base Operating System (BOS) Runtime Services (A-P) 9

If Network File System (NFS) is installed on your system, the acl_chg and acl_fchg subroutines can also

fail if the following is true:

 ETIMEDOUT The connection timed out.

Related Information

The acl_get (“acl_get or acl_fget Subroutine”) subroutine, acl_put (“acl_put or acl_fput Subroutine” on

page 12) subroutine, acl_set (“acl_set or acl_fset Subroutine” on page 14) subroutine, chacl (“chacl or

fchacl Subroutine” on page 142) subroutine, chmod (“chmod or fchmod Subroutine” on page 146)

subroutine, stat subroutine, statacl subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

acl_get or acl_fget Subroutine

Purpose

Gets the access control information of a file if the ACL associated is of the AIXC type.

Library

Security Library (libc.a)

Syntax

#include <sys/access.h>

char *acl_get (Path)

char * Path;

char *acl_fget (FileDescriptor)

int FileDescriptor;

Description

The acl_get and acl_fget subroutines retrieve the access control information for a file system object. This

information is returned in a buffer pointed to by the return value. The structure of the data in this buffer is

unspecified. The value returned by these subroutines should be used only as an argument to the acl_put

or acl_fput subroutines to copy or restore the access control information. Note that acl_get and acl_fget

subroutines could fail if the ACL associated with the file system object is of a different type than AIXC. It is

recommended that applications make use of aclx_get and aclx_fget subroutines to retrieve the ACL.

The buffer returned by the acl_get and acl_fget subroutines is in allocated memory. After usage, the caller

should deallocate the buffer using the free subroutine.

Parameters

 Path Specifies the path name of the file.

FileDescriptor Specifies the file descriptor of an open file.

10 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

On successful completion, the acl_get and acl_fget subroutines return a pointer to the buffer containing

the access control information. Otherwise, a null pointer is returned and the errno global variable is set to

indicate the error.

Error Codes

The acl_get subroutine fails if one or more of the following are true:

 EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the

process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path

parameter exceeded 1023 characters.

ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or the process has the disallow truncation

attribute (see the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

The acl_fget subroutine fails if the following is true:

 EBADF The FileDescriptor parameter is not a valid file descriptor.

The acl_get or acl_fget subroutine fails if the following is true:

 EIO An I/O error occurred during the operation.

If Network File System (NFS) is installed on your system, the acl_get and acl_fget subroutines can also

fail if the following is true:

 ETIMEDOUT The connection timed out.

Security

 Access Control The invoker must have search permission for all components of the Path prefix.

Audit Events None.

Related Information

The acl_chg or acl_fchg (“acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_put or acl_fput

(“acl_put or acl_fput Subroutine” on page 12) subroutine, acl_set or acl_fset (“acl_set or acl_fset

Subroutine” on page 14) subroutine, chacl (“chacl or fchacl Subroutine” on page 142) subroutine, chmod

(“chmod or fchmod Subroutine” on page 146) subroutine, stat subroutine, statacl subroutine.

“aclx_get or aclx_fget Subroutine” on page 17, “aclx_put or aclx_fput Subroutine” on page 25.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 11

acl_put or acl_fput Subroutine

Purpose

Sets AIXC ACL type access control information of a file.

Library

Security Library (libc.a)

Syntax

#include <sys/access.h>

int acl_put (Path, Access, Free)

char * Path;

char * Access;

int Free;

int acl_fput (FileDescriptor, Access, Free)

int FileDescriptor;

char * Access;

int Free;

Description

The acl_put and acl_fput subroutines set the access control information of a file system object. This

information is contained in a buffer returned by a call to the acl_get or acl_fget subroutine. The structure

of the data in this buffer is unspecified. However, the entire Access Control List (ACL) for a file cannot

exceed one memory page (4096 bytes) in size. Note that acl_put/acl_fput operation could fail if the

existing ACL associated with the file system object is of a different kind or if the underlying physical file

system does not support AIXC ACL type. It is recommended that applications make use of aclx_put and

aclx_fput subroutines to set the ACL instead of acl_put/acl_fput routines.

Parameters

 Path Specifies the path name of a file.

FileDescriptor Specifies the file descriptor of an open file.

Access Specifies a pointer to the buffer containing the access control information.

Free Specifies whether the buffer space is to be deallocated. The following values are valid:

0 Space is not deallocated.

1 Space is deallocated.

Return Values

On successful completion, the acl_put and acl_fput subroutines return a value of 0. Otherwise, -1 is

returned and the errno global variable is set to indicate the error.

Error Codes

The acl_put subroutine fails and the access control information for a file remains unchanged if one or

more of the following are true:

 EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the

process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

12 Technical Reference, Volume 1: Base Operating System and Extensions

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path

parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see

the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

The acl_fput subroutine fails and the file permissions remain unchanged if the following is true:

 EBADF The FileDescriptor parameter is not a valid file descriptor.

The acl_put or acl_fput subroutine fails and the access control information for a file remains unchanged if

one or more of the following are true:

 EINVAL The Access parameter does not point to a valid access control buffer.

EINVAL The Free parameter is not 0 or 1.

EIO An I/O error occurred during the operation.

EROFS The named file resides on a read-only file system.

If Network File System (NFS) is installed on your system, the acl_put and acl_fput subroutines can also

fail if the following is true:

 ETIMEDOUT The connection timed out.

Security

Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events:

 Event Information

chacl Path

fchacl FileDescriptor

Related Information

The acl_chg (“acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_get (“acl_get or acl_fget

Subroutine” on page 10) subroutine, acl_set (“acl_set or acl_fset Subroutine” on page 14) subroutine,

chacl (“chacl or fchacl Subroutine” on page 142) subroutine, chmod (“chmod or fchmod Subroutine” on

page 146) subroutine, stat subroutine, statacl subroutine.

“aclx_get or aclx_fget Subroutine” on page 17, “aclx_put or aclx_fput Subroutine” on page 25.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 13

acl_set or acl_fset Subroutine

Purpose

Sets the AIXC ACL type access control information of a file.

Library

Security Library (libc.a)

Syntax

#include <sys/access.h>

int acl_set (Path, OwnerMode, GroupMode, DefaultMode)

char * Path;

int OwnerMode;

int GroupMode;

int DefaultMode;

int acl_fset (FileDescriptor, OwnerMode, GroupMode, DefaultMode)

int * FileDescriptor;

int OwnerMode;

int GroupMode;

int DefaultMode;

Description

The acl_set and acl_fset subroutines set the base entries of the Access Control List (ACL) of the file. All

other entries are discarded. Other access control attributes are left unchanged. Note that if the file system

object is associated with any other ACL type access control information, it will be replaced with just the

Base mode bits information. It is strongly recommended that applications stop using these interfaces and

instead make use of aclx_put and aclx_fput subroutines to set the ACL.

Parameters

 DefaultMode Specifies the access permissions for the default class.

FileDescriptor Specifies the file descriptor of an open file.

GroupMode Specifies the access permissions for the group of the file.

OwnerMode Specifies the access permissions for the owner of the file.

Path Specifies a pointer to the path name of a file.

The mode parameters specify the access permissions in a bit mask containing zero or more of the

following values:

 R_ACC Authorize read permission.

W_ACC Authorize write permission.

X_ACC Authorize execute or search permission.

Return Values

Upon successful completion, the acl_set and acl_fset subroutines return the value 0. Otherwise, the value

-1 is returned and the errno global variable is set to indicate the error.

14 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The acl_set subroutine fails and the access control information for a file remains unchanged if one or

more of the following are true:

 EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the

process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path

parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see

the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

The acl_fset subroutine fails and the file permissions remain unchanged if the following is true:

 EBADF The file descriptor FileDescriptor is not valid.

The acl_set or acl_fset subroutine fails and the access control information for a file remains unchanged if

one or more of the following are true:

 EIO An I/O error occurred during the operation.

EPERM The effective user ID does not match the ID of the owner of the file and the invoker does

not have root user authority.

EROFS The named file resides on a read-only file system.

If Network File System (NFS) is installed on your system, the acl_set and acl_fset subroutines can also

fail if the following is true:

 ETIMEDOUT The connection timed out.

Security

Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events:

 Event Information

chacl Path

fchacl FileDescriptor

Related Information

The acl_chg (“acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_get (“acl_get or acl_fget

Subroutine” on page 10) subroutine, acl_put (“acl_put or acl_fput Subroutine” on page 12) subroutine,

chacl (“chacl or fchacl Subroutine” on page 142) subroutine, chmod (“chmod or fchmod Subroutine” on

page 146) subroutine, stat subroutine, statacl subroutine.

“aclx_get or aclx_fget Subroutine” on page 17, “aclx_put or aclx_fput Subroutine” on page 25.

Base Operating System (BOS) Runtime Services (A-P) 15

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

aclx_convert Subroutine

Purpose

Converts the access control information from one ACL type to another.

Library

Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_convert (from_acl, from_sz, from_type, to_acl, to_sz, to_type, fs_obj_path)

void * from_acl;

size_t from_sz;

acl_type_t from_type;

void * to_acl;

size_t * to_sz;

acl_type_t to_type;

char * fs_obj_path;

Description

The aclx_convert subroutine converts the access control information from the binary input given in

from_acl of the ACL type from_type into a binary ACL of the type to_type and stores it in to_acl. Values

from_type and to_type can be any ACL types supported in the system.

The ACL conversion takes place with the help of an ACL type-specific algorithm. Because the conversion

is approximate, it can result in a potential loss of access control. Therefore, the user of this call must make

sure that the converted ACL satisfies the required access controls. The user can manually review the

access control information after the conversion for the file system object to ensure that the conversion was

successful and satisfied the requirements of the intended access control.

Parameters

 from_acl Points to the ACL that has to be converted.

from_sz Indicates the size of the ACL information pointed to by from_acl.

from_type Indicates the ACL type information of the ACL. The acl_type is 64 bits in size and is

unique on the system. If the given acl_type is not supported in the system, this function

fails and errno is set to EINVAL.

to_acl Points to a buffer in which the target binary ACL has to be stored. The amount of memory

available in this buffer is indicated by the to_sz parameter.

to_sz Indicates the amount of memory, in bytes, available in to_acl. If to_sz contains less than

the required amount of memory for storing the converted ACL, *to_sz is set to the

required amount of memory and ENOSPC is returned by errno.

to_type Indicates the ACL type to which conversion needs to be done. The ACL type is 64 bits in

size and is unique on the system. If the given acl_type is not supported in the system,

this function fails and errno is set to EINVAL

fs_obj_path File System Object Path for which the ACL conversion is being requested. Gets

information about the object, such as whether it is file or directory.

16 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

On successful completion, the aclx_convert subroutine returns a value of 0. Otherwise, -1 is returned and

the errno global variable is set to indicate the error.

Error Codes

The aclx_convert subroutine fails if one or more of the following is true:

 EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is specified as input

to this routine, either in from_type or in to_type. This errno could also be returned if the binary

ACL given in from_acl is not the type specified by from_type.

ENOSPC Insufficient storage space is available in to_acl.

Security

Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events: If the auditing subsystem has been properly configured and is enabled, the aclx_convert

subroutine generates the following audit record (event) every time the command is executed:

 Event Information

FILE_Acl Lists access controls.

Related Information

The aclget command, aclput command, aclconvert command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

aclx_get or aclx_fget Subroutine

Purpose

Gets the access control information for a file system object.

Library

Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_get (Path, ctl_flags, acl_type, acl, acl_sz, mode_info)

char * Path;

uint64_t ctl_flags;

acl_type_t * acl_type;

void * acl;

size_t * acl_sz;

mode_t * mode_info;

int aclx_fget (FileDescriptor, ctl_flags, acl_type, acl, acl_sz, mode_info)

int FileDescriptor;

uint64_t ctl_flags;

acl_type_t * acl_type;

Base Operating System (BOS) Runtime Services (A-P) 17

void * acl;

size_t * acl_sz;

mode_t * mode_info;

Description

The aclx_get and aclx_fget subroutines retrieve the access control information for a file system object in

the native ACL format. Native ACL format is the format as defined for the particular ACL type in the

system. These subroutines are advanced versions of the acl_get and acl_fget subroutines and should be

used instead of the older versions. The aclx_get and aclx_fget subroutines provide for more control for

the user to interact with the underlying file system directly.

In the earlier versions (acl_get or acl_fget), OS libraries found out the ACL size from the file system and

allocated the required memory buffer space to hold the ACL information. The caller does all this now with

the aclx_get and aclx_fget subroutines. Callers are responsible for finding out the size and allocating

memory for the ACL information, and later freeing the same memory after it is used. These subroutines

allow for an acl_type input and output argument. The data specified in this argument can be set to a

particular ACL type and a request for the ACL on the file system object of the same type. Some physical

file systems might do emulation to return the ACL type requested, if the ACL type that exists on the file

system object is different. If the acl_type pointer points to a data area with a value of ACL_ANY or 0, then

the underlying physical file system has to return the type of the ACL associated with the file system object.

The ctl_flags parameter is a bit mask that allows for control over the aclx_get requests.

The value returned by these subroutines can be use as an argument to the aclx_get or aclx_fget

subroutines to copy or restore the access control information.

Parameters

 Path Specifies the path name of the file system object.

FileDescriptor Specifies the file descriptor of an open file.

ctl_flags This 64-bit sized bit mask provides control over the ACL retrieval. The following flag

values are defined:

GET_ACLINFO_ONLY

Gets only the ACL type and length information from the underlying file system.

When this bit is set, arguments such as acl and mode_info can be set to NULL.

In all other cases, these should be valid buffer pointers (or else an error is

returned). If this bit is not specified, then all the other information about the ACL,

such as ACL data and mode information, is returned.

acl_type Points to a buffer that will hold ACL type information. The ACL type is 64 bits in size and

is unique on the system. The caller can provide an ACL type in this area and a request

for the ACL on the file system object of the same type. If the ACL type requested does

not match the one on the file system object, the physical file system might return an error

or emulate and provide the ACL information in the ACL type format requested. If the caller

does not know the ACL type and wants to retrieve the ACL associated with the file

system object, then the caller should set the buffer value pointed to by acl_type to

ACL_ANY or 0.

acl Points to a buffer where the ACL retrieved is stored. The size of this buffer is indicated by

the acl_sz parameter.

acl_sz Indicates the size of the buffer area passed through the acl parameter.

mode_info Pointer to a buffer where the mode word associated with the file system object is

returned. Note that this mode word’s meaning and formations depend entirely on the ACL

type concerned.

18 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

On successful completion, the aclx_put and aclx_fput subroutines return a value of 0. Otherwise, -1 is

returned and the errno global variable is set to indicate the error.

Error Codes

The aclx_get subroutine fails if one or more of the following is true:

 EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the

process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path

parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see

the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

The aclx_fget subroutine fails if the following is true:

 EBADF The FileDescriptor parameter is not a valid file descriptor.

The aclx_get or aclx_fget subroutine fails if one or more of the following is true:

 EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is specified as input

to this routine.

EIO An I/O error occurred during the operation.

ENOSPC Input buffer size acl_sz is not sufficient to store the ACL data in acl.

If Network File System (NFS) is installed on your system, the aclx_get and aclx_fget subroutines can

also fail if the following condition is true:

 ETIMEDOUT The connection timed out.

Security

Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events: None

Related Information

The acl_chg (“acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_put (“acl_get or acl_fget

Subroutine” on page 10) subroutine, acl_set (“acl_set or acl_fset Subroutine” on page 14) subroutine,

chacl (“chacl or fchacl Subroutine” on page 142) subroutine, chmod (“chmod or fchmod Subroutine” on

page 146) subroutine, stat subroutine, statacl subroutine, “aclx_convert Subroutine” on page 16.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 19

aclx_gettypeinfo Subroutine

Purpose

Retrieves the ACL characteristics given to an ACL type.

Library

Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_gettypeinfo (Path, acl_type, buffer, buffer_sz)

char * Path;

acl_type_t acl_type;

caddr_t buffer;

size_t * buffer_sz;

Description

The aclx_gettypeinfo subroutine helps obtain characteristics and capabilities of an ACL type on the file

system. The buffer space provided by the caller is where the ACL type-related information is returned. If

the length of this buffer is not enough to fit the characteristics for the ACL type requested, then

aclx_gettypeinfo returns an error and sets the buffer_len field to the amount of buffer space needed.

Parameters

 Path Specifies the path name of the file.

acl_type ACL type for which the characteristics are sought.

buffer Specifies the pointer to a buffer space, where the characteristics of acl_type for the file

system is returned. The structure of data returned is ACL type-specific. Refer to the ACL

type-specific documentation for more details.

buffer_sz Points to an area that specifies the length of the buffer buffer in which the characteristics

of acl_type are returned by the file system. This is an input/output parameter. If the length

of the buffer provided is not sufficient to store all the ACL type characteristic information,

then the file system returns an error and indicates the length of the buffer required in this

variable. The length is specified in number of bytes.

Return Values

On successful completion, the aclx_gettypeinfo subroutine returns a value of 0. Otherwise, -1 is returned

and the errno global variable is set to indicate the error.

Error Codes

The aclx_gettypeinfo subroutine fails and the access control information for a file remains unchanged if

one or more of the following is true:

 EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the

process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path

parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see

the ulimit subroutine).

20 Technical Reference, Volume 1: Base Operating System and Extensions

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOSPC Buffer space provided is not enough to store all the acl_type characteristics of the file

system.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

If Network File System (NFS) is installed on your system, the acl_gettypeinfo subroutine can also fail if

the following condition is true:

 ETIMEDOUT The connection timed out.

Security

Auditing Events: None

Related Information

The “aclx_get or aclx_fget Subroutine” on page 17, “aclx_put or aclx_fput Subroutine” on page 25.

The aclget command, aclput command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

aclx_gettypes Subroutine

Purpose

Retrieves the list of ACL types supported for the file system associated with the path provided.

Library

Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_gettypes (Path, acl_type_list, acl_type_list_len)

char * Path;

acl_type_t * acl_type_list;

size_t * acl_type_list_len;

Description

The aclx_gettypes subroutine helps obtain the list of ACL types supported on the particular file system. A

file system can implement policies to support one to many ACL types simultaneously. The first ACL type in

the list is the default ACL type for the file system. This default ACL type is used in ACL conversions if the

target ACL type is not supported on the file system. Each file system object in the file system is associated

with only one piece of ACL data of a particular ACL type.

Base Operating System (BOS) Runtime Services (A-P) 21

Parameters

 Path Specifies the path name of the file system object within the file system for which the list

of supported ACLs are being requested.

acl_type_list Specifies the pointer to a buffer space, where the list of ACL types is returned. This list is

an array of ACL types, each member occupying 64-bit space to define one ACL type. The

size of this buffer is indicated using the acl_type_list_len argument in bytes.

acl_type_list_len Pointer to a buffer that specifies the length of the buffer acl_type_list in which the list of

ACLs is returned by the file system. This is an input/output parameter. If the length of the

buffer is not sufficient to store all the ACL types, the file system returns an error and

indicates the length of the buffer required in this same area. The length is specified in

bytes.

If the subroutine call is successful, this field contains the number of bytes of information

stored in the acl_type_list buffer. This information can be used by the caller to get the

number of ACL type entries returned.

Return Values

On successful completion, the aclx_gettypes subroutine returns a value of 0. Otherwise, -1 is returned

and the errno global variable is set to indicate the error.

Error Codes

The aclx_gettypes subroutine fails and the access control information for a file remains unchanged if one

or more of the following is true:

 EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the

process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path

parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see

the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOSPC The acl_type_list buffer provided is not enough to store all the ACL types supported

by this file system.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

If Network File System (NFS) is installed on your system, the acl_gettypes subroutine can also fail if the

following condition is true:

 ETIMEDOUT The connection timed out.

Security

Access Control: Caller must have search permission for all components of the Path prefix.

Auditing Events: None

Related Information

The aclget command, aclput command.

22 Technical Reference, Volume 1: Base Operating System and Extensions

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

aclx_print or aclx_printStr Subroutine

Purpose

Converts the binary access control information into nonbinary, readable format.

Library

Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_print (acl_file, acl, acl_sz, acl_type, fs_obj_path, flags)

FILE * acl_file;

void * acl;

size_t acl_sz;

acl_type_t acl_type;

char * fs_obj_path;

int32_t flags;

int aclx_printStr (str, str_sz, acl, acl_sz, acl_type, fs_obj_path, flags)

char * str;

size_t * str_sz;

void * acl;

size_t acl_sz;

acl_type_t acl_type;

char * fs_obj_path;

int32_t flags;

Description

The aclx_print and aclx_printStr subroutines print the access control information in a nonbinary, readable

text format. These subroutines take the ACL information in binary format as input, convert it into text

format, and print that text format output to either a file or a string. The aclx_print subroutine prints the

ACL text to the file specified by acl_file. The aclx_printStr subroutine prints the ACL text to str. The

amount of space available in str is specified in str_sz. If this memory is insufficient, the subroutine sets

str_sz to the needed amount of memory and returns an ENOSPC error.

Parameters

 acl_file Points to the file into which the textual output is printed.

str Points to the string into which the textual output should be printed.

str_sz Indicates the amount of memory in bytes available in str. If the text representation of acl

requires more space than str_sz, this subroutine updates the str_sz with the amount of

memory required and fails by setting errno to ENOSPC.

acl Points to a buffer which contains the binary ACL data that has to be printed. The size of

this buffer is indicated by the acl_sz parameter.

acl_sz Indicates the size of the buffer area passed through the acl parameter.

acl_type Indicates the ACL type information of the acl. The ACL type is 64 bits in size and is

unique on the system. If the given ACL type is not supported in the system, this function

fails and errno is set to EINVAL.

Base Operating System (BOS) Runtime Services (A-P) 23

fs_obj_path File System Object Path for which the ACL data format and print are being requested.

Gets information about the object (such as whether the object is a file or directory, who

the owner is, and the associated group ID).

flags Allows for control over the print operation. A value of ACL_VERBOSE indicates whether

additional information has to be printed in text format in comments. This bit is set when

the aclget command is issued with the -v (verbose) option.

Return Values

On successful completion, the aclx_print and aclx_printStr subroutines return a value of 0. Otherwise, -1

is returned and the errno global variable is set to indicate the error.

Error Codes

The aclx_print subroutine fails if one or more of the following is true:

Note: The errors in the following list occur only because aclx_print calls the fprintf subroutine internally.

For more information about these errors, refer to the fprintf subroutine.

 EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the file specified by

the acl_file parameter, and the process would be delayed in the write operation.

EBADF The file descriptor underlying the file specified by the acl_file parameter is not a valid

file descriptor open for writing.

EFBIG An attempt was made to write to a file that exceeds the file size limit of this process

or the maximum file size. For more information, refer to the ulimit subroutine.

EINTR The write operation terminated because of a signal was received, and either no data

was transferred or a partial transfer was not reported.

EIO The process is a member of a background process group attempting to perform a

write to its controlling terminal, the TOSTOP flag is set, the process is neither ignoring

nor blocking the SIGTTOU signal, and the process group of the process has no

parent process.

ENOSPC No free space remains on the device that contains the file.

ENOSPC Insufficient storage space is available.

ENXIO A request was made of a nonexistent device, or the request was outside the

capabilities of the device.

EPIPE An attempt was made to write to a pipe or first-in-first-out (FIFO) that is not open for

reading by any process. A SIGPIPE signal is sent to the process.

The aclx_printStr subroutine fails if the following is true:

 ENOSPC Input buffer size strSz is not sufficient to store the text representation of acl in str.

ENOSPC Insufficient storage space is available. This error is returned by sprintf, which is called by the

aclx_printStr subroutine internally.

The aclx_print or aclx_printStr subroutine fails if the following is true:

 EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is specified as input

to this routine. This errno can also be returned if the acl is not of the type specified by acl_type.

Related Information

The “printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1079,

“aclx_scan or aclx_scanStr Subroutine” on page 27.

The aclget command, aclput command.

24 Technical Reference, Volume 1: Base Operating System and Extensions

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

aclx_put or aclx_fput Subroutine

Purpose

Stores the access control information for a file system object.

Library

Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_put (Path, ctl_flags, acl_type, acl, acl_sz, mode_info)

char * Path;

uint64_t ctl_flags;

acl_type_t acl_type;

void * acl;

size_t acl_sz;

mode_t mode_info;

int aclx_fput (FileDescriptor, ctl_flags, acl_type, acl, acl_sz, mode_info)

int FileDescriptor;

uint64_t ctl_flags;

acl_type_t acl_type;

void * acl;

size_t acl_sz;

mode_t mode_info;

Description

The aclx_put and aclx_fput subroutines store the access control information for a file system object in the

native ACL format. Native ACL format is the format as defined for the particular ACL type in the system.

These subroutines are advanced versions of the acl_put and acl_fput subroutines and should be used

instead of the older versions. The aclx_put and aclx_fput subroutines provide for more control for the

user to interact with the underlying file system directly.

A caller specifies the ACL type in the acl_type argument and passes the ACL information in the acl

argument. The acl_sz parameter indicates the size of the ACL data. The ctl_flags parameter is a bitmask

that allows for variation of aclx_put requests.

The value provided to these subroutines can be obtained by invoking aclx_get or aclx_fget subroutines to

copy or restore the access control information.

The aclx_put and aclx_fput subroutines can also be used to manage the special bits (such as SGID and

SUID) in the mode word associated with the file system object. For example, you can set the mode_info

value to any special bit mask (as in the mode word defined for the file system), and a request can be

made to set the same bits using the ctl_flags argument. Note that special privileges (such as root) might

be required to set these bits.

Parameters

 Path Specifies the path name of the file system object.

Base Operating System (BOS) Runtime Services (A-P) 25

FileDescriptor Specifies the file descriptor of an open file system object. This 64-bit sized bit mask

provides control over the ACL retrieval. These bits are divided as follows:

Lower 16 bits

System-wide (nonphysical file-system-specific) ACL control flags

32 bits Reserved.

Last 16 bits

Any physical file-system-defined options (that are specific to physical file system

ACL implementation).

ctl_flags Bit mask with the following system-wide flag values defined:

SET_MODE_S_BITS

Indicates that the mode_info value is set by the caller and the ACL put

operation needs to consider this value while completing the ACL put operation.

SET_ACL

Indicates that the acl argument points to valid ACL data that needs to be

considered while the ACL put operation is being performed.

Note: Both of the preceding values can be specified by the caller by ORing the two

masks.

acl_type Indicates the type of ACL to be associated with the file object. If the acl_type specified is

not among the ACL types supported for the file system, then an error is returned.

acl Points to a buffer where the ACL information exists. This ACL information is associated

with the file system object specified. The size of this buffer is indicated by the acl_sz

parameter.

acl_sz Indicates the size of the ACL information sent through the acl parameter.

mode_info This value indicates any mode word information that needs to be set for the file system

object in question as part of this ACL put operation. When mode bits are being altered by

specifying the SET_MODE_S_BITS flag (in ctl_flags) ACL put operation fails if the caller

does not have the required privileges.

Return Values

On successful completion, the aclx_put and aclx_fput subroutines return a value of 0. Otherwise, -1 is

returned and the errno global variable is set to indicate the error.

Error Codes

The aclx_put subroutine fails and the access control information for a file remains unchanged if one or

more of the following are true:

 EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the

process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path

parameter exceeded 1023 characters.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see

the ulimit subroutine).

ENOENT The Path parameter was null.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOTDIR A component of the Path prefix is not a directory.

ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

26 Technical Reference, Volume 1: Base Operating System and Extensions

The aclx_fput subroutine fails and the file permissions remain unchanged if the following is true:

 EBADF The FileDescriptor parameter is not a valid file descriptor.

The aclx_put or aclx_fput subroutine fails if one or more of the following is true:

 EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is specified as input

to this routine.

EIO An I/O error occurred during the operation.

EROFS The named file resides on a read-only file system.

If Network File System (NFS) is installed on your system, the acl_put and acl_fput subroutines can also

fail if the following condition is true:

 ETIMEDOUT The connection timed out.

Security

Access Control: The invoker must have search permission for all components of the Path prefix.

Auditing Events:

 Event Information

chacl Path-based event

fchacl FileDescriptor-based event

Related Information

The acl_chg (“acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_get (“acl_get or acl_fget

Subroutine” on page 10) subroutine, acl_set (“acl_set or acl_fset Subroutine” on page 14) subroutine,

chacl (“chacl or fchacl Subroutine” on page 142) subroutine, chmod (“chmod or fchmod Subroutine” on

page 146) subroutine, stat subroutine, statacl subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

aclx_scan or aclx_scanStr Subroutine

Purpose

Reads the access control information that is in nonbinary, readable text format, and converts it into ACL

type-specific native format binary ACL data.

Library

Security Library (libc.a)

Syntax

#include <sys/acl.h>

int aclx_scan (acl_file, acl, acl_sz, acl_type, err_file)

FILE * acl_file;

void * acl;

Base Operating System (BOS) Runtime Services (A-P) 27

size_t * acl_sz;

acl_type_t acl_type;

FILE * err_file;

int aclx_scanStr (str, acl, acl_sz, acl_type)

char * str;

void * acl;

size_t * acl_sz;

acl_type_t acl_type;

Description

The aclx_scan and aclx_scanStr subroutines read the access control information from the input given in

nonbinary, readable text format and return a binary ACL data in the ACL type-specific native format. The

aclx_scan subroutine provides the ACL data text in the file specified by acl_file. In the case of

aclx_scanStr, the ACL data text is provided in the string pointed to by str. When the err_file parameter is

not Null, it points to a file to which any error messages are written out by the aclx_scan subroutine in

case of syntax errors in the input ACL data. The errors can occur if the syntax of the input text data does

not adhere to the required ACL type-specific data specifications.

Parameters

 acl_file Points to the file from which the ACL text output is read.

str Points to the string from which the ACL text output is printed.

acl Points to a buffer in which the binary ACL data has to be stored. The amount of memory

available in this buffer is indicated by the acl_sz parameter.

acl_sz Indicates the amount of memory, in bytes, available in the acl parameter.

acl_type Indicates the ACL type information of the acl. The ACL type is 64 bits in size and is

unique on the system. If the given ACL type is not supported in the system, this function

fails and errno is set to EINVAL.

err_file File pointer to an error file. When this pointer is supplied, the subroutines write out any

errors in the syntax/composition of the ACL input data.

Return Values

On successful completion, the aclx_scan and aclx_scanStr subroutines return a value of 0. Otherwise, -1

is returned and the errno global variable is set to indicate the error.

Error Codes

The aclx_scan subroutine fails if one or more of the following is true:

Note: The errors in the following list occur only because aclx_scan calls the fscanf subroutine internally.

For more information about these errors, refer to the fscanf subroutine.

 EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the file specified by

the acl_file parameter, and the process would be delayed in the write operation.

EBADF The file descriptor underlying the file specified by the acl_file parameter is not a valid

file descriptor open for writing.

EINTR The write operation terminated because of a signal was received, and either no data

was transferred or a partial transfer was not reported.

EIO The process is a member of a background process group attempting to perform a

write to its controlling terminal, the TOSTOP flag is set, the process is neither ignoring

nor blocking the SIGTTOU signal, and the process group of the process has no

parent process.

ENOSPC Insufficient storage space is available.

28 Technical Reference, Volume 1: Base Operating System and Extensions

The aclx_scanStr subroutine fails if the following is true:

 ENOSPC Insufficient storage space is available. This error is returned by sscanf, which is called by

the aclx_scanStr subroutine internally.

The aclx_scan or aclx_scanStr subroutine fails if the following is true:

 EINVAL Invalid input parameter. The same error can be returned if an invalid acl_type is specified as input

to this routine. This errno can also be returned if the text ACL given in the input/file string is not of

the type specified by acl_type.

Related Information

The “aclx_print or aclx_printStr Subroutine” on page 23, fscanf Subroutine.

The aclget command, aclput command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

acos, acosf, or acosl Subroutine

Purpose

Computes the inverse cosine of a given value.

Syntax

#include <math.h>

float acosf (x)

float x;

long double acosl (x)

long double x;

double acos (x)

double x;

Description

The acosf, acosl, and acos subroutines compute the principal value of the arc cosine of the x parameter.

The value of x should be in the range [-1,1].

An application wishing to check for error situations should set the errno global variable to zero and call

fetestexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

Base Operating System (BOS) Runtime Services (A-P) 29

Return Values

Upon successful completion, these subroutines return the arc cosine of x, in the range [0, pi] radians.

For finite values of x not in the range [-1,1], a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is +1, 0 is returned.

If x is ±Inf, a domain error occurs, and a NaN is returned.

Related Information

The “acosh, acoshf, or acoshl Subroutine.”

math.h in AIX 5L Version 5.3 Files Reference.

acosh, acoshf, or acoshl Subroutine

Purpose

Computes the inverse hyperbolic cosine.

Syntax

#include <math.h>

float acoshf (x)

float x;

long double acoshl (X)

long double x;

double acosh (x)

double x;

Description

The acoshf, or acoshl subroutine computes the inverse hyperbolic cosine of the x parameter.

The acosh subroutine returns the hyperbolic arc cosine specified by the x parameter, in the range 1 to the

+HUGE_VAL value.

An application wishing to check for error situations should set errno to zero and call

fetestexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if the errno global variable

is nonzero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is

nonzero, an error has occurred.

Parameters

 x Specifies the value to be computed.

Return Values

Upon successful completion, the acoshf, or acoshl subroutine returns the inverse hyperbolic cosine of the

given argument.

For finite values of x < 1, a domain error occurs, and a NaN is returned.

30 Technical Reference, Volume 1: Base Operating System and Extensions

If x is NaN, a NaN is returned.

If x is +1, 0 is returned.

If x is +Inf, +Inf is returned.

If x is −Inf, a domain error occurs, and a NaN is returned.

Error Codes

The acosh subroutine returns NaNQ (not-a-number) and sets errno to EDOM if the x parameter is less

than the value of 1.

Related Information

math.h in AIX 5L Version 5.3 Files Reference.

addproj Subroutine

Purpose

Adds an API-based project definition to the kernel project registry.

Library

The libaacct.a library.

Syntax

<sys/aacct.h>

addproj(struct project *)

Description

The addproj subroutine defines the application-based project definition to the kernel repository. An

application can assign a project defined in this way using the proj_execve system call.

Projects that are added this way are marked as being specified by applications so that they do not overlap

with system administrator-specified projects defined using the projctl command. The PROJFLAG_API flag

is turned on in the structure project to indicate that the project definition was added by an application.

Projects added by a system administrator using the projctl command are flagged as being derived from

the local or LDAP-based project repositories by the PROJFLAGS_LDAP or PROJFLAGS_PDF flag. If one

of these flags is specified, the addproj subroutine fails with EPERM.

The getproj routine can be used to determine the origin of a loaded project.

The addproj validates the input project number to ensure that it is within the expected range of

0x00000001 - 0x00ffffff. It also validates that the project name is a POSIX compliant alphanumeric

character string. If any invalid input is found errno will be set to EINVAL and the addproj subroutine

returns -1.

Parameters

 project Points to a project structure that holds the definition of the project to be added.

Base Operating System (BOS) Runtime Services (A-P) 31

Security

Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT

capability to a user.

Return Values

 0 Success

-1 Failure

Error Codes

 EINVAL Invalid Project Name / Number or the passed pointer is NULL

EEXIST Project Definition exists

EPERM Permission Denied, not a privileged user

Related Information

The “addprojdb Subroutine,” “chprojattr Subroutine” on page 156, “getproj Subroutine” on page 409,

“getprojs Subroutine” on page 411, rmproj Subroutine.

addprojdb Subroutine

Purpose

Adds a project definition to the specified project database.

Library

The libaacct.a library.

Syntax

<sys/aacct.h>

addprojdb(void *handle, struct project *project, char *comment)

Description

The addprojdb subroutine appends the project definition stored in the struct project variable into the

project database named by the handle parameter. The project database must be initialized before calling

this subroutine. The projdballoc subroutine is provided for this purpose. This routine verifies whether the

supplied project definition already exists. If it does exist, the addprojdb subroutine sets errno to EEXIST

and returns -1.

The addprojdb subroutine validates the input project number to ensure that it is within the expected range

0x00000001 - 0x00ffffff and validates that the project name is a POSIX-compliant alphanumeric character

string. If any invalid input is found, the addprojdb subroutine sets errno to EINVAL and returns -1.

If the user does not have privilege to add an entry to project database, the addprojdb subroutine sets

errno to EACCES and returns -1.

There is an internal state (that is, the current project) associated with the project database. When the

project database is initialized, the current project is the first project in the database. The addprojdb

subroutine appends the specified project to the end of the database. It advances the current project

assignment to the next project in the database, which is the end of the project data base. At this point, a

call to the getnextprojdb subroutine would fail, because there are no additional project definitions. To read

32 Technical Reference, Volume 1: Base Operating System and Extensions

the project definition that was just added, use the getprojdb subroutine. To read other projects, first call

getfirstprojdb subroutine to reset the internal current project assignment so that subsequent reads can be

performed.

The format of the records added to the project database are given as follows:

ProjectName:ProjectNumber:AggregationStatus:Comment::

Example:

Biology:4756:no:Project Created by projctl command::

Parameters

 handle Pointer to project database handle

project Pointer to a project structure that holds the definition of the project to be added

comment Pointer to a character string that holds the comments about the project

Security

Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT

capability to a user.

Return Values

 0 Success

-1 Failure

Error Codes

 EINVAL Invalid project name or number, or the passed pointer is NULL.

EEXIST Project definition already exists.

EPERM Permission denied. The user is not a privileged user.

Related Information

The “addproj Subroutine” on page 31, “chprojattrdb Subroutine” on page 157, “getfirstprojdb Subroutine”

on page 360, “getnextprojdb Subroutine” on page 387, “getprojdb Subroutine” on page 410, “projdballoc

Subroutine” on page 1089, “projdbfinit Subroutine” on page 1090, “projdbfree Subroutine” on page 1091,

rmprojdb Subroutine.

addssys Subroutine

Purpose

Adds the SRCsubsys record to the subsystem object class.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>

#include <spc.h>

Base Operating System (BOS) Runtime Services (A-P) 33

int addssys (SRCSubsystem)

struct SRCsubsys *SRCSubsystem;

Description

The addssys subroutine adds a record to the subsystem object class. You must call the defssys

subroutine to initialize the SRCSubsystem buffer before your application program uses the SRCsubsys

structure. The SRCsubsys structure is defined in the /usr/include/sys/srcobj.h file.

The executable running with this subroutine must be running with the group system.

Parameters

 SRCSubsystem A pointer to the SRCsubsys structure.

Return Values

Upon successful completion, the addssys subroutine returns a value of 0. Otherwise, it returns a value of

-1 and the odmerrno variable is set to indicate the error, or an SRC error code is returned.

Error Codes

The addssys subroutine fails if one or more of the following are true:

 SRC_BADFSIG Invalid stop force signal.

SRC_BADNSIG Invalid stop normal signal.

SRC_CMDARG2BIG Command arguments too long.

SRC_GRPNAM2BIG Group name too long.

SRC_NOCONTACT Contact not signal, sockets, or message queue.

SRC_NONAME No subsystem name specified.

SRC_NOPATH No subsystem path specified.

SRC_PATH2BIG Subsystem path too long.

SRC_STDERR2BIG stderr path too long.

SRC_STDIN2BIG stdin path too long.

SRC_STDOUT2BIG stdout path too long.

SRC_SUBEXIST New subsystem name already on file.

SRC_SUBSYS2BIG Subsystem name too long.

SRC_SYNEXIST New subsystem synonym name already on file.

SRC_SYN2BIG Synonym name too long.

Security

Privilege Control: This command has the Trusted Path attribute. It has the following kernel privilege:

 SET_PROC_AUDIT

Files Accessed:

 Mode File

644 /etc/objrepos/SRCsubsys

Auditing Events:

If the auditing subsystem has been properly configured and is enabled, the addssys subroutine generates

the following audit record (event) each time the subroutine is executed:

34 Technical Reference, Volume 1: Base Operating System and Extensions

Event Information

SRC_addssys Lists the SRCsubsys records added.

See ″Setting Up Auditing″ in AIX 5L Version 5.3 Security Guide for details about selecting and grouping

audit events, and configuring audit event data collection.

Files

 /etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

/usr/include/spc.h Defines external interfaces provided by the SRC subroutines.

/usr/include/sys/srcobj.h Defines object structures used by the SRC.

Related Information

The chssys (“chssys Subroutine” on page 160) subroutine, defssys (“defssys Subroutine” on page 206)

subroutine, delssys (“delssys Subroutine” on page 207) subroutine.

The auditpr command, chssys command, mkssys command, rmssys command.

Auditing Overview (“audit Subroutine” on page 96) and System Resource Controller Overview in AIX 5L

Version 5.3 System Management Concepts: Operating System and Devices.

Defining Your Subsystem to the SRC, System Resource Controller (SRC) Overview for Programmers in

AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

List of SRC Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

adjtime Subroutine

Purpose

Corrects the time to allow synchronization of the system clock.

Library

Standard C Library (libc.a)

Syntax

#include <sys/time.h>

int adjtime (Delta, Olddelta)

struct timeval *Delta;

struct timeval *Olddelta;

Description

The adjtime subroutine makes small adjustments to the system time, as returned by the gettimeofday

subroutine, advancing or retarding it by the time specified by the Delta parameter of the timeval structure.

If the Delta parameter is negative, the clock is slowed down by periodically subtracting a small amount

from it until the correction is complete. If the Delta parameter is positive, a small amount is periodically

added to the clock until the correction is complete. The skew used to perform the correction is generally

ten percent. If the clock is sampled frequently enough, an application program can see time apparently

jump backwards. For information on a way to avoid this, see “gettimeofday, settimeofday, or ftime

Base Operating System (BOS) Runtime Services (A-P) 35

Subroutine” on page 436. A time correction from an earlier call to the adjtime subroutine may not be

finished when the adjtime subroutine is called again. If the Olddelta parameter is nonzero, then the

structure pointed to will contain, upon return, the number of microseconds still to be corrected from the

earlier call.

This call may be used by time servers that synchronize the clocks of computers in a local area network.

Such time servers would slow down the clocks of some machines and speed up the clocks of others to

bring them to the average network time.

The adjtime subroutine is restricted to the users with root user authority.

Parameters

 Delta Specifies the amount of time to be altered.

Olddelta Contains the number of microseconds still to be corrected from an earlier call.

Return Values

A return value of 0 indicates that the adjtime subroutine succeeded. A return value of -1 indicates than an

error occurred, and errno is set to indicate the error.

Error Codes

 The adjtime subroutine fails if the following are true:

EFAULT An argument address referenced invalid memory.

EPERM The process’s effective user ID does not have root user

authority.

agg_proc_stat, agg_lpar_stat, agg_arm_stat, or free_agg_list

Subroutine

Purpose

Aggregate advanced accounting data.

Library

The libaacct.a library.

Syntax

#define <sys/aacct.h>

int agg_arm_stat(tran_list, arm_list);

struct aacct_tran_rec *tran_list

struct agg_arm_stat **arm_list

int agg_proc_stat(sortcrit1, sortcrit2, sortcrit3, sortcrit4, tran_list, proc_list);

int sortcrit1, sortcrit2, sortcrit3, sortcrit4

struct aacct_tran_rec *tran_list

struct agg_proc_stat **proc_list

int agg_lpar_stat(l_type, *tran_list, l_list);

int l_type

struct aacct_tran_rec *tran_list

union agg_lpar_rec *l_list

void free_agg_list(list);

void *list

36 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The agg_proc_stat, agg_lpar_stat, and agg_arm_stat subroutines return a linked list of aggregated

transaction records for process, LPAR, and ARM, respectively.

The agg_proc_stat subroutine performs the process record aggregation based on the criterion values

passed as input parameters. The aggregated process transaction records are sorted based on the sorting

criteria values sortcrit1, sortcrit2, sortcrit3, and sortcrit4. These four can be one of the following values

defined in the sys/aacct.h file:

v CRIT_UID

v CRIT_GID

v CRIT_PROJ

v CRIT_CMD

v CRIT_NONE

The order of their usage determines the sorting order applied to the retrieved aggregated list of process

transaction records. For example, the sort criteria values of PROJ_GID, PROJ_PROJ, PROJ_UID,

PROJ_NONE first sorts the aggregated list on group IDs, which are further sorted based on project IDs,

followed by another level of sorting based on user IDs.

Some of the process transaction records (of type TRID_agg_proc) cannot be aggregated based on group

IDs and command names. For such records, agg_proc_stat returns an asterisk (*) character as the

command name and a value of -2 as the group ID. This indicates to the caller that these records cannot

be aggregated.

If the aggregation is not necessary on a specific criteria, agg_proc_stat returns a value of -1 in the

respective field. For example, if the aggregation is not necessary on the group ID (CRIT_GID), the

retrieved list of aggregation records has a value of -1 filled in the group ID fields.

The agg_lpar_stat retrieves an aggregated list of LPAR transaction records. Because there are several

types of LPAR transaction records, the caller must specify the type of LPAR transaction record that is to

be aggregated. The transaction record type can be one of the following values, defined in the sys/aacct.h

file:

v AGG_CPUMEM

v AGG_FILESYS

v AGG_NETIF

v AGG_DISK

v AGG_VTARGET

v AGG_VCLIENT

The agg_lpar_stat subroutine uses a union argument of type struct agg_lpar_rec. For this argument, the

caller must provide the address of the linked list to which the aggregated records should be returned.

The agg_arm_list retrieves an aggregated list of ARM transaction records from the list of transaction

records provided as input. The aggregated transaction records are returned to the caller through the

structure pointer of type struct agg_arm_stat.

The free_agg_list subroutine frees the memory allocated to the aggregated records returned by the

agg_proc_stat, agg_lpar_stat, or agg_arm_stat subroutine.

Parameters

 arm_list Pointer to the linked list of struct agg_arm_stat nodes to be returned.

Base Operating System (BOS) Runtime Services (A-P) 37

l_list Pointer to union agg_lpar_rec address to which the aggregated LPAR records are

returned.

l_type Integer value that represents the type of LPAR resource to be aggregated.

list Pointer to the aggregated list to be freed.

proc_list Pointer to the linked list of struct agg_proc_stat nodes to be returned.

sortcrit1, sortcrit2, sortcrit3,

sortcrit4

Integer values that represent the sorting criteria to be passed to agg_proc_stat.

tran_list Pointer to the input list of transaction records

Security

No restrictions. Any user can call this function.

Return Values

 0 The call to the subroutine was successful.

-1 The call to the subroutine failed.

Error Codes

 EINVAL The passed pointer is NULL.

ENOMEM Insufficient memory.

EPERM Permission denied. Unable to read the data file.

Related Information

The “buildproclist Subroutine” on page 123, “buildtranlist or freetranlist Subroutine” on page 124,

“getproclist, getlparlist, or getarmlist Subroutine” on page 405.

Understanding the Advanced Accounting Subsystem.

aio_cancel or aio_cancel64 Subroutine

The aio_cancel or aio_cancel64 subroutine includes information for the POSIX AIO aio_cancel

subroutine (as defined in the IEEE std 1003.1-2001), and the Legacy AIO aio_cancel subroutine.

POSIX AIO aio_cancel Subroutine

Purpose

Cancels one or more outstanding asynchronous I/O requests.

Library

Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_cancel (fildes, aiocbp)

int fildes;

struct aiocb *aiocbp;

38 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The aio_cancel subroutine cancels one or more asynchronous I/O requests currently outstanding against

the fildes parameter. The aiocbp parameter points to the asynchronous I/O control block for a particular

request to be canceled. If aiocbp is NULL, all outstanding cancelable asynchronous I/O requests against

fildes are canceled.

Normal asynchronous notification occurs for asynchronous I/O operations that are successfully canceled. If

there are requests that cannot be canceled, the normal asynchronous completion process takes place for

those requests when they are completed.

For requested operations that are successfully canceled, the associated error status is set to

ECANCELED, and a -1 is returned. For requested operations that are not successfully canceled, the

aiocbp parameter is not modified by the aio_cancel subroutine.

If aiocbp is not NULL, and if fildes does not have the same value as the file descriptor with which the

asynchronous operation was initiated, unspecified results occur.

The implementation of the subroutine defines which operations are cancelable.

Parameters

 fildes Identifies the object to which the outstanding asynchronous I/O requests were originally queued.

aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_reqprio

struct sigevent aio_sigevent

int aio_lio_opcode

Execution Environment

The aio_cancel and aio_cancel64 subroutines can be called from the process environment only.

Return Values

The aio_cancel subroutine returns AIO_CANCELED to the calling process if the requested operation(s)

were canceled. AIO_NOTCANCELED is returned if at least one of the requested operations cannot be

canceled because it is in progress. In this case, the state of the other operations, referenced in the call to

aio_cancel is not indicated by the return value of aio_cancel. The application may determine the state of

affairs for these operations by using the aio_error subroutine. AIO_ALLDONE is returned if all of the

operations are completed. Otherwise, the subroutine returns -1 and sets the errno global variable to

indicate the error.

Error Codes

 EBADF The fildes parameter is not a valid file descriptor.

Related Information

“aio_error or aio_error64 Subroutine” on page 42, “aio_nwait Subroutine” on page 46, “aio_nwait_timeout

Subroutine” on page 48, “aio_read or aio_read64 Subroutine” on page 50, “aio_return or aio_return64

Base Operating System (BOS) Runtime Services (A-P) 39

Subroutine” on page 54, “aio_suspend or aio_suspend64 Subroutine” on page 57, “aio_write or

aio_write64 Subroutine” on page 60, and “lio_listio or lio_listio64 Subroutine” on page 709.

The Asynchronous I/O Subsystem and Communications I/O Subsystem in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

The Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs describes the files, commands, and subroutines used for low-level, stream, terminal,

and asynchronous I/O interfaces.

Legacy AIO aio_cancel Subroutine

Purpose

Cancels one or more outstanding asynchronous I/O requests.

Library

Standard C Library (libc.a)

Syntax

#include <aio.h>

aio_cancel (FileDescriptor, aiocbp)

int FileDescriptor;

struct aiocb *aiocbp;

aio_cancel64 (FileDescriptor, aiocbp)

int FileDescriptor;

struct aiocb64 *aiocbp;

Description

The aio_cancel subroutine attempts to cancel one or more outstanding asynchronous I/O requests issued

on the file associated with the FileDescriptor parameter. If the pointer to the aio control block (aiocb)

structure (the aiocbp parameter) is not null, then an attempt is made to cancel the I/O request associated

with this aiocb. The aiocbp parameter used by the thread calling aix_cancel must have had its request

initiated by this same thread. Otherwise, a -1 is returned and errno is set to EINVAL. However, if the

aiocbp parameter is null, then an attempt is made to cancel all outstanding asynchronous I/O requests

associated with the FileDescriptor parameter without regard to the initiating thread.

The aio_cancel64 subroutine is similar to the aio_cancel subroutine except that it attempts to cancel

outstanding large file enabled asynchronous I/O requests. Large file enabled asynchronous I/O requests

make use of the aiocb64 structure instead of the aiocb structure. The aiocb64 structure allows

asynchronous I/O requests to specify offsets in excess of OFF_MAX (2 gigbytes minus 1).

In the large file enabled programming environment, aio_cancel is redefined to be aio_cancel64.

When an I/O request is canceled, the aio_error (“aio_error or aio_error64 Subroutine” on page 42)

subroutine called with the handle to the corresponding aiocb structure returns ECANCELED.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio

application with the Legacy AIO function definitions. The default compile using the aio.h file is for

an application with the POSIX AIO definitions. In the source file enter:

#define _AIO_AIX_SOURCE

#include <sys/aio.h>

40 Technical Reference, Volume 1: Base Operating System and Extensions

or, on the command line when compiling enter:

->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Parameters

 FileDescriptor Identifies the object to which the outstanding asynchronous I/O requests were originally queued.

aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_whence

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_reqprio

struct event aio_event

struct osigevent aio_event

int aio_flag

aiohandle_t aio_handle

Execution Environment

The aio_cancel and aio_cancel64 subroutines can be called from the process environment only.

Return Values

 AIO_CANCELED Indicates that all of the asynchronous I/O requests were canceled successfully. The

aio_error subroutine call with the handle to the aiocb structure of the request will return

ECANCELED.

AIO_NOTCANCELED Indicates that the aio_cancel subroutine did not cancel one or more outstanding I/O

requests. This may happen if an I/O request is already in progress. The corresponding error

status of the I/O request is not modified.

AIO_ALLDONE Indicates that none of the I/O requests is in the queue or in progress.

-1 Indicates that the subroutine was not successful. Sets the errno global variable to identify

the error.

A return code can be set to the following errno value:

 EBADF Indicates that the FileDescriptor parameter is not valid.

Related Information

“aio_error or aio_error64 Subroutine” on page 42, “aio_nwait Subroutine” on page 46, “aio_nwait_timeout

Subroutine” on page 48, “aio_read or aio_read64 Subroutine” on page 50, “aio_return or aio_return64

Subroutine” on page 54, “aio_suspend or aio_suspend64 Subroutine” on page 57, and “aio_write or

aio_write64 Subroutine” on page 60, “lio_listio or lio_listio64 Subroutine” on page 709.

The Asynchronous I/O Subsystem and Communications I/O Subsystem in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

The Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs describes the files, commands, and subroutines used for low-level, stream, terminal,

and asynchronous I/O interfaces.

Base Operating System (BOS) Runtime Services (A-P) 41

aio_error or aio_error64 Subroutine

The aio_error or aio_error64 subroutine includes information for the POSIX AIO aio_error subroutine (as

defined in the IEEE std 1003.1-2001), and the Legacy AIO aio_error subroutine.

POSIX AIO aio_error Subroutine

Purpose

Retrieves error status for an asynchronous I/O operation.

Library

Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_error (aiocbp)

const struct aiocb *aiocbp;

Description

The aio_error subroutine returns the error status associated with the aiocb structure. This structure is

referenced by the aiocbp parameter. The error status for an asynchronous I/O operation is the

synchronous I/O errno value that would be set by the corresponding read, write, or fsync subroutine. If

the subroutine has not yet completed, the error status is equal to EINPROGRESS.

Parameters

 aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_reqprio

struct sigevent aio_sigevent

int aio_lio_opcode

Execution Environment

The aio_error and aio_error64 subroutines can be called from the process environment only.

Return Values

If the asynchronous I/O operation has completed successfully, the aio_error subroutine returns a 0. If

unsuccessful, the error status (as described for the read, write, and fsync subroutines) is returned. If the

asynchronous I/O operation has not yet completed, EINPROGRESS is returned.

Error Codes

 EINVAL The aiocbp parameter does not refer to an asynchronous operation whose return status has not yet

been retrieved.

42 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_fsync Subroutine” on page 44, “aio_nwait

Subroutine” on page 46, “aio_nwait_timeout Subroutine” on page 48, “aio_read or aio_read64 Subroutine”

on page 50, “aio_return or aio_return64 Subroutine” on page 54, “aio_write or aio_write64 Subroutine” on

page 60, “close Subroutine” on page 173, “exec: execl, execle, execlp, execv, execve, execvp, or exect

Subroutine” on page 232, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239, “fork, f_fork, or

vfork Subroutine” on page 284, “fsync or fsync_range Subroutine” on page 314, “lio_listio or lio_listio64

Subroutine” on page 709, and “lseek, llseek or lseek64 Subroutine” on page 751.

read, readx, readv, readvx, or pread Subroutine and write, writex, writev, writevx or pwrite Subroutines in

AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2.

Legacy AIO aio_error Subroutine

Purpose

Retrieves the error status of an asynchronous I/O request.

Library

Standard C Library (libc.a)

Syntax

#include <aio.h>

int

aio_error(handle)

aio_handle_t handle;

int aio_error64(handle)

aio_handle_t handle;

Description

The aio_error subroutine retrieves the error status of the asynchronous request associated with the

handle parameter. The error status is the errno value that would be set by the corresponding I/O

operation. The error status is EINPROG if the I/O operation is still in progress.

The aio_error64 subroutine is similar to the aio_error subroutine except that it retrieves the error status

associated with an aiocb64 control block.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio

application with the Legacy AIO function definitions. The default compile using the aio.h file is for

an application with the POSIX AIO definitions. In the source file enter:

#define _AIO_AIX_SOURCE

#include <sys/aio.h>

or, on the command line when compiling enter:

->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Parameters

 handle The handle field of an aio control block (aiocb or aiocb64) structure set by a previous call of the

aio_read, aio_read64, aio_write, aio_write64, lio_listio, aio_listio64 subroutine. If a random memory

location is passed in, random results are returned.

Base Operating System (BOS) Runtime Services (A-P) 43

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_whence

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_reqprio

struct event aio_event

struct osigevent aio_event

int aio_flag

aiohandle_t aio_handle

Execution Environment

The aio_error and aio_error64 subroutines can be called from the process environment only.

Return Values

 0 Indicates that the operation completed successfully.

ECANCELED Indicates that the I/O request was canceled due to an aio_cancel subroutine call.

EINPROG Indicates that the I/O request has not completed.

An errno value described in the aio_read (“aio_read or aio_read64 Subroutine” on page 50),

aio_write (“aio_write or aio_write64 Subroutine” on page 60), and lio_listio (“lio_listio or lio_listio64

Subroutine” on page 709) subroutines: Indicates that the operation was not queued successfully.

For example, if the aio_read subroutine is called with an unusable file descriptor, it (aio_read)

returns a value of -1 and sets the errno global variable to EBADF. A subsequent call of the

aio_error subroutine with the handle of the unsuccessful aio control block (aiocb) structure

returns EBADF.

An errno value of the corresponding I/O operation: Indicates that the operation was initiated

successfully, but the actual I/O operation was unsuccessful. For example, calling the aio_write

subroutine on a file located in a full file system returns a value of 0, which indicates the request

was queued successfully. However, when the I/O operation is complete (that is, when the aio_error

subroutine no longer returns EINPROG), the aio_error subroutine returns ENOSPC. This indicates

that the I/O was unsuccessful.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_read or aio_read64 Subroutine” on page 50,

“aio_nwait Subroutine” on page 46, “aio_nwait_timeout Subroutine” on page 48, “aio_return or

aio_return64 Subroutine” on page 54, “aio_suspend or aio_suspend64 Subroutine” on page 57, “aio_write

or aio_write64 Subroutine” on page 60, “lio_listio or lio_listio64 Subroutine” on page 709, and “lio_listio or

lio_listio64 Subroutine” on page 709.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in

AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for

low-level, stream, terminal, and asynchronous I/O interfaces.

aio_fsync Subroutine

Purpose

Synchronizes asynchronous files.

44 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_fsync (op, aiocbp)

int op;

struct aiocb *aiocbp;

Description

The aio_fsync subroutine asynchronously forces all I/O operations to the synchronized I/O completion

state. The function call returns when the synchronization request has been initiated or queued to the file or

device (even when the data cannot be synchronized immediately).

If the op parameter is set to O_DSYNC, all currently queued I/O operations are completed as if by a call to

the fdatasync subroutine. If the op parameter is set to O_SYNC, all currently queued I/O operations are

completed as if by a call to the fsync subroutine. If the aio_fsync subroutine fails, or if the operation

queued by aio_fsync fails, outstanding I/O operations are not guaranteed to be completed.

If aio_fsync succeeds, it is only the I/O that was queued at the time of the call to aio_fsync that is

guaranteed to be forced to the relevant completion state. The completion of subsequent I/O on the file

descriptor is not guaranteed to be completed in a synchronized fashion.

The aiocbp parameter refers to an asynchronous I/O control block. The aiocbp value can be used as an

argument to the aio_error and aio_return subroutines in order to determine the error status and return

status, respectively, of the asynchronous operation while it is proceeding. When the request is queued, the

error status for the operation is EINPROGRESS. When all data has been successfully transferred, the

error status is reset to reflect the success or failure of the operation. If the operation does not complete

successfully, the error status for the operation is set to indicate the error. The aio_sigevent member

determines the asynchronous notification to occur when all operations have achieved synchronized I/O

completion. All other members of the structure referenced by the aiocbp parameter are ignored. If the

control block referenced by aiocbp becomes an illegal address prior to asynchronous I/O completion, the

behavior is undefined.

If the aio_fsync subroutine fails or aiocbp indicates an error condition, data is not guaranteed to have

been successfully transferred.

Parameters

 op Determines the way all currently queued I/O operations are completed.

aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_reqprio

struct sigevent aio_sigevent

int aio_lio_opcode

Execution Environment

The aio_error and aio_error64 subroutines can be called from the process environment only.

Base Operating System (BOS) Runtime Services (A-P) 45

Return Values

The aio_fsync subroutine returns a 0 to the calling process if the I/O operation is successfully queued.

Otherwise, it returns a -1, and sets the errno global variable to indicate the error.

Error Codes

 EAGAIN The requested asynchronous operation was not queued due to temporary resource limitations.

EBADF The aio_fildes member of the aiocb structure referenced by the aiocbp parameter is not a valid

file descriptor open for writing.

In the event that any of the queued I/O operations fail, the aio_fsync subroutine returns the error condition

defined for the read and write subroutines. The error is returned in the error status for the asynchronous

fsync subroutine, which can be retrieved using the aio_error subroutine.

Related Information

“fcntl, dup, or dup2 Subroutine” on page 251, “fsync or fsync_range Subroutine” on page 314, and “open,

openx, open64, creat, or creat64 Subroutine” on page 894.

read, readx, readv, readvx, or pread Subroutine and write, writex, writev, writevx or pwrite Subroutines in

AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2.

aio_nwait Subroutine

Purpose

Suspends the calling process until a certain number of asynchronous I/O requests are completed.

Library

Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_nwait (cnt, nwait, list)

int cnt;

int nwait;

struct aiocb **list;

Description

Although the aio_nwait subroutine is included with POSIX AIO, it is not part of the standard definitions for

POSIX AIO.

The aio_nwait subroutine suspends the calling process until a certain number (nwait) of asynchronous I/O

requests are completed. These requests are initiated at an earlier time by the lio_listio subroutine, which

uses the LIO_NOWAIT_AIOWAIT cmd parameter. The aio_nwait subroutine fills in the aiocb pointers to

the completed requests in list and returns the number of valid entries in list. The cnt parameter is the

maximum number of aiocb pointers that list can hold (cnt >= nwait). The subroutine also returns when

less than nwait number of requests are done if there are no more pending aio requests.

Note: If the lio_listio64 subroutine is used, the aiocb structure changes to aiocb64.

Note: The aio control block’s errno field continues to have the value EINPROG until after the aio_nwait

subroutine is completed. The aio_nwait subroutine updates this field when the lio_listio subroutine

46 Technical Reference, Volume 1: Base Operating System and Extensions

has run with the LIO_NOWAIT_AIOWAIT cmd parameter. No utility, such as aio_error, can be used

to look at this value until after the aio_nwait subroutine is completed.

The aio_suspend subroutine returns after any one of the specified requests gets done. The aio_nwait

subroutine returns after a certain number (nwait or more) of requests are completed.

There are certain limitations associated with the aio_nwait subroutine, and a comparison between it and

the aio_suspend subroutine is necessary. The following table is a comparison of the two subroutines:

 aio_suspend: aio_nwait:

Requires users to build a list of control blocks, each

associated with an I/O operation they want to wait for.

Requires the user to provide an array to put aiocb address

information into. No specific aio control blocks need to be

known.

Returns when any one of the specified control blocks

indicates that the I/O associated with that control

block completed.

Returns when nwait amount of requests are done or no other

requests are to be processed.

The aio control blocks may be updated before the

subroutine is called. Other polling methods (such as

the aio_error subroutine) can also be used to view

the aio control blocks.

Updates the aio control blocks itself when it is called. Other

polling methods can’t be used until after the aio_nwait

subroutine is called enough times to cover all of the aio

requests specified with the lio_listio subroutine.

Is only used in accordance with the LIO_NOWAIT_AIOWAIT

command, which is one of the commands associated with the

lio_listio subroutine. If the lio_listio subroutine is not first

used with the LIO_NOWAIT_AIOWAIT command, aio_nwait

can not be called. The aio_nwait subroutine only affects those

requests called by one or more lio_listio calls for a specified

process.

Parameters

 cnt Specifies the number of entries in the list array.

nwait Specifies the minimal number of requests to wait on.

list An array of pointers to aio control structures defined in the aio.h file.

Return Values

The return value is the total number of requests the aio_nwait subroutine has waited on to complete. It

can not be more than cnt. Although nwait is the desired amount of requests to find, the actual amount

returned could be less than, equal to, or greater than nwait. The return value indicates how much of the

list array to access.

The return value may be greater than the nwait value if the lio_listio subroutine initiated more than nwait

requests and the cnt variable is larger than nwait. The nwait parameter represents a minimal value desired

for the return value, and cnt is the maximum value possible for the return.

The return value may be less than the nwait value if some of the requests initiated by the lio_listio

subroutine occur at a time of high activity, and there is a lack of resources available for the number of

requests. EAGAIN (error try again later) may be returned in some request’s aio control blocks, but these

requests will not be seen by the aio_nwait subroutine. In this situation aiocb addresses not found on the

list have to be accessed by using the aio_error subroutine after the aio_nwait subroutine is called. You

may need to increase the aio parameters max servers or max requests if this occurs. Increasing the

parameters will ensure that the system is well tuned, and an EAGAIN error is less likely to occur.

In the event of an error, the aio_nwait subroutine returns a value of -1 and sets the errno global variable

to identify the error. Return codes can be set to the following errno values:

Base Operating System (BOS) Runtime Services (A-P) 47

EBUSY An aio_nwait call is in process.

EINVAL The application has retrieved all of the aiocb pointers, but the user buffer does not have enough space

for them.

EINVAL There are no outstanding async I/O calls.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,

“aio_nwait_timeout Subroutine,” “aio_read or aio_read64 Subroutine” on page 50, “aio_return or

aio_return64 Subroutine” on page 54, “aio_suspend or aio_suspend64 Subroutine” on page 57, “aio_write

or aio_write64 Subroutine” on page 60, and “lio_listio or lio_listio64 Subroutine” on page 709.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in

AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for

low-level, stream, terminal, and asynchronous I/O interfaces.

aio_nwait_timeout Subroutine

Purpose

Extends the capabilities of the aio_nwait subroutine by specifying timeout values.

Library

Standard C library (libc.a).

Syntax

int aio_nwait_timeout (cnt, nwait, list, timeout)

int cnt;

int nwait;

struct aiocbp **list;

int timeout;

Description

The aio_nwait_timeout subroutine waits for a certain number of asynchronous I/O operations to complete

as specified by the nwait parameter, or until the call has blocked for a certain duration specified by the

timeout parameter.

Parameters

 cnt Indicates the maximum number of pointers to the aiocbp structure that can be copied into the list array.

list An array of pointers to aio control structures defined in the aio.h file.

nwait Specifies the number of asynchronous I/O operations that must complete before the aio_nwait_timout

subroutine returns.

48 Technical Reference, Volume 1: Base Operating System and Extensions

timeout Specified in units of milliseconds.

A timeout value of -1 indicates that the subroutine behaves like the aio_nwait subroutine, blocking until

all of the requested I/O operations complete or until there are no more asynchronous I/O requests

pending from the process.

A timeout value of 0 indicates that the subroutine returns immediately with the current completed number

of asynchronous I/O requests. All other positive timeout values indicate that the subroutine must block

until either the timeout value is reached or the requested number of asynchronous I/O operations

complete.

Return Values

The return value is the total number of requests the aio_nwait subroutine has waited on to complete. It

can not be more than cnt. Although nwait is the desired amount of requests to find, the actual amount

returned could be less than, equal to, or greater than nwait. The return value indicates how much of the

list array to access.

The return value may be greater than the nwait value if the lio_listio subroutine initiated more than nwait

requests and the cnt variable is larger than nwait. The nwait parameter represents a minimal value desired

for the return value, and cnt is the maximum value possible for the return.

The return value may be less than the nwait value if some of the requests initiated by the lio_listio

subroutine occur at a time of high activity, and there is a lack of resources available for the number of

requests. The EAGAIN return code (error try again later) might be returned in some request’s aio control

blocks, but these requests will not be seen by the aio_nwait subroutine. In this situation, theaiocb

structure addresses that are not found on the list must be accessed using the aio_error subroutine after

the aio_nwait subroutine is called. You might need to increase the aio parameters max servers or max

requests if this occurs. Increasing the parameters will ensure that the system is well tuned, and an

EAGAIN error is less likely to occur. The return value might be less than the nwait value due to the setting

of the new timeout parameter in the following cases:

v timeout > 0 and a timeout has occurred before nwait requests are done

v timeout = 0 and the current requests completed at the time of the aio_nwait_timeout call are less then

nwait parameter

In the event of an error, the aio_nwait subroutine returns a value of -1 and sets the errno global variable

to identify the error. Return codes can be set to the following errno values:

 EBUSY An aio_nwait call is in process.

EINVAL The application has retrieved all of the aiocb pointers, but the user buffer does not have enough space

for them.

EINVAL There are no outstanding async I/O calls.

Related Information

“aio_nwait Subroutine” on page 46, “aio_suspend or aio_suspend64 Subroutine” on page 57, “aio_cancel

or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42, “aio_read or

aio_read64 Subroutine” on page 50, “aio_return or aio_return64 Subroutine” on page 54, “aio_write or

aio_write64 Subroutine” on page 60, and “lio_listio or lio_listio64 Subroutine” on page 709.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in

AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for

low-level, stream, terminal, and asynchronous I/O interfaces.

Base Operating System (BOS) Runtime Services (A-P) 49

aio_read or aio_read64 Subroutine

The aio_read or aio_read64 subroutine includes information for the POSIX AIO aio_read subroutine (as

defined in the IEEE std 1003.1-2001), and the Legacy AIO aio_read subroutine.

POSIX AIO aio_read Subroutine

Purpose

Asynchronously reads a file.

Library

Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_read (aiocbp)

struct aiocb *aiocbp;

Description

The aio_read subroutine reads aio_nbytes from the file associated with aio_fildes into the buffer pointed to

by aio_buf. The subroutine returns when the read request has been initiated or queued to the file or device

(even when the data cannot be delivered immediately).

The aiocbp value may be used as an argument to the aio_error and aio_return subroutines in order to

determine the error status and return status, respectively, of the asynchronous operation while it is

proceeding. If an error condition is encountered during queuing, the function call returns without having

initiated or queued the request. The requested operation takes place at the absolute position in the file as

given by aio_offset , as if the lseek subroutine were called immediately prior to the operation with an offset

equal to aio_offset and a whence equal to SEEK_SET. After a successful call to enqueue an

asynchronous I/O operation, the value of the file offset for the file is unspecified.

The aio_lio_opcode field is ignored by the aio_read subroutine.

If prioritized I/O is supported for this file, the asynchronous operation is submitted at a priority equal to the

scheduling priority of the process minus aiocbp->aio_reqprio.

The aiocbp parameter points to an aiocb structure. If the buffer pointed to by aio_buf or the control block

pointed to by aiocbp becomes an illegal address prior to asynchronous I/O completion, the behavior is

undefined.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If synchronized I/O is enabled on the file associated with aio_fildes, the behavior of this subroutine is

according to the definitions of synchronized I/O data integrity completion and synchronized I/O file integrity

completion.

For any system action that changes the process memory space while an asynchronous I/O is outstanding,

the result of that action is undefined.

For regular files, no data transfer occurs past the offset maximum established in the open file description.

If you use the aio_read or aio_read64 subroutine with a file descriptor obtained from a call to the

shm_open subroutine, it will fail with EINVAL.

50 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_reqprio

struct sigevent aio_sigevent

int aio_lio_opcode

Execution Environment

The aio_read and aio_read64 subroutines can be called from the process environment only.

Return Values

The aio_read subroutine returns 0 to the calling process if the I/O operation is successfully queued.

Otherwise, it returns a -1 and sets the errno global variable to indicate the error.

Error Codes

 EAGAIN The requested asynchronous I/O operation was not queued due to system resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to the aio_read

subroutine, or asynchronously. If any of the conditions below are detected synchronously, the aio_read

subroutine returns -1 and sets the errno global variable to the corresponding value. If any of the

conditions below are detected asynchronously, the return status of the asynchronous operation is set to -1,

and the error status of the asynchronous operation is set to the corresponding value.

 EBADF The aio_fildes parameter is not a valid file descriptor open for reading.

EINVAL The file offset value implied by aio_offset is invalid, aio_reqprio is an invalid value, or aio_nbytes is

an invalid value. The aio_read or aio_read64 subroutine was used with a file descriptor obtained

from a call to the shm_open subroutine.

If the aio_read subroutine successfully queues the I/O operation but the operation is subsequently

canceled or encounters an error, the return status of the asynchronous operation is one of the values

normally returned by the read subroutine. In addition, the error status of the asynchronous operation is set

to one of the error statuses normally set by the read subroutine, or one of the following values:

 EBADF The aio_fildes argument is not a valid file descriptor open for reading.

ECANCELED The requested I/O was canceled before the I/O completed due to an explicit aio_cancel request.

EINVAL The file offset value implied by aio_offset is invalid.

The following condition may be detected synchronously or asynchronously:

 EOVERFLOW The file is a regular file, aio_nbytes is greater than 0, and the starting offset in aio_offset is before

the end-of-file and is at or beyond the offset maximum in the open file description associated with

aio_fildes.

Base Operating System (BOS) Runtime Services (A-P) 51

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,

“aio_nwait Subroutine” on page 46, “aio_nwait_timeout Subroutine” on page 48, “lio_listio or lio_listio64

Subroutine” on page 709, “aio_return or aio_return64 Subroutine” on page 54, “aio_suspend or

aio_suspend64 Subroutine” on page 57, “aio_write or aio_write64 Subroutine” on page 60, “close

Subroutine” on page 173, “exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on

page 232, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239, “fork, f_fork, or vfork Subroutine”

on page 284, and “lseek, llseek or lseek64 Subroutine” on page 751.

The read, readx, readv, readvx, or pread Subroutine in AIX 5L Version 5.3 Technical Reference: Base

Operating System and Extensions Volume 2.

Legacy AIO aio_read Subroutine

Purpose

Reads asynchronously from a file.

Library

Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_read(FileDescriptor, aiocbp)

int FileDescriptor;

struct aiocb *aiocbp;

int aio_read64(FileDescriptor, aiocbp)

int FileDescriptor;

struct aiocb64 *aiocbp;

Description

The aio_read subroutine reads asynchronously from a file. Specifically, the aio_read subroutine reads

from the file associated with the FileDescriptor parameter into a buffer.

The aio_read64 subroutine is similar to the aio_read subroutine execpt that it takes an aiocb64 reference

parameter. This allows the aio_read64 subroutine to specify offsets in excess of OFF_MAX (2 gigbytes

minus 1).

In the large file enabled programming environment, aio_read is redefined to be aio_read64 .

If you use the aio_read or aio_read64 subroutine with a file descriptor obtained from a call to the

shm_open subroutine, it will fail with EINVAL.

The details of the read are provided by information in the aiocb structure, which is pointed to by the

aiocbp parameter. This information includes the following fields:

 aio_buf Indicates the buffer to use.

aio_nbytes Indicates the number of bytes to read.

When the read request has been queued, the aio_read subroutine updates the file pointer specified by the

aio_whence and aio_offset fields in the aiocb structure as if the requested I/O were already completed. It

then returns to the calling program. The aio_whence and aio_offset fields have the same meaning as the

52 Technical Reference, Volume 1: Base Operating System and Extensions

whence and offset parameters in the lseek (“lseek, llseek or lseek64 Subroutine” on page 751) subroutine.

The subroutine ignores them for file objects that are not capable of seeking.

If an error occurs during the call, the read request is not queued. To determine the status of a request, use

the aio_error (“aio_error or aio_error64 Subroutine” on page 42) subroutine.

To have the calling process receive the SIGIO signal when the I/O operation completes, set the

AIO_SIGNAL bit in the aio_flag field in the aiocb structure.

Note: The event structure in the aiocb structure is currently not in use but is included for future

compatibility.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio

application with the Legacy AIO function definitions. The default compile using the aio.h file is for

an application with the POSIX AIO definitions. In the source file enter:

#define _AIO_AIX_SOURCE

#include <sys/aio.h>

or, on the command line when compiling enter:

->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Since prioritized I/O is not supported at this time, the aio_reqprio field of the structure is not presently

used.

Parameters

 FileDescriptor Identifies the object to be read as returned from a call to open.

aiocbp Points to the asynchronous I/O control block structure associated with the I/O operation.

aiocb Structure

The aiocb and the aiocb64 structures are defined in the aio.h file and contains the following members:

int aio_whence

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_reqprio

struct event aio_event

struct osigevent aio_event

int aio_flag

aiohandle_t aio_handle

Execution Environment

The aio_read and aio_read64 subroutines can be called from the process environment only.

Return Values

When the read request queues successfully, the aio_read subroutine returns a value of 0. Otherwise, it

returns a value of -1 and sets the global variable errno to identify the error.

Return codes can be set to the following errno values:

 EAGAIN Indicates that the system resources required to queue the request are not available. Specifically, the

transmit queue may be full, or the maximum number of opens may be reached.

EBADF Indicates that the FileDescriptor parameter is not valid.

EFAULT Indicates that the address specified by the aiocbp parameter is not valid.

Base Operating System (BOS) Runtime Services (A-P) 53

EINVAL Indicates that the aio_whence field does not have a valid value, or that the resulting pointer is not valid.

The aio_read or aio_read64 subroutine was used with a file descriptor obtained from a call to the

shm_open subroutine.

Note: Other error codes defined in the sys/errno.h file can be returned by aio_error if an error during the

I/O operation is encountered.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_nwait Subroutine” on page 46,

“aio_nwait_timeout Subroutine” on page 48, “aio_error or aio_error64 Subroutine” on page 42, “aio_return

or aio_return64 Subroutine,” “aio_suspend or aio_suspend64 Subroutine” on page 57, “aio_write or

aio_write64 Subroutine” on page 60, “lio_listio or lio_listio64 Subroutine” on page 709.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in

AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for

low-level, stream, terminal, and asynchronous I/O interfaces.

aio_return or aio_return64 Subroutine

The aio_return or aio_return64 subroutine includes information for the POSIX AIO aio_return subroutine

(as defined in the IEEE std 1003.1-2001), and the Legacy AIO aio_return subroutine.

POSIX AIO aio_return Subroutine

Purpose

Retrieves the return status of an asynchronous I/O operation.

Library

Standard C Library (libc.a)

Syntax

#include <aio.h>

size_t aio_return (aiocbp);

struct aiocb *aiocbp;

Description

The aio_return subroutine returns the return status associated with the aiocb structure. The return status

for an asynchronous I/O operation is the value that would be returned by the corresponding read, write, or

fsync subroutine call. If the error status for the operation is equal to EINPROGRESS, the return status for

the operation is undefined. The aio_return subroutine can be called once to retrieve the return status of a

given asynchronous operation. After that, if the same aiocb structure is used in a call to aio_return or

aio_error, an error may be returned. When the aiocb structure referred to by aiocbp is used to submit

another asynchronous operation, the aio_return subroutine can be successfully used to retrieve the return

status of that operation.

Parameters

 aiocbp Points to the aiocb structure associated with the I/O operation.

54 Technical Reference, Volume 1: Base Operating System and Extensions

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_reqprio

struct sigevent aio_sigevent

int aio_lio_opcode

Execution Environment

The aio_return and aio_return64 subroutines can be called from the process environment only.

Return Values

If the asynchronous I/O operation has completed, the return status (as described for the read, write, and

fsync subroutines) is returned. If the asynchronous I/O operation has not yet completed, the results of the

aio_return subroutine are undefined.

Error Codes

 EINVAL The aiocbp parameter does not refer to an asynchronous operation whose return status has not yet

been retrieved.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,

“aio_nwait Subroutine” on page 46, “aio_nwait_timeout Subroutine” on page 48, “aio_read or aio_read64

Subroutine” on page 50, “aio_suspend or aio_suspend64 Subroutine” on page 57, “aio_write or

aio_write64 Subroutine” on page 60, “close Subroutine” on page 173, “exec: execl, execle, execlp, execv,

execve, execvp, or exect Subroutine” on page 232, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on

page 239, “fork, f_fork, or vfork Subroutine” on page 284, “lio_listio or lio_listio64 Subroutine” on page 709,

and “lseek, llseek or lseek64 Subroutine” on page 751.

The read, readx, readv, readvx, or pread Subroutine in AIX 5L Version 5.3 Technical Reference: Base

Operating System and Extensions Volume 2.

Legacy AIO aio_return Subroutine

Purpose

Retrieves the return status of an asynchronous I/O request.

Library

Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_return(handle)

aio_handle_t handle;

int aio_return64(handle)

aio_handle_t handle;

Base Operating System (BOS) Runtime Services (A-P) 55

Description

The aio_return subroutine retrieves the return status of the asynchronous I/O request associated with the

aio_handle_t handle if the I/O request has completed. The status returned is the same as the status that

would be returned by the corresponding read or write function calls. If the I/O operation has not

completed, the returned status is undefined.

The aio_return64 subroutine is similar to the aio_return subroutine except that it retrieves the error status

associated with an aiocb64 control block.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio

application with the Legacy AIO function definitions. The default compile using the aio.h file is for

an application with the POSIX AIO definitions. In the source file enter:

#define _AIO_AIX_SOURCE

#include <sys/aio.h>

or, on the command line when compiling enter:

->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Parameters

 handle The handle field of an aio control block (aiocb or aiocb64) structure is set by a previous call of the

aio_read, aio_read64, aio_write, aio_write64, lio_listio, aio_listio64 subroutine. If a random memory

location is passed in, random results are returned.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_whence

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_reqprio

struct event aio_event

struct osigevent aio_event

int aio_flag

aiohandle_t aio_handle

Execution Environment

The aio_return and aio_return64 subroutines can be called from the process environment only.

Return Values

The aio_return subroutine returns the status of an asynchronous I/O request corresponding to those

returned by read or write functions. If the error status returned by the aio_error subroutine call is

EINPROG, the value returned by the aio_return subroutine is undefined.

Examples

An aio_read request to read 1000 bytes from a disk device eventually, when the aio_error subroutine

returns a 0, causes the aio_return subroutine to return 1000. An aio_read request to read 1000 bytes

from a 500 byte file eventually causes the aio_return subroutine to return 500. An aio_write request to

write to a read-only file system results in the aio_error subroutine eventually returning EROFS and the

aio_return subroutine returning a value of -1.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,

“aio_nwait Subroutine” on page 46, “aio_nwait_timeout Subroutine” on page 48, “aio_read or aio_read64

56 Technical Reference, Volume 1: Base Operating System and Extensions

Subroutine” on page 50, “aio_suspend or aio_suspend64 Subroutine,” “aio_write or aio_write64

Subroutine” on page 60, “close Subroutine” on page 173, “exec: execl, execle, execlp, execv, execve,

execvp, or exect Subroutine” on page 232, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239,

“fork, f_fork, or vfork Subroutine” on page 284, “lio_listio or lio_listio64 Subroutine” on page 709, and

“lseek, llseek or lseek64 Subroutine” on page 751.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in

AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for

low-level, stream, terminal, and asynchronous I/O interfaces.

aio_suspend or aio_suspend64 Subroutine

The aio_suspend subroutine includes information for the POSIX AIO aio_suspend subroutine (as defined

in the IEEE std 1003.1-2001), and the Legacy AIO aio_suspend subroutine.

POSIX AIO aio_suspend Subroutine

Purpose

Waits for an asynchronous I/O request.

Library

Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_suspend (list, nent,

 timeout)

const struct aiocb * const list[];

int nent;

const struct timespec *timeout;

Description

The aio_suspend subroutine suspends the calling thread until at least one of the asynchronous I/O

operations referenced by the list parameter has completed, until a signal interrupts the function, or, if

timeout is not NULL, until the time interval specified by timeout has passed. If any of the aiocb structures

in the list correspond to completed asynchronous I/O operations (the error status for the operation is not

equal to EINPROGRESS) at the time of the call, the subroutine returns without suspending the calling

thread. The list parameter is an array of pointers to asynchronous I/O control blocks. The nent parameter

indicates the number of elements in the array. Each aiocb structure pointed to has been used in initiating

an asynchronous I/O request through the aio_read, aio_write, or lio_listio subroutine. This array may

contain NULL pointers, which are ignored. If this array contains pointers that refer to aiocb structures that

have not been used in submitting asynchronous I/O, the effect is undefined.

If the time interval indicated in the timespec structure pointed to by timeout passes before any of the I/O

operations referenced by list are completed, the aio_suspend subroutine returns with an error. If the

Monotonic Clock option is supported, the clock that is used to measure this time interval is the

CLOCK_MONOTONIC clock.

Base Operating System (BOS) Runtime Services (A-P) 57

Parameters

 list Array of asynchronous I/O operations.

nent Indicates the number of elements in the list array.

timeout Specifies the time the subroutine has to complete the operation.

Execution Envrionment

The aio_suspend and aio_suspend64 subroutines can be called from the process environment only.

Return Values

If the aio_suspend subroutine returns after one or more asynchronous I/O operations have completed, it

returns a 0. Otherwise, it returns a -1 and sets the errno global variable to indicate the error.

The application can determine which asynchronous I/O completed by scanning the associated error and

returning status using the aio_error and aio_return subroutines, respectively.

Error Codes

 EAGAIN No asynchronous I/O indicated in the list referenced by list completed in the time interval indicated by

timeout.

EINTR A signal interrupted the aio_suspend subroutine. Since each asynchronous I/O operation may possibly

provoke a signal when it completes, this error return may be caused by the completion of one (or more)

of the very I/O operations being awaited.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,

“aio_nwait Subroutine” on page 46, “aio_nwait_timeout Subroutine” on page 48, “aio_read or aio_read64

Subroutine” on page 50, “aio_return or aio_return64 Subroutine” on page 54, “aio_write or aio_write64

Subroutine” on page 60, and “lio_listio or lio_listio64 Subroutine” on page 709.

Legacy AIO aio_suspend Subroutine

Purpose

Suspends the calling process until one or more asynchronous I/O requests is completed.

Library

Standard C Library (libc.a)

Syntax

#include <aio.h>

aio_suspend(count, aiocbpa)

int count;

struct aiocb *aiocbpa[];

aio_suspend64(count, aiocbpa)

int count;

struct aiocb64 *aiocbpa[];

58 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The aio_suspend subroutine suspends the calling process until one or more of the count parameter

asynchronous I/O requests are completed or a signal interrupts the subroutine. Specifically, the

aio_suspend subroutine handles requests associated with the aio control block (aiocb) structures

pointed to by the aiocbpa parameter.

The aio_suspend64 subroutine is similar to the aio_suspend subroutine except that it takes an array of

pointers to aiocb64 structures. This allows the aio_suspend64 subroutine to suspend on asynchronous

I/O requests submitted by either the aio_read64, aio_write64, or the lio_listio64 subroutines.

In the large file enabled programming environment, aio_suspend is redefined to be aio_suspend64.

The array of aiocb pointers may include null pointers, which will be ignored. If one of the I/O requests is

already completed at the time of the aio_suspend call, the call immediately returns.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio

application with the Legacy AIO function definitions. The default compile using the aio.h file is for

an application with the POSIX AIO definitions. In the source file enter:

#define _AIO_AIX_SOURCE

#include <sys/aio.h>

or, on the command line when compiling enter:

->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Parameters

 count Specifies the number of entries in the aiocbpa array.

aiocbpa Points to the aiocb or aiocb64 structures associated with the asynchronous I/O operations.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_whence

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_reqprio

struct event aio_event

struct osigevent aio_event

int aio_flag

aiohandle_t aio_handle

Execution Envrionment

The aio_suspend and aio_suspend64 subroutines can be called from the process environment only.

Return Values

If one or more of the I/O requests completes, the aio_suspend subroutine returns the index into the

aiocbpa array of one of the completed requests. The index of the first element in the aiocbpa array is 0. If

more than one request has completed, the return value can be the index of any of the completed requests.

In the event of an error, the aio_suspend subroutine returns a value of -1 and sets the errno global

variable to identify the error. Return codes can be set to the following errno values:

 EINTR Indicates that a signal or event interrupted the aio_suspend subroutine call.

EINVAL Indicates that the aio_whence field does not have a valid value or that the resulting pointer is not valid.

Base Operating System (BOS) Runtime Services (A-P) 59

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,

“aio_nwait Subroutine” on page 46, “aio_nwait_timeout Subroutine” on page 48, “aio_read or aio_read64

Subroutine” on page 50, “aio_return or aio_return64 Subroutine” on page 54, “aio_write or aio_write64

Subroutine,” and “lio_listio or lio_listio64 Subroutine” on page 709.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in

AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for

low-level, stream, terminal, and asynchronous I/O interfaces.

aio_write or aio_write64 Subroutine

The aio_write subroutine includes information for the POSIX AIO aio_write subroutine (as defined in the

IEEE std 1003.1-2001), and the Legacy AIO aio_write subroutine.

POSIX AIO aio_write Subroutine

Purpose

Asynchronously writes to a file.

Library

Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_write (aiocbp)

struct aiocb *aiocbp;

Description

The aio_write subroutine writes aio_nbytes to the file associated with aio_fildes from the buffer pointed to

by aio_buf. The subroutine returns when the write request has been initiated or queued to the file or

device.

The aiocbp parameter may be used as an argument to the aio_error and aio_return subroutines in order

to determine the error status and return status, respectively, of the asynchronous operation while it is

proceeding.

The aiocbp parameter points to an aiocb structure. If the buffer pointed to by aio_buf or the control block

pointed to by aiocbp becomes an illegal address prior to asynchronous I/O completion, the behavior is

undefined.

If O_APPEND is not set for the aio_fildes file descriptor, the requested operation takes place at the

absolute position in the file as given by aio_offset. This is done as if the lseek subroutine were called

immediately prior to the operation with an offset equal to aio_offset and a whence equal to SEEK_SET. If

O_APPEND is set for the file descriptor, write operations append to the file in the same order as the calls

were made. After a successful call to enqueue an asynchronous I/O operation, the value of the file offset

for the file is unspecified.

The aio_lio_opcode field is ignored by the aio_write subroutine.

60 Technical Reference, Volume 1: Base Operating System and Extensions

If prioritized I/O is supported for this file, the asynchronous operation is submitted at a priority equal to the

scheduling priority of the process minus aiocbp->aio_reqprio.

Simultaneous asynchronous operations using the same aiocbp produce undefined results.

If synchronized I/O is enabled on the file associated with aio_fildes, the behavior of this subroutine is

according to the definitions of synchronized I/O data integrity completion, and synchronized I/O file integrity

completion.

For any system action that changes the process memory space while an asynchronous I/O is outstanding,

the result of that action is undefined.

For regular files, no data transfer occurs past the offset maximum established in the open file description

associated with aio_fildes.

If you use the aio_write or aio_write64subroutine with a file descriptor obtained from a call to the

shm_open subroutine, it will fail with EINVAL.

Parameters

 aiocbp Points to the aiocb structure associated with the I/O operation.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_fildes

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_reqprio

struct sigevent aio_sigevent

int aio_lio_opcode

Execution Environment

The aio_write and aio_write64 subroutines can be called from the process environment only.

Return Values

The aio_write subroutine returns a 0 to the calling process if the I/O operation is successfully queued.

Otherwise, a -1 is returned and the errno global variable is set to indicate the error.

Error Codes

 EAGAIN The requested asynchronous I/O operation was not queued due to system resource limitations.

Each of the following conditions may be detected synchronously at the time of the call to aio_write, or

asynchronously. If any of the conditions below are detected synchronously, the aio_write subroutine

returns a -1 and sets the errno global variable to the corresponding value. If any of the conditions below

are detected asynchronously, the return status of the asynchronous operation is set to -1, and the error

status of the asynchronous operation is set to the corresponding value.

 EBADF The aio_fildes parameter is not a valid file descriptor open for writing.

EINVAL The file offset value implied by aio_offset is invalid, aio_reqprio is an invalid value, or aio_nbytes is

an invalid value. The aio_write or aio_write64 subroutine was used with a file descriptor obtained

from a call to the shm_open subroutine.

Base Operating System (BOS) Runtime Services (A-P) 61

If the aio_write subroutine successfully queues the I/O operation, the return status of the asynchronous

operation is one of the values normally returned by the write subroutine call. If the operation is

successfully queued but is subsequently canceled or encounters an error, the error status for the

asynchronous operation contains one of the values normally set by the write subroutine call, or one of the

following:

 EBADF The aio_fildes parameter is not a valid file descriptor open for writing.

EINVAL The file offset value implied by aio_offset would be invalid.

ECANCELED The requested I/O was canceled before the I/O completed due to an aio_cancel request.

The following condition may be detected synchronously or asynchronously:

 EFBIG The file is a regular file, aio_nbytes is greater than 0, and the starting offset in aio_offset is at or

beyond the offset maximum in the open file description associated with aio_fildes.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,

“aio_nwait Subroutine” on page 46, “aio_nwait_timeout Subroutine” on page 48, “lio_listio or lio_listio64

Subroutine” on page 709, “aio_read or aio_read64 Subroutine” on page 50, “aio_suspend or

aio_suspend64 Subroutine” on page 57, “aio_return or aio_return64 Subroutine” on page 54, “close

Subroutine” on page 173, “exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on

page 232, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239, “fork, f_fork, or vfork Subroutine”

on page 284, and “lseek, llseek or lseek64 Subroutine” on page 751.

The read, readx, readv, readvx, or pread Subroutine in AIX 5L Version 5.3 Technical Reference: Base

Operating System and Extensions Volume 2.

Legacy AIO aio_write Subroutine

Purpose

Writes to a file asynchronously.

Library

Standard C Library (libc.a)

Syntax

#include <aio.h>

int aio_write(FileDescriptor, aiocbp)

int FileDescriptor;

struct aiocb *aiocbp;

int aio_write64(FileDescriptor, aiocbp)

int FileDescriptor;

struct aiocb64 *aiocbp;

Description

The aio_write subroutine writes asynchronously to a file. Specifically, the aio_write subroutine writes to

the file associated with the FileDescriptor parameter from a buffer. To handle this, the subroutine uses

information from the aio control block (aiocb) structure, which is pointed to by the aiocbp parameter. This

information includes the following fields:

62 Technical Reference, Volume 1: Base Operating System and Extensions

aio_buf Indicates the buffer to use.

aio_nbytes Indicates the number of bytes to write.

The aio_write64 subroutine is similar to the aio_write subroutine except that it takes an aiocb64

reference parameter. This allows the aio_write64 subroutine to specify offsets in excess of OFF_MAX (2

gigbytes minus 1).

In the large file enabled programming environment, aio_read is redefined to be aio_read64.

If you use the aio_write or aio_write64 subroutine with a file descriptor obtained from a call to the

shm_open subroutine, it will fail with EINVAL.

When the write request has been queued, the aio_write subroutine updates the file pointer specified by

the aio_whence and aio_offset fields in the aiocb structure as if the requested I/O completed. It then

returns to the calling program. The aio_whence and aio_offset fields have the same meaning as the

whence and offset parameters in the lseek (“lseek, llseek or lseek64 Subroutine” on page 751) subroutine.

The subroutine ignores them for file objects that are not capable of seeking.

If an error occurs during the call, the write request is not initiated or queued. To determine the status of a

request, use the aio_error (“aio_error or aio_error64 Subroutine” on page 42) subroutine.

To have the calling process receive the SIGIO signal when the I/O operation completes, set the

AIO_SIGNAL bit in the aio_flag field in the aiocb structure.

Note: The event structure in the aiocb structure is currently not in use but is included for future

compatibility.

Note: The _AIO_AIX_SOURCE macro used in aio.h must be defined when using aio.h to compile an aio

application with the Legacy AIO function definitions. The default compile using the aio.h file is for

an application with the POSIX AIO definitions. In the source file enter:

#define _AIO_AIX_SOURCE

#include <sys/aio.h>

or, on the command line when compiling enter:

->xlc ... -D_AIO_AIX_SOURCE ... legacy_aio_program.c

Since prioritized I/O is not supported at this time, the aio_reqprio field of the structure is not presently

used.

Parameters

 FileDescriptor Identifies the object to be written as returned from a call to open.

aiocbp Points to the asynchronous I/O control block structure associated with the I/O operation.

aiocb Structure

The aiocb structure is defined in the /usr/include/aio.h file and contains the following members:

int aio_whence

off_t aio_offset

char *aio_buf

size_t aio_nbytes

int aio_reqprio

struct event aio_event

struct osigevent aio_event

int aio_flag

aiohandle_t aio_handle

Base Operating System (BOS) Runtime Services (A-P) 63

Execution Environment

The aio_write and aio_write64 subroutines can be called from the process environment only.

Return Values

When the write request queues successfully, the aio_write subroutine returns a value of 0. Otherwise, it

returns a value of -1 and sets the errno global variable to identify the error.

Return codes can be set to the following errno values:

 EAGAIN Indicates that the system resources required to queue the request are not available. Specifically, the

transmit queue may be full, or the maximum number of opens may have been reached.

EBADF Indicates that the FileDescriptor parameter is not valid.

EFAULT Indicates that the address specified by the aiocbp parameter is not valid.

EINVAL Indicates that the aio_whence field does not have a valid value or that the resulting pointer is not

valid. The aio_write or aio_write64 subroutine was used with a file descriptor obtained from a call to

the shm_open subroutine.

Note: Other error codes defined in the /usr/include/sys/errno.h file may be returned by the aio_error

subroutine if an error during the I/O operation is encountered.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,

“aio_nwait Subroutine” on page 46, “aio_nwait_timeout Subroutine” on page 48, “aio_read or aio_read64

Subroutine” on page 50, “aio_return or aio_return64 Subroutine” on page 54, “aio_suspend or

aio_suspend64 Subroutine” on page 57, “lio_listio or lio_listio64 Subroutine” on page 709.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in

AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for

low-level, stream, terminal, and asynchronous I/O interfaces.

alloc, dealloc, print, read_data, read_regs, symbol_addrs, write_data,

and write_regs Subroutine

Purpose

Provide access to facilities needed by the pthread debug library and supplied by the debugger or

application.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int alloc (user, len, bufp)

pthdb_user_t user;

size_t len;

void **bufp;

int dealloc (user, buf)

pthdb_user_t user;

void *buf;

64 Technical Reference, Volume 1: Base Operating System and Extensions

int print (user, str)

pthdb_user_t user;

char *str;

int read_data (user, buf, addr, size)

pthdb_user_t user;

void *buf;

pthdb_addr_t addr;

int size;

int read_regs (user, tid, flags, context)

pthdb_user_t user;

tid_t tid;

unsigned long long flags;

struct context64 *context;

int symbol_addrs (user, symbols[],count)

pthdb_user_t user;

pthdb_symbol_t symbols[];

int count;

int write_data (user, buf, addr, size)

pthdb_user_t user;

void *buf;

pthdb_addr_t addr;

int size;

int write_regs (user, tid, flags, context)

pthdb_user_t user;

tid_t tid;

unsigned long long flags;

struct context64 *context;

Description

int alloc()

Allocates len bytes of memory and returns the address. If successful, 0 is returned; otherwise, a

nonzero number is returned. This call back function is always required.

int dealloc()

Takes a buffer and frees it. If successful, 0 is returned; otherwise, a nonzero number is returned.

This call back function is always required.

int print()

Prints the character string to the debugger’s stdout. If successful, 0 is returned; otherwise, a

nonzero number is returned. This call back is for debugging the library only. If you aren’t

debugging the pthread debug library, pass a NULL value for this call back.

int read_data()

Reads the requested number of bytes of data at the requested location from an active process or

core file and returns the data through a buffer. If successful, 0 is returned; otherwise, a nonzero

number is returned. This call back function is always required.

int read_regs()

Reads the context information of a debuggee kernel thread from an active process or from a core

file. The information should be formatted in context64 form for both a 32-bit and a 64-bit process.

If successful, 0 is returned; otherwise, a nonzero number is returned. This function is only required

when using the pthdb_pthread_context and pthdb_pthread_setcontext subroutines.

int symbol_addrs()

Resolves the address of symbols in the debuggee. The pthread debug library calls this subroutine

to get the address of known debug symbols. If the symbol has a name of NULL or ″″, set the

address to 0LL instead of doing a lookup or returning an error. If successful, 0 is returned;

otherwise, a nonzero number is returned. In introspective mode, when the

PTHDB_FLAG_SUSPEND flag is set, the application can use the pthread debug library by

passing NULL, or it can use one of its own.

Base Operating System (BOS) Runtime Services (A-P) 65

int write_data()

Writes the requested number of bytes of data to the requested location. The libpthdebug.a library

may use this to write data to the active process. If successful, 0 is returned; otherwise, a nonzero

number is returned. This call back function is required when the PTHDB_FLAG_HOLD flag is set

and when using the pthdb_pthread_setcontext subroutine.

int write_regs()

Writes requested context information to specified debuggee’s kernel thread id. If successful, 0 is

returned; otherwise, a nonzero number is returned. This subroutine is only required when using

the pthdb_pthread_setcontext subroutine.

Note: If the write_data and write_regs subroutines are NULL, the pthread debug library will not try to

write data or regs. If the pthdb_pthread_set_context subroutine is called when the write_data

and write_regs subroutines are NULL, PTHDB_NOTSUP is returned.

Parameters

 user User handle.

symbols Array of symbols.

count Number of symbols.

buf Buffer.

addr Address to be read from or wrote to.

size Size of the buffer.

flags Session flags, must accept PTHDB_FLAG_GPRS,

PTHDB_FLAG_SPRS, PTHDB_FLAG_FPRS, and

PTHDB_FLAG_REGS.

tid Thread id.

flags Flags that control which registers are read or wrote.

context Context structure.

len Length of buffer to be allocated or reallocated.

bufp Pointer to buffer.

str String to be printed.

Return Values

If successful, these subroutines return 0; otherwise they return a nonzero value.

Related Information

The “malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign

Subroutine” on page 764.

alloclmb Subroutine

Purpose

Allocates a contiguous block of contiguous real memory for exclusive use by the caller. The block of

memory reserved will be the size of a system LMB.

Syntax

#include <sys/dr.h>

int alloclmb(long long *laddr, int flags)

66 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The alloclmb() subroutine reserves an LMB sized block of contiguous real memory for exclusive use by

the caller. It returns the partition logical address of that memory in *laddr.

alloclmb() is only valid in an LPAR environment, and it fails (with ENOTSUP) if called in another

environment.

Only a privileged user should call alloclmb().

Parameters

 laddr On successful return, contains the logical address of the allocated LMB.

flags Must be 0.

Execution Environment

This alloclmb() interface should only be called from the process environment.

Return Values

 0 The LMB is successfully allocated.

Error Codes

 ENOTSUP LMB allocation not supported on this system.

EINVAL Invalid flags value.

EINVAL Not in the process environment.

ENOMEM A free LMB could not be made available.

Related Information

“freelmb Subroutine” on page 307

arm_end Subroutine

Purpose

The arm_end subroutine is used to mark the end of an application. This subroutine call must always be

called when a program that issued an arm_init (“arm_init Subroutine” on page 75) subroutine call

terminates. In the PTX® implementation of ARM, application data structures may persist after arm_end is

issued.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t ARM_API arm_end(arm_appl_id_t appl_id, /* application id

*/

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Base Operating System (BOS) Runtime Services (A-P) 67

Description

By calling the arm_end subroutine, an application program signals to the ARM library that it has ceased

issuing ARM subroutine calls for the application specified and that the library code can remove references

to the application. As far as the calling program is concerned, all references to transactions defined for the

named application can be removed as well.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Note that, in the PTX implementation of ARM, multiple processes can issue arm_init (“arm_init

Subroutine” on page 75) subroutine calls for a given application with the effect that multiple simultaneous

definitions of the application are effective. The ARM library code points all these definitions to a single

application structure in the ARM private shared memory area. A use-count keeps track of the number of

simultaneous definitions. Each time arm_init is issued for the application name, the counter is

incremented and each time the arm_end subroutine call is issued for the associated appl_id, the counter

is decremented. No call to arm_end is permitted to decrement the counter less than zero.

Only when the counter reaches zero is the application structure inactivated. As long as the counter is

non-zero, transactions defined for the application remain active and new transactions can be defined for

the application. It does not matter which process created the definition of the application.

This implementation was chosen because it makes perfect sense in a PTX environment. Any more

restrictive implementation would have increased memory use significantly and would be useless for PTX

monitoring purposes.

Parameters

appl_id

 The identifier is returned by an earlier call to arm_init, “arm_init Subroutine” on page 75. The PTX

implementation does not require that the arm_init subroutine call was issued by the same

program or process now issuing the arm_end subroutine call. However, each time the arm_end

subroutine call is issued against an appl_id, the use-count of the transaction structure is

decremented. When the count reaches zero, the application structure and all associated

transaction structures are marked as inactive. Subsequent arm_init calls can reactivate the

application structure but transaction structures formerly associated with the application are not

automatically activated. Each transaction must be reactivated through the arm_getid (“arm_getid

Subroutine” on page 71) subroutine call.

 The appl_id is used to look for an application structure. If none is found, no action is taken and the

function returns -1. If one is found, the use-count of the application structure is decremented. If

that makes the counter zero, the use-counts of all associated transaction structures are set to

zero. The total number of application structures that have been initialized for the calling process

but not ended is decremented. If this count reaches zero, access to the shared memory from the

process is released and the count of users of the shared memory area is decremented. If the

count of users of the shared memory segment reaches zero, the shared memory segment is

deleted.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

Return Values

If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned.

68 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

1109, arm_init (“arm_init Subroutine” on page 75) subroutine, arm_getid (“arm_getid Subroutine” on page

71) subroutine.

arm_end Dual Call Subroutine

Purpose

The arm_end subroutine is used to mark the end of an application. This subroutine call must always be

called when a program that issued an arm_init (“arm_init Dual Call Subroutine” on page 77) subroutine

call terminates. In the PTX implementation of ARM, application data structures may persist after arm_end

is issued. This may not be the case for the lower library implementation.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t ARM_API arm_end(arm_appl_id_t appl_id, /* application id

*/

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

By calling the arm_end subroutine, an application program signals to the ARM library that it has ceased

issuing ARM subroutine calls for the application specified and that the library code can remove references

to the application. As far as the calling program is concerned, all references to transactions defined for the

named application can be removed as well.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value of

zero, that return value is passed to the caller. If the value returned by the lower library is non-zero, the

return value is the one generated by the PTX library code.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Note that, in the PTX implementation of ARM, multiple processes can issue arm_init (“arm_init Dual Call

Subroutine” on page 77) subroutine calls for a given application with the effect that multiple simultaneous

definitions of the application are effective. The ARM library code points all these definitions to a single

application structure in the ARM private shared memory area. A use-count keeps track of the number of

simultaneous definitions. Each time arm_init is issued for the application name, the counter is

incremented and each time the arm_end subroutine call is issued for the associated appl_id, the counter

is decremented. No call to arm_end is permitted to decrement the counter less than zero.

Base Operating System (BOS) Runtime Services (A-P) 69

Only when the counter reaches zero is the application structure inactivated. As long as the counter is

non-zero, transactions defined for the application remain active and new transactions can be defined for

the application. It does not matter which process created the definition of the application.

This implementation was chosen because it makes perfect sense in a PTX environment. Any more

restrictive implementation would have increased memory use significantly and would be useless for PTX

monitoring purposes.

For the implementation of arm_end in the lower library, other restrictions may exist.

Parameters

appl_id

 The identifier returned by an earlier call to arm_init (“arm_init Dual Call Subroutine” on page 77).

The identifier is passed to the arm_end function of the lower library. If the lower library returns a

zero, a zero is returned to the caller. After the invocation of the lower library, the

PTX implementation attempts to translate the appl_id argument to its own identifier from the

cross-reference table created by arm_init (“arm_init Dual Call Subroutine” on page 77). If one can

be found, it is used for the PTX implementation; if no cross reference is found, the appl_id is used

as passed in. The PTX implementation does not require that the arm_init subroutine call was

issued by the same program or process now issuing the arm_end subroutine call. However, each

time the arm_end subroutine call is issued against an appl_id, the use-count of the transaction

structure is decremented. When the count reaches zero, the application structure and all

associated transaction structures are marked as inactive. Subsequent arm_init calls can reactivate

the application structure but transaction structures formerly associated with the application are not

automatically activated. Each transaction must be reactivated through the arm_getid (“arm_getid

Dual Call Subroutine” on page 73) subroutine call.

 In the PTX implementation, the appl_id (as retrieved from the cross-reference table) is used to

look for an application structure. If none is found, no action is taken and the PTX function is

considered to have failed. If one is found, the use-count of the application structure is

decremented. If that makes the counter zero, the use-counts of all associated transaction

structures are set to zero. The total number of application structures that have been initialized for

the calling process but not ended is decremented. If this count reaches zero, access to the shared

memory from the process is released and the count of users of the shared memory area is

decremented. If the count of users of the shared memory segment reaches zero, the shared

memory segment is deleted.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

Return Values

If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned. If the

call to the lower library was successful, a zero is returned. If the subroutine call to the lower library failed

but the PTX implementation didn’t fail, a zero is returned. If both implementations failed, a value less than

zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

70 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

v “arm_init Dual Call Subroutine” on page 77

v “arm_getid Dual Call Subroutine” on page 73

arm_getid Subroutine

Purpose

The arm_getid subroutine is used to register a transaction as belonging to an application and assign a

unique identifier to the application/transaction pair. In the PTX implementation of ARM, multiple instances

of a transaction within one application can’t be defined. A transaction must be registered before any ARM

measurements can begin.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_tran_id_t arm_getid(arm_appl_id_t appl_id, /* application handle

*/

 arm_ptr_t *tran_name, /* transaction name */

 arm_ptr_t *tran_detail, /* transaction additional info */

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

Each transaction needs to be defined by a unique name within an application. Transactions can be defined

so they best fit the application environment. For example, if a given environment has thousands of unique

transactions, it may be feasible to define groups of similar transactions to prevent data overload. In other

situations, you may want to use generated transaction names that reflect what data a transaction carries

along with the transaction type. For example, the type of SQL query could be analyzed to group customer

query transactions according to complexity, such as customer_simple, customer, customer_complex.

Whichever method is used to name transactions, in the PTX implementation of the ARM API,

measurements are always collected for each unique combination of:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Note that the use-count for a transaction structure is either one or zero. This ensures that as long as the

application structure is active, so are all transactions for which an arm_getid call was issued after the

application was activated by an arm_init (“arm_init Subroutine” on page 75) call. The transaction

use-count is reset to zero by the arm_end (“arm_end Subroutine” on page 67) call if this call causes the

application use-count to go to zero.

Note that the implementation of arm_getid doesn’t allow unique instances of a transaction to be defined.

The tran_id associated with a transaction is stored in the ARM shared memory area and will remain

constant throughout the life of the shared memory area. Consequently, subsequent executions of a

Base Operating System (BOS) Runtime Services (A-P) 71

program that defines one or more transactions under a given application will usually have the same

ID returned for the transactions each time. The same is true when different programs define the same

transaction within an application: As long as the shared memory area exists, they will all have the same

ID returned. This is done to minimize the use of memory for transaction definitions and because it makes

no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate transaction

names to pass on the arm_getid subroutine call.

Parameters

appl_id

 The identifier returned by an earlier call to arm_init (“arm_init Subroutine” on page 75). The PTX

implementation does not require that the arm_init subroutine call was issued by the same

program or process now issuing the arm_getid subroutine call. However, the number of issued

arm_init subroutine calls for the application name must exceed the number of issued arm_end

subroutine calls for this appl_id.

 The appl_id is used to look for an application structure. If one is not found or if the use-count of

the one found is zero, no action is taken and the function returns -1.

tran_name

 A unique transaction name. The name only needs to be unique within the appl_id. The maximum

length is 128 characters including the terminating zero. The argument is converted to a key by

removing all blanks and truncating the string to 32 characters, including a terminating zero. This

key is used to look for a transaction structure (that belongs to the application identified in the first

argument) in the library’s private shared memory area. If a transaction structure is found, its

use-count is set to one and the transaction ID stored in the structure is returned to the caller. If the

structure is not found, one is created and assigned the next free transaction ID, given a use-count

of one and added to the application’s linked list of transactions. The new assigned transaction ID

is returned to the caller.

 Up-to 64 bytes, including the terminating zero, of the tran_name parameter is saved as the

description of the SpmiCx context that represents the transaction in the Spmi hierarchy. The key

is used as the short name of the context.

tran_detail

 Can be passed in as NULL or some means of specifying a unique instance of the transaction. In

the PTX implementation of the ARM API, this parameter is ignored. Consequently, it is not

possible to define unique instances of a transaction. If specified as non-NULL, this parameter must

be a string not exceeding 128 bytes in length, including the terminating zero.

 For the implementation to take this argument in use, another context level would have to be

defined between the application context and the transaction context. This was deemed excessive.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

Return Values

If successful, the subroutine returns an tran_id application identifier. If the subroutine fails, a value less

than zero is returned. In compliance with the ARM API specifications, the error return value can be passed

to the arm_start (“arm_start Subroutine” on page 79) subroutine, which will cause arm_start to function

as a no-operation.

72 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

arm_init (“arm_init Subroutine” on page 75) subroutine, arm_end (“arm_end Subroutine” on page 67)

subroutine.

arm_getid Dual Call Subroutine

Purpose

The arm_getid subroutine is used to register a transaction as belonging to an application and assign a

unique identifier to the application/transaction pair. In the PTX implementation of ARM, multiple instances

of a transaction within one application can’t be defined. The lower library implementation of this subroutine

may provide support for instances of transactions. A transaction must be registered before any ARM

measurements can begin.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_tran_id_t arm_getid(arm_appl_id_t appl_id, /* application handle

*/

 arm_ptr_t *tran_name, /* transaction name */

 arm_ptr_t *tran_detail, /* transaction additional info */

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

Each transaction needs to be defined by a unique name within an application. Transactions can be defined

so they best fit the application environment. For example, if a given environment has thousands of unique

transactions, it may be feasible to define groups of similar transactions to prevent data overload. In other

situations, you may want to use generated transaction names that reflect what data a transaction carries

along with the transaction type. For example, the type of SQL query could be analyzed to group customer

query transactions according to complexity, such as customer_simple, customer, customer_complex.

Whichever method is used to name transactions, in the PTX implementation of the ARM API,

measurements are always collected for each unique combination of:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value

greater than zero, that return value is passed to the caller as the transaction ID. If the returned value from

the lower library is zero or negative, the return value is the one generated by the PTX library code.

Base Operating System (BOS) Runtime Services (A-P) 73

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Note that the use-count for a transaction structure is either one or zero. This ensures that as long as the

application structure is active, so are all transactions for which an arm_getid call was issued after the

application was activated by an arm_init (“arm_init Dual Call Subroutine” on page 77) call. The transaction

use-count is reset to zero by the arm_end (“arm_end Dual Call Subroutine” on page 69) call if this call

causes the application use-count to go to zero.

Note that the implementation of arm_getid doesn’t allow unique instances of a transaction to be defined.

The tran_id associated with a transaction is stored in the ARM shared memory area and will remain

constant throughout the life of the shared memory area. Consequently, subsequent executions of a

program that defines one or more transactions under a given application will usually have the same

ID returned for the transactions each time. The same is true when different programs define the same

transaction within an application: As long as the shared memory area exists, they will all have the same

ID returned. This is done to minimize the use of memory for transaction definitions and because it makes

no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate transaction

names to pass on the arm_getid subroutine call.

Regardless of the implementation restrictions of the PTX library, the lower library may or may not have its

own implementation restrictions.

Parameters

appl_id

 The identifier returned by an earlier call to arm_init (“arm_init Dual Call Subroutine” on page 77).

The identifier is passed to the arm_getid function of the lower library. If the lower library returns

an identifier greater than zero, that identifier is the one that’ll eventually be returned to the caller.

After the invocation of the lower library, the PTX implementation attempts to translate the appl_id

argument to its own identifier by consulting the cross-reference table created by arm_init. If one

can be found, it is used for the PTX implementation; if no cross reference is found, the appl_id is

used as passed in. The PTX implementation does not require that the arm_init subroutine call

was issued by the same program or process now issuing the arm_getid subroutine call. However,

the number of issued arm_init subroutine calls for the application name must exceed the number

of issued arm_end subroutine calls for this appl_id.

 In the PTX implementation, the appl_id (as retrieved from the cross-reference table) is used to

look for an application structure. If one is not found or if the use-count of the one found is zero,

the PTX implementation is considered to have failed and no action is taken by the PTX library.

tran_name

 A unique transaction name. The name only needs to be unique within the appl_id. The maximum

length is 128 characters including the terminating zero. In the PTX implementation, the argument

is converted to a key by removing all blanks and truncating the string to 32 characters, including a

terminating zero. This key is used to look for a transaction structure (that belongs to the

application identified in the first argument) in the library’s private shared memory area. If a

transaction structure is found, its use-count is set to one and the transaction ID stored in the

structure is saved. If the structure is not found, one is created and assigned the next free

transaction ID, given a use-count of one and added to the application’s linked list of transactions.

The new assigned transaction ID is saved. If the call to the lower library was successful, a

cross-reference is created from the lower library’s transaction ID to the PTX library’s transaction ID

for use by arm_start (“arm_start Dual Call Subroutine” on page 80).

74 Technical Reference, Volume 1: Base Operating System and Extensions

Up-to 64 bytes, including the terminating zero, of the tran_name parameter is saved as the

description of the SpmiCx context that represents the transaction in the Spmi hierarchy. The key

is used as the short name of the context.

tran_detail

 Can be passed in as NULL or some means of specifying a unique instance of the transaction. In

the PTX implementation of the ARM API, this parameter is ignored. Consequently, it is not

possible to define unique instances of a transaction. If specified as non-NULL, this parameter must

be a string not exceeding 128 bytes in length, including the terminating zero.

 For the implementation to take this argument in use, another context level would have to be

defined between the application context and the transaction context. This was deemed excessive.

 For the lower library implementation of this subroutine call, the tran_detail argument may have

significance. If so, it’s transparent to the PTX implementation.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.In the current API definition, the last three arguments are for future use and they

are ignored in the implementation.

Return Values

If successful, the subroutine returns an tran_id application identifier. If the subroutine fails, a value less

than zero is returned. In compliance with the ARM API specifications, the error return value can be passed

to the arm_start (“arm_start Dual Call Subroutine” on page 80) subroutine, which will cause arm_start to

function as a no-operation.

If the call to the lower library was successful, the tran_id transaction identifier returned is the one

assigned by the lower library. If the subroutine call to the lower library failed but the PTX implementation

didn’t fail, the tran_id returned is the one assigned by the PTX library. If both implementations fail, a value

less than zero is returned. In compliance with the ARM API specification, an error return value can be

passed to the arm_start (“arm_start Dual Call Subroutine” on page 80) subroutine, which will cause

arm_start to function as a no-operation.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

arm_init (“arm_init Dual Call Subroutine” on page 77) subroutine, arm_end (“arm_end Dual Call

Subroutine” on page 69) subroutine.

arm_init Subroutine

Purpose

The arm_init subroutine is used to define an application or a unique instance of an application to the ARM

library. In the PTX implementation of ARM, instances of applications can’t be defined. An application must

be defined before any other ARM subroutine is issued.

Base Operating System (BOS) Runtime Services (A-P) 75

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_appl_id_t arm_init(arm_ptr_t *appname, /* application name

*/

 arm_ptr_t *appl_user_id, /* Name of the application user */

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

Each application needs to be defined by a unique name. An application can be defined as loosely or as

rigidly as required. It may be defined as a single execution of one program, multiple (possibly

simultaneous) executions of one program, or multiple executions of multiple programs that together

constitute an application. Any one user of ARM may define the application so it best fits the measurement

granularity desired. Measurements are always collected for each unique combination of:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Note that the implementation of arm_init doesn’t allow unique instances of an application to be defined.

The appl_id associated with an application is stored in the ARM shared memory area and will remain

constant throughout the life of the shared memory area. Consequently, subsequent executions of a

program that defines one or more applications will usually have the same ID returned for the application

each time. The same is true when different programs define the same application: As long as the shared

memory area exists, they will all have the same ID returned. This is done to minimize the use of memory

for application definitions and because it makes no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate application

names to pass on the arm_init subroutine call.

Parameters

appname

A unique application name. The maximum length is 128 characters including the terminating zero.

The argument is converted to a key by removing all blanks and truncating the string to 32

characters, including a terminating zero. This key is used to look for an application structure in the

library’s private shared memory area. If a structure is found, its use-count is incremented and the

application ID stored in the structure is returned to the caller. If the structure is not found, one is

created, assigned the next free application ID and given a use-count of one. The new assigned

application ID is returned to the caller.

 Up-to 64 bytes, including the terminating zero, of the appname parameter is saved as the

description of the SpmiCx context that represents the application in the Spmi hierarchy. The key

is used as the short name of the context.

appl_user_id

 Can be passed in as NULL or some means of specifying a user ID for the application. This allows

the calling program to define unique instances of an application. In the PTX implementation of the

76 Technical Reference, Volume 1: Base Operating System and Extensions

ARM API, this parameter is ignored. Consequently, it is not possible to define unique instances of

an application. If specified as non-NULL, this parameter must be a string not exceeding 128 bytes

in length, including the terminating zero.

 For the implementation to take this argument in use, another context level would have to be

defined between the application context and the transaction context. This was deemed excessive.

flags, data, data_size

In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

Return Values

If successful, the subroutine returns an appl_id application identifier. If the subroutine fails, a value less

than zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

arm_init Dual Call Subroutine

Purpose

The arm_init subroutine is used to define an application or a unique instance of an application to the ARM

library. While, in the PTX implementation of ARM, instances of applications can’t be defined, the ARM

implementation in the lower library may permit this. An application must be defined before any other ARM

subroutine is issued.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_appl_id_t arm_init(arm_ptr_t *appname, /* application name

*/

 arm_ptr_t *appl_user_id, /* Name of the application user */

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

Each application needs to be defined by a unique name. An application can be defined as loosely or as

rigidly as required. It may be defined as a single execution of one program, multiple (possibly

simultaneous) executions of one program, or multiple executions of multiple programs that together

constitute an application. Any one user of ARM may define the application so it best fits the measurement

granularity desired. For the PTX implementation, measurements are always collected for each unique

combination of:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

Base Operating System (BOS) Runtime Services (A-P) 77

3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value

greater than zero, that return value is passed to the caller as the application ID. If the returned value from

the lower library is zero or negative, the return value is the one generated by the PTX library code.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Note that the implementation of arm_init doesn’t allow unique instances of an application to be defined.

The appl_id associated with an application is stored in the ARM shared memory area and will remain

constant throughout the life of the shared memory area. Consequently, subsequent executions of a

program that defines one or more applications will usually have the same ID returned for the application

each time. The same is true when different programs define the same application: As long as the shared

memory area exists, they will all have the same ID returned. This is done to minimize the use of memory

for application definitions and because it makes no difference from a PTX point of view.

If this is not acceptable from an application point of view, programs can dynamically generate application

names to pass on the arm_init subroutine call.

Regardless of the implementation restrictions of the PTX library, the lower library may or may not have its

own implementation restrictions.

Parameters

appname

 A unique application name. The maximum length is 128 characters including the terminating zero.

The PTX library code converts this value to a key by removing all blanks and truncating the string

to 32 characters, including a terminating zero. This key is used to look for an application structure

in the library’s private shared memory area. If a structure is found, its use-count is incremented

and the application ID stored in the structure is saved. If the structure is not found, one is created,

assigned the next free application ID and given a use-count of one. The new assigned application

ID is saved. If the call to the lower library was successful, a cross-reference is created from the

lower library’s application ID to the PTX library’s application ID for use by arm_getid (“arm_getid

Dual Call Subroutine” on page 73) and arm_end (“arm_end Dual Call Subroutine” on page 69).

 Up-to 64 bytes, including the terminating zero, of the appname parameter is saved as the

description of the SpmiCx context that represents the application in the Spmi hierarchy. The key

is used as the short name of the context.

appl_user_id

 Can be passed in as NULL or some means of specifying a user ID for the application. This allows

the calling program to define unique instances of an application. In the PTX implementation of the

ARM API, this parameter is ignored. Consequently, it is not possible to define unique instances of

an application. If specified as non-NULL, this parameter must be a string not exceeding 128 bytes

in length, including the terminating zero.

 For the PTX implementation to take this argument in use, another context level would have to be

defined between the application context and the transaction context. This was deemed excessive.

 For the lower library implementation of this subroutine call, the appl_user_id argument may have

significance. If so, it’s transparent to the PTX implementation.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

78 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

If the call to the lower library was successful, the subroutine returns an appl_id application identifier as

returned from the lower library. If the subroutine call to the lower library fails but the PTX implementation

doesn’t fail, the appl_id returned is the one assigned by the PTX library. If both implementations fail, a

value less than zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

arm_start Subroutine

Purpose

The arm_start subroutine is used to mark the beginning of the execution of a transaction. Measurement of

the transaction response time starts at the execution of this subroutine.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_start_handle_t arm_start(arm_tran_id_t tran_id, /* transaction name identifier

*/

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

Each arm_start subroutine call marks the beginning of another instance of a transaction within an

application. Multiple instances (simultaneous executions of the transaction) may exist. Control information

for the transaction instance is held until the execution of a matching arm_stop (“arm_stop Subroutine” on

page 82) subroutine call, at which time the elapsed time is calculated and used to update transaction

measurement metrics for the transaction. Metrics are accumulated for each unique combination of the

following three components:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Parameters

tran_id

 The identifier is returned by an earlier call to arm_getid, “arm_getid Subroutine” on page 71. The

PTX implementation does not require that the arm_getid subroutine call was issued by the same

Base Operating System (BOS) Runtime Services (A-P) 79

program or process now issuing the arm_start subroutine call. However, the transaction’s

application structure must be active, which means that the number of issued arm_init subroutine

calls for the application name must exceed the number of issued arm_end subroutine calls for the

application’s appl_id. If an application was inactivated by issuing a sufficient number of arm_end

calls, all transactions defined for that application will have their use_count set to zero. The count

remains zero (and the transaction inactive) until a new arm_getid subroutine is issued for the

transaction.

 The tran_id argument is used to look for a transaction structure. If one is not found or if the

use-count of the one found is zero, no action is taken and the function returns -1. If one is found,

a transaction instance structure (called a slot structure) is allocated, assigned the next free

instance ID, and updated with the start time of the transaction instance. The assigned instance ID

is returned to the caller.

 In compliance with the ARM API specifications, if the tran_id passed is one returned from a

previous arm_getid subroutine call that failed, the arm_start subroutine call functions as a

no-operation function. It will return a NULL start_handle, which can be passed to subsequent

arm_update (“arm_update Subroutine” on page 86) and arm_stop (“arm_stop Subroutine” on

page 82) subroutine calls with the effect that those calls are no-operation functions.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

Return Values

If successful, the subroutine returns a start_handle, which uniquely defines this transaction execution

instance. If the subroutine fails, a value less than zero is returned. In compliance with the ARM

API specifications, the error return value can be passed to the arm_update (“arm_update Subroutine” on

page 86) and arm_stop (“arm_stop Subroutine” on page 82) subroutines, which will cause those

subroutines to operate as no-operation functions.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

arm_init (“arm_init Subroutine” on page 75) subroutine, arm_getid (“arm_getid Subroutine” on page 71)

subroutine, arm_end (“arm_end Subroutine” on page 67) subroutine.

arm_start Dual Call Subroutine

Purpose

The arm_start subroutine is used to mark the beginning of the execution of a transaction. Measurement of

the transaction response time starts at the execution of this subroutine.

Library

ARM Library (libarm.a).

80 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include arm.h

arm_start_handle_t arm_start(arm_tran_id_t tran_id, /* transaction name identifier

*/

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

Each arm_start subroutine call marks the beginning of another instance of a transaction within an

application. Multiple instances (simultaneous executions of the transaction) may exist. Control information

for the transaction instance is held until the execution of a matching arm_stop (“arm_stop Dual Call

Subroutine” on page 84) subroutine call, at which time the elapsed time is calculated and used to update

transaction measurement metrics for the transaction. Metrics are accumulated for each unique combination

of the following three components:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value

greater than zero, that return value is passed to the caller as the start handle. If the value returned by the

lower library is zero or negative, the return value is the one generated by the PTX library code.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Parameters

tran_id

 The identifier is returned by an earlier call to arm_getid, “arm_getid Dual Call Subroutine” on page

73. The identifier is passed to the arm_start function of the lower library. If the lower library

returns an identifier greater than zero, that identifier is the one that’ll eventually be returned to the

caller. After the invocation of the lower library, the PTX implementation attempts to translate the

tran_id argument to its own identifier from the cross-reference table created by arm_getid. If one

can be found, it is used for the PTX implementation; if no cross reference is found, the tran_idis

used as passed in.The PTX implementation does not require that the arm_getid subroutine call

was issued by the same program or process now issuing the arm_start subroutine call. However,

the transaction’s application structure must be active, which means that the number of issued

arm_init subroutine calls for the application name must exceed the number of issued arm_end

subroutine calls for the application’s appl_id. If an application was inactivated by issuing a

sufficient number of arm_end calls, all transactions defined for that application will have their

use_count set to zero. The count remains zero (and the transaction inactive) until a new

arm_getid subroutine is issued for the transaction.

 In the PTX implementation, the tran_id (as retrieved from the cross-reference table) is used to look

for a transaction structure. If one is not found or if the use-count of the one found is zero, the PTX

implementation is considered to have failed and no action is taken by the PTX library. If one is

found, a transaction instance structure (called a slot structure) is allocated, assigned the next free

instance ID, and updated with the start time of the transaction instance. The assigned instance ID

is saved as the start_handle. If the call to the lower library was successful, a cross-reference is

created from the lower library’s start_handle to the PTX library’s start_handle for use by

arm_update (“arm_update Dual Call Subroutine” on page 87) and arm_stop (“arm_stop Dual Call

Subroutine” on page 84).

Base Operating System (BOS) Runtime Services (A-P) 81

In compliance with the ARM API specifications, if the tran_id passed is one returned from a

previous arm_getid subroutine call that failed, the arm_start subroutine call functions as a

no-operation function. It will return a NULL start_handle, which can be passed to subsequent

arm_update (“arm_update Dual Call Subroutine” on page 87) and arm_stop (“arm_stop Dual Call

Subroutine” on page 84) subroutine calls with the effect that those calls are no-operation functions.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.In the current API definition, the last three arguments are for future use and they

are ignored in the implementation.

Return Values

If successful, the subroutine returns a start_handle, which uniquely defines this transaction execution

instance. If the subroutine fails, a value less than zero is returned. In compliance with the ARM

API specifications, the error return value can be passed to the arm_update (“arm_update Dual Call

Subroutine” on page 87) and arm_stop (“arm_stop Dual Call Subroutine” on page 84) subroutines, which

will cause those subroutines to operate as no-operation functions.

If the call to the lower library was successful, the start_handle instance ID returned is the one assigned

by the lower library. If the subroutine call to the lower library failed but the PTX implementation didn’t fail,

the start_handle returned is the one assigned by the PTX library. If both implementations fail, a value less

than zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

arm_init (“arm_init Dual Call Subroutine” on page 77) subroutine, arm_getid (“arm_getid Dual Call

Subroutine” on page 73) subroutine, arm_end (“arm_end Dual Call Subroutine” on page 69) subroutine.

arm_stop Subroutine

Purpose

The arm_stop subroutine is used to mark the end of the execution of a transaction. Measurement of the

transaction response time completes at the execution of this subroutine.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t arm_stop(arm_start_handle_t arm_handle,

 const arm_status_t comp_status,

 arm_flag_t flags,

 arm_data_t * data,

 arm_data_sz_t data_size);

82 Technical Reference, Volume 1: Base Operating System and Extensions

Description

Each arm_stop subroutine call marks the end of an instance of a transaction within an application.

Multiple instances (simultaneous executions of the transaction) may exist. Control information for the

transaction instance is held from the execution of the arm_start (“arm_start Subroutine” on page 79)

subroutine call and until the execution of a matching arm_stop subroutine call, at which time the elapsed

time is calculated and used to update transaction measurement metrics for the transaction. Metrics are

accumulated for each unique combination of the following three components:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

Parameters

arm_handle

 The identifier is returned by an earlier call to arm_start, “arm_start Subroutine” on page 79. The

arm_handle argument is used to look for a slot structure created by the arm_start (“arm_start

Subroutine” on page 79) call, which returned this arm_handle. If one is not found, no action is

taken and the function returns -1. If one is found, a post structure is allocated and added to the

linked list of post structures used to pass data to the SpmiArmd daemon. The post structure is

updated with the start time from the slot structure, the path to the transaction context, and the stop

time of the transaction instance.

 In compliance with the ARM API specifications, if the start_handle passed is one returned from a

previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a

no-operation function, the arm_stop subroutine call executes as a no-operation function. It will

return a zero to indicate successful completion.

comp_status

 User supplied transaction completion code. The following codes are defined:

v ARM_GOOD - successful completion. Response time is calculated. The response time is

calculated as a fixed point value in milliseconds and saved in the metric resptime. In addition,

the weighted average response time is calculated as a floating point value using a variable

weight that defaults to 75%. The average response time is calculated as weight percent of the

previous value of the average plus (100 - weight) percent of the latest response time

observation. The value of weight can be changed from the SpmiArmd daemon’s configuration

file /etc/perf/SpmiArmd.cf. In addition, the maximum and minimum response time for this

transaction is updated, if required. Finally the count of successful transaction executions is

incremented.

v ARM_ABORT - transaction aborted. The aborted counter is incremented. No other updates

occur.

v ARM_FAILED - transaction failed. The failed counter is incremented. No other updates occur.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

Return Values

If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned.

Base Operating System (BOS) Runtime Services (A-P) 83

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

arm_init (“arm_init Subroutine” on page 75) subroutine, arm_getid (“arm_getid Subroutine” on page 71)

subroutine, arm_start (“arm_start Subroutine” on page 79) subroutine, arm_end (“arm_end Subroutine” on

page 67) subroutine.

arm_stop Dual Call Subroutine

Purpose

The arm_stop subroutine is used to mark the end of the execution of a transaction. Measurement of the

transaction response time completes at the execution of this subroutine.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t arm_stop(arm_start_handle_t arm_handle, /* unique transaction handle

*/

 const arm_status_t comp_status, /* Good=0, Abort=1, Failed=2 */

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

Each arm_stop subroutine call marks the end of an instance of a transaction within an application.

Multiple instances (simultaneous executions of the transaction) may exist. Control information for the

transaction instance is held from the execution of the arm_start (“arm_start Dual Call Subroutine” on page

80) subroutine call and until the execution of a matching arm_stop subroutine call, at which time the

elapsed time is calculated and used to update transaction measurement metrics for the transaction.

Metrics are accumulated for each unique combination of the following three components:

1. Hostname of the machine where the instrumented application executes.

2. Unique application name.

3. Unique transaction name.

Before the PTX implementation code is executed, the lower library is called. If this call returns a value of

zero, that return value is passed to the caller. If the value returned by the lower library is non-zero, the

return value is the one generated by the PTX library code.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product.

84 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

arm_handle

 The identifier is returned by an earlier call to arm_start, “arm_start Dual Call Subroutine” on page

80. The identifier is passed to the arm_stop function of the lower library. If the lower library

returns a zero return code, that return code is returned to the caller. After the invocation of the

lower library, the PTX implementation attempts to translate the arm_handleargument to its own

identifier from the cross-reference table created by arm_start. If one can be found, it is used for

the PTX implementation; if no cross reference is found, the arm_handle is used as passed in. The

PTX implementation uses the start_handle argument to look for the slot structure created by the

arm_start subroutine call. If one is found, a post structure is allocated and added to the linked list

of post structures used to pass data to the SpmiArmd daemon. The post structure is updated with

the start time from the slot structure, the path to the transaction context, and the stop time of the

transaction instance. If no slot structure was found, the PTX implementation is considered to have

failed.

 In compliance with the ARM API specifications, if the start_handle passed is one returned from a

previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a

no-operation function, the arm_stop subroutine call executes as a no-operation function. It will

return a zero to indicate successful completion.

comp_status

 User supplied transaction completion code. The following codes are defined:

v ARM_GOOD - successful completion. Response time is calculated. The response time is

calculated as a fixed point value in milliseconds and saved in the metric resptime. In addition,

the weighted average response time (in respavg) is calculated as a floating point value using a

variable weight, that defaults to 75%. The average response time is calculated as weight

percent of the previous value of the average plus (100 - weight) percent of the latest response

time observation. The value of weight can be changed from the SpmiArmd daemon’s

configuration file /etc/perf/SpmiArmd.cf. In addition, the maximum and minimum response time

for this transaction is updated, if required. Finally the count of successful transaction executions

is incremented.

v ARM_ABORT - transaction aborted. The aborted counter is incremented. No other updates

occur.

v ARM_FAILED - transaction failed. The failed counter is incremented. No other updates occur.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.In the current API definition, the last three arguments are for future use and they

are ignored in the implementation.

Return Values

If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned. If the

call to the lower library was successful, a zero is returned. If the subroutine call to the lower library failed

but the PTX implementation didn’t fail, a zero is returned. If both implementations failed, a value less than

zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Base Operating System (BOS) Runtime Services (A-P) 85

Related Information

arm_init (“arm_init Dual Call Subroutine” on page 77) subroutine, arm_getid (“arm_getid Dual Call

Subroutine” on page 73) subroutine, arm_start (“arm_start Dual Call Subroutine” on page 80) subroutine,

arm_end (“arm_end Dual Call Subroutine” on page 69) subroutine.

arm_update Subroutine

Purpose

The arm_update subroutine is used to collect information about a transaction’s progress. It is a

no-operation subroutine in the PTX implementation.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t arm_update(arm_start_handle_t arm_handle, /* unique transaction handle

*/

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

The arm_update subroutine is implemented as a no-operation in the PTX version of the ARM API. It is

intended to be used for providing status information for a long-running transaction. Because there’s no

feasible way to display such information in current PTX monitors, the subroutine is a NULL function.

 This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product. It is implemented as a NULL subroutine call.

Parameters

start_handle

 The identifier is returned by an earlier call to arm_start, “arm_start Subroutine” on page 79. The

start_handle argument is used to look for the slot structure created by the arm_start subroutine

call. If one is not found, no action is taken and the function returns -1. Otherwise a zero is

returned.

 In compliance with the ARM API specifications, if the start_handle passed is one returned from a

previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a

no-operation function, the arm_update subroutine call executes as a no-operation function. It will

return a zero to indicate successful completion.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.

Return Values

If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

86 Technical Reference, Volume 1: Base Operating System and Extensions

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

arm_init (“arm_init Subroutine” on page 75) subroutine, arm_getid (“arm_getid Subroutine” on page 71)

subroutine, arm_start (“arm_start Subroutine” on page 79) subroutine, arm_stop (“arm_stop Subroutine”

on page 82) subroutine, arm_end (“arm_end Subroutine” on page 67) subroutine.

arm_update Dual Call Subroutine

Purpose

The arm_update subroutine is used to collect information about a transaction’s progress. It is a

no-operation subroutine in the PTX implementation but may be fully implemented by the lower library.

Library

ARM Library (libarm.a).

Syntax

#include arm.h

arm_ret_stat_t arm_update(arm_start_handle_t arm_handle, /* unique transaction handle

*/

 arm_flag_t flags, /* Reserved = 0 */

 arm_data_t *data, /* Reserved = NULL */

 arm_data_sz_t data_size); /* Reserved = 0 */

Description

The arm_update subroutine is implemented as a no-operation in the PTX version of the ARM API. It is

intended to be used for providing status information for a long-running transaction. Because there’s no

feasible way to display such information in current PTX monitors, the subroutine is a NULL function.

The lower library implementation of the arm_update subroutine is always invoked.

This subroutine is part of the implementation of the ARM API in the Performance Toolbox for AIX licensed

product. It is implemented as a NULL subroutine call.

Parameters

start_handle

 The identifier is returned by an earlier call to arm_start, “arm_start Dual Call Subroutine” on page

80. The identifier is passed to the arm_update function of the lower library. If the lower library

returns a zero return code., that return code is returned to the caller. After the invocation of the

lower library, the PTX implementation attempts to translate the arm_handleargument to its own

identifier from the cross-reference table created by arm_start. If one can be found, it is used for

the PTX implementation; if no cross reference is found, the arm_handle is used as passed in. The

PTX implementation uses the start_handle argument to look for the slot structure created by the

arm_start subroutine call. If one is found the PTX implementation is considered to have

succeeded, otherwise it is considered to have failed.

Base Operating System (BOS) Runtime Services (A-P) 87

In compliance with the ARM API specifications, if the start_handle passed is one returned from a

previous arm_start subroutine call that failed, or from an arm_start subroutine operating as a

no-operation function, the arm_update subroutine call executes as a no-operation function. It will

return a zero to indicate successful completion.

flags, data, data_size

 In the current API definition, the last three arguments are for future use and they are ignored in the

implementation.In the current API definition, the last three arguments are for future use and they

are ignored in the implementation.

Return Values

If successful, the subroutine returns zero. If the subroutine fails, a value less than zero is returned. If the

call to the lower library was successful, a zero is returned. If the subroutine call to the lower library failed

but the PTX implementation didn’t fail, a zero is returned. If both implementations failed, a value less than

zero is returned.

Error Codes

No error codes are defined by the PTX implementation of the ARM API.

Files

 /usr/include/arm.h Declares the subroutines, data structures, handles, and macros that an

application program can use to access the ARM library.

Related Information

arm_init (“arm_init Dual Call Subroutine” on page 77) subroutine, arm_getid (“arm_getid Dual Call

Subroutine” on page 73) subroutine, arm_start (“arm_start Dual Call Subroutine” on page 80) subroutine,

arm_stop (“arm_stop Dual Call Subroutine” on page 84) subroutine, arm_end (“arm_end Dual Call

Subroutine” on page 69) subroutine.

asinh, asinhf, or asinhl Subroutine

Purpose

Computes the inverse hyperbolic sine.

Syntax

#include <math.h>

float asinhf (x)

float x;

long double asinhl (x)

long double x;

double asinh (x)

double x;

Description

The asinhf, asinhl, and asinh subroutines compute the inverse hyperbolic sine of thex parameter.

88 Technical Reference, Volume 1: Base Operating System and Extensions

An application wishing to check for error situations should set errno to zero and call

fetestexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if the errno global variable

is nonzero or fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is

nonzero, an error has occurred.

Parameters

 x Specifies the value to be computed.

Return Values

Upon successful completion, the asinhf, asinhl, and asinh subroutines return the inverse hyperbolic sine

of the given argument.

If x is NaN, a NaN is returned.

If x is 0, or ±Inf, x is returned.

If x is subnormal, a range error may occur and x will be returned.

Related Information

math.h in AIX 5L Version 5.3 Files Reference.

asinf, asinl, or asin Subroutine

Purpose

Computes the arc sine.

Syntax

#include <math.h>

float asinf (x)

float x;

long double asinl (x)

long double x;

double asin (x)

double x;

Description

The asinf, asinl, and asin subroutines compute the principal value of the arc sine of the x parameter. The

value of x should be in the range [-1,1].

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. On return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

Base Operating System (BOS) Runtime Services (A-P) 89

Return Values

Upon successful completion, the asinf, asinl, and asin subroutines return the arc sine of x, in the range

[-pi /2, pi/2] radians.

For finite values of x not in the range [-1,1], a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is 0, x is returned.

If x is ±Inf, a domain error occurs, and a NaN is returned.

If x is subnormal, a range error may occur and x is returned.

Related Information

The “asinh, asinhf, or asinhl Subroutine” on page 88.

math.h in AIX 5L Version 5.3 Files Reference.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

assert Macro

Purpose

Verifies a program assertion.

Library

Standard C Library (libc.a)

Syntax

#include <assert.h>

void assert (Expression)

int Expression;

Description

The assert macro puts error messages into a program. If the specified expression is false, the assert

macro writes the following message to standard error and stops the program:

Assertion failed: Expression, file FileName, line LineNumber

In the error message, the FileName value is the name of the source file and the LineNumber value is the

source line number of the assert statement.

Parameters

 Expression Specifies an expression that can be evaluated as true or false. This expression is evaluated in

the same manner as the C language IF statement.

90 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The abort (“abort Subroutine” on page 2) subroutine.

The cpp command.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

atan2f, atan2l, or atan2 Subroutine

Purpose

Computes the arc tangent.

Syntax

#include <math.h>

float atan2f (y, x)

float y, float x;

long double atan2l (y, x)

long double y, long double x;

double atan2 (y, x)

double y, x;

Description

The atan2f, atan2l, and atan2 subroutines compute the principal value of the arc tangent of y/x, using the

signs of both parameters to determine the quadrant of the return value.

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 y Specifies the value to compute.

x Specifies the value to compute.

Return Values

Upon successful completion, the atan2f, atan2l, and atan2 subroutines return the arc tangent of y/x in the

range [-pi, pi] radians.

If y is 0 and x is < 0, ±pi is returned.

If y is 0 and x is > 0, 0 is returned.

If y is < 0 and x is 0, -pi/2 is returned.

If y is > 0 and x is 0, pi/2 is returned.

If x is 0, a pole error does not occur.

Base Operating System (BOS) Runtime Services (A-P) 91

If either x or y is NaN, a NaN is returned.

If the result underflows, a range error may occur and y/x is returned.

If y is 0 and x is −0, ±x is returned.

If y is 0 and x is +0, 0 is returned.

For finite values of ±y >0, if x is −Inf, ±x is returned.

For finite values of ±y >0, if x is +Inf, 0 is returned.

For finite values of x, if y is ±Inf, ±x/2 is returned.

If y is ±Inf and x is -Inf, ±3pi/4 is returned.

If y is ±Inf and x is +Inf, ±pi/4 is returned.

If both arguments are 0, a domain error does not occur.

Related Information

math.h in AIX 5L Version 5.3 Files Reference.

atan, atanf, or atanl Subroutine

Purpose

Computes the arc tangent.

Syntax

#include <math.h>

float atanf (x)

float x;

long double atanl (x)

long double x;

double atan (x)

double x;

Description

The atanf, atanl, and atan subroutines compute the principal value of the arc tangent of the x parameter.

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

92 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, the atanf, atanl, and atan subroutines return the arc tangent of x in the

range [-pi /2, pi/2] radians.

If x is NaN, a NaN is returned.

If x is 0, x is returned.

If x is ±Inf, ±x/2 is returned.

If x is subnormal, a range error may occur and x is returned.

Related Information

The “atan2f, atan2l, or atan2 Subroutine” on page 91 and “atanh, atanhf, or atanhl Subroutine.”

math.h in AIX 5L Version 5.3 Files Reference.

atanh, atanhf, or atanhl Subroutine

Purpose

Computes the inverse hyperbolic tangent.

Syntax

#include <math.h>

float atanhf (x)

float x;

long double atanhl (x)

long double x;

double atanh (x)

double x;

Description

The atanhf, atanhl, and atanh subroutines compute the inverse hyperbolic tangent of the x parameter.

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

Return Values

Upon successful completion, the atanhf, atanhl, and atanh subroutines return the inverse hyperbolic

tangent of the given argument.

If x is ±1, a pole error occurs, and atanhf, atanhl , and atanh return the value of the macro HUGE_VALF,

HUGE_VALL, and HUGE_VAL respectively, with the same sign as the correct value of the function.

Base Operating System (BOS) Runtime Services (A-P) 93

For finite |x|>1, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is 0, x is returned.

If x is ±Inf, a domain error shall occur, and a NaN is returned.

If x is subnormal, a range error may occur and x is returned.

Error Codes

The atanhf, atanhl, and atanh subroutines return NaNQ and set errno to EDOM if the absolute value of x

is greater than 1.

Related Information

“exp, expf, or expl Subroutine” on page 241

math.h in AIX 5L Version 5.3 Files Reference.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

atof atoff Subroutine

Purpose

Converts an ASCII string to a floating-point or double floating-point number.

Libraries

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

double atof (NumberPointer)

const char *NumberPointer;

float atoff (NumberPointer)

char *NumberPointer;

Description

The atof subroutine converts a character string, pointed to by the NumberPointer parameter, to a

double-precision floating-point number. The atoff subroutine converts a character string, pointed to by the

NumberPointer parameter, to a single-precision floating-point number. The first unrecognized character

ends the conversion.

Except for behavior on error, the atof subroutine is equivalent to the strtod subroutine call, with the

EndPointer parameter set to (char**) NULL.

Except for behavior on error, the atoff subroutine is equivalent to the strtof subroutine call, with the

EndPointer parameter set to (char**) NULL.

These subroutines recognize a character string when the characters are in one of two formats: numbers or

numeric symbols.

v For a string to be recognized as a number, it should contain the following pieces in the following order:

94 Technical Reference, Volume 1: Base Operating System and Extensions

1. An optional string of white-space characters

2. An optional sign

3. A nonempty string of digits optionally containing a radix character

4. An optional exponent in E-format or e-format followed by an optionally signed integer.

v For a string to be recognized as a numeric symbol, it should contain the following pieces in the following

order:

1. An optional string of white-space characters

2. An optional sign

3. One of the strings: INF, infinity, NaNQ, NaNS, or NaN (case insensitive)

The atoff subroutine is not part of the ANSI C Library. These subroutines are at least as accurate as

required by the IEEE Standard for Binary Floating-Point Arithmetic. The atof subroutine accepts at least 17

significant decimal digits. The atoff and subroutine accepts at least 9 leading 0’s. Leading 0’s are not

counted as significant digits.

Parameters

 NumberPointer Specifies a character string to convert.

EndPointer Specifies a pointer to the character that ended the scan or a null value.

Return Values

Upon successful completion, the atof, and atoff subroutines return the converted value. If no conversion

could be performed, a value of 0 is returned and the errno global variable is set to indicate the error.

Error Codes

If the conversion cannot be performed, a value of 0 is returned, and the errno global variable is set to

indicate the error.

If the conversion causes an overflow (that is, the value is outside the range of representable values), +/-

HUGE_VAL is returned with the sign indicating the direction of the overflow, and the errno global variable

is set to ERANGE.

If the conversion would cause an underflow, a properly signed value of 0 is returned and the errno global

variable is set to ERANGE.

The atoff subroutine has only one rounding error. (If the atof subroutine is used to create a

double-precision floating-point number and then that double-precision number is converted to a

floating-point number, two rounding errors could occur.)

Related Information

The scanf subroutine, atol, or atoi subroutine, wstrtol, watol, or watoi subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

128-Bit long double Floating-Point Format in AIX 5L Version 5.3 General Programming Concepts: Writing

and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 95

atol or atoll Subroutine

Purpose

Converts a string to a long integer.

Syntax

#include <stdlib.h>

long long atoll (nptr)

const char *nptr;

long atol (nptr)

const char *nptr;

Description

The atoll and atol subroutines (str) are equivalent to strtoll(nptr, (char **)NULL, 10) and

strtol(nptr, (char **)NULL, 10), respectively. If the value cannot be represented, the behavior is

undefined.

Parameters

 nptr Points to the string to be converted into a long integer.

Return Values

The atoll and atol subroutines return the converted value if the value can be represented.

Related Information

strtol, strtoul, strtoll, strtoull, or atoi Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating

System and Extensions Volume 2.

audit Subroutine

Purpose

Enables and disables system auditing.

Library

Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int audit (Command, Argument)

int Command;

int Argument;

Description

The audit subroutine enables or disables system auditing.

96 Technical Reference, Volume 1: Base Operating System and Extensions

When auditing is enabled, audit records are created for security-relevant events. These records can be

collected through the auditbin (“auditbin Subroutine” on page 98) subroutine, or through the /dev/audit

special file interface.

Parameters

 Command Defined in the sys/audit.h file, can be one of the following values:

AUDIT_QUERY

Returns a mask indicating the state of the auditing subsystem. The mask is a logical

ORing of the AUDIT_ON, AUDIT_OFF, and AUDIT_PANIC flags. The Argument

parameter is ignored.

AUDIT_ON

Enables auditing. If auditing is already enabled, only the failure-mode behavior

changes. The Argument parameter specifies recovery behavior in the event of failure

and may be either 0 or the value AUDIT_PANIC.

Note: If AUDIT_PANIC is specified, bin-mode auditing must be enabled before the

audit subroutine call.

AUDIT_OFF

Disables the auditing system if auditing is enabled. If the auditing system is disabled,

the audit subroutine does nothing. The Argument parameter is ignored.

AUDIT_RESET

Disables the auditing system (as does AUDIT_OFF) and resets the auditing system. If

auditing is already disabled, only the system configuration is reset. Resetting the audit

configuration involves clearing the audit events and audited objects table, and

terminating bin and stream auditing. The Argument parameter is ignored.

AUDIT_EVENT_THRESHOLD

Audit event records will be buffered until a total of Argument records have been

saved, at which time the audit event records will be flushed to disk. An Argument

value of zero disables this functionality. This parameter only applies to AIX 4.1.4 and

later.

AUDIT_BYTE_THRESHOLD

Audit event data will be buffered until a total of Argument bytes of data have been

saved, at which time the audit event data will be flushed to disk. An Argument value

of zero disables this functionality. This parameter only applies to AIX 4.1.4 and later.

Argument Specifies the behavior when a bin write fails (for AUDIT_ON) or specifies the size of the audit

event buffer (for AUDIT_EVENT_THRESHOLD and AUDIT_BYTE_THRESHOLD). For all

other commands, the value of Argument is ignored. The valid values are:

AUDIT_PANIC

The operating system halts abruptly if an audit record cannot be written to a bin.

Note: If AUDIT_PANIC is specified, bin-mode auditing must be enabled before the

audit subroutine call.

BufferSize

The number of bytes or audit event records which will be buffered. This parameter is

valid only with the command AUDIT_BYTE_THRESHOLD and

AUDIT_EVENT_THRESHOLD. A value of zero will disable either byte (for

AUDIT_BYTE_THRESHOLD) or event (for AUDIT_EVENT_THRESHOLD) buffering.

Return Values

For a Command value of AUDIT_QUERY, the audit subroutine returns, upon successful completion, a

mask indicating the state of the auditing subsystem. The mask is a logical ORing of the AUDIT_ON,

AUDIT_OFF, AUDIT_PANIC, and AUDIT_NO_PANIC flags. For any other Command value, the audit

subroutine returns 0 on successful completion.

Base Operating System (BOS) Runtime Services (A-P) 97

If the audit subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the

error.

Error Codes

The audit subroutine fails if either of the following is true:

 EINVAL The Command parameter is not one of AUDIT_ON, AUDIT_OFF, AUDIT_RESET, or

AUDIT_QUERY.

EINVAL The Command parameter is AUDIT_ON and the Argument parameter specifies values other than

AUDIT_PANIC.

EPERM The calling process does not have root user authority.

Files

 dev/audit Specifies the audit pseudo-device from which the audit records are read.

Related Information

The auditbin (“auditbin Subroutine”) subroutine, auditevents (“auditevents Subroutine” on page 100)

subroutine, auditlog (“auditlog Subroutine” on page 102) subroutine, auditobj (“auditobj Subroutine” on

page 103) subroutine, auditproc (“auditproc Subroutine” on page 107) subroutine.

The audit command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

auditbin Subroutine

Purpose

Defines files to contain audit records.

Library

Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditbin (Command, Current, Next, Threshold)

int Command;

int Current;

int Next;

int Threshold;

Description

The auditbin subroutine establishes an audit bin file into which the kernel writes audit records. Optionally,

this subroutine can be used to establish an overflow bin into which records are written when the current

bin reaches the size specified by the Threshold parameter.

98 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 Command If nonzero, this parameter is a logical ORing of the following values, which are defined in the

sys/audit.h file:

AUDIT_EXCL

Requests exclusive rights to the audit bin files. If the file specified by the Current

parameter is not the kernel’s current bin file, the auditbin subroutine fails immediately

with the errno variable set to EBUSY.

AUDIT_WAIT

The auditbin subroutine should not return until:

bin full The kernel writes the number of bytes specified by the Threshold parameter to

the file descriptor specified by the Current parameter. Upon successful

completion, the auditbin subroutine returns a 0. The kernel writes subsequent

audit records to the file descriptor specified by the Next parameter.

bin failure

An attempt to write an audit record to the file specified by the Current

parameter fails. If this occurs, the auditbin subroutine fails with the errno

variable set to the return code from the auditwrite subroutine.

bin contention

Another process has already issued a successful call to the auditbin

subroutine. If this occurs, the auditbin subroutine fails with the errno variable

set to EBUSY.

system shutdown

The auditing system was shut down. If this occurs, the auditbin subroutine

fails with the errno variable set to EINTR.

Current A file descriptor for a file to which the kernel should immediately write audit records.

Next Specifies the file descriptor that will be used as the current audit bin if the value of the Threshold

parameter is exceeded or if a write to the current bin fails. If this value is -1, no switch occurs.

Threshold Specifies the maximum size of the current bin. If 0, the auditing subsystem will not switch bins. If

it is nonzero, the kernel begins writing records to the file specified by the Next parameter, if

writing a record to the file specified by the Cur parameter would cause the size of this file to

exceed the number of bytes specified by the Threshold parameter. If no next bin is defined and

AUDIT_PANIC was specified when the auditing subsystem was enabled, the system is shut

down. If the size of the Threshold parameter is too small to contain a bin header and a bin tail,

the auditbin subroutine fails and the errno variable is set to EINVAL.

Return Values

If the auditbin subroutine is successful, a value of 0 returns.

If the auditbin subroutine fails, a value of -1 returns and the errno global variable is set to indicate the

error. If this occurs, the result of the call does not indicate whether any records were written to the bin.

Error Codes

The auditbin subroutine fails if any of the following is true:

 EBADF The Current parameter is not a file descriptor for a regular file open for writing, or the Next

parameter is neither -1 nor a file descriptor for a regular file open for writing.

EBUSY The Command parameter specifies AUDIT_EXCL and the kernel is not writing audit records to the

file specified by the Current parameter.

EBUSY The Command parameter specifies AUDIT_WAIT and another process has already registered a

bin.

EINTR The auditing subsystem is shut down.

Base Operating System (BOS) Runtime Services (A-P) 99

EINVAL The Command parameter specifies a nonzero value other than AUDIT_EXCL or AUDIT_WAIT.

EINVAL The Threshold parameter value is less than the size of a bin header and trailer.

EPERM The caller does not have root user authority.

Related Information

The audit (“audit Subroutine” on page 96) subroutine, auditevents (“auditevents Subroutine”) subroutine,

auditlog (“auditlog Subroutine” on page 102) subroutine, auditobj (“auditobj Subroutine” on page 103)

subroutine, auditproc (“auditproc Subroutine” on page 107) subroutine.

The audit command.

The audit file format.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

auditevents Subroutine

Purpose

Gets or sets the status of system event auditing.

Library

Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditevents (Command, Classes, NClasses)

int Command;

struct audit_class *Classes;

int NClasses;

Description

The auditevents subroutine queries or sets the audit class definitions that control event auditing. Each

audit class is a set of one or more audit events.

System auditing need not be enabled before calling the auditevents subroutine. The audit (“audit

Subroutine” on page 96)subroutine can be directed with the AUDIT_RESET command to clear all event

lists.

100 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 Command Specifies whether the event lists are to be queried or set. The values, defined in the sys/audit.h

file, for the Command parameter are:

AUDIT_SET

Sets the lists of audited events after first clearing all previous definitions.

AUDIT_GET

Queries the lists of audited events.

AUDIT_LOCK

Queries the lists of audited events. This value also blocks any other process attempting

to set or lock the list of audit events. The lock is released when the process holding the

lock dies or calls the auditevents subroutine with the Command parameter set to

AUDIT_SET.

Classes Specifies the array of a_event structures for the AUDIT_SET operation, or after an AUDIT_GET

or AUDIT_LOCK operation. The audit_class structure is defined in the sys/audit.h file and

contains the following members:

ae_name

A pointer to the name of the audit class.

ae_list

A pointer to a list of null-terminated audit event names for this audit class. The list is

ended by a null name (a leading null byte or two consecutive null bytes).

Note: Event and class names are limited to 15 significant characters.

ae_len The length of the event list in the ae_list member. This length includes the terminating

null bytes. On an AUDIT_SET operation, the caller must set this member to indicate the

actual length of the list (in bytes) pointed to by ae_list. On an AUDIT_GET or

AUDIT_LOCK operation, the auditevents subroutine sets this member to indicate the

actual size of the list.

NClasses Serves a dual purpose. For AUDIT_SET, the NClasses parameter specifies the number of

elements in the events array. For AUDIT_GET and AUDIT_LOCK, the NClasses parameter

specifies the size of the buffer pointed to by the Classes parameter.

Attention: Only 32 audit classes are supported. One class is implicitly defined by the system to

include all audit events (ALL). The administrator of your system should not attempt to define more

than 31 audit classes.

Security

The calling process must have root user authority in order to use the auditevents subroutine.

Return Codes

If the auditevents subroutine completes successfully, the number of audit classes is returned if the

Command parameter is AUDIT_GET or AUDIT_LOCK. A value of 0 is returned if the Command parameter

is AUDIT_SET. If this call fails, a value of -1 is returned and the errno global variable is set to indicate the

error.

Error Codes

The auditevents subroutine fails if one or more of the following are true:

 EPERM The calling process does not have root user authority.

EINVAL The value of Command is not AUDIT_SET, AUDIT_GET, or AUDIT_LOCK.

EINVAL The Command parameter is AUDIT_SET, and the value of the NClasses parameter is

greater than or equal to 32.

EINVAL A class name or event name is longer than 15 significant characters.

Base Operating System (BOS) Runtime Services (A-P) 101

ENOSPC The value of Command is AUDIT_GET or AUDIT_LOCK and the size of the buffer specified

by the NClasses parameter is not large enough to hold the list of event structures and

names. If this occurs, the first word of the buffer is set to the required buffer size.

EFAULT The Classes parameter points outside of the process’ address space.

EFAULT The ae_list member of one or more audit_class structures passed for an AUDIT_SET

operation points outside of the process’ address space.

EFAULT The Command value is AUDIT_GET or AUDIT_LOCK and the size of the Classes buffer is

not large enough to hold an integer.

EBUSY Another process has already called the auditevents subroutine with AUDIT_LOCK.

ENOMEM Memory allocation failed.

Related Information

The audit (“audit Subroutine” on page 96) subroutine, auditbin (“auditbin Subroutine” on page 98)

subroutine, auditlog (“auditlog Subroutine”) subroutine, auditobj (“auditobj Subroutine” on page 103)

subroutine, auditproc (“auditproc Subroutine” on page 107) subroutine, auditread (“auditread, auditread_r

Subroutines” on page 109) subroutine, auditwrite (“auditwrite Subroutine” on page 110)subroutine.

The audit command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

auditlog Subroutine

Purpose

Appends an audit record to the audit trail file.

Library

Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditlog (Event, Result, Buffer, BufferSize)

char *Event;

int Result;

char *Buffer;

int BufferSize;

Description

The auditlog subroutine generates an audit record. The kernel audit-logging component appends a record

for the specified Event if system auditing is enabled, process auditing is not suspended, and the Event

parameter is in one or more of the audit classes for the current process.

The audit logger generates the audit record by adding the Event and Result parameters to the audit

header and including the resulting information in the Buffer parameter as the audit tail.

Parameters

 Event The name of the audit event to be generated. This parameter should be the name of an audit

event. Audit event names are truncated to 15 characters plus null.

102 Technical Reference, Volume 1: Base Operating System and Extensions

Result Describes the result of this event. Valid values are defined in the sys/audit.h file and include

the following:

AUDIT_OK

The event was successful.

AUDIT_FAIL

The event failed.

AUDIT_FAIL_ACCESS

The event failed because of any access control denial.

AUDIT_FAIL_DAC

The event failed because of a discretionary access control denial.

AUDIT_FAIL_PRIV

The event failed because of a privilege control denial.

AUDIT_FAIL_AUTH

The event failed because of an authentication denial.

Other nonzero values of the Result parameter are converted into the AUDIT_FAIL value.

Buffer Points to a buffer containing the tail of the audit record. The format of the information in this

buffer depends on the event name.

BufferSize Specifies the size of the Buffer parameter, including the terminating null.

Return Values

Upon successful completion, the auditlog subroutine returns a value of 0. If auditlog fails, a value of -1 is

returned and the errno global variable is set to indicate the error.

The auditlog subroutine does not return any indication of failure to write the record where this is due to

inappropriate tailoring of auditing subsystem configuration files or user-written code. Accidental omissions

and typographical errors in the configuration are potential causes of such a failure.

Error Codes

The auditlog subroutine fails if any of the following are true:

 EFAULT The Event or Buffer parameter points outside of the process’ address space.

EINVAL The auditing system is either interrupted or not initialized.

EINVAL The length of the audit record is greater than 32 kilobytes.

EPERM The process does not have root user authority.

ENOMEM Memory allocation failed.

Related Information

The audit (“audit Subroutine” on page 96) subroutine, auditbin (“auditbin Subroutine” on page 98)

subroutine, auditevents (“auditevents Subroutine” on page 100) subroutine, auditobj (“auditobj

Subroutine”) subroutine, auditproc (“auditproc Subroutine” on page 107) subroutine, auditwrite

(“auditwrite Subroutine” on page 110) subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

auditobj Subroutine

Purpose

Gets or sets the auditing mode of a system data object.

Base Operating System (BOS) Runtime Services (A-P) 103

Library

Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditobj (Command, Obj_Events, ObjSize)

int Command;

struct o_event *Obj_Events;

int ObjSize;

Description

The auditobj subroutine queries or sets the audit events to be generated by accessing selected objects.

For each object in the file system name space, it is possible to specify the event generated for each

access mode. Using the auditobj subroutine, an administrator can define new audit events in the system

that correspond to accesses to specified objects. These events are treated the same as system-defined

events.

System auditing need not be enabled to set or query the object audit events. The audit subroutine can be

directed with the AUDIT_RESET command to clear the definitions of object audit events.

Parameters

 Command Specifies whether the object audit event lists are to be read or written. The valid values,

defined in the sys/audit.h file, for the Command parameter are:

AUDIT_SET

Sets the list of object audit events, after first clearing all previous definitions.

AUDIT_GET

Queries the list of object audit events.

AUDIT_LOCK

Queries the list of object audit events and also blocks any other process attempting

to set or lock the list of audit events. The lock is released when the process holding

the lock dies or calls the auditobj subroutine with the Command parameter set to

AUDIT_SET.

104 Technical Reference, Volume 1: Base Operating System and Extensions

Obj_Events Specifies the array of o_event structures for the AUDIT_SET operation or for after the

AUDIT_GET or AUDIT_LOCK operation. The o_event structure is defined in the

sys/audit.h file and contains the following members:

o_type Specifies the type of the object, in terms of naming space. Currently, only one

object-naming space is supported:

AUDIT_FILE

Denotes the file system naming space.

o_name Specifies the name of the object.

o_event

Specifies any array of event names to be generated when the object is accessed.

Note that event names are currently limited to 16 bytes, including the trailing null.

The index of an event name in this array corresponds to an access mode. Valid

indexes are defined in the audit.h file and include the following:

v AUDIT_READ

v AUDIT_WRITE

v AUDIT_EXEC

Note: The C++ compiler will generate a warning indicating that o_event is defined both as

a structure and a field within that structure. Although the o_event field can be used within

C++, the warning can by bypassed by defining O_EVENT_RENAME. This will replace the

o_event field with o_event_array. o_event is the default field.

ObjSize For an AUDIT_SET operation, the ObjSize parameter specifies the number of object audit

event definitions in the array pointed to by the Obj_Events parameter. For an AUDIT_GET or

AUDIT_LOCK operation, the ObjSize parameter specifies the size of the buffer pointed to by

the Obj_Events parameter.

Return Values

If the auditobj subroutine completes successfully, the number of object audit event definitions is returned if

the Command parameter is AUDIT_GET or AUDIT_LOCK. A value of 0 is returned if the Command

parameter is AUDIT_SET. If this call fails, a value of -1 is returned and the errno global variable is set to

indicate the error.

Error Codes

The auditobj subroutine fails if any of the following are true:

 EFAULT The Obj_Events parameter points outside the address space of the process.

EFAULT The Command parameter is AUDIT_SET, and one or more of the o_name members points

outside the address space of the process.

EFAULT The Command parameter is AUDIT_GET or AUDIT_LOCK, and the buffer size of the

Obj_Events parameter is not large enough to hold the integer.

EINVAL The value of the Command parameter is not AUDIT_SET, AUDIT_GET or AUDIT_LOCK.

EINVAL The Command parameter is AUDIT_SET, and the value of one or more of the o_type

members is not AUDIT_FILE.

EINVAL An event name was longer than 15 significant characters.

ENOENT The Command parameter is AUDIT_SET, and the parent directory of one of the file-system

objects does not exist.

ENOSPC The value of the Command parameter is AUDIT_GET or AUDIT_LOCK, and the size of the

buffer as specified by the ObjSize parameter is not large enough to hold the list of event

structures and names. If this occurs, the first word of the buffer is set to the required buffer

size.

ENOMEM Memory allocation failed.

EBUSY Another process has called the auditobj subroutine with AUDIT_LOCK.

Base Operating System (BOS) Runtime Services (A-P) 105

EPERM The caller does not have root user authority.

Related Information

The audit (“audit Subroutine” on page 96)subroutine, auditbin (“auditbin Subroutine” on page 98)

subroutine, auditevents (“auditevents Subroutine” on page 100) subroutine, auditlog (“auditlog

Subroutine” on page 102) subroutine, auditproc (“auditproc Subroutine” on page 107) subroutine.

The audit command.

The audit.h file.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

auditpack Subroutine

Purpose

Compresses and uncompresses audit bins.

Library

Security Library (libc.a)

Syntax

#include <sys/audit.h>

#include <stdio.h>

char *auditpack (Expand, Buffer)

int Expand;

char *Buffer;

Description

The auditpack subroutine can be used to compress or uncompress bins of audit records.

Parameters

 Expand Specifies the operation. Valid values, as defined in the sys/audit.h header file, are one of the

following:

AUDIT_PACK

Performs standard compression on the audit bin.

AUDIT_UNPACK

Unpacks the compressed audit bin.

Buffer Specifies the buffer containing the bin to be compressed or uncompressed. This buffer must contain

a standard bin as described in the audit.h file.

Return Values

If the auditpack subroutine is successful, a pointer to a buffer containing the processed audit bin is

returned. If unsuccessful, a null pointer is returned and the errno global variable is set to indicate the

error.

106 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The auditpack subroutine fails if one or more of the following values is true:

 EINVAL The Expand parameter is not one of the valid values (AUDIT_PACK or AUDIT_UNPACK).

EINVAL The Expand parameter is AUDIT_UNPACK and the packed data in Buffer does not unpack to its

original size.

EINVAL The Expand parameter is AUDIT_PACK and the bin in the Buffer parameter is already

compressed, or the Expand parameter is AUDIT_UNPACK and the bin in the Buffer parameter

is already unpacked.

ENOSPC The auditpack subroutine is unable to allocate space for a new buffer.

Related Information

The auditread (“auditread, auditread_r Subroutines” on page 109) subroutine.

The auditcat command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

auditproc Subroutine

Purpose

Gets or sets the audit state of a process.

Library

Standard C Library (libc.a)

Syntax

#include <sys/audit.h>

int auditproc (ProcessID, Command, Argument, Length)

int ProcessID;

int Command;

char * Argument;

int Length;

Description

The auditproc subroutine queries or sets the auditing state of a process. There are two parts to the

auditing state of a process:

v The list of classes to be audited for this process. Classes are defined by the auditevents (“auditevents

Subroutine” on page 100) subroutine. Each class includes a set of audit events. When a process

causes an audit event, that event may be logged in the audit trail if it is included in one or more of the

audit classes of the process.

v The audit status of the process. Auditing for a process may be suspended or resumed. Functions that

generate an audit record can first check to see whether auditing is suspended. If process auditing is

suspended, no audit events are logged for a process. For more information, see the auditlog (“auditlog

Subroutine” on page 102) subroutine.

Base Operating System (BOS) Runtime Services (A-P) 107

Parameters

 ProcessID The process ID of the process to be affected. If ProcessID is 0, the auditproc subroutine

affects the current process.

Command The action to be taken. Defined in the audit.h file, valid values include:

AUDIT_KLIST_EVENTS

Sets the list of audit classes to be audited for the process and also sets the user’s

default audit classes definition within the kernel. The Argument parameter is a pointer

to a list of null-terminated audit class names. The Length parameter is the length of

this list, including null bytes.

AUDIT_QEVENTS

Returns the list of audit classes defined for the current process if ProcessID is 0.

Otherwise, it returns the list of audit classes defined for the specified process ID. The

Argument parameter is a pointer to a character buffer. The Length parameter

specifies the size of this buffer. On return, this buffer contains a list of null-terminated

audit class names. A null name terminates the list.

AUDIT_EVENTS

Sets the list of audit classes to be audited for the process. The Argument parameter

is a pointer to a list of null-terminated audit class names. The Length parameter is the

length of this list, including null bytes.

AUDIT_QSTATUS

Returns the audit status of the current process. You can only check the status of the

current process. If the ProcessID parameter is nonzero, a -1 is returned and the

errno global variable is set to EINVAL. The Length and Argument parameters are

ignored. A return value of AUDIT_SUSPEND indicates that auditing is suspended. A

return value of AUDIT_RESUME indicates normal auditing for this process.

AUDIT_STATUS

Sets the audit status of the current process. The Length parameter is ignored, and

the ProcessID parameter must be zero. If Argument is AUDIT_SUSPEND, the audit

status is set to suspend event auditing for this process. If the Argument parameter is

AUDIT_RESUME, the audit status is set to resume event auditing for this process.

Argument A character pointer for the audit class buffer for an AUDIT_EVENT or AUDIT_QEVENTS value

of the Command parameter or an integer defining the audit status to be set for an

AUDIT_STATUS operation.

Length Size of the audit class character buffer.

Return Values

The auditproc subroutine returns the following values upon successful completion:

v The previous audit status (AUDIT_SUSPEND or AUDIT_RESUME), if the call queried or set the audit

status (the Command parameter specified AUDIT_QSTATUS or AUDIT_STATUS)

v A value of 0 if the call queried or set audit events (the Command parameter specified

AUDIT_QEVENTS or AUDIT_EVENTS)

Error Codes

If the auditproc subroutine fails if one or more of the following are true:

 EINVAL An invalid value was specified for the Command parameter.

EINVAL The Command parameter is set to the AUDIT_QSTATUS or AUDIT_STATUS value and the

pid value is nonzero.

EINVAl The Command parameter is set to the AUDIT_STATUS value and the Argument parameter

is not set to AUDIT_SUSPEND or AUDIT_RESUME.

ENOSPC The Command parameter is AUDIT_QEVENTS, and the buffer size is insufficient. In this

case, the first word of the Argument parameter is set to the required size.

108 Technical Reference, Volume 1: Base Operating System and Extensions

EFAULT The Command parameter is AUDIT_QEVENTS or AUDIT_EVENTS and the Argument

parameter points to a location outside of the process’ allocated address space.

ENOMEM Memory allocation failed.

EPERM The caller does not have root user authority.

Related Information

The audit (“audit Subroutine” on page 96) subroutine, auditbin (“auditbin Subroutine” on page 98)

subroutine, auditevents (“auditevents Subroutine” on page 100) subroutine, auditlog (“auditlog

Subroutine” on page 102) subroutine, auditobj (“auditobj Subroutine” on page 103) subroutine, auditwrite

(“auditwrite Subroutine” on page 110) subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

auditread, auditread_r Subroutines

Purpose

Reads an audit record.

Library

Security Library (libc.a)

Syntax

#include <sys/audit.h>

#include <stdio.h>

char *auditread (FilePointer, AuditRecord)

FILE *FilePointer;

struct aud_rec *AuditRecord;

char *auditread_r (FilePointer, AuditRecord, RecordSize, StreamInfo)

FILE *FilePointer;

struct aud_rec *AuditRecord;

size_t RecordSize;

void **StreamInfo;

Description

The auditread subroutine reads the next audit record from the specified file descriptor. Bins on this input

stream are unpacked and uncompressed if necessary.

The auditread subroutine can not be used on more than one FilePointer as the results can be

unpredictable. Use the auditread_r subroutine instead.

The auditread_r subroutine reads the next audit from the specified file descriptor. This subroutine is

thread safe and can be used to handle multiple open audit files simultaneously by multiple threads of

execution.

The auditread_r subroutine is able to read multiple versions of audit records. The version information

contained in an audit record is used to determine the correct size and format of the record. When an input

record header is larger than AuditRecord, an error is returned. In order to provide for binary compatibility

with previous versions, if RecordSize is the same size as the original (struct aud_rec), the input record is

converted to the original format and returned to the caller.

Base Operating System (BOS) Runtime Services (A-P) 109

Parameters

 FilePointer Specifies the file descriptor from which to read.

AuditRecord Specifies the buffer to contain the header. The first short in this buffer must contain a valid

number for the header.

RecordSize The size of the buffer referenced by AuditRecord.

StreamInfo A pointer to an opaque datatype used to hold information related to the current value of

FilePointer. For each new value of FilePointer, a new StreamInfo pointer must be used.

StreamInfo must be initialized to NULL by the user and is initialized by auditread_r when

first used. When FilePointer has been closed, the value of StreamInfo can be passed to

the free subroutine to be deallocated.

Return Values

If the auditread subroutine completes successfully, a pointer to a buffer containing the tail of the audit

record is returned. The length of this buffer is returned in the ah_length field of the header file. If this

subroutine is unsuccessful, a null pointer is returned and the errno global variable is set to indicate the

error.

Error Codes

The auditread subroutine fails if one or more of the following is true:

 EBADF The FilePointer value is not valid.

ENOSPC The auditread subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the read subroutine.

Related Information

The auditpack (“auditpack Subroutine” on page 106) subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

auditwrite Subroutine

Purpose

Writes an audit record.

Library

Security Library (libc.a)

Syntax

#include <sys/audit.h>

#include <stdio.h>

int auditwrite (Event, Result, Buffer1, Length1, Buffer2, Length2, ...)

char * Event;

int Result;

char * Buffer1, *Buffer2 ...;

int Length1, Length2 ...;

110 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The auditwrite subroutine builds the tail of an audit record and then writes it with the auditlog subroutine.

The tail is built by gathering the specified buffers. The last buffer pointer must be a null.

If the auditwrite subroutine is to be called from a program invoked from the inittab file, the setpcred

subroutine should be called first to establish the process’ credentials.

Parameters

 Event Specifies the name of the event to be logged.

Result Specifies the audit status of the event. Valid values are defined in the sys/audit.h file

and are listed in the auditlog subroutine.

Buffer1, Buffer2 Specifies the character buffers containing audit tail information. Note that numerical

values must be passed by reference. The correct size can be computed with the

sizeof C function.

Length1, Length2 Specifies the lengths of the corresponding buffers.

Return Values

If the auditwrite subroutine completes successfully, a value of 0 is returned. Otherwise, a value of -1 is

returned and the errno global variable is set to indicate the error.

Error Codes

The auditwrite subroutine fails if the following is true:

 ENOSPC The auditwrite subroutine is unable to allocate space for the tail buffer.

Other error codes are returned by the auditlog subroutine.

Related Information

The auditlog (“auditlog Subroutine” on page 102) subroutine, setpcred subroutine.

The inittab file.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

authenticate Subroutine

Purpose

Verifies a user’s name and password.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

int authenticate (UserName, Response, Reenter, Message)

char *UserName;

char *Response;

int *Reenter;

char **Message;

Base Operating System (BOS) Runtime Services (A-P) 111

Description

The authenticate subroutine maintains requirements users must satisfy to be authenticated to the system.

It is a recallable interface that prompts for the user’s name and password. The user must supply a

character string at the prompt issued by the Message parameter. The Response parameter returns the

user’s response to the authenticate subroutine. The calling program makes no assumptions about the

number of prompt messages the user must satisfy for authentication.

The Reenter parameter indicates when a user has satisfied all prompt messages. The parameter remains

nonzero until a user has passed all prompts. After the returned value of Reenter is 0, the return code

signals whether authentication has succeeded or failed. When progressing through prompts for a user, the

value of Reenter must be maintained by the caller between invocations of authenticate.

The authenticate subroutine ascertains the authentication domains the user can attempt. The subroutine

reads the SYSTEM line from the user’s stanza in the /etc/security/user file. Each token that appears in

the SYSTEM line corresponds to a method that can be dynamically loaded and processed. Likewise, the

system can provide multiple or alternate authentication paths.

The authenticate routine maintains internal state information concerning the next prompt message

presented to the user. If the calling program supplies a different user name before all prompts are

complete for the user, the internal state information is reset and prompt messages begin again. The calling

program maintains the value of the Reenter parameter while processing prompts for a given user.

If the user has no defined password, or the SYSTEM grammar explicitly specifies no authentication

required, the user is not required to respond to any prompt messages. Otherwise, the user is always

initially prompted to supply a password.

The authenticate subroutine can be called initially with the cleartext password in the Response parameter.

If the user supplies a password during the initial invocation but does not have a password, authentication

fails. If the user wants the authenticate subroutine to supply a prompt message, the Response parameter

is a null pointer on initial invocation.

The authenticate subroutine sets the AUTHSTATE environment variable used by name resolution

subroutines, such as the getpwnam subroutine. This environment variable indicates the registry to which

to user authenticated. Values for the AUTHSTATE environment variable include DCE, compat, and token

names that appear in a SYSTEM grammar. A null value can exist if the cron daemon or other utilities that

do not require authentication is called.

Parameters

 UserName Points to the user’s name that is to be authenticated.

Response Specifies a character string containing the user’s response to an authentication prompt.

Reenter Points to a Boolean value that signals whether the authenticate subroutine has completed

processing. If the Reenter parameter is a nonzero value, the authenticate subroutine expects the

user to satisfy the prompt message provided by the Message parameter. If the Reenter parameter is

0, the authenticate subroutine has completed processing.

Message Points to a pointer that the authenticate subroutine allocates memory for and fills in. This string is

suitable for printing and issues prompt messages (if the Reenter parameter is a nonzero value). It

also issues informational messages such as why the user failed authentication (if the Reenter

parameter is 0). The calling application is responsible for freeing this memory.

Return Values

Upon successful completion, the authenticate subroutine returns a value of 0. If this subroutine fails, it

returns a value of 1.

112 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The authenticate subroutine is unsuccessful if one of the following values is true:

 ENOENT Indicates that the user is unknown to the system.

ESAD Indicates that authentication is denied.

EINVAL Indicates that the parameters are not valid.

ENOMEM Indicates that memory allocation (malloc) failed.

Note: The DCE mechanism requires credentials on successful authentication that apply only to the

authenticate process and its children.

Related Information

The ckuserID (“ckuserID Subroutine” on page 164) subroutine.

authenticatex Subroutine

Purpose

Verifies a user’s name and password.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

int authenticatex (UserName, Response, Reenter, Message, State)

char *UserName;

char *Response;

int *Reenter;

char **Message;

void *State;

Description

The authenticatex subroutine maintains requirements that users must satisfy to be authenticated to the

system. It is a recallable interface that prompts for the user’s name and password. The user must supply a

character string at the prompt issued by the Message parameter. The Response parameter returns the

user’s response to the authenticatex subroutine. The calling program makes no assumptions about the

number of prompt messages the user must satisfy for authentication. The authenticatex subroutine

maintains information about the results of each part of the authentication process in the State parameter.

This parameter can be shared with the chpassx, loginrestrictionsx and passwdexpiredx subroutines.

The proper sequence of library routines for authenticating a user in order to create a new session is:

1. Call the loginrestrictionsx subroutine to determine which administrative domains allow the user to log

in.

2. Call the authenticatex subroutine to perform authentication using those administrative domains that

grant login access.

3. Call the passwdexpiredx subroutine to determine if any of the passwords used during the

authentication process have expired and must be changed in order for the user to be granted access.

4. If the passwdexpiredx subroutine indicated that one or more passwords have expired and must be

changed by the user, call the chpassx subroutine to update all of the passwords that were used for

the authentication process.

Base Operating System (BOS) Runtime Services (A-P) 113

The Reenter parameter remains a nonzero value until the user satisfies all prompt messages or answers

incorrectly. When the Reenter parameter is 0, the return code signals whether authentication passed or

failed. The value of the Reenter parameter must be 0 on the initial call. A nonzero value for the Reenter

parameter must be passed to the authenticatex subroutine on subsequent calls. A new authentication can

be begun by calling the authenticatex subroutine with a 0 value for the Reenter parameter or by using a

different value for UserName.

The State parameter contains information about the authentication process. The State parameter from an

earlier call to loginrestrictionsx can be used to control how authentication is performed. Administrative

domains that do not permit the user to log in cause those administrative domains to be ignored during

authentication even if the user has the correct authentication information.

The authenticatex subroutine ascertains the authentication domains the user can attempt. The subroutine

uses the SYSTEM attribute for the user. Each token that is displayed in the SYSTEM line corresponds to a

method that can be dynamically loaded and processed. Likewise, the system can provide multiple or

alternate authentication paths.

The authenticatex subroutine maintains internal state information concerning the next prompt message

presented to the user. If the calling program supplies a different user name before all prompts are

complete for the user, the internal state information is reset and prompt messages begin again. The

authenticatex subroutine requires that the State parameter be initialized to reference a null value when

changing user names or that the State parameter from an earlier call to loginrestrictionsx for the new

user be provided.

If the user has no defined password, or the SYSTEM grammar explicitly specifies no authentication

required, the user is not required to respond to any prompt messages. Otherwise, the user is always

initially prompted to supply a password.

The authenticatex subroutine can be called initially with the cleartext password in the Response

parameter. If the user supplies a password during the initial invocation but does not have a password,

authentication fails. If the user wants the authenticatex subroutine to supply a prompt message, the

Response parameter is a null pointer on initial invocation.

The authenticatex subroutine sets the AUTHSTATE environment variable used by name resolution

subroutines, such as the getpwnam subroutine. This environment variable indicates the first registry to

which the user authenticated. Values for the AUTHSTATE environment variable include DCE, compat, and

token names that appear in a SYSTEM grammar. A null value can exist if the cron daemon or another

utility that does not require authentication is called.

Parameters

 Message Points to a pointer that the authenticatex subroutine allocates memory for and fills in. This

string is suitable for printing and issues prompt messages (if the Reenter parameter is a

nonzero value). It also issues informational messages, such as why the user failed

authentication (if the Reenter parameter is 0). The calling application is responsible for

freeing this memory.

Reenter Points to an integer value that signals whether the authenticatex subroutine has completed

processing. If the integer referenced by the Reenter parameter is a nonzero value, the

authenticatex subroutine expects the user to satisfy the prompt message provided by the

Message parameter. If the integer referenced by the Reenter parameter is 0, the

authenticatex subroutine has completed processing. The initial value of the integer

referenced by Reenter must be 0 when the authenticatex function is initially invoked and

must not be modified by the calling application until the authenticationx subroutine has

completed processing.

Response Specifies a character string containing the user’s response to an authentication prompt.

114 Technical Reference, Volume 1: Base Operating System and Extensions

State Points to a pointer that the authenticatex subroutine allocates memory for and fills in. The

State parameter can also be the result of an earlier call to the loginrestrictionsx subroutine.

This parameter contains information about the results of the authentication process for each

term in the user’s SYSTEM attribute. The calling application is responsible for freeing this

memory when it is no longer needed for a subsequent call to the passwdexpiredx or

chpassx subroutines.

UserName Points to the user’s name that is to be authenticated.

Return Values

Upon successful completion, the authenticatex subroutine returns a value of 0. If this subroutine fails, it

returns a value of 1.

Error Codes

The authenticatex subroutine is unsuccessful if one of the following values is true:

 EINVAL The parameters are not valid.

ENOENT The user is unknown to the system.

ENOMEM Memory allocation (malloc) failed.

ESAD Authentication is denied.

Note: Additional information about the behavior of a loadable authentication module can be found in the

documentation for that module.

Related Information

The “authenticate Subroutine” on page 111, “chpassx Subroutine” on page 154, “loginrestrictionsx

Subroutine” on page 742, “passwdexpiredx Subroutine” on page 933.

basename Subroutine

Purpose

Return the last element of a path name.

Library

Standard C Library (libc.a)

Syntax

#include <libgen.h>

char *basename (char *path)

Description

Given a pointer to a character string that contains a path name, the basename subroutine deletes trailing

″/″ characters from path, and then returns a pointer to the last component of path. The ″/″ character is

defined as trailing if it is not the first character in the string.

If path is a null pointer or points to an empty string, a pointer to a static constant ″.″ is returned.

Return Values

The basename function returns a pointer to the last component of path.

Base Operating System (BOS) Runtime Services (A-P) 115

The basename function returns a pointer to a static constant ″.″ if path is a null pointer or points to an

empty string.

The basename function may modify the string pointed to by path and may return a pointer to static

storage that may then be overwritten by a subsequent call to the basename subroutine.

Examples

 Input string Output string

″/usr/lib″ ″lib″

″/usr/″ ″usr″

″/″ ″/″

Related Information

The dirname (“dirname Subroutine” on page 209) subroutine.

bcopy, bcmp, bzero or ffs Subroutine

Purpose

Performs bit and byte string operations.

Library

Standard C Library (libc.a)

Syntax

#include <strings.h>

void bcopy (Source, Destination, Length)

const void *Source,

char *Destination;

size_t Length;

int bcmp (String1, String2, Length)

const void *String1, *String2;

size_t Length;

void bzero (String,Length)

char *String;

int Length;

int ffs (Index)

int Index;

Description

Note: The bcopy subroutine takes parameters backwards from the strcpy subroutine.

The bcopy, bcmp, and bzero subroutines operate on variable length strings of bytes. They do not check

for null bytes as do the string routines.

The bcopy subroutine copies the value of the Length parameter in bytes from the string in the Source

parameter to the string in the Destination parameter.

116 Technical Reference, Volume 1: Base Operating System and Extensions

The bcmp subroutine compares the byte string in the String1 parameter against the byte string of the

String2 parameter, returning a zero value if the two strings are identical and a nonzero value otherwise.

Both strings are assumed to be Length bytes long.

The bzero subroutine zeroes out the string in the String parameter for the value of the Length parameter

in bytes.

The ffs subroutine finds the first bit set in the Index parameter passed to it and returns the index of that

bit. Bits are numbered starting at 1. A return value of 0 indicates that the value passed is 0.

Related Information

The memcmp, memccpy, memchr, memcpy, memmove, memset (“memccpy, memchr, memcmp,

memcpy, memset or memmove Subroutine” on page 793) subroutines, strcat, strncat, strxfrm, strcpy,

strncpy, or strdup subroutine, strcmp, strncmp, strcasecmp, strncasecmp, or strcoll subroutine,

strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, or strtok subroutine, swab subroutine.

List of String Manipulation Subroutines and Subroutines, Example Programs, and Libraries in AIX 5L

Version 5.3 General Programming Concepts: Writing and Debugging Programs.

bessel: j0, j1, jn, y0, y1, or yn Subroutine

Purpose

Computes Bessel functions.

Libraries

IEEE Math Library (libm.a)

or System V Math Library (libmsaa.a)

Syntax

#include <math.h>

double j0 (x)

double x;

double j1 (x)

double x;

double jn (n, x)

int n;

double x;

double y0 (x)

double x;

double y1 (x)

double x;

double yn (n, x)

int n;

double x;

Description

Bessel functions are used to compute wave variables, primarily in the field of communications.

The j0 subroutine and j1 subroutine return Bessel functions of x of the first kind, of orders 0 and 1,

respectively. The jn subroutine returns the Bessel function of x of the first kind of order n.

Base Operating System (BOS) Runtime Services (A-P) 117

The y0 subroutine and y1 subroutine return the Bessel functions of x of the second kind, of orders 0 and

1, respectively. The yn subroutine returns the Bessel function of x of the second kind of order n. The value

of x must be positive.

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. To compile the

j0.c file, for example:

cc j0.c -lm

Parameters

 x Specifies some double-precision floating-point value.

n Specifies some integer value.

Return Values

When using libm.a (-lm), if x is negative, y0, y1, and yn return the value NaNQ. If x is 0, y0, y1, and yn

return the value -HUGE_VAL.

When using libmsaa.a (-lmsaa), values too large in magnitude cause the functions j0, j1, y0, and y1 to

return 0 and to set the errno global variable to ERANGE. In addition, a message indicating TLOSS error is

printed on the standard error output.

Nonpositive values cause y0, y1, and yn to return the value -HUGE and to set the errno global variable to

EDOM. In addition, a message indicating argument DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the matherr subroutine when using libmsaa.a

(-lmsaa).

Related Information

The matherr (“matherr Subroutine” on page 775) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

bindprocessor Subroutine

Purpose

Binds kernel threads to a processor.

Library

Standard C library (libc.a)

Syntax

#include <sys/processor.h>

int bindprocessor (What, Who, Where)

int What;

int Who;

cpu_t Where;

118 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The bindprocessor subroutine binds a single kernel thread, or all kernel threads in a process, to a

processor, forcing the bound threads to be scheduled to run on that processor. It is important to

understand that a process itself is not bound, but rather its kernel threads are bound. Once kernel threads

are bound, they are always scheduled to run on the chosen processor, unless they are later unbound.

When a new thread is created, it has the same bind properties as its creator. This applies to the initial

thread in the new process created by the fork subroutine: the new thread inherits the bind properties of

the thread which called fork. When the exec subroutine is called, thread properties are left unchanged.

The bindprocessor subroutine will fail if the target process has a Resource Attachment.

Programs that use processor bindings should become Dynamic Logical Partitioning (DLPAR) aware. Refer

to Dynamic Logical Partitioning in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs for more information.

Parameters

 What Specifies whether a process or a thread is being bound to a processor. The What parameter can

take one of the following values:

BINDPROCESS

A process is being bound to a processor.

BINDTHREAD

A thread is being bound to a processor.

Who Indicates a process or thread identifier, as appropriate for the What parameter, specifying the

process or thread which is to be bound to a processor.

Where If the Where parameter is a bind CPU identifier, it specifies the processor to which the process or

thread is to be bound. A value of PROCESSOR_CLASS_ANY unbinds the specified process or

thread, which will then be able to run on any processor.

The sysconf subroutine can be used to retrieve information about the number of online processors

in the system.

Return Values

On successful completion, the bindprocessor subroutine returns 0. Otherwise, a value of -1 is returned,

and the errno global variable is set to indicate the error.

Error Codes

The bindprocessor subroutine is unsuccessful if one of the following is true:

 EINVAL The What parameter is invalid, or the Where parameter indicates an invalid processor number or

a processor class which is not currently available.

ESRCH The specified process or thread does not exist.

EPERM The caller does not have root user authority, and the Who parameter specifies either a process,

or a thread belonging to a process, having a real or effective user ID different from that of the

calling process. The target process has a Resource Attachment.

Related Information

The bindprocessor command.

The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

subroutine, fork (“fork, f_fork, or vfork Subroutine” on page 284) subroutine, sysconf subroutine,

thread_self subroutine.

Base Operating System (BOS) Runtime Services (A-P) 119

Dynamic Logical Partitioning in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

brk or sbrk Subroutine

Purpose

Changes data segment space allocation.

Library

Standard C Library (libc.a)

Syntax

#include <unistd .h>

int brk (EndDataSegment)

char *EndDataSegment;

void *sbrk (Increment)

intptr_t Increment;

Description

The brk and sbrk subroutines dynamically change the amount of space allocated for the data segment of

the calling process. (For information about segments, see the exec subroutine. For information about the

maximum amount of space that can be allocated, see the ulimit and getrlimit subroutines.)

The change is made by resetting the break value of the process, which determines the maximum space

that can be allocated. The break value is the address of the first location beyond the current end of the

data region. The amount of available space increases as the break value increases. The available space

is initialized to a value of 0 at the time it is used. The break value can be automatically rounded up to a

size appropriate for the memory management architecture.

The brk subroutine sets the break value to the value of the EndDataSegment parameter and changes the

amount of available space accordingly.

The sbrk subroutine adds to the break value the number of bytes contained in the Increment parameter

and changes the amount of available space accordingly. The Increment parameter can be a negative

number, in which case the amount of available space is decreased.

Parameters

 EndDataSegment Specifies the effective address of the maximum available data.

Increment Specifies any integer.

Return Values

Upon successful completion, the brk subroutine returns a value of 0, and the sbrk subroutine returns the

old break value. If either subroutine is unsuccessful, a value of -1 is returned and the errno global variable

is set to indicate the error.

Error Codes

The brk subroutine and the sbrk subroutine are unsuccessful and the allocated space remains unchanged

if one or more of the following are true:

120 Technical Reference, Volume 1: Base Operating System and Extensions

ENOMEM The requested change allocates more space than is allowed by a system-imposed

maximum. (For information on the system-imposed maximum on memory space, see the

ulimit system call.)

ENOMEM The requested change sets the break value to a value greater than or equal to the start

address of any attached shared-memory segment. (For information on shared memory

operations, see the shmat subroutine.)

Related Information

The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

subroutines, getrlimit (“getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine” on page 415)

subroutine, shmat subroutine, shmdt subroutine, ulimit subroutine.

The _end (“_end, _etext, or _edata Identifier” on page 220), _etext (“_end, _etext, or _edata Identifier” on

page 220), or _edata (“_end, _etext, or _edata Identifier” on page 220) identifier.

Subroutine Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

bsearch Subroutine

Purpose

Performs a binary search.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

void *bsearch (Key, Base, NumberOfElements, Size, ComparisonPointer)

const void *Key;

const void *Base;

size_t NumberOfElements;

size_t Size;

int (*ComparisonPointer) (const void *, const void *);

Description

The bsearch subroutine is a binary search routine.

The bsearch subroutine searches an array of NumberOfElements objects, the initial member of which is

pointed to by the Base parameter, for a member that matches the object pointed to by the Key parameter.

The size of each member in the array is specified by the Size parameter.

The array must already be sorted in increasing order according to the provided comparison function

ComparisonPointer parameter.

Parameters

 Key Points to the object to be sought in the array.

Base Points to the element at the base of the table.

NumberOfElements Specifies the number of elements in the array.

Base Operating System (BOS) Runtime Services (A-P) 121

ComparisonPointer Points to the comparison function, which is called with two arguments that point to

the Key parameter object and to an array member, in that order.

Size Specifies the size of each member in the array.

Return Values

If the Key parameter value is found in the table, the bsearch subroutine returns a pointer to the element

found.

If the Key parameter value is not found in the table, the bsearch subroutine returns the null value. If two

members compare as equal, the matching member is unspecified.

For the ComparisonPointer parameter, the comparison function compares its parameters and returns a

value as follows:

v If the first parameter is less than the second parameter, the ComparisonPointer parameter returns a

value less than 0.

v If the first parameter is equal to the second parameter, the ComparisonPointer parameter returns a

value of 0.

v If the first parameter is greater than the second parameter, the ComparisonPointer parameter returns a

value greater than 0.

The comparison function need not compare every byte, so arbitrary data can be contained in the elements

in addition to the values being compared.

The Key and Base parameters should be of type pointer-to-element and cast to type pointer-to-character.

Although declared as type pointer-to-character, the value returned should be cast into type

pointer-to-element.

Related Information

The hsearch (“hsearch, hcreate, or hdestroy Subroutine” on page 517) subroutine, lsearch (“lsearch or

lfind Subroutine” on page 750) subroutine, qsort subroutine.

Knuth, Donald E.; The Art of Computer Programming, Volume 3. Reading, Massachusetts,

Addison-Wesley, 1981.

Searching and Sorting Example Program and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

btowc Subroutine

Purpose

Single-byte to wide-character conversion.

Library

Standard Library (libc.a)

Syntax

#include <stdio.h>

#include <wchar.h>

wint_t btowc (intc);

122 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The btowc function determines whether c constitutes a valid (one-byte) character in the initial shift state.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values

The btowc function returns WEOF if c has the value EOF or if (unsigned char) c does not constitute a

valid (one-byte) character in the initial shift state. Otherwise, it returns the wide-character representation of

that character.

Related Information

The wctob subroutine.

buildproclist Subroutine

Purpose

Retrieves a list of process transaction records based on the criteria specified.

Library

The libaacct.a library.

Syntax

#define <sys/aacct.h>

int buildproclist(crit, crit_list, n_crit, p_list, sublist)

int crit;

union proc_crit *crit_list;

int n_crit;

struct aacct_tran_rec *p_list;

struct aacct_tran_rec **sublist;

Description

The buildproclist subroutine retrieves a subset of process transaction records from the master process

transaction records that are given as input based on the selection criteria provided. This selection criteria

can be one of the following values defined in sys/aacct.h:

v CRIT_UID

v CRIT_GID

v CRIT_PROJ

v CRIT_CMD

For example, if the criteria is specified as CRIT_UID, the list of process transaction records for specific

user IDs will be retrieved. The list of user IDs are passed through the crit_list argument of type union

proc_crit. Based on the specified criteria, the caller has to pass an array of user IDs, group IDs, project

IDs or command names in this union.

Usually, the master list of transaction records is obtained by a prior call to the getproclist subroutine.

Parameters

 crit Integer value representing the selection criteria for the process records.

crit_list Pointer to union proc_crit where the data for the selection criteria is passed.

n_crit Number of elements to be considered for the selection, such as the number of user IDs.

p_list Master list of process transaction records.

Base Operating System (BOS) Runtime Services (A-P) 123

sublist Pointer to the linked list of aacct_tran_rec structures, which hold the retrieved process

transaction records.

Security

No restrictions. Any user can call this function.

Return Values

 0 The call to the subroutine was successful.

-1 The call to the subroutine failed.

Error Codes

 EINVAL The passed pointer is NULL.

ENOMEM Insufficient memory.

EPERM Permission denied. Unable to read the data file.

Related Information

The “buildproclist Subroutine” on page 123, “buildtranlist or freetranlist Subroutine,” “getfilehdr Subroutine”

on page 359.

The acctrpt command.

Understanding the Advanced Accounting Subsystem.

buildtranlist or freetranlist Subroutine

Purpose

Read the advanced accounting records from the advanced accounting data file.

Library

The libaacct.a library.

Syntax

#define <sys/aacct.h>

buildtranlist(filename, trid[], ntrids, begin_time, end_time, tran_list)

char *filename;

unsigned int trid[];

unsigned int ntrids;

long long begin_time;

long long end_time;

struct aacct_tran_rec **tran_list;

freetranlist(tran_list)

struct aacct_tran_rec *tran_list;

Description

The buildtranlist subroutine retrieves the transaction records of the specified transaction type from the

accounting data file. The required transaction IDs are passed as arguments, and these IDs are defined in

sys/aacct.h. The list of transaction records are returned to the calling program through the tran_list pointer

argument.

124 Technical Reference, Volume 1: Base Operating System and Extensions

This API can be called multiple times with different accounting data file names to generate a consolidated

list of transaction records from multiple data files. It appends the new file data to the end of the linked list

pointed to by the tran_list argument. In addition, it internally sorts the transaction records based on the

time of transaction so users can get a time-sorted list of transaction records from this routine. This

subroutine can also be used to retrieve the intended transaction records for a particular interval of time by

specifying the begin and end times of this interval as arguments.

The freetranlist subroutine frees the memory allocated to these transaction records. It can be used to

deallocate memory that has been allocated to the transaction record lists created by routines such as

buildtranlist, getproclist, getlparlist, and getarmlist.

Parameters

 begin_time Specifies the start timestamp for collecting records in a particular intervals. The input is

in seconds since EPOCH. Specifying -1 retrieves all the records.

end_time Specifies the end timestamp for collecting records in a particular intervals. The input is

in seconds since EPOCH. Specifying -1 retrieves all the records.

filename Name of the advanced accounting data file.

ntrids Count of transaction IDs passed in the array trid.

tran_list Pointer to the linked list of aacct_tran_rec structures that are to be returned to the

caller or freed.

trid An array of transaction record type identifiers.

Security

No restrictions. Any user can call this function.

Return Values

 0 The call to the subroutine was successful.

-1 The call to the subroutine failed.

Error Codes

 EINVAL The passed pointer is NULL.

ENOENT Specified data file does not exist.

ENOMEM Insufficient memory.

EPERM Permission denied. Unable to read the data file.

Related Information

The “buildproclist Subroutine” on page 123, “getproclist, getlparlist, or getarmlist Subroutine” on page 405.

Understanding the Advanced Accounting Subsystem.

_check_lock Subroutine

Purpose

Conditionally updates a single word variable atomically.

Library

Standard C library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 125

Syntax

#include <sys/atomic_op.h>

boolean_t _check_lock (word_addr, old_val, new_val)

atomic_p word_addr;

int old_val;

int new_val;

Parameters

 word_addr Specifies the address of the single word variable.

old_val Specifies the old value to be checked against the value of the single word variable.

new_val Specifies the new value to be conditionally assigned to the single word variable.

Description

The _check_lock subroutine performs an atomic (uninterruptible) sequence of operations. The

compare_and_swap subroutine is similar, but does not issue synchronization instructions and therefore is

inappropriate for updating lock words.

Note: The word variable must be aligned on a full word boundary.

Return Values

 FALSE Indicates that the single word variable was equal to the old value and has been set to the new

value.

TRUE Indicates that the single word variable was not equal to the old value and has been left

unchanged.

Related Information

The _clear_lock (“_clear_lock Subroutine”) subroutine.

_clear_lock Subroutine

Purpose

Stores a value in a single word variable atomically.

Library

Standard C library (libc.a)

Syntax

#include <sys/atomic_op.h>

void _clear_lock (word_addr, value)

atomic_p word_addr;

int value

Parameters

 word_addr Specifies the address of the single word variable.

value Specifies the value to store in the single word variable.

126 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The _clear_lock subroutine performs an atomic (uninterruptible) sequence of operations.

This subroutine has no return values.

Note: The word variable must be aligned on a full word boundary.

Related Information

The _check_lock (“_check_lock Subroutine” on page 125) subroutine.

cabs, cabsf, or cabsl Subroutine

Purpose

Returns a complex absolute value.

Syntax

#include <complex.h>

double cabs (z)

double complex z;

float cabsf (z)

float complex z;

long double cabsl (z)

long double complex z;

Description

The cabs, cabsf, or cabsl subroutines compute the complex absolute value (also called norm, modulus,

or magnitude) of the z parameter.

Parameters

 z Specifies the value to be computed.

Return Values

Returns the complex absolute value.

cacos, cacosf, or cacosl Subroutine

Purpose

Computes the complex arc cosine.

Syntax

#include <complex.h>

double complex cacos (z)

double complex z;

float complex cacosf (z)

Base Operating System (BOS) Runtime Services (A-P) 127

float complex z;

long double complex cacosl (z)

long double complex z;

Description

The cacos, cacosf, or cacosl subroutine computes the complex arc cosine of z, with branch cuts outside

the interval [–1, +1] along the real axis.

Parameters

 z Specifies the value to be computed.

Return Values

The cacos, cacosf, or cacosl subroutine returns the complex arc cosine value, in the range of a strip

mathematically unbounded along the imaginary axis and in the interval [0, pi] along the real axis.

cacosh, cacoshf, or cacoshl Subroutines

Purpose

Computes the complex arc hyperbolic cosine.

Syntax

#include <complex.h>

double complex cacosh (z)

double complex z;

float complex cacoshf (z)

float complex z;

long double complex cacoshl (z)

long double complex z;

Description

The cacosh, cacoshf, or cacoshl subroutine computes the complex arc hyperbolic cosine of the z

parameter, with a branch cut at values less than 1 along the real axis.

Parameters

 z Specifies the value to be computed.

Return Values

The cacosh, cacoshf, or cacoshl subroutine returns the complex arc hyperbolic cosine value, in the

range of a half-strip of non-negative values along the real axis and in the interval [-i pi , +i pi] along the

imaginary axis.

Related Information

The “ccosh, ccoshf, or ccoshl Subroutine” on page 137.

128 Technical Reference, Volume 1: Base Operating System and Extensions

carg, cargf, or cargl Subroutine

Purpose

Returns the complex argument value.

Syntax

#include <complex.h>

double carg (z)

double complex z;

float cargf (z)

float complex z;

long double cargl (z)

long double complex z;

Description

The carg, cargf, or cargl subroutine computes the argument (also called phase angle) of the z parameter,

with a branch cut along the negative real axis.

Parameters

 z Specifies the value to be computed.

Return Values

The carg, cargf, or cargl subroutine returns the value of the argument in the interval [-pi, +pi].

Related Information

The “cimag, cimagf, or cimagl Subroutine” on page 161, “conj, conjf, or conjl Subroutine” on page 180, and

“cproj, cprojf, or cprojl Subroutine” on page 187.

casin, casinf, or casinl Subroutine

Purpose

Computes the complex arc sine.

Syntax

#include <complex.h>

double complex casin (z)

double complex z;

float complex casinf (z)

float complex z;

long double complex casinl (z)

long double complex z;

Description

The casin, casinf, or casinl subroutine computes the complex arc sine of the z parameter, with branch

cuts outside the interval [–1, +1] along the real axis.

Base Operating System (BOS) Runtime Services (A-P) 129

Parameters

 z Specifies the value to be computed.

Return Values

The casin, casinf, or casinl subroutine returns the complex arc sine value, in the range of a strip

mathematically unbounded along the imaginary axis and in the interval [-pi/2, +pi/2] along the real axis.

Related Information

The “csin, csinf, or csinl Subroutine” on page 191.

casinh, casinfh, or casinlh Subroutine

Purpose

Computes the complex arc hyperbolic sine.

Syntax

#include <complex.h>

double complex casinh (z)

double complex z;

float complex casinhf (z)

float complex z;

long double complex casinhl (z)

long double complex z;

Description

The casinh, casinfh, and casinlh subroutines compute the complex arc hyperbolic sine of the z

parameter, with branch cuts outside the interval [-i, +i] along the imaginary axis.

Parameters

 z Specifies the value to be computed.

Return Values

The casinh, casinfh, and casinlh subroutines return the complex arc hyperbolic sine value, in the range

of a strip mathematically unbounded along the real axis and in the interval [-i pi/2, +i pi/2] along the

imaginary axis.

Related Information

The “casin, casinf, or casinl Subroutine” on page 129.

catan, catanf, or catanl Subroutine

Purpose

Computes the complex arc tangent.

130 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <complex.h>

double complex catan (z)

double complex z;

float complex catanf (z)

float complex z;

long double complex catanl (z)

long double complex z;

Description

The catan, catanf, and catanl subroutines compute the complex arc tangent of z, with branch cuts

outside the interval [-i, +i] along the imaginary axis.

Parameters

 z Specifies the value to be computed.

Return Values

The catan, catanf, and catanl subroutines return the complex arc tangent value, in the range of a strip

mathematically unbounded along the imaginary axis and in the interval [-pi/2, +pi/2] along the real axis.

Related Information

“catanh, catanhf, or catanhl Subroutine”

catanh, catanhf, or catanhl Subroutine

Purpose

Computes the complex arc hyperbolic tangent.

Syntax

#include <complex.h>

double complex catanh (z)

double complex z;

float complex catanhf (z)

float complex z;

long double complex catanhl (z)

long double complex z;

Description

The catanh, catanhf, and catanhl subroutines compute the complex arc hyperbolic tangent of z, with

branch cuts outside the interval [-1, +1] along the real axis.

Parameters

 z Specifies the value to be computed.

Base Operating System (BOS) Runtime Services (A-P) 131

Return Values

The catanh, catanhf, and catanhl subroutines return the complex arc hyperbolic tangent value, in the

range of a strip mathematically unbounded along the real axis and in the interval [-i pi/2, +i pi/2] along the

imaginary axis.

Related Information

“catan, catanf, or catanl Subroutine” on page 130

catclose Subroutine

Purpose

Closes a specified message catalog.

Library

Standard C Library (libc.a)

Syntax

#include <nl_types.h>

int catclose (CatalogDescriptor)

nl_catd CatalogDescriptor;

Description

The catclose subroutine closes a specified message catalog. If your program accesses several message

catalogs and you reach the maximum number of opened catalogs (specified by the NL_MAXOPEN

constant), you must close some catalogs before opening additional ones. If you use a file descriptor to

implement the nl_catd data type, the catclose subroutine closes that file descriptor.

The catclose subroutine closes a message catalog only when the number of calls it receives matches the

total number of calls to the catopen subroutine in an application. All message buffer pointers obtained by

prior calls to the catgets subroutine are not valid when the message catalog is closed.

Parameters

 CatalogDescriptor Points to the message catalog returned from a call to the catopen subroutine.

Return Values

The catclose subroutine returns a value of 0 if it closes the catalog successfully, or if the number of calls

it receives is fewer than the number of calls to the catopen subroutine.

The catclose subroutine returns a value of -1 if it does not succeed in closing the catalog. The catclose

subroutine is unsuccessful if the number of calls it receives is greater than the number of calls to the

catopen subroutine, or if the value of the CatalogDescriptor parameter is not valid.

Related Information

The catgets (“catgets Subroutine” on page 133) subroutine, catopen (“catopen Subroutine” on page 134)

subroutine.

For more information about the Message Facility, see Message Facility Overview for Programming in AIX

5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

132 Technical Reference, Volume 1: Base Operating System and Extensions

For more information about subroutines and libraries, see Subroutines Overview in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

catgets Subroutine

Purpose

Retrieves a message from a catalog.

Library

Standard C Library (libc.a)

Syntax

#include <nl_types>

char *catgets (CatalogDescriptor, SetNumber, MessageNumber, String)

nl_catd CatalogDescriptor;

int SetNumber, MessageNumber;

const char * String;

Description

The catgets subroutine retrieves a message from a catalog after a successful call to the catopen

subroutine. If the catgets subroutine finds the specified message, it loads it into an internal character

string buffer, ends the message string with a null character, and returns a pointer to the buffer.

The catgets subroutine uses the returned pointer to reference the buffer and display the message.

However, the buffer can not be referenced after the catalog is closed.

Parameters

 CatalogDescriptor Specifies a catalog description that is returned by the catopen subroutine.

SetNumber Specifies the set ID.

MessageNumber Specifies the message ID. The SetNumber and MessageNumber parameters

specify a particular message to retrieve in the catalog.

String Specifies the default character-string buffer.

Return Values

If the catgets subroutine is unsuccessful for any reason, it returns the user-supplied default message

string specified by the String parameter.

Related Information

The catclose (“catclose Subroutine” on page 132) subroutine, catopen (“catopen Subroutine” on page

134) subroutine.

For more information about the Message Facility, see Message Facility Overview for Programming in AIX

5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

For more information about subroutines and libraries, see Subroutines Overview in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 133

catopen Subroutine

Purpose

Opens a specified message catalog.

Library

Standard C Library (libc.a)

Syntax

#include <nl_types.h>

nl_catd catopen (CatalogName, Parameter)

const char *CatalogName;

int Parameter;

Description

The catopen subroutine opens a specified message catalog and returns a catalog descriptor used to

retrieve messages from the catalog. The contents of the catalog descriptor are complete when the catgets

subroutine accesses the message catalog. The nl_catd data type is used for catalog descriptors and is

defined in the nl_types.h file.

If the catalog file name referred to by the CatalogName parameter contains a leading / (slash), it is

assumed to be an absolute path name. If the catalog file name is not an absolute path name, the user

environment determines which directory paths to search. The NLSPATH environment variable defines the

directory search path. When this variable is used, the setlocale subroutine must be called before the

catopen subroutine.

A message catalog descriptor remains valid in a process until that process or a successful call to one of

the exec functions closes it.

You can use two special variables, %N and %L, in the NLSPATH environment variable. The %N variable

is replaced by the catalog name referred to by the call that opens the message catalog. The %L variable

is replaced by the value of the LC_MESSAGES category.

The value of the LC_MESSAGES category can be set by specifying values for the LANG, LC_ALL, or

LC_MESSAGES environment variable. The value of the LC_MESSAGES category indicates which

locale-specific directory to search for message catalogs. For example, if the catopen subroutine specifies

a catalog with the name mycmd, and the environment variables are set as follows:

NLSPATH=../%N:./%N:/system/nls/%L/%N:/system/nls/%N LANG=fr_FR

then the application searches for the catalog in the following order:

../mycmd

./mycmd

/system/nls/fr_FR/mycmd

/system/nls/mycmd

If you omit the %N variable in a directory specification within the NLSPATH environment variable, the

application assumes that it defines a catalog name and opens it as such and will not traverse the rest of

the search path.

If the NLSPATH environment variable is not defined, the catopen subroutine uses the default path. See

the /etc/environment file for the NLSPATH default path. If the LC_MESSAGES category is set to the

134 Technical Reference, Volume 1: Base Operating System and Extensions

default value C, and the LC__FASTMSG environment variable is set to true, then subsequent calls to the

catgets subroutine generate pointers to the program-supplied default text.

The catopen subroutine treats the first file it finds as a message file. If you specify a non-message file in a

NLSPATH, for example, /usr/bin/ls, catopen treats /usr/bin/ls as a message catalog. Thus no messages

are found and default messages are returned. If you specify /tmp in a NLSPATH, /tmp is opened and

searched for messages and default messages are displayed.

Parameters

 CatalogName Specifies the catalog file to open.

Parameter Determines the environment variable to use in locating the message catalog. If the value

of the Parameter parameter is 0, use the LANG environment variable without regard to

the LC_MESSAGES category to locate the catalog. If the value of the Parameter

parameter is the NL_CAT_LOCALE macro, use the LC_MESSAGES category to locate

the catalog.

Return Values

The catopen subroutine returns a catalog descriptor. If the LC_MESSAGES category is set to the default

value C, and the LC__FASTMSG environment variable is set to true, the catopen subroutine returns a

value of -1.

If the LC_MESSAGES category is not set to the default value C but the catopen subroutine returns a

value of -1, an error has occurred during creation of the structure of the nl_catd data type or the catalog

name referred to by the CatalogName parameter does not exist.

Related Information

The catclose (“catclose Subroutine” on page 132) subroutine, catgets (“catgets Subroutine” on page 133)

subroutine, exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

subroutines, setlocale subroutine.

The environment file.

For more information about the Message Facility, see the Message Facility Overview for Programming in

AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

For more information about subroutines and libraries, see the Subroutines Overview in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

cbrtf, cbrtl, or cbrt Subroutine

Purpose

Computes the cube root.

Syntax

#include <math.h>

float cbrtf (x)

float x;

long double cbrtl (x)

Base Operating System (BOS) Runtime Services (A-P) 135

long double x;

double cbrt (x)

double x;

Description

The cbrtf, cbrtl, and cbrt subroutines compute the real cube root of the x argument.

Parameters

 x Specifies the value to be computed.

Return Values

Upon successful completion, the cbrtf, cbrtl, and cbrt subroutines return the cube root of x.

If x is NaN, an NaN is returned.

If x is ±0 or ±Inf, x is returned.

Related Information

math.h in AIX 5L Version 5.3 Files Reference.

ccos, ccosf, or ccosl Subroutine

Purpose

Computes the complex cosine.

Syntax

#include <complex.h>

double complex ccos (z)

double complex z;

float complex ccosf (z)

float complex z;

long double complex ccosl (z)

long double complex z;

Description

The ccos, ccosf, and ccosl subroutines compute the complex cosine of z.

Parameters

 z Specifies the value to be computed.

Return Values

The ccos, ccosf, and ccosl subroutines return the complex cosine value.

Related Information

“cacos, cacosf, or cacosl Subroutine” on page 127

136 Technical Reference, Volume 1: Base Operating System and Extensions

ccosh, ccoshf, or ccoshl Subroutine

Purpose

Computes the complex hyperbolic cosine.

Syntax

#include <complex.h>

double complex ccosh (z)

double complex z;

float complex ccoshf (z)

float complex z;

long double complex ccoshl (z)

long double complex z;

Description

The ccosh, ccoshf, and ccoshl subroutines compute the complex hyperbolic cosine of z.

Parameters

 z Specifies the value to be computed.

Return Values

The ccosh, ccoshf, and ccoshl subroutines return the complex hyperbolic cosine value.

Related Information

“cacosh, cacoshf, or cacoshl Subroutines” on page 128

ccsidtocs or cstoccsid Subroutine

Purpose

Provides conversion between coded character set IDs (CCSID) and code set names.

Library

The iconv Library (libiconv.a)

Syntax

#include <iconv.h>

CCSID cstoccsid (* Codeset)

const char *Codeset;

char *ccsidtocs (CCSID)

CCSID CCSID;

Description

The cstoccsid subroutine returns the CCSID of the code set specified by the Codeset parameter. The

ccsidtocs subroutine returns the code set name of the CCSID specified by CCSID parameter. CCSIDs

are registered IBM coded character set IDs.

Base Operating System (BOS) Runtime Services (A-P) 137

Parameters

 Codeset Specifies the code set name to be converted to its corresponding CCSID.

CCSID Specifies the CCSID to be converted to its corresponding code set name.

Return Values

If the code set is recognized by the system, the cstoccsid subroutine returns the corresponding CCSID.

Otherwise, null is returned.

If the CCSID is recognized by the system, the ccsidtocs subroutine returns the corresponding code set

name. Otherwise, a null pointer is returned.

Related Information

For more information about code set conversion, see Converters Overview for Programming in AIX 5L

Version 5.3 General Programming Concepts: Writing and Debugging Programs.

The National Language Support Overview for Programming in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

ceil, ceilf, or ceill Subroutine

Purpose

Computes the ceiling value.

Syntax

#include <math.h>

float ceilf (x)

float x;

long double ceill (x)

long double x;

double ceil (x)

double x;

Description

The ceilf, ceill, and ceil subroutines compute the smallest integral value not less than x.

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the smallest integral value to be computed.

138 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, the ceilf, ceill , and ceil subroutines return the smallest integral value not

less than x, expressed as a type float, long double, or double, respectively.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

If the correct value would cause overflow, a range error occurs and the ceilf, ceill, and ceil subroutines

return the value of the macro HUGE_VALF, HUGE_VALL, and HUGE_VAL, respectively.

Related Information

“feclearexcept Subroutine” on page 259, “fetestexcept Subroutine” on page 267, “floor, floorf, floorl,

nearest, trunc, itrunc, or uitrunc Subroutine” on page 271, and “class, _class, finite, isnan, or unordered

Subroutines” on page 165.

math.h in AIX 5L Version 5.3 Files Reference.

cexp, cexpf, or cexpl Subroutine

Purpose

Performs complex exponential computations.

Syntax

#include <complex.h>

double complex cexp (z)

double complex z;

float complex cexpf (z)

float complex z;

long double complex cexpl (z)

long double complex z;

Description

The cexp, cexpf, and cexpl subroutines compute the complex exponent of z, defined as ez .

Parameters

 z Specifies the value to be computed.

Return Values

The cexp, cexpf, and cexpl subroutines return the complex exponential value of z.

Related Information

The “clog, clogf, or clogl Subroutine” on page 172.

Base Operating System (BOS) Runtime Services (A-P) 139

cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed Subroutine

Purpose

Gets and sets input and output baud rates.

Library

Standard C Library (libc.a)

Syntax

#include <termios.h>

speed_t cfgetospeed (TermiosPointer)

const struct termios *TermiosPointer;

int cfsetospeed (TermiosPointer, Speed)

struct termios *TermiosPointer;

speed_t Speed;

speed_t cfgetispeed (TermiosPointer)

const struct termios *TermiosPointer;

int cfsetispeed (TermiosPointer, Speed)

struct termios *TermiosPointer;

speed_t Speed;

Description

The baud rate subroutines are provided for getting and setting the values of the input and output baud

rates in the termios structure. The effects on the terminal device described below do not become effective

and not all errors are detected until the tcsetattr function is successfully called.

The input and output baud rates are stored in the termios structure. The supported values for the baud

rates are shown in the table that follows this discussion.

The termios.h file defines the type speed_t as an unsigned integral type.

The cfgetospeed subroutine returns the output baud rate stored in the termios structure pointed to by the

TermiosPointer parameter.

The cfsetospeed subroutine sets the output baud rate stored in the termios structure pointed to by the

TermiosPointer parameter to the value specified by the Speed parameter.

The cfgetispeed subroutine returns the input baud rate stored in the termios structure pointed to by the

TermiosPointer parameter.

The cfsetispeed subroutine sets the input baud rate stored in the termios structure pointed to by the

TermiosPointer parameter to the value specified by the Speed parameter.

Certain values for speeds have special meanings when set in the termios structure and passed to the

tcsetattr function. These values are discussed in the tcsetattr subroutine.

The following table lists possible baud rates:

 Baud Rate Values

Name Description

B0 Hang up

140 Technical Reference, Volume 1: Base Operating System and Extensions

Baud Rate Values

Name Description

B5 50 baud

B75 75 baud

B110 110 baud

B134 134 baud

B150 150 baud

B200 200 baud

B300 300 baud

B600 600 baud

B1200 1200 baud

B1800 1800 baud

B2400 2400 baud

B4800 4800 baud

B9600 9600 baud

B19200 19200 baud

B38400 38400 baud

The termios.h file defines the name symbols of the table.

Parameters

 TermiosPointer Points to a termios structure.

Speed Specifies the baud rate.

Return Values

The cfgetospeed and cfgetispeed subroutines return exactly the value found in the termios data

structure, without interpretation.

Both the cfsetospeed and cfsetispeed subroutines return a value of 0 if successful and -1 if

unsuccessful.

Examples

To set the output baud rate to 0 (which forces modem control lines to stop being asserted), enter:

cfsetospeed (&my_termios, B0);

tcsetattr (stdout, TCSADRAIN, &my_termios);

Related Information

The tcsetattr subroutine.

The termios.h file.

Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 141

chacl or fchacl Subroutine

Purpose

Changes the AIXC ACL type access control information of a file.

Library

Standard C Library (libc.a)

Syntax

#include <sys/acl.h>

#include <sys/mode.h>

int chacl (Path, ACL, ACLSize)

char *Path;

struct acl *ACL;

int ACLSize;

int fchacl (FileDescriptor, ACL, ACLSize)

int FileDescriptor;

struct acl *ACL;

int ACLSize;

Description

The chacl and fchacl subroutines set the access control attributes of a file according to the AIXC ACL

Access Control List (ACL) structure pointed to by the ACL parameter. Note that these routines could fail if

the current ACL associated with the file system object is of a different type or if the underlying physical file

system does not support AIXC ACL type. It is strongly recommended that applications stop using these

interfaces and instead make use of aclx_get /aclx_fget and aclx_put/aclx_fput subroutines to change

the ACL.

Parameters

 Path Specifies the path name of the file.

142 Technical Reference, Volume 1: Base Operating System and Extensions

ACL Specifies the AIXC ACL to be established on the file. The format of an AIXC ACL is

defined in the sys/acl.h file and contains the following members:

acl_len

Specifies the size of the ACL (Access Control List) in bytes, including the base

entries.

 Note: The entire ACL for a file cannot exceed one memory page (4096 bytes).

acl_mode

Specifies the file mode.

The following bits in the acl_mode member are defined in the sys/mode.h file and are

significant for this subroutine:

S_ISUID

Enables the setuid attribute on an executable file.

S_ISGID

Enables the setgid attribute on an executable file. Enables the group-inheritance

attribute on a directory.

S_ISVTX

Enables linking restrictions on a directory.

S_IXACL

Enables extended ACL entry processing. If this attribute is not set, only the base

entries (owner, group, and default) are used for access authorization checks.

Other bits in the mode, including the following, are ignored:

u_access

Specifies access permissions for the file owner.

g_access

Specifies access permissions for the file group.

o_access

Specifies access permissions for the default class of others.

acl_ext[]

Specifies an array of the extended entries for this access control list.

The members for the base ACL (owner, group, and others) can contain the following bits,

which are defined in the sys/access.h file:

R_ACC

Allows read permission.

W_ACC

Allows write permission.

X_ACC Allows execute or search permission.

FileDescriptor Specifies the file descriptor of an open file.

ACLSize Specifies the size of the buffer containing the ACL.

Note: The chacl subroutine requires the Path, ACL, and ACLSize parameters. The fchacl subroutine

requires the FileDescriptor, ACL, and ACLSize parameters.

ACL Data Structure for chacl

Each access control list structure consists of one struct acl structure containing one or more struct

acl_entry structures with one or more struct ace_id structures.

If the struct ace_id structure has id_type set to ACEID_USER or ACEID_GROUP, there is only one

id_data element. To add multiple IDs to an ACL you must specify multiple struct ace_id structures when

id_type is set to ACEID_USER or ACEID_GROUP. In this case, no error is returned for the multiple

Base Operating System (BOS) Runtime Services (A-P) 143

elements, and the access checking examines only the first element. Specifically, the errno value EINVAL

is not returned for acl_len being incorrect in the ACL structure although more than one uid or gid is

specified.

Return Values

Upon successful completion, the chacl and fchacl subroutines return a value of 0. If the chacl or fchacl

subroutine fails, a value of -1 is returned, and the errno global variable is set to indicate the error.

Error Codes

The chacl subroutine fails and the access control information for a file remains unchanged if one or more

of the following are true:

 ENOTDIR A component of the Path prefix is not a directory.

ENOENT A component of the Path does not exist or has the disallow truncation attribute (see the

ulimit subroutine).

ENOENT The Path parameter was null.

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the

process.

ESTALE The process’ root or current directory is located in a virtual file system that has been

unmounted.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path parameter

exceeded 1023 characters.

The chacl or fchacl subroutine fails and the access control information for a file remains unchanged if one

or more of the following are true:

 EROFS The file specified by the Path parameter resides on a read-only file system.

EFAULT The ACL parameter points to a location outside of the allocated address space of the process.

EINVAL The ACL parameter does not point to a valid ACL.

EINVAL The acl_len member in the ACL is not valid.

EIO An I/O error occurred during the operation.

ENOSPC The size of the ACL parameter exceeds the system limit of one memory page (4KB).

EPERM The effective user ID does not match the ID of the owner of the file, and the invoker does not

have root user authority.

The fchacl subroutine fails and the file permissions remain unchanged if the following is true:

 EBADF The file descriptor FileDescriptor is not valid.

If Network File System (NFS) is installed on your system, the chacl and fchacl subroutines can also fail if

the following is true:

 ETIMEDOUT The connection timed out.

Security

Access Control: The invoker must have search permission for all components of the Path prefix.

144 Technical Reference, Volume 1: Base Operating System and Extensions

Auditing Events:

 Event Information

chacl Path

fchacl FileDescriptor

Related Information

The acl_chg (“acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_get (“acl_get or acl_fget

Subroutine” on page 10) subroutine, acl_put (“acl_put or acl_fput Subroutine” on page 12) subroutine,

acl_set (“acl_set or acl_fset Subroutine” on page 14) subroutine, chmod (“chmod or fchmod Subroutine”

on page 146) subroutine, stat subroutine, statacl subroutine.

“aclx_get or aclx_fget Subroutine” on page 17, “aclx_put or aclx_fput Subroutine” on page 25.

The aclget command, aclput command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

chdir Subroutine

Purpose

Changes the current directory.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

int chdir (Path)

const char *Path;

Description

The chdir subroutine changes the current directory to the directory indicated by the Path parameter.

Parameters

 Path A pointer to the path name of the directory. If the Path parameter refers to a symbolic link, the chdir

subroutine sets the current directory to the directory pointed to by the symbolic link. If Network File

System (NFS) is installed on the system, this path can cross into another node.

The current directory, also called the current working directory, is the starting point of searches for path

names that do not begin with a / (slash). The calling process must have search access to the directory

specified by the Path parameter.

Return Values

Upon successful completion, the chdir subroutine returns a value of 0. Otherwise, a value of -1 is returned

and the errno global variable is set to identify the error.

Base Operating System (BOS) Runtime Services (A-P) 145

Error Codes

The chdir subroutine fails and the current directory remains unchanged if one or more of the following are

true:

 EACCES Search access is denied for the named directory.

ENOENT The named directory does not exist.

ENOTDIR The path name is not a directory.

The chdir subroutine can also be unsuccessful for other reasons. See Appendix A. Base Operating

System Error Codes for Services That Require Path-Name Resolution (Appendix A, “Base Operating

System Error Codes for Services That Require Path-Name Resolution,” on page 1251) for a list of

additional error codes.

If NFS is installed on the system, the chdir subroutine can also fail if the following is true:

 ETIMEDOUT The connection timed out.

Related Information

The chroot (“chroot Subroutine” on page 158) subroutine.

The cd command.

Appendix A, “Base Operating System Error Codes for Services That Require Path-Name Resolution,” on

page 1251.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

chmod or fchmod Subroutine

Purpose

Changes file system object’s base file mode bits.

Library

Standard C Library (libc.a)

Syntax

#include <sys/stat.h>

int chmod (Path, Mode)

const char *Path;

mode_t Mode;

int fchmod (FileDescriptor, Mode)

int FileDescriptor;

mode_t Mode;

Description

The chmod subroutine sets the access permissions of the file specified by the Path parameter. If Network

File System (NFS) is installed on your system, this path can cross into another node.

146 Technical Reference, Volume 1: Base Operating System and Extensions

Use the fchmod subroutine to set the access permissions of an open file pointed to by the FileDescriptor

parameter.

If FileDescriptor references a shared memory object, the fchmod subroutine affects the S_IRUSR,

S_IWUSR, S_IRGRP, S_IWGRP, S_IROTH, and S_IWOTH file permission bits.

The access control information is set according to the Mode parameter. Note that these routines will

replace any existing ACL associated with the file system object.

Parameters

 FileDescriptor Specifies the file descriptor of an open file or shared memory object.

Base Operating System (BOS) Runtime Services (A-P) 147

Mode Specifies the bit pattern that determines the access permissions. The Mode parameter

is constructed by logically ORing one or more of the following values, which are defined

in the sys/mode.h file:

S_ISUID

Enables the setuid attribute for an executable file. A process executing this

program acquires the access rights of the owner of the file.

S_ISGID

Enables the setgid attribute for an executable file. A process executing this

program acquires the access rights of the group of the file. Also, enables the

group-inheritance attribute for a directory. Files created in this directory have a

group equal to the group of the directory.

The following attributes apply only to files that are directly executable. They have no

meaning when applied to executable text files such as shell scripts and awk scripts.

S_ISVTX

Enables the link/unlink attribute for a directory. Files cannot be linked to in

this directory. Files can only be unlinked if the requesting process has write

permission for the directory and is either the owner of the file or the directory.

S_ISVTX

Enables the save text attribute for an executable file. The program is not

unmapped after usage.

S_ENFMT

Enables enforcement-mode record locking for a regular file. File locks

requested with the lockf subroutine are enforced.

S_IRUSR

Permits the file’s owner to read it.

S_IWUSR

Permits the file’s owner to write to it.

S_IXUSR

Permits the file’s owner to execute it (or to search the directory).

S_IRGRP

Permits the file’s group to read it.

S_IWGRP

Permits the file’s group to write to it.

S_IXGRP

Permits the file’s group to execute it (or to search the directory).

S_IROTH

Permits others to read the file.

S_IWOTH

Permits others to write to the file.

S_IXOTH

Permits others to execute the file (or to search the directory).

Other mode values exist that can be set with the mknod subroutine but not with the

chmod subroutine.

Path Specifies the full path name of the file.

Return Values

Upon successful completion, the chmod subroutine and fchmod subroutines return a value of 0. If the

chmod subroutine or fchmod subroutine is unsuccessful, a value of -1 is returned, and the errno global

variable is set to identify the error.

148 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The chmod subroutine is unsuccessful and the file permissions remain unchanged if one of the following

is true:

 ENOTDIR A component of the Path prefix is not a directory.

EACCES Search permission is denied on a component of the Path prefix.

EFAULT The Path parameter points to a location outside of the allocated address space of the

process.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENOENT The named file does not exist.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path parameter

exceeded 1023 characters.

The fchmod subroutine is unsuccessful and the file permissions remain unchanged if the following is true:

EBADF The value of the FileDescriptor parameter is not valid.

The chmod or fchmod subroutine is unsuccessful and the access control information for a file remains unchanged if

one of the following is true:

EPERM The effective user ID does not match the owner of the file, and the process does not have

appropriate privileges.

EROFS The named file resides on a read-only file system.

EIO An I/O error occurred during the operation.

If NFS is installed on your system, the chmod and fchmod subroutines can also be unsuccessful if the following is

true:

ESTALE The root or current directory of the process is located in a virtual file system that has been

unmounted.

ETIMEDOUT The connection timed out.

Security

Access Control: The invoker must have search permission for all components of the Path prefix.

If you receive the EBUSY error, toggle the enforced locking attribute in the Mode parameter and retry

your operation. The enforced locking attribute should never be used on a file that is part of the Trusted

Computing Base.

Related Information

The acl_chg (“acl_chg or acl_fchg Subroutine” on page 8) subroutine, acl_get (“acl_get or acl_fget

Subroutine” on page 10) subroutine, acl_put (“acl_put or acl_fput Subroutine” on page 12) subroutine,

acl_set (“acl_set or acl_fset Subroutine” on page 14) subroutine, chacl (“chacl or fchacl Subroutine” on

page 142) subroutine, statacl subroutine, stat subroutine.

“aclx_get or aclx_fget Subroutine” on page 17, “aclx_put or aclx_fput Subroutine” on page 25.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

chown, fchown, lchown, chownx, or fchownx Subroutine

Purpose

Changes file ownership.

Library

Standard C Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 149

Syntax

Syntax for the chown, fchown, and lchown Subroutines:

#include <sys/types.h>

#include <unistd.h>

int chown (Path, Owner, Group)

const char *Path;

uid_t Owner;

gid_t Group;

int fchown (FileDescriptor, Owner, Group)

int FileDescriptor;

uid_t Owner;

gid_t Group;

int lchown (Path, Owner, Group)

const char *fname

uid_t uid

gid_tgid

Syntax for the chownx and fchownx Subroutines:

#include <sys/types.h>

#include <sys/chownx.h>

int chownx (Path, Owner, Group, Flags)

char *Path;

uid_t Owner;

gid_t Group;

int Flags;

int fchownx (FileDescriptor, Owner, Group, Flags)

int FileDescriptor;

uid_t Owner;

gid_t Group;

int Flags;

Description

The chown, chownx, fchown, fchownx, and lchown subroutines set the file owner and group IDs of the

specified file system object. Root user authority is required to change the owner of a file.

A function lchown function sets the owner ID and group ID of the named file similarity to chown function

except in the case where the named file is a symbolic link. In this case lchown function changes the

ownership of the symbolic link file itself, while chown function changes the ownership of the file or

directory to which the symbolic link refers.

Parameters

 FileDescriptor Specifies the file descriptor of an open file.

150 Technical Reference, Volume 1: Base Operating System and Extensions

Flags Specifies whether the file owner ID or group ID should be changed. This parameter is

constructed by logically ORing the following values:

T_OWNER_AS_IS

Ignores the value specified by the Owner parameter and leaves the owner ID of

the file unaltered.

T_GROUP_AS_IS

Ignores the value specified by the Group parameter and leaves the group ID of

the file unaltered.

Group Specifies the new group of the file. For the chown, fchown, and lchown commands, if

this value is -1, the group is not changed. (A value of -1 indicates only that the group is

not changed; it does not indicate a group that is not valid. An owner or group ID cannot

be invalid.) For the chownx and fchownx commands, the subroutines change the Group

to -1 if -1 is supplied for Group and T_GROUP_AS_IS is not set.

Owner Specifies the new owner of the file. For the chown, fchown, and lchown commands, if

this value is -1, the group is not changed. (A value of -1 indicates only that the group is

not changed; it does not indicate a group that is not valid. An owner or group ID cannot

be invalid.) For the chownx and fchownx commands, the subroutines change the Owner

to -1 if -1 is supplied for Owner and T_OWNER_AS_IS is not set

Path Specifies the full path name of the file. If Path resolves to a symbolic link, the ownership

of the file or directory pointed to by the symbolic link is changed.

Return Values

Upon successful completion, the chown, chownx, fchown, fchownx, and lchown subroutines return a

value of 0. If the chown, chownx, fchown, fchownx, or lchown subroutine is unsuccessful, a value of -1

is returned and the errno global variable is set to indicate the error.

Error Codes

The chown, chownx, or lchown subroutine is unsuccessful and the owner and group of a file remain

unchanged if one of the following is true:

 EACCESS Search permission is denied on a component of the Path parameter.

EDQUOT The new group for the file system object cannot be set because the group’s quota of disk

blocks or i-nodes has been exhausted on the file system.

EFAULT The Path parameter points to a location outside of the allocated address space of the

process.

EINVAL The owner or group ID supplied is not valid.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or the entire Path parameter

exceeded 1023 characters.

ENOENT A symbolic link was named, but the file to which it refers does not exist; or a component of

the Path parameter does not exist; or the process has the disallow truncation attribute set;

or the Path parameter is null.

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user ID does not match the owner of the file, and the calling process does not

have the appropriate privileges.

EROFS The named file resides on a read-only file system.

ESTALE The root or current directory of the process is located in a virtual file system that has been

unmounted.

The fchown or fchownx subroutine is unsuccessful and the file owner and group remain unchanged if

one of the following is true:

 EBADF The named file resides on a read-only file system.

Base Operating System (BOS) Runtime Services (A-P) 151

EDQUOT The new group for the file system object cannot be set because the group’s quota of disk

blocks or i-nodes has been exhausted on the file system.

EIO An I/O error occurred during the operation.

Security

Access Control: The invoker must have search permission for all components of the Path parameter.

chpass Subroutine

Purpose

Changes user passwords.

Library

Standard C Library (libc.a)

Thread Safe Security Library (libs_r.a)

Syntax

int chpass (UserName, Response, Reenter, Message)

char *UserName;

char *Response;

int *Reenter;

char **Message;

Description

The chpass subroutine maintains the requirements that the user must meet to change a password. This

subroutine is the basic building block for changing passwords and handles password changes for local,

NIS, and DCE user passwords.

The Message parameter provides a series of messages asking for old and new passwords, or providing

informational messages, such as the reason for a password change failing. The first Message prompt is a

prompt for the old password. This parameter does not prompt for the old password if the user has a real

user ID of 0 (zero) and is changing a local user, or if the user has no current password. The chpass

subroutine does not prompt a user with root authority for an old password. It informs the program that no

message was sent and that it should invoke chpass again. If the user satisfies the first Message

parameter’s prompt, the system prompts the user to enter the new password. Each message is contained

in the Message parameter and is displayed to the user. The Response parameter returns the user’s

response to the chpass subroutine.

The Reenter parameter indicates when a user has satisfied all prompt messages. The parameter remains

nonzero until a user has passed all prompts. After the returned value of Reenter is 0, the return code

signals whether the password change has succeeded or failed. When progressing through prompts for a

user, the value of Reenter must be maintained by the caller between invocations of chpass.

The chpass subroutine maintains internal state information concerning the next prompt message to

present to the user. If the calling program supplies a different user name before all prompt messages are

complete for the user, the internal state information is reset and prompt messages begin again. State

information is also kept in the Reenter variable. The calling program must maintain the value of Reenter

between calls to chpass.

The chpass subroutine determines the administration domain to use during password changes. It

determines if the user is defined locally, defined in Network Information Service (NIS), or defined in

152 Technical Reference, Volume 1: Base Operating System and Extensions

Distributed Computing Environment (DCE). Password changes occur only in these domains. System

administrators may override this convention with the registry value in the /etc/security/user file. If the

registry value is defined, the password change can only occur in the specified domain. System

administrators can use this registry value if the user is administered on a remote machine that periodically

goes down. If the user is allowed to log in through some other authentication method while the server is

down, password changes remain to follow only the primary server.

The chpass subroutine allows the user to change passwords in two ways. For normal (non-administrative)

password changes, the user must supply the old password, either on the first call to the chpass

subroutine or in response to the first message from chpass. If the user is root, real user ID of 0, local

administrative password changes are handled by supplying a null pointer for the Response parameter

during the initial call

Users that are not administered locally are always queried for their old password.

The chpass subroutine is always in one of the following states:

1. Initial state: The caller invokes the chpass subroutine with NULL response parameter and receives the

initial password prompt in the message parameter.

2. Verify initial password: The caller invokes the chpass subroutine with the results of prompting the user

with earlier message parameter as the response parameter. The caller is given a prompt to enter the

new password in the message parameter.

3. Enter new password: The caller invokes the chpass subroutine with the results of prompting user with

the new password prompt in the response parameter. The caller will be given a prompt to repeat the

new password in the message parameter.

4. Verify new password: The caller invokes the chpass subroutine with the results of prompting the user

to repeat the new password in the response parameter. The chpass subroutine then performs the

actual password change.

Any step in the above process can result in the chpass subroutine terminating the dialog. This is signalled

when the reenter variable is set to 0. The return code indicates the nature of the failure.

Parameters

 UserName Specifies the user’s name whose password is to be changed.

Response Specifies a character string containing the user’s response to the last prompt.

Reenter Points to a Boolean value used to signal whether chpass subroutine has completed

processing. If the Reenter parameter is a nonzero value, the chpass subroutine expects the

user to satisfy the prompt message provided by the Message parameter. If the Reenter

parameter is 0, the chpass subroutine has completed processing.

Message Points to a pointer that the chpass subroutine allocates memory for and fills in. This

replacement string is then suitable for printing and issues challenge messages (if the Reenter

parameter is a nonzero value). The string can also issue informational messages such as why

the user failed to change the password (if the Reenter parameter is 0). The calling application

is responsible for freeing this memory.

Return Values

Upon successful completion, the chpass subroutine returns a value of 0. If the chpass subroutine is

unsuccessful, it returns the following values:

 -1 Indicates the call failed in the thread safe library libs_r.a. ERRNO will indicate the failure code.

1 Indicates that the password change was unsuccessful and the user should attempt again. This return value

occurs if a password restriction is not met, such as if the password is not long enough.

Base Operating System (BOS) Runtime Services (A-P) 153

2 Indicates that the password change was unsuccessful and the user should not attempt again. This return

value occurs if the user enters an incorrect old password or if the network is down (the password change

cannot occur).

Error Codes

The chpass subroutine is unsuccessful if one of the following values is true:

 ENOENT Indicates that the user cannot be found.

ESAD Indicates that the user did not meet the criteria to change the password.

EPERM Indicates that the user did not have permission to change the password.

EINVAL Indicates that the parameters are not valid.

ENOMEM Indicates that memory allocation (malloc) failed.

Related Information

The authenticate (“authenticate Subroutine” on page 111) subroutine.

chpassx Subroutine

Purpose

Changes multiple method passwords.

Library

Standard C Library (libc.a)

Thread Safe Security Library (libs_r.a)

Syntax

int chpassx (UserName, Response, Reenter, Message, State)

char *UserName;

char *Response;

int *Reenter;

char **Message;

void **State;

Description

The chpassx subroutine maintains the requirements that the user must meet to change a password. This

subroutine is the basic building block for changing passwords, and it handles password changes for local,

NIS, and loadable authentication module user passwords. It uses information provided by the

authenticatex and passwdexpiredx subroutines to indicate which passwords were used when a user

authenticated and whether or not those passwords are expired.

The Message parameter provides a series of messages asking for old and new passwords, or providing

informational messages, such as the reason for a password change failing. The first Message prompt is a

prompt for the old password. This parameter does not prompt for the old password if the user has a real

user ID of 0 and is changing a local user, or if the user has no current password. The chpassx subroutine

does not prompt a user with root authority for an old password when only a local password is being

changed. It informs the program that no message was sent and that it should invoke chpass again. If the

user satisfies the first Message parameter’s prompt, the system prompts the user to enter the new

password. Each message is contained in the Message parameter and is displayed to the user. The

Response parameter returns the user’s response to the chpass subroutine.

154 Technical Reference, Volume 1: Base Operating System and Extensions

The Reenter parameter remains a nonzero value until the user satisfies all of the prompt messages or until

the user incorrectly responds to a prompt message. When the Reenter parameter is 0, the return code

signals whether the password change completed or failed. The calling application must initialize the

Reenter parameter to 0 before the first call to the chpassx subroutine and the application cannot modify

the Reenter parameter until the sequence of chpassx subroutine calls has completed.

The authenticatex subroutine ascertains the authentication domains the user can attempt. The subroutine

uses the SYSTEM attribute for the user. Each token that is displayed in the SYSTEM line corresponds to a

method that can be dynamically loaded and processed. Likewise, the system can provide multiple or

alternate authentication paths.

The State parameter contains information from an earlier call to the authenticatex or passwdexpirex

subroutines. That information indicates which administration domains were used when the user was

authenticated and which passwords have expired and can be changed by the user. The State parameter

must be initialized to null when the chpassx subroutine is not being called after an earlier call to the

authenticatex or passwdexpiredx subroutines, or if the calling program does not wish to use the

information from an earlier call.

The chpassx subroutine maintains internal state information concerning the next prompt message to

present to the user. If the calling program supplies a different user name before all prompt messages are

complete for the user, the internal state information is reset and prompt messages begin again.

The chpassx subroutine determines the administration domain to use during password changes. It

determines if the user is defined locally, defined in Network Information Service (NIS), defined in

Distributed Computing Environment (DCE), or defined in another administrative domain supported by a

loadable authentication module. Password changes use the user’s SYSTEM attribute and information in

the State parameter. When the State parameter includes information from an earlier call to the

authenticatex subroutine, only the administrative domains that were used for authentication are changed.

When the State parameter includes information from an earlier call to the passwdexpiredx subroutine,

only the administrative domains that have expired passwords are changed. The State parameter can

contain information from calls to both authenticatex and passwdexpiredx, in which case passwords that

were used for authentication are changed, even if they are not expired, so that passwords remain

synchronized between administrative domains.

The chpassx subroutine allows the user to change passwords in two ways. For normal (nonadministrative)

password changes, the user must supply the old password, either on the first call to the chpassx

subroutine or in response to the first message from chpassx. If the user is root (with a real user ID of 0),

local administrative password changes are handled by supplying a null pointer for the Response parameter

during the initial call.

Users that are not administered locally are always queried for their old password.

The chpassx subroutine is always in one of three states: entering the old password, entering the new

password, or entering the new password again. If any of these states do not need to be complied with, the

chpassx subroutine returns a null challenge.

Parameters

 Message Points to a pointer that the chpassx subroutine allocates memory for and fills in. This

replacement string is then suitable for printing and issues challenge messages (if the Reenter

parameter is a nonzero value). The string can also issue informational messages, such as

why the user failed to change the password (if the Reenter parameter is 0). The calling

application is responsible for freeing this memory.

Base Operating System (BOS) Runtime Services (A-P) 155

Reenter Points to an integer value used to signal whether the chpassx subroutine has completed

processing. If the Reenter parameter is a nonzero value, the chpassx subroutine expects the

user to satisfy the prompt message provided by the Message parameter. If the Reenter

parameter is 0, the chpassx subroutine has completed processing.

Response Specifies a character string containing the user’s response to the last prompt.

State Points to a pointer that the chpassx subroutine allocates memory for and fills in. The State

parameter can also be the result of an earlier call to the authenticatex or passwdexpiredx

subroutines. This parameter contains information about each password that has been

changed for the user. The calling application is responsible for freeing this memory after the

chpassx subroutine has completed.

UserName Specifies the user’s name whose password is to be changed.

Return Values

Upon successful completion, the chpassx subroutine returns a value of 0. If this subroutine fails, it returns

the following values:

 -1 The call failed in the libs_r.a thread safe library. errno indicates the failure code.

1 The password change was unsuccessful and the user should try again. This return value occurs if a

password restriction is not met (for example, the password is not long enough).

2 The password change was unsuccessful and the user should not try again. This return value occurs if

the user enters an incorrect old password or if the network is down (the password change cannot occur).

Error Codes

The chpassx subroutine is unsuccessful if one of the following values is true:

 EINVAL The parameters are not valid.

ENOENT The user cannot be found.

ENOMEM Memory allocation (malloc) failed.

EPERM The user did not have permission to change the password.

ESAD The user did not meet the criteria to change the password.

Related Information

The “authenticatex Subroutine” on page 113, “passwdexpiredx Subroutine” on page 933.

chprojattr Subroutine

Purpose

Updates and modifies the project attributes in kernel project registry for the given project.

Library

The libaacct.a library.

Syntax

<sys/aacct.h>

chprojattr(struct project *, int cmd)

Description

The chprojattr subroutine alters the attributes of a project defined in the kernel project registry. A pointer

to struct project containing the project definition and the operation command is sent as input arguments.

The following operations are permitted:

156 Technical Reference, Volume 1: Base Operating System and Extensions

v PROJ_ENABLE_AGGR - Enables aggregation for the specified project

v PROJ_DISABLE_AGGR - Disables aggregation for the specified project

If PROJ_ENABLE_AGGR is passed, then the aggregation status bit is set to 1. If PROJ_DISABLE_AGGR

is passed, then the aggregation status bit set to 0.

Note: To initialize the project structure, the user must call the getprojdef subroutine before calling the

chprojattr subroutine.

Parameters

 project Pointer containing the project definition.

cmd An integer command indicating whether to perform a set or clear operation.

Security

Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT

capability to a user.

Return Values

 0 Success

-1 Failure

Error Codes

 EINVAL Invalid arguments passed. The passed command flag is invalid or the passed pointer is NULL.

ENONENT Project not found.

Related Information

The “addproj Subroutine” on page 31, “chprojattrdb Subroutine,” “getproj Subroutine” on page 409,

“getprojs Subroutine” on page 411, rmproj Subroutine.

chprojattrdb Subroutine

Purpose

Updates the project attributes in the project database.

Library

The libaacct.a library.

Syntax

<sys/aacct.h>

chprojattrdb(void *handle, struct project *project, int cmd)

Description

The chprojattrdb subroutine alters the attributes of the named project in the specified project database,

which is controlled through the handle parameter. The following commands are permitted:

v PROJ_ENABLE_AGGR — Enables aggregation for the specified project

Base Operating System (BOS) Runtime Services (A-P) 157

v PROJ_DISABLE_AGGR — Disables aggregation for the specified project

The project database must be initialized before calling this subroutine. The projdballoc subroutine is

provided for this purpose. The chprojattrdb subroutine must be called after the getprojdb subroutine,

which sets the record pointer to point to the project that needs to be modified.

Note: The chprojattrdb subroutine must be called after the getprojdb subroutine, which makes the

named project the current project.

Parameters

 handle Pointer to the handle allocated for the project database.

project Pointer containing the project definition.

cmd An integer command indicating whether to perform a set or clear operation.

Security

Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT

capability to a user.

Return Values

 0 Success

-1 Failure

Error Codes

 EINVAL Invalid arguments passed. The passed command flag is invalid or the passed pointer is NULL.

ENONENT Project not found.

Related Information

The “addprojdb Subroutine” on page 32, “chprojattr Subroutine” on page 156, “getfirstprojdb Subroutine”

on page 360, “getnextprojdb Subroutine” on page 387, “getprojdb Subroutine” on page 410, “projdballoc

Subroutine” on page 1089, “projdbfinit Subroutine” on page 1090, “projdbfree Subroutine” on page 1091,

rmprojdb Subroutine.

chroot Subroutine

Purpose

Changes the effective root directory.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

int chroot (const char * Path)

char *Path;

158 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The chroot subroutine causes the directory named by the Path parameter to become the effective root

directory. If the Path parameter refers to a symbolic link, the chroot subroutine sets the effective root

directory to the directory pointed to by the symbolic link. If Network File System (NFS) is installed on your

system, this path can cross into another node.

The effective root directory is the starting point when searching for a file’s path name that begins with /

(slash). The current directory is not affected by the chroot subroutine.

The calling process must have root user authority in order to change the effective root directory. The

calling process must also have search access to the new effective root directory.

The .. (double period) entry in the effective root directory is interpreted to mean the effective root directory

itself. Thus, this directory cannot be used to access files outside the subtree rooted at the effective root

directory.

Parameters

 Path Pointer to the new effective root directory.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno

global variable is set to indicate the error.

Error Codes

The chroot subroutine fails and the effective root directory remains unchanged if one or more of the

following are true:

 ENOENT The named directory does not exist.

EACCES The named directory denies search access.

EPERM The process does not have root user authority.

The chroot subroutine can be unsuccessful for other reasons. See Appendix A. Base Operating System

Error Codes for Services that Require Path-Name Resolution (Appendix A, “Base Operating System Error

Codes for Services That Require Path-Name Resolution,” on page 1251) for a list of additional errors.

If NFS is installed on the system, the chroot subroutine can also fail if the following is true:

 ETIMEDOUT The connection timed out.

Related Information

The chdir (“chdir Subroutine” on page 145) subroutine.

The chroot command.

Appendix A, “Base Operating System Error Codes for Services That Require Path-Name Resolution,” on

page 1251.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 159

chssys Subroutine

Purpose

Modifies the subsystem objects associated with the SubsystemName parameter.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>

#include <spc.h>

int chssys(SubsystemName, SRCSubsystem)

char *SubsystemName;

struct SRCsubsys *SRCSubsystem;

Description

The chssys subroutine modifies the subsystem objects associated with the specified subsystem with the

values in the SRCsubsys structure. This action modifies the objects associated with subsystem in the

following object classes:

v Subsystem Environment

v Subserver Type

v Notify

The Subserver Type and Notify object classes are updated only if the subsystem name has been changed.

The SRCsubsys structure is defined in the /usr/include/sys/srcobj.h file.

The program running with this subroutine must be running with the group system.

Parameters

 SRCSubsystem Points to the SRCsubsys structure.

SubsystemName Specifies the name of the subsystem.

Return Values

Upon successful completion, the chssys subroutine returns a value of 0. Otherwise, it returns a value of

-1 and the odmerrno variable is set to indicate the error, or a System Resource Controller (SRC) error

code is returned.

Error Codes

The chssys subroutine is unsuccessful if one or more of the following are true:

 SRC_NONAME No subsystem name is specified.

SRC_NOPATH No subsystem path is specified.

SRC_BADNSIG Invalid stop normal signal.

SRC_BADFSIG Invalid stop force signal.

SRC_NOCONTACT Contact not signal, sockets, or message queues.

SRC_SSME Subsystem name does not exist.

SRC_SUBEXIST New subsystem name is already on file.

SRC_SYNEXIST New subsystem synonym name is already on file.

160 Technical Reference, Volume 1: Base Operating System and Extensions

SRC_NOREC The specified SRCsubsys record does not exist.

SRC_SUBSYS2BIG Subsystem name is too long.

SRC_SYN2BIG Synonym name is too long.

SRC_CMDARG2BIG Command arguments are too long.

SRC_PATH2BIG Subsystem path is too long.

SRC_STDIN2BIG stdin path is too long.

SRC_STDOUT2BIG stdout path is too long.

SRC_STDERR2BIG stderr path is too long.

SRC_GRPNAM2BIG Group name is too long.

Security

Privilege Control: This command has the Trusted Path attribute. It has the following kernel privilege:

SET_PROC_AUDIT kernel privilege

 Files Accessed:

 Mode File

644 /etc/objrepos/SRCsubsys

644 /etc/objrepos/SRCsubsvr

644 /etc/objrepos/SRCnotify

Auditing Events:

Event Information

SRC_Chssys

Files

 /etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

/etc/objrepos/SRCsubsvr SRC Subserver Configuration object class.

/etc/objrepos/SRCnotify SRC Notify Method object class.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information

The addssys (“addssys Subroutine” on page 33) subroutine, delssys (“delssys Subroutine” on page 207)

subroutine.

The chssys command, mkssys command, rmssys command.

System Resource Controller Overview in AIX 5L Version 5.3 System Management Concepts: Operating

System and Devices.

Defining Your Subsystem to the SRC, List of SRC Subroutines, System Resource Controller (SRC)

Overview for Programmers in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

cimag, cimagf, or cimagl Subroutine

Purpose

Performs complex imaginary computations.

Base Operating System (BOS) Runtime Services (A-P) 161

Syntax

#include <complex.h>

double cimag (z)

double complex z;

float cimagf (z)

float complex z;

long double cimagl (z)

long double complex z;

Description

The cimag, cimagf, and cimagl subroutines compute the imaginary part of z.

Parameters

 z Specifies the value to be computed.

Return Values

The cimag, cimagf, and cimagl subroutines return the imaginary part value (as a real).

Related Information

“carg, cargf, or cargl Subroutine” on page 129, “conj, conjf, or conjl Subroutine” on page 180, “cproj, cprojf,

or cprojl Subroutine” on page 187, and “creal, crealf, or creall Subroutine” on page 188.

ckuseracct Subroutine

Purpose

Checks the validity of a user account.

Library

Security Library (libc.a)

Syntax

#include <login.h>

int ckuseracct (Name, Mode, TTY)

char *Name;

int Mode;

char *TTY;

Description

Note: This subroutine is obsolete and is provided only for backwards compatibility. Use the

loginrestrictions subroutine, which performs a superset of the functions of the ckuseracct

subroutine, instead.

The ckuseracct subroutine checks the validity of the user account specified by the Name parameter. The

Mode parameter gives the mode of the account usage, and the TTY parameter defines the terminal being

used for the access. The ckuseracct subroutine checks for the following conditions:

v Account existence

162 Technical Reference, Volume 1: Base Operating System and Extensions

v Account expiration

The Mode parameter specifies other mode-specific checks.

Parameters

 Name Specifies the login name of the user whose account is to be validated.

Mode Specifies the manner of usage. Valid values as defined in the login.h file are listed below. The Mode

parameter must be one of these or 0:

S_LOGIN

Verifies that local logins are permitted for this account.

S_SU Verifies that the su command is permitted and that the current process has a group ID that

can invoke the su command to switch to the account.

S_DAEMON

Verifies the account can be used to invoke daemon or batch programs using the src or cron

subsystems.

S_RLOGIN

Verifies the account can be used for remote logins using the rlogind or telnetd programs.

TTY Specifies the terminal of the originating activity. If this parameter is a null pointer or a null string, no

TTY origin checking is done.

Security

 Files Accessed:

 Mode File

r /etc/passwd

r /etc/security/user

Return Values

If the account is valid for the specified usage, the ckuseracct subroutine returns a value of 0. Otherwise,

a value of -1 is returned and the errno global variable is set to the appropriate error code.

Error Codes

The ckuseracct subroutine fails if one or more of the following are true:

 ENOENT The user specified in the Name parameter does not have an account.

ESTALE The user’s account is expired.

EACCES The specified terminal does not have access to the specified account.

EACCES The Mode parameter is S_SU, and the current process is not permitted to use the su

command to access the specified user.

EACCES Access to the account is not permitted in the specified Mode.

EINVAL The Mode parameter is not one of S_LOGIN, S_SU, S_DAEMON, S_RLOGIN.

Related Information

The ckuserID (“ckuserID Subroutine” on page 164) subroutine, getpcred (“getpcred Subroutine” on page

394) subroutine, getpenv (“getpenv Subroutine” on page 396) subroutine, setpcred subroutine, setpenv

subroutine.

The login command, rlogin command, su command, telnet command.

Base Operating System (BOS) Runtime Services (A-P) 163

The cron daemon.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

ckuserID Subroutine

Purpose

Authenticates the user.

Note: This subroutine is obsolete and is provided for backwards compatibility. Use the authenticate

(“authenticate Subroutine” on page 111) subroutine, instead.

Library

Security Library (libc.a)

Syntax

#include <login.h>

int ckuserID (User, Mode)

int Mode;

char *User;

Description

The ckuserID subroutine authenticates the account specified by the User parameter. The mode of the

authentication is given by the Mode parameter. The login and su commands continue to use the

ckuserID subroutine to process the /etc/security/user auth1 and auth2 authentication methods.

The ckuserID subroutine depends on the authenticate (“authenticate Subroutine” on page 111) subroutine

to process the SYSTEM attribute in the /etc/security/user file. If authentication is successful, the

passwdexpired (“passwdexpired Subroutine” on page 932) subroutine is called.

Errors caused by grammar or load modules during a call to the authenticate subroutine are displayed to

the user if the user was authenticated. These errors are audited with the USER_Login audit event if the

user failed authentication.

Parameters

 User Specifies the name of the user to be authenticated.

Mode Specifies the mode of authentication. This parameter is a bit mask and may contain one or more of

the following values, which are defined in the login.h file:

S_PRIMARY

The primary authentication methods defined for the User parameter are checked. All

primary authentication checks must be passed.

S_SECONDARY

The secondary authentication methods defined for the User parameter are checked.

Secondary authentication checks are not required to be successful.

Primary and secondary authentication methods for each user are set in the /etc/security/user file

by defining the auth1 and auth2 attributes. If no primary methods are defined for a user, the

SYSTEM attribute is assumed. If no secondary methods are defined, there is no default.

164 Technical Reference, Volume 1: Base Operating System and Extensions

Security

 Files Accessed:

 Mode File

r /etc/passwd

r /etc/security/passwd

r /etc/security/user

r /etc/security/login.cfg

Return Values

If the account is valid for the specified usage, the ckuserID subroutine returns a value of 0. Otherwise, a

value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes

The ckuserID subroutine fails if one or more of the following are true:

 ESAD Security authentication failed for the user.

EINVAL The Mode parameter is neither S_PRIMARY nor S_SECONDARY or the Mode parameter is both

S_PRIMARY and S_SECONDARY.

Related Information

The authenticate (“authenticate Subroutine” on page 111) subroutine, ckuseracct (“ckuseracct

Subroutine” on page 162) subroutine, getpcred (“getpcred Subroutine” on page 394) subroutine,getpenv

(“getpenv Subroutine” on page 396) subroutine, passwdexpired (“passwdexpired Subroutine” on page

932) subroutine, setpcred subroutine, setpenv subroutine.

The login command, su command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

class, _class, finite, isnan, or unordered Subroutines

Purpose

Determines classifications of floating-point numbers.

Libraries

IEEE Math Library (libm.a)

or System V Math Library (libmsaa.a)

Syntax

#include <math.h>

#include <float.h>

int

class(x)

double x;

#include <math.h>

#include <float.h>

Base Operating System (BOS) Runtime Services (A-P) 165

int

_class(x)

double x;

#include <math.h>

int finite(x)

double x;

#include <math.h>

int isnan(x)

double x;

#include <math.h>

int unordered(x, y)

double x, y;

Description

The class subroutine, _class subroutine, finite subroutine, isnan subroutine, and unordered subroutine

determine the classification of their floating-point value. The unordered subroutine determines if a

floating-point comparison involving x and y would generate the IEEE floating-point unordered condition

(such as whether x or y is a NaN).

The class subroutine returns an integer that represents the classification of the floating-point x parameter.

Since class is a reversed key word in C++. The class subroutine can not be invoked in a C++ program.

The _class subroutine is an interface for C++ program using the class subroutine. The interface and the

return value for class and _class subroutines are identical. The values returned by the class subroutine

are defined in the float.h header file. The return values are the following:

 FP_PLUS_NORM Positive normalized, nonzero x

FP_MINUS_NORM Negative normalized, nonzero x

FP_PLUS_DENORM Positive denormalized, nonzero x

FP_MINUS_DENORM Negative denormalized, nonzero x

FP_PLUS_ZERO x = +0.0

FP_MINUS_ZERO x = -0.0

FP_PLUS_INF x = +INF

FP_MINUS_INF x = -INF

FP_NANS x = Signaling Not a Number (NaNS)

FP_NANQ x = Quiet Not a Number (NaNQ)

Since class is a reserved keyword in C++, the class subroutine cannot be invoked in a C++ program. The

_class subroutine is an interface for the C++ program using the class subroutine. The interface and the

return values for class and _class subroutines are identical.

The finite subroutine returns a nonzero value if the x parameter is a finite number; that is, if x is not +-,

INF, NaNQ, or NaNS.

The isnan subroutine returns a nonzero value if the x parameter is an NaNS or a NaNQ. Otherwise, it

returns 0.

The unordered subroutine returns a nonzero value if a floating-point comparison between x and y would

be unordered. Otherwise, it returns 0.

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. To compile the

class.c file, for example, enter:

cc class.c -lm

166 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 x Specifies some double-precision floating-point value.

y Specifies some double-precision floating-point value.

Error Codes

The finite, isnan, and unordered subroutines neither return errors nor set bits in the floating-point

exception status, even if a parameter is an NaNS.

Related Information

List of Numerical Manipulation Services and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

clock Subroutine

Purpose

Reports central processing unit (CPU) time used.

Library

Standard C Library (libc.a)

Syntax

#include <time.h>

clock_t clock (void);

Description

The clock subroutine reports the amount of CPU time used. The reported time is the sum of the CPU time

of the calling process and its terminated child processes for which it has executed wait, system, or

pclose subroutines. To measure the amount of time used by a program, the clock subroutine should be

called at the beginning of the program, and that return value should be subtracted from the return value of

subsequent calls to the clock subroutine. To find the time in seconds, divide the value returned by the

clock subroutine by the value of the macro CLOCKS_PER_SEC, which is defined in the time.h file.

Return Values

The clock subroutine returns the amount of CPU time used.

Related Information

The getrusage, times (“getrusage, getrusage64, times, or vtimes Subroutine” on page 419) subroutine,

pclose (“pclose Subroutine” on page 960) subroutine, system subroutine, vtimes (“getrusage,

getrusage64, times, or vtimes Subroutine” on page 419) subroutine, wait, waitpid, wait3 subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

clock_getcpuclockid Subroutine

Purpose

Accesses a process CPU-time clock.

Base Operating System (BOS) Runtime Services (A-P) 167

Syntax

#include <time.h>

int clock_getcpuclockid(pid_t pid, clockid_t *clock_id);

Description

The clock_getcpuclockid subroutine returns the clock ID of the CPU-time clock of the process specified

by pid. If the process described by pid exists and the calling process has permission, the clock ID of this

clock returns in clock_id.

If pid is zero, the clock_getcpuclockid subroutine returns the clock ID specified in clock_id of the

CPU-time clock of the process making the call.

To obtain the CPU-time clock ID of other processes, the calling process should be root or have the same

effective or real user ID as the process that owns the targetted CPU-time clock.

Parameters

 clock_id Specifies the clock ID of the CPU-time clock.

pid Specifies the process ID of the CPU-time clock.

Return Values

Upon successful completion, the clock_getcpuclockid subroutine returns 0; otherwise, an error code is

returned indicating the error.

Error Codes

 ENOTSUP The function is not supported with checkpoint-restart processes.

EPERM The requesting process does not have permission to access the CPU-time clock for the

process.

ESRCH No process can be found corresponding to the process specified by pid.

Related Information

“clock_getres, clock_gettime, and clock_settime Subroutine,” timer_create subroutine.

clock_getres, clock_gettime, and clock_settime Subroutine

Purpose

Clock and timer functions.

Library

Standard C Library (libc.a)

Syntax

#include <time.h>

int clock_getres (clock_id, res)

clockid_t clock_id;

struct timespec *res;

int clock_gettime (clock_id, tp)

clockid_t clock_id;

struct timespec *tp;

168 Technical Reference, Volume 1: Base Operating System and Extensions

int clock_settime (clock_id, tp)

clockid_t clock_id;

const struct timespec *tp;

Description

The clock_getres subroutine returns the resolution of any clock. Clock resolutions are

implementation-defined and cannot be set by a process. If the res parameter is not NULL, the resolution of

the specified clock is stored in the location pointed to by the res parameter. If the res parameter is NULL,

the clock resolution is not returned. If the time parameter of the clock_settime subroutine is not a multiple

of the res parameter, the value is truncated to a multiple of the res parameter.

The clock_gettime subroutine returns the current value, tp, for the specified clock, clock_id.

The clock_settime subroutine sets the specified clock, clock_id, to the value specified by the tp

parameter. Time values that are between two consecutive non-negative integer multiples of the resolution

of the specified clock will be truncated down to the smaller multiple of the resolution.

A clock may be system-wide (visible to all processes) or per-process (measuring time that is meaningful

only within a process). All implementations support a clock_id of CLOCK_REALTIME as defined in the

time.h file. This clock represents the Realtime clock for the system. For this clock the values returned by

the clock_gettime subroutine and specified by the clock_settime subroutine represent the amount of

time (in seconds and nanoseconds) since the epoch.

If the value of the CLOCK_REALTIME clock is set through the clock_settime subroutine, the new value

of the clock is used to determine the time of expiration for absolute time services based upon the

CLOCK_REALTIME clock. This applies to the time at which armed absolute timers expire. If the absolute

time requested at the invocation of such a time service is before the new value of the clock, the time

service expires immediately as if the clock had reached the requested time normally.

Setting the value of the CLOCK_REALTIME clock through the clock_settime subroutine has no effect on

threads that are blocked waiting for a relative time service based upon this clock, including the nanosleep

subroutine; nor on the expiration of relative timers based upon this clock. Consequently, these time

services expire when the requested relative interval elapses, independently of the new or old value of the

clock.

A clock_id of CLOCK_MONOTONIC is defined in the time.h file. This clock represents the monotonic

clock for the system. For this clock, the value returned by the clock_gettime subroutine represents the

amount of time (in seconds and nanoseconds) since an unspecified point in the past. This point does not

change after system start time (for example, this clock cannot have backward jumps). The value of the

CLOCK_MONOTONIC clock cannot be set through the clock_settime subroutine. This subroutine fails if

it is invoked with a clock_id parameter of CLOCK_MONOTONIC.

The calling process should have SYS_OPER authority to set the value of the CLOCK_REALTIME clock.

Process CPU-time clocks are supported by the system. For these clocks, the values returned by

clock_gettime and specified by clock_settime represent the amount of execution time of the process

associated with the clock. Clockid_t values for CPU-time clocks are obtained by calling

clock_getcpuclockid. A special clockid_t value, CLOCK_PROCESS_CPUTIME_ID, is defined in the

time.h file. This value represents the CPU-time clock of the calling process when one of the clock_* or

timer_* functions is called.

To get or set the value of a CPU-time clock, the calling process must have root permissions or have the

same effective or real user ID as the process that owns the targeted CPU-time clock. The same rule

applies to a process that tries to get the resolution of a CPU-time clock.

Base Operating System (BOS) Runtime Services (A-P) 169

Thread CPU-time clocks are supported by the system. For these clocks, the values returned by

clock_gettime and specified by clock_settime represent the amount of execution time of the thread

associated with the clock. Clockid_t values for thread CPU-time clocks are obtained by calling the

pthread_getcpuclockid subroutine. A special clockid_t value, CLOCK_THREAD_CPUTIME_ID, is

defined in the time.h file. This value represents the thread CPU-time clock of the calling thread when one

of the clock_*() or timer_* functions is called.

To get or set the value of a thread CPU-time clock, the calling thread must be a thread in the same

process as the one that owns the targeted thread CPU-time clock. The same rule applies to a thread that

tries to get the resolution of a thread CPU-time clock.

Parameters

 clock_id Specifies the clock.

res Stores the resolution of the specified clock.

tp Stores the current value of the specified clock.

Return Values

If successful, 0 is returned. If unsuccessful, -1 is returned, and errno will be set to indicate the error.

Error Codes

The clock_getres, clock_gettime, and clock_settime subroutines fail if:

 EINVAL The clock_id parameter does not specify a known clock.

ENOTSUP The function is not supported with checkpoint-restart processes.

The clock_settime subroutine fails if:

 EINVAL The tp parameter to the clock_settime subroutine is outside the range for the given clock ID.

EINVAL The tp parameter specified a nanosecond value less than zero or greater than or equal to 1000

million.

EINVAL The value of the clock_id argument is CLOCK_MONOTONIC.

The clock_settime subroutine might fail if:

 EPERM The requesting process does not have the appropriate privilege to set the specified clock.

Related Information

“clock_getcpuclockid Subroutine” on page 167, “ctime, localtime, gmtime, mktime, difftime, asctime, or

tzset Subroutine” on page 195, “pthread_getcpuclockid Subroutine” on page 1162, and “nanosleep

Subroutine” on page 856.

The timer_create and timer_getoverrun subroutines in AIX 5L Version 5.3 Technical Reference: Base

Operating System and Extensions Volume 2.

The time command in AIX 5L Version 5.3 Commands Reference, Volume 5.

clock_nanosleep Subroutine

Purpose

Specifies clock for high resolution sleep.

170 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <time.h>

 int clock_nanosleep(clockid_t clock_id, int flags,

 const struct timespec *rqtp, struct timespec *rmtp);

Description

If the TIMER_ABSTIME flag is not set in the flags argument, the clock_nanosleep subroutine causes the

current thread to be suspended from execution until either the time interval specified by the rqtp argument

has elapsed, or a signal is delivered to the calling thread and its action is to invoke a signal-catching

function, or the process is terminated. The clock_id argument specifies the clock used to measure the time

interval.

If the TIMER_ABSTIME flag is set in the flags argument, the clock_nanosleep subroutine causes the

current thread to be suspended from execution until either the time value of the clock specified by clock_id

reaches the absolute time specified by the rqtp argument, or a signal is delivered to the calling thread and

its action is to invoke a signal-catching function, or the process is terminated. If, at the time of the call, the

time value specified by rqtp is less than or equal to the time value of the specified clock, then the

clock_nanosleep subroutine returns immediately and the calling process shall not be suspended.

The suspension time caused by this function might be longer than requested either because the argument

value is rounded up to an integer multiple of the sleep resolution, or because of the scheduling of other

activity by the system. Except for the case of being interrupted by a signal, the suspension time for the

relative clock_nanosleep subroutine (that is, with the TIMER_ABSTIME flag not set) shall not be less

than the time interval specified by the rqtp argument, as measured by the corresponding clock. The

suspension for the absolute clock_nanosleep subroutine (that is, with the TIMER_ABSTIME flag set) is in

effect at least until the value of the corresponding clock reaches the absolute time specified by the rqtp

argument, except for the case of being interrupted by a signal.

The clock_nanosleep subroutine has no effect on the action or blocking of any signal.

The subroutine fails if the clock_id argument refers to a process or a thread CPU-time clock.

Parameters

 clock_id Specifies the clock used to measure the time.

flags Identifies the type of timeout. If TIMER_ABSTIME is set, the time value pointed to by rqtp is an

absolute time value; otherwise, it is a time interval.

rmtp Points to the timespec structure used to return the remaining amount of time in an interval (the

requested time minus the time actually slept) if the sleep is interrupted.

rqtp Points to the timespec structure that contains requested sleep time.

Return Values

The clock_nanosleep subroutine returns 0 when the requested time has elapsed.

The clock_nanosleep subroutine returns the corresponding error value when it has been interrupted by a

signal. For the relative clock_nanosleepsubroutine, when the rmtp argument is not NULL, the referenced

timespec structure is updated to contain the amount of time remaining in the interval (the requested time

minus the time actually slept). If the rmtp argument is NULL, the remaining time is not returned. The

absolute clock_nanosleep subroutine has no effect on the structure referenced by the rmtp argument.

Error Codes

 EINTR The clock_nanosleep subroutine was interrupted by a signal.

Base Operating System (BOS) Runtime Services (A-P) 171

EINVAL The rqtp parameter specified a nanosecond value less than 0 or greater than or equal to 1000

million; or the TIMER_ABSTIME flag was specified in the flags parameter and the rqtp parameter

is outside the range for the clock specified by clock_id; or the clock_id parameter does not specify

a known clock, or specifies the CPU-time clock of the calling thread.

ENOTSUP The clock_id argument specifies a clock for which the clock_nanosleep subroutine is not

supported, such as a CPU-time clock.

ENOTSUP The subroutine is not supported with checkpoint-restarted processes.

Files

timer.h

Related Information

“clock_getres, clock_gettime, and clock_settime Subroutine” on page 168, “nanosleep Subroutine” on page

856, “pthread_cond_wait or pthread_cond_timedwait Subroutine” on page 1146, sleep subroutine.

The timer.h file.

The Base Definitions volume of IEEE Std 1003.1-2001.

clog, clogf, or clogl Subroutine

Purpose

Computes the complex natural logarithm.

Syntax

#include <complex.h>

double complex clog (z)

double complex z;

float complex clogf (z)

float complex z;

long double complex clogl (z)

long double complex z;

Description

The clog, clogf, and clogl subroutines compute the complex natural (base e) logarithm of z, with a

branch cut along the negative real axis.

Parameters

 z Specifies the value to be computed.

Return Values

The clog, clogf, and clogl subroutines return the complex natural logarithm value, in the range of a strip

mathematically unbounded along the real axis and in the interval [-i pi, +i pi] along the imaginary axis.

Related Information

“cexp, cexpf, or cexpl Subroutine” on page 139

172 Technical Reference, Volume 1: Base Operating System and Extensions

close Subroutine

Purpose

Closes a file descriptor.

Syntax

#include <unistd.h>

int close (

 FileDescriptor)

int FileDescriptor;

Description

The close subroutine closes the file or shared memory object associated with the FileDescriptor

parameter. If Network File System (NFS) is installed on your system, this file can reside on another node.

All file regions associated with the file specified by the FileDescriptor parameter that this process has

previously locked with the lockf or fcntl subroutine are unlocked. This occurs even if the process still has

the file open by another file descriptor.

If the FileDescriptor parameter resulted from an open (“open, openx, open64, creat, or creat64

Subroutine” on page 894) subroutine that specified O_DEFER, and this was the last file descriptor, all

changes made to the file since the last fsync subroutine are discarded.

If the FileDescriptor parameter is associated with a mapped file, it is unmapped. The shmat subroutine

provides more information about mapped files.

The close subroutine attempts to cancel outstanding asynchronous I/O requests on this file descriptor. If

the asynchronous I/O requests cannot be canceled, the application is blocked until the requests have

completed.

If the FileDescriptor parameter is associated with a shared memory object and the shared memory object

remains referenced at the last close (that is, a process has it mapped), the entire contents of the memory

object persists until the memory object becomes unreferenced. If this is the last close of a shared memory

object and the close results in the memory object becoming unreferenced, and the memory object has

been unlinked, the memory object is removed. The shm_open subroutine provides more information about

shared memory objects.

The close subroutine is blocked until all subroutines which use the file descriptor return to usr space. For

example, when a thread is calling close and another thread is calling select with the same file descriptor,

the close subroutine does not return until the select call returns.

When all file descriptors associated with a pipe or FIFO special file have been closed, any data remaining

in the pipe or FIFO is discarded. If the link count of the file is 0 when all file descriptors associated with

the file have been closed, the space occupied by the file is freed, and the file is no longer accessible.

Note: If the FileDescriptor parameter refers to a device and the close subroutine actually results in a

device close, and the device close routine returns an error, the error is returned to the application.

However, the FileDescriptor parameter is considered closed and it may not be used in any

subsequent calls.

All open file descriptors are closed when a process exits. In addition, file descriptors may be closed

during the exec subroutine if the close-on-exec flag has been set for that file descriptor.

Base Operating System (BOS) Runtime Services (A-P) 173

Parameters

 FileDescriptor Specifies a valid open file descriptor.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno

global variable is set to identify the error. If the close subroutine is interrupted by a signal that is caught, it

returns a value of -1, the errno global variable is set to EINTR and the state of the FileDescriptor

parameter is closed.

Error Codes

The close subroutine is unsuccessful if the following is true:

 EBADF The FileDescriptor parameter does not specify a valid open file descriptor.

EINTR Specifies that the close subroutine was interrupted by a signal.

The close subroutine may also be unsuccessful if the file being closed is NFS-mounted and the server is

down under the following conditions:

v The file is on a hard mount.

v The file is locked in any manner.

The close subroutine may also be unsuccessful if NFS is installed and the following is true:

 ETIMEDOUT The connection timed out.

Related Information

The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

subroutines, fcntl (“fcntl, dup, or dup2 Subroutine” on page 251) subroutine, ioctl (“ioctl, ioctlx, ioctl32, or

ioctl32x Subroutine” on page 552) subroutine, lockfx (“lockfx, lockf, flock, or lockf64 Subroutine” on page

728) subroutine, open, openx, or creat (“open, openx, open64, creat, or creat64 Subroutine” on page

894) subroutine, pipe (“pipe Subroutine” on page 981) subroutine, socket subroutine.

The Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

compare_and_swap Subroutine

Purpose

Conditionally updates or returns a single word variable atomically.

Library

Standard C library (libc.a)

Syntax

#include <sys/atomic_op.h>

boolean_t compare_and_swap (word_addr, old_val_addr, new_val)

atomic_p word_addr;

int *old_val_addr;

int new_val;

174 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The compare_and_swap subroutine performs an atomic operation which compares the contents of a

single word variable with a stored old value. If the values are equal, a new value is stored in the single

word variable and TRUE is returned; otherwise, the old value is set to the current value of the single word

variable and FALSE is returned.

The compare_and_swap subroutine is useful when a word value must be updated only if it has not been

changed since it was last read.

Note: The word containing the single word variable must be aligned on a full word boundary.

Note: If compare_and_swap is used as a locking primitive, insert an isync at the start of any critical

sections.

Parameters

 word_addr Specifies the address of the single word variable.

old_val_addr Specifies the address of the old value to be checked against (and conditionally updated

with) the value of the single word variable.

new_val Specifies the new value to be conditionally assigned to the single word variable.

Return Values

 TRUE Indicates that the single word variable was equal to the old value, and has been set to the new

value.

FALSE Indicates that the single word variable was not equal to the old value, and that its current value has

been returned in the location where the old value was previously stored.

Related Information

The fetch_and_add (“fetch_and_add Subroutine” on page 265) subroutine, fetch_and_and

(“fetch_and_and or fetch_and_or Subroutine” on page 266) subroutine, fetch_and_or (“fetch_and_and or

fetch_and_or Subroutine” on page 266) subroutine.

compile, step, or advance Subroutine

Purpose

Compiles and matches regular-expression patterns.

Note: Commands use the regcomp, regexec, regfree, and regerror subroutines for the functions

described in this article.

Library

Standard C Library (libc.a)

Syntax

#define INIT declarations

#define GETC() getc_code

#define PEEKC() peekc_code

#define UNGETC(c) ungetc_code

#define RETURN(pointer) return_code

#define ERROR(val) error_code

Base Operating System (BOS) Runtime Services (A-P) 175

#include <regexp.h>

#include <NLregexp.h>

char *compile (InString, ExpBuffer, EndBuffer, EndOfFile)

char * ExpBuffer;

char * InString, * EndBuffer;

int EndOfFile;

int step (String, ExpBuffer)

const char * String, *ExpBuffer;

int advance (String, ExpBuffer)

const char *String, *ExpBuffer;

Description

The /usr/include/regexp.h file contains subroutines that perform regular-expression pattern matching.

Programs that perform regular-expression pattern matching use this source file. Thus, only the regexp.h

file needs to be changed to maintain regular expression compatibility between programs.

The interface to this file is complex. Programs that include this file define the following six macros before

the #include <regexp.h> statement. These macros are used by the compile subroutine:

 INIT This macro is used for dependent declarations and initializations. It is

placed right after the declaration and opening { (left brace) of the compile

subroutine. The definition of the INIT buffer must end with a ; (semicolon).

INIT is frequently used to set a register variable to point to the beginning of

the regular expression so that this register variable can be used in the

declarations for the GETC, PEEKC, and UNGETC macros. Otherwise, you

can use INIT to declare external variables that GETC, PEEKC, and

UNGETC require.

GETC() This macro returns the value of the next character in the regular

expression pattern. Successive calls to the GETC macro should return

successive characters of the pattern.

PEEKC() This macro returns the next character in the regular expression.

Successive calls to the PEEKC macro should return the same character,

which should also be the next character returned by the GETC macro.

UNGETC(c) This macro causes the parameter c to be returned by the next call to the

GETC and PEEKC macros. No more than one character of pushback is

ever needed, and this character is guaranteed to be the last character read

by the GETC macro. The return value of the UNGETC macro is always

ignored.

RETURN(pointer) This macro is used for normal exit of the compile subroutine. The pointer

parameter points to the first character immediately following the compiled

regular expression. This is useful for programs that have memory

allocation to manage.

176 Technical Reference, Volume 1: Base Operating System and Extensions

ERROR(val) This macro is used for abnormal exit from the compile subroutine. It

should never contain a return statement. The val parameter is an error

number. The error values and their meanings are:

Error Meaning

11 Interval end point too large

16 Bad number

25 \ digit out of range

36 Illegal or missing delimiter

41 No remembered search String

42 \ (?\) imbalance

43 Too many \.(

44 More than two numbers given in \{ \}

45 } expected after \.

46 First number exceeds second in \{ \}

49 [] imbalance

50 Regular expression overflow

70 Invalid endpoint in range

The compile subroutine compiles the regular expression for later use. The InString parameter is never

used explicitly by the compile subroutine, but you can use it in your macros. For example, you can use

the compile subroutine to pass the string containing the pattern as the InString parameter to compile and

use the INIT macro to set a pointer to the beginning of this string. The example in the “Examples” on page

178 section uses this technique. If your macros do not use InString, then call compile with a value of

((char *) 0) for this parameter.

The ExpBuffer parameter points to a character array where the compiled regular expression is to be

placed. The EndBuffer parameter points to the location that immediately follows the character array where

the compiled regular expression is to be placed. If the compiled expression cannot fit in

(EndBuffer-ExpBuffer) bytes, the call ERROR(50) is made.

The EndOfFile parameter is the character that marks the end of the regular expression. For example, in

the ed command, this character is usually / (slash).

The regexp.h file defines other subroutines that perform actual regular-expression pattern matching. One

of these is the step subroutine.

The String parameter of the step subroutine is a pointer to a null-terminated string of characters to be

checked for a match.

The Expbuffer parameter points to the compiled regular expression, obtained by a call to the compile

subroutine.

The step subroutine returns the value 1 if the given string matches the pattern, and 0 if it does not match.

If it matches, then step also sets two global character pointers: loc1, which points to the first character

that matches the pattern, and loc2, which points to the character immediately following the last character

that matches the pattern. Thus, if the regular expression matches the entire string, loc1 points to the first

character of the String parameter and loc2 points to the null character at the end of the String parameter.

Base Operating System (BOS) Runtime Services (A-P) 177

The step subroutine uses the global variable circf, which is set by the compile subroutine if the regular

expression begins with a ^ (circumflex). If this variable is set, step only tries to match the regular

expression to the beginning of the string. If you compile more than one regular expression before

executing the first one, save the value of circf for each compiled expression and set circf to that saved

value before each call to step.

Using the same parameters that were passed to it, the step subroutine calls a subroutine named

advance. The step function increments through the String parameter and calls the advance subroutine

until it returns a 1, indicating a match, or until the end of String is reached. To constrain the String

parameter to the beginning of the string in all cases, call the advance subroutine directly instead of calling

the step subroutine.

When the advance subroutine encounters an * (asterisk) or a \{ \} sequence in the regular expression, it

advances its pointer to the string to be matched as far as possible and recursively calls itself, trying to

match the rest of the string to the rest of the regular expression. As long as there is no match, the

advance subroutine backs up along the string until it finds a match or reaches the point in the string that

initially matched the * or \{ \}. You can stop this backing-up before the initial point in the string is reached.

If the locs global character is equal to the point in the string sometime during the backing-up process, the

advance subroutine breaks out of the loop that backs up and returns 0. This is used for global

substitutions on the whole line so that expressions such as s/y*//g do not loop forever.

Note: In 64-bit mode, these interfaces are not supported: they fail with a return code of 0. In order to use

the 64-bit version of this functionality, applications should migrate to the fnmatch, glob, regcomp,

and regexec functions which provide full internationalized regular expression functionality

compatible with ISO 9945-1:1996 (IEEE POSIX 1003.1) and with the UNIX98 specification.

Parameters

 InString Specifies the string containing the pattern to be compiled. The InString parameter is not used

explicitly by the compile subroutine, but it may be used in macros.

ExpBuffer Points to a character array where the compiled regular expression is to be placed.

EndBuffer Points to the location that immediately follows the character array where the compiled regular

expression is to be placed.

EndOfFile Specifies the character that marks the end of the regular expression.

String Points to a null-terminated string of characters to be checked for a match.

Examples

The following is an example of the regular expression macros and calls:

#define INIT register char *sp=instring;

#define GETC() (*sp++)

#define PEEKC() (*sp)

#define UNGETC(c) (--sp)

#define RETURN(c) return;

#define ERROR(c) regerr()

#include <regexp.h>

 . . .

compile (patstr,expbuf, &expbuf[ESIZE], ’\0’);

 . . .

if (step (linebuf, expbuf))

 succeed();

 . . .

Related Information

The regcmp or regex subroutine, regcomp subroutine, regerror subroutine, regexec subroutine, regfree

subroutine.

178 Technical Reference, Volume 1: Base Operating System and Extensions

List of String Manipulation Services and Subroutines, Example Programs, and Libraries in AIX 5L Version

5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

confstr Subroutine

Purpose

Gets configurable variables.

Library

Standard C library (libc.a)

Syntax

#include <unistd.h>

size_t confstr (int name, char * buf, size_t len);

Description

The confstr subroutine determines the current setting of certain system parameters, limits, or options that

are defined by a string value. It is mainly used by applications to find the system default value for the

PATH environment variable. Its use and purpose are similar to those of the sysconf subroutine, but it

returns string values rather than numeric values.

If the Len parameter is not 0 and the Name parameter has a system-defined value, the confstr subroutine

copies that value into a Len-byte buffer pointed to by the Buf parameter. If the string returns a value longer

than the value specified by the Len parameter, including the terminating null byte, then the confstr

subroutine truncates the string to Len-1 bytes and adds a terminating null byte to the result. The

application can detect that the string was truncated by comparing the value returned by the confstr

subroutine with the value specified by the Len parameter.

Parameters

 Name Specifies the system variable setting to be returned. Valid values for the Name parameter are defined

in the unistd.h file.

Buf Points to the buffer into which the confstr subroutine copies the value of the Name parameter.

Len Specifies the size of the buffer storing the value of the Name parameter.

Return Values

If the value specified by the Name parameter is system-defined, the confstr subroutine returns the size of

the buffer needed to hold the entire value. If this return value is greater than the value specified by the Len

parameter, the string returned as the Buf parameter is truncated.

If the value of the Len parameter is set to 0 and the Buf parameter is a null value, the confstr subroutine

returns the size of the buffer needed to hold the entire system-defined value, but does not copy the string

value. If the value of the Len parameter is set to 0 but the Buf parameter is not a null value, the result is

unspecified.

Base Operating System (BOS) Runtime Services (A-P) 179

Error Codes

The confstr subroutine will fail if:

 EINVAL The value of the name argument is invalid.

Example

To find out what size buffer is needed to store the string value of the Name parameter, enter:

confstr(_CS_PATH, NULL, (size_t) 0)

The confstr subroutine returns the size of the buffer.

Files

 /usr/include/limits.h Contains system-defined limits.

/usr/include/unistd.h Contains system-defined environment variables.

Related Information

The pathconf (“pathconf or fpathconf Subroutine” on page 938) subroutine, sysconf subroutine.

The unistd.h header file.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

conj, conjf, or conjl Subroutine

Purpose

Computes the complex conjugate.

Syntax

#include <complex.h>

double complex conj (z)

double complex z;

float complex conjf (z)

float complex z;

long double complex conjl (z)

long double complex z;

Description

The conj, conjf, or conjl subroutines compute the complex conjugate of z, by reversing the sign of its

imaginary part.

Parameters

 z Specifies the value to be computed.

Return Values

The conj, conjf, or conjl subroutines return the complex conjugate value.

180 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The “carg, cargf, or cargl Subroutine” on page 129, “cimag, cimagf, or cimagl Subroutine” on page 161,

“cproj, cprojf, or cprojl Subroutine” on page 187, “creal, crealf, or creall Subroutine” on page 188.

conv Subroutines

Purpose

Translates characters.

Library

Standard C Library (libc.a)

Syntax

#include <ctype.h>

int toupper (Character)

int Character;

int tolower (Character)

int Character;

int _toupper (Character)

int Character;

int _tolower (Character)

int Character;

int toascii (Character)

int Character;

int NCesc (Pointer, CharacterPointer)

NLchar *Pointer;

char *CharacterPointer;

int NCtoupper (Xcharacter)

int Xcharacter;

int NCtolower (Xcharacter)

int Xcharacter;

int _NCtoupper (Xcharacter)

int Xcharacter;

int _NCtolower (Xcharacter)

int Xcharacter;

int NCtoNLchar (Xcharacter)

int Xcharacter;

int NCunesc (CharacterPointer, Pointer)

char *CharacterPointer;

NLchar *Pointer;

Base Operating System (BOS) Runtime Services (A-P) 181

int NCflatchr (Xcharacter)

int Xcharacter;

Description

The toupper and the tolower subroutines have as domain an int, which is representable as an unsigned

char or the value of EOF: -1 through 255.

If the parameter of the toupper subroutine represents a lowercase letter and there is a corresponding

uppercase letter (as defined by LC_CTYPE), the result is the corresponding uppercase letter. If the

parameter of the tolower subroutine represents an uppercase letter, and there is a corresponding

lowercase letter (as defined by LC_CTYPE), the result is the corresponding lowercase letter. All other

values in the domain are returned unchanged. If case-conversion information is not defined in the current

locale, these subroutines determine character case according to the ″C″ locale.

The _toupper and _tolower subroutines accomplish the same thing as the toupper and tolower

subroutines, but they have restricted domains. The _toupper routine requires a lowercase letter as its

parameter; its result is the corresponding uppercase letter. The _tolower routine requires an uppercase

letter as its parameter; its result is the corresponding lowercase letter. Values outside the domain cause

undefined results.

The NCxxxxxx subroutines translate all characters, including extended characters, as code points. The

other subroutines translate traditional ASCII characters only. The NCxxxxxx subroutines are obsolete and

should not be used if portability and future compatibility are a concern.

The value of the Xcharacter parameter is in the domain of any legal NLchar data type. It can also have a

special value of -1, which represents the end of file (EOF).

If the parameter of the NCtoupper subroutine represents a lowercase letter according to the current

collating sequence configuration, the result is the corresponding uppercase letter. If the parameter of the

NCtolower subroutine represents an uppercase letter according to the current collating sequence

configuration, the result is the corresponding lowercase letter. All other values in the domain are returned

unchanged.

The _NCtoupper and _NCtolower routines are macros that perform the same function as the NCtoupper

and NCtolower subroutines, but have restricted domains and are faster. The _NCtoupper macro requires

a lowercase letter as its parameter; its result is the corresponding uppercase letter. The _NCtolower

macro requires an uppercase letter as its parameter; its result is the corresponding lowercase letter.

Values outside the domain cause undefined results.

The NCtoNLchar subroutine yields the value of its parameter with all bits turned off that are not part of an

NLchar data type.

The NCesc subroutine converts the NLchar value of the Pointer parameter into one or more ASCII bytes

stored in the character array pointed to by the CharacterPointer parameter. If the NLchar data type

represents an extended character, it is converted into a printable ASCII escape sequence that uniquely

identifies the extended character. NCesc returns the number of bytes it wrote. The display symbol table

lists the escape sequence for each character.

The opposite conversion is performed by the NCunesc macro, which translates an ordinary ASCII byte or

escape sequence starting at CharacterPointer into a single NLchar at Pointer. NCunesc returns the

number of bytes it read.

182 Technical Reference, Volume 1: Base Operating System and Extensions

The NCflatchr subroutine converts its parameter value into the single ASCII byte that most closely

resembles the parameter character in appearance. If no ASCII equivalent exists, it converts the parameter

value to a ? (question mark).

Note: The setlocale subroutine may affect the conversion of the decimal point symbol and the thousands

separator.

Parameters

 Character Specifies the character to be converted.

Xcharacter Specifies an NLchar value to be converted.

CharacterPointer Specifies a pointer to a single-byte character array.

Pointer Specifies a pointer to an escape sequence.

Related Information

The Japanese conv (“Japanese conv Subroutines” on page 567) subroutines, ctype (“ctype, isalpha,

isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or isascii Subroutines” on

page 203) subroutines, getc, fgetc, getchar, or getw (“getc, getchar, fgetc, or getw Subroutine” on page

340) subroutine, getwc, fgetwc, or getwchar (“getwc, fgetwc, or getwchar Subroutine” on page 468)

subroutine, setlocale subroutine.

List of Character Manipulation Services and Subroutines, Example Programs, and Libraries in AIX 5L

Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

copysign, copysignf, or copysignl Subroutine

Purpose

Performs number manipulation.

Syntax

#include <math.h>

double copysign (x, y)

double x, double y;

float copysignf (x, y)

float x, float y;

long double copysignl (x, y)

long double x, long double y;

Description

The copysign, copysignf, and copysignl subroutines produce a value with the magnitude of x and the

sign of y.

Parameters

 x Specifies the magnitude.

y Specifies the sign.

Base Operating System (BOS) Runtime Services (A-P) 183

Return Values

Upon successful completion, the copysign, copysignf and copysignl subroutines return a value with a

magnitude of x and a sign of y.

Related Information

signbit in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions Volume 2.

math.h in AIX 5L Version 5.3 Files Reference.

coredump Subroutine

Purpose

Creates a core file without terminating the calling process.

Library

Standard C library (libc.a)

Syntax

#include <core.h>

int coredump(coredumpinfop)

struct coredumpinfo *coredumpinfop ;

Description

The coredump subroutine creates a core file of the calling process without terminating the calling

process. The created core file contains the memory image of the process, and this can be used with the

dbx command for debugging purposes. In multithreaded processes, only one thread at a time should

attempt to call this subroutine. Subsequent calls to coredump while a core dump (initiated by another

thread) is in progress will fail.

Applications expected to use this facility need to be built with the -bM:UR binder flag, otherwise the

routine will fail with an error code of ENOTSUP.

The coredumpinfo structure has the following fields:

 Member Type Member Name Description

unsigned int length Length of the core file name

char * name Points to a character string that

contains the name of the core file

int reserved[8] Reserved fields for future use

Parameters

 coredumpinfop Points to the coredumpinfo structure

If a NULL pointer is passed as an argument, the default file named core in the current directory is used.

Return Values

Upon successful completion, the coredump subroutine returns a value of 0. If the coredump subroutine is

not successful, a value of -1 is returned and the errno global variable is set to indicate the error

184 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

 EINVAL Invalid argument.

EACCESS Search permission is denied on a component of the path prefix, the file exists and

the pwrite permission is denied, or the file does not exist and write permission is

denied for the parent directory of the file to be created.

EINPROGRESS A core dump is already in progress.

ENOMEM Not enough memory.

ENOTSUP Routine not supported.

EFAULT Invalid user address.

Related Information

The adb command, dbx command.

The core file format.

cosf, cosl, or cos Subroutine

Purpose

Computes the cosine.

Syntax

#include <math.h>

float cosf (x)

float x;

long double cosl (x)

long double x;

double cos (x)

double x;

Description

The cosf, cosl, and cos subroutines compute the cosine of the x, parameter (measured in radians).

An application wishing to check for error situations should set errno to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

Return Values

Upon successful completion, the cosf, cosl, and cos subroutines return the cosine of x.

If x is NaN, a NaN is returned.

If x is ±0, the value 1.0 is returned.

If x is ±Inf, a domain error occurs, and a NaN is returned.

Base Operating System (BOS) Runtime Services (A-P) 185

Related Information

“feclearexcept Subroutine” on page 259, “fetestexcept Subroutine” on page 267, and “class, _class, finite,

isnan, or unordered Subroutines” on page 165.

sin, sinl, cos, cosl, tan, or tanl Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating

System and Extensions Volume 2.

math.h in AIX 5L Version 5.3 Files Reference.

cosh, coshf, or coshl Subroutine

Purpose

Computes the hyperbolic cosine.

Syntax

#include <math.h>

float coshf (x)

float x;

long double coshl (x)

long double x;

double cosh (x)

double x;

Description

The coshf, coshl, and cosh subroutines compute the hyperbolic cosine of the x parameter.

An application wishing to check for error situations should set errno to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these functions. On return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

Return Values

Upon successful completion, the coshf, coshl, and cosh subroutines return the hyperbolic cosine of x.

If the correct value would cause overflow, a range error occurs and the coshf, coshl, and cosh

subroutines return the value of the macro HUGE_VALF, HUGE_VALL, and HUGE_VAL, respectively.

If x is NaN, a NaN is returned.

If x is ±0, the value 1.0 is returned.

If x is ±Inf, +Inf is returned.

Related Information

“acosh, acoshf, or acoshl Subroutine” on page 30, “feclearexcept Subroutine” on page 259, “fetestexcept

Subroutine” on page 267, and “class, _class, finite, isnan, or unordered Subroutines” on page 165

186 Technical Reference, Volume 1: Base Operating System and Extensions

sinh, sinhf, or sinhl Subroutine and tanh, tanhf, or tanhl Subroutine in AIX 5L Version 5.3 Technical

Reference: Base Operating System and Extensions Volume 2.

math.h in AIX 5L Version 5.3 Files Reference.

cpow, cpowf, or cpowl Subroutine

Purpose

Computes the complex power.

Syntax

#include <complex.h>

double complex cpow (x, y)

double complex x;

double complex y;

float complex cpowf (x, y)

float complex x;

float complex y;

long double complex cpowl (x, y)

long double complex x;

long double complex y;

Description

The cpow, cpowf, and cpowl subroutines compute the complex power function xy , with a branch cut for

the first parameter along the negative real axis.

Parameters

 x Specifies the base value.

y Specifies the power the base value is raised to.

Return Values

The cpow, cpowf, and cpowl subroutines return the complex power function value.

Related Information

“cabs, cabsf, or cabsl Subroutine” on page 127 and “csqrt, csqrtf, or csqrtl Subroutine” on page 192

math.h in AIX 5L Version 5.3 Files Reference.

cproj, cprojf, or cprojl Subroutine

Purpose

Computes the complex projection functions.

Syntax

#include <complex.h>

double complex cproj (z)

double complex z;

Base Operating System (BOS) Runtime Services (A-P) 187

float complex cprojf (z)

float complex z;

long double complex cprojl (z)

long double complex z;

Description

The cproj, cprojf, and cprojl subroutines compute a projection of z onto the Riemann sphere: z projects

to z, except that all complex infinities (even those with one infinite part and one NaN part) project to

positive infinity on the real axis. If z has an infinite part, cproj(z) shall be equivalent to:

INFINITY + I * copysign(0.0, cimag(z))

Parameters

 z Specifies the value to be projected.

Return Values

The cproj, cprojf, and cprojl subroutines return the value of the projection onto the Riemann sphere.

Related Information

“carg, cargf, or cargl Subroutine” on page 129,“cimag, cimagf, or cimagl Subroutine” on page 161, “conj,

conjf, or conjl Subroutine” on page 180, and “creal, crealf, or creall Subroutine.”

math.h in AIX 5L Version 5.3 Files Reference.

creal, crealf, or creall Subroutine

Purpose

Computes the real part of a specified value.

Syntax

#include <complex.h>

double creal (z)

double complex z;

float crealf (z)

float complex z;

long double creall (z)

long double complex z;

Description

The creal, crealf, and creall subroutines compute the real part of the value specified by the z parameter.

Parameters

 z Specifies the real to be computed.

Return Values

These subroutines return the real part value.

188 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

“carg, cargf, or cargl Subroutine” on page 129, “cimag, cimagf, or cimagl Subroutine” on page 161, “conj,

conjf, or conjl Subroutine” on page 180, and “cproj, cprojf, or cprojl Subroutine” on page 187

crypt, encrypt, or setkey Subroutine

Purpose

Encrypts or decrypts data.

Library

Standard C Library (libc.a)

Syntax

char *crypt (PW, Salt)

const char * PW, * Salt;

void encrypt (Block, EdFlag)

char Block[64];

int EdFlag;

void setkey (Key)

const char * Key;

Description

The crypt and encrypt subroutines encrypt or decrypt data. The crypt subroutine performs a one-way

encryption of a fixed data array with the supplied PW parameter. The subroutine uses the Salt parameter

to vary the encryption algorithm.

The encrypt subroutine encrypts or decrypts the data supplied in the Block parameter using the key

supplied by an earlier call to the setkey subroutine. The data in the Block parameter on input must be an

array of 64 characters. Each character must be an char 0 or char 1.

If you need to statically bind functions from libc.a for crypt do the following:

1. Create a file and add the following:

#!

___setkey

___encrypt

___crypt

2. Perform the linking.

3. Add the following to the make file:

-bI:YourFileName

where YourFileName is the name of the file you created in step 1. It should look like the following:

LDFLAGS=bnoautoimp -bI:/lib/syscalls.exp -bI:YourFileName -lc

These subroutines are provided for compatibility with UNIX® system implementations.

Parameters

 Block Identifies a 64-character array containing the values (char) 0 and (char) 1. Upon return, this buffer

contains the encrypted or decrypted data.

Base Operating System (BOS) Runtime Services (A-P) 189

EdFlag Determines whether the subroutine encrypts or decrypts the data. If this parameter is 0, the data

is encrypted. If this is a nonzero value, the data is decrypted. If the /usr/lib/libdes.a file does not

exist and the EdFlag parameter is set to nonzero, the encrypt subroutine returns the ENOSYS

error code.

Key Specifies an 64-element array of 0’s and 1’s cast as a const char data type. The Key parameter

is used to encrypt or decrypt data.

PW Specifies up to an 8-character string to be encrypted.

Salt Specifies a 2-character string chosen from the following:

A-Z Uppercase alpha characters

a-z Lowercase alpha characters

0-9 Numeric characters

. Period

/ Slash

 The Salt parameter is used to vary the hashing algorithm in one of 4096 different ways.

Return Values

The crypt subroutine returns a pointer to the encrypted password. The static area this pointer indicates

may be overwritten by subsequent calls.

Error Codes

The encrypt subroutine returns the following:

 ENOSYS The encrypt subroutine was called with the EdFlag parameter which was set to a nonzero value.

Also, the /usr/lib/libdes.a file does not exist.

Related Information

The newpass (“newpass Subroutine” on page 860) subroutine.

The login command, passwd command, su command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

csid Subroutine

Purpose

Returns the character set ID (charsetID) of a multibyte character.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int csid (String)

const char *String;

190 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The csid subroutine returns the charsetID of the multibyte character pointed to by the String parameter.

No validation of the character is performed. The parameter must point to a value in the character range of

the current code set defined in the current locale.

Parameters

 String Specifies the character to be tested.

Return Values

Successful completion returns an integer value representing the charsetID of the character. This integer

can be a number from 0 through n, where n is the maximum character set defined in the CHARSETID field of

the charmap. See ″Understanding the Character Set Description (charmap) Source File″ in AIX 5L

Version 5.3 System Management Concepts: Operating System and Devices for more information.

Related Information

The mbstowcs (“mbstowcs Subroutine” on page 790) subroutine, wcsid subroutine.

National Language Support Overview and Understanding the Character Set Description (charmap) Source

File in AIX 5L Version 5.3 National Language Support Guide and Reference.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

csin, csinf, or csinl Subroutine

Purpose

Computes the complex sine.

Syntax

#include <complex.h>

double complex csin (z)

double complex z;

float complex csinf (z)

float complex z;

long double complex csinl (z)

long double complex z;

Description

The csin, csinf, and csinl subroutines compute the complex sine of the value specified by the z

parameter.

Parameters

 z Specifies the value to be computed.

Return Values

The csin, csinf, and csinl subroutines return the complex sine value.

Base Operating System (BOS) Runtime Services (A-P) 191

Related Information

“casin, casinf, or casinl Subroutine” on page 129

csinh, csinhf, or csinhl Subroutine

Purpose

Computes the complex hyperbolic sine.

Syntax

#include <complex.h>

double complex csinh (z)

double complex z;

float complex csinhf (z)

float complex z;

long double complex csinhl (z)

long double complex z;

Description

The csinh, csinhf, and csinhl subroutines compute the complex hyperbolic sine of the value specified by

the z parameter.

Parameters

 z Specifies the value to be computed.

Return Values

The csinh, csinhf, and csinhl subroutines return the complex hyperbolic sine value.

Related Information

“casinh, casinfh, or casinlh Subroutine” on page 130

csqrt, csqrtf, or csqrtl Subroutine

Purpose

Computes complex square roots.

Syntax

#include <complex.h>

double complex csqrt (z)

double complex z;

float complex csqrtf (z)

float complex z;

long double complex csqrtl (z)

long double complex z;

192 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The csqrt, csqrtf, and csqrtl subroutines compute the complex square root of the value specified by the z

parameter, with a branch cut along the negative real axis.

Parameters

 z Specifies the value to be computed.

Return Values

The csqrt, csqrtf, and csqrtl subroutines return the complex square root value, in the range of the right

half-plane (including the imaginary axis).

Related Information

“cabs, cabsf, or cabsl Subroutine” on page 127, “cpow, cpowf, or cpowl Subroutine” on page 187

ctan, ctanf, or ctanl Subroutine

Purpose

Computes complex tangents.

Syntax

#include <complex.h>

double complex ctan (z)

double complex z;

float complex ctanf (z)

float complex z;

long double complex ctanl (z)

long double complex z;

Description

The ctan, ctanf, and ctanl subroutines compute the complex tangent of the value specified by the z

parameter.

Parameters

 z Specifies the value to be computed.

Return Values

The ctan, ctanf, and ctanl subroutines return the complex tangent value.

Related Information

“catan, catanf, or catanl Subroutine” on page 130

math.h in AIX 5L Version 5.3 Files Reference.

Base Operating System (BOS) Runtime Services (A-P) 193

ctanh, ctanhf, or ctanhl Subroutine

Purpose

Computes the complex hyperbolic tangent.

Syntax

#include <complex.h>

double complex ctanh (z)

double complex z;

float complex ctanhf (z)

float complex z;

long double complex ctanhl (z)

long double complex z;

Description

The ctanh, ctanhf, and ctanhl subroutines compute the complex hyperbolic tangent of z.

Parameters

 z Specifies the value to be computed.

Return Values

The ctanh, ctanhf, and ctanhl subroutines return the complex hyperbolic tangent value.

Related Information

“catanh, catanhf, or catanhl Subroutine” on page 131

ctermid Subroutine

Purpose

Generates the path name of the controlling terminal.

Library

Standard C Library (libc.a)

Syntax

#include <stdio.h>

char *ctermid (String)

char *String;

Description

The ctermid subroutine generates the path name of the controlling terminal for the current process and

stores it in a string.

Note: File access permissions depend on user access. Access to a file whose path name the ctermid

subroutine has returned is not guaranteed.

194 Technical Reference, Volume 1: Base Operating System and Extensions

The difference between the ctermid and ttyname subroutines is that the ttyname subroutine must be

handed a file descriptor and returns the actual name of the terminal associated with that file descriptor.

The ctermid subroutine returns a string (the /dev/tty file) that refers to the terminal if used as a file name.

Thus, the ttyname subroutine is useful only if the process already has at least one file open to a terminal.

Parameters

 String If the String parameter is a null pointer, the string is stored in an internal static area and the address

is returned. The next call to the ctermid subroutine overwrites the contents of the internal static

area.

If the String parameter is not a null pointer, it points to a character array of at least L_ctermid

elements as defined in the stdio.h file. The path name is placed in this array and the value of the

String parameter is returned.

Related Information

The isatty or ttyname subroutine.

Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine

Purpose

Converts the formats of date and time representations.

Library

Standard C Library (libc.a)

Syntax

#include <time.h>

char *ctime (Clock)

const time_t *Clock;

struct tm *localtime (Clock)

const time_t *Clock;

struct tm *gmtime (Clock)

const time_t *Clock;

time_t mktime(Timeptr)

struct tm *Timeptr;

double difftime(Time1, Time0)

time_t Time0, Time1;

char *asctime (Tm)

const struct tm *Tm;

void tzset ()

extern long int timezone;

extern int daylight;

extern char *tzname[];

Base Operating System (BOS) Runtime Services (A-P) 195

Description

Attention: Do not use the tzset subroutine when linking with both libc.a and libbsd.a. The tzset

subroutine sets the global external variable called timezone, which conflicts with the timezone

subroutine in libbsd.a. This name collision may cause unpredictable results.

Attention: Do not use the ctime, localtime, gmtime, or asctime subroutine in a multithreaded

environment. See the multithread alternatives in the ctime_r (“ctime_r, localtime_r, gmtime_r, or

asctime_r Subroutine” on page 202), localtime_r, gmtime_r, or asctime_r subroutine article.

The ctime subroutine converts a time value pointed to by the Clock parameter, which represents the time

in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into a 26-character string

in the following form:

Sun Sept 16 01:03:52 1973\n\0

The width of each field is always the same as shown here.

The ctime subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime subroutine converts the long integer pointed to by the Clock parameter, which contains the

time in seconds since 00:00:00 UTC, 1 January 1970, into a tm structure. The localtime subroutine

adjusts for the time zone and for daylight-saving time, if it is in effect. Use the time-zone information as

though localtime called tzset.

The gmtime subroutine converts the long integer pointed to by the Clock parameter into a tm structure

containing the Coordinated Universal Time (UTC), which is the time standard the operating system uses.

Note: UTC is the international time standard intended to replace GMT.

The tm structure is defined in the time.h file, and it contains the following members:

int tm_sec; /* Seconds (0 - 59) */

int tm_min; /* Minutes (0 - 59) */

int tm_hour; /* Hours (0 - 23) */

int tm_mday; /* Day of month (1 - 31) */

int tm_mon; /* Month of year (0 - 11) */

int tm_year; /* Year - 1900 */

int tm_wday; /* Day of week (Sunday = 0) */

int tm_yday; /* Day of year (0 - 365) */

int tm_isdst; /* Nonzero = Daylight saving time */

The mktime subroutine is the reverse function of the localtime subroutine. The mktime subroutine

converts the tm structure into the time in seconds since 00:00:00 UTC, 1 January 1970. The tm_wday and

tm_yday fields are ignored, and the other components of the tm structure are not restricted to the ranges

specified in the /usr/include/time.h file. The value of the tm_isdst field determines the following actions of

the mktime subroutine:

 0 Initially presumes that Daylight Savings Time (DST) is not in effect.

>0 Initially presumes that DST is in effect.

-1 Actively determines whether DST is in effect from the specified time and the local time zone. Local time zone

information is set by the tzset subroutine.

Upon successful completion, the mktime subroutine sets the values of the tm_wday and tm_yday fields

appropriately. Other fields are set to represent the specified time since January 1, 1970. However, the

values are forced to the ranges specified in the /usr/include/time.h file. The final value of the tm_mday

field is not set until the values of the tm_mon and tm_year fields are determined.

196 Technical Reference, Volume 1: Base Operating System and Extensions

Note: The mktime subroutine cannot convert time values before 00:00:00 UTC, January 1, 1970 and

after 03:14:07 UTC, January 19, 2038.

The difftime subroutine computes the difference between two calendar times: the Time1 and -Time0

parameters.

The asctime subroutine converts a tm structure to a 26-character string of the same format as ctime.

If the TZ environment variable is defined, then its value overrides the default time zone, which is the U.S.

Eastern time zone. The environment facility contains the format of the time zone information specified by

TZ. TZ is usually set when the system is started with the value that is defined in either the

/etc/environment or /etc/profile files. However, it can also be set by the user as a regular environment

variable for performing alternate time zone conversions.

The tzset subroutine sets the timezone, daylight, and tzname external variables to reflect the setting of

TZ. The tzset subroutine is called by ctime and localtime, and it can also be called explicitly by an

application program.

The timezone external variable contains the difference, in seconds, between UTC and local standard time.

For example, the value of timezone is 5 * 60 * 60 for U.S. Eastern Standard Time.

The daylight external variable is nonzero when a daylight-saving time conversion should be applied. By

default, this conversion follows the standard U.S. conventions; other conventions can be specified. The

default conversion algorithm adjusts for the peculiarities of U.S. daylight saving time in 1974 and 1975.

The tzname external variable contains the name of the standard time zone (tzname[0]) and of the time

zone when Daylight Savings Time is in effect (tzname[1]). For example:

char *tzname[2] = {"EST", "EDT"};

The time.h file contains declarations of all these subroutines and externals and the tm structure.

Parameters

 Clock Specifies the pointer to the time value in seconds.

Timeptr Specifies the pointer to a tm structure.

Time1 Specifies the pointer to a time_t structure.

Time0 Specifies the pointer to a time_t structure.

Tm Specifies the pointer to a tm structure.

Return Values

Attention: The return values point to static data that is overwritten by each call.

The tzset subroutine returns no value.

The mktime subroutine returns the specified time in seconds encoded as a value of type time_t. If the

time cannot be represented, the function returns the value (time_t)-1.

The localtime and gmtime subroutines return a pointer to the struct tm.

The ctime and asctime subroutines return a pointer to a 26-character string.

The difftime subroutine returns the difference expressed in seconds as a value of type double.

Base Operating System (BOS) Runtime Services (A-P) 197

Related Information

The getenv (“getenv Subroutine” on page 357) subroutine, gettimer (“gettimer, settimer, restimer, stime, or

time Subroutine” on page 437) subroutine, strftime subroutine.

List of Time Data Manipulation Services in AIX 5L Version 5.3 System Management Concepts: Operating

System and Devices.

National Language Support Overview for Programming in AIX 5L Version 5.3 National Language Support

Guide and Reference.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

ctime64, localtime64, gmtime64, mktime64, difftime64, or asctime64

Subroutine

Purpose

Converts the formats of date and time representations.

Library

Standard C Library (libc.a)

Syntax

#include <time.h>

char *ctime64 (Clock)

const time64_t *Clock;

struct tm *localtime64 (Clock)

const time64_t *Clock;

struct tm *gmtime64 (Clock)

const time64_t *Clock;

time64_t mktime64(Timeptr)

struct tm *Timeptr;

double difftime64(Time1, Time0)

time64_t Time0, Time1;

char *asctime64 (Tm)

const struct tm *Tm;

Description

Attention: Do not use the ctime, localtime, gmtime, or asctime subroutine in a multithreaded

environment. See “ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine” on page 200 for

multithread alternatives.

The ctime64 subroutine converts a time value pointed to by the Clock parameter, which represents the

time in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into a 26-character

string in the following form:

Sun Sept 16 01:03:52 1973\n\0

The width of each field is always the same as shown here.

198 Technical Reference, Volume 1: Base Operating System and Extensions

The ctime64 subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime64 subroutine converts the 64 bit long pointed to by the Clock parameter, which contains the

time in seconds since 00:00:00 UTC, 1 January 1970, into a tm structure. The localtime64 subroutine

adjusts for the time zone and for daylight saving time, if it is in effect. Use the time-zone information as

though localtime64 called tzset.

The gmtime64 subroutine converts the 64 bit long pointed to by the Clock parameter into a tm structure

containing the Coordinated Universal Time (UTC), which is the time standard that the operating system

uses.

Note: UTC is the international time standard intended to replace GMT.

The mktime64 subroutine is the reverse function of the localtime64 subroutine. The mktime64 subroutine

converts the tm structure into the time in seconds since 00:00:00 UTC, 1 January 1970. The tm_wday

and tm_yday fields are ignored, and the other components of the tm structure are not restricted to the

ranges specified in the /usr/include/time.h file. The value of the tm_isdst field determines the following

actions of the mktime64 subroutine:

 0 Initially presumes that Daylight Savings Time (DST) is not in effect.

>0 Initially presumes that DST is in effect.

-1 Actively determines whether DST is in effect from the specified time and the local

time zone. Local time zone information is set by the tzset subroutine.

Upon successful completion, the mktime64 subroutine sets the values of the tm_wday and tm_yday

fields appropriately. Other fields are set to represent the specified time since January 1, 1970. However,

the values are forced to the ranges specified in the /usr/include/time.h file. The final value of the

tm_mday field is not set until the values of the tm_mon and tm_year fields are determined.

Note: The mktime64 subroutine cannot convert time values before 00:00:00 UTC, January 1, 1970 and

after 23:59:59 UTC, December 31, 9999.

Note: The difftime64 subroutine computes the difference between two calendar times: the Time1 and

Time0 parameters.

Note: The asctime64 subroutine converts a tm structure to a 26-character string of the same format as

ctime64.

Parameters

 Clock Specifies the pointer to the time value in seconds.

Timeptr Specifies the pointer to a tm structure.

Time1 Specifies the pointer to a time64_t structure.

Time0 Specifies the pointer to a time64_t structure.

Tm Specifies the pointer to a tm structure.

Return Values

Attention: The return values point to static data that is overwritten by each call.

The mktime64 subroutine returns the specified time in seconds encoded as a value of type time64_t. If

the time cannot be represented, the function returns the value (time64_t)-1.

The localtime64 and gmtime64 subroutines return a pointer to the tm struct .

Base Operating System (BOS) Runtime Services (A-P) 199

The ctime64 and asctime64 subroutines return a pointer to a 26-character string.

The difftime64 subroutine returns the difference expressed in seconds as a value of type long double.

Related Information

“ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine,” “getenv Subroutine” on page 357,

“gettimer, settimer, restimer, stime, or time Subroutine” on page 437, strftime subroutine.

List of Time Data Manipulation Services in AIX 5L™ Version 5.3 System Management Concepts: Operating

System and Devices.

National Language Support Overview for Programming in AIX 5L Version 5.3 National Language Support

Guide and Reference.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine

Purpose

Converts the formats of date and time representations.

Library

Thread-Safe C Library (libc_r.a)

Syntax

#include <time.h>

char *ctime64_r(Timer, BufferPointer)

const time64_t * Timer;

char * BufferPointer;

struct tm *localtime64_r(Timer, CurrentTime)

const time64_t * Timer;

struct tm * CurrentTime;

struct tm *gmtime64_r (Timer, XTime)

const time64_t * Timer;

struct tm * XTime;

char *asctime64_r (TimePointer, BufferPointer)

const struct tm * TimePointer;

char * BufferPointer;

Description

The ctime64_r subroutine converts a time value pointed to by the Timer parameter, which represents the

time in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into the character

array pointed to by the BufferPointer parameter. The character array should have a length of at least 26

characters so the converted time value fits without truncation. The converted time value string takes the

form of the following example:

Sun Sept 16 01:03:52 1973\n\0

The width of each field is always the same as shown here. Thus, ctime will only return dates up to

December 31, 9999.

200 Technical Reference, Volume 1: Base Operating System and Extensions

The ctime64_r subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime64_r subroutine converts the time64_t structure pointed to by the Timer parameter, which

contains the time in seconds since 00:00:00 UTC, January 1, 1970, into the tm structure pointed to by the

CurrentTime parameter. The localtime64_r subroutine adjusts for the time zone and for daylight saving

time, if it is in effect.

The gmtime64_r subroutine converts the time64_t structure pointed to by the Timer parameter into the tm

structure pointed to by the XTime parameter.

The tm structure is defined in the time.h header file. The time.h file contains declarations of these

subroutines, externals, and the tm structure.

The asctime64_r subroutine converts the tm structure pointed to by the TimePointer parameter into a

26-character string in the same format as the ctime64_r subroutine. The results are placed into the

character array, BufferPointer. The BufferPointer parameter points to the resulting character array, which

takes the form of the following example:

Sun Sept 16 01:03:52 1973\n\0

Programs using this subroutine must link to the libpthreads.a library.

Parameters

 Timer Points to a time64_t structure, which contains the number of seconds since 00:00:00 UTC,

January 1, 1970.

BufferPointer Points to a character array at least 26 characters long.

CurrentTime Points to a tm structure. The result of the localtime64_r subroutine is placed here.

XTime Points to a tm structure used for the results of the gmtime64_r subroutine.

TimePointer Points to a tm structure used as input to the asctime64_r subroutine.

Return Values

The localtime64_r and gmtime64_r subroutines return a pointer to the tm structure. The asctime64_r

returns NULL if either TimePointer or BufferPointer is NULL.

The ctime64_r and asctime64_r subroutines return a pointer to a 26-character string. The ctime64_r

subroutine returns NULL if the BufferPointer is NULL.

The difftime64 subroutine returns the difference expressed in seconds as a value of type long double.

Files

 /usr/include/time.h Defines time macros, data types, and structures.

Related Information

“ctime64, localtime64, gmtime64, mktime64, difftime64, or asctime64 Subroutine” on page 198

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 201

ctime_r, localtime_r, gmtime_r, or asctime_r Subroutine

Purpose

Converts the formats of date and time representations.

Library

Thread-Safe C Library (libc_r.a)

Syntax

#include <time.h>

char *ctime_r(Timer, BufferPointer)

const time_t * Timer;

char * BufferPointer;

struct tm *localtime_r(Timer, CurrentTime)

const time_t * Timer;

struct tm * CurrentTime;

struct tm *gmtime_r(Timer, XTime)

const time_t * Timer;

struct tm * XTime;

char *asctime_r(TimePointer, BufferPointer)

const struct tm * TimePointer;

char * BufferPointer;

Description

The ctime_r subroutine converts a time value pointed to by the Timer parameter, which represents the

time in seconds since 00:00:00 Coordinated Universal Time (UTC), January 1, 1970, into the character

array pointed to by the BufferPointer parameter. The character array should have a length of at least 26

characters so the converted time value fits without truncation. The converted time value string takes the

form of the following example:

Sun Sep 16 01:03:52 1973\n\0

The width of each field is always the same as shown here.

The ctime_r subroutine adjusts for the time zone and daylight saving time, if it is in effect.

The localtime_r subroutine converts the time_t structure pointed to by the Timer parameter, which

contains the time in seconds since 00:00:00 UTC, January 1, 1970, into the tm structure pointed to by the

CurrentTime parameter. The localtime_r subroutine adjusts for the time zone and for daylight saving time,

if it is in effect.

The gmtime_r subroutine converts the time_t structure pointed to by the Timer parameter into the tm

structure pointed to by the XTime parameter.

The tm structure is defined in the time.h header file. The time.h file contains declarations of these

subroutines, externals, and the tm structure.

202 Technical Reference, Volume 1: Base Operating System and Extensions

The asctime_r subroutine converts the tm structure pointed to by the TimePointer parameter into a

26-character string in the same format as the ctime_r subroutine. The results are placed into the character

array, BufferPointer. The BufferPointer parameter points to the resulting character array, which takes the

form of the following example:

Sun Sep 16 01:03:52 1973\n\0

Programs using this subroutine must link to the libpthreads.a library.

Parameters

 Timer Points to a time_t structure, which contains the number of seconds since 00:00:00 UTC,

January 1, 1970.

BufferPointer Points to a character array at least 26 characters long.

CurrentTime Points to a tm structure. The result of the localtime_r subroutine is placed here.

XTime Points to a tm structure used for the results of the gmtime_r subroutine.

TimePointer Points to a tm structure used as input to the asctime_r subroutine.

Return Values

The localtime_r and gmtime_r subroutines return a pointer to the tm structure. The asctime_r returns

NULL if either TimePointer or BufferPointer are NULL.

The ctime_r and asctime_r subroutines return a pointer to a 26-character string. The ctime_r subroutine

returns NULL if the BufferPointer is NULL.

Files

 /usr/include/time.h

Defines time macros, data types, and structures.

Related Information

The ctime, localtime, gmtime, mktime, difftime, asctime, or tzset (“ctime, localtime, gmtime, mktime,

difftime, asctime, or tzset Subroutine” on page 195) subroutine.

Subroutines, Example Programs, and Libraries and List of Multi-threaded Programming Subroutines in AIX

5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference

ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace,

ispunct, isprint, isgraph, iscntrl, or isascii Subroutines

Purpose

Classifies characters.

Library

Standard Character Library (libc.a)

Syntax

#include <ctype.h>

Base Operating System (BOS) Runtime Services (A-P) 203

int isalpha (Character)

int Character;

int isupper (Character)

int Character;

int islower (Character)

int Character;

int isdigit (Character)

int Character;

int isxdigit (Character)

int Character;

int isalnum (Character)

int Character;

int isspace (Character)

int Character;

int ispunct (Character)

int Character;

int isprint (Character)

int Character;

int isgraph (Character)

int Character;

int iscntrl (Character)

int Character;

int isascii (Character)

int Character;

Description

The ctype subroutines classify character-coded integer values specified in a table. Each of these

subroutines returns a nonzero value for True and 0 for False.

Note: The ctype subroutines should only be used on character data that can be represented by a single

byte value (0 through 255). Attempting to use the ctype subroutines on multi-byte locale data may

give inconsistent results. Wide character classification routines (such as iswprint, iswlower, etc.)

should be used with dealing with multi-byte character data.

Locale Dependent Character Tests

The following subroutines return nonzero (True) based upon the character class definitions for the current

locale.

 isalnum Returns nonzero for any character for which the isalpha or isdigit subroutine would return

nonzero. The isalnum subroutine tests whether the character is of the alpha or digit class.

isalpha Returns nonzero for any character for which the isupper or islower subroutines would return

nonzero. The isalpha subroutine also returns nonzero for any character defined as an alphabetic

character in the current locale, or for a character for which none of the iscntrl, isdigit, ispunct,

or isspace subroutines would return nonzero. The isalpha subroutine tests whether the

character is of the alpha class.

isupper Returns nonzero for any uppercase letter [A through Z]. The isupper subroutine also returns

nonzero for any character defined to be uppercase in the current locale. The isupper subroutine

tests whether the character is of the upper class.

islower Returns nonzero for any lowercase letter [a through z]. The islower subroutine also returns

nonzero for any character defined to be lowercase in the current locale. The islower subroutine

tests whether the character is of the lower class.

isspace Returns nonzero for any white-space character (space, form feed, new line, carriage return,

horizontal tab or vertical tab). The isspace subroutine tests whether the character is of the

space class.

204 Technical Reference, Volume 1: Base Operating System and Extensions

ispunct Returns nonzero for any character for which the isprint subroutine returns nonzero, except the

space character and any character for which the isalnum subroutine would return nonzero. The

ispunct subroutine also returns nonzero for any locale-defined character specified as a

punctuation character. The ispunct subroutine tests whether the character is of the punct class.

isprint Returns nonzero for any printing character. Returns nonzero for any locale-defined character that

is designated a printing character. This routine tests whether the character is of the print class.

isgraph Returns nonzero for any character for which the isprint character returns nonzero, except the

space character. The isgraph subroutine tests whether the character is of the graph class.

iscntrl Returns nonzero for any character for which the isprint subroutine returns a value of False (0)

and any character that is designated a control character in the current locale. For the C locale,

control characters are the ASCII delete character (0177 or 0x7F), or an ordinary control character

(less than 040 or 0x20). The iscntrl subroutine tests whether the character is of the cntrl class.

Locale Independent Character Tests

The following subroutines return nonzero for the same characters, regardless of the locale:

 isdigit Character is a digit in the range [0 through 9].

isxdigit Character is a hexadecimal digit in the range [0 through 9], [A through F], or [a through f].

isascii Character is an ASCII character whose value is in the range 0 through 0177 (0 through 0x7F),

inclusive.

Parameter

 Character Indicates the character to be tested (integer value).

Return Codes

The ctype subroutines return nonzero (True) if the character specified by the Character parameter is a

member of the selected character class; otherwise, a 0 (False) is returned.

Related Information

The setlocale subroutine.

List of Character Manipulation Services and Subroutines, Example Programs, and Libraries in AIX 5L

Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

cuserid Subroutine

Purpose

Gets the alphanumeric user name associated with the current process.

Library

Standard C Library (libc.a)

Use the libc_r.a library to access the thread-safe version of this subroutine.

Syntax

#include <stdio.h>

Base Operating System (BOS) Runtime Services (A-P) 205

char *cuserid (Name)

char *Name;

Description

The cuserid subroutine gets the alphanumeric user name associated with the current process. This

subroutine generates a character string representing the name of a process’s owner.

Note: The cuserid subroutine duplicates functionality available with the getpwuid and getuid

subroutines. Present applications should use the getpwuid and getuid subroutines.

If the Name parameter is a null pointer, then a character string of size L_cuserid is dynamically allocated

with malloc, and the character string representing the name of the process owner is stored in this area.

The cuserid subroutine then returns the address of this area. Multithreaded application programs should

use this functionality to obtain thread specific data, and then continue to use this pointer in subsequent

calls to the curserid subroutine. In any case, the application program must deallocate any dynamically

allocated space with the free subroutine when the data is no longer needed.

If the Name parameter is not a null pointer, the character string is stored into the array pointed to by the

Name parameter. This array must contain at least the number of characters specified by the constant

L_cuserid. This constant is defined in the stdio.h file.

If the user name cannot be found, the cuserid subroutine returns a null pointer; if the Name parameter is

not a null pointer, a null character (’\0’) is stored in Name [0].

Parameter

 Name Points to a character string representing a user name.

Related Information

The endpwent (“getpwent, getpwuid, getpwnam, putpwent, setpwent, or endpwent Subroutine” on page

413) subroutine, getlogin (“getlogin Subroutine” on page 385), getpwent (“getpwent, getpwuid, getpwnam,

putpwent, setpwent, or endpwent Subroutine” on page 413), getpwnam (“getpwent, getpwuid, getpwnam,

putpwent, setpwent, or endpwent Subroutine” on page 413), getpwuid (“getpwent, getpwuid, getpwnam,

putpwent, setpwent, or endpwent Subroutine” on page 413), or putpwent (“getpwent, getpwuid,

getpwnam, putpwent, setpwent, or endpwent Subroutine” on page 413) subroutine.

Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

defssys Subroutine

Purpose

Initializes the SRCsubsys structure with default values.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>

#include <spc.h>

206 Technical Reference, Volume 1: Base Operating System and Extensions

void defssys(SRCSubsystem)

struct SRCsubsys *SRCSubsystem;

Description

The defssys subroutine initializes the SRCsubsys structure of the /usr/include/sys/srcobj.h file with the

following default values:

 Field Value

display SRCYES

multi SRCNO

contact SRCSOCKET

waittime TIMELIMIT

priority 20

action ONCE

standerr /dev/console

standin /dev/console

standout /dev/console

All other numeric fields are set to 0, and all other alphabetic fields are set to an empty string.

This function must be called to initialize the SRCsubsys structure before an application program uses this

structure to add records to the subsystem object class.

Parameters

 SRCSubsystem Points to the SRCsubsys structure.

Related Information

The addssys (“addssys Subroutine” on page 33) subroutine.

Defining Your Subsystem to the SRC, List of SRC Subroutines, System Resource Controller (SRC)

Overview for Programmers in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

delssys Subroutine

Purpose

Removes the subsystem objects associated with the SubsystemName parameter.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>

#include <spc.h>

int delssys (SubsystemName)

char *SubsystemName;

Base Operating System (BOS) Runtime Services (A-P) 207

Description

The delssys subroutine removes the subsystem objects associated with the specified subsystem. This

removes all objects associated with that subsystem from the following object classes:

v Subsystem

v Subserver Type

v Notify

The program running with this subroutine must be running with the group system.

Parameter

 SubsystemName Specifies the name of the subsystem.

Return Values

Upon successful completion, the delssys subroutine returns a positive value. If no record is found, a value

of 0 is returned. Otherwise, -1 is returned and the odmerrno variable is set to indicate the error. See

″Appendix B. ODM Error Codes (Appendix B, “ODM Error Codes,” on page 1253)″ for a description of

possible odmerrno values.

Security

Privilege Control:

SET_PROC_AUDIT kernel privilege

Files Accessed:

 Mode File

644 /etc/objrepos/SRCsubsys

644 /etc/objrepos/SRCsubsvr

644 /etc/objrepos/SRCnotify

Auditing Events:

 Event Information

SRC_Delssys Lists in an audit log the name of the subsystem being removed.

Files

 /etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

/etc/objrepos/SRCsubsvr SRC Subsystem Configuration object class.

/etc/objrepos/SRCnotify SRC Notify Method object class.

/dev/SRC Specifies the AF_UNIX socket file.

/dev/.SRC-unix Specifies the location for temporary socket files.

/usr/include/sys/srcobj.h Defines object structures used by the SRC.

/usr/include/spc.h Defines external interfaces provided by the SRC subroutines.

Related Information

The addssys (“addssys Subroutine” on page 33) subroutine, chssys (“chssys Subroutine” on page 160)

subroutine.

208 Technical Reference, Volume 1: Base Operating System and Extensions

The chssys command, mkssys command, rmssys command.

List of SRC Subroutines and System Resource Controller (SRC) Overview for Programmers in AIX 5L

Version 5.3 General Programming Concepts: Writing and Debugging Programs.

dirname Subroutine

Purpose

Report the parent directory name of a file path name.

Library

Standard C Library (libc.a)

Syntax

#include <libgen.h>

char *dirname (path)

char *path

Description

Given a pointer to a character string that contains a file system path name, the dirname subroutine

returns a pointer to a string that is the parent directory of that file. Trailing ″/″ characters in the path are not

counted as part of the path.

If path is a null pointer or points to an empty string, a pointer to a static constant ″.″ is returned.

The dirname and basename subroutines together yield a complete path name. dirname (path) is the

directory where basename (path) is found.

Parameters

 path Character string containing a file system path name.

Return Values

The dirname subroutine returns a pointer to a string that is the parent directory of path. If path or *path is

a null pointer or points to an empty string, a pointer to a string ″.″ is returned. The dirname subroutine

may modify the string pointed to by path and may return a pointer to static storage that may then be

overwritten by sequent calls to the dirname subroutine.

Examples

A simple file name and the strings ″.″ and ″..″ all have ″.″ as their return value.

 Input string Output string

/usr/lib /usr

/usr/ /

usr .

/ /

. .

.. .

The following code reads a path name, changes directory to the appropriate directory, and opens the file.

Base Operating System (BOS) Runtime Services (A-P) 209

char path [MAXPATHEN], *pathcopy;

int fd;

fgets (path, MAXPATHEN, stdin);

pathcopy = strdup (path);

chdir (dirname (pathcopy));

fd = open (basename (path), O_RDONLY);

Related Information

The basename (“basename Subroutine” on page 115) or chdir (“chdir Subroutine” on page 145)

subroutine.

disclaim Subroutine

Purpose

Disclaims the content of a memory address range.

Syntax

#include <sys/shm.h>

int disclaim (Address, Length, Flag)

char *Address;

unsigned int Length, Flag;

Description

The disclaim subroutine marks an area of memory having content that is no longer needed. The system

then stops paging the memory area. This subroutine cannot be used on memory that is mapped to a file

by the shmat subroutine.

Parameters

 Address Points to the beginning of the memory area.

Length Specifies the length of the memory area in bytes.

Flag Must be the value ZERO_MEM, which indicates that each memory location in the address range

should be set to 0.

Return Values

When successful, the disclaim subroutine returns a value of 0.

Error Codes

If the disclaim subroutine is unsuccessful, it returns a value of -1 and sets the errno global variable to

indicate the error. The disclaim subroutine is unsuccessful if one or more of the following are true:

 EFAULT The calling process does not have write access to the area of memory that begins at the

Address parameter and extends for the number of bytes specified by the Length parameter.

EINVAL The value of the Flag parameter is not valid.

EINVAL The memory area is mapped to a file.

dladdr Subroutine

Purpose

Translates address to symbolic information.

210 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

 #include <dlfcn.h>

 int dladdr(void *address, Dl_info *dlip);

Description

dladdr allows a process to obtain information about the symbol that most closely defines a given address.

dladdr first determines whether the specified address is located within one of the mapped objects

(executable or shared objects) that make up the process’ address space. An address is deemed to fall

within a mapped object when it is between the base address at which the object was mapped and the

highest virtual address mapped for that object, inclusive. If a mapped object fits this criteria, its dynamic

symbol table is searched to locate the nearest symbol to the specified address. The nearest symbol is the

one whose value is equal to, or closest to but less than, the specified address.

dlip is a pointer to a Dl_info structure. The structure must be allocated by the user. The structure

members are set by dladdr if the specified address falls within one of the mapped objects. The Dl_info

structure contains at least the following members:

 const char *dli_fname;

 void *dli_fbase;

 const char *dli_sname;

 void *dli_saddr;

 size_t dli_size;

 int dli_bind;

 int dli_type;

Descriptions of these members appear below:

dli_fname

Contains a pointer to the filename of the mapped object containing address.

dli_fbase

Contains the base address of the mapped object containing address.

dli_sname

Contains a pointer to the name of the nearest symbol to the specified address. This symbol either

has the same address, or is the nearest symbol with a lower address.

dli_saddr

Contains the actual address of the nearest symbol.

dli_size

Contains the size of the nearest symbol as defined in the dynamic symbol table.

 If no symbol is found within the object containing address whose value is less than or equal to address,

the dli_sname, dli_saddr and dli_size members are set to 0; the dli_bind member is set to

STB_LOCAL, and the dli_type member is set to STT_NOTYPE.

For the a.out, the symbol table created by ld for use by the dynamic linker might contain only a subset of

the symbols defined in the a.out [see dlopen (“dlopen Subroutine” on page 213)]. This could cause

dladdr to return information for a symbol that is actually unrelated to the specified address.

The addresses and the strings pointed to by the members of the Dl_info structure refer to locations within

mapped objects. These may become invalid if the objects are unmapped from the address space [see

dlclose (“dlclose Subroutine” on page 212)]

Base Operating System (BOS) Runtime Services (A-P) 211

Return values

If the specified address does not fall within one of the mapped objects, 0 is returned; the contents of the

Dl_info structure are unspecified. Otherwise, a non-zero value is returned and the associated Dl_info

elements are set.

Related Information

The dlclose (“dlclose Subroutine”) subroutine, dlerror (“dlerror Subroutine” on page 213) subroutine,

dlopen (“dlopen Subroutine” on page 213) subroutine, and dlsym (“dladdr Subroutine” on page 210)

subroutine.

dlclose Subroutine

Purpose

Closes and unloads a module loaded by the dlopen subroutine.

Syntax

#include <dlfcn.h>

int dlclose(Data);

void *Data;

Description

The dlclose subroutine is used to remove access to a module loaded with the dlopen subroutine. In

addition, access to dependent modules of the module being unloaded is removed as well.

Modules being unloaded with the dlclose subroutine will not be removed from the process’s address

space if they are still required by other modules. Nevertheless, subsequent uses of Data are invalid, and

further uses of symbols that were exported by the module being unloaded result in undefined behavior.

Parameters

 Data A loaded module reference returned from a previous call to dlopen.

Return Values

Upon successful completion, 0 (zero) is returned. Otherwise, errno is set to EINVAL, and the return value

is also EINVAL. Even if the dlclose subroutine succeeds, the specified module may still be part of the

process’s address space if the module is still needed by other modules.

Error Codes

 EINVAL The Data parameter does not refer to a module opened by dlopen that is still open. The

parameter may be corrupt or the module may have been unloaded by a previous call to dlclose.

Related Information

The dlerror (“dlerror Subroutine” on page 213) subroutine, dlopen (“dlopen Subroutine” on page 213)

subroutine, dlsym (“dladdr Subroutine” on page 210) subroutine, load (“load Subroutine” on page 717)

subroutine, loadquery (“loadquery Subroutine” on page 722) subroutine, unload subroutine, loadbind

(“loadbind Subroutine” on page 721) subroutine.

The ld command.

212 Technical Reference, Volume 1: Base Operating System and Extensions

The Shared Libraries and Shared Memory Overview and Subroutines Overview in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

dlerror Subroutine

Purpose

Returns a pointer to information about the last dlopen, dlsym, or dlclose error.

Syntax

#include <dlfcn.h>

char *dlerror(void);

Description

The dlerror subroutine is used to obtain information about the last error that occurred in a dynamic

loading routine (that is, dlopen , dlsym , or dlclose). The returned value is a pointer to a null-terminated

string without a final newline. Once a call is made to this function, subsequent calls without any intervening

dynamic loading errors will return NULL.

Applications can avoid calling the dlerror subroutine, in many cases, by examining errno after a failed call

to a dynamic loading routine. If errno is ENOEXEC, the dlerror subroutine will return additional

information. In all other cases, dlerror will return the string corresponding to the value of errno.

The dlerror function may invoke loadquery to ascertain reasons for a failure. If a call is made to load or

unload between calls to dlopen and dlerror, incorrect information may be returned.

Return Values

A pointer to a static buffer is returned; a NULL value is returned if there has been no error since the last call

to dlerror. Applications should not write to this buffer; they should make a copy of the buffer if they wish to

preserve the buffer’s contents.

Related Information

The load (“load Subroutine” on page 717) subroutine, loadbind (“loadbind Subroutine” on page 721)

subroutine, loadquery (“loadquery Subroutine” on page 722)subroutine, unload subroutine, dlopen

(“dlopen Subroutine”) subroutine, dlclose (“dlclose Subroutine” on page 212) subroutine, dlsym (“dladdr

Subroutine” on page 210) subroutine.

The ld command.

The Shared Libraries and Shared Memory Overview and Subroutines Overview in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

dlopen Subroutine

Purpose

Dynamically load a module into the calling process.

Syntax

#include <dlfcn.h>

void *dlopen (FilePath, Flags);

const char *FilePath;

int Flags;

Base Operating System (BOS) Runtime Services (A-P) 213

Description

The dlopen subroutine loads the module specified by FilePath into the executing process’s address

space. Dependents of the module are automatically loaded as well. If the module is already loaded, i t is

not loaded again, but a new, unique value will be returned by the dlopen subroutine.

The value returned by dlopen may be used in subsequent calls to dlsym and dlclose. If an error occurs

during the operation, dlopen returns NULL.

If the main application was linked with the -brtl option, then the runtime linker is invoked by dlopen. If the

module being loaded was linked with runtime linking enabled, both intra-module and inter-module

references are overridden by any symbols available in the main application. If runtime linking was enabled,

but the module was not built enabled, then all inter-module references will be overridden, but some

intra-module references will not be overridden.

If the module being opened with dlopen or any of its dependents is being loaded for the first time,

initialization routines for these newly-loaded routines are called (after runtime linking, if applicable) before

dlopen returns. Initialization routines are the functions specified with the -binitfini: linker option when the

module was built. (Refer to the ld command for more information about this option.)

Notes:

1. The initialization functions need not have any special names, and multiple functions per module are

allowed.

2. If the module being loaded has read-other permission, the module is loaded into the global shared

library segment. Modules loaded into the global shared library segment are not unloaded even if they

are no longer being used. Use the slibclean command to remove unused modules from the global

shared library segment.

The LIBPATH or LD_LIBRARY_PATH environment variables can be used to specify a list of directories in

which dlopen searches for the named module. The running application also contains a set of library

search paths that were specified when the application was linked; these paths are searched after any

paths found in LIBPATH or LD_LIBRARY_PATH.

 FilePath Specifies the name of a file containing the loadable module. This parameter can be contain an

absolute path, a relative path, or no path component. If FilePath contains a slash character,

FilePath is used directly, and no directories are searched.

If the FilePath parameter is /unix, dlopen returns a value that can be used to look up symbols in

the current kernel image, including those symbols found in any kernel extension that was

available at the time the process began execution.

If the value of FilePath is NULL, a value for the main application is returned. This allows

dynamically loaded objects to look up symbols in the main executable, or for an application to

examine symbols available within itself.

Flags

Specifies variations of the behavior of dlopen. Either RTLD_NOW or RTLD_LAZY must always be

specified. Other flags may be OR’ed with RTLD_NOW or RTLD_LAZY.

 RTLD_NOW Load all dependents of the module being loaded and resolve all symbols.

RTLD_LAZY Specifies the same behavior as RTLD_NOW. In a future release of the operating

system, the behavior of the RTLD_LAZY may change so that loading of dependent

modules is deferred of resolution of some symbols is deferred.

RTLD_GLOBAL Allows symbols in the module being loaded to be visible when resolving symbols

used by other dlopen calls. These symbols will also be visible when the main

application is opened with dlopen(NULL, mode).

214 Technical Reference, Volume 1: Base Operating System and Extensions

RTLD_LOCAL Prevent symbols in the module being loaded from being used when resolving

symbols used by other dlopen calls. Symbols in the module being loaded can only

be accessed by calling dlsym subroutine. If neither RTLD_GLOBAL nor

RTLD_LOCAL is specified, the default is RTLD_LOCAL. If both flags are specified,

RTLD_LOCAL is ignored.

RTLD_MEMBER The dlopen subroutine can be used to load a module that is a member of an archive.

The L_LOADMEMBER flag is used when the load subroutine is called. The module

name FilePath names the archive and archive member according to the rules outlined

in the load subroutine.

RTLD_NOAUTODEFER Prevents deferred imports in the module being loaded from being automatically

resolved by subsequent loads. The L_NOAUTODEFER flag is used when the load

subroutine is called.

Ordinarily, modules built for use by the dlopen and dlsym sub routines will not

contain deferred imports. However, deferred imports can be still used. A module

opened with dlopen may provide definitions for deferred imports in the main

application, for modules loaded with the load subroutine (if the L_NOAUTODEFER

flag was not used), and for other modules loaded with the dlopen subroutine (if the

RTLD_NOAUTODEFER flag was not used).

Return Values

Upon successful completion, dlopen returns a value that can be used in calls to the dlsym and dlclose

subroutines. The value is not valid for use with the loadbind and unload subroutines.

If the dlopen call fails, NULL (a value of 0) is returned and the global variable errno is set. If errno

contains the value ENOEXEC, further information is available via the dlerror function.

Error Codes

See the load subroutine for a list of possible errno values and their meanings.

Related Information

The dlclose (“dlclose Subroutine” on page 212) subroutine, dlerror (“dlerror Subroutine” on page 213)

subroutine, dlsym (“dladdr Subroutine” on page 210) subroutine, load (“load Subroutine” on page 717)

subroutine, loadbind (“loadbind Subroutine” on page 721) subroutine, loadquery (“loadquery Subroutine”

on page 722)subroutine, unload subroutine.

The ld command.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

dlsym Subroutine

Purpose

Looks up the location of a symbol in a module that is loaded with dlsym.

Syntax

#include <dlfcn.h>

void *dlsym(Handle, Symbol);

void *Handle;

const char *Symbol;

Base Operating System (BOS) Runtime Services (A-P) 215

Description

The dlsym subroutine looks up a named symbol exported from a module loaded by a previous call to the

dlopen subroutine. Only exported symbols are found by dlsym. See the ld command to see how to export

symbols from a module.

 Handle Specifies a value returned by a previous call to dlopen or one of the special handles

RTLD_DEFAULT, RTLD_NEXT or RTLD_MYSELF.

Symbol Specifies the name of a symbol exported from the referenced module in the form of a

NULL-terminated string or the special symbol name RTLD_ENTRY.

Note: C++ symbol names should be passed to dlsym in mangled form; dlsym does not perform any

name demangling on behalf of the calling application.

In case of the special handle RTLD_DEFAULT, dlsym searches for the named symbol starting with the

first module loaded. It then proceeds through the list of initial loaded modules and any global modules

obtained with dlopen until a match is found. This search follows the default model employed to relocate all

modules within the process.

In case of the special handle RTLD_NEXT, dlsym searches for the named symbol in the modules that

were loaded following the module from which the dlsym call is being made.

In case of the special handle RTLD_MYSELF, dlsym searches for the named symbol in the modules that

were loaded starting with the module from which the dlsym call is being made.

In case of the special symbol name RTLD_ENTRY, dlsym returns the module’s entry point. The entry

point, if present, is the value of the module’s loader section symbol marked as entry point.

In case of RTLD_DEFAULT, RTLD_NEXT, and RTLD_MYSELF, if the modules being searched have

been loaded from dlopen calls, dlsym searches the module only if the caller is part of the same dlopen

dependency hierarchy, or if the module was given global search access. See dlopen for a discussion of

the RTLD_GLOBAL mode.

A search for the named symbol is based upon breadth-first ordering of the module and its dependants. If

the module was constructed using the -G or -brtl linker option, the module’s dependants will include all

modules named on the ld command line, in the original order. The dependants of a module that was not

linked with the -G or -brtl linker option will be listed in an unspecified order.

Return Values

If the named symbol is found, its address is returned. If the named symbol is not found, NULL is returned

and errno is set to 0. If Handle or Symbol is invalid, NULL is returned and errno is set to EINVAL .

If the first definition found is an export of an imported symbol, this definition will satisfy the search. The

address of the imported symbol is returned. If the first definition is a deferred import, the definition is

ignored and the search continues.

If the named symbol refers to a BSS symbol (uninitialized data structure), the search continues until an

initialized instance of the symbol is found or the module and all of its dependants have been searched. If

an initialized instance is found, its address is returned; otherwise, the address of the first uninitialized

instance is returned.

216 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

 EINVAL If the Handle parameter does not refer to a module opened by dlopen that is still loaded or if the

Symbol parameter points to an invalid address, the dlsym subroutine returns NULL and errno is

set to EINVAL.

Related Information

The dlclose (“dlclose Subroutine” on page 212) subroutine, dlerror (“dlerror Subroutine” on page 213)

subroutine, dlopen (“dlopen Subroutine” on page 213) subroutine, load (“load Subroutine” on page 717)

subroutine, loadbind (“loadbind Subroutine” on page 721) subroutine, loadquery (“loadquery Subroutine”

on page 722)subroutine, unload subroutine.

The ld command.

drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48,

seed48, or srand48 Subroutine

Purpose

Generate uniformly distributed pseudo-random number sequences.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

double drand48 (void)

double erand48 (xsubi)

unsigned short int xsubi[3];

long int jrand48 (xsubi)

unsigned short int xsubi[3];

void lcong48 (Parameter)

unsigned short int Parameter[7];

long int lrand48 (void)

long int mrand48 (void)

long int nrand48 (xsubi)

unsigned short int xsubi[3];

unsigned short int *seed48 (Seed16v)

unsigned short int Seed16v[3];

void srand48 (SeedValue)

long int SeedValue;

Description

Attention: Do not use the drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48,

seed48, or srand48 subroutine in a multithreaded environment.

This family of subroutines generates pseudo-random numbers using the linear congruential algorithm and

48-bit integer arithmetic.

Base Operating System (BOS) Runtime Services (A-P) 217

The drand48 subroutine and the erand48 subroutine return positive double-precision floating-point values

uniformly distributed over the interval [0.0, 1.0).

The lrand48 subroutine and the nrand48 subroutine return positive long integers uniformly distributed over

the interval [0,2**31).

The mrand48 subroutine and the jrand48 subroutine return signed long integers uniformly distributed over

the interval [-2**31, 2**31).

The srand48 subroutine, seed48 subroutine, and lcong48 subroutine initialize the random-number

generator. Programs must call one of them before calling the drand48, lrand48 or mrand48 subroutines.

(Although it is not recommended, constant default initializer values are supplied if the drand48, lrand48 or

mrand48 subroutines are called without first calling an initialization subroutine.) The erand48, nrand48,

and jrand48 subroutines do not require that an initialization subroutine be called first.

The previous value pointed to by the seed48 subroutine is stored in a 48-bit internal buffer, and a pointer

to the buffer is returned by the seed48 subroutine. This pointer can be ignored if it is not needed, or it can

be used to allow a program to restart from a given point at a later time. In this case, the pointer is

accessed to retrieve and store the last value pointed to by the seed48 subroutine, and this value is then

used to reinitialize, by means of the seed48 subroutine, when the program is restarted.

All the subroutines work by generating a sequence of 48-bit integer values, x[i], according to the linear

congruential formula:

x[n+1] = (ax[n] + c)mod m, n is > = 0

The parameter m = 248; hence 48-bit integer arithmetic is performed. Unless the lcong48 subroutine has

been called, the multiplier value a and the addend value c are:

a = 5DEECE66D base 16 = 273673163155 base 8

c = B base 16 = 13 base 8

Parameters

 xsubi Specifies an array of three shorts, which, when concatenated together, form a 48-bit integer.

SeedValue Specifies the initialization value to begin randomization. Changing this value changes the

randomization pattern.

Seed16v Specifies another seed value; an array of three unsigned shorts that form a 48-bit seed value.

Parameter Specifies an array of seven shorts, which specifies the initial xsubi value, the multiplier value a and

the add-in value c.

Return Values

The value returned by the drand48, erand48, jrand48, lrand48, nrand48, and mrand48 subroutines is

computed by first generating the next 48-bit x[i] in the sequence. Then the appropriate number of bits,

according to the type of data item to be returned, are copied from the high-order (most significant) bits of

x[i] and transformed into the returned value.

The drand48, lrand48, and mrand48 subroutines store the last 48-bit x[i] generated into an internal buffer;

this is why they must be initialized prior to being invoked.

The erand48, jrand48, and nrand48 subroutines require the calling program to provide storage for the

successive x[i] values in the array pointed to by the xsubi parameter. This is why these routines do not

have to be initialized; the calling program places the desired initial value of x[i] into the array and pass it

as a parameter.

218 Technical Reference, Volume 1: Base Operating System and Extensions

By using different parameters, the erand48, jrand48, and nrand48 subroutines allow separate modules of

a large program to generate independent sequences of pseudo-random numbers. In other words, the

sequence of numbers that one module generates does not depend upon how many times the subroutines

are called by other modules.

The lcong48 subroutine specifies the initial x[i] value, the multiplier value a, and the addend value c. The

Parameter array elements Parameter[0-2] specify x[i], Parameter[3-5] specify the multiplier a, and

Parameter[6] specifies the 16-bit addend c. After lcong48 has been called, a subsequent call to either the

srand48 or seed48 subroutine restores the standard a and c specified before.

The initializer subroutine seed48 sets the value of x[i] to the 48-bit value specified in the array pointed to

by the Seed16v parameter. In addition, seed48 returns a pointer to a 48-bit internal buffer that contains

the previous value of x[i] that is used only by seed48. The returned pointer allows you to restart the

pseudo-random sequence at a given point. Use the pointer to copy the previous x[i] value into a temporary

array. Then call seed48 with a pointer to this array to resume processing where the original sequence

stopped.

The initializer subroutine srand48 sets the high-order 32 bits of x[i] to the 32 bits contained in its

parameter. The low order 16 bits of x[i] are set to the arbitrary value 330E16.

Related Information

The rand, srand subroutine, random, srandom, initstate, or setstate subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

drem Subroutine

Purpose

Computes the IEEE Remainder as defined in the IEEE Floating-Point Standard.

Libraries

IEEE Math Library (libm.a)

or System V Math Library (libmsaa.a)

Syntax

#include <math.h>

double drem (x, y)

double x, y;

Description

The drem subroutine calculates the remainder r equal to x minus n to the x power multiplied by y (r = x -

n * y), where the n parameter is the integer nearest the exact value of x divided by y (x/y). If |n -x/y| =

1/2, then the n parameter is an even value. Therefore, the remainder is computed exactly, and the

absolute value of r (|r|) is less than or equal to the absolute value of y divided by 2 (|y|/2).

The IEEE Remainder differs from the fmod subroutine in that the IEEE Remainder always returns an r

parameter such that |r| is less than or equal to |y|/2, while FMOD returns an r such that |r| is less than

or equal to |y|. The IEEE Remainder is useful for argument reduction for transcendental functions.

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. For example:

compile the drem.c file:

Base Operating System (BOS) Runtime Services (A-P) 219

cc drem.c -lm

Note: For new development, the remainder subroutine is the preferred interface.

Parameters

 x Specifies double-precision floating-point value.

y Specifies a double-precision floating-point value.

Return Values

The drem subroutine returns a NaNQ value for (x, 0) and (+/-INF, y).

Related Information

The floor, ceil, nearest, trunc, rint, itrunc, fmod, fabs, or uitruns (“floor, floorf, floorl, nearest, trunc,

itrunc, or uitrunc Subroutine” on page 271) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

_end, _etext, or _edata Identifier

Purpose

Define the first addresses following the program, initialized data, and all data.

Syntax

extern _end;

extern _etext;

extern _edata;

Description

The external names _end, _etext, and _edata are defined by the loader for all programs. They are not

subroutines but identifiers associated with the following addresses:

 _etext The first address following the program text.

_edata The first address following the initialized data region.

_end The first address following the data region that is not initialized. The name end (with no

underscore) defines the same address as does _end (with underscore).

The break value of the program is the first location beyond the data. When a program begins running, this

location coincides with end. However, many factors can change the break value, including:

v The brk or sbrk subroutine

v The malloc subroutine

v The standard I/O subroutines

v The -p flag with the cc command

Therefore, use the brk or sbrk(0) subroutine, not the end address, to determine the break value of the

program.

220 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The brk or sbrk (“brk or sbrk Subroutine” on page 120) subroutine, malloc (“malloc, free, realloc, calloc,

mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign Subroutine” on page 764) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

ecvt, fcvt, or gcvt Subroutine

Purpose

Converts a floating-point number to a string.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

char *ecvt (Value, NumberOfDigits, DecimalPointer, Sign;)

double Value;

int NumberOfDigits, *DecimalPointer, *Sign;

char *fcvt (Value, NumberOfDigits, DecimalPointer, Sign;)

double Value;

int NumberOfDigits, *DecimalPointer, *Sign;

char *gcvt (Value, NumberOfDigits, Buffer;)

double Value;

int NumberOfDigits;

char *Buffer;

Description

The ecvt, fcvt, and gcvt subroutines convert floating-point numbers to strings.

The ecvt subroutine converts the Value parameter to a null-terminated string and returns a pointer to it.

The NumberOfDigits parameter specifies the number of digits in the string. The low-order digit is rounded

according to the current rounding mode. The ecvt subroutine sets the integer pointed to by the

DecimalPointer parameter to the position of the decimal point relative to the beginning of the string. (A

negative number means the decimal point is to the left of the digits given in the string.) The decimal point

itself is not included in the string. The ecvt subroutine also sets the integer pointed to by the Sign

parameter to a nonzero value if the Value parameter is negative and sets a value of 0 otherwise.

The fcvt subroutine operates identically to the ecvt subroutine, except that the correct digit is rounded for

C or FORTRAN F-format output of the number of digits specified by the NumberOfDigits parameter.

Note: In the F-format, the NumberOfDigits parameter is the number of digits desired after the decimal

point. Large numbers produce a long string of digits before the decimal point, and then

NumberOfDigits digits after the decimal point. Generally, the gcvt and ecvt subroutines are more

useful for large numbers.

The gcvt subroutine converts the Value parameter to a null-terminated string, stores it in the array pointed

to by the Buffer parameter, and then returns the Buffer parameter. The gcvt subroutine attempts to

produce a string of the NumberOfDigits parameter significant digits in FORTRAN F-format. If this is not

possible, the E-format is used. The gcvt subroutine suppresses trailing zeros. The string is ready for

Base Operating System (BOS) Runtime Services (A-P) 221

printing, complete with minus sign, decimal point, or exponent, as appropriate. The radix character is

determined by the current locale (see setlocale subroutine). If the setlocale subroutine has not been

called successfully, the default locale, POSIX, is used. The default locale specifies a . (period) as the radix

character. The LC_NUMERIC category determines the value of the radix character within the current

locale.

The ecvt, fcvt, and gcvt subroutines represent the following special values that are specified in

ANSI/IEEE standards 754-1985 and 854-1987 for floating-point arithmetic:

 Quiet NaN Indicates a quiet not-a-number (NaNQ)

Signalling NaN Indicates a signaling NaNS

Infinity Indicates a INF value

The sign associated with each of these values is stored in the Sign parameter.

Note: A value of 0 can be positive or negative. In the IEEE floating-point, zeros also have signs and set

the Sign parameter appropriately.

 Attention: All three subroutines store the strings in a static area of memory whose contents are

overwritten each time one of the subroutines is called.

Parameters

 Value Specifies some double-precision floating-point value.

NumberOfDigits Specifies the number of digits in the string.

DecimalPointer Specifies the position of the decimal point relative to the beginning of the string.

Sign Specifies that the sign associated with the return value is placed in the Sign parameter. In

IEEE floating-point, since 0 can be signed, the Sign parameter is set appropriately for

signed 0.

Buffer Specifies a character array for the string.

Related Information

The atof, strtod, atoff, or strtof (“atof atoff Subroutine” on page 94) subroutine, fp_read_rnd, or

fp_swap_rnd (“fp_read_rnd or fp_swap_rnd Subroutine” on page 296) subroutine, printf (“printf, fprintf,

sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1079) subroutine, scanf

subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

EnableCriticalSections, BeginCriticalSection, and EndCriticalSection

Subroutine

Purpose

Enables a thread to be exempted from timeslicing and signal suspension, and protects critical sections.

Library

Standard C Library (libc.a)

222 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <sys/thread_ctl.h>

int EnableCriticalSections(void);

void BeginCriticalSection(void);

void EndCriticalSection(void);

Description

When called, the EnableCriticalSections subroutine enables the thread to be exempted from timeslicing

and signal suspension. Once that is done, the thread can call the BeginCriticalSection and

EndCriticalSection subroutines to protect critical sections. Calling the BeginCriticalSection and

EndCriticalSection subroutines with exemption disabled has no effect. The subroutines are safe for use

by multithreaded applications.

Once the service is enabled, the thread can protect critical sections by calling the BeginCriticalSection

and EndCriticalSection subroutines. Calling the BeginCriticalSection subroutine will exempt the thread

from timeslicing and suspension. Calling the EndCriticalSection subroutine will clear exemption for the

thread.

The BeginCriticalSection subroutine will not make a system call. The EndCriticalSection subroutine

might make a system call if the thread was granted a benefit during the critical section. The purpose of the

system call would be to notify the kernel that any posted but undelivered stop signals can be delivered,

and any postponed timeslice can now be completed.

Return Values

The EnableCriticalSections subroutine returns a zero.

erf, erff, or erfl Subroutine

Purpose

Computes the error and complementary error functions.

Libraries

IEEE Math Library (libm.a)

or System V Math Library (libmsaa.a)

Syntax

#include <math.h>

double erf (x)

double x;

float erff (x)

float x;

long double erfl (x)

long double x;

Description

The erf, erff, and erfl subroutines return the error function of the x parameter, defined for the erf

subroutine as the following:

erf(x) = (2/sqrt(pi) * (integral [0 to x] of exp(-(t**2)) dt)

erfc(x) = 1.0 - erf(x)

Base Operating System (BOS) Runtime Services (A-P) 223

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. To compile the

erf.c file, for example, enter:

cc erf.c -lm

An application wishing to check for error situations should set errno to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies a double-precision floating-point value.

Return Values

Upon successful completion, the erf, erff, and erfl subroutines return the value of the error function.

If x is NaN, a NaN is returned.

If x is ±0, ±0 is returned.

If x is ±Inf, ±1 is returned.

If x is subnormal, a range error may occur, and 2 * x/sqrt(pi) should be returned.

Related Information

“erfc, erfcf, or erfcl Subroutine,” “exp, expf, or expl Subroutine” on page 241, “feclearexcept Subroutine” on

page 259, “fetestexcept Subroutine” on page 267, and “class, _class, finite, isnan, or unordered

Subroutines” on page 165.

The sqrt, sqrtf, or sqrtl Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and

Extensions Volume 2.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

128-Bit long double Floating-Point Format in AIX 5L Version 5.3 General Programming Concepts: Writing

and Debugging Programs.

math.h in AIX 5L Version 5.3 Files Reference.

erfc, erfcf, or erfcl Subroutine

Purpose

Computes the complementary error function.

Syntax

#include <math.h>

float erfcf (x)

float x;

long double erfcl (x)

224 Technical Reference, Volume 1: Base Operating System and Extensions

long double x;

double erfc (x)

double x;

Description

The erfcf, erfcl, and erfc subroutines compute the complementary error function 1.0 - erf(x).

An application wishing to check for error situations should set errno to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

Return Values

Upon successful completion, the erfcf, erfcl, and erfc subroutines return the value of the complementary

error function.

If the correct value would cause underflow and is not representable, a range error may occur. Either 0.0 (if

representable), or an implementation-defined value is returned.

If x is NaN, a NaN is returned.

If x is ±0, +1 is returned.

If x is -Inf, +2 is returned.

If x is +Inf, +0 is returned.

If the correct value would cause underflow and is representable, a range error may occur and the correct

value is returned.

Related Information

“feclearexcept Subroutine” on page 259, “fetestexcept Subroutine” on page 267, and “class, _class, finite,

isnan, or unordered Subroutines” on page 165.

math.h in AIX 5L Version 5.3 Files Reference.

errlog Subroutine

Purpose

Logs an application error to the system error log.

Library

Run-Time Services Library (librts.a)

Base Operating System (BOS) Runtime Services (A-P) 225

Syntax

#include <sys/errids.h>

int errlog (ErrorStructure, Length)

void *ErrorStructure;

unsigned int Length;

Description

The errlog subroutine writes an error log entry to the /dev/error file. The errlog subroutine is used by

application programs.

The transfer from the err_rec structure to the error log is by a write subroutine to the /dev/error special

file.

The errdemon process reads from the /dev/error file and writes the error log entry to the system error

log. The timestamp, machine ID, node ID, and Software Vital Product Data associated with the resource

name (if any) are added to the entry before going to the log.

Parameters

 ErrorStructure Points to an error record structure containing an error record. Valid error record structures

are typed in the /usr/include/sys/err_rec.h file. The two error record structures available

are err_rec and err_rec0. The err_rec structure is used when the detail_data field is

required. When the detail_data field is not required, the err_rec0 structure is used.

 struct err_rec0 {

 unsigned int error_id;

 char resource_name[ERR_NAMESIZE];

};

struct err_rec {

 unsigned int error_id;

 char resource_name[ERR_NAMESIZE];

 char detail_data[1];

};

The fields of the structures err_rec and err_rec0 are:

error_id

Specifies an index for the system error template database, and is assigned by

the errupdate command when adding an error template. Use the errupdate

command with the -h flag to get a #define statement for this 8-digit hexadecimal

index.

resource_name

Specifies the name of the resource that has detected the error. For software

errors, this is the name of a software component or an executable program. For

hardware errors, this is the name of a device or system component. It does not

indicate that the component is faulty or needs replacement instead, it is used to

determine the appropriate diagnostic modules to be used to analyze the error.

detail_data

Specifies an array from 0 to ERR_REC_MAX bytes of user-supplied data. This

data may be displayed by the errpt command in hexadecimal, alphanumeric, or

binary form, according to the data_encoding fields in the error log template for

this error_id field.

Length Specifies the length in bytes of the err_rec structure, which is equal to the size of the

error_id and resource_name fields plus the length in bytes of the detail_data field.

226 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

 0 The entry was logged successfully.

-1 The entry was not logged.

Files

 /dev/error Provides standard device driver interfaces required by the error

log component.

/usr/include/sys/errids.h Contains definitions for error IDs.

/usr/include/sys/err_rec.h Contains structures defined as arguments to the errsave kernel

service and the errlog subroutine.

/var/adm/ras/errlog Maintains the system error log.

Related Information

The errclear, errdead, errinstall, errlogger, errmsg, errpt, errstop, and errupdate commands.

The errlog_open, errlog_close, errlog_find_first, errlog_find_next, errlog_find_sequence,

errlog_set_direction, and errlog_write subroutines.

The /dev/error special file.

The errdemon daemon.

The errsave kernel service.

Error Logging Overview in Messages Guide and Reference.

errlog_close Subroutine

Purpose

Closes an open error log file.

Syntax

library liberrlog.a

#include <sys/errlog.h>

int errlog_close(handle)

errlog_handle_t handle;

Description

The error log specified by the handle argument is closed. The handle must have been returned from a

previous errlog_open call.

Return Values

Upon successful completion, the errlog_close subroutine returns 0.

If an error occurs, the errlog_close subroutine returns LE_ERR_INVARG.

Base Operating System (BOS) Runtime Services (A-P) 227

Related Information

The errlog_open, errlog_find_first, errlog_find_next, errlog_find_sequence, errlog_set_direction,

errlog_write, and errlog subroutines.

errlog_find_first, errlog_find_next, and errlog_find_sequence

Subroutines

Purpose

Retrieves an error log entry using supplied criteria.

Syntax

library liberrlog.a

#include <sys/errlog.h>

int errlog_find_first(handle, filter, result)

errlog_handle_t handle;

errlog_match_t *filter;

errlog_entry_t *result;

int errlog_find_next(handle, result)

errlog_handle_t handle;

errlog_entry_t *result;

int errlog_find_sequence(handle, sequence, result)

errlog_handle_t handle;

int sequence;

errlog_entry_t *result;

Description

The errlog_find_first subroutine finds the first occurrence of the search argument specified by filter using

the direction specified by the errlog_set_direction subroutine. The reverse direction is used if none was

specified. In other words, by default, entries are searched starting with the most recent entry.

The errlog_match_t structure, pointed to by the filter parameter, defines a test expression or set of

expressions to be applied to each errlog entry.

If the value passed in the filter parameter is null, the errlog_find_first subroutine returns the first entry in

the log, and the errlog_find_next subroutine can then be used to return subsequent entries. To read all

log entries in the desired direction, open the log, then issue errlog_find_next calls.

To define a basic expression, em_field must be set to the field in the errlog entry to be tested, em_op

must be set to the relational operator to be applied to that field, and either em_intvalue or em_strvalue

must be set to the value to test against. Basic expressions may be combined by attaching them to em_left

and em_right of another errlog_match_t structure and setting em_op of that structure to a binary or

unary operator. These complex expressions may then be combined with other basic or complex

expressions in the same fashion to build a tree that can define a filter of arbitrary complexity.

The errlog_find_next subroutine finds the next error log entry matching the criteria specified by a

previous errlog_find_first call. The search continues in the direction specified by the

errlog_set_direction subroutine or the reverse direction by default.

The errlog_find_sequence subroutine returns the entry matching the specified error log sequence

number, found in the el_sequence field of the errlog_entry structure.

228 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

The handle contains the handle returned by a prior call to errlog_open.

The filter parameter points to an errlog_match_t element defining the search argument, or the first of an

argument tree.

The sequence parameter contains the sequence number of the entry to be retrieved.

The result parameter must point to the area to contain the returned error log entry.

Return Values

Upon successful completion, the errlog_find_first, errlog_find_next, and errlog_find_sequence

subroutines return 0, and the memory referenced by result contains the found entry.

The following errors may be returned:

 LE_ERR_INVARG A parameter error was detected.

LE_ERR_NOMEM Memory could not be allocated.

LE_ERR_IO An i/o error occurred.

LE_ERR_DONE No more entries were found.

Examples

The code below demonstrates how to search for all errlog entries in a date range and with a class of H

(hardware) or S (software).

{

 extern int begintime, endtime;

 errlog_match_t beginstamp, endstamp, andstamp;

 errlog_match_t hardclass, softclass, orclass;

 errlog_match_t andtop;

 int ret;

 errlog_entry_t result;

 /*

 * Select begin and end times

 */

 beginstamp.em_op = LE_OP_GT; /* Expression ’A’ */

 beginstamp.em_field = LE_MATCH_TIMESTAMP;

 beginstamp.em_intvalue=begintime;

 endstamp.em_op = LE_OP_LT; /* Expression ’B’ */

 endstamp.em_field = LE_MATCH_TIMESTAMP;

 endstamp.em_intvalue=endtime;

 andstamp.em_op = LE_OP_AND; /* ’A’ and ’B’ */

 andstamp.em_left = &beginstamp;

 andstamp.em_right = &endstamp;

 /*

 * Select the classes we’re interested in.

 */

 hardclass.em_op = LE_OP_EQ; /* Expression ’C’ */

 hardclass.em_field = LE_MATCH_CLASS;

 hardclass.em_strvalue = "H";

 softclass.em_op = LE_OP_EQ; /* Expression ’D’ */

 softclass.em_field = LE_MATCH_CLASS;

 softclass.em_strvalue = "S";

 orclass.em_op = LE_OP_OR; /* ’C’ or ’D’ */

Base Operating System (BOS) Runtime Services (A-P) 229

orclass.em_left = &hardclass;

 orclass.em_right = &softclass;

 andtop.em_op = LE_OP_AND; /* (’A’ and ’B’) and (’C’ or ’D’) */

 andtop.em_left = &andstamp;

 andtop.em_right = &orclass;

 ret = errlog_find_first(handle, &andtop, &result);

}

The errlog_find_first function will return the first entry matching filter. Successive calls to the

errlog_find_next function will return successive entries that match the filter specified in the most recent

call to the errlog_find_first function. When no more matching entries are found, the errlog_find_first and

errlog_find_next functions will return the value LE_ERR_DONE.

Related Information

The errlog_open, errlog_close, errlog_set_direction, errlog_write, and errlog subroutines.

errlog_open Subroutine

Purpose

Opens an error log and returns a handle for use with other liberrlog.a functions.

Syntax

library liberrlog.a

#include <fcntl.h>

#include <sys/errlog.h>

int errlog_open(path, mode, magic, handle)

char *path;

int mode;

unsigned int magic;

errlog_handle_t *handle;

Description

The error log specified by the path argument will be opened using mode. The handle pointed to by the

handle parameter must be used with subsequent operations.

Parameters

The path parameter specifies the path to the log file to be opened. If path is NULL, the default errlog file

will be opened. The valid values for mode are the same as they are for the open system subroutine. They

can be found in the fcntl.h files.

The magic argument takes the LE_MAGIC value, indicating which version of the errlog_entry_t structure

this application was compiled with.

Return Values

Upon successful completion, the errlog_open subroutine returns a 0 and sets the memory pointed to by

handle to a handle used by subsequent liberrlog operations.

Upon error, the errlog_open subroutine returns one of the following:

 LE_ERR_INVARG A parameter error was detected.

LE_ERR_NOFILE The log file does not exist.

230 Technical Reference, Volume 1: Base Operating System and Extensions

LE_ERR_NOMEM Memory could not be allocated.

LE_ERR_IO An i/o error occurred.

LE_ERR_INVFILE The file is not a valid error log.

Related Information

The errlog_close, errlog_find_first, errlog_find_next, errlog_find_sequence, errlog_set_direction,

errlog_write, and errlog subroutines.

The /usr/include/fcntl.h include files found in AIX 5L Version 5.3 Files Reference.

errlog_set_direction Subroutine

Purpose

Sets the direction for the error log find functions.

Syntax

library liberrlog.a

#include <sys/errlog.h>

int errlog_set_direction(handle, direction)

errlog_handle_t handle;

int direction;

Description

The errlog_find_next and errlog_find_sequence subroutines search the error log starting with the most

recent log entry and going backward in time, by default. The errlog_set_direction subroutine is used to

alter this direction.

Parameters

The handle parameter must contain a handle returned by a previous errlog_open call.

The direction parameter must be LE_FORWARD or LE_REVERSE. LE_REVERSE is the default if the

errlog_set_direction subroutine is not used.

Return Values

Upon successful completion, the errlog_set_direction subroutine returns 0.

If a parameter is invalid, the errlog_set_direction subroutine returns LE_ERR_INVARG.

Related Information

The errlog_open, errlog_close, errlog_find_first, errlog_find_next, errlog_find_sequence,

errlog_write, and errlog subroutines.

errlog_write Subroutine

Purpose

Changes the previously read error log entry.

Base Operating System (BOS) Runtime Services (A-P) 231

Syntax

library liberrlog.a

#include <sys/errlog.h>

int errlog_write(handle, entry)

errlog_handle_t handle;

errlog_entry_t *entry;

Description

The errlog_write subroutine is used to update the most recently read log entry. Neither the length nor the

sequence number of the entry may be changed. The entry is simply updated in place.

If the errlog_write subroutine is used in a multi-threaded application, the program should obtain a lock

around the read/write pair to avoid conflict.

Parameters

The handle parameter must contain a handle returned by a previous errlog_open call.

The entry parameter must point to an entry returned by the previous error log find function.

Return Values

Upon successful completion, the errlog_write subroutine returns 0.

If a parameter is invalid, the errlog_write subroutine returns LE_ERR_INVARG.

The errlog_write subroutine may also return one of the following:

 LE_ERR_INVFILE The data on file is invalid.

LE_ERR_IO An i/o error occurred.

LE_ERR_NOWRITE The entry to be written didn’t match the entry being

updated.

Related Information

The errlog_open, errlog_close, errlog_find_first, errlog_find_next, errlog_find_sequence,

errlog_set_direction, and errlog subroutines.

The /usr/include/sys/errlog.h include file.

exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine

Purpose

Executes a file.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

extern

char **environ;

232 Technical Reference, Volume 1: Base Operating System and Extensions

int execl (

 Path,

 Argument0 [, Argument1, ...], 0)

const char *Path, *Argument0, *Argument

1, ...;

int execle (

 Path,

 Argument0 [, Argument1, ...], 0,

 EnvironmentPointer)

const

char *Path, *Argument0, *Argum

ent

1, ...;

char *const EnvironmentPointer[];

int execlp (

 File,

 Argument0 [, Argument1

, ...], 0)

const char *File, *Argument0, *Argument

1, ...;

int execv (

 Path,

 ArgumentV)

const char *Path;

char *const ArgumentV[];

int execve (

 Path,

 ArgumentV,

 EnvironmentPointer)

const char *Path;

char

*const ArgumentV[], *EnvironmentPointer

[];

int execvp (

 File,

 ArgumentV)

const char *File;

char *const ArgumentV[];

int exect (

 Path,

 ArgumentV,

 EnvironmentPointer)

char *Path, *ArgumentV, *EnvironmentPointer [];

Base Operating System (BOS) Runtime Services (A-P) 233

Description

The exec subroutine, in all its forms, executes a new program in the calling process. The exec subroutine

does not create a new process, but overlays the current program with a new one, which is called the

new-process image. The new-process image file can be one of three file types:

v An executable binary file in XCOFF file format. .

v An executable text file that contains a shell procedure (only the execlp and execvp subroutines allow

this type of new-process image file).

v A file that names an executable binary file or shell procedure to be run.

The new-process image inherits the following attributes from the calling process image: session

membership, supplementary group IDs, process signal mask, and pending signals.

The last of the types mentioned is recognized by a header with the following syntax:

#! Path [String]

The #! is the file magic number, which identifies the file type. The path name of the file to be executed is

specified by the Path parameter. The String parameter is an optional character string that contains no tab

or space characters. If specified, this string is passed to the new process as an argument in front of the

name of the new-process image file. The header must be terminated with a new-line character. When

called, the new process passes the Path parameter as ArgumentV[0]. If a String parameter is specified in

the new process image file, the exec subroutine sets ArgumentV[0] to the String and Path parameter

values concatenated together. The rest of the arguments passed are the same as those passed to the

exec subroutine.

The exec subroutine attempts to cancel outstanding asynchronous I/O requests by this process. If the

asynchronous I/O requests cannot be canceled, the application is blocked until the requests have

completed.

The exec subroutine is similar to the load (“load Subroutine” on page 717) subroutine, except that the

exec subroutine does not have an explicit library path parameter. Instead, the exec subroutine uses either

the LIBPATH or LD_LIBRARY_PATH environment variable. The LIBPATH variable, when set, is used in

favor of LD_LIBRARY_PATH; otherwise, LD_LIBRARY_PATH is used. These library path variables are

ignored when the program that the exec subroutine is run on has more privilege than the calling program

(for example, an suid program).

The exect subroutine is included for compatibility with older programs being traced with the ptrace

command. The program being executed is forced into hardware single-step mode.

Note: exect is not supported in 64-bit mode.

Note: Currently, a Graphics Library program cannot be overlaid with another Graphics Library program.

The overlaying program can be a nongraphics program. For additional information, see the

/usr/lpp/GL/README file.

Parameters

 Path Specifies a pointer to the path name of the new-process

image file. If Network File System (NFS) is installed on your

system, this path can cross into another node. Data is copied

into local virtual memory before proceeding.

234 Technical Reference, Volume 1: Base Operating System and Extensions

File Specifies a pointer to the name of the new-process image file.

Unless the File parameter is a full path name, the path prefix

for the file is obtained by searching the directories named in

the PATH environment variable. The initial environment is

supplied by the shell.

Note: The execlp subroutine and the execvp subroutine take

File parameters, but the rest of the exec subroutines take

Path parameters. (For information about the environment, see

the environment miscellaneous facility and the sh command.)

Argument0 [, Argument1, ...] Point to null-terminated character strings. The strings

constitute the argument list available to the new process. By

convention, at least the Argument0 parameter must be

present, and it must point to a string that is the same as the

Path parameter or its last component.

ArgumentV Specifies an array of pointers to null-terminated character

strings. These strings constitute the argument list available to

the new process. By convention, the ArgumentV parameter

must have at least one element, and it must point to a string

that is the same as the Path parameter or its last component.

The last element of the ArgumentV parameter is a null pointer.

EnvironmentPointer An array of pointers to null-terminated character strings.

These strings constitute the environment for the new process.

The last element of the EnvironmentPointer parameter is a

null pointer.

When a C program is run, it receives the following parameters:

main (ArgumentCount, ArgumentV, EnvironmentPointer)

int ArgumentCount;

char *ArgumentV[], *EnvironmentPointer[

];

In this example, the ArgumentCount parameter is the argument count, and the ArgumentV parameter is an

array of character pointers to the arguments themselves. By convention, the value of the ArgumentCount

parameter is at least 1, and the ArgumentV[0] parameter points to a string containing the name of the

new-process image file.

The main routine of a C language program automatically begins with a runtime start-off routine. This

routine sets the environ global variable so that it points to the environment array passed to the program in

EnvironmentPointer. You can access this global variable by including the following declaration in your

program:

extern char **environ;

The execl, execv, execlp, and execvp subroutines use the environ global variable to pass the calling

process current environment to the new process.

File descriptors open in the calling process remain open, except for those whose close-on-exec flag is

set. For those file descriptors that remain open, the file pointer is unchanged. (For information about file

control, see the fcntl.h file.)

The state-of-conversion descriptors and message-catalog descriptors in the new process image are

undefined. For the new process, an equivalent of the setlocale subroutine, specifying the LC_ALL value

for its category and the ″C″ value for its locale, is run at startup.

If the new program requires shared libraries, the exec subroutine finds, opens, and loads each of them

into the new-process address space. The referenced counts for shared libraries in use by the issuer of the

exec are decremented. Shared libraries are searched for in the directories listed in the LIBPATH

environment variable. If any of these files is remote, the data is copied into local virtual memory.

Base Operating System (BOS) Runtime Services (A-P) 235

The exec subroutines reset all caught signals to the default action. Signals that cause the default action

continue to do so after the exec subroutines. Ignored signals remain ignored, the signal mask remains the

same, and the signal stack state is reset. (For information about signals, see the sigaction subroutine.)

If the SetUserID mode bit of the new-process image file is set, the exec subroutine sets the effective user

ID of the new process to the owner ID of the new-process image file. Similarly, if the SetGroupID mode bit

of the new-process image file is set, the effective group ID of the new process is set to the group ID of the

new-process image file. The real user ID and real group ID of the new process remain the same as those

of the calling process. (For information about the SetID modes, see the chmod subroutine.)

At the end of the exec operation the saved user ID and saved group ID of the process are always set to

the effective user ID and effective group ID, respectively, of the process.

When one or both of the set ID mode bits is set and the file to be executed is a remote file, the file user

and group IDs go through outbound translation at the server. Then they are transmitted to the client node

where they are translated according to the inbound translation table. These translated IDs become the

user and group IDs of the new process.

Note: setuid and setgid bids on shell scripts do not affect user or group IDs of the process finally

executed.

Profiling is disabled for the new process.

The new process inherits the following attributes from the calling process:

v Nice value (see the getpriority subroutine, setpriority subroutine, nice subroutine)

v Process ID

v Parent process ID

v Process group ID

v semadj values (see the semop subroutine)

v tty group ID (see the exit, atexit, or _exit subroutine, sigaction subroutine)

v trace flag (see request 0 of the ptrace subroutine)

v Time left until an alarm clock signal (see the incinterval subroutine, setitimer subroutine, and alarm

subroutine)

v Current directory

v Root directory

v File-mode creation mask (see the umask subroutine)

v File size limit (see the ulimit subroutine)

v Resource limits (see the getrlimit subroutine, setrlimit subroutine, and vlimit subroutine)

v tms_utime, tms_stime, tms_cutime, and tms_ctime fields of the tms structure (see the times subroutine)

v Login user ID

Upon successful completion, the exec subroutines mark for update the st_atime field of the file.

Examples

1. To run a command and pass it a parameter, enter:

execlp("ls", "ls", "-al", 0);

The execlp subroutine searches each of the directories listed in the PATH environment variable for the

ls command, and then it overlays the current process image with this command. The execlp

subroutine is not returned, unless the ls command cannot be executed.

236 Technical Reference, Volume 1: Base Operating System and Extensions

Note: This example does not run the shell command processor, so operations interpreted by the shell,

such as using wildcard characters in file names, are not valid.

2. To run the shell to interpret a command, enter:

execl("/usr/bin/sh", "sh", "-c", "ls -l *.c",

0);

This runs the sh command with the -c flag, which indicates that the following parameter is the

command to be interpreted. This example uses the execl subroutine instead of the execlp subroutine

because the full path name /usr/bin/sh is specified, making a path search unnecessary.

Running a shell command in a child process is generally more useful than simply using the exec

subroutine, as shown in this example. The simplest way to do this is to use the system subroutine.

3. The following is an example of a new-process file that names a program to be run:

#! /usr/bin/awk -f

{ for (i = NF; i > 0; --i) print $i }

If this file is named reverse, entering the following command on the command line:

reverse chapter1 chapter2

This command runs the following command:

/usr/bin/awk -f reverse chapter1 chapter2

Note: The exec subroutines use only the first line of the new-process image file and ignore the rest of

it. Also, the awk command interprets the text that follows a # (pound sign) as a comment.

Return Values

Upon successful completion, the exec subroutines do not return because the calling process image is

overlaid by the new-process image. If the exec subroutines return to the calling process, the value of -1 is

returned and the errno global variable is set to identify the error.

Error Codes

If the exec subroutine is unsuccessful, it returns one or more of the following error codes:

 EACCES The new-process image file is not an ordinary file.

EACCES The mode of the new-process image file denies execution permission.

ENOEXEC The exec subroutine is neither an execlp subroutine nor an execvp subroutine. The

new-process image file has the appropriate access permission, but the magic number in its

header is not valid.

ENOEXEC The new-process image file has a valid magic number in its header, but the header is

damaged or is incorrect for the machine on which the file is to be run.

ETXTBSY The new-process image file is a pure procedure (shared text) file that is currently open for

writing by some process.

ENOMEM The new process requires more memory than is allowed by the system-imposed maximum,

the MAXMEM compiler option.

E2BIG The number of bytes in the new-process argument list is greater than the system-imposed

limit. This limit is a system configurable value that can be set by superusers or system group

users using SMIT. Refer to Kernel Tunable Parameters for details.

EFAULT The Path, ArgumentV, or EnviromentPointer parameter points outside of the process address

space.

EPERM The SetUserID or SetGroupID mode bit is set on the process image file. The translation

tables at the server or client do not allow translation of this user or group ID.

If the exec subroutine is unsuccessful because of a condition requiring path name resolution, it returns

one or more of the following error codes:

Base Operating System (BOS) Runtime Services (A-P) 237

EACCES Search permission is denied on a component of the path prefix. Access could be denied due

to a secure mount.

EFAULT The Path parameter points outside of the allocated address space of the process.

EIO An input/output (I/O) error occurred during the operation.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of a path name exceeded 255 characters and the process has the disallow

truncation attribute (see the ulimit subroutine), or an entire path name exceeded 1023

characters.

ENOENT A component of the path prefix does not exist.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOENT The path name is null.

ENOTDIR A component of the path prefix is not a directory.

ESTALE The root or current directory of the process is located in a virtual file system that has been

unmounted.

In addition, some errors can occur when using the new-process file after the old process image has been

overwritten. These errors include problems in setting up new data and stack registers, problems in

mapping a shared library, or problems in reading the new-process file. Because returning to the calling

process is not possible, the system sends the SIGKILL signal to the process when one of these errors

occurs.

If an error occurred while mapping a shared library, an error message describing the reason for error is

written to standard error before the signal SIGKILL is sent to the process. If a shared library cannot be

mapped, the subroutine returns one of the following error codes:

 ENOENT One or more components of the path name of the shared library file do not exist.

ENOTDIR A component of the path prefix of the shared library file is not a directory.

ENAMETOOLONG A component of a path name prefix of a shared library file exceeded 255 characters, or an

entire path name exceeded 1023 characters.

EACCES Search permission is denied for a directory listed in the path prefix of the shared library

file.

EACCES The shared library file mode denies execution permission.

ENOEXEC The shared library file has the appropriate access permission, but a magic number in its

header is not valid.

ETXTBSY The shared library file is currently open for writing by some other process.

ENOMEM The shared library requires more memory than is allowed by the system-imposed

maximum.

ESTALE The process root or current directory is located in a virtual file system that has been

unmounted.

EPROCLIM If WLM is running, the limit on the number of processes, threads, or logins in the class

may have been met.

If NFS is installed on the system, the exec subroutine can also fail if the following is true:

 ETIMEDOUT The connection timed out.

Related Information

The alarm (“getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer or setitimer

Subroutine” on page 378) or incinterval (“getinterval, incinterval, absinterval, resinc, resabs, alarm,

ualarm, getitimer or setitimer Subroutine” on page 378) subroutine, chmod (“chmod or fchmod Subroutine”

on page 146) or fchmod (“chmod or fchmod Subroutine” on page 146) subroutine, exit (“exit, atexit,

unatexit, _exit, or _Exit Subroutine” on page 239) subroutine, fcntl (“fcntl, dup, or dup2 Subroutine” on

page 251) subroutine, fork (“fork, f_fork, or vfork Subroutine” on page 284) subroutine, getrusage

(“getrusage, getrusage64, times, or vtimes Subroutine” on page 419) or times (“getrusage, getrusage64,

238 Technical Reference, Volume 1: Base Operating System and Extensions

times, or vtimes Subroutine” on page 419) subroutine, nice (“getpriority, setpriority, or nice Subroutine” on

page 403) subroutine, profil (“profil Subroutine” on page 1086) subroutine, ptrace (“ptrace, ptracex,

ptrace64 Subroutine” on page 1215) subroutine.

The “posix_spawn or posix_spawnp Subroutine” on page 1060.

The semop subroutine, settimer (“gettimer, settimer, restimer, stime, or time Subroutine” on page 437)

subroutine, sigaction, signal, or sigvec subroutine, shmat subroutine, system subroutine, ulimit

subroutine, umask subroutine.

The awk command, ksh command, sh command.

The environment file.

The XCOFF object (a.out) file format.

The varargs macros.

Asynchronous I/O Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

exit, atexit, unatexit, _exit, or _Exit Subroutine

Purpose

Terminates a process.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

void exit (Status)

int Status;

void _exit (Status)

int Status;

void _Exit (Status)

int Status;

#include <sys/limits.h>

int atexit (Function)

void (*Function) (void);

int unatexit (Function)

void (*Function)(void);

Description

The exit subroutine terminates the calling process after calling the standard I/O library _cleanup function

to flush any buffered output. Also, it calls any functions registered previously for the process by the atexit

subroutine. The atexit subroutine registers functions called at normal process termination for cleanup

processing. Normal termination occurs as a result of either a call to the exit subroutine or a return

statement in the main function.

Base Operating System (BOS) Runtime Services (A-P) 239

Each function a call to the atexit subroutine registers must return. This action ensures that all registered

functions are called.

Finally, the exit subroutine calls the _exit subroutine, which completes process termination and does not

return. The _exit subroutine terminates the calling process and causes the following to occur:

The _Exit subroutine is functionally equivalent to the _exit subroutine. The _Exit subroutine does not call

functions registered with atexit or any registered signal handlers. The way the subroutine is implemented

determines whether open streams are flushed or closed, and whether temporary files are removed. The

calling process is terminated with the consequences described below.

v All of the file descriptors, directory streams, conversion descriptors, and message catalog descriptors

open in the calling process are closed.

v If the parent process of the calling process is executing a wait or waitpid, and has not set its

SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, it is notified of the calling process’ termination and

the low order eight bits (that is, bits 0377) of status are made available to it. If the parent is not waiting,

the child’s status is made available to it when the parent subsequently executes wait or waitpid.

v If the parent process of the calling process is not executing a wait or waitpid, and has neither set its

SA_NOCLDWAIT flag nor set SIGCHLD to SIG_IGN, the calling process is transformed into a zombie

process. A zombie process is an inactive process that is deleted at some later time when its parent

process executes wait or waitpid.

v Termination of a process does not directly terminate its children. The sending of a SIGHUP signal

indirectly terminates children in some circumstances. This can be accomplished in one of two ways. If

the implementation supports the SIGCHLD signal, a SIGCHLD is sent to the parent process. If the

parent process has set its SA_NOCLDWAIT flag, or set SIGCHLD to SIG_IGN, the status is discarded,

and the lifetime of the calling process ends immediately. If SA_NOCLDWAIT is set, it is implementation

defined whether a SIGCHLD signal is sent to the parent process.

v The parent process ID of all of the calling process’ existing child processes and zombie processes are

set to the process ID of an implementation defined system process.

v Each attached shared memory segment is detached and the value of shm_nattch (see shmget) in the

data structure associated with its shared memory ID is decremented by 1.

v For each semaphore for which the calling process has set a semadj value (see semop), that value is

added to the semval of the specified semaphore.

v If the process is a controlling process, the SIGHUP signal is sent to each process in the foreground

process group of the controlling terminal belonging to the calling process.

v If the process is a controlling process, the controlling terminal associated with the session is

disassociated from the session, allowing it to be acquired by a new controlling process.

v If the exit of the process causes a process group to become orphaned, and if any member of the newly

orphaned process group is stopped, a SIGHUP signal followed by a SIGCONT signal is sent to each

process in the newly orphaned process group.

v All open named semaphores in the calling process are closed as if by appropriate calls to sem_close.

v Memory mappings that were created in the process are unmapped before the process is destroyed.

v Any blocks of typed memory that were mapped in the calling process are unmapped, as if the munmap

subroutine was implicitly called to unmap them.

v All open message queue descriptors in the calling process are closed.

v Any outstanding cancelable asynchronous I/O operations may be canceled. Those asynchronous I/O

operations that are not canceled complete as if the _Exit subroutine had not yet occurred, but any

associated signal notifications are suppressed.

The _Exit subroutine may block awaiting such I/O completion. The implementation defines whether any

I/O is canceled, and which I/O may be canceled upon _Exit.

v Threads terminated by a call to _Exit do not invoke their cancelation cleanup handlers or per thread

data destructors.

240 Technical Reference, Volume 1: Base Operating System and Extensions

v If the calling process is a trace controller process, any trace streams that were created by the calling

process are shut down.

The unatexit() subroutine is used to unregister functions that were previously registered by the atexit()

subroutine. If the referenced function is found, it is removed from the list of functions that are called at

normal program termination.

Parameters

 Status Indicates the status of the process. May be set to 0, EXIT_SUCCESS, EXIT_FAILURE, or any

other value, though only the least significant 8 bits are available to a waiting parent process.

Function Specifies a function to be called at normal process termination for cleanup processing. You may

specify a number of functions to the limit set by the ATEXIT_MAX function, which is defined in

the sys/limits.h file. A pushdown stack of functions is kept so that the last function registered is

the first function called.

Return Values

Upon successful completion, the atexit subroutine returns a value of 0. Otherwise, a nonzero value is

returned. The exit and _exit subroutines do not return a value.

The unatexit() subroutine returns a value of 0 if the function referenced by Function is found and removed

from the atexit list. Otherwise, a non-zero value is returned.

Related Information

“acct Subroutine” on page 7, “lockfx, lockf, flock, or lockf64 Subroutine” on page 728, “lockfx, lockf, flock,

or lockf64 Subroutine” on page 728, “lockfx, lockf, flock, or lockf64 Subroutine” on page 728, and

“getrusage, getrusage64, times, or vtimes Subroutine” on page 419.

longjmp Subroutine, semop Subroutine, shmget Subroutine, sigaction, sigvec, or signal

Subroutine, and wait, waitpid, or wait3 Subroutine in AIX 5L Version 5.3 Technical Reference: Base

Operating System and Extensions Volume 2.

Asynchronous I/O Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming

Concepts.

unistd.h in AIX 5L Version 5.3 Files Reference.

exp, expf, or expl Subroutine

Purpose

Computes exponential, logarithm, and power functions.

Libraries

IEEE Math Library (libm.a)

or System V Math Library (libmsaa.a)

Syntax

#include <math.h>

double exp (x)

double x;

Base Operating System (BOS) Runtime Services (A-P) 241

float expf (x)

float x;

long double expl (x)

long double x;

Description

These subroutines are used to compute exponential, logarithm, and power functions.

The exp, expf, and expl subroutines returns exp (x).

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies some double-precision floating-point value.

y Specifies some double-precision floating-point value.

Return Values

Upon successful completion, the exp, expf, and expl subroutines return the exponential value of x.

If the correct value would cause overflow, a range error occurs and the exp, expf, and expl subroutine

returns the value of the macro HUGE_VAL, HUGE_VALF and HUGE_VALL, respectively.

If the correct value would cause underflow, and is not representable, a range error may occur, and either

0.0 (if supported), or an implementation-defined value is returned.

If x is NaN, a NaN is returned.

If x is ±0, 1 is returned.

If x is -Inf, +0 is returned.

If x is +Inf, x is returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct

value is returned.

Error Codes

When using the libm.a library:

 exp If the correct value would overflow, the exp subroutine returns a HUGE_VAL value and the errno

global variable is set to a ERANGE value.

When using libmsaa.a(-lmsaa):

 exp If the correct value would overflow, the exp subroutine returns a HUGE_VAL value. If the correct

value would underflow, the exp subroutine returns 0. In both cases errno is set to ERANGE.

expl If the correct value would overflow, the expl subroutine returns a HUGE_VAL value. If the correct

value would underflow, the expl subroutine returns 0. In both cases errno is set to ERANGE.

242 Technical Reference, Volume 1: Base Operating System and Extensions

expl If the correct value overflows, the expl subroutine returns a HUGE_VAL value and errno is set to

ERANGE.

These error-handling procedures may be changed with the matherr subroutine when using the libmsaa.a

library.

Related Information

“feclearexcept Subroutine” on page 259, “fetestexcept Subroutine” on page 267, and “class, _class, finite,

isnan, or unordered Subroutines” on page 165.

The matherr (“matherr Subroutine” on page 775)subroutine, sinh, cosh, or tanh subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

128-Bit long double Floating-Point Format in AIX 5L Version 5.3 General Programming Concepts: Writing

and Debugging Programs.

math.h in AIX 5L Version 5.3 Files Reference.

exp2, exp2f, or exp2l Subroutine

Purpose

Computes the base 2 exponential.

Syntax

#include <math.h>

double exp2 (x)

double x;

float exp2f (x)

float x;

long double exp2l (x)

long double x;

Description

The exp2, exp2f, and exp2l subroutines compute the base 2 exponential of the x parameter.

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept (FE_ALL_EXCEPT) before calling these subroutines. On return, if errno is nonzero or

fetestexcept (FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an

error has occurred.

Parameters

 x Specifies the base 2 exponential to be computed.

Return Values

Upon successful completion, the exp2, exp2f, or exp2l subroutine returns 2x .

Base Operating System (BOS) Runtime Services (A-P) 243

If the correct value causes overflow, a range error occurs and the exp2, exp2f, and exp2l subroutines

return the value of the macro (HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively).

If the correct value causes underflow and is not representable, a range error occurs, and 0.0 is returned.

If x is NaN, NaN is returned.

If x is ±0, 1 is returned.

If x is -Inf, 0 is returned.

If x is +Inf, x is returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct

value is returned.

Related Information

math.h in AIX 5L Version 5.3 Files Reference.

expm1, expm1f, or expm1l Subroutine

Purpose

Computes exponential functions.

Syntax

#include <math.h>

float expm1f (x)

float x;

long double expm1l (x)

long double x;

double expm1 (x)

double x;

Description

The expm1f, expm1l, and expm1 subroutines compute ex- 1.0.

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

Return Values

Upon successful completion, the expm1f, expm1l, and expm1 subroutines return ex- 1.0.

If the correct value would cause overflow, a range error occurs and the expm1f, expm1l, and expm1

subroutines return the value of the macro HUGE_VALF, HUGE_VALL, and HUGE_VAL, respectively.

244 Technical Reference, Volume 1: Base Operating System and Extensions

If x is NaN, a NaN is returned.

If x is ±0, ±0 is returned.

If x is -Inf, -1 is returned.

If x is +Inf, x is returned.

If x is subnormal, a range error may occur and x is returned.

Related Information

“exp, expf, or expl Subroutine” on page 241, “feclearexcept Subroutine” on page 259, “fetestexcept

Subroutine” on page 267, “ilogbf, ilogbl, or ilogb Subroutine” on page 524, and “log, logf, or logl

Subroutine” on page 736.

math.h in AIX 5L Version 5.3 Files Reference.

fabsf, fabsl, or fabs Subroutine

Purpose

Determines the absolute value.

Syntax

#include <math.h>

float fabsf (x)

float x;

long double fabsl (x)

long double x;

double fabs (x)

double x;

Description

The fabsf, fabsl, and fabs subroutines compute the absolute value of the x parameter, |x|.

Parameters

 x Specifies the value to be computed.

Return Values

Upon successful completion, the fabsf, fabsl, and fabs subroutines return the absolute value of x.

If x is NaN, a NaN is returned.

If x is ±0, +0 is returned.

If x is ±Inf, +Inf is returned.

Base Operating System (BOS) Runtime Services (A-P) 245

Related Information

The “class, _class, finite, isnan, or unordered Subroutines” on page 165.

math.h in AIX 5L Version 5.3 Files Reference.

fattach Subroutine

Purpose

Attaches a STREAMS-based file descriptor to a file.

Library

Standard C Library (libc.a)

Syntax

#include <stropts.h>

int fattach(int fildes, const char *path);

Description

The fattach subroutine attaches a STREAMS-based file descriptor to a file, effectively associating a

pathname with fildes. The fildes argument must be a valid open file descriptor associated with a

STREAMS file. The path argument points to a pathname of an existing file. The process must have

appropriate privileges, or must be the owner of the file named by path and have write permission. A

successful call to fattach subroutine causes all pathnames that name the file named by path to name the

STREAMS file associated with fildes, until the STEAMS file is detached from the file. A STREAMS file can

be attached to more than one file and can have several pathnames associated with it.

The attributes of the named STREAMS file are initialized as follows: the permissions, user ID, group ID,

and times are set to those of the file named by path, the number of links is set to 1, and the size and

device identifier are set to those of the STREAMS file associated with fildes. If any attributes of the named

STREAMS file are subsequently changed (for example, by chmod subroutine), neither the attributes of the

underlying file nor the attributes of the STREAMS file to which fildes refers are affected.

File descriptors referring to the underlying file, opened prior to an fattach subroutine, continue to refer to

the underlying file.

Parameters

 fildes A file descriptor identifying an open STREAMS-based object.

path An existing pathname which will be associated with fildes.

Return Value

 0 Successful completion.

-1 Not successful and errno set to one of the following.

Errno Value

 EACCES Search permission is denied for a component of the path prefix, or the process is the owner

of path but does not have write permission on the file named by path.

EBADF The file referred to by fildes is not an open file descriptor.

ENOENT A component of path does not name an existing file or path is an empty string.

246 Technical Reference, Volume 1: Base Operating System and Extensions

ENOTDIR A component of the path prefix is not a directory.

EPERM The effective user ID of the process is not the owner of the file named by path and the

process does not have appropriate privilege.

EBUSY The file named by path is currently a mount point or has a STREAMS file attached to it.

ENAMETOOLONG The size of path exceeds {PATH_MAX}, or a component of path is longer than

{NAME_MAX}.

ELOOP Too many symbolic links wer encountered in resolving path.

EINVAL The fildes argument does not refer to a STREAMS file.

ENOMEM Insufficient storage space is available.

Related Specifics

The fdetach (“fdetach Subroutine” on page 257) subroutine, isastream subroutine.

fchdir Subroutine

Purpose

Directory pointed to by the file descriptor becomes the current working directory.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

int fchdir (int Fildes)

Description

The fchdir subroutine causes the directory specified by the Fildes parameter to become the current

working directory.

Parameter

 Fildes A file descriptor identifying an open directory obtained from a call to the open subroutine.

Return Values

 0 Successful completion

-1 Not successful and errno set to one of the following.

Error Codes

 EACCES Search access if denied.

EBADF The file referred to by Fildes is not an open file descriptor.

ENOTDIR The open file descriptor does not refer to a directory.

Related Information

The chdir (“chdir Subroutine” on page 145) subroutine, chroot (“chroot Subroutine” on page 158)

subroutine, open (“open, openx, open64, creat, or creat64 Subroutine” on page 894) subroutine.

Base Operating System (BOS) Runtime Services (A-P) 247

fclear or fclear64 Subroutine

Purpose

Makes a hole in a file.

Library

Standard C Library (libc.a)

Syntax

off_t fclear (FileDescriptor, NumberOfBytes)

int FileDescriptor;

off_t NumberOfBytes;

off64_t fclear64 (FileDescriptor, NumberOfBytes)

int FileDescriptor;

off64_t NumberOfBytes;

Description

The fclear and fclear64 subroutines zero the number of bytes specified by the NumberOfBytes parameter

starting at the current file pointer for the file specified in the FileDescriptor parameter. If Network File

System (NFS) is installed on your system, this file can reside on another node.

The fclear subroutine can only clear up to OFF_MAX bytes of the file while fclear64 can clear up to the

maximum file size.

The fclear and fclear64 subroutines cannot be applied to a file that a process has opened with the

O_DEFER mode.

Successful completion of the fclear and fclear64 subroutines clear the SetUserID bit (S_ISUID) of the file

if any of the following are true:

v The calling process does not have root user authority.

v The effective user ID of the calling process does not match the user ID of the file.

v The file is executable by the group (S_IXGRP) or others (S_IXOTH).

This subroutine also clears the SetGroupID bit (S_ISGID) if:

v The file does not match the effective group ID or one of the supplementary group IDs of the process,

OR

v The file is executable by the owner (S_IXUSR) or others (S_IXOTH).

Note: Clearing of the SetUserID and SetGroupID bits can occur even if the subroutine fails because

the data in the file was modified before the error was detected.

In the large file enabled programming environment, fclear is redefined to be fclear64.

Parameters

 FileDescriptor Indicates the file specified by the FileDescriptor parameter must be open for writing. The

FileDescriptor is a small positive integer used instead of the file name to identify a file.

This function differs from the logically equivalent write operation in that it returns full

blocks of binary zeros to the file system, constructing holes in the file.

248 Technical Reference, Volume 1: Base Operating System and Extensions

NumberOfBytes Indicates the number of bytes that the seek pointer is advanced. If you use the fclear

and fclear64 subroutines past the end of a file, the rest of the file is cleared and the seek

pointer is advanced by NumberOfBytes. The file size is updated to include this new hole,

which leaves the current file position at the byte immediately beyond the new end-of-file

pointer.

Return Values

Upon successful completion, a value of NumberOfBytes is returned. Otherwise, a value of -1 is returned

and the errno global variable is set to indicate the error.

Error Codes

The fclear and fclear64 subroutines fail if one or more of the following are true:

 EIO I/O error.

EBADF The FileDescriptor value is not a valid file descriptor open for writing.

EINVAL The file is not a regular file.

EMFILE The file is mapped O_DEFER by one or more processes.

EAGAIN The write operation in the fclear subroutine failed due to an enforced write lock on the file.

 EFBIG The current offset plus NumberOfBytes is exceeds the offset maximum established in the open

file description associated with FileDescriptor.

 EFBIG An attempt was made to write a file that exceeds the process’ file size limit or the maximum file

size. If the user has set the environment variable XPG_SUS_ENV=ON prior to execution of the

process, then the SIGXFSZ signal is posted to the process when exceeding the process’ file size

limit.

If NFS is installed on the system the fclear and fclear64 subroutines can also fail if the following is true:

 ETIMEDOUT The connection timed out.

Related Information

The open, openx, or creat (“open, openx, open64, creat, or creat64 Subroutine” on page 894) subroutine,

truncate or ftruncate subroutines.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

fclose or fflush Subroutine

Purpose

Closes or flushes a stream.

Library

Standard C Library (libc.a)

Syntax

#include <stdio.h>

Base Operating System (BOS) Runtime Services (A-P) 249

int fclose (Stream)

FILE *Stream;

int fflush (Stream)

FILE *Stream;

Description

The fclose subroutine writes buffered data to the stream specified by the Stream parameter, and then

closes the stream. The fclose subroutine is automatically called for all open files when the exit subroutine

is invoked.

The fflush subroutine writes any buffered data for the stream specified by the Stream parameter and

leaves the stream open. The fflush subroutine marks the st_ctime and st_mtime fields of the underlying

file for update.

If the Stream parameter is a null pointer, the fflush subroutine performs this flushing action on all streams

for which the behavior is defined.

Parameters

 Stream Specifies the output stream.

Return Values

Upon successful completion, the fclose and fflush subroutines return a value of 0. Otherwise, a value of

EOF is returned.

Error Codes

If the fclose and fflush subroutines are unsuccessful, the following errors are returned through the errno

global variable:

 EAGAIN The O_NONBLOCK or O_NDELAY flag is set for the file descriptor underlying the Stream

parameter and the process would be delayed in the write operation.

EBADF The file descriptor underlying Stream is not valid.

EFBIG An attempt was made to write a file that exceeds the process’ file size limit or the maximum file

size. See the ulimit subroutine.

EFBIG The file is a regular file and an attempt was made to write at or beyond the offset maximum

associated with the corresponding stream.

EINTR The fflush subroutine was interrupted by a signal.

EIO The process is a member of a background process group attempting to write to its controlling

terminal, the TOSTOP signal is set, the process is neither ignoring nor blocking the SIGTTOU

signal and the process group of the process is orphaned. This error may also be returned under

implementation-dependent conditions.

ENOSPC No free space remained on the device containing the file.

EPIPE An attempt is made to write to a pipe or FIFO that is not open for reading by any process. A

SIGPIPE signal is sent to the process.

ENXIO A request was made of a non-existent device, or the request was outside the capabilities of the

device

Related Information

The close (“close Subroutine” on page 173) subroutine, exit, atexit, or _exit (“exit, atexit, unatexit, _exit,

or _Exit Subroutine” on page 239) subroutine, fopen, freopen, or fdopen (“fopen, fopen64, freopen,

freopen64 or fdopen Subroutine” on page 281) subroutine, setbuf, setvbuf, setbuffer, or setlinebuf

subroutine.

250 Technical Reference, Volume 1: Base Operating System and Extensions

Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

fcntl, dup, or dup2 Subroutine

Purpose

Controls open file descriptors.

Library

Standard C Library (libc.a)

Syntax

#include <fcntl.h>

int fcntl (FileDescriptor, Command, Argument)

int FileDescriptor, Command, Argument;

#include <unistd.h>

int dup2(Old, New)

int Old, New;

int dup(FileDescriptor)

int FileDescriptor;

Description

The fcntl subroutine performs controlling operations on the open file specified by the FileDescriptor

parameter. If Network File System (NFS) is installed on your system, the open file can reside on another

node. The fcntl subroutine is used to:

v Duplicate open file descriptors.

v Set and get the file-descriptor flags.

v Set and get the file-status flags.

v Manage record locks.

v Manage asynchronous I/O ownership.

v Close multiple files.

The fcntl subroutine can provide the same functions as the dup and dup2 subroutines.

If FileDescriptor refers to a terminal device or socket, then asynchronous I/O facilities can be used. These

facilities are normally enabled by using the ioctl subroutine with the FIOASYNC, FIOSETOWN, and

FIOGETOWN commands. However, a BSD-compatible mechanism is also available if the application is

linked with the libbsd.a library.

When the FileDescriptor parameter refers to a shared memory object, the fcntl subroutine manages only

the F_DUPFD, F_DUP2FD, F_GETFD, F_SETFD, F_GETFL, and F_CLOSEM commands.

When using the libbsd.a library, asynchronous I/O is enabled by using the F_SETFL command with the

FASYNC flag set in the Argument parameter. The F_GETOWN and F_SETOWN commands get the

current asynchronous I/O owner and set the asynchronous I/O owner.

Base Operating System (BOS) Runtime Services (A-P) 251

All applications containing the fcntl subroutine must be complied with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

General Record Locking Information

A lock is either an enforced or advisory lock and either a read or a write lock.

Attention: Buffered I/O does not work properly when used with file locking. Do not use the standard

I/O package routines on files that are going to be locked.

For a lock to be an enforced lock, the Enforced Locking attribute of the file must be set; for example, the

S_ENFMT bit must be set, but the S_IXGRP, S_IXUSR, and S_IXOTH bits must be clear. Otherwise, the

lock is an advisory lock. A given file can have advisory or enforced locks, but not both. The description of

the sys/mode.h file includes a description of file attributes.

When a process holds an enforced lock on a section of a file, no other process can access that section of

the file with the read or write subroutine. In addition, the open (“open, openx, open64, creat, or creat64

Subroutine” on page 894) and ftruncate subroutines cannot truncate the locked section of the file, and the

fclear (“fclear or fclear64 Subroutine” on page 248) subroutine cannot modify the locked section of the file.

If another process attempts to read or modify the locked section of the file, the process either sleeps until

the section is unlocked or returns with an error indication.

When a process holds an advisory lock on a section of a file, no other process can lock that section of the

file (or an overlapping section) with the fcntl subroutine. (No other subroutines are affected.) As a result,

processes must voluntarily call the fcntl subroutine in order to make advisory locks effective.

When a process holds a read lock on a section of a file, other processes can also set read locks on that

section or on subsets of it. Read locks are also called shared locks.

A read lock prevents any other process from setting a write lock on any part of the protected area. If the

read lock is also an enforced lock, no other process can modify the protected area.

The file descriptor on which a read lock is being placed must have been opened with read access.

When a process holds a write lock on a section of a file, no other process can set a read lock or a write

lock on that section. Write locks are also called exclusive locks. Only one write lock and no read locks can

exist for a specific section of a file at any time.

If the lock is also an enforced lock, no other process can read or modify the protected area.

The following general rules about file locking apply:

v Changing or unlocking part of a file in the middle of a locked section leaves two smaller sections locked

at each end of the originally locked section.

v If the calling process holds a lock on a file, that lock can be replaced by later calls to the fcntl

subroutine.

v All locks associated with a file for a given process are removed when the process closes any file

descriptor for that file.

v Locks are not inherited by a child process after a fork (“fork, f_fork, or vfork Subroutine” on page 284)

subroutine is run.

Note: Deadlocks due to file locks in a distributed system are not always detected. When such

deadlocks can possibly occur, the programs requesting the locks should set time-out timers.

Locks can start and extend beyond the current end of a file but cannot be negative relative to the

beginning of the file. A lock can be set to extend to the end of the file by setting the l_len field to 0. If

252 Technical Reference, Volume 1: Base Operating System and Extensions

such a lock also has the l_start and l_whence fields set to 0, the whole file is locked. The l_len, l_start,

and l_whence locking fields are part of the flock structure.

Note: The following description applies to AIX 4.3 and later releases.

When an application locks a region of a file using the 32 bit locking interface (F_SETLK), and the last byte

of the lock range includes MAX_OFF (2 Gb - 1), then the lock range for the unlock request will be

extended to include MAX_END (2 ^ ^ 63 - 1).

Parameters

 FileDescriptor Specifies an open file descriptor obtained from a successful call to the open subroutine,

fcntl subroutine, pipe subroutine, or shm_open subroutine. File descriptors are small

positive integers used (instead offile names) to identify files or a shared memory object.

Argument Specifies a variable whose value sets the function specified by the Command parameter.

When dealing with file locks, the Argument parameter must be a pointer to the FLOCK

structure.

Command Specifies the operation performed by the fcntl subroutine. The fcntl subroutine can

duplicate open file descriptors, set file-descriptor flags, set file descriptor locks, set

process IDs, and close open file descriptors.

Duplicating File Descriptors

 F_DUPFD Returns a new file descriptor as follows:

v Lowest-numbered available file descriptor greater than or equal to the Argument parameter

v Same object references as the original file

v Same file pointer as the original file (that is, both file descriptors share one file pointer if the object is

a file)

v Same access mode (read, write, or read-write)

v Same file status flags (That is, both file descriptors share the same file status flags.)

v The close-on-exec flag (FD_CLOEXEC bit) associated with the new file descriptor is cleared

Setting File-Descriptor Flags

 F_GETFD Gets the close-on-exec flag (FD_CLOEXEC bit) that is associated with the file descriptor specified by

the FileDescriptor parameter. The Argument parameter is ignored. File descriptor flags are associated

with a single file descriptor, and do not affect others associated with the same file.

F_SETFD Assigns the value of the Argument parameter to the close-on-exec flag (FD_CLOEXEC bit) that is

associated with the FileDescriptor parameter. If the FD_CLOEXEC flag value is 0, the file remains

open across any calls to exec subroutines; otherwise, the file will close upon the successful execution

of an exec subroutine.

Base Operating System (BOS) Runtime Services (A-P) 253

F_GETFL Gets the file-status flags and file-access modes for the open file description associated with the file

descriptor specified by the FileDescriptor parameter. The open file description is set at the time the file

is opened and applies only to those file descriptors associated with that particular call to the file. This

open file descriptor does not affect other file descriptors that refer to the same file with different open

file descriptions.

The file-status flags have the following values:

O_APPEND

Set append mode.

O_NONBLOCK

No delay.

The file-access modes have the following values:

O_RDONLY

Open for reading only.

O_RDWR

Open for reading and writing.

O_WRONLY

Open for writing only.

The file access flags can be extracted from the return value using the O_ACCMODE mask, which is

defined in the fcntl.h file.

F_SETFL Sets the file status flags from the corresponding bits specified by the Argument parameter. The

file-status flags are set for the open file description associated with the file descriptor specified by the

FileDescriptor parameter. The following flags may be set:

v O_APPEND or FAPPEND

v O_NDELAY or FNDELAY

v O_NONBLOCK or FNONBLOCK

v O_SYNC or FSYNC

v FASYNC

The O_NDELAY and O_NONBLOCK flags affect only operations against file descriptors derived from

the same open subroutine. In BSD, these operations apply to all file descriptors that refer to the object.

Setting File Locks

 F_GETLK Gets information on the first lock that blocks the lock described in the flock structure. The Argument

parameter should be a pointer to a type struct flock, as defined in the flock.h file. The information

retrieved by the fcntl subroutine overwrites the information in the struct flock pointed to by the

Argument parameter. If no lock is found that would prevent this lock from being created, the structure

is left unchanged, except for lock type (l_type) which is set to F_UNLCK.

F_SETLK Sets or clears a file-segment lock according to the lock description pointed to by the Argument

parameter. The Argument parameter should be a pointer to a type struct flock, which is defined in

the flock.h file. The F_SETLK option is used to establish read (or shared) locks (F_RDLCK), or write

(or exclusive) locks (F_WRLCK), as well as to remove either type of lock (F_UNLCK). The lock types

are defined by the fcntl.h file. If a shared or exclusive lock cannot be set, the fcntl subroutine

returns immediately.

F_SETLKW Performs the same function as the F_SETLK option unless a read or write lock is blocked by existing

locks, in which case the process sleeps until the section of the file is free to be locked. If a signal that

is to be caught is received while the fcntl subroutine is waiting for a region, the fcntl subroutine is

interrupted, returns a -1, sets the errno global variable to EINTR. The lock operation is not done.

254 Technical Reference, Volume 1: Base Operating System and Extensions

F_GETLK64 Gets information on the first lock that blocks the lock described in the flock64 structure. The

Argument parameter should be a pointer to an object of the type struct flock64, as defined in

the flock.h file. The information retrieved by the fcntl subroutine overwrites the information in the

struct flock64 pointed to by the Argument parameter. If no lock is found that would prevent this

lock from being created, the structure is left unchanged, except for lock type (l_type) which is set

to F_UNLCK.

F_SETLK64 Sets or clears a file-segment lock according to the lock description pointed to by the Argument

parameter. The Argument parameter should be a pointer to a type struct flock64, which is

defined in the flock.h file. The F_SETLK option is used to establish read (or shared) locks

(F_RDLCK), or write (or exclusive) locks (F_WRLCK), as well as to remove either type of lock

(F_UNLCK). The lock types are defined by the fcntl.h file. If a shared or exclusive lock cannot

be set, the fcntl subroutine returns immediately.

F_SETLKW64 Performs the same function as the F_SETLK option unless a read or write lock is blocked by

existing locks, in which case the process sleeps until the section of the file is free to be locked. If

a signal that is to be caught is received while the fcntl subroutine is waiting for a region, the fcntl

subroutine is interrupted, returns a -1, sets the errno global variable to EINTR. The lock

operation is not done.

Setting Process ID

 F_GETOWN Gets the process ID or process group currently receiving SIGIO and SIGURG signals. Process

groups are returned as negative values.

F_SETOWN Sets the process or process group to receive SIGIO and SIGURG signals. Process groups are

specified by supplying a negative Argument value. Otherwise, the Argument parameter is interpreted

as a process ID.

Closing File Descriptors

 F_CLOSEM Closes all file descriptors from FileDescriptor up to the number specified by the OPEN_MAX value.

Old Specifies an open file descriptor.

New Specifies an open file descriptor that is returned by the dup2 subroutine.

Compatibility Interfaces

The lockfx Subroutine

The fcntl subroutine functions similar to the lockfx subroutine, when the Command parameter is

F_SETLK, F_SETLKW, or F_GETLK, and when used in the following way:

fcntl (FileDescriptor, Command, Argument)

is equivalent to:

lockfx (FileDescriptor, Command, Argument)

The dup and dup2 Subroutines

The fcntl subroutine functions similar to the dup and dup2 subroutines, when used in the following way:

dup (FileDescriptor)

is equivalent to:

fcntl (FileDescriptor, F_DUPFD, 0)

dup2 (Old, New)

is equivalent to:

Base Operating System (BOS) Runtime Services (A-P) 255

close (New);

fcntl(Old, F_DUPFD, New)

The dup and dup2 subroutines differ from the fcntl subroutine in the following ways:

v If the file descriptor specified by the New parameter is greater than or equal to OPEN_MAX, the dup2

subroutine returns a -1 and sets the errno variable to EBADF.

v If the file descriptor specified by the Old parameter is valid and equal to the file descriptor specified by

the New parameter, the dup2 subroutine will return the file descriptor specified by the New parameter,

without closing it.

v If the file descriptor specified by the Old parameter is not valid, the dup2 subroutine will be

unsuccessful and will not close the file descriptor specified by the New parameter.

v The value returned by the dup and dup2 subroutines is equal to the New parameter upon successful

completion; otherwise, the return value is -1.

Return Values

Upon successful completion, the value returned depends on the value of the Command parameter, as

follows:

 Command Return Value

F_DUPFD A new file descriptor

F_GETFD The value of the flag (only the FD_CLOEXEC bit is defined)

F_SETFD A value other than -1

F_GETFL The value of file flags

F_SETFL A value other than -1

F_GETOWN The value of descriptor owner

F_SETOWN A value other than -1

F_GETLK A value other than -1

F_SETLK A value other than -1

F_SETLKW A value other than -1

F_CLOSEM A value other than -1.

If the fcntl subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the

error.

Error Codes

The fcntl subroutine is unsuccessful if one or more of the following are true:

 EACCES The Command argument is F_SETLK; the type of lock is a shared or exclusive lock and the

segment of a file to be locked is already exclusively-locked by another process, or the type is an

exclusive lock and some portion of the segment of a file to be locked is already shared-locked or

exclusive-locked by another process.

EBADF The FileDescriptor parameter is not a valid open file descriptor.

EDEADLK The Command argument is F_SETLKW; the lock is blocked by some lock from another process

and putting the calling process to sleep, waiting for that lock to become free would cause a

deadlock.

EMFILE The Command parameter is F_DUPFD, and the maximum number of file descriptors are currently

open (OPEN_MAX).

EINVAL The Command parameter is F_DUPFD, and the Argument parameter is negative or greater than or

equal to OPEN_MAX.

EINVAL An illegal value was provided for the Command parameter.

EINVAL An attempt was made to lock a fifo or pipe.

ESRCH The value of the Command parameter is F_SETOWN, and the process ID specified as the

Argument parameter is not in use.

256 Technical Reference, Volume 1: Base Operating System and Extensions

EINTR The Command parameter was F_SETLKW and the process received a signal while waiting to

acquire the lock.

EOVERFLOW The Command parameter was F_GETLK and the block lock could not be represented in the flock

structure.

The dup and dup2 subroutines fail if one or both of the following are true:

 EBADF The Old parameter specifies an invalid open file descriptor or the New parameter specifies a file

descriptor that is out of range.

EMFILE The number of file descriptors exceeds the OPEN_MAX value or there is no file descriptor above the

value of the New parameter.

If NFS is installed on the system, the fcntl subroutine can fail if the following is true:

 ETIMEDOUT The connection timed out.

Related Information

The close (“close Subroutine” on page 173) subroutine, execl, excecv, execle, execve, execlp, execvp,

or exect (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

subroutines, fork (“fork, f_fork, or vfork Subroutine” on page 284) subroutine, ioctl or ioctlx (“ioctl, ioctlx,

ioctl32, or ioctl32x Subroutine” on page 552) subroutine, lockf (“lockfx, lockf, flock, or lockf64 Subroutine”

on page 728) subroutine, open, openx, or creat (“open, openx, open64, creat, or creat64 Subroutine” on

page 894) subroutines, read subroutine, write subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

fdetach Subroutine

Purpose

Detaches STREAMS-based file from the file to which it was attached.

Library

Standard C Library (libc.a)

Syntax

#include <stropts.h>

int fdetach(const char *path);

Parameters

 path Pathname of a file previous associated with a STREAMS-based object using the fattach subroutine.

Description

The fdetach subroutine detaches a STREAMS-based file from the file to which it was attached by a

previous call to fattach subroutine. The path argument points to the pathname of the attached STREAMS

file. The process must have appropriate privileges or be the owner of the file. A successful call to fdetach

subroutine causes all pathnames that named the attached STREAMS file to again name the file to which

the STREAMS file was attached. All subsequent operations on path will operate on the underlying file and

not on the STREAMS file.

Base Operating System (BOS) Runtime Services (A-P) 257

All open file descriptors established while the STREAMS file was attached to the file referenced by path

will still refer to the STREAMS file after the fdetach subroutine has taken effect.

If there are no open file descriptors or other references to the STREAMS file, then a successful call to

fdetach subroutine has the same effect as performing the last close subroutine on the attached file.

The umount command may be used to detach a file name if an | application exits before performing

fdetach subroutine.

Return Value

 0 Successful completion.

-1 Not successful and errno set to one of the following.

Errno Value

 EACCES Search permission is denied on a component of the path prefix.

EPERM The effective user ID is not the owner of path and the process does not have appropriate

privileges.

ENOTDIR A component of the path prefix is not a directory.

ENOENT A component of path parameter does not name an existing file or path is an empty string.

EINVAL The path parameter names a file that is not currently attached.

ENAMETOOLONG The size of path parameter exceeds {PATH_MAX}, or a component of path is longer than

{NAME_MAX}.

ELOOP Too many symbolic links were encountered in resolving the path parameter.

ENOMEM Insufficient storage space is available.

Related Information

The fattach (“fattach Subroutine” on page 246) subroutine, isastream subroutine.

fdim, fdimf, or fdiml Subroutine

Purpose

Computes the positive difference between two floating-point numbers.

Syntax

#include <math.h>

double fdim (x, y)

double x;

double y;

float fdimf (x, y)

float x;

float y;

long double fdiml (x, y)

long double x;

long double y;

Description

The fdim, fdimf, and fdiml subroutines determine the positive difference between their arguments. If x is

greater than y, x - y is returned. If x is less than or equal to y, +0 is returned.

258 Technical Reference, Volume 1: Base Operating System and Extensions

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutyines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

y Specifies the value to be computed.

Return Values

Upon successful completion, the fdim, fdimf, and fdiml subroutines return the positive difference value.

If x-y is positive and overflows, a range error occurs and the fdim, fdimf, and fdiml subroutines return the

value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

If x-y is positive and underflows, a range error may occur, and 0.0 is returned.

If x or y is NaN, a NaN is returned.

Related Information

“feclearexcept Subroutine,” “fetestexcept Subroutine” on page 267, “fmax, fmaxf, or fmaxl Subroutine” on

page 274, and “madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move, min, omin, fmin,

m_in, mout, omout, fmout, m_out, sdiv, or itom Subroutine” on page 771.

math.h in AIX 5L Version 5.3 Files Reference.

feclearexcept Subroutine

Purpose

Clears floating-point exceptions.

Syntax

#include <fenv.h>

int feclearexcept (excepts)

int excepts;

Description

The feclearexcept subroutine attempts to clear the supported floating-point exceptions represented by the

excepts parameter.

Parameters

 excepts Specifies the supported floating-point exception to be cleared.

Return Values

If the excepts parameter is zero or if all the specified exceptions were successfully cleared, the

feclearexcept subroutine returns zero. Otherwise, it returns a nonzero value.

Base Operating System (BOS) Runtime Services (A-P) 259

Related Information

“fegetexceptflag or fesetexceptflag Subroutine,” “feraiseexcept Subroutine” on page 265, and “fetestexcept

Subroutine” on page 267

fegetenv or fesetenv Subroutine

Purpose

Gets and sets the current floating-point environment.

Syntax

#include <fenv.h>

int fegetenv (envp)

fenv_t *envp;

int fesetenv (envp)

const fenv_t *envp;

Description

The fegetenv subroutine stores the current floating-point environment in the object pointed to by the envp

parameter.

The fesetenv subroutine attempts to establish the floating-point environment represented by the object

pointed to by the envp parameter. The envp parameter points to an object set by a call to the fegetenv or

feholdexcept subroutines, or equal a floating-point environment macro. The fesetenv subroutine does not

raise floating-point exceptions. It only installs the state of the floating-point status flags represented

through its argument.

Parameters

 envp Points to an object set by a call to the fegetenv or feholdexcept subroutines, or equal a floating-point

environment macro.

Return Values

If the representation was successfully stored, the fegetenv subroutine returns zero. Otherwise, it returns a

nonzero value. If the environment was successfully established, the fesetenv subroutine returns zero.

Otherwise, it returns a nonzero value.

Related Information

“feholdexcept Subroutine” on page 262 and “feupdateenv Subroutine” on page 268

fegetexceptflag or fesetexceptflag Subroutine

Purpose

Gets and sets floating-point status flags.

Syntax

#include <fenv.h>

int fegetexceptflag (flagp, excepts)

feexcept_t *flagp;

260 Technical Reference, Volume 1: Base Operating System and Extensions

int excepts;

int fesetexceptflag (flagp, excepts)

const fexcept_t *flagp;

int excepts;

Description

The fegetexceptflag subroutine attempts to store an implementation-defined representation of the states

of the floating-point status flags indicated by the excepts parameter in the object pointed to by the flagp

parameter.

The fesetexceptflag subroutine attempts to set the floating-point status flags indicated by the excepts

parameter to the states stored in the object pointed to by the flagp parameter. The value pointed to by the

flagp parameter shall have been set by a previous call to the fegetexceptflag subroutine whose second

argument represented at least those floating-point exceptions represented by the excepts parameter. This

subroutine does not raise floating-point exceptions. It only sets the state of the flags.

Parameters

 flagp Points to the object that holds the implementation-defined representation of the states of the

floating-point status flags.

excepts Points to an implementation-defined representation of the states of the floating-point status flags.

Return Values

If the representation was successfully stored, the fegetexceptflag parameter returns zero. Otherwise, it

returns a nonzero value. If the excepts parameter is zero or if all the specified exceptions were

successfully set, the fesetexceptflag subroutine returns zero. Otherwise, it returns a nonzero value.

Related Information

“feraiseexcept Subroutine” on page 265 and “fetestexcept Subroutine” on page 267.

fegetround or fesetround Subroutine

Purpose

Gets and sets the current rounding direction.

Syntax

#include <fenv.h>

int fegetround (void)

int fesetround (round)

int round;

Description

The fegetround subroutine gets the current rounding direction.

The fesetround subroutine establishes the rounding direction represented by the round parameter. If the

round parameter is not equal to the value of a rounding direction macro, the rounding direction is not

changed.

Base Operating System (BOS) Runtime Services (A-P) 261

Parameters

 round Specifies the rounding direction.

Return Values

The fegetround subroutine returns the value of the rounding direction macro representing the current

rounding direction or a negative value if there is no such rounding direction macro or the current rounding

direction is not determinable.

The fesetround subroutine returns a zero value if the requested rounding direction was established.

feholdexcept Subroutine

Purpose

Saves current floating-point environment.

Syntax

#include <fenv.h>

int feholdexcept (envp)

fenv_t *envp;

Description

The feholdexcept subroutine saves the current floating-point environment in the object pointed to by envp,

clears the floating-point status flags, and installs a non-stop (continue on floating-point exceptions) mode

for all floating-point exceptions.

Parameters

 envp Points to the current floating-point environment.

Return Values

The feholdexcept subroutine returns zero if non-stop floating-point exception handling was successfully

installed.

Related Information

The “feupdateenv Subroutine” on page 268.

fence Subroutine

Purpose

Allows you to request and change the virtual shared disk fence map.

Syntax

#include <vsd_ioctl.h>

int ioctl(FileDescriptor, Command, Argument)

int FileDescriptor, Command;

void *Argument;

262 Technical Reference, Volume 1: Base Operating System and Extensions

Description

Use this subroutine to request and change the virtual shared disk fence map. The fence map, which

controls whether virtual shared disks can send or satisfy requests from virtual shared disks at remote

nodes, is defined as:

struct vsd_FenceMap /* This is the argument to the VSD fence ioctl. */

{

 ulong flags;

 vsd_minorBitmap_t minornoBitmap; /* Bitmap of minor numbers to fence

 (supports 10000 vsds) */

 vsd_Fence_Bitmap_t nodesBitmap; /* Nodes to (un)fence these vsds from

 (supports node numbers 1-2048) */

}vsd_FenceMap_t

The flags VSD_FENCE and VSD_UNFENCE are mutually exclusive — an ioctl can either fence a set of

virtual shared disks or unfence a set of virtual shared disks, but not both. The minornoBitmap denotes

which virtual shared disks are to be fenced/unfenced from the nodes specified in the nodesBitmap.

Parameters

FileDescriptor Specifies the open file descriptor for which the control operation is to be performed.

Command Specifies the control function to be performed. The value of this parameter is always

GIOCFENCE.

Argument Specifies a pointer to a vsd_fence_map structure.

The flags field of the vsd_fence_map structure determines the type of operation that is performed. The

flags could be set with one or more options using the OR operator. These options are as follows:

VSD_FENCE_FORCE If this option is specified, a node can unfence itself.

VSD_FENCE_GET Denotes a query request.

VSD_FENCE Denotes a fence request.

VSD_UNFENCE Denotes an unfence request.

Examples

The following example fences a virtual shared disk with a minor number of 7 from node 4 and 5, and

unfences a virtual shared disk with a minor number of 5 from node 1:

int fd;

vsd_FenceMap_t FenceMap;

/* Clear the FenceMap */

bzero(FenceMap, sizeof(vsd_FenceMap_t));

/* fence nodes 4,5 from minor 7 */

FenceMap.flags = VSD_FENCE;

MAP_SET(7, FenceMap.minornoBitmap);

MAP_SET(4, FenceMap.nodesBitmap);

MAP_SET(5, FenceMap.nodesBitmap);

/* Issue the fence request */

ioctl(fd,GIOCFENCE,&FenceMap);

/* Unfence node 1 from minor 5*/

bzero(FenceMap, sizeof(vsd_FenceMap_t));

FenceMap.flags = VSD_UNFENCE | VSD_FENCE_FORCE;

MAP_SET(5, FenceMap.minornoBitmap);

MAP_SET(1, FenceMap.nodesBitmap);

/* Issue the fence request */

ioctl(fd,GIOCFENCE,&FenceMap);

Base Operating System (BOS) Runtime Services (A-P) 263

Return Values

If the request succeeds, the ioctl returns 0. In the case of an error, a value of -1 is returned with the global

variable errno set to identify the error.

Error Values

The fence ioctl subroutine can return the following error codes:

EACCES Indicates that an unfence was requested from a fenced node without the

VSD_FENCE_FORCE option.

EINVAL Indicates an invalid request (ambiguous flags or unidentified virtual shared

disks).

ENOCONNECT Indicates that either the primary or the secondary node for a virtual shared

disk to be fenced is not a member of the virtual shared disk group, or the

virtual shared disk in question is in the stopped state.

ENOTREADY Indicates that the group is not active or the Recoverable virtual shared

disk subsystem is not available.

ENXIO Indicates that the Virtual shared disk driver is being unloaded.

feof, ferror, clearerr, or fileno Macro

Purpose

Checks the status of a stream.

Library

Standard C Library (libc.a)

Syntax

#include <stdio.h>

int feof (Stream)

FILE *Stream;

int ferror (Stream)

FILE *Stream;

void clearerr (Stream)

FILE *Stream;

int fileno (Stream)

FILE *Stream;

Description

The feof macro inquires about the end-of-file character (EOF). If EOF has previously been detected

reading the input stream specified by the Stream parameter, a nonzero value is returned. Otherwise, a

value of 0 is returned.

The ferror macro inquires about input or output errors. If an I/O error has previously occurred when

reading from or writing to the stream specified by the Stream parameter, a nonzero value is returned.

Otherwise, a value of 0 is returned.

The clearerr macro inquires about the status of a stream. The clearerr macro resets the error indicator

and the EOF indicator to a value of 0 for the stream specified by the Stream parameter.

264 Technical Reference, Volume 1: Base Operating System and Extensions

The fileno macro inquires about the status of a stream. The fileno macro returns the integer file descriptor

associated with the stream pointed to by the Stream parameter. Otherwise a value of -1 is returned.

Parameters

 Stream Specifies the input or output stream.

Related Information

The fopen, freopen, or fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 281)

subroutine, open (“open, openx, open64, creat, or creat64 Subroutine” on page 894) subroutine.

Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

feraiseexcept Subroutine

Purpose

Raises the floating-point exception.

Syntax

#include <fenv.h>

int feraiseexcept (excepts)

int excepts;

Description

The feraiseexcept subroutine attempts to raise the supported floating-point exceptions represented by the

excepts parameter. The order in which these floating-point exceptions are raised is unspecified.

Parameters

 excepts Points to the floating-point exceptions.

Return Values

If the argument is zero or if all the specified exceptions were successfully raised, the feraiseexcept

subroutine returns a zero. Otherwise, it returns a nonzero value.

Related Information

“feclearexcept Subroutine” on page 259, “fegetexceptflag or fesetexceptflag Subroutine” on page 260,

“fetestexcept Subroutine” on page 267.

fetch_and_add Subroutine

Purpose

Updates a single word variable atomically.

Library

Standard C library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 265

Syntax

#include <sys/atomic_op.h>

int fetch_and_add (word_addr, value)

atomic_p word_addr;

int value;

Description

The fetch_and_add subroutine increments one word in a single atomic operation. This operation is useful

when a counter variable is shared between several threads or processes. When updating such a counter

variable, it is important to make sure that the fetch, update, and store operations occur atomically (are not

interruptible). For example, consider the sequence of events which could occur if the operations were

interruptible:

1. A process fetches the counter value and adds one to it.

2. A second process fetches the counter value, adds one, and stores it.

3. The first process stores its value.

The result of this is that the update made by the second process is lost.

Traditionally, atomic access to a shared variable would be controlled by a mechanism such as

semaphores. Compared to such mechanisms, the fetch_and_add subroutine requires very little overhead,

and provided that the counter variable fits in a single machine word, this subroutine provides a highly

efficient way of performing this operation.

Note: The word containing the counter variable must be aligned on a full word boundary.

Parameters

 word_addr Specifies the address of the word variable to be incremented.

value Specifies the value to be added to the word variable.

Return Values

This subroutine returns the original value of the word.

Related Information

The fetch_and_and (“fetch_and_and or fetch_and_or Subroutine”) subroutine, fetch_and_or

(“fetch_and_and or fetch_and_or Subroutine”) subroutine, compare_and_swap (“compare_and_swap

Subroutine” on page 174) subroutine.

fetch_and_and or fetch_and_or Subroutine

Purpose

Sets or clears bits in a single word variable atomically.

Library

Standard C library (libc.a)

Syntax

#include <sys/atomic_op.h>

266 Technical Reference, Volume 1: Base Operating System and Extensions

uint fetch_and_and (word_addr, mask)

atomic_p word_addr;

int mask;

uint fetch_and_or (word_addr, mask)

atomic_p word_addr;

int mask;

Description

The fetch_and_and and fetch_and_or subroutines respectively clear and set bits in one word, according

to a bit mask, in a single atomic operation. The fetch_and_and subroutine clears bits in the word which

correspond to clear bits in the bit mask, and the fetch_and_or subroutine sets bits in the word which

correspond to set bits in the bit mask.

These operations are useful when a variable containing bit flags is shared between several threads or

processes. When updating such a variable, it is important that the fetch, bit clear or set, and store

operations occur atomically (are not interruptible). For example, consider the sequence of events which

could occur if the operations were interruptible:

1. A process fetches the flags variable and sets a bit in it.

2. A second process fetches the flags variable, sets a different bit, and stores it.

3. The first process stores its value.

The result is that the update made by the second process is lost.

Traditionally, atomic access to a shared variable would be controlled by a mechanism such as

semaphores. Compared to such mechanisms, the fetch_and_and and fetch_and_or subroutines require

very little overhead, and provided that the flags variable fits in a single machine word, they provide a

highly efficient way of performing this operation.

Note: The word containing the flag bits must be aligned on a full word boundary.

Parameters

 word_addr Specifies the address of the single word variable whose bits are to be cleared or set.

mask Specifies the bit mask which is to be applied to the single word variable.

Return Values

These subroutines return the original value of the word.

Related Information

The fetch_and_add (“fetch_and_add Subroutine” on page 265) subroutine, compare_and_swap

(“compare_and_swap Subroutine” on page 174) subroutine.

fetestexcept Subroutine

Purpose

Tests floating-point exception flags.

Base Operating System (BOS) Runtime Services (A-P) 267

Syntax

#include <fenv.h>

int fetestexcept (excepts)

int excepts;

Description

The fetestexcept subroutine determines which of a specified subset of the floating-point exception flags

are currently set. The excepts parameter specifies the floating-point status flags to be queried.

Parameters

 excepts Specifies the floating-point status flags to be queried.

Return Values

The fetestexcept subroutine returns the value of the bitwise-inclusive OR of the floating-point exception

macros corresponding to the currently set floating-point exceptions included in excepts.

Related Information

“feclearexcept Subroutine” on page 259, “fegetexceptflag or fesetexceptflag Subroutine” on page 260, and

“feraiseexcept Subroutine” on page 265

feupdateenv Subroutine

Purpose

Updates floating-point environment.

Syntax

#include <fenv.h>

int feupdateenv (envp)

const fenv_t *envp;

Description

The feupdateenv subroutine attempts to save the currently raised floating-point exceptions in its automatic

storage, attempts to install the floating-point environment represented by the object pointed to by the envp

parameter, and attempts to raise the saved floating-point exceptions. The envp parameter point to an

object set by a call to feholdexcept or fegetenv, or equal a floating-point environment macro.

Parameters

 envp Points to an object set by a call to the feholdexcept or the fegetenv subroutine, or equal a

floating-point environment macro.

Return Values

The feupdateenv subroutine returns a zero value if all the required actions were successfully carried out.

Related Information

“fegetenv or fesetenv Subroutine” on page 260 and “feholdexcept Subroutine” on page 262.

268 Technical Reference, Volume 1: Base Operating System and Extensions

finfo or ffinfo Subroutine

Purpose

Returns file information.

Library

Standard C library (libc.a)

Syntax

#include <sys/finfo.h>

int finfo(Path1, cmd, buffer, length)

const char *Path1;

int cmd;

void *buffer;

int length;

int ffinfo (fd, cmd, buffer, length)

int fd;

int cmd;

void *buffer;

int length;

Description

The finfo and ffinfo subroutines return specific file information for the specified file.

Parameters

 Path1 Path name of a file system object to query.

fd File descriptor for an open file to query.

cmd Specifies the type of file information to be returned.

buffer User supplied buffer which contains the file information upon successful return.

/usr/include/sys/finfo.h describes the buffer.

length Length of the query buffer.

Commands

 F_PATHCONF When the F_PATHCONF command is specified, a file’s

implementation information is returned.

Note: The operating system provides another subroutine

that retrieves file implementation characteristics, pathconf

(“pathconf or fpathconf Subroutine” on page 938)

command. While the finfo and ffinfo subroutines can be

used to retrieve file information, it is preferred that

programs use the pathconf interface.

F_DIOCAP When the F_DIOCAP command is specified, the file’s

direct 1/0 capability information is returned. The buffer

supplied by the application is of type struct diocapbuf *.

Return Values

Upon successful completion, the finfo and ffinfo subroutines return a value of 0 and the user supplied

buffer is correctly filled in with the file information requested. If the finfo or ffinfo subroutines were

unsuccessful, a value of -1 is returned and the global errno variable is set to indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 269

Error Codes

 EACCES Search permission is denied for a component of the path prefix.

EINVAL If the length specified for the user buffer is greater than

MAX_FINFO_BUF.

If the command argument is not supported. If F_DIOCAP command is

specified and the file object does not support Direct I/O.

ENAMETOOLONG The length of the Path parameter string exceeds the PATH_MAX

value.

ENOENT The named file does not exist or the Path parameter points to an

empty string.

ENOTDIR A component of the path prefix is not a directory.

EBADF File descriptor provided is not valid.

Related Information

The pathconf (“pathconf or fpathconf Subroutine” on page 938) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

flockfile, ftrylockfile, funlockfile Subroutine

Purpose

Provides for explicit application-level locking of stdio (FILE*) objects.

Library

Standard Library (libc.a)

Syntax

#include <stdio.h>

void flockfile (FILE * file)

int ftrylockfile (FILE * file)

void funlockfile (FILE * file)

Description

The flockfile, ftrylockfile and funlockfile functions provide for explicit application-level locking of stdio

(FILE*) objects. These functions can be used by a thread to delineate a sequence of I/O statements that

are to be executed as a unit.

The flockfile function is used by a thread to acquire ownership of a (FILE*) object.

The ftrylockfile function is used by a thread to acquire ownership of a (FILE*) object if the object is

available; ftrylockfile is a non-blocking version of flockfile.

The funlockfile function is used to relinquish the ownership granted to the thread. The behavior is

undefined if a thread other than the current owner calls the funlockfile function.

Logically, there is a lock count associated with each (FILE*) object. This count is implicitly initialised to

zero when the (FILE*) object is created. The (FILE*) object is unlocked when the count is zero. When the

count is positive, a single thread owns the (FILE*) object. When the flockfile function is called, if the count

is zero or if the count is positive and the caller owns the (FILE*) object, the count is incremented.

270 Technical Reference, Volume 1: Base Operating System and Extensions

Otherwise, the calling thread is suspended, waiting for the count to return to zero. Each call to funlockfile

decrements the count. This allows matching calls to flockfile (or successful calls to ftrylockfile) and

funlockfile to be nested.

All functions that reference (FILE*) objects behave as if they use flockfile and funlockfile internally to

obtain ownership of these (FILE*) objects.

Return Values

None for flockfile and funlockfile. The function ftrylock returns zero for success and non-zero to indicate

that the lock cannot be acquired.

Implementation Specifics

These subroutines are part of Base Operating System (BOS) subroutines.

Realtime applications may encounter priority inversion when using FILE locks. The problem occurs when a

high priority thread locks a file that is about to be unlocked by a low priority thread, but the low priority

thread is preempted by a medium priority thread. This scenario leads to priority inversion; a high priority

thread is blocked by lower priority threads for an unlimited period of time. During system design, realtime

programmers must take into account the possibility of this kind of priority inversion. They can deal with it in

a number of 7434 ways, such as by having critical sections that are guarded by file locks execute at a

high priority, so that a thread cannot be preempted while executing in its critical section.

Related Information

The getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked (“getc_unlocked,

getchar_unlocked, putc_unlocked, putchar_unlocked Subroutines” on page 342) subroutine.

floor, floorf, floorl, nearest, trunc, itrunc, or uitrunc Subroutine

Purpose

The floor subroutine, floorf subroutine, floorl subroutine, nearest subroutine, and trunc subroutine, round

floating-point numbers to floating-point integer values.

The itrunc subroutine and uitrunc subroutine round floating-point numbers to signed and unsigned

integers, respectively.

Libraries

IEEE Math Library (libm.a)

or System V Math Library (libmsaa.a)

Standard C Library (libc.a) (separate syntax follows)

Syntax

#include <math.h>

double floor (x)

double x;

float floorf (x)

float x;

long double floorl (x)

long double x;

double nearest (x)

double x;

Base Operating System (BOS) Runtime Services (A-P) 271

double trunc (x)

double x;

Standard C Library (libc.a)

#include <stdlib.h>

#include <limits.h>

int itrunc (x)

double x;

unsigned int uitrunc (x)

double x;

Description

The floor subroutine and floorl subroutines return the largest floating-point integer value not greater than

the x parameter.

An application wishing to check for error situations should set errno to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

The nearest subroutine returns the nearest floating-point integer value to the x parameter. If x lies exactly

halfway between the two nearest floating-point integer values, an even floating-point integer is returned.

The trunc subroutine returns the nearest floating-point integer value to the x parameter in the direction of

0. This is equivalent to truncating off the fraction bits of the x parameter.

Note: The default floating-point rounding mode is round to nearest. All C main programs begin with the

rounding mode set to round to nearest.

The itrunc subroutine returns the nearest signed integer to the x parameter in the direction of 0. This is

equivalent to truncating the fraction bits from the x parameter and then converting x to a signed integer.

The uitrunc subroutine returns the nearest unsigned integer to the x parameter in the direction of 0. This

action is equivalent to truncating off the fraction bits of the x parameter and then converting x to an

unsigned integer.

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. To compile the

floor.c file, for example, enter:

cc floor.c -lm

The itrunc, uitrunc, trunc, and nearest subroutines are not part of the ANSI C Library.

Parameters

 x Specifies a double-precision floating-point value. For the floorl subroutine, specifies a long double-precision

floating-point value.

 y Specifies a double-precision floating-point value. For the floorl subroutine, specifies some long

double-precision floating-point value.

Return Values

Upon successful completion, the floor, floorf, and floorl subroutine returns the largest integral value not

greater than x, expressed as a double, float, or long double, as appropriate for the return type of the

function.

272 Technical Reference, Volume 1: Base Operating System and Extensions

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

If the correct value would cause overflow, a range error occurs and the floor, floorf and floorl subroutines

return the value of the macro -HUGE_VAL, -HUGE_VALF and -HUGE_VALL, respectively.

Error Codes

The itrunc and uitrunc subroutines return the INT_MAX value if x is greater than or equal to the

INT_MAX value and the INT_MIN value if x is equal to or less than the INT_MIN value. The itrunc

subroutine returns the INT_MIN value if x is a Quiet NaN(not-a-number) or Silent NaN. The uitrunc

subroutine returns 0 if x is a Quiet NaN or Silent NaN. (The INT_MAX and INT_MIN values are defined in

the limits.h file.) The uitrunc subroutine INT_MAX if x is greater than INT_MAX and 0 if x is less than or

equal 0.0

Files

 float.h Contains the ANSI C FLT_ROUNDS macro.

Related Information

“feclearexcept Subroutine” on page 259, “fetestexcept Subroutine” on page 267, and “class, _class, finite,

isnan, or unordered Subroutines” on page 165.

The fp_read_rnd or fp_swap_rnd (“fp_read_rnd or fp_swap_rnd Subroutine” on page 296) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

128-Bit long double Floating-Point Format in AIX 5L Version 5.3 General Programming Concepts: Writing

and Debugging Programs.

math.h in AIX 5L Version 5.3 Files Reference.

fma, fmaf, or fmal Subroutine

Purpose

Floating-point multiply-add.

Syntax

#include <math.h>

double fma (x, y, z)

double x;

double y;

double z;

float fmaf (x, y, z)

float x;

float y;

float z;

long double fmal (x, y, z)

long double x;

long double y;

long double z;

Base Operating System (BOS) Runtime Services (A-P) 273

Description

The fma, fmaf, and fmal subroutines compute (x * y) + z, rounded as one ternary operation. They

compute the value (as if) to infinite precision and round once to the result format, according to the

rounding mode characterized by the value of FLT_ROUNDS.

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be multiplied by the y parameter.

y Specifies the value to be multiplied by the x parameter.

z Specifies the value to be added to the product of the x and y parameters.

Return Values

Upon successful completion, the fma, fmaf, and fmal subroutines return (x * y) + z, rounded as one

ternary operation.

If x or y are NaN, a NaN is returned.

If x multiplied by y is an exact infinity and z is also an infinity but with the opposite sign, a domain error

occurs, and a NaN is returned.

If one of the x and y parameters is infinite, the other is zero, and the z parameter is not a NaN, a domain

error occurs, and a NaN is returned.

If one of the x and y parameters is infinite, the other is zero, and z is a NaN, a NaN is returned and a

domain error may occur.

If x*y is not 0*Inf nor Inf*0 and z is a NaN, a NaN is returned.

Related Information

“feclearexcept Subroutine” on page 259 and “fetestexcept Subroutine” on page 267

math.h in AIX 5L Version 5.3 Files Reference.

fmax, fmaxf, or fmaxl Subroutine

Purpose

Determines the maximum numeric value of two floating-point numbers.

Syntax

#include <math.h>

double fmax (x, y)

double x;

double y;

float fmaxf (x, y)

float x;

float y;

274 Technical Reference, Volume 1: Base Operating System and Extensions

long double fmaxl (x, y)

long double x;

long double y;

Description

The fmax, fmaxf, and fmaxl subroutines determine the maximum numeric value of their arguments. NaN

arguments are treated as missing data. If one argument is a NaN and the other numeric, the fmax, fmaxf,

and fmaxl subroutines choose the numeric value.

Parameters

 x Specifies the value to be computed.

y Specifies the value to be computed.

Return Values

Upon successful completion, the fmax, fmaxf, and fmaxl subroutines return the maximum numeric value

of their arguments.

If one argument is a NaN, the other argument is returned.

If x and y are NaN, a NaN is returned.

Related Information

“fdim, fdimf, or fdiml Subroutine” on page 258 and “madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt,

mcmp, move, min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv, or itom Subroutine” on page 771

math.h in AIX 5L Version 5.3 Files Reference.

fminf or fminl Subroutine

Purpose

Determines the minimum numeric value of two floating-point numbers.

Syntax

#include <math.h>

float fminf (x, y)

float x;

float y;

long double fminl (x, y)

long double x;

long double y;

Description

The fminf and fminl subroutines determine the minimum numeric value of their arguments. NaN

arguments are treated as missing data If one argument is a NaN and the other numeric, the fminf and

fminl subroutines choose the numeric value.

Parameters

 x Specifies the value to be computed.

Base Operating System (BOS) Runtime Services (A-P) 275

y Specifies the value to be computed.

Return Values

Upon successful completion, the fminf and fminl subroutines return the minimum numeric value of their

arguments.

If one argument is a NaN, the other argument is returned.

If x and y are NaN, a NaN is returned.

Related Information

“fdim, fdimf, or fdiml Subroutine” on page 258, “fmax, fmaxf, or fmaxl Subroutine” on page 274.

math.h in AIX 5L Version 5.3 Files Reference.

fmod, fmodf, or fmodl Subroutine

Purpose

Computes the floating-point remainder value.

Syntax

#include <math.h>

float fmodf (x, y)

float x;

float y;

long double fmodl (x)

long double x, y;

double fmod (x, y)

double x, y;

Description

The fmodf, fmodl, and fmod subroutines return the floating-point remainder of the division of x by y.

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

y Specifies the value to be computed.

Return Values

The fmodf, fmodl, and fmod subroutines return the value x- i *y, for some integer i such that, if y is

nonzero, the result has the same sign as x and magnitude less than the magnitude of y.

If the correct value would cause underflow, and is not representable, a range error may occur, and 0.0 is

returned.

276 Technical Reference, Volume 1: Base Operating System and Extensions

If x or y is NaN, a NaN is returned.

If y is zero, a domain error occurs, and a NaN is returned.

If x is infinite, a domain error occurs, and a NaN is returned.

If x is ±0 and y is not zero, ±0 is returned.

If x is not infinite and y is ±Inf, x is returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct

value is returned.

Related Information

“feclearexcept Subroutine” on page 259, “fetestexcept Subroutine” on page 267, and “class, _class, finite,

isnan, or unordered Subroutines” on page 165.

math.h in AIX 5L Version 5.3 Files Reference.

fmtmsg Subroutine

Purpose

Display a message in the specified format on standard error, the console, or both.

Library

Standard C Library (libc.a)

Syntax

#include <fmtmsg.h>

int fmtmsg (long Classification,

const char *Label,

int Severity,

cont char *Text;

cont char *Action,

cont char *Tag)

Description

The fmtmsg subroutine can be used to display messages in a specified format instead of the traditional

printf subroutine interface.

Base on a message’s classification component, the fmtmsg subroutine either writes a formatted message

to standard error, the console, or both.

A formatted message consists of up to five parameters. The Classification parameter is not part of a

message displayed to the user, but defines the source of the message and directs the display of the

formatted message.

Base Operating System (BOS) Runtime Services (A-P) 277

Parameters

 Classification Contains identifiers from the following groups of major classifications and

subclassifications. Any one identifier from a subclass may be used in combination with a

single identifier from a different subclass. Two or more identifiers from the same subclass

should not be used together, with the exception of identifiers from the display subclass.

(Both display subclass identifiers may be used so that messages can be displayed to

both standard error and system console).

major classifications

Identifies the source of the condition. Identifiers are: MM_HARD (hardware),

MM_SOFT (software), and MM_FIRM (firmware).

message source subclassifications

Identifies the type of software in which the problem is detected. Identifiers are:

MM_APPL (application), MM_UTIL (utility), and MM_OPSYS (operating system).

display subclassification

Indicates where the message is to be displayed. Identifiers are: MM_PRINT to

display the message on the standard error stream, MM_CONSOLE to display

the message on the system console. One or both identifiers may be used.

status subclassifications

Indicates whether the application will recover from the condition. Identifiers

are:MM_RECOVER (recoverable) and MM_RECOV (non-recoverable).

An additional identifier, MM_NULLMC, identifies that no classification component is

supplied for the message.

Label Identifies the source to the message. The format is two fields separated by a colon. The

first field is up to 10 bytes, the second field is up to 14 bytes.

Severity

Text Describes the error condition that produced the message. The character string is not

limited to a specific size. If the character string is null then a message will be issued

stating that no text has been provided.

Action Describes the first step to be taken in the error-recovery process. The fmtmsg subroutine

precedes the action string with the prefix: TO FIX:. The Action string is not limited to a

specific size.

Tag An identifier which references online documentation for the message. Suggested usage is

that tag includes the Label and a unique identifying number. A sample tag is UX:cat:146.

Environment Variables

The MSGVERB (message verbosity) environment variable controls the behavior of the fmtmsg subroutine.

MSGVERB tells the fmtmsg subroutine which message components it is to select when writing messages

to standard error. The value of MSGVERB is a colon-separated list of optional keywords. MSGVERB can

be set as follows:

MSGVERB=[keyword[:keyword[:...]]]

export MSGVERB

Valid keywords are: Label, Severity, Text, Action, and Tag. If MSGVERB contains a keyword for a

component and the component’s value is not the component’s null value, fmtmsg subroutine includes that

component in the message when writing the message to standard error. If MSGVERB does not include a

keyword for a message component, that component is not included in the display of the message. The

keywords may appear in any order. If MSGVERB is not defined, if its value is the null string, if its value is

not of the correct format, of if it contains keywords other than the valid ones listed previously, the fmtmsg

subroutine selects all components.

MSGVERB affects only which components are selected for display to standard error. All message

components are included in console messages.

278 Technical Reference, Volume 1: Base Operating System and Extensions

Application Usage

One or more message components may be systematically omitted from messages generated by an

application by using the null value of the parameter for that component. The table below indicates the null

values and identifiers for fmtmsg subroutine parameters. The parameters are of type char* unless

otherwise indicated.

 Parameter Null-Value Identifier

label (char*)0 MM_NULLLBL

severity (type int) 0 MM_NULLSEV

class (type long) 0L MM_NULLMC

text (char*)0 MM_NULLTXT

action (char*)0 MM_NULLACT

tag (char*)0 MM_NULLTAG

Another means of systematically omitting a component is by omitting the component keywords when

defining the MSGVERB environment variable.

Return Values

The exit codes for the fmtmsg subroutine are the following:

 MM_OK The function succeeded.

MM_NOTOK The function failed completely.

MM_MOMSG The function was unable to generate a message on standard error.

MM_NOCON The function was unable to generate a console message.

Examples

1. The following example of the fmtmsg subroutine:

fmtmsg(MM_PRINT, "UX:cat", MM_ERROR, "illegal option",

"refer tp cat in user’s reference manual", "UX:cat:001")

produces a complete message in the specified message format:

UX:cat ERROR: illegal option

TO FIX: refer to cat in user’s reference manual UX:cat:001

2. When the environment variable MSGVERB is set as follows:

MSGVERB=severity:text:action

and the Example 1 is used, the fmtmsg subroutine produces:

ERROR: illegal option

TO FIX: refer to cat in user’s reference manual UX:cat:001

Related Information

The printf (“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on

page 1079) subroutine.

fnmatch Subroutine

Purpose

Matches file name patterns.

Base Operating System (BOS) Runtime Services (A-P) 279

Library

Standard C Library (libc. a)

Syntax

#include <fnmatch.h>

int fnmatch (Pattern, String, Flags);

int Flags;

const char *Pattern, *String;

Description

The fnmatch subroutine checks the string specified by the String parameter to see if it matches the

pattern specified by the Pattern parameter.

The fnmatch subroutine can be used by an application or command that needs to read a dictionary and

apply a pattern against each entry; the find command is an example of this. It can also be used by the

pax command to process its Pattern variables, or by applications that need to match strings in a similar

manner.

Parameters

 Pattern Contains the pattern to which the String parameter is to be compared. The Pattern parameter

can include the following special characters:

* (asterisk)

Matches zero, one, or more characters.

? (question mark)

Matches any single character, but will not match 0 (zero) characters.

[] (brackets)

Matches any one of the characters enclosed within the brackets. If a pair of characters

separated by a dash are contained within the brackets, the pattern matches any

character that lexically falls between the two characters in the current locale.

String Contains the string to be compared against the Pattern parameter.

Flags Contains a bit flag specifying the configurable attributes of the comparison to be performed by

the fnmatch subroutine.

The Flags parameter modifies the interpretation of the Pattern and String parameters. It is the

bitwise inclusive OR of zero or more of the following flags (defined in the fnmatch.h file):

FNM_PATHNAME

Indicates the / (slash) in the String parameter matches a / in the Pattern parameter.

FNM_PERIOD

Indicates a leading period in the String parameter matches a period in the Pattern

parameter.

FNM_NOESCAPE

Enables quoting of special characters using the \ (backslash).

FNM_IGNORECASE

Ignores uppercase and lowercase when matching alphabetic characters (available only

in AIX 5.1 or later).

If the FNM_ PATHNAME flag is set in the Flags parameter, a / (slash) in the String parameter is explicitly

matched by a / in the Pattern parameter. It is not matched by either the * (asterisk) or ? (question-mark)

special characters, nor by a bracket expression. If the FNM_PATHNAME flag is not set, the / is treated as

an ordinary character.

280 Technical Reference, Volume 1: Base Operating System and Extensions

If the FNM_PERIOD flag is set in the Flags parameter, then a leading period in the String parameter only

matches a period in the Pattern parameter; it is not matched by either the asterisk or question-mark

special characters, nor by a bracket expression. The setting of the FNM_PATHNAME flag determines a

period to be leading, according to the following rules:

v If the FNM_PATHNAME flag is set, a . (period) is leading only if it is the first character in the String

parameter or if it immediately follows a /.

v If the FNM_PATHNAME flag is not set, a . (period) is leading only if it is the first character of the String

parameter. If FNM_PERIOD is not set, no special restrictions are placed on matching a period.

If the FNM_NOESCAPE flag is not set in the Flags parameter, a \ (backslash) character in the Pattern

parameter, followed by any other character, will match that second character in the String parameter. For

example, \\ will match a backslash in the String parameter. If the FNM_NOESCAPE flag is set, a \

(backslash) will be treated as an ordinary character.

Return Values

If the value in the String parameter matches the pattern specified by the Pattern parameter, the fnmatch

subroutine returns 0. If there is no match, the fnmatch subroutine returns the FNM_NOMATCH constant,

which is defined in the fnmatch.h file. If an error occurs, the fnmatch subroutine returns a nonzero value.

Files

 /usr/include/fnmatch.h Contains system-defined flags and constants.

Related Information

The glob (“glob Subroutine” on page 472) subroutine, globfree (“globfree Subroutine” on page 475)

subroutine, regcomp subroutine, regfree subroutine, regerror subroutine, regexec subroutine.

The find command, pax command.

Files, Directories, and File Systems for Programmers and Understanding Internationalized Regular

Expression Subroutines Ln AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs

fopen, fopen64, freopen, freopen64 or fdopen Subroutine

Purpose

Opens a stream.

Library

Standard C Library (libc.a)

Syntax

#include <stdio.h>

FILE *fopen (Path, Type)

const char *Path, *Type;

FILE *fopen64 (Path, Type)

char *Path, *Type;

FILE *freopen (Path, Type, Stream)

const char *Path, *Type;

Base Operating System (BOS) Runtime Services (A-P) 281

FILE *Stream;

FILE *freopen64 (Path, Type, Stream)

char *Path, *Type;

FILE *Stream;

FILE *fdopen (FileDescriptor, Type)

int FileDescriptor;

const char *Type;

Description

The fopen and fopen64 subroutines open the file named by the Path parameter and associate a stream

with it and return a pointer to the FILE structure of this stream.

When you open a file for update, you can perform both input and output operations on the resulting

stream. However, an output operation cannot be directly followed by an input operation without an

intervening fflush subroutine call or a file positioning operation (fseek, fseeko, fseeko64, fsetpos,

fsetpos64 or rewind subroutine). Also, an input operation cannot be directly followed by an output

operation without an intervening flush or file positioning operation, unless the input operation encounters

the end of the file.

When you open a file for appending (that is, when the Type parameter is set to a), it is impossible to

overwrite information already in the file.

If two separate processes open the same file for append, each process can write freely to the file without

destroying the output being written by the other. The output from the two processes is intermixed in the

order in which it is written to the file.

Note: If the data is buffered, it is not actually written until it is flushed.

The freopen and freopen64 subroutines first attempt to flush the stream and close any file descriptor

associated with the Stream parameter. Failure to flush the stream or close the file descriptor is ignored.

The freopen and freopen64 subroutines substitute the named file in place of the open stream. The

original stream is closed regardless of whether the subsequent open succeeds. The freopen and

freopen64 subroutines returns a pointer to the FILE structure associated with the Stream parameter. The

freopen and freopen64 subroutines is typically used to attach the pre-opened streams associated with

standard input (stdin), standard output (stdout), and standard error (stderr) streams to other files.

The fdopen subroutine associates a stream with a file descriptor obtained from an openx subroutine, dup

subroutine, creat subroutine, or pipe subroutine. These subroutines open files but do not return pointers to

FILE structures. Many of the standard I/O package subroutines require pointers to FILE structures.

The Type parameter for the fdopen subroutine specifies the mode of the stream, such as r to open a file

for reading, or a to open a file for appending (writing at the end of the file). The mode value of the Type

parameter specified with the fdopen subroutine must agree with the mode of the file specified when the

file was originally opened or created.

Note: Using the fdopen subroutine with a file descriptor obtained from a call to the shm_open subroutine

must be avoided and might result in an error on the next fread, fwrite or fflush call.

The largest value that can be represented correctly in an object of type off_t will be established as the

offset maximum in the open file description.

282 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 Path Points to a character string that contains the name of the file to be opened.

Type Points to a character string that has one of the following values:

r Opens a text file for reading.

w Creates a new text file for writing, or opens and truncates a file to 0 length.

a Appends (opens a text file for writing at the end of the file, or creates a file for

writing).

rb Opens a binary file for reading.

wb Creates a binary file for writing, or opens and truncates a file to 0.

ab Appends (opens a binary file for writing at the end of the file, or creates a file for

writing).

r+ Opens a file for update (reading and writing).

w+ Truncates or creates a file for update.

a+ Appends (opens a text file for writing at end of file, or creates a file for writing).

r+b , rb+

Opens a binary file for update (reading and writing).

w+b , wb+

Creates a binary file for update, or opens and truncates a file to 0 length.

a+b , ab+

Appends (opens a binary file for update, writing at the end of the file, or creates

a file for writing).

Note: The operating system does not distinguish between text and binary files. The b

value in the Type parameter value is ignored.

Stream Specifies the input stream.

FileDescriptor Specifies a valid open file descriptor.

Return Values

If the fdopen, fopen, fopen64, freopen or freopen64 subroutine is unsuccessful, a null pointer is

returned and the errno global variable is set to indicate the error.

Error Codes

The fopen, fopen64, freopen and freopen64 subroutines are unsuccessful if the following is true:

 EACCES Search permission is denied on a component of the path prefix, the file exists and the

permissions specified by the mode are denied, or the file does not exist and write permission

is denied for the parent directory of the file to be created.

ELOOP Too many symbolic links were encountered in resolving path.

EINTR A signal was received during the process.

EISDIR The named file is a directory and the process does not have write access to it.

ENAMETOOLONG The length of the filename exceeds PATH_MAX or a pathname component is longer than

NAME_MAX.

ENFILE The maximum number of files allowed are currently open.

ENOENT The named file does not exist or the File Descriptor parameter points to an empty string.

ENOSPC The file is not yet created and the directory or file system to contain the new file cannot be

expanded.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The named file is a character- or block-special file, and the device associated with this

special file does not exist.

Base Operating System (BOS) Runtime Services (A-P) 283

EOVERFLOW The named file is a regular file and the size of the file cannot be represented correctly in an

object of type off_t.

EROFS The named file resides on a read-only file system and does not have write access.

ETXTBSY The file is a pure-procedure (shared-text) file that is being executed and the process does not

have write access.

The fdopen, fopen, fopen64, freopen and freopen64 subroutines are unsuccessful if the following is

true:

 EINVAL The value of the Type argument is not valid.

EINVAL The value of the mode argument is not valid.

EMFILE FOPEN_MAX streams are currently open in the calling process.

EMFILE STREAM_MAX streams are currently open in the calling process.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result whose length

exceeds PATH_MAX.

ENOMEM Insufficient storage space is available.

The freopen and fopen subroutines are unsuccessful if the following is true:

 EOVERFLOW The named file is a size larger than 2 Gigabytes.

The fdopen subroutine is unsuccessful if the following is true:

 EBADF The value of the File Descriptor parameter is not valid.

POSIX

 w Truncates to 0 length or creates text file for writing.

w+ Truncates to 0 length or creates text file for update.

a Opens or creates text file for writing at end of file.

a+ Opens or creates text file for update, writing at end of file.

SAA

At least eight streams, including three standard text streams, can open simultaneously. Both binary and

text modes are supported.

Related Information

The fclose or fflush (“fclose or fflush Subroutine” on page 249) subroutine, fseek, fseeko, fseeko64,

rewind, ftell, ftello, ftello64, fgetpos, fgetpos64 or fsetpos (“fseek, fseeko, fseeko64, rewind, ftell, ftello,

ftello64, fgetpos, fgetpos64, fsetpos, or fsetpos64 Subroutine” on page 311) subroutine, open, open64,

openx, or creat (“open, openx, open64, creat, or creat64 Subroutine” on page 894) subroutine, setbuf,

setvbuf, setbuffer, or setlinebuf subroutine.

The Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

fork, f_fork, or vfork Subroutine

Purpose

Creates a new process.

284 Technical Reference, Volume 1: Base Operating System and Extensions

Libraries

fork, f_fork, and vfork: Standard C Library (libc.a)

Syntax

#include <unistd.h>

pid_t fork(void)

pid_t f_fork(void)

int vfork(void)

Description

The fork subroutine creates a new process. The new process (child process) is an almost exact copy of

the calling process (parent process). The child process inherits the following attributes from the parent

process:

v Environment

v Close-on-exec flags (described in the exec (“exec: execl, execle, execlp, execv, execve, execvp, or

exect Subroutine” on page 232) subroutine)

v Signal handling settings (such as the SIG_DFL value, the SIG_IGN value, and the Function Address

parameter)

v Set user ID mode bit

v Set group ID mode bit

v Profiling on and off status

v Nice value

v All attached shared libraries

v Process group ID

v tty group ID (described in the exit (“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239),

atexit, or _exit subroutine, signal subroutine, and raise subroutine)

v Current directory

v Root directory

v File-mode creation mask (described in the umask subroutine)

v File size limit (described in the ulimit subroutine)

v Attached shared memory segments (described in the shmat subroutine)

v Attached mapped file segments (described in the shmat subroutine)

v Debugger process ID and multiprocess flag if the parent process has multiprocess debugging enabled

(described in the ptrace (“ptrace, ptracex, ptrace64 Subroutine” on page 1215) subroutine).

The child process differs from the parent process in the following ways:

v The child process has only one user thread; it is the one that called the fork subroutine.

v The child process has a unique process ID.

v The child process ID does not match any active process group ID.

v The child process has a different parent process ID.

v The child process has its own copy of the file descriptors for the parent process. However, each file

descriptor of the child process shares a common file pointer with the corresponding file descriptor of the

parent process.

v All semadj values are cleared. For information about semadj values, see the semop subroutine.

v Process locks, text locks, and data locks are not inherited by the child process. For information about

locks, see the plock (“plock Subroutine” on page 982) subroutine.

Base Operating System (BOS) Runtime Services (A-P) 285

v If multiprocess debugging is turned on, the trace flags are inherited from the parent; otherwise, the

trace flags are reset. For information about request 0, see the ptrace (“ptrace, ptracex, ptrace64

Subroutine” on page 1215) subroutine.

v The child process utime, stime, cutime, and cstime subroutines are set to 0. (For more information,

see the getrusage (“getrusage, getrusage64, times, or vtimes Subroutine” on page 419), times, and

vtimes subroutines.)

v Any pending alarms are cleared in the child process. (For more information, see the incinterval

(“getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer or setitimer Subroutine” on

page 378), setitimer (“getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer or

setitimer Subroutine” on page 378), and alarm (“getinterval, incinterval, absinterval, resinc, resabs,

alarm, ualarm, getitimer or setitimer Subroutine” on page 378) subroutines.)

v The set of signals pending for the child process is initialized to the empty set.

v The child process can have its own copy of the message catalogue for the parent process.

v The set of signals pending for the child process is initialized as an empty set.

Attention: If you are using the fork or vfork subroutines with an Enhanced X-Windows, X Toolkit, or

Motif application, open a separate display connection (socket) for the forked process. If the child process

uses the same display connection as the parent, the X Server will not be able to interpret the resulting

data.

The f_fork subroutine is similar to fork, except for:

v It is required that the child process calls one of the exec functions immediately after it is created. Since

the fork handlers are never called, the application data, mutexes and the locks are all undefined in the

child process.

The vfork subroutine is supported as a compatibility interface for older Berkeley Software Distribution

(BSD) system programs and can be used by compiling with the Berkeley Compatibility Library (libbsd.a).

In the Version 4 of the operating system, the parent process does not have to wait until the child either

exits or executes, as it does in BSD systems. The child process is given a new address space, as in the

fork subroutine. The child process does not share any parent address space.

 Attention: When using the fork or vfork subroutines with an Enhanced X-Windows, X Toolkit, or Motif

application, a separate display connection (socket) should be opened for the forked process. The child

process should never use the same display connection as the parent. Display connections are embodied

with sockets, and sockets are inherited by the child process. Any attempt to have multiple processes

writing to the same display connection results in the random interleaving of X protocol packets at the word

level. The resulting data written to the socket will not be valid or undefined X protocol packets, and the X

Server will not be able to interpret it.

 Attention: Although the fork and vfork subroutine may be used with Graphics Library applications, the

child process must not make any additional Graphics Library subroutine calls. The child application inherits

some, but not all of the graphics hardware resources of the parent. Drawing by the child process may

hang the graphics adapter, the Enhanced X Server, or may cause unpredictable results and place the

system into an unpredictable state.

For additional information, see the /usr/lpp/GL/README file.

Return Values

Upon successful completion, the fork subroutine returns a value of 0 to the child process and returns the

process ID of the child process to the parent process. Otherwise, a value of -1 is returned to the parent

process, no child process is created, and the errno global variable is set to indicate the error.

286 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The fork subroutine is unsuccessful if one or more of the following are true:

 EAGAIN Exceeds the limit on the total number of processes running either systemwide or by a single user,

or the system does not have the resources necessary to create another process.

ENOMEM Not enough space exists for this process.

EPROCLIM If WLM is running, the limit on the number of processes or threads in the class may have been

met.

Related Information

The “getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer or setitimer Subroutine” on

page 378, “bindprocessor Subroutine” on page 118, “exec: execl, execle, execlp, execv, execve, execvp,

or exect Subroutine” on page 232, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239,

“getrusage, getrusage64, times, or vtimes Subroutine” on page 419, “getinterval, incinterval, absinterval,

resinc, resabs, alarm, ualarm, getitimer or setitimer Subroutine” on page 378, “getpriority, setpriority, or

nice Subroutine” on page 403, “plock Subroutine” on page 982, “pthread_atfork Subroutine” on page 1119,

“ptrace, ptracex, ptrace64 Subroutine” on page 1215, raise subroutine, semop subroutine, “getinterval,

incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer or setitimer Subroutine” on page 378,

shmat subroutine, setpriority or getpriority (“getpriority, setpriority, or nice Subroutine” on page 403)

subroutine, sigaction, sigvec, or signal subroutine, ulimit subroutine, umask subroutine, wait, waitpid,

or wait3 subroutine.

The “posix_spawn or posix_spawnp Subroutine” on page 1060.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Process Duplication and Termination in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging ProgramsLK provides more information about forking a multi-threaded process.

fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all,

or fp_disable Subroutine

Purpose

These subroutines allow operations on the floating-point trap control.

Library

Standard C Library (libc.a)

Syntax

#include <fptrap.h>

int fp_any_enable()

int fp_is_enabled(Mask)

fptrap_t Mask;

void fp_enable_all()

void fp_enable(Mask)

fptrap_t Mask;

void fp_disable_all()

void fp_disable(Mask)

fptrap_t Mask;

Base Operating System (BOS) Runtime Services (A-P) 287

Description

Floating point traps must be enabled before traps can be generated. These subroutines aid in

manipulating floating-point traps and identifying the trap state and type.

In order to take traps on floating point exceptions, the fp_trap subroutine must first be called to put the

process in serialized state, and the fp_enable subroutine or fp_enable_all subroutine must be called to

enable the appropriate traps.

The header file fptrap.h defines the following names for the individual bits in the floating-point trap control:

 TRP_INVALID Invalid Operation Summary

TRP_DIV_BY_ZERO Divide by Zero

TRP_OVERFLOW Overflow

TRP_UNDERFLOW Underflow

TRP_INEXACT Inexact Result

Parameters

 Mask A 32-bit pattern that identifies floating-point traps.

Return Values

The fp_any_enable subroutine returns 1 if any floating-point traps are enabled. Otherwise, 0 is returned.

The fp_is_enabled subroutine returns 1 if the floating-point traps specified by the Mask parameter are

enabled. Otherwise, 0 is returned.

The fp_enable_all subroutine enables all floating-point traps.

The fp_enable subroutine enables all floating-point traps specified by the Mask parameter.

The fp_disable_all subroutine disables all floating-point traps.

The fp_disable subroutine disables all floating-point traps specified by the Mask parameter.

Related Information

The fp_clr_flag, fp_set_flag, fp_read_flag, fp_swap_flag (“fp_clr_flag, fp_set_flag, fp_read_flag, or

fp_swap_flag Subroutine” on page 289)subroutine, fp_invalid_op, fp_divbyzero, fp_overflow,

fp_underflow, fp_inexact, fp_any_xcp (“fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow,

fp_inexact, fp_any_xcp Subroutine” on page 293) subroutines, fp_iop_snan, fp_iop_infsinf,

fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr, fp_iop_invcmp (“fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf,

fp_iop_zrdzr, fp_iop_infmzr, fp_iop_invcmp, fp_iop_sqrt, fp_iop_convert, or fp_iop_vxsoft Subroutines” on

page 294) subroutines, fp_read_rnd, and fp_swap_rnd (“fp_read_rnd or fp_swap_rnd Subroutine” on

page 296) subroutines, fp_trap (“fp_trap Subroutine” on page 299) subroutine.

Floating-Point Processor in Assembler Language Reference.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

288 Technical Reference, Volume 1: Base Operating System and Extensions

fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag Subroutine

Purpose

Allows operations on the floating-point exception flags.

Library

Standard C Library (libc.a)

Syntax

#include <float.h>

#include <fpxcp.h>

void fp_clr_flag(Mask)

fpflag_t Mask;

void fp_set_flag(Mask)

fpflag_t Mask;

fpflag_t fp_read_flag()

fpflag_t fp_swap_flag(Mask)

fpflag_t Mask;

Description

These subroutines aid in determining both when an exception has occurred and the exception type. These

subroutines can be called explicitly around blocks of code that may cause a floating-point exception.

According to the IEEE Standard for Binary Floating-Point Arithmetic, the following types of floating-point

operations must be signaled when detected in a floating-point operation:

v Invalid operation

v Division by zero

v Overflow

v Underflow

v Inexact

An invalid operation occurs when the result cannot be represented (for example, a sqrt operation on a

number less than 0).

The IEEE Standard for Binary Floating-Point Arithmetic states: ″For each type of exception, the

implementation shall provide a status flag that shall be set on any occurrence of the corresponding

exception when no corresponding trap occurs. It shall be reset only at the user’s request. The user shall

be able to test and to alter the status flags individually, and should further be able to save and restore all

five at one time.″

Floating-point operations can set flags in the floating-point exception status but cannot clear them. Users

can clear a flag in the floating-point exception status using an explicit software action such as the

fp_swap_flag (0) subroutine.

The fpxcp.h file defines the following names for the flags indicating floating-point exception status:

 FP_INVALID Invalid operation summary

FP_OVERFLOW Overflow

FP_UNDERFLOW Underflow

FP_DIV_BY_ZERO Division by 0

FP_INEXACT Inexact result

Base Operating System (BOS) Runtime Services (A-P) 289

In addition to these flags, the operating system supports additional information about the cause of an

invalid operation exception. The following flags also indicate floating-point exception status and defined in

the fpxcp.h file. The flag number for each exception type varies, but the mnemonics are the same for all

ports. The following invalid operation detail flags are not required for conformance to the IEEE

floating-point exceptions standard:

 FP_INV_SNAN Signaling NaN

FP_INV_ISI INF - INF

FP_INV_IDI INF / INF

FP_INV_ZDZ 0 / 0

FP_INV_IMZ INF x 0

FP_INV_CMP Unordered compare

FP_INV_SQRT Square root of a negative number

FP_INV_CVI Conversion to integer error

FP_INV_VXSOFT Software request

Parameters

 Mask A 32-bit pattern that identifies floating-point exception flags.

Return Values

The fp_clr_flag subroutine resets the exception status flags defined by the Mask parameter to 0 (false).

The remaining flags in the exception status are unchanged.

The fp_set_flag subroutine sets the exception status flags defined by the Mask parameter to 1 (true). The

remaining flags in the exception status are unchanged.

The fp_read_flag subroutine returns the current floating-point exception status. The flags in the returned

exception status can be tested using the flag definitions above. You can test individual flags or sets of

flags.

The fp_swap_flag subroutine writes the Mask parameter into the floating-point status and returns the

floating-point exception status from before the write.

Users set or reset multiple exception flags using fp_set_flag and fp_clr_flag by ANDing or ORing

definitions for individual flags. For example, the following resets both the overflow and inexact flags:

fp_clr_flag (FP_OVERFLOW | FP_INEXACT)

Related Information

The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable, or fp_disable_all

(“fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on

page 287) subroutine, fp_any_xcp, fp_divbyzero, fp_inexact, fp_invalid_op, fp_overflow,

fp_underflow (“fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp Subroutine”

on page 293) subroutines, fp_iop_infdinf, fp_iop_infmzr, fp_iop_infsinf, fp_iop_invcmp, fp_iop_snan,

or fp_iop_zrdzr (“fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr, fp_iop_invcmp,

fp_iop_sqrt, fp_iop_convert, or fp_iop_vxsoft Subroutines” on page 294) subroutines, fp_read_rnd or

fp_swap_rnd (“fp_read_rnd or fp_swap_rnd Subroutine” on page 296) subroutine.

Floating-Point Exceptions Overview and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

290 Technical Reference, Volume 1: Base Operating System and Extensions

fp_cpusync Subroutine

Purpose

Queries or changes the floating-point exception enable (FE) bit in the Machine Status register (MSR).

Note: This subroutine has been replaced by the fp_trapstate (“fp_trapstate Subroutine” on page 301)

subroutine. The fp_cpusync subroutine is supported for compatibility, but the fp_trapstate

subroutine should be used for development.

Library

Standard C Library (libc.a)

Syntax

#include <fptrap.h>

int fp_cpusync (Flag);

int Flag;

Description

The fp_cpusync subroutine is a service routine used to query, set, or reset the Machine Status Register

(MSR) floating-point exception enable (FE) bit. The MSR FE bit determines whether a processor runs in

pipeline or serial mode. Floating-point traps can only be generated by the hardware when the processor is

in synchronous mode.

The fp_cpusync subroutine changes only the MSR FE bit. It is a service routine for use in developing

custom floating-point exception-handling software. If you are using the fp_enable or fp_enable_all

(“fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on

page 287) subroutine or the fp_sh_trap_info or fp_sh_set_stat (“fp_sh_info, fp_sh_trap_info, or

fp_sh_set_stat Subroutine” on page 297) subroutine, you must use the fp_trap (“fp_trap Subroutine” on

page 299) subroutine to place the process in serial mode.

Parameters

 Flag Specifies to query or modify the MSR FE bit:

FP_SYNC_OFF

Sets the FE bit in the MSR to Off, which disables floating-point exception processing

immediately.

FP_SYNC_ON

Sets the FE bit in the MSR to On, which enables floating-exception processing for the

next floating-point operation.

FP_SYNC_QUERY

Returns the current state of the process (either FP_SYNC_ON or FP_SYNC_OFF)

without modifying it.

If called with any other value, the fp_cpusync subroutine returns FP_SYNC_ERROR.

Return Values

If called with the FP_SYNC_OFF or FP_SYNC_ON flag, the fp_cpusync subroutine returns a value

indicating which flag was in the previous state of the process.

Base Operating System (BOS) Runtime Services (A-P) 291

If called with the FP_SYNC _QUERY flag, the fp_cpusync subroutine returns a value indicating the

current state of the process, either the FP_SYNC_OFF or FP_SYNC_ON flag.

Error Codes

If the fp_cpusync subroutine is called with an invalid parameter, the subroutine returns

FP_SYNC_ERROR. No other errors are reported.

Related Information

The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable

(“fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on

page 287) subroutine, fp_clr_flag, fpset_flag, fp_read_flag, or fp_swap_flag (“fp_clr_flag, fp_set_flag,

fp_read_flag, or fp_swap_flag Subroutine” on page 289) subroutine, sigaction, sigvec, or signal

subroutine.

Floating-Point Processor in Assembler Language Reference.

Floating-Point Exceptions in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

fp_flush_imprecise Subroutine

Purpose

Forces imprecise signal delivery.

Library

Standard C Library (libc.a)

Syntax

#include <fptrap.h>

void fp_flush_imprecise ()

Description

The fp_flush_imprecise subroutine forces any imprecise interrupts to be reported. To ensure that no

signals are lost when a program voluntarily exits, use this subroutine in combination with the atexit (“exit,

atexit, unatexit, _exit, or _Exit Subroutine” on page 239) subroutine.

Example

The following example illustrates using the atexit subroutine to run the fp_flush_imprecise subroutine

before a program exits:

#include <fptrap.h>

#include <stdlib.h>

#include <stdio.h>

 if (0!=atexit(fp_flush_imprecise))

 puts ("Failure in atexit(fp_flush_imprecise) ");

Related Information

The atexit (“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239) subroutine, fp_any_enable,

fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable (“fp_any_enable, fp_is_enabled,

fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on page 287) subroutine, fp_clr_flag,

fp_read_flag, fp_swap_flag, or fpset_flag (“fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag

Subroutine” on page 289) subroutine, fp_cpusync (“fp_cpusync Subroutine” on page 291) subroutine,

fp_trap (“fp_trap Subroutine” on page 299) subroutine, sigaction subroutine.

292 Technical Reference, Volume 1: Base Operating System and Extensions

Floating-Point Exceptions in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact,

fp_any_xcp Subroutine

Purpose

Tests to see if a floating-point exception has occurred.

Library

Standard C Library (libc.a)

Syntax

#include <float.h>

#include <fpxcp.h>

int

fp_invalid_op()

int fp_divbyzero()

int fp_overflow()

int fp_underflow()

int

fp_inexact()

int fp_any_xcp()

Description

These subroutines aid in determining when an exception has occurred and the exception type. These

subroutines can be called explicitly after blocks of code that may cause a floating-point exception.

Return Values

The fp_invalid_op subroutine returns a value of 1 if a floating-point invalid-operation exception status flag

is set. Otherwise, a value of 0 is returned.

The fp_divbyzero subroutine returns a value of 1 if a floating-point divide-by-zero exception status flag is

set. Otherwise, a value of 0 is returned.

The fp_overflow subroutine returns a value of 1 if a floating-point overflow exception status flag is set.

Otherwise, a value of 0 is returned.

The fp_underflow subroutine returns a value of 1 if a floating-point underflow exception status flag is set.

Otherwise, a value of 0 is returned.

The fp_inexact subroutine returns a value of 1 if a floating-point inexact exception status flag is set.

Otherwise, a value of 0 is returned.

The fp_any_xcp subroutine returns a value of 1 if a floating-point invalid operation, divide-by-zero,

overflow, underflow, or inexact exception status flag is set. Otherwise, a value of 0 is returned.

Related Information

The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable fp_disable_all, or fp_disable

(“fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on

page 287) subroutine, fp_clr_flag, fp_read_flag, fp_set_flag, or fp_swap_flag (“fp_clr_flag, fp_set_flag,

Base Operating System (BOS) Runtime Services (A-P) 293

fp_read_flag, or fp_swap_flag Subroutine” on page 289) subroutine, fp_read_rnd or fp_swap_rnd

(“fp_read_rnd or fp_swap_rnd Subroutine” on page 296) subroutine.

Floating-Point Processor in Assembler Language Reference.

Floating-Point Exceptions and Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr,

fp_iop_invcmp, fp_iop_sqrt, fp_iop_convert, or fp_iop_vxsoft

Subroutines

Purpose

Tests to see if a floating-point exception has occurred.

Library

Standard C Library (libc.a)

Syntax

#include <float.h>

#include <fpxcp.h>

int fp_iop_snan()

int fp_iop_infsinf()

int

fp_iop_infdinf()

int fp_iop_zrdzr()

int

fp_iop_infmzr()

int fp_iop_invcmp()

int

fp_iop_sqrt()

int fp_iop_convert()

int

fp_iop_vxsoft ();

Description

These subroutines aid in determining when an exception has occurred and the exception type. These

subroutines can be called explicitly after blocks of code that may cause a floating-point exception.

Return Values

The fp_iop_snan subroutine returns a value of 1 if a floating-point invalid-operation exception status flag

is set due to a signaling NaN (NaNS) flag. Otherwise, a value of 0 is returned.

The fp_iop_infsinf subroutine returns a value of 1 if a floating-point invalid-operation exception status flag

is set due to an INF-INF flag. Otherwise, a value of 0 is returned.

The fp_iop_infdinf subroutine returns a value of 1 if a floating-point invalid-operation exception status flag

is set due to an INF/INF flag. Otherwise, a value of 0 is returned.

The fp_iop_zrdzr subroutine returns a value of 1 if a floating-point invalid-operation exception status flag

is set due to a 0.0/0.0 flag. Otherwise, a value of 0 is returned.

294 Technical Reference, Volume 1: Base Operating System and Extensions

The fp_iop_infmzr subroutine returns a value of 1 if a floating-point invalid-operation exception status flag

is set due to an INF*0.0 flag. Otherwise, a value of 0 is returned.

The fp_iop_invcmp subroutine returns a value of 1 if a floating-point invalid-operation exception status

flag is set due to a compare involving a NaN. Otherwise, a value of 0 is returned.

The fp_iop_sqrt subroutine returns a value of 1 if a floating-point invalid-operation exception status flag is

set due to the calculation of a square root of a negative number. Otherwise, a value of 0 is returned.

The fp_iop_convert subroutine returns a value of 1 if a floating-point invalid-operation exception status

flag is set due to the conversion of a floating-point number to an integer, where the floating-point number

was a NaN, an INF, or was outside the range of the integer. Otherwise, a value of 0 is returned.

The fp_iop_vxsoft subroutine returns a value of 1 if the VXSOFT detail bit is on. Otherwise, a value of 0

is returned.

fp_raise_xcp Subroutine

Purpose

Generates a floating-point exception.

Library

Standard C Library (libc.a)

Syntax

#include <fpxcp.h>

int fp_raise_xcp(mask)

fpflag_t mask;

Description

The fp_raise_xcp subroutine causes any floating-point exceptions defined by the mask parameter to be

raised immediately. If the exceptions defined by the mask parameter are enabled and the program is

running in serial mode, the signal for floating-point exceptions, SIGFPE, is raised.

If more than one exception is included in the mask variable, the exceptions are raised in the following

order:

1. Invalid

2. Dividebyzero

3. Underflow

4. Overflow

5. Inexact

Thus, if the user exception handler does not disable further exceptions, one call to the fp_raise_xcp

subroutine can cause the exception handler to be entered many times.

Parameters

 mask Specifies a 32-bit pattern that identifies floating-point traps.

Base Operating System (BOS) Runtime Services (A-P) 295

Return Values

The fp_raise_xcp subroutine returns 0 for normal completion and returns a nonzero value if an error

occurs.

Related Information

The fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable

(“fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on

page 287) subroutine, fp_clr_flag, fp_read_flag, fp_swap_flag, or fpset_flag (“fp_clr_flag, fp_set_flag,

fp_read_flag, or fp_swap_flag Subroutine” on page 289) subroutine, fp_cpusync (“fp_cpusync Subroutine”

on page 291) subroutine, fp_trap (“fp_trap Subroutine” on page 299) subroutine, sigaction subroutine.

fp_read_rnd or fp_swap_rnd Subroutine

Purpose

Read and set the IEEE floating-point rounding mode.

Library

Standard C Library (libc.a)

Syntax

#include <float.h>

fprnd_t fp_read_rnd()

fprnd_t fp_swap_rnd(RoundMode)

fprnd_t RoundMode;

Description

The fp_read_rnd subroutine returns the current rounding mode. The fp_swap_rnd subroutine changes

the rounding mode to the RoundMode parameter and returns the value of the rounding mode before the

change.

Floating-point rounding occurs when the infinitely precise result of a floating-point operation cannot be

represented exactly in the destination floating-point format (such as double-precision format).

The IEEE Standard for Binary Floating-Point Arithmetic allows floating-point numbers to be rounded in four

different ways: round toward zero, round to nearest, round toward +INF, and round toward -INF. Once a

rounding mode is selected it affects all subsequent floating-point operations until another rounding mode is

selected.

Note: The default floating-point rounding mode is round to nearest. All C main programs begin with the

rounding mode set to round to nearest.

The encodings of the rounding modes are those defined in the ANSI C Standard. The float.h file contains

definitions for the rounding modes. Below is the float.h definition, the ANSI C Standard value, and a

description of each rounding mode.

 float.h Definition ANSI Value Description

FP_RND_RZ 0 Round toward 0

FP_RND_RN 1 Round to nearest

FP_RND_RP 2 Round toward +INF

FP_RND_RM 3 Round toward -INF

296 Technical Reference, Volume 1: Base Operating System and Extensions

The fp_swap_rnd subroutine can be used to swap rounding modes by saving the return value from

fp_swap_rnd(RoundMode). This can be useful in functions that need to force a specific rounding mode for

use during the function but wish to restore the caller’s rounding mode on exit. Below is a code fragment

that accomplishes this action:

save_mode = fp_swap_rnd (new_mode);

....desired code using new_mode

(void) fp_swap_rnd(save_mode); /*restore caller’s mode*/

Parameters

 RoundMode Specifies one of the following modes: FP_RND_RZ, FP_RND_RN, FP_RND_RP, or

FP_RND_RM.

Related Information

The floor, ceil, nearest, trunc, rint, itrunc, uitrunc, fmod, or fabs (“floor, floorf, floorl, nearest, trunc,

itrunc, or uitrunc Subroutine” on page 271) subroutine, fp_any_enable, fp_is_enabled, fp_enable_all,

fp_enable,fp_disable_all, or fp_disable (“fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable,

fp_disable_all, or fp_disable Subroutine” on page 287) subroutine, fp_clr_flag, fp_read_flag, fp_set_flag,

or fp_swap_flag (“fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag Subroutine” on page 289)

subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutine

Purpose

From within a floating-point signal handler, determines any floating-point exception that caused the trap in

the process and changes the state of the Floating-Point Status and Control register (FPSCR) in the user

process.

Library

Standard C Library (libc.a)

Syntax

#include <fpxcp.h>

#include <fptrap.h>

#include <signal.h>

void fp_sh_info(scp, fcp, struct_size)

struct sigcontext *scp;

struct fp_sh_info *fcp;

size_t struct_size;

void fp_sh_trap_info(scp, fcp)

struct sigcontext *scp;

struct fp_ctx *fcp;

void fp_sh_set_stat(scp, fpscr)

struct sigcontext *scp;

fpstat_t fpscr;

Base Operating System (BOS) Runtime Services (A-P) 297

Description

These subroutines are for use within a user-written signal handler. They return information about the

process that was running at the time the signal occurred, and they update the Floating-Point Status and

Control register for the process.

Note: The fp_sh_trap_info subroutine is maintained for compatibility only. It has been replaced by the

fp_sh_info subroutine, which should be used for development.

These subroutines operate only on the state of the user process that was running at the time the signal

was delivered. They read and write the sigcontext structure. They do not change the state of the signal

handler process itself.

The state of the signal handler process can be modified by the fp_any_enable, fp_is_enabled,

fp_enable_all, fp_enable, fp_disable_all, or fp_disable subroutine.

fp_sh_info

The fp_sh_info subroutine returns information about the process that caused the trap by means of a

floating-point context (fp_sh_info) structure. This structure contains the following information:

typedef struct fp_sh_info {

fpstat_t fpscr;

fpflag_t trap;

short trap_mode;

char flags;

char extra;

} fp_sh_info_t;

The fields are:

 fpscr The Floating-Point Status and Control register (FPSCR) in the user process at the time the

interrupt occurred.

trap A mask indicating the trap or traps that caused the signal handler to be entered. This mask is the

logical OR operator of the enabled floating-point exceptions that occurred to cause the trap. This

mask can have up to two exceptions; if there are two, the INEXACT signal must be one of them.

If the mask is 0, the SIGFPE signal was raised not by a floating-point operation, but by the kill or

raise subroutine or the kill command.

trap_mode The trap mode in effect in the process at the time the signal handler was entered. The values

returned in the fp_sh_info.trap_mode file use the following argument definitions:

FP_TRAP_OFF

Trapping off

FP_TRAP_SYNC

Precise trapping on

FP_TRAP_IMP_REC

Recoverable imprecise trapping on

FP_TRAP_IMP

Non-recoverable imprecise trapping on

flags This field is interpreted as an array of bits and should be accessed with masks. The following

mask is defined:

FP_IAR_STAT

If the value of the bit at this mask is 1, the exception was precise and the IAR points to

the instruction that caused the exception. If the value bit at this mask is 0, the exception

was imprecise.

298 Technical Reference, Volume 1: Base Operating System and Extensions

fp_sh_trap_info

The fp_sh_trap_info subroutine is maintained for compatibility only. The fp_sh_trap_info subroutine

returns information about the process that caused the trap by means of a floating-point context (fp_ctx)

structure. This structure contains the following information:

fpstat_t fpscr;

fpflag_t trap;

The fields are:

 fpscr The Floating-Point Status and Control register (FPSCR) in the user process at the time the

interrupt occurred.

trap A mask indicating the trap or traps that caused the signal handler to be entered. This mask is the

logical OR operator of the enabled floating-point exceptions that occurred to cause the trap. This

mask can have up to two exceptions; if there are two, the INEXACT signal must be one of them. If

the mask is 0, the SIGFPE signal was raised not by a floating-point operation, but by the kill or

raise subroutine or the kill command.

fp_sh_set_stat

The fp_sh_set_stat subroutine updates the Floating-Point Status and Control register (FPSCR) in the

user process with the value in the fpscr field.

The signal handler must either clear the exception bit that caused the trap to occur or disable the trap to

prevent a recurrence. If the instruction generated more than one exception, and the signal handler clears

only one of these exceptions, a signal is raised for the remaining exception when the next floating-point

instruction is executed in the user process.

Parameters

 fcp Specifies a floating-point context structure.

scp Specifies a sigcontext structure for the interrupt.

struct_size Specifies the size of the fp_sh_info structure.

fpscr Specifies which Floating-Point Status and Control register to update.

Related Information

The fp_any_enable, fp_disable_all, fp_disable, fp_enable_all, fp_enable, or fp_is_enabled

(“fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on

page 287) subroutine, fp_clr_flag, fp_read_flag, fp_set_flag, or fp_swap_flag (“fp_clr_flag, fp_set_flag,

fp_read_flag, or fp_swap_flag Subroutine” on page 289) subroutine, fp_trap (“fp_trap Subroutine”)

subroutine.

Floating-Point Exceptions in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

fp_trap Subroutine

Purpose

Queries or changes the mode of the user process to allow floating-point exceptions to generate traps.

Library

Standard C Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 299

Syntax

#include <fptrap.h>

int fp_trap(flag)

int flag;

Description

The fp_trap subroutine queries and changes the mode of the user process to allow or disallow

floating-point exception trapping. Floating-point traps can only be generated when a process is executing

in a traps-enabled mode.

The default state is to execute in pipelined mode and not to generate floating-point traps.

Note: The fp_trap routines only change the execution state of the process. To generate floating-point

traps, you must also enable traps. Use the fp_enable (“fp_any_enable, fp_is_enabled,

fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on page 287) and fp_enable_all

subroutines to enable traps.

Before calling the fp_trap(FP_TRAP_SYNC) routine, previous floating-point operations can set to True

certain exception bits in the Floating-Point Status and Control register (FPSCR). Enabling these

Cexceptions and calling the fp_trap(FP_TRAP_SYNC) routine does not cause an immediate trap to occur.

That is, the operation of these traps is edge-sensitive, not level-sensitive.

The fp_trap subroutine does not clear the exception history. You can query this history by using any of the

following subroutines:

v fp_any_xcp

v fp_divbyzero

v fp_iop_convert

v fp_iop_infdinf

v fp_iop_infmzr

v fp_iop_infsinf

v fp_iop_invcmp

v fp_iop_snan

v fp_iop_sqrt

v fp_iop_vxsoft

v fp_iop_zrdzr

v fp_inexact

v fp_invalid_op

v fp_overflow

v fp_underflow

300 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 flag Specifies a query of or change in the mode of the user process:

FP_TRAP_OFF

Puts the user process into trapping-off mode and returns the previous mode of the process,

either FP_TRAP_SYNC, FP_TRAP_IMP, FP_TRAP_IMP_REC, or FP_TRAP_OFF.

FP_TRAP_QUERY

Returns the current mode of the user process.

FP_TRAP_SYNC

Puts the user process into precise trapping mode and returns the previous mode of the

process.

FP_TRAP_IMP

Puts the user process into non-recoverable imprecise trapping mode and returns the previous

mode.

FP_TRAP_IMP_REC

Puts the user process into recoverable imprecise trapping mode and returns the previous

mode.

FP_TRAP_FASTMODE

Puts the user process into the fastest trapping mode available on the hardware platform.

Note: Some hardware models do not support all modes. If an unsupported mode is requested, the

fp_trap subroutine returns FP_TRAP_UNIMPL.

Return Values

If called with the FP_TRAP_OFF, FP_TRAP_IMP, FP_TRAP_IMP_REC, or FP_TRAP_SYNC flag, the

fp_trap subroutine returns a value indicating which flag was in the previous mode of the process if the

hardware supports the requested mode. If the hardware does not support the requested mode, the fp_trap

subroutine returns FP_TRAP_UNIMPL.

If called with the FP_TRAP_QUERY flag, the fp_trap subroutine returns a value indicating the current

mode of the process, either the FP_TRAP_OFF, FP_TRAP_IMP, FP_TRAP_IMP_REC, or

FP_TRAP_SYNC flag.

If called with FP_TRAP_FASTMODE, the fp_trap subroutine sets the fastest mode available and returns

the mode selected.

Error Codes

If the fp_trap subroutine is called with an invalid parameter, the subroutine returns FP_TRAP_ERROR.

If the requested mode is not supported on the hardware platform, the subroutine returns

FP_TRAP_UNIMPL.

fp_trapstate Subroutine

Purpose

Queries or changes the trapping mode in the Machine Status register (MSR).

Note: This subroutine replaces the fp_cpusync (“fp_cpusync Subroutine” on page 291) subroutine. The

fp_cpusync subroutine is supported for compatibility, but the fp_trapstate subroutine should be

used for development.

Base Operating System (BOS) Runtime Services (A-P) 301

Library

Standard C Library (libc.a)

Syntax

#include <fptrap.h>

int fp_trapstate (int)

Description

The fp_trapstate subroutine is a service routine used to query or set the trapping mode. The trapping

mode determines whether floating-point exceptions can generate traps, and can affect execution speed.

See Floating-Point Exceptions Overview in AIX 5L Version 5.3 General Programming Concepts: Writing

and Debugging Programs for a description of precise and imprecise trapping modes. Floating-point traps

can be generated by the hardware only when the processor is in a traps-enabled mode.

The fp_trapstate subroutine changes only the trapping mode. It is a service routine for use in developing

custom floating-point exception-handling software. If you are using the fp_enable (“fp_any_enable,

fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on page 287) or

fp_enable_all subroutine or the fp_sh_info (“fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutine”

on page 297) or fp_sh_set_stat subroutine, you must use the fp_trap (“fp_trap Subroutine” on page 299)

subroutine to change the process’ trapping mode.

Parameters

 flag Specifies a query of, or change in, the trap mode:

FP_TRAPSTATE_OFF

Sets the trapping mode to Off and returns the previous mode.

FP_TRAPSTATE_QUERY

Returns the current trapping mode without modifying it.

FP_TRAPSTATE_IMP

Puts the process in non-recoverable imprecise trapping mode and returns the previous

state.

FP_TRAPSTATE_IMP_REC

Puts the process in recoverable imprecise trapping mode and returns the previous state.

FP_TRAPSTATE_PRECISE

Puts the process in precise trapping mode and returns the previous state.

FP_TRAPSTATE_FASTMODE

Puts the process in the fastest trap-generating mode available on the hardware platform

and returns the state selected.

Note: Some hardware models do not support all modes. If an unsupported mode is requested, the

fp_trapstate subroutine returns FP_TRAP_UNIMPL and the trapping mode is not changed.

Return Values

If called with the FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP, FP_TRAPSTATE_IMP_REC, or

FP_TRAPSTATE_PRECISE flag, the fp_trapstate subroutine returns a value indicating the previous mode

of the process. The value may be FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP,

FP_TRAPSTATE_IMP_REC, or FP_TRAPSTATE_PRECISE. If the hardware does not support the

requested mode, the fp_trapstate subroutine returns FP_TRAP_UNIMPL.

302 Technical Reference, Volume 1: Base Operating System and Extensions

If called with the FP_TRAP_QUERY flag, the fp_trapstate subroutine returns a value indicating the

current mode of the process. The value may be FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP,

FP_TRAPSTATE_IMP_REC, or FP_TRAPSTATE_PRECISE.

If called with the FP_TRAPSTATE_FASTMODE flag, the fp_trapstate subroutine returns a value

indicating which mode was selected. The value may be FP_TRAPSTATE_OFF, FP_TRAPSTATE_IMP,

FP_TRAPSTATE_IMP_REC, or FP_TRAPSTATE_PRECISE.

Related Information

The fp_any_enable, fp_disable_all, fp_disable, fp_enable_all, fp_enable, or fp_is_enabled

(“fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine” on

page 287) subroutine, fp_clr_flag, fp_read_flag, fpset_flag, or fp_swap_flag (“fp_clr_flag, fp_set_flag,

fp_read_flag, or fp_swap_flag Subroutine” on page 289) subroutine, sigaction, signal, or sigvec

subroutine.

The Floating-Point Processor in Assembler Language Reference.

Floating-Point Exceptions in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

fpclassify Macro

Purpose

Classifies real floating type.

Syntax

#include <math.h>

int fpclassify(x)

real-floating x;

Description

The fpclassify macro classifies the x parameter as NaN, infinite, normal, subnormal, zero, or into another

implementation-defined category. An argument represented in a format wider than its semantic type is

converted to its semantic type. Classification is based on the type of the argument.

Parameters

 x Specifies the value to be classified.

Return Values

The fpclassify macro returns the value of the number classification macro appropriate to the value of its

argument.

Related Information

“isfinite Macro” on page 556, “isinf Subroutine” on page 558, “class, _class, finite, isnan, or unordered

Subroutines” on page 165, “isnormal Macro” on page 561.

The signbit Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions

Volume 2.

math.h in AIX 5L Version 5.3 Files Reference.

Base Operating System (BOS) Runtime Services (A-P) 303

fread or fwrite Subroutine

Purpose

Reads and writes binary files.

Library

Standard C Library (libc.a)

Syntax

#include <stdio.h>

size_t fread ((void *) Pointer, Size, NumberOfItems, Stream (“Parameters” on page 305))

size_t Size, NumberOfItems (“Parameters” on page 305);

FILE *Stream (“Parameters” on page 305);

size_t fwrite (Pointer, Size, NumberOfItems, Stream (“Parameters” on page 305))

const void *Pointer (“Parameters” on page 305);

size_t Size, NumberOfItems (“Parameters” on page 305);

FILE *Stream (“Parameters” on page 305);

Description

The fread subroutine copies the number of data items specified by the NumberOfItems parameter from

the input stream into an array beginning at the location pointed to by the Pointer parameter. Each data

item has the form *Pointer.

The fread subroutine stops copying bytes if an end-of-file (EOF) or error condition is encountered while

reading from the input specified by the Stream parameter, or when the number of data items specified by

the NumberOfItems parameter have been copied. This subroutine leaves the file pointer of the Stream

parameter, if defined, pointing to the byte following the last byte read. The fread subroutine does not

change the contents of the Stream parameter.

The st_atime field will be marked for update by the first successful run of the fgetc (“getc, getchar, fgetc,

or getw Subroutine” on page 340), fgets (“gets or fgets Subroutine” on page 425), fgetwc (“getwc, fgetwc,

or getwchar Subroutine” on page 468), fgetws (“getws or fgetws Subroutine” on page 471), fread, fscanf,

getc (“getc, getchar, fgetc, or getw Subroutine” on page 340), getchar (“getc, getchar, fgetc, or getw

Subroutine” on page 340), gets (“gets or fgets Subroutine” on page 425), or scanf subroutine using a

stream that returns data not supplied by a prior call to the ungetc or ungetwc subroutine.

Note: The fread subroutine is a buffered read subroutine library call. It reads data in 4KB blocks. For

tape block sizes greater than 4KB, use the open (“open, openx, open64, creat, or creat64

Subroutine” on page 894) subroutine and read subroutine.

The fwrite subroutine writes items from the array pointed to by the Pointer parameter to the stream

pointed to by the Stream parameter. Each item’s size is specified by the Size parameter. The fwrite

subroutine writes the number of items specified by the NumberOfItems parameter. The file-position

indicator for the stream is advanced by the number of bytes successfully written. If an error occurs, the

resulting value of the file-position indicator for the stream is indeterminate.

The fwrite subroutine appends items to the output stream from the array pointed to by the Pointer

parameter. The fwrite subroutine appends as many items as specified in the NumberOfItems parameter.

The fwrite subroutine stops writing bytes if an error condition is encountered on the stream, or when the

number of items of data specified by the NumberOfItems parameter have been written. The fwrite

subroutine does not change the contents of the array pointed to by the Pointer parameter.

304 Technical Reference, Volume 1: Base Operating System and Extensions

The st_ctime and st_mtime fields will be marked for update between the successful run of the fwrite

subroutine and the next completion of a call to the fflush (“fclose or fflush Subroutine” on page 249) or

fclose subroutine on the same stream, the next call to the exit (“exit, atexit, unatexit, _exit, or _Exit

Subroutine” on page 239) subroutine, or the next call to the abort (“abort Subroutine” on page 2)

subroutine.

Parameters

 Pointer Points to an array.

Size Specifies the size of the variable type of the array pointed to by the Pointer parameter. The

Size parameter can be considered the same as a call to sizeof subroutine.

NumberOfItems Specifies the number of items of data.

Stream Specifies the input or output stream.

Return Values

The fread and fwrite subroutines return the number of items actually transferred. If the NumberOfItems

parameter contains a 0, no characters are transferred, and a value of 0 is returned. If the NumberOfItems

parameter contains a negative number, it is translated to a positive number, since the NumberOfItems

parameter is of the unsigned type.

Error Codes

If the fread subroutine is unsuccessful because the I/O stream is unbuffered or data needs to be read into

the I/O stream’s buffer, it returns one or more of the following error codes:

 EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor specified by the Stream

parameter, and the process would be delayed in the fread operation.

EBADF Indicates that the file descriptor specified by the Stream parameter is not a valid file descriptor

open for reading.

EINTR Indicates that the read operation was terminated due to receipt of a signal, and no data was

transferred.

Note: Depending upon which library routine the application binds to, this subroutine may return EINTR.

Refer to the signal subroutine regarding sa_restart.

 EIO Indicates that the process is a member of a background process group attempting to perform

a read from its controlling terminal, and either the process is ignoring or blocking the

SIGTTIN signal or the process group has no parent process.

ENOMEM Indicates that insufficient storage space is available.

ENXIO Indicates that a request was made of a nonexistent device.

If the fwrite subroutine is unsuccessful because the I/O stream is unbuffered or the I/O stream’s buffer

needs to be flushed, it returns one or more of the following error codes:

 EAGAIN Indicates that the O_NONBLOCK or O_NDELAY flag is set for the file descriptor specified

by the Stream parameter, and the process is delayed in the write operation.

EBADF Indicates that the file descriptor specified by the Stream parameter is not a valid file

descriptor open for writing.

EFBIG Indicates that an attempt was made to write a file that exceeds the file size of the process

limit or the systemwide maximum file size.

EINTR Indicates that the write operation was terminated due to the receipt of a signal, and no data

was transferred.

EIO Indicates that the process is a member of a background process group attempting to perform

a write to its controlling terminal, the TOSTOP signal is set, the process is neither ignoring

nor blocking the SIGTTOU signal, and the process group of the process is orphaned.

Base Operating System (BOS) Runtime Services (A-P) 305

ENOSPC Indicates that there was no free space remaining on the device containing the file.

EPIPE Indicates that an attempt is made to write to a pipe or first-in-first-out (FIFO) process that is

not open for reading by any process. A SIGPIPE signal is sent to the process.

The fwrite subroutine is also unsuccessful due to the following error conditions:

 ENOMEM Indicates that insufficient storage space is available.

ENXIO Indicates that a request was made of a nonexistent device, or the request was outside the

capabilities of the device.

Related Information

The abort (“abort Subroutine” on page 2) subroutine, exit (“exit, atexit, unatexit, _exit, or _Exit Subroutine”

on page 239) subroutine, fflush or fclose (“fclose or fflush Subroutine” on page 249) subroutine, fopen,

freopen, or fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 281) subroutine,

getc, getchar, fgetc, or getw (“getc, getchar, fgetc, or getw Subroutine” on page 340) subroutine, getwc,

fgetwc, or getwchar (“getwc, fgetwc, or getwchar Subroutine” on page 468) subroutine, gets or fgets

(“gets or fgets Subroutine” on page 425) subroutine, getws or fgetws (“getws or fgetws Subroutine” on

page 471) subroutine, open (“open, openx, open64, creat, or creat64 Subroutine” on page 894)

subroutine, print, fprintf, or sprintf (“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or

vwsprintf Subroutine” on page 1079) subroutine, putc, putchar, fputc, or putw (“putc, putchar, fputc, or

putw Subroutine” on page 1227) subroutine, putwc, putwchar, or fputwc (“putwc, putwchar, or fputwc

Subroutine” on page 1244) subroutine, puts or fputs (“puts or fputs Subroutine” on page 1236)subroutine,

putws or fputws (“putws or fputws Subroutine” on page 1246) subroutine, read subroutine, scanf, fscanf,

sscanf, or wsscanf subroutine, ungetc or ungetwc subroutine, write subroutine.

The Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

freehostent Subroutine

Purpose

To free memory allocated by getipnodebyname and getipnodebyaddr.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

void freehostent (ptr)

struct hostent * ptr;

Description

The freehostent subroutine frees any dynamic storage pointed to by elements of ptr. This includes the

hostent structure and the data areas pointed to by the h_name, h_addr_list, and h_aliases members of

the hostent structure.

Related Information

The getipnodebyaddr subroutine and getipnodebyname subroutine.

306 Technical Reference, Volume 1: Base Operating System and Extensions

freelmb Subroutine

Purpose

Returns a block of memory allocated by alloclmb() to the system.

Syntax

#include <sys/dr.h>

int freelmb(long long laddr

Description

The freelmb() subroutine returns a block of memory, allocated by allocmb(), for general system use.

Parameters

 laddr A previously allocated LMB address.

Execution Environment

This freelmb() interface should only be called from the process environment.

Return Values

 0 The LMB is successfully freed.

Error Codes

 ENOTSUP LMB allocation not supported on this system.

EINVAL laddr does not describe a previously allocated LMB.

EINVAL Not in the process environment.

Related Information

“alloclmb Subroutine” on page 66

frevoke Subroutine

Purpose

Revokes access to a file by other processes.

Library

Standard C Library (libc.a)

Syntax

int frevoke (FileDescriptor)

int FileDescriptor;

Description

The frevoke subroutine revokes access to a file by other processes.

Base Operating System (BOS) Runtime Services (A-P) 307

All accesses to the file are revoked, except through the file descriptor specified by the FileDescriptor

parameter to the frevoke subroutine. Subsequent attempts to access the file, using another file descriptor

established before the frevoke subroutine was called, fail and cause the process to receive a return value

of -1, and the errno global variable is set to EBADF .

A process can revoke access to a file only if its effective user ID is the same as the file owner ID or if the

invoker has root user authority.

Note: The frevoke subroutine has no affect on subsequent attempts to open the file. To ensure exclusive

access to the file, the caller should change the mode of the file before issuing the frevoke

subroutine. Currently the frevoke subroutine works only on terminal devices.

Parameters

 FileDescriptor A file descriptor returned by a successful open subroutine.

Return Values

Upon successful completion, the frevoke subroutine returns a value of 0.

If the frevoke subroutine fails, it returns a value of -1 and the errno global variable is set to indicate the

error.

Error Codes

The frevoke subroutine fails if the following is true:

 EBADF The FileDescriptor value is not the valid file descriptor of a terminal.

EPERM The effective user ID of the calling process is not the same as the file owner ID.

EINVAL Revocation of access rights is not implemented for this file.

frexpf, frexpl, or frexp Subroutine

Purpose

Extracts the mantissa and exponent from a double precision number.

Syntax

#include <math.h>

float frexpf (num, exp)

float num;

int *exp;

long double frexpl (num, exp)

long double num;

int exp;

double frexp (num, exp)

double num;

int * exp;

Description

The frexpf, frexpl, and frexp subroutines break a floating-point number num into a normalized fraction

and an integral power of 2. The integer exponent is stored in the int object pointed to by exp.

308 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 num Specifies the floating-point number to be broken into a normalized fraction and an integral power of 2.

exp Points to where the integer exponent is stored.

Return Values

For finite arguments, the frexpf, frexpl, and frexp subroutines return the value x, such that x has a

magnitude in the interval [½ ,1) or 0, and num equals x times 2 raised to the power exp.

If num is NaN, a NaN is returned, and the value of *exp is unspecified.

If num is ±0, ±0 is returned, and the value of *exp is 0.

If num is ±Inf, num is returned, and the value of *exp is unspecified.

Related Information

“class, _class, finite, isnan, or unordered Subroutines” on page 165 and “modf, modff, or modfl Subroutine”

on page 808

math.h in AIX 5L Version 5.3 Files Reference.

fscntl Subroutine

Purpose

Controls file system control operations.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <j2/j2_cntl.h>

int fscntl (vfs_id, Command, Argument, ArgumentSize)

int vfs_id;

int Command;

char *Argument;

int ArgumentSize;

Description

The fscntl subroutine performs a variety of file system-specific functions. These functions typically require

root user authority.

The Enhanced Journaled File System (JFS2) supports several Command values that can be used by

applications. Each of these Command values requires root authority.

FSCNTL_FREEZE

The file system specified by vfs_id is ″frozen″ for a specified amount of time. The act of freezing a

file system produces a nearly consistent on-disk image of the file system, and writes all dirty file

system metadata and user data to the disk. In its frozen state, the file system is read-only, and

anything that attempts to modify the file system or its contents must wait for the freeze to end. The

Argument is treated as an integral timeout value in seconds (instead of a pointer). The file system

Base Operating System (BOS) Runtime Services (A-P) 309

is thawed by FSCNTL_THAW or when the timeout expires. The timeout, which must be a positive

value, can be renewed using FSCNTL_REFREEZE. The ArgumentSize must be 0.

Note: For all applications using this interface, use FSCNTL_THAW to thaw the file system rather

than waiting for the timeout to expire. If the timeout expires, an error log entry is generated

as an advisory.

FSCNTL_REFREEZE

The file system specified by vfs_id, which must be already frozen, has its timeout value reset. If

the command is used on a file system that is not frozen, an error is returned. The Argument is

treated as an integral timeout value in seconds (instead of a pointer). The file system is thawed by

FSCNTL_THAW or when the new timeout expires. The timeout must be a positive value. The

ArgumentSize must be 0.

FSCNTL_THAW

The file system specified by vfs_id is thawed. Modifications to the file system are still allowed after

it is thawed, and the file system image might no longer be consistent after the thaw occurs. If the

file system is not frozen at the time of the call, an error is returned. The Argument and

ArgumentSize must both be 0.

The Journaled File System (JFS) supports only internal fscntl interfaces. Application programs should not

call this function on a JFS file system, because fscntl is reserved for system management commands,

such as the chfs command.

Parameters

 vfs_id Identifies the file system to be acted upon. This information is returned by the stat

subroutine in the st_vfs field of the stat.h file.

Command Identifies the operation to be performed.

Argument Specifies a pointer to a block of file system specific information that defines how the

operation is to be performed.

ArgumentSize Defines the size of the buffer pointed to by the Argument parameter.

Return Values

Upon successful completion, the fscntl subroutine returns a value of 0. Otherwise, a value of -1 is

returned and the errno global variable is set to indicate the error.

Error Codes

The fscntl subroutine fails if any of the following errors are true:

 EINVAL The vfs_id parameter does not identify a valid file system.

EINVAL The Command parameter is not recognized by the file system.

EINVAL The timeout specified to FSCNTL_FREEZE or FSCNTL_REFREEZE is invalid.

EALREADY The Command parameter was FSCNTL_FREEZE and the file system specified was already

frozen.

EALREADY The Command parameter was FSCNTL_REFREEZE or FSCNTL_THAW and the file system

specified was not frozen.

Related Information

The chfs command.

The stat.h file.

310 Technical Reference, Volume 1: Base Operating System and Extensions

Understanding File-System Helpers in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs explains file system helpers and examines file system-helper execution syntax.

fseek, fseeko, fseeko64, rewind, ftell, ftello, ftello64, fgetpos,

fgetpos64, fsetpos, or fsetpos64 Subroutine

Purpose

Repositions the file pointer of a stream.

Library

Standard C Library (libc.a)

Syntax

#include <stdio.h>

int fseek (Stream, Offset, Whence)

FILE *Stream;

long int Offset;

int Whence;

void rewind (Stream)

FILE *Stream;

long int ftell (Stream)

FILE *Stream;

int fgetpos (Stream, Position)

FILE *Stream;

fpos_t *Position;

int fsetpos (Stream, Position)

FILE *Stream;

const fpos_t *Position;

int fseeko (Stream, Offset, Whence)

FILE *Stream;

off_t Offset;

int Whence;

int fseeko64 (Stream, Offset, Whence)

FILE *Stream;

off64_t Offset;

int Whence;

 off_t int ftello (Stream)

FILE *Stream;

off64_t int ftello64 (Stream)

FILE *Stream;

int fgetpos64 (Stream, Position)

FILE *Stream;

fpos64_t *Position;

int fsetpos64 (Stream, Position)

FILE *Stream;

const fpos64_t *Position;

Base Operating System (BOS) Runtime Services (A-P) 311

Description

The fseek, fseeko and fseeko64 subroutines set the position of the next input or output operation on the

I/O stream specified by the Stream parameter. The position if the next operation is determined by the

Offset parameter, which can be either positive or negative.

The fseek, fseeko and fseeko64 subroutines set the file pointer associated with the specified Stream as

follows:

v If the Whence parameter is set to the SEEK_SET value, the pointer is set to the value of the Offset

parameter.

v If the Whence parameter is set to the SEEK_CUR value, the pointer is set to its current location plus

the value of the Offset parameter.

v If the Whence parameter is set to the SEEK_END value, the pointer is set to the size of the file plus the

value of the Offset parameter.

The fseek, fseeko, and fseeko64 subroutine are unsuccessful if attempted on a file that has not been

opened using the fopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 281)

subroutine. In particular, the fseek subroutine cannot be used on a terminal or on a file opened with the

popen (“popen Subroutine” on page 1055) subroutine. The fseek and fseeko subroutines will also fail

when the resulting offset is larger than can be properly returned.

The rewind subroutine is equivalent to calling the fseek subroutine using parameter values of

(Stream,SEEK_SET,SEEK_SET), except that the rewind subroutine does not return a value.

The fseek, fseeko, fseeko64 and rewind subroutines undo any effects of the ungetc and ungetwc

subroutines and clear the end-of-file (EOF) indicator on the same stream.

The fseek, fseeko, and fseeko64 function allows the file-position indicator to be set beyond the end of

existing data in the file. If data is written later at this point, subsequent reads of data in the gap will return

bytes of the value 0 until data is actually written into the gap.

A successful calls to the fsetpos or fsetpos64 subroutines clear the EOF indicator and undoes any effects

of the ungetc and ungetwc subroutines.

After an fseek, fseeko, fseeko64 or a rewind subroutine, the next operation on a file opened for update

can be either input or output.

ftell, ftello and ftello64 subroutines return the position current value of the file-position indicator for the

stream pointed to by the Stream parameter. ftell and ftello will fail if the resulting offset is larger than can

be properly returned.

The fgetpos and fgetpos64 subroutines store the current value of the file-position indicator for the stream

pointed to by the Stream parameter in the object pointed to by the Position parameter. The fsetpos and

fsetpos64 set the file-position indicator for Stream according to the value of the Position parameter, which

must be the result of a prior call to fgetpos or fgetpos64 subroutine. fgetpos and fsetpos will fail if the

resulting offset is larger than can be properly returned.

Parameters

 Stream Specifies the input/output (I/O) stream.

Offset Determines the position of the next operation.

Whence Determines the value for the file pointer associated with the Stream parameter.

Position Specifies the value of the file-position indicator.

312 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, the fseek, fseeko and fseeko64 subroutine return a value of 0. Otherwise, it

returns a value of -1.

Upon successful completion, the ftell, ftello and ftello64 subroutine return the offset of the current byte

relative to the beginning of the file associated with the named stream. Otherwise, a long int value of -1 is

returned and the errno global variable is set.

Upon successful completion, the fgetpos, fgetpos64, fsetpos and fsetpos64 subroutines return a value

of 0. Otherwise, a nonzero value is returned and the errno global variable is set to the specific error.

The errno global variable is used to determine if an error occurred during a rewind subroutine call.

Error Codes

If the fseek, fseeko, fseeko64, ftell, ftello, ftello64 or rewind subroutine are unsuccessful because the

stream is unbuffered or the stream buffer needs to be flushed and the call to the subroutine causes an

underlying lseek or write subroutine to be invoked, it returns one or more of the following error codes:

 EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor, delaying the process in the

write operation.

EBADF Indicates that the file descriptor underlying the Stream parameter is not open for writing.

EFBIG Indicates that an attempt has been made to write to a file that exceeds the file-size limit of the

process or the maximum file size.

EFBIG Indicates that the file is a regular file and that an attempt was made to write at or beyond the

offset maximum associated with the corresponding stream.

EINTR Indicates that the write operation has been terminated because the process has received a

signal, and either no data was transferred, or the implementation does not report partial

transfers for this file.

EIO Indicates that the process is a member of a background process group attempting to perform a

write subroutine to its controlling terminal, the TOSTOP flag is set, the process is not ignoring

or blocking the SIGTTOU signal, and the process group of the process is orphaned. This error

may also be returned under implementation-dependent conditions.

ENOSPC Indicates that no remaining free space exists on the device containing the file.

EPIPE Indicates that an attempt has been made to write to a pipe or FIFO that is not open for reading

by any process. A SIGPIPE signal will also be sent to the process.

EINVAL Indicates that the Whence parameter is not valid. The resulting file-position indicator will be set

to a negative value. The EINVAL error code does not apply to the ftell and rewind

subroutines.

ESPIPE Indicates that the file descriptor underlying the Stream parameter is associated with a pipe,

FIFO, or socket.

EOVERFLOW Indicates that for fseek, the resulting file offset would be a value that cannot be represented

correctly in an object of type long.

EOVERFLOW Indicates that for fseeko, the resulting file offset would be a value that cannot be represented

correctly in an object of type off_t.

ENXIO Indicates that a request was made of a non-existent device, or the request was outside the

capabilities of the device.

The fgetpos and fsetpos subroutines are unsuccessful due to the following conditions:

 EINVAL Indicates that either the Stream or the Position parameter is not valid. The EINVAL error code

does not apply to the fgetpos subroutine.

EBADF Indicates that the file descriptor underlying the Stream parameter is not open for writing.

ESPIPE Indicates that the file descriptor underlying the Stream parameter is associated with a pipe,

FIFO, or socket.

Base Operating System (BOS) Runtime Services (A-P) 313

The fseek, fseeko, ftell, ftello, fgetpos, and fsetpos subroutines are unsuccessful under the following

condition:

 EOVERFLOW The resulting could not be returned properly.

Related Information

The closedir (“opendir, readdir, telldir, seekdir, rewinddir, closedir, opendir64, readdir64, telldir64,

seekdir64, rewinddir64, or closedir64 Subroutine” on page 902) subroutine, fopen, fopen64, freopen,

freopen64 or fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 281)

subroutine, lseek or lseek64 (“lseek, llseek or lseek64 Subroutine” on page 751)subroutine, opendir,

readdir, rewinddir, seekdir, or telldir (“opendir, readdir, telldir, seekdir, rewinddir, closedir, opendir64,

readdir64, telldir64, seekdir64, rewinddir64, or closedir64 Subroutine” on page 902)subroutine, popen

(“popen Subroutine” on page 1055) subroutine, ungetc or ungetwc subroutine, write, writex, writev, or

writevx subroutine.

Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

fsync or fsync_range Subroutine

Purpose

Writes changes in a file to permanent storage.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

int fsync (FileDescriptor)

int FileDescriptor;

int fsync_range (FileDescriptor, how, start, length)

int FileDescriptor;

int how;

off_t start;

off_t length;

Description

The fsync subroutine causes all modified data in the open file specified by the FileDescriptor parameter to

be saved to permanent storage. On return from the fsync subroutine, all updates have been saved on

permanent storage.

The fsync_range subroutine causes all modified data in the specified range of the open file specified by

the FileDescriptor parameter to be saved to permanent storage. On return from the fsync_range

subroutine, all updates in the specified range have been saved on permanent storage.

Data written to a file that a process has opened for deferred update (with the O_DEFER flag) is not written

to permanent storage until another process issues an fsync_range or fsync call against this file or runs a

synchronous write subroutine (with the O_SYNC flag) on this file. See the fcntl.h file and the open

subroutine for descriptions of the O_DEFER and O_SYNC flags respectively.

314 Technical Reference, Volume 1: Base Operating System and Extensions

Note: The file identified by the FileDescriptor parameter must be open for writing when the fsync_range

or fsync subroutine is issued or the call is unsuccessful. This restriction was not enforced in BSD

systems.

Parameters

 FileDescriptor A valid, open file descriptor.

how How to flush, FDATASYNC, or FFILESYNC.

FDATASYNC

Write file data and enough of the meta-data to retrieve the data for the specified

range.

FFILESYNC

All modified file data and meta-data for the specified range.

start Starting file offset.

length Length, or zero for everything.

Return Values

Upon successful completion, the fsync subroutine returns a value of 0. Otherwise, a value of -1 is

returned and the errno global variable is set to indicate the error.

Upon successful completion, the fsync_range subroutine returns a value of 0. Otherwise a value of -1 is

returned and the errno global variable is set to indicate the error.

Error Codes

The fsync subroutine is unsuccessful if one or more of the following are true:

 EIO An I/O error occurred while reading from or writing to the file system.

EBADF The FileDescriptor parameter is not a valid file descriptor open for writing.

EINVAL The file is not a regular file.

EINTR The fsync subroutine was interrupted by a signal.

Related Information

The open, openx, or creat (“open, openx, open64, creat, or creat64 Subroutine” on page 894) subroutine,

sync subroutine, write, writex, writev, or writevx subroutine.

The fcntl.h file.

Files, Directories, and File Systems Overview for Programmers in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs contains information about i-nodes, file

descriptors, file-space allocation, and more.

ftok Subroutine

Purpose

Generates a standard interprocess communication key.

Library

Standard C Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 315

Syntax

#include <sys/types.h>

#include <sys/ipc.h>

key_t ftok (Path, ID)

char *Path;

int ID;

Description

Attention: If the Path parameter of the ftok subroutine names a file that has been removed while keys

still refer to it, the ftok subroutine returns an error. If that file is then re-created, the ftok subroutine will

probably return a key different from the original one.

 Attention: Each installation should define standards for forming keys. If standards are not adhered to,

unrelated processes may interfere with each other’s operation.

 Attention: The ftok subroutine does not guarantee unique key generation. However, the occurrence of

key duplication is very rare and mostly for across file systems.

The ftok subroutine returns a key, based on the Path and ID parameters, to be used to obtain

interprocess communication identifiers. The ftok subroutine returns the same key for linked files if called

with the same ID parameter. Different keys are returned for the same file if different ID parameters are

used.

All interprocess communication facilities require you to supply a key to the msgget, semget, and shmget

subroutines in order to obtain interprocess communication identifiers. The ftok subroutine provides one

method for creating keys, but other methods are possible. For example, you can use the project ID as the

most significant byte of the key, and use the remaining portion as a sequence number.

Parameters

 Path Specifies the path name of an existing file that is accessible to the process.

ID Specifies a character that uniquely identifies a project.

Return Values

When successful, the ftok subroutine returns a key that can be passed to the msgget, semget, or

shmget subroutine.

Error Codes

The ftok subroutine returns the value (key_t)-1 if one or more of the following are true:

v The file named by the Path parameter does not exist.

v The file named by the Path parameter is not accessible to the process.

v The ID parameter has a value of 0.

Related Information

The msgget (“msgget Subroutine” on page 841) subroutine, semget subroutine, shmget subroutine.

Subroutines Overview and Understanding Memory Mapping in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

316 Technical Reference, Volume 1: Base Operating System and Extensions

ftw or ftw64 Subroutine

Purpose

Walks a file tree.

Library

Standard C Library (libc.a)

Syntax

#include <ftw.h>

int ftw (Path, Function, Depth)

char *Path;

int (*Function(const char*, const struct stat*, int);

int Depth;

int ftw64 (Path, Function, Depth)

char *Path;

int (*Function(const char*, const struct stat64*, int);

int Depth;

Description

The ftw and ftw64 subroutines recursively searches the directory hierarchy that descends from the

directory specified by the Path parameter.

For each file in the hierarchy, the ftw and ftw64 subroutines call the function specified by the Function

parameter. ftw passes it a pointer to a null-terminated character string containing the name of the file, a

pointer to a stat structure containing information about the file, and an integer. ftw64 passes it a pointer to

a null-terminated character string containing the name of the file, a pointer to a stat64 structure containing

information about the file, and an integer.

The integer passed to the Function parameter identifies the file type with one of the following values:

 FTW_F Regular file

FTW_D Directory

FTW_DNR Directory that cannot be read

FTW_SL Symbolic Link

FTW_NS File for which the stat structure could not be executed successfully

If the integer is FTW-DNR, the files and subdirectories contained in that directory are not processed.

If the integer is FTW-NS, the stat structure contents are meaningless. An example of a file that causes

FTW-NS to be passed to the Function parameter is a file in a directory for which you have read

permission but not execute (search) permission.

The ftw and ftw64 subroutines finish processing a directory before processing any of its files or

subdirectories.

The ftw and ftw64 subroutines continue the search until the directory hierarchy specified by the Path

parameter is completed, an invocation of the function specified by the Function parameter returns a

nonzero value, or an error is detected within the ftw and ftw64 subroutines, such as an I/O error.

Base Operating System (BOS) Runtime Services (A-P) 317

The ftw and ftw64 subroutines traverse symbolic links encountered in the resolution of the Path

parameter, including the final component. Symbolic links encountered while walking the directory tree

rooted at the Path parameter are not traversed.

The ftw and ftw64 subroutines use one file descriptor for each level in the tree. The Depth parameter

specifies the maximum number of file descriptors to be used. In general, the ftw and ftw64 subroutines

runs faster if the value of the Depth parameter is at least as large as the number of levels in the tree.

However, the value of the Depth parameter must not be greater than the number of file descriptors

currently available for use. If the value of the Depth parameter is 0 or a negative number, the effect is the

same as if it were 1.

Because the ftw and ftw64 subroutines are recursive, it is possible for it to terminate with a memory fault

due to stack overflow when applied to very deep file structures.

The ftw and ftw64 subroutines use the malloc subroutine to allocate dynamic storage during its operation.

If the ftw and ftw64 subroutined is terminated prior to its completion, such as by the longjmp subroutine

being executed by the function specified by the Function parameter or by an interrupt routine, the ftw and

ftw64 subroutines cannot free that storage. The storage remains allocated. A safe way to handle interrupts

is to store the fact that an interrupt has occurred, and arrange to have the function specified by the

Function parameter return a nonzero value the next time it is called.

Parameters

 Path Specifies the directory hierarchy to be searched.

Function Specifies the file type.

Depth Specifies the maximum number of file descriptors to be used. Depth cannot be greater than

OPEN_MAX which is described in the sys/limits.h header file.

Return Values

If the tree is exhausted, the ftw and ftw64 subroutines returns a value of 0. If the subroutine pointed to by

fn returns a nonzero value, ftw and ftw64 subroutines stops its tree traversal and returns whatever value

was returned by the subroutine pointed to by fn. If the ftw and ftw64 subroutines detects an error, it

returns a -1 and sets the errno global variable to indicate the error.

Error Codes

If the ftw or ftw64 subroutines detect an error, a value of -1 is returned and the errno global variable is

set to indicate the error.

The ftw and ftw64 subroutine are unsuccessful if:

 EACCES Search permission is denied for any component of the Path parameter or read

permission is denied for Path.

ENAMETOOLONG The length of the path exceeds PATH_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The Path parameter points to the name of a file that does not exist or points to an empty

string.

ENOTDIR A component of the Path parameter is not a directory.

The ftw subroutine is unsuccessful if:

 EOVERFLOW A file in Path is of a size larger than 2 Gigabytes.

318 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The malloc, free, realloc, calloc, mallopt, mallinfo, or alloca (“malloc, free, realloc, calloc, mallopt,

mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign Subroutine” on page 764) subroutine, setjmp or

longjmp subroutine, signal subroutine, stat subroutine.

Searching and Sorting Example Program and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

fwide Subroutine

Purpose

Set stream orientation.

Library

Standard Library (libc.a)

Syntax

#include <stdio.h>

#include <wchar.h>

int fwid (FILE * stream, int mode),

Description

The fwide function determines the orientation of the stream pointed to by stream. If mode is greater than

zero, the function first attempts to make the stream wide-oriented. If mode is less than zero, the function

first attempts to make the stream byte-oriented. Otherwise, mode is zero and the function does not alter

the orientation of the stream.

If the orientation of the stream has already been determined, fwide does not change it.

Because no return value is reserved to indicate an error, an application wishing to check for error

situations should set errno to 0, then call fwide, then check errno and if it is non-zero, assume an error

has occurred.

A call to fwide with mode set to zero can be used to determine the current orientation of a stream.

Return Values

The fwide function returns a value greater than zero if, after the call, the stream has wide-orientation, a

value less than zero if the stream has byte-orientation, or zero if the stream has no orientation.

Errors

The fwide function may fail if:

 EBADF The stream argument is not a valid stream.

Related Information

The wchar.h file

Base Operating System (BOS) Runtime Services (A-P) 319

fwprintf, wprintf, swprintf Subroutines

Purpose

Print formatted wide-character output.

Library

Standard Library (libc.a)

Syntax

#include <stdio.h>

#include <wchar.h>

int fwprintf (FILE * stream, const wchar_t * format, . . .)

int wprintf (const wchar_t * format, . .)

int swprintf (wchar_t *s, size_t n, const wchar_t * format, . . .)

Description

The fwprintf function places output on the named output stream. The wprintf function places output on

the standard output stream stdout. The swprintf function places output followed by the null

wide-character in consecutive wide-characters starting at *s; no more than n wide-characters are written,

including a terminating null wide-character, which is always added (unless n is zero).

Each of these functions converts, formats and prints its arguments under control of the format

wide-character string. The format is composed of zero or more directives: ordinary wide-characters,

which are simply copied to the output stream and conversion specifications , each of which results in

the fetching of zero or more arguments. The results are undefined if there are insufficient arguments for

the format. If the format is exhausted while arguments remain, the excess arguments are evaluated but

are otherwise ignored.

EX Conversions can be applied to the nth argument after the format in the argument list, rather than to

the next unused argument. In this case, the conversion wide-character % (see below) is replaced by the

sequence %n$, where n is a decimal integer in the range [1, {NL_ARGMAX}], giving the position of the

argument in the argument list. This feature provides for the definition of format wide-character strings that

select arguments in an order appropriate to specific languages (see the EXAMPLES section).

In format wide-character strings containing the %n$ form of conversion specifications, numbered

arguments in the argument list can be referenced from the format wide-character string as many times as

required.

In format wide-character strings containing the % form of conversion specifications, each argument in the

argument list is used exactly once.

All forms of the fwprintf functions allow for the insertion of a language-dependent radix character in the

output string, output as a wide-character value. The radix character is defined in the program’s locale

(category LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the

radix character defaults to a period (.).

EX Each conversion specification is introduced by the % wide-character or by the wide-character

sequence %n$,after which the following appear in sequence:

v Zero or more flags (in any order), which modify the meaning of the conversion specification.

v An optional minimum field width. If the converted value has fewer wide-characters than the field width,

it will be padded with spaces by default on the left; it will be padded on the right, if the left-adjustment

flag (-), described below, is given to the field width. The field width takes the form of an asterisk (*),

described below, or a decimal integer.

320 Technical Reference, Volume 1: Base Operating System and Extensions

v An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x and X

conversions; the number of digits to appear after the radix character for the e, E and f conversions; the

maximum number of significant digits for the g and G conversions; or the maximum number of

wide-characters to be printed from a string in s conversions. The precision takes the form of a period (.)

followed either by an asterisk (*), described below, or an optional decimal digit string, where a null digit

string is treated as 0. If a precision appears with any other conversion wide-character, the behaviour is

undefined.

v An optional l (ell) specifying that a following c conversion wide-character applies to a wint_t argument;

an optional l specifying that a following s conversion wide-character applies to a wchar_t argument; an

optional h specifying that a following d, i, o, u, x or X conversion wide-character applies to a type short

int or type unsigned short int argument (the argument will have been promoted according to the

integral promotions, and its value will be converted to type short int or unsigned short int before

printing); an optional h specifying that a following n conversion wide-character applies to a pointer to a

type short int argument; an optional l (ell) specifying that a following d, i, o, u, x or X conversion

wide-character applies to a type long int or unsigned long int argument; an optional l (ell) specifying

that a following n conversion wide-character applies to a pointer to a type long int argument; or an

optional L specifying that a following e, E, f, g or G conversion wide-character applies to a type long

double argument. If an h, l or L appears with any other conversion wide-character, the behavior is

undefined.

v A conversion wide-character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an asterisk (*). In this case an argument of type int

supplies the field width or precision. Arguments specifying field width, or precision, or both must appear in

that order before the argument, if any, to be converted. A negative field width is taken as a - flag followed

by a positive field width. A negative precision is taken as if EX the precision were omitted. In format

wide-character strings containing the %n$ form of a conversion specification, a field width or precision may

be indicated by the sequence *m$, where m is a decimal integer in the range [1, {NL_ARGMAX}] giving

the position in the argument list (after the format argument) of an integer argument containing the field

width or precision, for example:

 wprintf(L"%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

The format can contain either numbered argument specifications (that is, %n$ and *m$), or unnumbered

argument specifications (that is, % and *), but normally not both. The only exception to this is that %% can

be mixed with the %n$ form. The results of mixing numbered and unnumbered argument specifications in

a format wide-character string are undefined. When numbered argument specifications are used,

specifying the Nth argument requires that all the leading arguments, from the first to the (N-1)th, are

specified in the format wide-character string.

The flag wide-characters and their meanings are:

 ’ The integer portion of the result of a decimal conversion (%i, %d, %u, %f, %g or %G) will be formatted

with thousands’ grouping wide-characters. For other conversions the behaviour is undefined. The

non-monetary grouping wide-character is used.

- The result of the conversion will be left-justified within the field. The conversion will be right-justified if

this flag is not specified.

+ The result of a signed conversion will always begin with a sign (+ or -). The conversion will begin with

a sign only when a negative value is converted if this flag is not specified.

space If the first wide-character of a signed conversion is not a sign or if a signed conversion results in no

wide-characters, a space will be prefixed to the result. This means that if the space and + flags both

appear, the space flag will be ignored.

Base Operating System (BOS) Runtime Services (A-P) 321

This flag specifies that the value is to be converted to an alternative form. For o conversion, it

increases the precision (if necessary) to force the first digit of the result to be 0. For x or X

conversions, a non-zero result will have 0x (or 0X) prefixed to it. For e, E, f, g or G conversions, the

result will always contain a radix character, even if no digits follow it. Without this flag, a radix

character appears in the result of these conversions only if a digit follows it. For g and G conversions,

trailing zeros will not be removed from the result as they normally are. For other conversions, the

behavior is undefined.

0 For d, i, o, u, x, X, e, E, f, g and G conversions, leading zeros (following any indication of sign or

base) are used to pad to the field width; no space padding is performed. If the 0 and - flags both

appear, the 0 flag will be ignored. For d, i, o, u, x and X conversions, if a precision is specified, the 0

flag will be ignored. If the 0 and ’ flags both appear, the grouping wide-characters are inserted before

zero padding. For other conversions, the behavior is undefined.

The conversion wide-characters and their meanings are:

 d,i The int argument is converted to a signed decimal in the style [-] dddd. The precision specifies the

minimum number of digits to appear; if the value being converted can be represented in fewer digits, it

will be expanded with leading zeros. The default precision is 1. The result of converting 0 with an

explicit precision of 0 is no wide-characters.

o The unsigned int argument is converted to unsigned octal format in the style dddd. The precision

specifies the minimum number of digits to appear; if the value being converted can be represented in

fewer digits, it will be expanded with leading zeros. The default precision is 1. The result of converting

0 with an explicit precision of 0 is no wide-characters.

u The unsigned int argument is converted to unsigned decimal format in the style dddd. The precision

specifies the minimum number of digits to appear; if the value being converted can be represented in

fewer digits, it will be expanded with leading zeros. The default precision is 1. The result of converting

0 with an explicit precision of 0 is no wide-characters.

x The unsigned int argument is converted to unsigned hexadecimal format in the style dddd; the letters

abcdef are used. The precision specifies the minimum number of digits to appear; if the value being

converted can be represented in fewer digits, it will be expanded with leading zeros. The default

precision is 1. The result of converting 0 with an explicit precision of 0 is no wide-characters.

X Behaves the same as the x conversion wide-character except that letters ABCDEF are used instead of

abcdef.

f The double argument is converted to decimal notation in the style [-] ddd.ddd, where the number of

digits after the radix character is equal to the precision specification. If the precision is missing, it is

taken as 6; if the precision is explicitly 0 and no # flag is present, no radix character appears. If a radix

character appears, at least one digit appears before it. The value is rounded to the appropriate number

of digits.

The fwprintf family of functions may make available wide-character string representations for infinity

and NaN.

e, E The double argument is converted in the style [-] d.ddde +/- dd, where there is one digit before the

radix character (which is non-zero if the argument is non-zero) and the number of digits after it is equal

to the precision; if the precision is missing, it is taken as 6; if the precision is 0 and no # flag is

present, no radix character appears. The value is rounded to the appropriate number of digits. The E

conversion wide-character will produce a number with E instead of e introducing the exponent. The

exponent always contains at least two digits. If the value is 0, the exponent is 0.

The fwprintf family of functions may make available wide-character string representations for infinity

and NaN.

g, G The double argument is converted in the style f or e (or in the style E in the case of a G conversion

wide-character), with the precision specifying the number of significant digits. If an explicit precision is

0, it is taken as 1. The style used depends on the value converted; style e (or E) will be used only if

the exponent resulting from such a conversion is less than -4 or greater than or equal to the precision.

Trailing zeros are removed from the fractional portion of the result; a radix character appears only if it

is followed by a digit.

The fwprintf family of functions may make available wide-character string representations for infinity

and NaN.

322 Technical Reference, Volume 1: Base Operating System and Extensions

c If no l (ell) qualifier is present, the int argument is converted to a wide-character as if by calling the

btowc function and the resulting wide-character is written. Otherwise the wint_t argument is converted

to wchar_t, and written.

s If no l (ell) qualifier is present, the argument must be a pointer to a character array containing a

character sequence beginning in the initial shift state. Characters from the array are converted as if by

repeated calls to the mbrtowc function, with the conversion state described by an mbstate_t object

initialised to zero before the first character is converted, and written up to (but not including) the

terminating null wide-character. If the precision is specified, no more than that many wide-characters

are written. If the precision is not specified or is greater than the size of the array, the array must

contain a null wide-character.

If an l (ell) qualifier is present, the argument must be a pointer to an array of type wchar_t. Wide

characters from the array are written up to (but not including) a terminating null wide-character. If no

precision is specified or is greater than the size of the array, the array must contain a null

wide-character. If a precision is specified, no more than that many wide-characters are written.

p The argument must be a pointer to void. The value of the pointer is converted to a sequence of

printable wide-characters, in an implementation-dependent manner. The argument must be a pointer to

an integer into which is written the number of wide-characters written to the output so far by this call to

one of the fwprintf functions. No argument is converted.

C Same as lc.

S Same as ls.

% Output a % wide-character; no argument is converted. The entire conversion specification must be

%%.

If a conversion specification does not match one of the above forms, the behavior is undefined.

In no case does a non-existent or small field width cause truncation of a field; if the result of a conversion

is wider than the field width, the field is simply expanded to contain the conversion result. Characters

generated by fwprintf and wprintf are printed as if fputwc had been called.

The st_ctime and st_mtime fields of the file will be marked for update between the call to a successful

execution of fwprintf or wprintf and the next successful completion of a call to fflush or fclose on the

same stream or a call to exit or abort.

Return Values

Upon successful completion, these functions return the number of wide-characters transmitted excluding

the terminating null wide-character in the case of swprintf or a negative value if an output error was

encountered.

Error Codes

For the conditions under which fwprintf and wprintf will fail and may fail, refer to fputwc .In addition, all

forms of fwprintf may fail if:

 EILSEQ A wide-character code that does not correspond to a valid character has been detected

EINVAL There are insufficient arguments.

In addition, wprintf and fwprintf may fail if:

ENOMEM Insufficient storage space is available.

Examples

To print the language-independent date and time format, the following statement could be used:

 wprintf (format, weekday, month, day, hour, min);

For American usage, format could be a pointer to the wide-character string:

 L"%s, %s %d, %d:%.2d\n"

Base Operating System (BOS) Runtime Services (A-P) 323

producing the message:

 Sunday, July 3, 10:02

whereas for German usage, format could be a pointer to the wide-character string:

L"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

producing the message:

 Sonntag, 3. July, 10:02

Related Information

The btowc (“btowc Subroutine” on page 122) subroutine, fputwc (“putwc, putwchar, or fputwc Subroutine”

on page 1244) subroutine, fwscanf (“fwscanf, wscanf, swscanf Subroutines”) subroutine, setlocale

subroutine, mbrtowc (“mbrtowc Subroutine” on page 779) subroutine.

The wchar.h file.

fwscanf, wscanf, swscanf Subroutines

Purpose

Convert formatted wide-character input.

Library

Standard Library (libc.a)

Syntax

#include <stdio.h>

#include <wchar.h>

int fwscanf (FILE * stream, const wchar_t * format, ...);

int wscanf (const wchar_t * format, ...);

int swscanf (const wchar_t * s, const wchar_t * format, ...);

Description

The fwscanf function reads from the named input stream. The wscanf function reads from the standard

input stream stdin. The swscanf function reads from the wide-character string s. Each function reads

wide-characters, interprets them according to a format, and stores the results in its arguments. Each

expects, as arguments, a control wide-character string format described below, and a set of pointer

arguments indicating where the converted input should be stored. The result is undefined if there are

insufficient arguments for the format. If the format is exhausted while arguments remain, the excess

arguments are evaluated but are otherwise ignored.

Conversions can be applied to the nth argument after the format in the argument list, rather than to the

next unused argument. In this case, the conversion wide-character % (see below) is replaced by the

sequence %n$, where n is a decimal integer in the range [1, {NL_ARGMAX}]. This feature provides for the

definition of format wide-character strings that select arguments in an order appropriate to specific

languages. In format wide-character strings containing the %n$ form of conversion specifications, it is

unspecified whether numbered arguments in the argument list can be referenced from the format

wide-character string more than once.

The format can contain either form of a conversion specification, that is, % or %n$, but the two forms

cannot normally be mixed within a single format wide-character string. The only exception to this is that

%% or %* can be mixed with the %n$ form.

324 Technical Reference, Volume 1: Base Operating System and Extensions

The fwscanf function in all its forms allows for detection of a language-dependent radix character in the

input string, encoded as a wide-character value. The radix character is defined in the program’s locale

(category LC_NUMERIC). In the POSIX locale, or in a locale where the radix character is not defined, the

radix character defaults to a period (.).

The format is a wide-character string composed of zero or more directives. Each directive is composed of

one of the following: one or more white-space wide-characters (space, tab, newline, vertical-tab or

form-feed characters); an ordinary wide-character (neither % nor a white-space character); or a conversion

specification. Each conversion specification is introduced by a % or the sequence %n$ after which the

following appear in sequence:

v An optional assignment-suppressing character *.

v An optional non-zero decimal integer that specifies the maximum field width.

v An optional size modifier h, l (ell) or L indicating the size of the receiving object. The conversion

wide-characters c, s and [must be preceded by l (ell) if the corresponding argument is a pointer to

wchar_t rather than a pointer to a character type. The conversion wide-characters d, i and n must be

preceded by h if the corresponding argument is a pointer to short int rather than a pointer to int, or by l

(ell) if it is a pointer to long int. Similarly, the conversion wide-characters o, u and x must be preceded

by h if the corresponding argument is a pointer to unsigned short int rather than a pointer to unsigned

int, or by l (ell) if it is a pointer to unsigned long int. The conversion wide-characters e, f and g must

be preceded by l (ell) if the corresponding argument is a pointer to double rather than a pointer to

float,or by L if it is a pointer to long double. If an h, l (ell) or L appears with any other conversion

wide-character, the behavior is undefined.

v A conversion wide-character that specifies the type of conversion to be applied. The valid conversion

wide-characters are described below.

The fwscanf functions execute each directive of the format in turn. If a directive fails, as detailed below,

the function returns. Failures are described as input failures (due to the unavailability of input bytes) or

matching failures (due to inappropriate input).

A directive composed of one or more white-space wide-characters is executed by reading input until no

more valid input can be read, or up to the first wide-character which is not a white-space wide-character,

which remains unread.

A directive that is an ordinary wide-character is executed as follows. The next wide-character is read from

the input and compared with the wide-character that comprises the directive; if the comparison shows that

they are not equivalent, the directive fails, and the differing and subsequent wide-characters remain

unread.

A directive that is a conversion specification defines a set of matching input sequences, as described

below for each conversion wide-character. A conversion specification is executed in the following steps:

Input white-space wide-characters (as specified by iswspace) are skipped, unless the conversion

specification includes a [, c or n conversion character.

An item is read from the input, unless the conversion specification includes an n conversion

wide-character. An input item is defined as the longest sequence of input wide-characters, not exceeding

any specified field width, which is an initial subsequence of a matching sequence. The first wide-character,

if any, after the input item remains unread. If the length of the input item is 0, the execution of the

conversion specification fails; this condition is a matching failure, unless end-of-file, an encoding error, or a

read error prevented input from the stream, in which case it is an input failure.

Except in the case of a % conversion wide-character, the input item (or, in the case of a %n conversion

specification, the count of input wide-characters) is converted to a type appropriate to the conversion

wide-character. If the input item is not a matching sequence, the execution of the conversion specification

fails; this condition is a matching failure. Unless assignment suppression was indicated by a *, the result of

Base Operating System (BOS) Runtime Services (A-P) 325

the conversion is placed in the object pointed to by the first argument following the format argument that

has not already received a conversion result if the conversion specification is introduced by %, or in the

nth argument if introduced by the wide-character sequence %n$. If this object does not have an

appropriate type, or if the result of the conversion cannot be represented in the space provided, the

behavior is undefined.

The following conversion wide-characters are valid:

 d Matches an optionally signed decimal integer, whose format is the same as expected for the subject

sequence of wcstol with the value 10 for the base argument. In the absence of a size modifier, the

corresponding argument must be a pointer to int.

i Matches an optionally signed integer, whose format is the same as expected for the subject sequence

of wcstol with 0 for the base argument. In the absence of a size modifier, the corresponding argument

must be a pointer to int.

o Matches an optionally signed octal integer, whose format is the same as expected for the subject

sequence of wcstoul with the value 8 for the base argument. In the absence of a size modifier, the

corresponding argument must be a pointer to unsigned int.

u Matches an optionally signed decimal integer, whose format is the same as expected for the subject

sequence of wcstoul with the value 10 for the base argument. In the absence of a size modifier, the

corresponding argument must be a pointer to unsigned int.

x Matches an optionally signed hexadecimal integer, whose format is the same as expected for the

subject sequence of wcstoul with the value 16 for the base argument. In the absence of a size

modifier, the corresponding argument must be a pointer to unsigned int.

e, f, g Matches an optionally signed floating-point number, whose format is the same as expected for the

subject sequence of wcstod . In the absence of a size modifier, the corresponding argument must be a

pointer to float.

If the fwprintf family of functions generates character string representations for infinity and NaN (a

7858 symbolic entity encoded in floating-point format) to support the ANSI/IEEE Std 754:1985

standard, the fwscanf5 family of functions will recognise them as input.

s Matches a sequence of non white-space wide-characters. If no l (ell) qualifier is present, characters

from the input field are converted as if by repeated calls to the wcrtomb function, with the conversion

state described by an mbstate_t object initialised to zero before the first wide-character is converted.

The corresponding argument must be a pointer to a character array large enough to accept the

sequence and the terminating null character, which will be added automatically.

Otherwise, the corresponding argument must be a pointer to an array of wchar_t large enough to

accept the sequence and the terminating null wide-character, which will be added automatically.

[Matches a non-empty sequence of wide-characters from a set of expected wide-characters (the

scanset). If no l (ell) qualifier is present, wide-characters from the input field are converted as if by

repeated calls to the wcrtomb function, with the conversion state described by an mbstate_t object

initialised to zero before the first wide-character is converted. The corresponding argument must be a

pointer to a character array large enough to accept the sequence and the terminating null character,

which will be added automatically.

If an l (ell) qualifier is present, the corresponding argument must be a pointer to an array of wchar_t

large enough to accept the sequence and the terminating null wide-character, which will be added

automatically

The conversion specification includes all subsequent wide characters in the format string up to and

including the matching right square bracket (]). The wide-characters between the square brackets (the

scanlist) comprise the scanset, unless the wide-character after the left square bracket is a circumflex

(^), in which case the scanset contains all wide-characters that do not appear in the scanlist between

the circumflex and the right square bracket. If the conversion specification begins with [] or [^], the

right square bracket is included in the scanlist and the next right square bracket is the matching right

square bracket that ends the conversion specification; otherwise the first right square bracket is the one

that ends the conversion specification. If a - is in the scanlist and is not the first wide-character, nor the

second where the first wide-character is a ^;, nor the last wide-character, the behavior is

implementation-dependent.

326 Technical Reference, Volume 1: Base Operating System and Extensions

c Matches a sequence of wide-characters of the number specified by the field width (1 if no field width is

present in the conversion specification). If no l (ell) qualifier is present, wide-characters from the input

field are converted as if by repeated calls to the wcrtomb function, with the conversion state described

by an mbstate_t object initialised to zero before the first wide-character is converted. The

corresponding argument must be a pointer to a character array large enough to accept the sequence.

No null character is added.

Otherwise, the corresponding argument must be a pointer to an array of wchar_t large enough to

accept the sequence. No null wide-character is added.

p Matches an implementation-dependent set of sequences, which must be the same as the set of

sequences that is produced by the %p conversion of the corresponding fwprintf functions. The

corresponding argument must be a pointer to a pointer to void. The interpretation of the input item is

implementation-dependent. If the input item is a value converted earlier during the same program

execution, the pointer that results will compare equal to that value; otherwise the behavior of the %p

conversion is undefined.

n No input is consumed. The corresponding argument must be a pointer to the integer into which is to be

written the number of wide-characters read from the input so far by this call to the fwscanf functions.

Execution of a %n conversion specification does not increment the assignment count returned at the

completion of execution of the function.

C Same as lc.

S Same as ls.

% Matches a single %; no conversion or assignment occurs. The complete conversion specification must

be %%.

If a conversion specification is invalid, the behavior is undefined.

The conversion characters E, G and X are also valid and behave the same as, respectively, e, g and x.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before any

wide-characters matching the current conversion specification (except for %n) have been read (other than

leading white-space, where permitted), execution of the current conversion specification terminates with an

input failure. Otherwise, unless execution of the current conversion specification is terminated with a

matching failure, execution of the following conversion specification (if any) is terminated with an input

failure.

Reaching the end of the string in swscanf is equivalent to encountering end-of-file for fwscanf.

If conversion terminates on a conflicting input, the offending input is left unread in the input. Any trailing

white space (including newline) is left unread unless matched by a conversion specification. The success

of literal matches and suppressed assignments is only directly determinable via the %n conversion

specification.

The fwscanf and wscanf functions may mark the st_atime field of the file associated with stream for

update. The st_atime field will be marked for update by the first successful execution of fgetc, fgetwc,

fgets, fgetws, fread, getc, getwc, getchar, getwchar, gets, fscanf or fwscanf using stream that returns

data not supplied by a prior call to ungetc.

In format strings containing the % form of conversion specifications, each argument in the argument list is

used exactly once.

Return Values

Upon successful completion, these functions return the number of successfully matched and assigned

input items; this number can be 0 in the event of an early matching failure. If the input ends before the first

matching failure or conversion, EOF is returned. If a read error occurs the error indicator for the stream is

set, EOF is returned, and errno is set to indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 327

Error Codes

For the conditions under which the fwscanf functions will fail and may fail, refer to fgetwc. In addition,

fwscanf may fail if:

 EILSEQ Input byte sequence does not form a valid character.

EINVAL There are insufficient arguments.

Examples

The call:

 int i, n; float x; char name[50];

 n = wscanf(L"%d%f%s", &i, &x, name);

with the input line:

 25 54.32E-1 Hamster

will assign to n the value 3, to i the value 25, to x the value 5.432, and name will contain the string

Hamster.

The call:

 int i; float x; char name[50];

 (void) wscanf(L"%2d%f%*d %[0123456789]", &i, &x, name);

with input:

 56789 0123 56a72

will assign 56 to i, 789.0 to x, skip 0123, and place the string 56\0 in name. The next call to getchar will

return the character a.

Related Information

The getwc (“getwc, fgetwc, or getwchar Subroutine” on page 468) subroutine, fwprintf (“fwprintf, wprintf,

swprintf Subroutines” on page 320) subroutine, setlocale subroutine, wcstod subroutine, wcstol

subroutine, wcstoul subroutine, wctomb subroutine.

The wchar.h file.

gai_strerror Subroutine

Purpose

Facilitates consistent error information from EAI_* values returned by the getaddrinfo subroutine.

Library

Library (libc.a)

Syntax

#include <sys/socket.h>

#include <netdb.h>

char *

gai_strerror (ecode)

int ecode;

int

328 Technical Reference, Volume 1: Base Operating System and Extensions

gai_strerror_r (ecode, buf, buflen)

int ecode;

char *buf;

int buflen;

Description

For multithreaded environments, the second version should be used. In gai_strerror_r, buf is a pointer to

a data area to be filled in. buflen is the length (in bytes) available in buf.

It is the caller’s responsibility to insure that buf is sufficiently large to store the requested information,

including a trailing null character. It is the responsibility of the function to insure that no more than buflen

bytes are written into buf.

Return Values

If successful, a pointer to a string containing an error message appropriate for the EAI_* errors is returned.

If ecode is not one of the EAI_* values, a pointer to a string indicating an unknown error is returned.

Related Information

The getaddrinfo Subroutine, freeaddrinfo Subroutine, and getnameinfo Subroutine articles in AIX 5L

Version 5.3 Technical Reference: Communications Volume 2.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

gamma Subroutine

Purpose

Computes the natural logarithm of the gamma function.

Libraries

The gamma:

IEEE Math Library (libm.a)

or System V Math Library (libmsaa.a)

Syntax

#include <math.h>

extern int signgam;

double gamma (x)

double x;

Description

The gamma subroutine computes the logarithm of the gamma function.

The sign of gamma(x) is returned in the external integer signgam.

Note: Compile any routine that uses subroutines from the libm.a with the -lm flag. To compile the

lgamma.c file, enter:

cc lgamma.c -lm

Parameters

 x Specifies the value to be computed.

Base Operating System (BOS) Runtime Services (A-P) 329

Related Information

“exp, expf, or expl Subroutine” on page 241, “feclearexcept Subroutine” on page 259, “fetestexcept

Subroutine” on page 267, and “class, _class, finite, isnan, or unordered Subroutines” on page 165.

The exp, expm1, log, log10, log1p or pow (“exp, expf, or expl Subroutine” on page 241) subroutine,

matherr (“matherr Subroutine” on page 775) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

128-Bit long double Floating-Point Format in AIX 5L Version 5.3 General Programming Concepts: Writing

and Debugging Programs.

math.h in AIX 5L Version 5.3 Files Reference.

gencore or coredump Subroutine

Purpose

Creates a core file without terminating the process.

Library

Standard C Library (libc.a)

Syntax

#include <core.h>

int gencore (coredumpinfop)

struct coredumpinfo *coredumpinfop;

int coredump (coredumpinfop)

struct coredumpinfo *coredumpinfop;

Description

The gencore and coredump subroutines create a core file of a process without terminating it. The core

file contains the snapshot of the process at the time the call is made and can be used with the dbx

command for debugging purposes.

If any thread of the process is in a system call when its snapshot core file is generated, the register

information returned may not be reliable (except for the stack pointer). To save all user register contents

when a system call is made so that they are available to the gencore and coredump subroutines, the

application should be built using the "-bM:UR" flags.

If any thread of the process is sleeping inside the kernel or stopped (possibly for job control), the caller of

the gencore and coredump subroutines will also be blocked until the thread becomes runnable again.

Thus, these subroutines may take a long time to complete depending upon the target process state.

The coredump subroutine always generates a core file for the process from which it is called. This

subroutine has been replaced by the gencore subroutine and is being provided for compatibility reasons

only.

330 Technical Reference, Volume 1: Base Operating System and Extensions

The gencore subroutine creates a core file for the process whose process ID is specified in the pid field of

the coredumpinfo structure. For security measures, the user ID (uid) and group ID (gid) of the core file

are set to the uid and gid of the process.

Both these subroutines return success even if the core file cannot be created completely because of

filesystem space constraints. When using the dbx command with an incomplete core file, dbx may warn

that the core file is truncated.

In the ″Change / Show Characteristics of Operating System″ smitty screen, there are two options

regarding the creation of the core file. The core file will always be created in the default core format and

will ignore the value specified in the ″Use pre-430 style CORE dump″ option. However, the value

specified for the ″Enable full CORE dump″ option will be considered when creating the core file.

Resource limits of the target process for file and coredump will be enforced.

The coredumpinfo structure contains the following fields:

 Member Type Member Name Description

unsigned int length Length of the core file name.

char * name Name of the core file.

pid_t pid ID of the process to be coredumped.

int flags Flags-version flag. Set this to

COREGEN_VERSION_1.

Note: The pid and flags fields are required for the gencore subroutine, but are ignored for the coredump

subroutine

Parameters

 coredumpinfop Specifies the address of the coredumpinfo structure that provides the file name to save

the core snapshot and its length. For the gencore subroutine, it also provides the

process id of the process whose core is to be dumped and a flag which includes version

flag bits. The version flag value must be set to COREGEN_VERSION_1.

Return Values

Upon successful completion, the gencore and coredump subroutines return a 0. If unsuccessful, a -1 is

returned, and the errno global variable is set to indicate the error

Error Codes

 EACCESS Search permission is denied on a component of the path prefix, the file exists and

permissions specified by the mode are denied, or the file does not exist and write

permission is denied for the parent directory of the file to be created.

ENOENT The name field in the coredumpinfo parameter points to an empty string.

EINTR The subroutine was interrupted by a signal before it could complete.

ENAMETOOLONG The value of the length field in the coredumpinfop structure or the length of the

absolute path of the specified core file name is greater than MAXPATHLEN (as defined

in the sys/param.h file).

EINVAL The value of the length field in the coredumpinfop structure is 0.

EAGAIN The target process is already in the middle of another gencore or coredump

subroutine.

ENOMEM Unable to allocate memory resources to complete the subroutine.

Base Operating System (BOS) Runtime Services (A-P) 331

In addition to the above, the following errno values can be set when the gencore subroutine is

unsuccessful:

 EPERM The real or effective user ID of the calling process does

not match the real or effective user ID of target process or

the calling process does not have root user authority.

ESRCH There is no process whose ID matches the value specified

in the pid field of the coredumpinfop parameter or the

process is exiting.

EINVAL The flags field in the coredumpinfop parameter is not set

to a valid version value.

Related Information

The adb Command, in AIX 5L Version 5.3 Commands Reference, Volume 1.

The dbx command, and gencore Command in AIX 5L Version 5.3 Commands Reference, Volume 2.

The core file format in AIX 5L Version 5.3 Files Reference.

genpagvalue Subroutine

Purpose

Sets the current process credentials.

Library

Security Library (libc.a)

Syntax

#include <pag.h>

int genpagvalue(pag_name, pag_value,pag_flags);

char * pag_name;

uint64_t * pag_value;

int pag_flags;

Description

The genpagvalue subroutine generates a new PAG value for a given PAG name. For this function to

succeed, the PAG name must be registered with the operating system before calling the genpagvalue

subroutine. The genpagvalue subroutine is limited to maintaining information about the last generated

PAG number and accordingly generating a new number. This service can optionally store the PAG value in

the process’s cred structure. It does not monitor the PAG values stored in the cred structure by other

means.

The PAG value returned is of size 64 bits. The number of significant bits is determined by the requested

PAG type. 32-bit PAGs have 32 significant bits. 64-bit PAGs have 62 significant bits.

A process must have root authority to invoke this function for 32-bit PAG types. Any process may invoke

this function for 64-bit PAG types.

The pag_flags parameter with the value PAG_SET_VALUE causes the generated value to be atomically

stored in the process’s credentials. The pag_flags parameter with both the PAG_SET_VALUE and

PAG_COPY_CRED values set causes the current process’s credentials to be duplicated before the

generated value is stored.

332 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 pag_name The name parameter is a 1 to 4 character, NULL terminated name for the PAG type. Typical

values include afs, dfs, pki and krb5.

pag_value This pointer points to a buffer where the OS will return the newly generated PAG value.

pag_flags These flags control the behavior of the getpagvalue subroutine. This must be set to 0 or one or

more of the values PAG_SET_VALUE or PAG_COPY_CRED.

Return Values

A value of 0 is returned upon successful completion. If the genpagvalue subroutine fails a value of -1 is

returned and the errno global variable is set to indicate the error.

Error Codes

The genpagvalue subroutine fails if one or more of the following are true:

 EINVAL The PAG value cannot be generated because the named PAG type does not exist as part of the

table.

EPERM The process does not have the correct authority to use the service.

Other errors might be set by subroutines invoked by the genpagvalue subroutine.

Related Information

__pag_getid System Call, __pag_getname System Call, __pag_getvalue System Call, __pag_setname

System Call, __pag_setvalue System Call, kcred_genpagvalue Kernel Service, kcred_getpagid Kernel

Service, kcred_getpagname Kernel Service in AIX 5L Version 5.3 Technical Reference: Kernel and

Subsystems Volume 1.

List of Security and Auditing Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing

and Debugging Programs.

get_malloc_log Subroutine

Purpose

Retrieves information about the malloc subsystem.

Syntax

#include <malloc.h>

size_t get_malloc_log (addr, buf, bufsize)

void *addr;

void *buf;

size_t bufsize;

Description

The get_malloc_log subroutine retrieves a record of currently active malloc allocations. These records are

stored as an array of malloc_log structures, which are copied from the process heap into the buffer

specified by the buf parameter. No more than bufsize bytes are copied into the buffer. Only records

corresponding to the heap of which addr is a member are copied, unless addr is NULL, in which case

records from all heaps are copied. The addr parameter must be either a pointer to space allocated

previously by the malloc subsystem or NULL.

Base Operating System (BOS) Runtime Services (A-P) 333

Parameters

 addr Pointer to a space allocated by the malloc subsystem.

buf Specifies into which buffer the malloc_log structures are stored.

bufsize Specifies the number of bytes that can be copied into the buffer.

Return Values

The get_malloc_log subroutine returns the number of bytes actually transferred into the bufsize

parameter. If Malloc Log is not enabled, 0 is returned. If addr is not a pointer allocated by the malloc

subsystem, 0 is returned and the errno global variable is set to EINVAL.

Related Information

“malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign Subroutine”

on page 764, and “get_malloc_log_live Subroutine.”

reset_malloc_log Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and

Extensions Volume 2.

get_malloc_log_live Subroutine

Purpose

Provides information about the malloc subsystem.

Syntax

#include <malloc.h>

struct malloc_log* get_malloc_log_live (addr)

void *addr;

Description

The get_malloc_log_live subroutine provides access to a record of currently active malloc allocations.

The information is stored as an array of malloc_log structures, which are located in the process heap.

This data is volatile and subject to update. The addr parameter must be either a pointer to space allocated

previously by the malloc subsystem or NULL.

Parameters

 addr Pointer to space allocated previously by the malloc subsystem

Return Values

The get_malloc_log_live subroutine returns a pointer to the process heap at which the records of current

malloc allocations are stored. If the addr parameter is NULL, a pointer to the beginning of the array is

returned. If addr is a pointer to space allocated previously by the malloc subsystem, the pointer returned

corresponds to records of the same heap as addr. If Malloc Log is not enabled, NULL is returned. If addr

is not a pointer allocated by the malloc subsystem, NULL is returned and the errno global variable is set

to EINVAL.

Related Information

“malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign Subroutine”

on page 764, and “get_malloc_log Subroutine” on page 333.

334 Technical Reference, Volume 1: Base Operating System and Extensions

reset_malloc_log Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and

Extensions Volume 2.

get_speed, set_speed, or reset_speed Subroutines

Purpose

Set and get the terminal baud rate.

Library

Standard C Library (libc.a)

Syntax

#include <sys/str_tty.h>

int get_speed (FileDescriptor)

int FileDescriptor;

int set_speed (FileDescriptor, Speed)

int FileDescriptor;

int Speed;

int reset_speed (FileDescriptor)

int FileDescriptor;

Description

The baud rate functions set_speed subroutine and get_speed subroutine are provided top allow the user

applications to program any value of the baud rate that is supported by the asynchronous adapter, but that

cannot be expressed using the termios subroutines cfsetospeed, cfsetispeed, cfgetospeed, and

cfsgetispeed. Those subroutines are indeed limited to the set values {BO, B50, ..., B38400} described in

<termios.h>.

Interaction with the termios Baud flags:

If the terminal’s device driver supports these subroutines, it has two interfaces for baud rate manipulation.

Operation for Baud Rate:

normal mode: This is the default mode, in which a termios supported speed is in use.

speed-extended mode: This mode is entered either by calling set_speed subroutine a non-termios

supported speed at the configuration of the line.

In this mode, all the calls to tcgetattr subroutine or TCGETS ioctl subroutine will have B50 in the returned

termios structure.

If tcsetatt subroutine or TCSETS, TCSETAF, or TCSETAW ioctl subroutines is called and attempt to set

B50, the actual baud rate is not changed. If is attempts to set any other termios-supported speed, the

driver will switch back to the normal mode and the requested baud rate is set. Calling reset_speed

subroutine is another way to switch back to the normal mode.

Parameters

 FileDescriptor Specifies an open file descriptor.

Speed The integer value of the requested speed.

Base Operating System (BOS) Runtime Services (A-P) 335

Return Values

Upon successful completion, set_speed and reset_speed return a value of 0, and get_speed returns a

positive integer specifying the current speed of the line. Otherwise, a value of -1 is returned and the errno

global variable is set to indicate the error.

Error Codes

 EINVAL The FileDescriptor parameter does not specify a valid file descriptor for a tty the recognizes the

set_speed, get_speed and reset_speed subroutines, or the Speed parameter of set_speed is

not supported by the terminal.

Plus all the errno codes that may be set in case of failure in an ioctl subroutine issued to a streams

based tty.

Related Information

cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed (“cfgetospeed, cfsetospeed, cfgetispeed, or

cfsetispeed Subroutine” on page 140) subroutines.

getargs Subroutine

Purpose

Gets arguments of a process.

Library

Standard C library (libc.a)

Syntax

#include <procinfo.h>

#include <sys/types.h>

int getargs (processBuffer, bufferLen, argsBuffer, argsLen)

struct procsinfo *processBuffer

or struct procentry64 *processBuffer;

int bufferLen;

char *argsBuffer;

int argsLen;

Description

The getargs subroutine returns a list of parameters that were passed to a command when it was started.

Only one process can be examined per call to getargs.

The getargs subroutine uses the pi_pid field of processBuffer to determine which process to look for.

bufferLen should be set to the size of struct procsinfo or struct procentry64. Parameters are returned in

argsBuffer, which should be allocated by the caller. The size of this array must be given in argsLen.

On return, argsBuffer consists of a succession of strings, each terminated with a null character (ascii `\0’).

Hence, two consecutive NULLs indicate the end of the list.

Note: The arguments may be changed asynchronously by the process, but results are not guaranteed to

be consistent.

336 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

processBuffer

Specifies the address of a procsinfo or procentry64 structure, whose pi_pid field should contain

the pid of the process that is to be looked for.

bufferLen

Specifies the size of a single procsinfo or procentry64 structure.

argsBuffer

Specifies the address of an array of characters to be filled with a series of strings representing the

parameters that are needed. An extra NULL character marks the end of the list. This array must be

allocated by the caller.

argsLen

Specifies the size of the argsBuffer array. No more than argsLen characters are returned.

Return Values

If successful, the getargs subroutine returns zero. Otherwise, a value of -1 is returned and the errno

global variable is set to indicate the error.

Error Codes

The getargs subroutine does not succeed if the following are true:

 ESRCH The specified process does not exist.

EFAULT The copy operation to the buffer was not successful or the processBuffer or

argsBuffer parameters are invalid.

EINVAL The bufferLen parameter does not contain the size of a single procsinfo or

procentry64 structure.

ENOMEM There is no memory available in the address space.

Related Information

The getevars (“getevars Subroutine” on page 358), getpid (“getpid, getpgrp, or getppid Subroutine” on

page 398), getpgrp (“getpid, getpgrp, or getppid Subroutine” on page 398), getppid (“getpid, getpgrp, or

getppid Subroutine” on page 398), getprocs or getthrds (“getthrds Subroutine” on page 434) subroutines.

The ps command.

getaudithostattr, IDtohost, hosttoID, nexthost or putaudithostattr

Subroutine

Purpose

Accesses the host information in the audit host database.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

int getaudithostattr (Hostname, Attribute, Value, Type)

char *Hostname;

char *Attribute;

void *Value;

Base Operating System (BOS) Runtime Services (A-P) 337

int Type;

char *IDtohost (ID);

char *ID;

char *hosttoID (Hostname, Count);

char *Hostname;

int Count;

char *nexthost (void);

int putaudithostattr (Hostname, Attribute, Value, Type);

char *Hostname;

char *Attribute;

void *Value;

int Type;

Description

These subroutines access the audit host information.

The getaudithostattr subroutine reads a specified attribute from the host database. If the database is not

already open, this subroutine does an implicit open for reading.

Similarly the putaudithostattr subroutine writes a specified attribute into the host database. If the

database is not already open, this subroutine does an implicit open for reading and writing. Data changed

by the putaudithostattr must be explicitly committed by calling the putaudithostattr subroutine with a

Type of SEC_COMMIT. Until all the data is committed, only these subroutines within the process return

written data.

New entries in the host database must first be created by invoking putaudithostattr with the SEC_NEW

type.

The IDtohost subroutine converts an 8 byte host identifier into a hostname.

The hosttoID subroutine converts a hostname to a pointer to an array of valid 8 byte host identifiers. A

pointer to the array of identifiers is returned on success. A NULL pointer is returned on failure. The

number of known host identifiers is returned in *Count.

The nexthost subroutine returns a pointer to the name of the next host in the audit host database.

Parameters

 Attribute Specifies which attribute is read. The following possible

attributes are defined in the usersec.h file:

S_AUD_CPUID

Host identifier list. The attribute type is

SEC_LIST.

Count Specifies the number of 8 byte host identifier entries that

are available in the IDarray parameter or that have been

returned in the IDarray parameter.

Hostname Specifies the name of the host for the operation.

ID An 8 byte host identifier.

IDarray Specifies a pointer to an array of 1 or more 8 byte host

identifiers.

Type Specifies the type of attribute expected. Valid types are

defined in usersec.h. The only valid Type value is

SEC_LIST.

338 Technical Reference, Volume 1: Base Operating System and Extensions

Value The return value for read operations and the new value for

write operations.

Return Values

On successful completion, the getaudithostattr, IDtohost, hosttoID, nexthost, or putaudithostattr

subroutine returns 0. If unsuccessful, the subroutine returns non-zero.

Error Codes

The getaudithostattr, IDtohost, hosttoID, nexthost, or putaudithostattr subroutine fails if the following

is true:

 EINVAL If invalid attribute Name or if Count is equal to zero for the

hosttoID subroutine.

ENOENT If there is no matching Hostname entry in the database.

Related Information

The auditmerge command, auditpr command, auditselect command, auditstream command.

The auditread (“auditread, auditread_r Subroutines” on page 109) subroutine.

getauthdb or getauthdb_r Subroutine

Purpose

Finds the current administrative domain.

Library

Standard C Library (libc.a)

Syntax

#include <usersec.h>

int getauthdb (Value)

authdb_t *Value;

int getauthdb_r (Value)

authdb_t *Value;

Description

The getauthdb and getauthdb_r subroutines return the value of the current authentication domain in the

Value parameter. The getauthdb subroutine returns the value of the current process-wide authentication

domain. The getauthdb_r subroutine returns the authentication domain for the current thread if one has

been set. The subroutines return -1 if no administrative domain has been set.

Parameters

 Value A pointer to a variable of type authdb_t. The authdb_t

type is a 16-character array that contains the name of a

loadable authentication module.

Base Operating System (BOS) Runtime Services (A-P) 339

Return Values

 1 The value returned is from the process-wide data.

0 The value returned is from the thread-specific data. An

authentication database module has been specified by an

earlier call to the setauthdb subroutine. The name of the

current database module has been copied to the Value

parameter.

-1 The subroutine failed. An authentication database module

has not been specified by an earlier call to the setauthdb

subroutine.

Related Information

setauthdb or setauthdb_r Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System

and Extensions Volume 2.

getc, getchar, fgetc, or getw Subroutine

Purpose

Gets a character or word from an input stream.

Library

Standard I/O Package (libc.a)

Syntax

#include <stdio.h>

int getc (Stream)

FILE *Stream;

int fgetc (Stream)

FILE *Stream;

int getchar (void)

int getw (Stream)

FILE *Stream;

Description

The getc macro returns the next byte as an unsigned char data type converted to an int data type from

the input specified by the Stream parameter and moves the file pointer, if defined, ahead one byte in the

Stream parameter. The getc macro cannot be used where a subroutine is necessary; for example, a

subroutine pointer cannot point to it.

Because it is implemented as a macro, the getc macro does not work correctly with a Stream parameter

value that has side effects. In particular, the following does not work:

getc(*f++)

In such cases, use the fgetc subroutine.

The fgetc subroutine performs the same function as the getc macro, but fgetc is a true subroutine, not a

macro. The fgetc subroutine runs more slowly than getc but takes less disk space.

The getchar macro returns the next byte from stdin (the standard input stream). The getchar macro is

equivalent to getc(stdin).

340 Technical Reference, Volume 1: Base Operating System and Extensions

The first successful run of the fgetc, fgets, fgetwc, fgetws, fread, fscanf, getc, getchar, gets or scanf

subroutine using a stream that returns data not supplied by a prior call to the ungetc or ungetwc

subroutine marks the st_atime field for update.

The getc and getchar macros have also been implemented as subroutines for ANSI compatibility. To

access the subroutines instead of the macros, insert #undef getc or #undef getchar at the beginning of

the source file.

The getw subroutine returns the next word (int) from the input specified by the Stream parameter and

increments the associated file pointer, if defined, to point to the next word. The size of a word varies from

one machine architecture to another. The getw subroutine returns the constant EOF at the end of the file

or when an error occurs. Since EOF is a valid integer value, the feof and ferror subroutines should be

used to check the success of getw. The getw subroutine assumes no special alignment in the file.

Because of additional differences in word length and byte ordering from one machine architecture to

another, files written using the putw subroutine are machine-dependent and may not be readable using

the getw macro on a different type of processor.

Parameters

 Stream Points to the file structure of an open file.

Return Values

Upon successful completion, the getc, fgetc, getchar, and getw subroutines return the next byte or int

data type from the input stream pointed by the Stream parameter. If the stream is at the end of the file, an

end-of-file indicator is set for the stream and the integer constant EOF is returned. If a read error occurs,

the errno global variable is set to reflect the error, and a value of EOF is returned. The ferror and feof

subroutines should be used to distinguish between the end of the file and an error condition.

Error Codes

If the stream specified by the Stream parameter is unbuffered or data needs to be read into the stream’s

buffer, the getc, getchar, fgetc, or getw subroutine is unsuccessful under the following error conditions:

 EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor underlying the stream

specified by the Stream parameter. The process would be delayed in the fgetc subroutine

operation.

EBADF Indicates that the file descriptor underlying the stream specified by the Stream parameter is

not a valid file descriptor opened for reading.

EFBIG Indicates that an attempt was made to read a file that exceeds the process’ file-size limit or

the maximum file size. See the ulimit subroutine.

EINTR Indicates that the read operation was terminated due to the receipt of a signal, and either no

data was transferred, or the implementation does not report partial transfer for this file.

Note: Depending upon which library routine the application binds to, this subroutine may

return EINTR. Refer to the signal subroutine regarding sa_restart.

EIO Indicates that a physical error has occurred, or the process is in a background process group

attempting to perform a read subroutine call from its controlling terminal, and either the

process is ignoring (or blocking) the SIGTTIN signal or the process group is orphaned.

EPIPE Indicates that an attempt is made to read from a pipe or first-in-first-out (FIFO) that is not

open for reading by any process. A SIGPIPE signal will also be sent to the process.

EOVERFLOW Indicates that the file is a regular file and an attempt was made to read at or beyond the

offset maximum associated with the corresponding stream.

Base Operating System (BOS) Runtime Services (A-P) 341

The getc, getchar, fgetc, or getw subroutine is also unsuccessful under the following error conditions:

 ENOMEM Indicates insufficient storage space is available.

ENXIO Indicates either a request was made of a nonexistent device or the request was outside the

capabilities of the device.

Related Information

The feof, ferror, clearerr, or fileno (“feof, ferror, clearerr, or fileno Macro” on page 264) subroutine,

freopen, fopen, or fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page

281)subroutine, fread or fwrite (“fread or fwrite Subroutine” on page 304) subroutine, getwc, fgetwc, or

getwchar (“getwc, fgetwc, or getwchar Subroutine” on page 468)subroutine, get or fgets (“gets or fgets

Subroutine” on page 425) subroutine, putc, putchar, fputc, or putw (“putc, putchar, fputc, or putw

Subroutine” on page 1227) subroutine, scanf, sscanf, fscanf, or wsscanf subroutine.

List of Character Manipulation Services, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked

Subroutines

Purpose

stdio with explicit client locking.

Library

Standard Library (libc.a)

Syntax

#include <stdio.h>

int getc_unlocked (FILE * stream);

int getchar_unlocked (void);

int putc_unlocked (int c, FILE * stream);

int putchar_unlocked (int c);

Description

Versions of the functions getc, getchar, putc, and putchar respectively named getc_unlocked,

getchar_unlocked, putc_unlocked, and putchar_unlocked are provided which are functionally identical

to the original versions with the exception that they are not required to be implemented in a thread-safe

manner. They may only safely be used within a scope protected by flockfile (or ftrylockfile) and

funlockfile. These functions may safely be used in a multi-threaded program if and only if they are called

while the invoking thread owns the (FILE*) object, as is the case after a successful call of the flockfile or

ftrylockfile functions.

Return Values

See getc, getchar, putc, and putchar.

Related Information

The getc or getchar (“getc, getchar, fgetc, or getw Subroutine” on page 340) subroutine, putc or putchar

(“putc, putchar, fputc, or putw Subroutine” on page 1227) subroutine.

342 Technical Reference, Volume 1: Base Operating System and Extensions

getconfattr or putconfattr Subroutine

Purpose

Accesses the system information in the user database.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

#include <userconf.h>

int getconfattr (sys, Attribute, Value, Type)

char * sys;

char * Attribute;

void *Value;

int Type;

int putconfattr (sys, Attribute, Value, Type)

char * sys;

char * Attribute;

void *Value;

int Type;

Description

The getconfattr subroutine reads a specified attribute from the user database. The putconfattr subroutine

writes a specified attribute to the user database.

Parameters

sys System attribute. The following possible attributes are defined in the userconf.h file.

v SC_SYS_LOGIN

v SC_SYS_USER

v SC_SYS_ADMUSER

v SC_SYS_AUDIT SEC_LIST

v SC_SYS_AUSERS SEC_LIST

v SC_SYS_ASYS SEC_LIST

v SC_SYS_ABIN SEC_LIST

v SC_SYS_ASTREAM SEC_LIST

Attribute

Specifies which attribute is read. The following possible attributes are defined in the usersec.h file:

S_CORECOMP

Core compression status. The attribute type is SEC_CHAR.

S_COREPATH

Core path specification status. The attribute type is SEC_CHAR.

S_COREPNAME

Core path specification location. The attribute type is SEC_CHAR.

S_CORENAMING

Core naming status. The attribute type is SEC_CHAR.

Base Operating System (BOS) Runtime Services (A-P) 343

S_ID User ID. The attribute type is SEC_INT.

S_PGRP

Principle group name. The attribute type is SEC_CHAR.

S_GROUPS

Groups to which the user belongs. The attribute type is SEC_LIST.

S_ADMGROUPS

Groups for which the user is an administrator. The attribute type is SEC_LIST.

S_ADMIN

Administrative status of a user. The attribute type is SEC_BOOL.

S_AUDITCLASSES

Audit classes to which the user belongs. The attribute type is SEC_LIST.

S_AUTHSYSTEM

Defines the user’s authentication method. The attribute type is SEC_CHAR.

S_HOME

Home directory. The attribute type is SEC_CHAR.

S_SHELL

Initial program run by a user. The attribute type is SEC_CHAR.

S_GECOS

Personal information for a user. The attribute type is SEC_CHAR.

S_USRENV

User-state environment variables. The attribute type is SEC_LIST.

S_SYSENV

Protected-state environment variables. The attribute type is SEC_LIST.

S_LOGINCHK

Specifies whether the user account can be used for local logins. The attribute type is

SEC_BOOL.

S_HISTEXPIRE

Defines the period of time (in weeks) that a user cannot reuse a password. The attribute

type is SEC_INT.

S_HISTSIZE

Specifies the number of previous passwords that the user cannot reuse. The attribute type

is SEC_INT.

S_MAXREPEAT

Defines the maximum number of times a user can repeat a character in a new password.

The attribute type is SEC_INT.

S_MINAGE

Defines the minimum age in weeks that the user’s password must exist before the user

can change it. The attribute type is SEC_INT.

S_PWDCHECKS

Defines the password restriction methods for this account. The attribute type is SEC_LIST.

S_MINALPHA

Defines the minimum number of alphabetic characters required in a new user’s password.

The attribute type is SEC_INT.

S_MINDIFF

Defines the minimum number of characters required in a new password that were not in

the old password. The attribute type is SEC_INT.

344 Technical Reference, Volume 1: Base Operating System and Extensions

S_MINLEN

Defines the minimum length of a user’s password. The attribute type is SEC_INT.

S_MINOTHER

Defines the minimum number of non-alphabetic characters required in a new user’s

password. The attribute type is SEC_INT.

S_DICTIONLIST

Defines the password dictionaries for this account. The attribute type is SEC_LIST.

S_SUCHK

Specifies whether the user account can be accessed with the su command. Type

SEC_BOOL.

S_REGISTRY

Defines the user’s authentication registry. The attribute type is SEC_CHAR.

S_RLOGINCHK

Specifies whether the user account can be used for remote logins using the telnet or

rlogin commands. The attribute type is SEC_BOOL.

S_DAEMONCHK

Specifies whether the user account can be used for daemon execution of programs and

subsystems using the cron daemon or src. The attribute type is SEC_BOOL.

S_TPATH

Defines how the account may be used on the trusted path. The attribute type is

SEC_CHAR. This attribute must be one of the following values:

nosak The secure attention key is not enabled for this account.

notsh The trusted shell cannot be accessed from this account.

always

This account may only run trusted programs.

on Normal trusted-path processing applies.

S_TTYS

List of ttys that can or cannot be used to access this account. The attribute type is

SEC_LIST.

S_SUGROUPS

Groups that can or cannot access this account. The attribute type is SEC_LIST.

S_EXPIRATION

Expiration date for this account, in seconds since the epoch. The attribute type is

SEC_CHAR.

S_AUTH1

Primary authentication methods for this account. The attribute type is SEC_LIST.

S_AUTH2

Secondary authentication methods for this account. The attribute type is SEC_LIST.

S_UFSIZE

Process file size soft limit. The attribute type is SEC_INT.

S_UCPU

Process CPU time soft limit. The attribute type is SEC_INT.

S_UDATA

Process data segment size soft limit. The attribute type is SEC_INT.

Base Operating System (BOS) Runtime Services (A-P) 345

S_USTACK

Process stack segment size soft limit. Type: SEC_INT.

S_URSS

Process real memory size soft limit. Type: SEC_INT.

S_UCORE

Process core file size soft limit. The attribute type is SEC_INT.

S_PWD

Specifies the value of the passwd field in the /etc/passwd file. The attribute type is

SEC_CHAR.

S_UMASK

File creation mask for a user. The attribute type is SEC_INT.

S_LOCKED

Specifies whether the user’s account can be logged into. The attribute type is

SEC_BOOL.

S_UFSIZE_HARD

Process file size hard limit. The attribute type is SEC_INT.

S_UCPU_HARD

Process CPU time hard limit. The attribute type is SEC_INT.

S_UDATA_HARD

Process data segment size hard limit. The attribute type is SEC_INT.

S_USTACK_HARD

Process stack segment size hard limit. Type: SEC_INT.

S_URSS_HARD

Process real memory size hard limit. Type: SEC_INT.

S_UCORE_HARD

Process core file size hard limit. The attribute type is SEC_INT.

Note: These values are string constants that should be used by applications both for convenience

and to permit optimization in latter implementations.

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file and include:

SEC_INT

The format of the attribute is an integer.

 For the getuserattr subroutine, the user should supply a pointer to a defined integer

variable. For the putuserattr subroutine, the user should supply an integer.

SEC_CHAR

The format of the attribute is a null-terminated character string.

SEC_LIST

The format of the attribute is a series of concatenated strings, each null-terminated. The

last string in the series is terminated by two successive null characters.

SEC_BOOL

The format of the attribute from getuserattr is an integer with the value of either 0 (false)

or 1 (true). The format of the attribute for putuserattr is a null-terminated string containing

one of the following strings: true, false, yes, no, always, or never.

SEC_COMMIT

For the putuserattr subroutine, this value specified by itself indicates that changes to the

346 Technical Reference, Volume 1: Base Operating System and Extensions

named user are to be committed to permanent storage. The Attribute and Value

parameters are ignored. If no user is specified, the changes to all modified users are

committed to permanent storage.

SEC_DELETE

The corresponding attribute is deleted from the database.

SEC_NEW

Updates all the user database files with the new user name when using the putuserattr

subroutine.

Security

 Files Accessed:

 Mode File

rw /etc/security/user

rw /etc/security/limits

rw /etc/security/login.cfg

Return Values

If successful, returns 0

If unsuccessful, returns -1

Error Codes

 ENOENT The specified User parameter does not exist or the attribute is not defined for this user.

Files

 /etc/passwd Contains user IDs.

Related Information

The getuserattr (“getuserattr, IDtouser, nextuser, or putuserattr Subroutine” on page 445) subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

getconfattrs Subroutine

Purpose

Accesses system information in the system information database.

Library

Security Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 347

Syntax

#include <usersec.h>

#include <userconf.h>

int getconfattrs (Sys, Attributes, Count)

char * Sys;

dbattr_t * Attributes;

int Count

Description

The getconfattrs subroutine accesses system configuration information.

The getconfattrs subroutine reads one or more attributes from the system configuration database. If the

database is not already open, this subroutine does an implicit open for reading.

The Attributes array contains information about each attribute that is to be written. The dbattr_t data

structure contains the following fields:

attr_name

The name of the desired attribute.

attr_idx

Used internally by the getconfattrs subroutine.

attr_type

The type of the desired attribute. The list of attribute types is defined in the usersec.h header file.

attr_flag

The results of the request to read the desired attribute.

attr_un

A union containing the values to be written. Its union members that follow correspond to the

definitions of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:

un_char

Attributes of type SEC_CHAR and SEC_LIST store a pointer to the value to be written.

The caller is responsible for freeing this memory.

un_int Attributes of type SEC_INT and SEC_BOOL contain the value of the attribute to be

written.

un_long

Attributes of type SEC_LONG contain the value of the attribute to be written.

un_llong

Attributes of type SEC_LLONG contain the value of the attribute to be written.

attr_domain

The authentication domain containing the attribute. The getconfattrs subroutine is responsible for

managing the memory referenced by this pointer.

Use the setuserdb and enduserdb subroutines to open and close the system configuration database.

Failure to explicitly open and close the system database can result in loss of memory and performance.

Parameters

 Sys Specifies the name of the subsystem for which the attributes are to be read.

Attributes A pointer to an array of one or more elements of type dbattr_t. The list of system attributes

is defined in the usersec.h header file.

Count The number of array elements in Attributes.

348 Technical Reference, Volume 1: Base Operating System and Extensions

Security

Files accessed:

 Mode File

r /etc/security/.ids

r /etc/security/audit/config

r /etc/security/audit/events

r /etc/security/audit/objects

r /etc/security/login.cfg

r /etc/security/portlog

r /etc/security/roles

r /usr/lib/security/methods.cfg

r /usr/lib/security/mkuser.default

Return Values

If the named subsystem is valid, or the Sys attribute references an existing user or group for those

attributes where the Sys parameter is a named user or group, the getconfattrs subroutine returns 0.

Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error. Each element

in the Attributes array must be examined on a successful call to getconfattrs to determine if the Attributes

array entry was successfully retrieved.

Error Codes

The getconfattrs subroutine returns an error that indicates that the system attribute does or does not

exist. Additional errors can indicate an error querying the information databases for the requested

attributes.

 EINVAL The Attributes parameter is NULL.

EINVAL The Count parameter is less than 1.

ENOENT The specified Sys does not exist.

If the getconfattrs subroutine fails to query an attribute, one or more of the following errors is returned in

the attr_flag field of the corresponding Attributes element:

 EACCESS The user does not have access to the attribute specified in the attr_name field.

EINVAL The attr_type field in the Attributes entry contains an invalid type.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid data for

this type of attribute. Limited testing is possible and all errors might not be detected.

ENOMEM Memory could not be allocated to store the return value.

ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined for this

system table.

Files

 /etc/security/.ids The next available user and group ID values.

/etc/security/audit/config Bin and stream mode audit configuration parameters.

/etc/security/audit/events Format strings for audit event records.

/etc/security/audit/objects File system objects that are explicitly audited.

/etc/security/login.cfg Miscellaneous login relation parameters.

/etc/security/portlog Port login failure and locking history.

/etc/security/roles Definitions of administrative roles.

/usr/lib/security/methods.cfg Definitions of loadable authentication modules.

Base Operating System (BOS) Runtime Services (A-P) 349

/usr/lib/security/mkuser.default Default user attributes for administrative and nonadministrative

users.

Related Information

The “getconfattr or putconfattr Subroutine” on page 343.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

getcontext or setcontext Subroutine

Purpose

Initializes the structure pointed to by ucp to the context of the calling process.

Library

(libc.a)

Syntax

#include <ucontext.h>

int getcontext (ucontext_t *ucp);

int setcontext (const uncontext_t *ucp);

Description

The getcontext subroutine initalizes the structure pointed to by ucp to the current user context of the

calling process. The ucontext_t type that ucp points to defines the user context and includes the contents

of the calling process’ machine registers, the signal mask, and the current execution stack.

The setcontext subroutine restores the user context pointed to by ucp. A successful call to setcontext

subroutine does not return; program execution resumes at the point specified by the ucp argument passed

to setcontext subroutine. The ucp argument should be created either by a prior call to getcontext

subroutine, or by being passed as an argument to a signal handler. If the ucp argument was created with

getcontext subroutine, program execution continues as if the corresponding call of getcontext subroutine

had just returned. If the ucp argument was created with makecontext subroutine, program execution

continues with the function passed to makecontext subroutine. When that function returns, the process

continues as if after a call to setcontext subroutine with the ucp argument that was input to makecontext

subroutine. If the ucp argument was passed to a signal handler, program execution continues with the

program instruction following the instruction interrupted by the signal. If the uc_link member of the

ucontext_t structure pointed to by the ucp arguement is equal to 0, then this context is the main context,

and the process will exit when this context returns.

Parameters

 ucp A pointer to a user stucture.

Return Values

If successful, a value of 0 is returned. If unsuccessful, a value of -1 is returned and the errno global

variable is set to indicate the error.

350 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The getcontext and setcontext subroutines are unsuccessful if one of the following is true:

 EINVAL NULL ucp address

EFAULT Invalid ucp address

Related Information

The makecontext (“makecontext or swapcontext Subroutine” on page 774) subroutine, setjmp subroutine,

sigaltstack subroutine, sigaction subroutine, sigprocmask subroutine, and sigsetjmp subroutine.

getcwd Subroutine

Purpose

Gets the path name of the current directory.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

char *getcwd (Buffer, Size)

char *Buffer;

size_t Size;

Description

The getcwd subroutine places the absolute path name of the current working directory in the array pointed

to by the Buffer parameter, and returns that path name. The size parameter specifies the size in bytes of

the character array pointed to by the Buffer parameter.

Parameters

 Buffer Points to string space that will contain the path name. If the Buffer parameter value is a null

pointer, the getcwd subroutine, using the malloc subroutine, obtains the number of bytes of free

space as specified by the Size parameter. In this case, the pointer returned by the getcwd

subroutine can be used as the parameter in a subsequent call to the free subroutine. Starting the

getcwd subroutine with a null pointer as the Buffer parameter value is not recommended.

 Size Specifies the length of the string space. The value of the Size parameter must be at least 1 greater than

the length of the path name to be returned.

Return Values

If the getcwd subroutine is unsuccessful, a null value is returned and the errno global variable is set to

indicate the error. The getcwd subroutine is unsuccessful if the Size parameter is not large enough or if

an error occurs in a lower-level function.

Error Codes

If the getcwd subroutine is unsuccessful, it returns one or more of the following error codes:

 EACCES Indicates that read or search permission was denied for a component of the path name

Base Operating System (BOS) Runtime Services (A-P) 351

EINVAL Indicates that the Size parameter is 0 or a negative number.

ENOMEM Indicates that insufficient storage space is available.

ERANGE Indicates that the Size parameter is greater than 0, but is smaller than the length of the

path name plus 1.

Related Information

The getwd (“getwd Subroutine” on page 470) subroutine, malloc (“malloc, free, realloc, calloc, mallopt,

mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign Subroutine” on page 764) subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

getdate Subroutine

Purpose

Convert user format date and time.

Library

Standard C Library (libc.a)

Syntax

#include <time.h>

struct tm *getdate (const char *string)

extern int getdate_err

Description

The getdate subroutine converts user definable date and/or time specifications pointed to by string, into a

struct tm. The structure declaration is in the time.h header file (see ctime subroutine).

User supplied templates are used to parse and interpret the input string. The templates are contained in

text files created by the user and identified by the environment variable DATEMSK. The DATEMSK

variable should be set to indicate the full pathname of the file that contains the templates. The first line in

the template that matches the input specification is used for interpretation and conversation into the

internal time format.

The templates should follow a format where complex field descriptors are preceded by simpler ones. For

example:

%M

%H:%M

%m/%d/%y

%m/%d/%y %H:%M:%S

The following field descriptors are supported:

 %% Same as %.

%a Abbreviated weekday name.

%A Full weekday name.

%b Abbreviated month name.

%B Full month name.

%c Locale’s appropriate date and time representation.

%C Century number (00-99; leading zeros are permitted but not required)

%d Day of month (01 - 31: the leading zero is optional.

352 Technical Reference, Volume 1: Base Operating System and Extensions

%e Same as %d.

%D Date as %m/%d/%y.

%h Abbreviated month name.

%H Hour (00 - 23)

%I Hour (01 - 12)

%m Month number (01 - 12)

%M Minute (00 - 59)

%n Same as \n.

%p Locale’s equivalent of either AM or PM.

%r Time as %I:%M:%S %p

%R Time as %H: %M

%S Seconds (00 - 61) Leap seconds are allowed but are not predictable through use of algorithms.

%t Same as tab.

%T Time as %H: %M:%S

%w Weekday number (Sunday = 0 - 6)

%x Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year within century.

Note: When the environment variable XPG_TIME_FMT=ON, %y is the year within the century.

When a century is not otherwise specified, values in the range 69-99 refer to years in the

twentieth century (1969 to 1999, inclusive); values in the range 00-68 refer to 2000 to 2068,

inclusive.

%Y Year as ccyy (such as 1986)

%Z Time zone name or no characters if no time zone exists. If the time zone supplied by %Z is not

the same as the time zone getdate subroutine expects, an invalid input specification error will

result. The getdate subroutine calculates an expected time zone based on information supplied

to the interface (such as hour, day, and month).

The match between the template and input specification performed by the getdate subroutine is case

sensitive.

The month and weekday names can consist of any combination of upper and lower case letters. The used

can request that the input date or time specification be in a specific language by setting the LC_TIME

category (See the setlocale subroutine).

Leading zero’s are not necessary for the descriptors that allow leading zero’s. However, at most two digits

are allowed for those descriptors, including leading zero’s. Extra whitespace in either the template file or in

string is ignored.

The field descriptors %c, %x, and %X will not be supported if they include unsupported field descriptors.

Example 1 is an example of a template. Example 2 contains valid input specifications for the template.

Example 3 shows how local date and time specifications can be defined in the template.

The following rules apply for converting the input specification into the internal format:

v If only the weekday is given, today is assumed if the given month is equal to the current day and next

week if it is less.

v If only the month is given, the current month is assumed if the given month is equal to the current

month and next year if it is less and no year is given (the first day of month is assumed if no day is

given).

v If no hour, minute, and second are given, the current hour, minute and second are assumed.

v If no date is given, today is assumed if the given hour is greater than the current hour and tomorrow is

assumed if it is less.

Base Operating System (BOS) Runtime Services (A-P) 353

Return Values

Upon successful completion, the getdate subroutine returns a pointer to struct tm; otherwise, it returns a

null pointer and the external variable getdate_err is set to indicate the error.

Error Codes

Upon failure, a null pointer is returned and the variable getdate_err is set to indicate the error.

The following is a complete list of the getdate_err settings and their corresponding descriptions:

 1 The DATEMSK environment variable is null or undefined.

2 The template file cannot be opened for reading.

3 Failed to get file status information.

4 The template file is not a regular file.

5 An error is encountered while reading the template file.

6 Memory allocation failed (not enough memory available.

7 There is no line in the template that matches the input.

8 Invalid input specification, Example: February 31 or a time is specified that can not be represented in a

time_t (representing the time in seconds since 00:00:00 UTC, January 1, 1970).

Examples

1. The following example shows the possible contents of a template:

%m

%A %B %d, %Y, %H:%M:%S

%A

%B

%m/%d/%y %I %p

%d, %m, %Y %H:%M

at %A the %dst of %B in %Y

run job at %I %p, %B %dnd

&A den %d. %B %Y %H.%M Uhr

2. The following are examples of valid input specifications for the template in Example 1:

getdate ("10/1/87 4 PM")

getdate ("Friday")

getdate ("Friday September 18, 1987, 10:30:30")

getdate ("24,9,1986 10:30")

getdate ("at monday the 1st of december in 1986")

getdate ("run job at 3 PM. december 2nd")

If the LC_TIME category is set to a German locale that includes freitag as a weekday name and

oktober as a month name, the following would be valid:

getdate ("freitag den 10. oktober 1986 10.30 Uhr")

3. The following examples shows how local date and time specification can be defined in the template.

 Invocation Line in Template

getdate (″11/27/86″) %m/%d/%y

getdate (″27.11.86″0 %d.%m.%y

getdate (″86-11-27″) %y-%m-%d

getdate (″Friday 12:00:00″) %A %H:%M:%S

4. The following examples help to illustrate the above rules assuming that the current date Mon Sep 22

12:19:47 EDT 1986 and the LC_TIME category is set to the default ″C″ locale.

354 Technical Reference, Volume 1: Base Operating System and Extensions

Input Line in Template Date

Mon %a Mon Sep 22 12:19:47 EDT 1986

Sun %a Sun Sep 28 12:19:47 EDT 1986

Fri %a Fri Sep 26 12:19:47 EDT 1986

September %B Mon Sep1 12:19:47 EDT 1986

January %B Thu Jan 1 12:19:47 EDT 1986

December %B Mon Dec 1 12:19:47 EDT 1986

Sep Mon %b %a Mon Sep 1 12:19:47 EDT 1986

Jan Fri %b %a Fri Jan 2 12:19:47 EDT 1986

Dec Mon %b %a Mon Dec 1 12:19:47 EDT 1986

Jan Wed 1989 %b %a %Y Wed Jan 4 12:19:47 EDT 1986

Fri 9 %a %H Fri Sep 26 12:19:47 EDT 1986

Feb 10:30 %b %H: %S Sun Feb 1 12:19:47 EDT 1986

10:30 %H: %M Tue Sep 23 12:19:47 EDT 1986

13:30 %H: %M Mon Sep 22 12:19:47 EDT 1986

Related Information

The ctime (“ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine” on page 195), ctype

(“ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or isascii

Subroutines” on page 203), setlocale, strftime, and times (“getrusage, getrusage64, times, or vtimes

Subroutine” on page 419) subroutines.

getdtablesize Subroutine

Purpose

Gets the descriptor table size.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

int getdtablesize (void)

Description

The getdtablesize subroutine is used to determine the size of the file descriptor table.

The size of the file descriptor table for a process is set by the ulimit command or by the setrlimit

subroutine. The getdtablesize subroutine returns the current size of the table as reported by the getrlimit

subroutine. If getrlimit reports that the table size is unlimited, getdtablesize instead returns the value of

OPEN_MAX, which is the largest possible size of the table.

Note: The getdtablesize subroutine returns a runtime value that is specific to the version of the operating

system on which the application is running. In AIX 4.3.1, getdtablesize returns a value that is set in

the limits file, which can be different from system to system.

Base Operating System (BOS) Runtime Services (A-P) 355

Return Values

The getdtablesize subroutine returns the size of the descriptor table.

Related Information

The close (“close Subroutine” on page 173) subroutine, open (“open, openx, open64, creat, or creat64

Subroutine” on page 894) subroutine, select subroutine.

getea Subroutine

Purpose

Reads the value of an extended attribute.

Syntax

#include <sys/ea.h>

ssize_t getea(const char *path, const char *name,

 void *value, size_t size);

ssize_t fgetea(int filedes, const char *name, void *value, size_t size);

ssize_t lgetea(const char *path, const char *name,

 void *value, size_t size);

Description

Extended attributes are name:value pairs associated with the file system objects (such as files, directories,

and symlinks). They are extensions to the normal attributes that are associated with all objects in the file

system (that is, the stat(2) data).

The getea subroutine retrieves the value of the extended attribute identified by name and associated with

the given path in the file system. The length of the attribute value is returned. The fgetea subroutine is

identical to getea, except that it takes a file descriptor instead of a path. The lgetea subroutine is identical

to getea, except, in the case of a symbolic link, the link itself is interrogated rather than the file that it

refers to.

Parameters

 path The path name of the file.

name The name of the extended attribute. An extended attribute name is a NULL-terminated string.

value A pointer to a buffer in which the attribute will be stored. The value of an extended attribute is

an opaque byte stream of specified length.

size The size of the buffer. If size is 0, getea returns the current size of the named extended

attribute, which can be used to estimate whether the size of a buffer is sufficiently large

enough to hold the value associated with the extended attribute.

filedes A file descriptor for the file.

Return Values

If the getea subroutine succeeds, a nonnegative number is returned that indicates the size of the extended

attribute value. Upon failure, -1 is returned and errno is set appropriately.

Error Codes

 EACCES Caller lacks read permission on the base file, or lacks the appropriate ACL privileges for

named attribute read.

EFAULT A bad address was passed for path, name, or value.

356 Technical Reference, Volume 1: Base Operating System and Extensions

EFORMAT File system is capable of supporting EAs, but EAs are disabled.

EINVAL A path-like name should not be used (such as zml/file, . and ..).

ENAMETOOLONG The path or name value is too long.

ENOATTR The named attribute does not exist, or the process has no access to this attribute.

ERANGE The size of the value buffer is too small to hold the result.

ENOTSUP Extended attributes are not supported by the file system.

The errors documented for the stat(2) system call are also applicable here.

Related Information

“listea Subroutine” on page 714, removeea Subroutine, setea Subroutine, stateea Subroutine.

getenv Subroutine

Purpose

Returns the value of an environment variable.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

char *getenv (Name)

const char *Name;

Description

The getenv subroutine searches the environment list for a string of the form Name=Value. Environment

variables are sometimes called shell variables because they are frequently set with shell commands.

Parameters

 Name Specifies the name of an environment variable. If a string of the proper form is not present in the

current environment, the getenv subroutine returns a null pointer.

Return Values

The getenv subroutine returns a pointer to the value in the current environment, if such a string is present.

If such a string is not present, a null pointer is returned. The getenv subroutine normally does not modify

the returned string. The putenv subroutine, however, may overwrite or change the returned string. Do not

attempt to free the returned pointer. The getenv subroutine returns a pointer to the user’s copy of the

environment (which is static), until the first invocation of the putenv subroutine that adds a new

environment variable. The putenv subroutine allocates an area of memory large enough to hold both the

user’s environment and the new variable. The next call to the getenv subroutine returns a pointer to this

newly allocated space that is not static. Subsequent calls by the putenv subroutine use the realloc

subroutine to make space for new variables. Unsuccessful completion returns a null pointer.

Related Information

The putenv (“putenv Subroutine” on page 1231) subroutine.

Base Operating System (BOS) Runtime Services (A-P) 357

getevars Subroutine

Purpose

Gets environment of a process.

Library

Standard C library (libc.a)

Syntax

#include <procinfo.h>

#include <sys/types.h>

int getevars (processBuffer, bufferLen, argsBuffer, argsLen)

struct procsinfo *processBuffer

or struct procentry64 *processBuffer;

int bufferLen;

char *argsBuffer;

int argsLen;

Description

The getevars subroutine returns the environment that was passed to a command when it was started.

Only one process can be examined per call to getevars.

The getevars subroutine uses the pi_pid field of processBuffer to determine which process to look for.

bufferLen should be set to size of struct procsinfo or struct procentry64. Parameters are returned in

argsBuffer, which should be allocated by the caller. The size of this array must be given in argsLen.

On return, argsBuffer consists of a succession of strings, each terminated with a null character (ascii `\0’).

Hence, two consecutive NULLs indicate the end of the list.

Note: The arguments may be changed asynchronously by the process, but results are not guaranteed to

be consistent.

Parameters

processBuffer

Specifies the address of a procsinfo or procentry64 structure, whose pi_pid field should contain

the pid of the process that is to be looked for.

bufferLen

Specifies the size of a single procsinfo or procentry64 structure.

argsBuffer

Specifies the address of an array of characters to be filled with a series of strings representing the

parameters that are needed. An extra NULL character marks the end of the list. This array must be

allocated by the caller.

argsLen

Specifies the size of the argsBuffer array. No more than argsLen characters are returned.

Return Values

If successful, the getevars subroutine returns zero. Otherwise, a value of -1 is returned and the errno

global variable is set to indicate the error.

358 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The getevars subroutine does not succeed if the following are true:

 ESRCH The specified process does not exist.

EFAULT The copy operation to the buffer was not successful or the processBuffer or argsBuffer

parameters are invalid.

EINVAL The bufferLen parameter does not contain the size of a single procsinfo or procentry64

structure.

ENOMEM There is no memory available in the address space.

Related Information

The getargs (“getargs Subroutine” on page 336), getpid (“getpid, getpgrp, or getppid Subroutine” on page

398), getpgrp (“getpid, getpgrp, or getppid Subroutine” on page 398), getppid (“getpid, getpgrp, or

getppid Subroutine” on page 398), getprocs or getthrds (“getthrds Subroutine” on page 434) subroutines.

The ps command.

getfilehdr Subroutine

Purpose

Retrieves the header details of the advanced accounting data file.

Library

The libaacct.a library.

Syntax

#define <sys/aacct.h>

getfilehdr(filename, hdrinfo)

char *filename;

struct aacct_file_header *hdrinfo;

Description

The getfilehdr subroutine retrieves the advanced accounting data file header information in a structure of

type aacct_file_header and returns it to the caller through the structure pointer passed to it. The data file

header contains the system details such as the name of the host, the partition number, and the system

model.

Parameters

 filename Name of the advanced accounting data file.

hdrinfo Pointer to the aacct_file_header structure in which the header information is returned.

Security

No restrictions. Any user can call this function.

Return Values

 0 The call to the subroutine was successful.

-1 The call to the subroutine failed.

Base Operating System (BOS) Runtime Services (A-P) 359

Error Codes

 EINVAL The passed pointer is NULL.

ENOENT Specified data file does not exist.

EPERM Permission denied. Unable to read the data file.

Related Information

The “buildproclist Subroutine” on page 123, “buildtranlist or freetranlist Subroutine” on page 124,

“getproclist, getlparlist, or getarmlist Subroutine” on page 405.

Understanding the Advanced Accounting Subsystem.

getfirstprojdb Subroutine

Purpose

Retrieves details of the first project from the specified project database.

Library

The libaacct.a library.

Syntax

<sys/aacct.h>

getfirstprojdb(void *handle, struct project *project, char *comm)

Description

The getfirstprojdb subroutine retrieves the first project definitions from the project database, which is

controlled through the handle parameter. The caller must initialize the project database prior to calling this

routine with the projdballoc routine. Upon successful completion, the project information is copied to the

project structure specified by the caller. In addition, the associated project comment, if present, is copied to

the buffer pointed to by the comm parameter. The comment buffer is allocated by the caller and must have

a length of 1024 bytes.

There is an internal state (that is, the current project) associated with the project database. When the

project database is initialized, the current project is the first project in the database. The getnextprojdb

subroutine returns the current project and advances the current project assignment to the next project in

the database so that successive calls read each project entry in the database. The getfirstprojdb

subroutine can be used to reset the database, so that the initial project is the current project assignment.

Parameters

 handle Pointer to the projdb handle.

project Pointer to project structure where the retrieved data is stored.

comm Pointer to the comment buffer.

Security

No restriction. Any user can call this function.

360 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

 0 Success

-1 Failure

Error Codes

 EINVAL Invalid arguments, if passed pointer is NULL.

ENOENT No projects available.

Related Information

The “addprojdb Subroutine” on page 32, “chprojattrdb Subroutine” on page 157, “getnextprojdb Subroutine”

on page 387, “getprojdb Subroutine” on page 410, “getprojs Subroutine” on page 411, “projdballoc

Subroutine” on page 1089, “projdbfinit Subroutine” on page 1090, “projdbfree Subroutine” on page 1091,

rmprojdb Subroutine.

getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent

Subroutine

Purpose

Gets information about a file system.

Library

Standard C Library (libc.a)

Syntax

#include <fstab.h>

struct fstab *getfsent()

struct fstab *getfsspec (Special)

char *Special;

struct fstab *getfsfile(File)

char *File;

struct fstab *getfstype(Type)

char *Type;

void setfsent()

void endfsent()

Description

The getfsent subroutine reads the next line of the /etc/filesystems file, opening the file if necessary.

The setfsent subroutine opens the /etc/filesystems file and positions to the first record.

The endfsent subroutine closes the /etc/filesystems file.

The getfsspec and getfsfile subroutines sequentially search from the beginning of the file until a matching

special file name or file-system file name is found, or until the end of the file is encountered. The

getfstype subroutine does likewise, matching on the file-system type field.

Base Operating System (BOS) Runtime Services (A-P) 361

Note: All information is contained in a static area, which must be copied to be saved.

Parameters

 Special Specifies the file-system file name.

File Specifies the file name.

Type Specifies the file-system type.

Return Values

The getfsent, getfsspec, getfstype, and getfsfile subroutines return a pointer to a structure that contains

information about a file system. The header file fstab.h describes the structure. A null pointer is returned

when the end of file (EOF) is reached or if an error occurs.

Files

 /etc/filesystems Centralizes file system characteristics.

Related Information

The getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent (“getvfsent,

getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent Subroutine” on page 467) subroutine.

The filesystems file.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

getgid, getegid or gegidx Subroutine

Purpose

Gets the process group IDs.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

#include <sys/types.h>

gid_t getgid (void);

gid_t getegid (void);

#include <id.h>

gid_t getgidx (int type);

Description

The getgid subroutine returns the real group ID of the calling process.

The getegid subroutine returns the effective group ID of the calling process.

The getgidx subroutine returns the group ID indicated by the type parameter of the calling process.

These subroutines are part of Base Operating System (BOS) Runtime.

362 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

The getgid, getegidand getgidx subroutines return the requested group ID. The getgid and getegid

subroutines are always successful.

The getgidx subroutine will return -1 and set the global errno variable to EINVAL if the type parameter is

not one of ID_REAL, ID_EFFECTIVE or ID_SAVED.

Parameters

 type Specifies the group ID to get. Must be one of ID_REAL (real group ID), ID_EFFECTIVE (effective

group ID) or ID_SAVED (saved set-group ID).

Error Codes

If the getgidx subroutine fails the following is returned:

 EINVAL Indicates the value of the type parameter is invalid.

Related Information

The getgroups subroutine, initgroups subroutine, setgid subroutine, setgroups subroutine.

The groups command, setgroups command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine

Purpose

Accesses the basic group information in the user database.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <grp.h>

struct group *getgrent ();

struct group *getgrgid (GID)

gid_t GID;

struct group *getgrnam (Name)

const char * Name;

void setgrent ();

void endgrent ();

Description

Attention: The information returned by the getgrent, getgrnam, and getgrgid subroutines is stored in a

static area and is overwritten on subsequent calls. You must copy this information to save it.

Base Operating System (BOS) Runtime Services (A-P) 363

Attention: These subroutines should not be used with the getgroupattr subroutine. The results are

unpredictable.

The setgrent subroutine opens the user database if it is not already open. Then, this subroutine sets the

cursor to point to the first group entry in the database.

The getgrent, getgrnam, and getgrgid subroutines return information about the requested group. The

getgrent subroutine returns the next group in the sequential search. The getgrnam subroutine returns the

first group in the database whose name matches that of the Name parameter. The getgrgid subroutine

returns the first group in the database whose group ID matches the GID parameter. The endgrent

subroutine closes the user database.

Note: An ! (exclamation mark) is written into the gr_passwd field. This field is ignored and is present only

for compatibility with older versions of UNIX.

These subroutines also return the list of user members for the group. Currently, the list is limited to 2000

entries (this could change in the future to where all the entries for the group are returned).

The Group Structure

The group structure is defined in the grp.h file and has the following fields:

 gr_name Contains the name of the group.

gr_passwd Contains the password of the group.

Note: This field is no longer used.

gr_gid Contains the ID of the group.

gr_mem Contains the members of the group.

If the Network Information Service (NIS) is enabled on the system, these subroutines attempt to retrieve

the group information from the NIS authentication server.

Parameters

 GID Specifies the group ID.

Name Specifies the group name.

 Group Specifies the basic group information to enter into the user database.

Return Values

If successful, the getgrent, getgrnam, and getgrgid subroutines return a pointer to a valid group

structure. Otherwise, a null pointer is returned.

Error Codes

These subroutines fail if one or more of the following are returned:

 EIO Indicates that an input/output (I/O) error has occurred.

EINTR Indicates that a signal was caught during the getgrnam or getgrgid subroutine.

EMFILE Indicates that the maximum number of file descriptors specified by the OPEN_MAX value

are currently open in the calling process.

ENFILE Indicates that the maximum allowable number of files is currently open in the system.

To check an application for error situations, set the errno global variable to a value of 0 before calling the

getgrgid subroutine. If the errno global variable is set on return, an error occurred.

364 Technical Reference, Volume 1: Base Operating System and Extensions

File

 /etc/group Contains basic group attributes.

Related Information

“putgrent Subroutine” on page 1232

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

getgrgid_r Subroutine

Purpose

Gets a group database entry for a group ID.

Library

Thread-Safe C Library (libc_r.a)

Syntax

#include <sys/types.h>

#include <grp.h>

int getgrgid_r(gid_t gid,

struct group *grp,

char *buffer,

size_t bufsize,

struct group **result);

Description

The getgrgid_r subroutine updates the group structure pointed to by grp and stores a pointer to that

structure at the location pointed to by result. The structure contains an entry from the group database with

a matching gid. Storage referenced by the group structure is allocated from the memory provided with the

buffer parameter, which is bufsize characters in size. The maximum size needed for this buffer can be

determined with the {_SC_GETGR_R_SIZE_MAX} sysconf parameter. A NULL pointer is returned at the

location pointed to by result on error or if the requested entry is not found.

Return Values

Upon successful completion, getgrgid_r returns a pointer to a struct group with the structure defined in

<grp.h> with a matching entry if one is found. The getgrgid_r function returns a null pointer if either the

requested entry was not found, or an error occurred. On error, errno will be set to indicate the error.

The return value points to a static area that is overwritten by a subsequent call to the getgrent, getgrgid,

or getgrnam subroutine.

If successful, the getgrgid_r function returns zero. Otherwise, an error number is returned to indicate the

error.

Error Codes

The getgrgid_r function fails if:

 ERANGE Insufficient storage was supplied via buffer and bufsize to contain the data to be referenced

by the resulting group structure.

Base Operating System (BOS) Runtime Services (A-P) 365

Applications wishing to check for error situations should set errno to 0 before calling getgrgid_r. If errno is

set on return, an error occurred.

Related Information

The getgrent, getgrgid, getgrnam, setgrent, endgrent (“getgrent, getgrgid, getgrnam, setgrent, or

endgrent Subroutine” on page 363) subroutine.

The <grp.h>, <limits.h>, and <sys/types.h> header files.

getgrnam_r Subroutine

Purpose

Search a group database for a name.

Library

Thread-Safe C Library (libc_r.a)

Syntax

#include <sys/types.h>

#include <grp.h>

int getgrnam_r (const char **name,

struct group *grp,

char *buffer,

size_t bufsize,

struct group **result);

Description

The getgrnam_r function updates the group structure pointed to by grp and stores pointer to that

structure at the location pointed to by result. The structure contains an entry from the group database with

a matching gid or name. Storage referenced by the group structure is allocated from the memory provided

with the buffer parameter, which is bufsize characters in size. The maximum size needed for this buffer

can be determined with the {_SC_GETGR_R_SIZE_MAX} sysconf parameter. A NULL pointer is returned

at the location pointed to by result on error or if the requested entry is not found.

Return Values

The getgrnam_r function returns a pointer to a struct group with the structure defined in <grp.h> with a

matching entry if one is found. The getgrnam_r function returns a null pointer if either the requested entry

was not found, or an error occurred. On error, errno will be set to indicate the error.

The return value points to a static area that is overwritten by a subsequent call to the getgrent, getgrgid,

or getgrnam subroutine.

If successful, the getgrnam_r function returns zero. Otherwise, an error number is returned to indicate the

error.

Error Codes

The getgrnam_r function fails if:

 ERANGE Insufficient storage was supplied via buffer and bufsize to contain the data to be referenced

by the resulting group structure.

366 Technical Reference, Volume 1: Base Operating System and Extensions

Applications wishing to check for error situations should set errno to 0 before calling getgrnam_r. If errno

is set on return, an error occurred.

Related Information

The getgrent, getgrgid, getgrnam, setgrent, endgrent (“getgrent, getgrgid, getgrnam, setgrent, or

endgrent Subroutine” on page 363) subroutine.

The <grp.h>, <limits.h>, and <sys/types.h> header files.

getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine

Purpose

Accesses the group information in the user database.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

int getgroupattr (Group, Attribute, Value, Type)

char * Group;

char * Attribute;

void * Value;

int Type;

int putgroupattr (Group, Attribute, Value, Type)

char *Group;

char *Attribute;

void *Value;

int Type;

char *IDtogroup (GID)

gid_t GID;

char *nextgroup (Mode, Argument)

int Mode, Argument;

Description

Attention: These subroutines and the setpwent and setgrent subroutines should not be used

simultaneously. The results can be unpredictable.

These subroutines access group information. Because of their greater granularity and extensibility, you

should use them instead of the getgrent, putgrent, getgrnam, getgrgid, setgrent, and endgrent

subroutines.

The getgroupattr subroutine reads a specified attribute from the group database. If the database is not

already open, the subroutine will do an implicit open for reading.

Similarly, the putgroupattr subroutine writes a specified attribute into the group database. If the database

is not already open, the subroutine does an implicit open for reading and writing. Data changed by

putgroupattr must be explicitly committed by calling the putgroupattr subroutine with a Type parameter

specifying the SEC_COMMIT value. Until the data is committed, only get subroutine calls within the

process will return the written data.

Base Operating System (BOS) Runtime Services (A-P) 367

New entries in the user and group databases must first be created by invoking putgroupattr with the

SEC_NEW type.

The IDtogroup subroutine translates a group ID into a group name.

The nextgroup subroutine returns the next group in a linear search of the group database. The

consistency of consecutive searches depends upon the underlying storage-access mechanism and is not

guaranteed by this subroutine.

The setuserdb and enduserdb subroutines should be used to open and close the user database.

Parameters

 Argument Presently unused and must be specified as null.

Attribute Specifies which attribute is read. The following possible values are defined in the usersec.h

file:

S_ID Group ID. The attribute type is SEC_INT.

S_USERS

Members of the group. The attribute type is SEC_LIST.

S_ADMS

Administrators of the group. The attribute type is SEC_LIST.

S_ADMIN

Administrative status of a group. Type: SEC_BOOL.

S_GRPEXPORT

Specifies if the DCE registry can overwrite the local group information with the DCE

group information during a DCE export operation. The attribute type is SEC_BOOL.

Additional user-defined attributes may be used and will be stored in the format specified by

the Type parameter.

GID Specifies the group ID to be translated into a group name.

Group Specifies the name of the group for which an attribute is to be read.

Mode Specifies the search mode. Also can be used to delimit the search to one or more user

credential databases. Specifying a non-null Mode value implicitly rewinds the search. A null

mode continues the search sequentially through the database. This parameter specifies one

of the following values as a bit mask (defined in the usersec.h file):

S_LOCAL

The local database of groups are included in the search.

S_SYSTEM

All credentials servers for the system are searched.

368 Technical Reference, Volume 1: Base Operating System and Extensions

Type Specifies the type of attribute expected. Valid values are defined in the usersec.h file and

include:

SEC_INT

The format of the attribute is an integer. The buffer returned by the getgroupattr

subroutine and the buffer supplied by the putgroupattr subroutine are defined to

contain an integer.

SEC_CHAR

The format of the attribute is a null-terminated character string.

SEC_LIST

The format of the attribute is a series of concatenated strings, each null-terminated.

The last string in the series is terminated by two successive null characters.

SEC_BOOL

A pointer to an integer (int *) that has been cast to a null pointer.

SEC_COMMIT

For the putgroupattr subroutine, this value specified by itself indicates that changes

to the named group are committed to permanent storage. The Attribute and Value

parameters are ignored. If no group is specified, changes to all modified groups are

committed to permanent storage.

SEC_DELETE

The corresponding attribute is deleted from the database.

SEC_NEW

If using the putgroupattr subroutine, updates all the group database files with the

new group name.

Value Specifies the address of a pointer for the getgroupattr subroutine. The getgroupattr

subroutine will return the address of a buffer in the pointer. For the putgroupattr subroutine,

the Value parameter specifies the address of a buffer in which the attribute is stored. See the

Type parameter for more details.

Security

 Files Accessed:

 Mode File

rw /etc/group (write access for putgroupattr)

rw /etc/security/group (write access for putgroupattr)

Return Values

The getgroupattr and putgroupattr subroutines, when successfully completed, return a value of 0.

Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

The IDtogroup and nextgroup subroutines return a character pointer to a buffer containing the requested

group name, if successfully completed. Otherwise, a null pointer is returned and the errno global variable

is set to indicate the error.

Error Codes

Note: All of these subroutines return errors from other subroutines.

These subroutines fail if the following is true:

 EACCES Access permission is denied for the data request.

Base Operating System (BOS) Runtime Services (A-P) 369

The getgroupattr and putgroupattr subroutines fail if one or more of the following are true:

 EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of attribute.

Limited testing is possible and all errors may not be detected.

EINVAL The Group parameter is null or contains a pointer to a null string.

EINVAL The Type parameter contains more than one of the SEC_INT, SEC_BOOL, SEC_CHAR,

SEC_LIST, or SEC_COMMIT attributes.

EINVAL The Type parameter specifies that an individual attribute is to be committed, and the Group

parameter is null.

ENOENT The specified Group parameter does not exist or the attribute is not defined for this group.

EPERM Operation is not permitted.

The IDtogroup subroutine fails if the following is true:

 ENOENT The GID parameter could not be translated into a valid group name on the system.

The nextgroup subroutine fails if one or more of the following are true:

 EINVAL The Mode parameter is not null, and does not specify either S_LOCAL or S_SYSTEM.

EINVAL The Argument parameter is not null.

ENOENT The end of the search was reached.

Related Information

The getuserattr (“getuserattr, IDtouser, nextuser, or putuserattr Subroutine” on page 445) subroutine,

getuserpw (“getuserpw, putuserpw, or putuserpwhist Subroutine” on page 459) subroutine, setpwdb

subroutine, setuserdb subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

getgroupattrs Subroutine

Purpose

Retrieves multiple group attributes in the group database.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

int getgroupattrs (Group, Attributes, Count)

char * Group;

dbattr_t * Attributes;

int Count

Description

Attention: Do not use this subroutine and the setpwent and setgrent subroutines simultaneously. The

results can be unpredictable.

370 Technical Reference, Volume 1: Base Operating System and Extensions

The getgroupattrs subroutine accesses group information. Because of its greater granularity and

extensibility, use it instead of the getgrent routines.

The getgroupattrs subroutine reads one or more attributes from the group database. If the database is

not already open, this subroutine does an implicit open for reading. A call to the getgroupattrs subroutine

with an Attributes parameter of null and Count parameter of 0 for every new group verifies that the group

exists.

The Attributes array contains information about each attribute that is to be read. The dbattr_t data

structure contains the following fields:

attr_name

The name of the desired attribute.

attr_idx

Used internally by the getgroupattrs subroutine.

attr_type

The type of the desired attribute. The list of attribute types is defined in the usersec.h header file.

attr_flag

The results of the request to read the desired attribute.

attr_un

A union containing the returned values. Its union members that follow correspond to the definitions

of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:

un_char

Attributes of type SEC_CHAR and SEC_LIST store a pointer to the returned attribute in

this member when the requested attribute is successfully read. The caller is responsible

for freeing this memory.

un_int Attributes of type SEC_INT and SEC_BOOL store the value of the attribute in this

member when the requested attribute is successfully read.

un_long

Attributes of type SEC_LONG store the value of the attribute in this member when the

requested attribute is successfully read.

un_llong

Attributes of type SEC_LLONG store the value of the attribute in this member when the

requested attribute is successfully read.

attr_domain

The authentication domain containing the attribute. The getgroupattrs subroutine is responsible

for managing the memory referenced by this pointer.

If attr_domain is specified for an attribute, the get request is sent only to that domain.

If attr_domain is not specified (that is, set to NULL), getgroupattrs searches the domains in a

predetermined order. The search starts with the local file system and continues with the domains

specified in the /usr/lib/security/methods.cfg file. This search space can be restricted with the

setauthdb subroutine so that only the domain specified in the setauthdb call is searched.

If attr_domain is not specified, the getgroupattrs subroutine sets this field to the name of the

domain from which the value is retrieved. If the request for a NULL domain was not satisfied, the

request is tried from the local files using the default stanza.

Use the setuserdb and enduserdb subroutines to open and close the group database. Failure to explicitly

open and close the group database can result in loss of memory and performance.

Parameters

 Group Specifies the name of the group for which the attributes are to be read.

Base Operating System (BOS) Runtime Services (A-P) 371

Attributes A pointer to an array of 0 or more elements of type dbattr_t. The list of group attributes is

defined in the usersec.h header file.

Count The number of array elements in Attributes. A Count parameter of 0 can be used to

determine if the group exists.

Security

Files accessed:

 Mode File

rw /etc/group

rw /etc/security/group

Return Values

If Group exists, the getgroupattrs subroutine returns 0. Otherwise, a value of -1 is returned and the errno

global variable is set to indicate the error. Each element in the Attributes array must be examined on a

successful call to getgroupattrs to determine if the Attributes array entry was successfully retrieved.

Error Codes

The getgroupattrs subroutine returns an error that indicates that the group does or does not exist.

Additional errors can indicate an error querying the information databases for the requested attributes.

 EINVAL The Count parameter is less than zero.

EINVAL The Attributes parameter is null and the Count parameter is greater than 0.

ENOENT The specified Group parameter does not exist.

If the getgroupattrs subroutine fails to query an attribute, one or more of the following errors is returned in

the attr_flag field of the corresponding Attributes element:

 EACCESS The user does not have access to the attribute specified in the attr_name field.

EINVAL The attr_type field in the Attributes entry contains an invalid type.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid data for

this type of attribute. Limited testing is possible and all errors might not be detected.

ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined for this

user or group.

ENOMEM Memory could not be allocated to store the return value.

Examples

The following sample test program displays the output to a call to getgroupattrs. In this example, the

system has a user named foo.

 attribute name : id

 attribute flag : 0

 attribute domain : files

 attribute value : 204

 attribute name : admin

 attribute flag : 0

 attribute domain : files

 attribute value : 0

 attribute name : adms

 attribute flag : 0

 attribute domain : files

 attribute value :

372 Technical Reference, Volume 1: Base Operating System and Extensions

attribute name : registry

 attribute flag : 0

 attribute domain :

 attribute value : compat

 */

#include <stdio.h>

#include <usersec.h>

#define NATTR 4

#define GROUPNAME "bar"

char * ConvertToComma(char *); /* Convert from SEC_LIST to SEC_CHAR with

 ’\0’ replaced with ’,’ */

main() {

 dbattr_t attributes[NATTR];

 int i;

 int rc;

 memset (&attributes, 0, sizeof(attributes));

 /*

 * Fill in the attributes array with "id", "expires" and

 * "SYSTEM" attributes.

 */

 attributes[0].attr_name = S_ID;

 attributes[0].attr_type = SEC_INT;;

 attributes[1].attr_name = S_ADMIN;

 attributes[1].attr_type = SEC_BOOL;

 attributes[2].attr_name = S_ADMS;

 attributes[2].attr_type = SEC_LIST;

 attributes[3].attr_name = S_REGISTRY;

 attributes[3].attr_type = SEC_CHAR;

 /*

 * Make a call to getuserattrs.

 */

 setuserdb(S_READ);

 rc = getgroupattrs(GROUPNAME, attributes, NATTR);

 enduserdb();

 if (rc) {

 printf("getgroupattrsattrs failed \n");

 exit(-1);

 }

 for (i = 0; i < NATTR; i++) {

 printf("attribute name : %s \n", attributes[i].attr_name);

 printf("attribute flag : %d \n", attributes[i].attr_flag);

 if (attributes[i].attr_flag) {

 /*

 * No attribute value. Continue.

 */

 printf("\n");

 continue;

 }

 /*

 * We have a value.

Base Operating System (BOS) Runtime Services (A-P) 373

*/

 printf("attribute domain : %s \n", attributes[i].attr_domain);

 printf("attribute value : ");

 switch (attributes[i].attr_type)

 {

 case SEC_CHAR:

 if (attributes[i].attr_char) {

 printf("%s\n", attributes[i].attr_char);

 free(attributes[i].attr_char);

 }

 break;

 case SEC_LIST:

 if (attributes[i].attr_char) {

 printf("%s\n", ConvertToComma(

 attributes[i].attr_char));

 free(attributes[i].attr_char);

 }

 break;

 case SEC_INT:

 case SEC_BOOL:

 printf("%d\n", attributes[i].attr_int);

 break;

 default:

 break;

 }

 printf("\n");

 }

 exit(0);

}

/*

 * ConvertToComme:

 * replaces NULLs in str with commas.

 */

char *

ConvertToComma(char *str)

{

 char *s = str;

 if (! str || ! *str)

 return(s);

 for (; *str; str++) {

 while(*(++str));

 *str = ’,’;

 }

 *(str-1) = 0;

 return(s);

}

The following output for the call is expected:

 attribute name : id

 attribute flag : 0

 attribute domain : files

 attribute value : 204

 attribute name : admin

 attribute flag : 0

 attribute domain : files

 attribute value : 0

 attribute name : adms

 attribute flag : 0

 attribute domain : files

374 Technical Reference, Volume 1: Base Operating System and Extensions

attribute value :

 attribute name : registry

 attribute flag : 0

 attribute domain :

 attribute value : compat

Files

 /etc/group Contains group IDs.

Related Information

The “getuserattrs Subroutine” on page 451, setuserdb Subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

getgroups Subroutine

Purpose

Gets the supplementary group ID of the current process.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <unistd.h>

int getgroups (NGroups, GIDSet)

int NGroups;

gid_t GIDSet [];

Description

The getgroups subroutine gets the supplementary group ID of the process. The list is stored in the array

pointed to by the GIDSet parameter. The NGroups parameter indicates the number of entries that can be

stored in this array. The getgroups subroutine never returns more than the number of entries specified by

the NGROUPS_MAX constant. (The NGROUPS_MAX constant is defined in the limits.h file.) If the value

in the NGroups parameter is 0, the getgroups subroutine returns the number of groups in the

supplementary group.

Parameters

 GIDSet Points to the array in which the supplementary group ID of the user’s process is stored.

NGroups Indicates the number of entries that can be stored in the array pointed to by the GIDSet

parameter.

Return Values

Upon successful completion, the getgroups subroutine returns the number of elements stored into the

array pointed to by the GIDSet parameter. If the getgroups subroutine is unsuccessful, a value of -1 is

returned and the errno global variable is set to indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 375

Error Codes

The getgroups subroutine is unsuccessful if either of the following error codes is true:

 EFAULT The NGroups and GIDSet parameters specify an array that is partially or completely outside of

the allocated address space of the process.

EINVAL The NGroups parameter is smaller than the number of groups in the supplementary group.

Related Information

The getgid (“getgid, getegid or gegidx Subroutine” on page 362) subroutine, initgroups (“initgroups

Subroutine” on page 548) subroutine, setgid subroutine, setgroups subroutine.

The groups command, setgroups command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine

Purpose

Accesses the group screen information in the SMIT ACL database.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

int getgrpaclattr (Group, Attribute, Value, Type)

char *User;

char *Attribute;

void *Value;

int Type;

char *nextgrpacl(void)

int putgrpaclattr (Group, Attribute, Value, Type)

char *User;

char *Attribute;

void *Value;

int Type;

Description

The getgrpaclattr subroutine reads a specified group attribute from the SMIT ACL database. If the

database is not already open, this subroutine does an implicit open for reading.

Similarly, the putgrpaclattr subroutine writes a specified attribute into the user SMIT ACL database. If the

database is not already open, this subroutine does an implicit open for reading and writing. Data changed

by the putgrpaclattr subroutine must be explicitly committed by calling the putgrpaclattr subroutine with

a Type parameter specifying SEC_COMMIT. Until all the data is committed, only the getgrpaclattr

subroutine within the process returns written data.

The nextgrpacl subroutine returns the next group in a linear search of the group SMIT ACL database. The

consistency of consecutive searches depends upon the underlying storage-access mechanism and is not

guaranteed by this subroutine.

The setacldb and endacldb subroutines should be used to open and close the database.

376 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 Attribute Specifies which attribute is read. The following possible attributes are defined in the usersec.h file:

S_SCREENS

String of SMIT screens. The attribute type is SEC_LIST.

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file and include:

SEC_LIST

The format of the attribute is a series of concatenated strings, each null-terminated. The

last string in the series must be an empty (zero character count) string.

 For the getgrpaclattr subroutine, the user should supply a pointer to a defined character

pointer variable. For the putgrpaclattr subroutine, the user should supply a character

pointer.

SEC_COMMIT

For the putgrpaclattr subroutine, this value specified by itself indicates that changes to

the named group are to be committed to permanent storage. The Attribute and Value

parameters are ignored. If no group is specified, the changes to all modified groups are

committed to permanent storage.

SEC_DELETE

The corresponding attribute is deleted from the group SMIT ACL database.

SEC_NEW

Updates the group SMIT ACL database file with the new group name when using the

putgrpaclattr subroutine.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the Attribute and

Type parameters. See the Type parameter for more details.

Return Values

If successful, the getgrpaclattr returns 0. Otherwise, a value of -1 is returned and the errno global

variable is set to indicate the error.

Error Codes

Possible return codes are:

 EACCES Access permission is denied for the data request.

ENOENT The specified Group parameter does not exist or the attribute is not defined for this group.

ENOATTR The specified user attribute does not exist for this group.

EINVAL The Attribute parameter does not contain one of the defined attributes or null.

EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of

attribute.

EPERM Operation is not permitted.

Related Information

The getgrpaclattr, nextgrpacl, or putgrpaclattr (“getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine” on

page 376) subroutine, setacldb, or endacldb subroutine.

getgrset Subroutine

Purpose

Accesses the concurrent group set information in the user database.

Base Operating System (BOS) Runtime Services (A-P) 377

Library

Standard C Library (libc.a)

Syntax

char *getgrset (User)

const char * User;

Description

The getgrset subroutine returns a pointer to the comma separated list of concurrent group identifiers for

the named user.

If the Network Information Service (NIS) is enabled on the system, these subroutines attempt to retrieve

the user information from the NIS authentication server.

Parameters

 User Specifies the user name.

Return Values

If successful, the getgrset subroutine returns a pointer to a list of supplementary groups. This pointer must

be freed by the user.

Error Codes

A NULL pointer is returned on error. The value of the errno global variable is undefined on error.

File

 /etc/group Contains basic group attributes.

Related Information

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm,

getitimer or setitimer Subroutine

Purpose

Manipulates the expiration time of interval timers.

Library

Standard C Library (libc.a)

Syntax

#include <sys/time.h>

int getinterval (TimerID, Value)

timer_t TimerID;

struct itimerstruc_t *Value;

378 Technical Reference, Volume 1: Base Operating System and Extensions

int incinterval (TimerID, Value, OValue)

timer_t TimerID;

struct itimerstruc_t *Value, *OValue;

int absinterval (TimerID, Value, OValue)

timer_t TimerID;

struct itimerstruc_t *Value, *OValue;

int resabs (TimerID, Resolution, Maximum)

timer_t TimerID;

struct timestruc_t *Resolution, *Maximum;

int resinc (TimerID, Resolution, Maximum)

timer_t TimerID;

struct timestruc_t *Resolution, *Maximum;

#include <unistd.h>

unsigned int alarm (Seconds)

unsigned int Seconds;

useconds_t ualarm (Value, Interval)

useconds_t Value, Interval;

int setitimer (Which, Value, OValue)

int Which;

struct itimerval *Value, *OValue;

int getitimer (Which, Value)

int Which;

struct itimerval *Value;

Description

The getinterval, incinterval, and absinterval subroutines manipulate the expiration time of interval timers.

These functions use a timer value defined by the struct itimerstruc_t structure, which includes the

following fields:

struct timestruc_t it_interval; /* timer interval period */

struct timestruc_t it_value; /* timer interval expiration */

If the it_value field is nonzero, it indicates the time to the next timer expiration. If it_value is 0, the

per-process timer is disabled. If the it_interval member is nonzero, it specifies a value to be used in

reloading the it_value field when the timer expires. If it_interval is 0, the timer is to be disabled after its

next expiration (assuming it_value is nonzero).

The getinterval subroutine returns a value from the struct itimerstruc_t structure to the Value parameter.

The it_value field of this structure represents the amount of time in the current interval before the timer

expires, should one exist for the per-process timer specified in the TimerID parameter. The it_interval

field has the value last set by the incinterval or absinterval subroutine. The fields of the Value parameter

are subject to the resolution of the timer.

The incinterval subroutine sets the value of a per-process timer to a given offset from the current timer

setting. The absinterval subroutine sets the value of the per-process timer to a given absolute value. If

the specified absolute time has already expired, the absinterval subroutine will succeed and the expiration

notification will be made. Both subroutines update the interval timer period. Time values smaller than the

resolution of the specified timer are rounded up to this resolution. Time values larger than the maximum

value of the specified timer are rounded down to the maximum value.

Base Operating System (BOS) Runtime Services (A-P) 379

The resinc and resabs subroutines return the resolution and maximum value of the interval timer

contained in the TimerID parameter. The resolution of the interval timer is contained in the Resolution

parameter, and the maximum value is contained in the Maximum parameter. These values might not be

the same as the values returned by the corresponding system timer, the gettimer subroutine. In addition, it

is likely that the maximum values returned by the resinc and resabs subroutines will be different.

Note: If a nonprivileged user attempts to submit a fine granularity timer (that is, a timer request of less

than 10 milliseconds), the timer request is raised to 10 milliseconds.

The alarm subroutine causes the system to send the calling thread’s process a SIGALRM signal after the

number of real-time seconds specified by the Seconds parameter have elapsed. Since the signal is sent to

the process, in a multi-threaded process another thread than the one that called the alarm subroutine may

receive the SIGALRM signal. Processor scheduling delays may prevent the process from handling the

signal as soon as it is generated. If the value of the Seconds parameter is 0, a pending alarm request, if

any, is canceled. Alarm requests are not stacked. Only one SIGALRM generation can be scheduled in this

manner. If the SIGALRM signal has not yet been generated, the call results in rescheduling the time at

which the SIGALRM signal is generated. If several threads in a process call the alarm subroutine, only the

last call will be effective.

The ualarm subroutine sends a SIGALRM signal to the invoking process in a specified number of

seconds. The getitimer subroutine gets the value of an interval timer. The setitimer subroutine sets the

value of an interval timer.

Parameters

 TimerID Specifies the ID of the interval timer.

Value Points to a struct itimerstruc_t structure.

OValue Represents the previous time-out period.

Resolution Resolution of the timer.

Maximum Indicates the maximum value of the interval timer.

Seconds Specifies the number of real-time seconds to elapse before the first SIGALRM signal.

Interval Specifies the number of microseconds between subsequent periodic SIGALRM signals. If a

nonprivileged user attempts to submit a fine granularity timer (that is, a timer request of

less than 10 milliseconds), the timer request interval is automatically raised to 10

milliseconds.

Which Identifies the type of timer. Valid values are:

ITIMER_REAL

Decrements in real time. A SIGALRM signal occurs when this timer expires.

ITIMER_VIRTUAL

Decrements in process virtual time. It runs only during process execution. A

SIGVTALRM signal occurs when it expires.

ITIMER_PROF

Decrements in process virtual time and when the system runs on behalf of the

process. It is designed for use by interpreters in statistically profiling the execution

of interpreted programs. Each time the ITIMER_PROF timer expires, the

SIGPROF signal occurs. Because this signal may interrupt in-progress system

calls, programs using this timer must be prepared to restart interrupted system

calls.

Return Values

If these subroutines are successful, a value of 0 is returned. If an error occurs, a value of -1 is returned

and the errno global variable is set.

380 Technical Reference, Volume 1: Base Operating System and Extensions

The alarm subroutine returns the amount of time (in seconds) remaining before the system is scheduled to

generate the SIGALARM signal from the previous call to alarm. It returns a 0 if there was no previous

alarm request.

The ualarm subroutine returns the number of microseconds previously remaining in the alarm clock.

Error Codes

If the getinterval, incinterval, absinterval, resinc, resabs, setitimer, getitimer, or setitimer subroutine

is unsuccessful , a value of -1 is returned and the errno global variable is set to one of the following error

codes:

 EINVAL Indicates that the TimerID parameter does not correspond to an ID returned by the

gettimerid subroutine, or a value structure specified a nanosecond value less than 0 or

greater than or equal to one thousand million (1,000,000,000).

EIO Indicates that an error occurred while accessing the timer device.

EFAULT Indicates that a parameter address has referenced invalid memory.

The alarm subroutine is always successful. No return value is reserved to indicate an error for it.

Related Information

The gettimer (“gettimer, settimer, restimer, stime, or time Subroutine” on page 437) subroutine, gettimerid

(“gettimerid Subroutine” on page 440) subroutine, sigaction, sigvec, or signal subroutine.

List of Time Data Manipulation Services in AIX 5L Version 5.3 System Management Concepts: Operating

System and Devices.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Signal Management in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs provides more information about signal management in multi-threaded processes.

getipnodebyaddr Subroutine

Purpose

Address-to-nodename translation.

Library

Standard C Library (libc.a)

(libaixinet)

Syntax

#include <sys/socket.h>

#include <netdb.h>

struct hostent *getipnodebyaddr(src, len, af, error_num)

const void *src;

size_t len;

int af;

int *error_num;

Base Operating System (BOS) Runtime Services (A-P) 381

Description

The getipnodebyaddr subroutine has the same arguments as the gethostbyaddr subroutine but adds an

error number. It is thread-safe.

The getipnodebyaddr subroutine is similar in its name query to the gethostbyaddr subroutine except in

one case. If af equals AF_INET6 and the IPv6 address is an IPv4-mapped IPv6 address or an

IPv4-compatible address, then the first 12 bytes are skipped over and the last 4 bytes are used as an IPv4

address with af equal to AF_INET to lookup the name.

If the getipnodebyaddr subroutine is returning success, then the single address that is returned in the

hostent structure is a copy of the first argument to the function with the same address family and length

that was passed as arguments to this function.

All of the information returned by getipnodebyaddr is dynamically allocated: the hostent structure and the

data areas pointed to by the h_name, h_addr_lisy, and h_aliases members of the hostent structure. To

return this information to the system the function freehostent is called.

Parameters

 src Specifies a node address. It is a pointer to either a 4-byte (IPv4) or 16-byte (IPv6) binary

format address.

af Specifies the address family which is either AF_INET or AF_INET6.

len Specifies the length of the node binary format address.

error_num Returns argument to the caller with the appropriate error code.

Return Values

The getipnodebyaddr subroutine returns a pointer to a hostent structure on success.

The getipnodebyaddr subroutine returns a null pointer if an error occurs. The error_num parameter is set

to indicate the error.

Error Codes

 HOST_NOT_FOUND The host specified by the name parameter was not found.

TRY_AGAIN The local server did not receive a response from an authoritative server.

Try again later.

NO_RECOVERY This error code indicates an unrecoverable error.

NO_ADDRESS The requested name is valid but does not have an Internet address at the

name server.

Related Information

The freehostent subroutine and getipnodebyname subroutine.

getipnodebyname Subroutine

Purpose

Nodename-to-address translation.

382 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Standard C Library (libc.a)

(libaixinet)

Syntax

#include <libc.a>

#include <netdb.h>

struct hostent *getipnodebyname(name, af, flags, error_num)

const char *name;

int af;

int flags;

int *error_num;

Description

The commonly used functions gethostbyname and gethostbyname2 are inadequate for many

applications. You could not specify the type of addresses desired in gethostbyname. In gethostbyname2,

a global option (RES_USE_INET6) is required when IPV6 addresses are used. Also, gethostbyname2

needed more control over the type of addresses required.

The getipnodebyname subroutine gives the caller more control over the types of addresses required and

is thread safe. It also does not need a global option like RES_USE_INET6.

The name argument can be either a node name or a numeric (either a dotted-decimal IPv4 or

colon-seperated IPv6) address.

The flags parameter values include AI_DEFAULT, AI_V4MAPPED, AI_ALL and AI_ADDRCONFIG. The

special flags value AI_DEFAULT is designed to handle most applications. Its definition is:

#define AI_DEFAULT (AI_V4MAPPED | AI_ADDRCONFIG)

When porting simple applications to use IPv6, simply replace the call:

hp = gethostbyname(name);

with

hp = getipnodebyname(name, AF_INET6, AI_DEFAULT, &error_num);

To modify the behavior of the getipnodebyname subroutine, constant values can be logically-ORed into

the flags parameter.

A flags value of 0 implies a strict interpretation of the af parameter. If af is AF_INET then only IPv4

addresses are searched for and returned. If af is AF_INET6 then only IPv6 addresses are searched for

and returned.

If the AI_V4MAPPED flag is specified along with an af of AF_INET6, then the caller accepts IPv4-mapped

IPv6 addresses. That is, if a query for IPv6 addresses fails, then a query for IPv4 addresses is made and

if any are found, then they are returned as IPv4-mapped IPv6 addresses. The AI_V4MAPPED flag is only

valid with an af of AF_INET6.

If the AI_ALL flag is used in conjunction the AI_V4MAPPED flag and af is AF_INET6, then the caller wants

all addresses. The addresses returned are IPv6 addresses and/or IPv4-mapped IPv6 addresses. Only if

both queries (IPv6 and IPv4) fail does getipnodebyname return NULL. Again, the AI_ALL flag is only valid

with an af of AF_INET6.

The AI_ADDRCONFIG flag is used to specify that a query for IPv6 addresses should only occur if the

node has at least one IPv6 source address configured and a query for IPv4 addresses should only occur if

Base Operating System (BOS) Runtime Services (A-P) 383

the node has at least one IPv4 source address configured. For example, if the node only has IPv4

addresses configured, af equals AF_INET6, and the node name being looked up has both IPv4 and IPv6

addresses, then if only the AI_ADDRCONFIG flag is specified, getipnodebyname will return NULL. If the

AI_V4MAPPED flag is specified with the AI_ADDRCONFIG flag (AI_DEFAULT), then any IPv4 addresses

found will be returned as IPv4-mapped IPv6 addresses.

There are 4 different situations when the name argument is a literal address string:

1. name is a dotted-decimal IPv4 address and af is AF_INET. If the query is successful, then h_name

points to a copy of name, h_addrtype is the af argument, h_length is 4, h_aliases is a NULL pointer,

h_addr_list[0] points to the 4-byte binary address and h_addr_list[1] is a NULL pointer.

2. name is a colon-separated IPv6 address and af is AF_INET6. If the query is successful, then h_name

points to a copy of name, h_addrtype is the af parameter, h_length is 16, h_aliases is a NULL pointer,

h_addr_list[0] points to the 16-byte binary address and h_addr_list[1] is a NULL pointer.

3. name is a dotted-decimal IPv4 address and af is AF_INET6. If the AI_V4MAPPED flag is specified

and the query is successful, then h_name points to an IPv4-mapped IPv6 address string, h_addrtype is

the af argument, h_length is 16, h_aliases is a NULL pointer, h_addr_list[0] points to the 16-byte

binary address and h_addr_list[1] is a NULL pointer.

4. name is a colon-separated IPv6 address and af is AF_INET. This is an error, getipnodebyname

returns a NULL pointer and error_num equals HOST_NOT_FOUND.

Parameters

 name Specifies either a node name or a numeric (either a dotted-decimal IPv4 or

colon-separated IPv6) address.

af Specifies the address family which is either AF_INET or AF_INET6.

flags Controls the types of addresses searched for and the types of addresses returned.

error_num Returns argument to the caller with the appropriate error code.

Return Values

The getipnodebyname subroutine returns a pointer to a hostent structure on success.

The getipnodebyname subroutine returns a null pointer if an error occurs. The error_num parameter is

set to indicate the error.

Error Codes

 HOST_NOT_FOUND The host specified by the name parameter was not found.

TRY_AGAIN The local server did not receive a response from an authoritative server.

Try again later.

NO_RECOVERY The host specified by the nameparameter was not found. This error code

indicates an unrecoverable error.

NO_ADDRESS The requested name is valid but does not have an Internet address at the

name server.

Related Information

The freehostent subroutine and getipnodebyaddr subroutine.

384 Technical Reference, Volume 1: Base Operating System and Extensions

getlogin Subroutine

Purpose

Gets a user’s login name.

Library

Standard C Library (libc.a)

Syntax

include <sys/types.h>

include <unistd.h>

include <limits.h>

char *getlogin (void)

Description

Attention: Do not use the getlogin subroutine in a multithreaded environment. To access the

thread-safe version of this subroutines, see the getlogin_r (“getlogin_r Subroutine” on page 386)

subroutine.

 Attention: The getlogin subroutine returns a pointer to an area that may be overwritten by successive

calls.

The getlogin subroutine returns a pointer to the login name in the /etc/utmp file. You can use the

getlogin subroutine with the getpwnam (“getpwent, getpwuid, getpwnam, putpwent, setpwent, or

endpwent Subroutine” on page 413) subroutine to locate the correct password file entry when the same

user ID is shared by several login names.

If the getlogin subroutine cannot find the login name in the /etc/utmp file, it returns the process

LOGNAME environment variable. If the getlogin subroutine is called within a process that is not attached

to a terminal, it returns the value of the LOGNAME environment variable. If the LOGNAME environment

variable does not exist, a null pointer is returned.

Return Values

The return value can point to static data whose content is overwritten by each call. If the login name is not

found, the getlogin subroutine returns a null pointer.

Error Codes

If the getlogin function is unsuccessful, it returns one or more of the following error codes:

 EMFILE Indicates that the OPEN_MAX file descriptors are currently open in the calling process.

ENFILE Indicates that the maximum allowable number of files is currently open in the system.

ENXIO Indicates that the calling process has no controlling terminal.

Files

 /etc/utmp Contains a record of users logged into the system.

Related Information

The getgrent, getgrgid, getgrnam, putgrent, setgrent, or endgrent (“getgrent, getgrgid, getgrnam,

setgrent, or endgrent Subroutine” on page 363) subroutine, getlogin_r (“getlogin_r Subroutine” on page

386

Base Operating System (BOS) Runtime Services (A-P) 385

386) subroutine, getpwent, getpwuid, setpwent, or endpwent (“getpwent, getpwuid, getpwnam,

putpwent, setpwent, or endpwent Subroutine” on page 413) subroutine, getpwnam (“getpwent, getpwuid,

getpwnam, putpwent, setpwent, or endpwent Subroutine” on page 413) subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

getlogin_r Subroutine

Purpose

Gets a user’s login name.

Library

Thread-Safe C Library (libc_r.a)

Syntax

int getlogin_r (Name, Length)

char * Name;

size_t Length;

Description

The getlogin_r subroutine gets a user’s login name from the /etc/utmp file and places it in the Name

parameter. Only the number of bytes specified by the Length parameter (including the ending null value)

are placed in the Name parameter.

Applications that call the getlogin_r subroutine must allocate memory for the login name before calling the

subroutine. The name buffer must be the length of the Name parameter plus an ending null value.

If the getlogin_r subroutine cannot find the login name in the utmp file or the process is not attached to a

terminal, it places the LOGNAME environment variable in the name buffer. If the LOGNAME environment

variable does not exist, the Name parameter is set to null and the getlogin_r subroutine returns a -1.

Parameters

 Name Specifies a buffer for the login name. This buffer should be the length of the Length parameter

plus an ending null value.

Length Specifies the total length in bytes of the Name parameter. No more bytes than the number

specified by the Length parameter are placed in the Name parameter, including the ending null

value.

Return Values

If successful, the getlogin_r function returns 0. Otherwise, an error number is returned to indicate the

error.

Error Codes

If the getlogin_r subroutine does not succeed, it returns one of the following error codes:

 EINVAL Indicates that the Name parameter is not valid.

EMFILE Indicates that the OPEN_MAX file descriptors are currently open in the calling process.

ENFILE Indicates that the maximum allowable number of files are currently open in the system.

ENXIO Indicates that the calling process has no controlling terminal.

386 Technical Reference, Volume 1: Base Operating System and Extensions

ERANGE Indicates that the value of Length is smaller than the length of the string to be returned,

including the terminating null character.

File

 /etc/utmp Contains a record of users logged into the system.

Related Information

The getgrent_r, getgrgid_r, getgrnam_r, setgrent_r, or endgrent_r (“getgrent, getgrgid, getgrnam,

setgrent, or endgrent Subroutine” on page 363) subroutine, getlogin (“getlogin Subroutine” on page 385)

subroutine, getpwent_r, getpwnam_r, putpwent_r, getpwuid_r, setpwent_r, or endpwent_r (“getpwent,

getpwuid, getpwnam, putpwent, setpwent, or endpwent Subroutine” on page 413) subroutine.

List of Security and Auditing Subroutines, List of Multithread Subroutines, and Subroutines Overview in AIX

5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

getnextprojdb Subroutine

Purpose

Retrieves the next project from the specified project database.

Library

The libaacct.a library.

Syntax

<sys/aacct.h>

getnextprojdb(void *handle, struct project *project, char *comm)

Description

The getnextprojdb subroutine retrieves the next project definitions from the project database named

through the handle parameter. The caller must initialize the project database prior to calling this routine

with the projdballoc routine. Upon successful completion, the project information is copied to the project

structure specified by the caller. In addition, the associated project comment, if present, is copied to the

buffer pointed to by the comm parameter. The comment buffer is allocated by the caller and must have a

length of 1024 bytes.

There is an internal state (that is, the current project) associated with the project database. When the

project database is initialized, the current project is the first project in the database. The getnextprojdb

subroutine returns the current project and advances the current project assignment to the next project in

the database so that successive calls read each project entry in the database. When the last project is

read, the current project assignment is advanced to the end of the database. Any attempt to read beyond

the end of the project database results in a failure.

Parameters

 handle Pointer to the projdb handle.

project Pointer to project structure where the retrieved data is stored.

comm Comment associated with the project in the database.

Base Operating System (BOS) Runtime Services (A-P) 387

Security

No restriction. Any user can call this function.

Return Values

 0 Success

-1 Failure

Error Codes

 EINVAL Invalid arguments, if passed pointer is NULL.

ENOENT End of the project database.

ENOENT No projects available.

Related Information

The “addprojdb Subroutine” on page 32, “chprojattrdb Subroutine” on page 157, “getfirstprojdb Subroutine”

on page 360, “getprojdb Subroutine” on page 410, “getprojs Subroutine” on page 411, “projdballoc

Subroutine” on page 1089, “projdbfinit Subroutine” on page 1090, “projdbfree Subroutine” on page 1091,

rmprojdb Subroutine.

getopt Subroutine

Purpose

Returns the next flag letter specified on the command line.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

int getopt (ArgumentC, ArgumentV, OptionString)

int ArgumentC;

char *const ArgumentV [];

const char *OptionString;

extern int optind;

extern int optopt;

extern int opterr;

extern char * optarg;

Description

The optind parameter indexes the next element of the ArgumentV parameter to be processed. It is

initialized to 1 and the getopt subroutine updates it after calling each element of the ArgumentV

parameter.

The getopt subroutine returns the next flag letter in the ArgumentV parameter list that matches a letter in

the OptionString parameter. If the flag takes an argument, the getopt subroutine sets the optarg parameter

to point to the argument as follows:

388 Technical Reference, Volume 1: Base Operating System and Extensions

v If the flag was the last letter in the string pointed to by an element of the ArgumentV parameter, the

optarg parameter contains the next element of the ArgumentV parameter and the optind parameter is

incremented by 2. If the resulting value of the optind parameter is not less than the ArgumentC

parameter, this indicates a missing flag argument, and the getopt subroutine returns an error message.

v Otherwise, the optarg parameter points to the string following the flag letter in that element of the

ArgumentV parameter and the optind parameter is incremented by 1.

Parameters

 ArgumentC Specifies the number of parameters passed to the routine.

ArgumentV Specifies the list of parameters passed to the routine.

OptionString Specifies a string of recognized flag letters. If a letter is followed by a : (colon), the flag is

expected to take a parameter that may or may not be separated from it by white space.

optind Specifies the next element of the ArgumentV array to be processed.

optopt Specifies any erroneous character in the OptionString parameter.

opterr Indicates that an error has occurred when set to a value other than 0.

optarg Points to the next option flag argument.

Return Values

The getopt subroutine returns the next flag letter specified on the command line. A value of -1 is returned

when all command line flags have been parsed. When the value of the ArgumentV [optind] parameter is

null, *ArgumentV [optind] is not the - (minus) character, or ArgumentV [optind] points to the ″-″ (minus)

string, the getopt subroutine returns a value of -1 without changing the value. If ArgumentV [optind] points

to the ″- -″ (double minus) string, the getopt subroutine returns a value of -1 after incrementing the value

of the optind parameter.

Error Codes

If the getopt subroutine encounters an option character that is not specified by the OptionString

parameter, a ? (question mark) character is returned. If it detects a missing option argument and the first

character of OptionString is a : (colon), then a : (colon) character is returned. If this subroutine detects a

missing option argument and the first character of OptionString is not a colon, it returns a ? (question

mark). In either case, the getopt subroutine sets the optopt parameter to the option character that caused

the error. If the application has not set the opterr parameter to 0 and the first character of OptionString is

not a : (colon), the getopt subroutine also prints a diagnostic message to standard error.

Examples

The following code fragment processes the flags for a command that can take the mutually exclusive flags

a and b, and the flags f and o, both of which require parameters.

#include <unistd.h> /*Needed for access subroutine constants*/

main (argc, argv)

int argc;

char **argv;

{

 int c;

 extern int optind;

 extern char *optarg;

 .

 .

 .

 while ((c = getopt(argc, argv, "abf:o:")) != EOF)

 {

 switch (c)

 {

 case ’a’:

 if (bflg)

Base Operating System (BOS) Runtime Services (A-P) 389

errflg++;

 else

 aflg++;

 break;

 case ’b’:

 if (aflg)

 errflg++;

 else

 bflg++;

 break;

 case ’f’:

 ifile = optarg;

 break;

 case ’o’:

 ofile = optarg;

 break;

 case ’?’:

 errflg++;

 } /* case */

 if (errflg)

 {

 fprintf(stderr, "usage: . . . ");

 exit(2);

 }

 } /* while */

 for (; optind < argc; optind++)

 {

 if (access(argv[optind], R_OK))

 {

 .

 .

 .

 }

 } /* for */

} /* main */

Related Information

The getopt command.

List of Executable Program Creation Subroutines, Subroutines Overview, and List of Multithread

Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

getpagesize Subroutine

Purpose

Gets the system page size.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

int getpagesize()

390 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The getpagesize subroutine returns the number of bytes in a page. Page granularity is the granularity for

many of the memory management calls.

The page size is determined by the system and may not be the same as the underlying hardware page

size.

Related Information

The brk or sbrk (“brk or sbrk Subroutine” on page 120) subroutine.

The pagesize command.

Program Address Space Overview and Subroutines Overview in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

getpaginfo Subroutine

Purpose

Retrieves a Process Authentication Group (PAG) flags for a given PAG type.

Library

Security Library (libc.a)

Syntax

#include <pag.h>

int getpaginfo (name, infop, infosz)

char * name;

struct paginfo * infop;

int infosz;

Description

The getpaginfo subroutine retrieves the PAG flags for a given PAG name. For this function to succeed,

the PAG name must be registered with the operating system before this subroutine is called. The infop

parameter must be a valid, referenced PAG info structure of the size specified by infosz.

Parameters

 name A 1-character to 4-character, NULL-terminated name for the PAG type. Typical values include afs, dfs,

pki, and krb5.

infop Points to a paginfo struct where the operating system returns the PAG flags.

infosz Indicates the size of the PAG info structure.

Return Values

A value of 0 is returned upon successful completion. If the getpaginfo subroutine fails a value of -1 is

returned and the errno global variable is set to indicate the error.

Error Codes

The getpaginfo subroutine fails if the following condition is true:

 EINVAL The named PAG type does not exist as part of the table.

Base Operating System (BOS) Runtime Services (A-P) 391

Other errors might be set by subroutines invoked by the getpaginfo subroutine.

Related Information

__pag_getid System Call, __pag_getname System Call, __pag_getvalue System Call, __pag_setname

System Call, __pag_setvalue System Call, kcred_genpagvalue Kernel Service, kcred_getpagid Kernel

Service, and kcred_getpagname Kernel Service.

List of Security and Auditing Subroutines in AIX 5L Version 5.3 General Programming Concepts.

getpagvalue or getpagvalue64 Subroutine

Purpose

Returns the Process Authentication Group (PAG) value for a given PAG type.

Library

Security Library (libc.a)

Syntax

#include <pag.h>

int getpagvalue (name)

char * name;

uint64_t getpagvalue64(name);

char * name;

Description

The getpagvalue and getpagvalue64 subroutines retrieve the PAG value for a given PAG name. For

these functions to succeed, the PAG name must be registered with the operating system before these

subroutines are called.

Parameters

 name A 1-character to 4-character, NULL-terminated name for the PAG type. Typical values include afs, dfs,

pki, and krb5.

Return Values

The getpagvalue and getpagvalue64 subroutines return a PAG value upon successful completion. Upon

a failure, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes

The getpagvalue and getpagvalue64 subroutines fail if the following condition is true:

 EINVAL The named PAG type does not exist as part of the table.

Other errors might be set by subroutines invoked by the getpagvalue and getpagvalue64 subroutines.

Related Information

__pag_getid System Call, __pag_getname System Call, __pag_getvalue System Call, __pag_setname

System Call, __pag_setvalue System Call, kcred_genpagvalue Kernel Service, kcred_getpagid Kernel

Service, and kcred_getpagname Kernel Service.

392 Technical Reference, Volume 1: Base Operating System and Extensions

List of Security and Auditing Subroutines in AIX 5L Version 5.3 General Programming Concepts.

getpass Subroutine

Purpose

Reads a password.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

char *getpass (Prompt)

char *Prompt;

Description

Attention: The characters are returned in a static data area. Subsequent calls to this subroutine

overwrite the static data area.

The getpass subroutine does the following:

v Opens the controlling terminal of the current process.

v Writes the characters specified by the Prompt parameter to that device.

v Reads from that device the number of characters up to the value of the PASS_MAX constant until a

new-line or end-of-file (EOF) character is detected.

v Restores the terminal state and closes the controlling terminal.

During the read operation, character echoing is disabled.

The getpass subroutine is not safe in a multithreaded environment. To use the getpass subroutine in a

threaded application, the application must keep the integrity of each thread.

Parameters

 Prompt Specifies a prompt to display on the terminal.

Return Values

If this subroutine is successful, it returns a pointer to the string. If an error occurs, the subroutine returns a

null pointer and sets the errno global variable to indicate the error.

Error Codes

If the getpass subroutine is unsuccessful, it returns one or more of the following error codes:

 EINTR Indicates that an interrupt occurred while the getpass subroutine was reading the terminal device. If a

SIGINT or SIGQUIT signal is received, the getpass subroutine terminates input and sends the signal to the

calling process.

ENXIO Indicates that the process does not have a controlling terminal.

Note: Any subroutines called by the getpass subroutine may set other error codes.

Base Operating System (BOS) Runtime Services (A-P) 393

Related Information

The getuserpw (“getuserpw, putuserpw, or putuserpwhist Subroutine” on page 459) subroutine, newpass

(“newpass Subroutine” on page 860) subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

getpcred Subroutine

Purpose

Reads the current process credentials.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

char **getpcred (Which)

int Which;

Description

The getpcred subroutine reads the specified process security credentials and returns a pointer to a NULL

terminated array of pointers in allocated memory. Each pointer in the array points to a string containing an

attribute/value pair in allocated memory. It’s the responsibility of the caller to free each individual string as

well as the array of pointers.

394 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 Which Specifies which credentials are read. This parameter is a bit mask and can contain one or more

of the following values, as defined in the usersec.h file:

CRED_RUID

Real user name

CRED_LUID

Login user name

CRED_RGID

Real group name

CRED_GROUPS

Supplementary group ID

CRED_AUDIT

Audit class of the current process

Note: A process must have root user authority to retrieve this credential. Otherwise, the

getpcred subroutine returns a null pointer and the errno global variable is set to

EPERM.

CRED_RLIMITS

BSD resource limits

Note: Use the getrlimit (“getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine”

on page 415) subroutine to control resource consumption.

CRED_UMASK

The umask.

If the Which parameter is null, all credentials are returned.

Return Values

When successful, the getpcred subroutine returns a pointer to a NULL terminated array of string pointers

containing the requested values. If the getpcred subroutine is unsuccessful, a NULL pointer is returned

and the errno global variable is set to indicate the error.

Error Codes

The getpcred subroutine fails if either of the following are true:

 EINVAL The Which parameter contains invalid credentials requests.

EPERM The process does not have the proper authority to retrieve the requested credentials.

Other errors can also be set by any subroutines invoked by the getpcred subroutine.

Related Information

The ckuseracct (“ckuseracct Subroutine” on page 162) subroutine, ckuserID (“ckuserID Subroutine” on

page 164) subroutine, getpenv (“getpenv Subroutine” on page 396) subroutine, setpenv subroutine,

setpcred subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 395

getpeereid Subroutine

Purpose

Gets the effective user ID and effective group ID of a peer on a connected UNIX domain socket.

Syntax

#include <sys/types.h>

 int getpeereid (int socket, uid_t *euid, gid_t *egid)

Description

The getpeereid subroutine returns the effective user and group IDs of the peer connected to a stream

socket in the UNIX domain. The effective user and group IDs are saved in the socket, to be returned,

when the peer calls connect or listen.

Parameters

 socket Specifies the descriptor number of a connected socket.

euid The effective user ID of the peer socket.

egid The effective group ID of the peer socket.

Return Values

When the getpeereid subroutine successfully completes, a value of 0 is returned and the euid and egid

parameters hold the effective user ID and group ID, respectively.

If the getpeereid subroutine is unsuccessful, the system handler returns a value of -1 to the calling

program and sets the errno global variable to an error code that indicates the specific error.

Error Codes

The getpeereid subroutine is unsuccessful if any of the following errors occurs:

 EBADF The socket parameter is not valid.

ENOTSOCK The socket parameter refers to a file, not a socket.

ENOTCONN The socket is not connected.

ENOBUFS Insufficient resources were available in the system to complete the call.

EFAULT The address parameter is not in a writable part of the user address space.

Note: The getpeerid technology used to support this function in AIX was originally published by D. J.

Bernstein, Associate Professor, Department of Mathematics, Statistics, and Computer Science,

University of Illinois at Chicago. In addition, the specific getpeerid syntax reflected originated with

William Erik Baxter. All the aforementioned are used by AIX with permission.

getpenv Subroutine

Purpose

Reads the current process environment.

Library

Security Library (libc.a)

396 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <usersec.h>

char **getpenv (Which)

int Which;

Description

The getpenv subroutine reads the specified environment variables and returns them in a character buffer.

Parameters

 Which Specifies which environment variables are to be returned. This parameter is a bit mask and may

contain one or more of the following values, as defined in the usersec.h file:

PENV_USR

The normal user-state environment. Typically, the shell variables are contained here.

PENV_SYS

The system-state environment. This data is located in system space and protected from

unauthorized access.

All variables are returned by setting the Which parameter to logically OR the PENV_USER and

PENV_SYSTEM values.

The variables are returned in a null-terminated array of character pointers in the form var=val.

The user-state environment variables are prefaced by the string USRENVIRON:, and the

system-state variables are prefaced with SYSENVIRON:. If a user-state environment is requested,

the current directory is always returned in the PWD variable. If this variable is not present in the

existing environment, the getpenv subroutine adds it to the returned string.

Return Values

Upon successful return, the getpenv subroutine returns the environment values. If the getpenv subroutine

fails, a null value is returned and the errno global variable is set to indicate the error.

Note: This subroutine can partially succeed, returning only the values that the process permits it to read.

Error Codes

The getpenv subroutine fails if one or more of the following are true:

 EINVAL The Which parameter contains values other than PENV_USR or PENV_SYS.

Other errors can also be set by subroutines invoked by the getpenv subroutine.

Related Information

The ckuseracct (“ckuseracct Subroutine” on page 162) subroutine, ckuserID (“ckuserID Subroutine” on

page 164) subroutine, getpcred (“getpcred Subroutine” on page 394) subroutine, setpenv subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 397

getpgid Subroutine

Purpose

Returns the process group ID of the calling process.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

pid_t getpgid (Pid)

(pid_ Pid)

Description

The getpgid subroutine returns the process group ID of the process whose process ID is equal to that

specified by the Pid parameter. If the value of the Pid parameter is equal to (pid_t)0, the getpgid

subroutine returns the process group ID of the calling process.

Parameter

 Pid The process ID of the process to return the process group ID for.

Return Values

 id The process group ID of the requested process

-1 Not successful and errno set to one of the following.

Error Code

 ESRCH There is no process with a process ID equal to Pid.

 EPERM The process whose process ID is equal to Pid is not in the same session as the calling

process.

EINVAL The value of the Pid argument is invalid.

Related Information

The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

subroutine, fork (“fork, f_fork, or vfork Subroutine” on page 284) subroutine, getpid (“getpid, getpgrp, or

getppid Subroutine”) subroutine, getsid (“getsid Subroutine” on page 427) subroutine, setpgid subroutine,

setsid subroutine.

getpid, getpgrp, or getppid Subroutine

Purpose

Returns the process ID, process group ID, and parent process ID.

398 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <unistd.h>

pid_t getpid (void)

pid_t getpgrp (void)

pid_t getppid (void)

Description

The getpid subroutine returns the process ID of the calling process.

The getpgrp subroutine returns the process group ID of the calling process.

The getppid subroutine returns the process ID of the calling process’ parent process.

Related Information

The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

subroutines, fork (“fork, f_fork, or vfork Subroutine” on page 284) subroutine, setpgid subroutine, setpgrp

subroutine, sigaction, sigvec, or signal subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

getportattr or putportattr Subroutine

Purpose

Accesses the port information in the port database.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

int getportattr (Port, Attribute, Value, Type)

char * Port;

char * Attribute;

void * Value;

int Type;

int putportattr (Port, Attribute, Value, Type)

char *Port;

char *Attribute;

void *Value;

int Type;

Description

The getportattr or putportattr subroutine accesses port information. The getportattr subroutine reads a

specified attribute from the port database. If the database is not already open, the getportattr subroutine

implicitly opens the database for reading. The putportattr subroutine writes a specified attribute into the

port database. If the database is not already open, the putportattr subroutine implicitly opens the

database for reading and writing. The data changed by the putportattr subroutine must be explicitly

committed by calling the putportattr subroutine with a Type parameter equal to the SEC_COMMIT value.

Until all the data is committed, only these subroutines within the process return the written data.

Base Operating System (BOS) Runtime Services (A-P) 399

Values returned by these subroutines are in dynamically allocated buffers. You do not need to move the

values prior to the next call.

Use the setuserdb or enduserdb subroutine to open and close the port database.

Parameters

 Port Specifies the name of the port for which an attribute is read.

Attribute Specifies the name of the attribute read. This attribute can be one of the following values defined in

the usersec.h file:

S_HERALD

Defines the initial message printed when the getty or login command prompts for a login

name. This value is of the type SEC_CHAR.

S_SAKENABLED

Indicates whether or not trusted path processing is allowed on this port. This value is of

the type SEC_BOOL.

S_SYNONYM

Defines the set of ports that are synonym attributes for the given port. This value is of the

type SEC_LIST.

S_LOGTIMES

Defines when the user can access the port. This value is of the type SEC_LIST.

S_LOGDISABLE

Defines the number of unsuccessful login attempts that result in the system locking the

port. This value is of the type SEC_INT.

S_LOGINTERVAL

Defines the time interval in seconds within which S_LOGDISABLE number of

unsuccessful login attempts must occur before the system locks the port. This value is of

the type SEC_INT.

S_LOGREENABLE

Defines the time interval in minutes after which a system-locked port is unlocked. This

value is of the type SEC_INT.

S_LOGDELAY

Defines the delay factor in seconds between unsuccessful login attempts. This value is of

the type SEC_INT.

S_LOCKTIME

Defines the time in seconds since the epoch (zero time, January 1, 1970) that the port

was locked. This value is of the type SEC_INT.

S_ULOGTIMES

Lists the times in seconds since the epoch (midnight, January 1, 1970) when unsuccessful

login attempts occurred. This value is of the type SEC_LIST.

S_USERNAMEECHO

Indicates whether user name input echo and user name masking is enabled for the port.

This value is of the type SEC_BOOL.

S_PWDPROMPT

Defines the password prompt message printed when requesting password input. This

value is of the type SEC_CHAR.

Value Specifies the address of a buffer in which the attribute is stored with putportattr or is to be read

getportattr.

400 Technical Reference, Volume 1: Base Operating System and Extensions

Type Specifies the type of attribute expected. The following types are valid and defined in the usersec.h

file:

SEC_INT

Indicates the format of the attribute is an integer. The buffer returned by the getportattr

subroutine and the buffer supplied by the putportattr subroutine are defined to contain an

integer.

SEC_CHAR

Indicates the format of the attribute is a null-terminated character string.

SEC_LIST

Indicates the format of the attribute is a list of null-terminated character strings. The list

itself is null terminated.

SEC_BOOL

An integer with a value of either 0 or 1, or a pointer to a character pointing to one of the

following strings:

v True

v Yes

v Always

v False

v No

v Never

SEC_COMMIT

Indicates that changes to the specified port are committed to permanent storage if

specified alone for the putportattr subroutine. The Attribute and Value parameters are

ignored. If no port is specified, changes to all modified ports are committed.

SEC_DELETE

Deletes the corresponding attribute from the database.

SEC_NEW

Updates all of the port database files with the new port name when using the putportattr

subroutine.

Security

Access Control: The calling process must have access to the port information in the port database.

File Accessed:

 rw /etc/security/login.cfg

rw /etc/security/portlog

Return Values

The getportattr and putportattr subroutines return a value of 0 if completed successfully. Otherwise, a

value of -1 is returned and the errno global value is set to indicate the error.

Error Codes

These subroutines are unsuccessful if the following values are true:

 EACCES Indicates that access permission is denied for the data requested.

ENOENT Indicates that the Port parameter does not exist or the attribute is not defined for the

specified port.

ENOATTR Indicates that the specified port attribute does not exist for the specified port.

Base Operating System (BOS) Runtime Services (A-P) 401

EINVAL Indicates that the Attribute parameter does not contain one of the defined attributes or is a

null value.

EINVAL Indicates that the Value parameter does not point to a valid buffer or to valid data for this

type of attribute.

 EPERM Operation is not permitted.

Related Information

The setuserdb or enduserdb subroutine.

List of Security and Auditing Services in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

getpri Subroutine

Purpose

Returns the scheduling priority of a process.

Library

Standard C Library (libc.a)

Syntax

int getpri (ProcessID)

pid_t ProcessID;

Description

The getpri subroutine returns the scheduling priority of a process.

Parameters

 ProcessID Specifies the process ID. If this value is 0, the current process scheduling priority is returned.

Return Values

Upon successful completion, the getpri subroutine returns the scheduling priority of a thread in the

process. Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes

The getpri subroutine is unsuccessful if one of the following is true:

 EPERM A process was located, but its effective and real user ID did not match those of the process

executing the getpri subroutine, and the calling process did not have root user authority.

ESRCH No process can be found corresponding to that specified by the ProcessID parameter.

402 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The setpri subroutine.

Performance-Related Subroutines in AIX 5L Version 5.3 Performance Management Guide.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

getpriority, setpriority, or nice Subroutine

Purpose

Gets or sets the nice value.

Libraries

getpriority, setpriority: Standard C Library (libc.a)

nice: Standard C Library (libc.a)

Berkeley Compatibility Library (libbsd.a)

Syntax

#include <sys/resource.h>

int getpriority(Which, Who)

int Which;

int Who;

int setpriority(Which, Who, Priority)

int Which;

int Who;

int Priority;

#include <unistd.h>

int nice(Increment)

int Increment;

Description

The nice value of the process, process group, or user, as indicated by the Which and Who parameters is

obtained with the getpriority subroutine and set with the setpriority subroutine.

The getpriority subroutine returns the highest priority nice value (lowest numerical value) pertaining to any

of the specified processes. The setpriority subroutine sets the nice values of all of the specified

processes to the specified value. If the specified value is less than -20, a value of -20 is used; if it is

greater than 20, a value of 20 is used. Only processes that have root user authority can lower nice values.

The nice subroutine increments the nice value by the value of the Increment parameter.

Note: Nice values are only used for the scheduling policy SCHED_OTHER, where they are combined with

a calculation of recent cpu usage to determine the priority value.

To provide upward compatibility with older programs, the nice interface, originally found in AT&T System V,

is supported.

Base Operating System (BOS) Runtime Services (A-P) 403

Note: Process priorities in AT&T System V are defined in the range of 0 to 39, rather than -20 to 20 as in

BSD, and the nice library routine is supported by both. Accordingly, two versions of the nice are

supported by AIX Version 3. The default version behaves like the AT&T System V version, with the

Increment parameter treated as the modifier of a value in the range of 0 to 39 (0 corresponds to

-20, 39 corresponds to 9, and priority 20 is not reachable with this interface).

If the behavior of the BSD version is desired, compile with the Berkeley Compatibility Library (libbsd.a).

The Increment parameter is treated as the modifier of a value in the range -20 to 20.

Parameters

 Which Specifies one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

Who Interpreted relative to the Which parameter (a process identifier, process group identifier, and

a user ID, respectively). A zero value for the Who parameter denotes the current process,

process group, or user.

Priority Specifies a value in the range -20 to 20. Negative nice values cause more favorable

scheduling.

Increment Specifies a value that is added to the current process nice value. Negative values can be

specified, although values exceeding either the high or low limit are truncated.

Return Values

On successful completion, the getpriority subroutine returns an integer in the range -20 to 20. A return

value of -1 can also indicate an error, and in this case the errno global variable is set.

On successful completion, the setpriority subroutine returns 0. Otherwise, -1 is returned and the global

variable errno is set to indicate the error.

On successful completion, the nice subroutine returns the new nice value minus {NZERO}. Otherwise, a

value of -1 is returned and the errno global variable is set to indicate the error.

Note: A value of -1 can also be returned. In that case, the calling process should also check the errno

global variable.

Error Codes

The getpriority and setpriority subroutines are unsuccessful if one of the following is true:

 ESRCH No process was located using the Which and Who parameter values specified.

EINVAL The Which parameter was not recognized.

In addition to the errors indicated above, the setpriority subroutine is unsuccessful if one of the following

is true:

 EPERM A process was located, but neither the effective nor real user ID of the caller of the process

executing the setpriority subroutine has root user authority.

EACCESS The call to setpriority would have changed the priority of a process to a value lower than

its current value, and the effective user ID of the process executing the call did not have

root user authority.

The nice subroutine is unsuccessful if the following is true:

 EPERM The Increment parameter is negative or greater than 2 * {NZERO} and the calling process

does not have appropriate privileges.

404 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

subroutines.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

getproclist, getlparlist, or getarmlist Subroutine

Purpose

Retrieve the transaction records from the advanced accounting data file.

Library

The libaacct.a library.

Syntax

#include <sys/aacct.h>

int getproclist(filename, begin_time, end_time, p_list);

int getlparlist(filename, begin_time, end_time, l_list);

int getarmlist(filename, begin_time, end_time, t_list);

char *filename;

long long begin_time;

long long end_time;

struct aacct_tran **p_list, **l_list, **t_list

Description

The getproclist, getlparlist, and getarmlist subroutines parse the specified advanced accounting data file

and retrieve the process, LPAR, and ARM transaction records, respectively. The retrieved transaction

records are returned in the form of a linked list of type struct aacct_tran_rec.

These APIs can be called multiple times with different accounting data file names in order to generate a

consolidated list of transaction records from multiple data files. They append the new file data to the end

of the linked list pointed to by the p_list, l_list, and t_list arguments. They also internally sort the

transaction records based on the time of transaction, which gives users a time-sorted list of transaction

records from these routines.

The getproclist, getlparlist, and getarmlist subroutines can also be used to retrieve the intended

transaction records for a particular interval of time by passing the begin and end times of the interval as

arguments to these routines. If these interval arguments are specified as -1, transaction records for all the

intervals are retrieved.

Parameters

 begin_time Specifies the start timestamp for collecting records in a particular intervals. The input is

in seconds since EPOCH. Specifying -1 retrieves all the records.

end_time Specifies the end timestamp for collecting records in a particular intervals. The input is

in seconds since EPOCH. Specifying -1 retrieves all the records.

filename Name of the advanced accounting data file.

l_list Pointers to the linked list of aacct_tran_rec structures, which hold the retrieved LPAR

records.

p_list Pointers to the linked list of aacct_tran_rec structures, which hold the retrieved process

records.

t_list Pointers to the linked list of aacct_tran_rec structures, which hold the retrieved ARM

records.

Base Operating System (BOS) Runtime Services (A-P) 405

Security

No restrictions. Any user can call this function.

Return Values

 0 The call to the subroutine was successful.

-1 The call to the subroutine failed.

Error Codes

 EINVAL The passed pointer is NULL.

ENOENT Specified data file does not exist.

EPERM Permission denied. Unable to read the data file.

ENOMEM Insufficient memory.

Related Information

The “agg_proc_stat, agg_lpar_stat, agg_arm_stat, or free_agg_list Subroutine” on page 36, “buildproclist

Subroutine” on page 123, “buildtranlist or freetranlist Subroutine” on page 124.

Understanding the Advanced Accounting Subsystem.

getprocs Subroutine

Purpose

Gets process table entries.

Library

Standard C library (libc.a)

406 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

 #include <procinfo.h>

#include <sys/types.h>

 int

getprocs (ProcessBuffer, ProcessSize, FileBuffer, FileSize, IndexPointer, Count)

struct procsinfo *ProcessBuffer;

or struct procsinfo64 *ProcessBuffer;

int ProcessSize;

struct fdsinfo *FileBuffer;

int FileSize;

pid_t *IndexPointer;

int Count;

 int

getprocs64 (ProcessBuffer, ProcessSize, FileBuffer, FileSize, IndexPointer, Count)

struct procentry64 *ProcessBuffer;

int ProcessSize;

struct fdsinfo64 *FileBuffer;

int FileSize;

pid_t *IndexPointer;

int Count;

Description

The getprocs subroutine returns information about processes, including process table information defined

by the procsinfo structure, and information about the per-process file descriptors defined by the fdsinfo

structure.

The getprocs subroutine retrieves up to Count process table entries, starting with the process table entry

corresponding to the process identifier indicated by IndexPointer, and places them in the array of

procsinfo structures indicated by the ProcessBuffer parameter. File descriptor information corresponding

to the retrieved processes are stored in the array of fdsinfo structures indicated by the FileBuffer

parameter.

On return, the process identifier referenced by IndexPointer is updated to indicate the next process table

entry to be retrieved. The getprocs subroutine returns the number of process table entries retrieved.

The getprocs subroutine is normally called repeatedly in a loop, starting with a process identifier of zero,

and looping until the return value is less than Count, indicating that there are no more entries to retrieve.

Note: The process table may change while the getprocs subroutine is accessing it. Returned entries will

always be consistent, but since processes can be created or destroyed while the getprocs

subroutine is running, there is no guarantee that retrieved entries will still exist, or that all existing

processes have been retrieved.

When used in 32-bit mode, limits larger than can be represented in 32 bits are truncated to

RLIM_INFINITY. Large rusage and other values are truncated to INT_MAX. Alternatively, the struct

procsinfo64 and sizeof (struct procsinfo64) can be used by 32-bit getprocs to return full 64-bit process

information. Note that the procsinfo structure not only increases certain procsinfo fields from 32 to 64

bits, but that it contains additional information not present in procsinfo. The struct procsinfo64 contains

the same data as struct procsinfo when compiled in a 64-bit program.

Base Operating System (BOS) Runtime Services (A-P) 407

In AIX 5.1 and later, 64-bit applications are required to use getprocs64() and procentry64. Note that

struct procentry64 contains the same information as struct procsinfo64, with the addition of support for

the 64-bit time_t and dev_t, and the 256-bit sigset_t. The procentry64 structure also contains a new

version of struct ucred (struct ucred_ext) and a new, expanded struct rusage (struct trusage64) as

described in <sys/cred.h> and <sys/resource.h> respectively. Application developers are also

encouraged to use getprocs64() in 32-bit applications to obtain 64-bit process information as this interface

provides the new, larger types. The getprocs() interface will still be supported for 32-bit applications using

struct procsinfo or struct procsinfo64 but will not be available to 64-bit applications.

Parameters

ProcessBuffer

Specifies the starting address of an array of procsinfo, procsinfo64, or procentry64 structures to

be filled in with process table entries. If a value of NULL is passed for this parameter, the

getprocs subroutine scans the process table and sets return values as normal, but no process

entries are retrieved.

Note: The ProcessBuffer parameter of getprocs subroutine contains two struct rusage fields

named pi_ru and pi_cru. Each of these fields contains two struct timeval fields named

ru_utime and ru_stime. The tv_usec field in both of the struct timeval contain

nanoseconds instead of microseconds. These values cone from the struct user fields

named U_ru and U_cru.

ProcessSize

Specifies the size of a single procsinfo, procsinfo64, or procentry64 structure.

FileBuffer

Specifies the starting address of an array of fdsinfo, or fdsinfo64 structures to be filled in with

per-process file descriptor information. If a value of NULL is passed for this parameter, the

getprocs subroutine scans the process table and sets return values as normal, but no file

descriptor entries are retrieved.

FileSize

Specifies the size of a single fdsinfo, or fdsinfo64 structure.

IndexPointer

Specifies the address of a process identifier which indicates the required process table entry. A

process identifier of zero selects the first entry in the table. The process identifier is updated to

indicate the next entry to be retrieved.

Note: The IndexPointer does not have to correspond to an existing process, and may in fact

correspond to a different process than the one you expect. There is no guarantee that the

process slot pointed to by IndexPointer will contain the same process between successive

calls to getprocs() or getprocs64().

Count Specifies the number of process table entries requested.

Return Values

If successful, the getprocs subroutine returns the number of process table entries retrieved; if this is less

than the number requested, the end of the process table has been reached. A value of 0 is returned when

the end of the process table has been reached. Otherwise, a value of -1 is returned, and the errno global

variable is set to indicate the error.

Error Codes

The getprocs subroutine does not succeed if the following are true:

 EINVAL The ProcessSize or FileSize parameters are invalid, or the IndexPointer parameter does not

point to a valid process identifier, or the Count parameter is not greater than zero.

408 Technical Reference, Volume 1: Base Operating System and Extensions

EFAULT The copy operation to one of the buffers was not successful.

Related Information

The getpid (“getpid, getpgrp, or getppid Subroutine” on page 398), getpgrp (“getpid, getpgrp, or getppid

Subroutine” on page 398), or getppid (“getpid, getpgrp, or getppid Subroutine” on page 398) subroutines,

the getthrds (“getthrds Subroutine” on page 434) subroutine

The ps command.

getproj Subroutine

Purpose

Retrieves the project definition from the kernel project registry for the requested project name.

Library

The libaacct.a library.

Syntax

<sys/aacct.h>

getproj(struct project *, int flag)

Description

The getproj subroutine functions similar to the getprojs subroutine with the exception that the getproj

subroutine retrieves the definition only for the project name or number, which is passed as its argument.

The flag parameter indicates what is passed. The flag parameter has the following values:

v PROJ_NAME — Indicates that the supplied project definition only has the project name. The getproj

subroutine queries the kernel to obtain a match for the supplied project name and returns the matching

entry.

v PROJ_NUM — Indicates that the supplied project definition only has the project number. The getproj

subroutine queries the kernel to obtain a match for the supplied project number and returns the

matching entry.

Generally, the projects are loaded from the system project definition file or LDAP, or from both. When more

than one of these project repositories are used, project name and project ID collisions are possible. These

projects are differentiated by the kernel using an origin flag. This origin flag designates the project

repository from where the project definition is obtained. If the caller wants to retrieve the project definition

that belongs to a specific project repository, the specific origin value should be passed in the flags field of

the project structure. Valid project origins values that can be passed are defined in the sys/aacct.h file. If

the projects are currently loaded from the project repository represented by the origin value, getproj

returns the specified project if it exists. If the origin value is not passed, the first project reference found in

the kernel registry is returned. Regardless of whether the origin is passed or not, getproj always returns

the project origin flags in the output project structure.

Parameters

 project Pointer holding the project whose information is required.

flag An integer flag that indicates whether the match needs to be performed on the supplied

project name or number.

Base Operating System (BOS) Runtime Services (A-P) 409

Security

There are no restrictions. Any user can call this function.

Return Values

 0 Success

-1 Failure

Error Codes

 EINVAL Invalid argument. The flag parameter is not valid or the passed pointer is NULL.

ENOENT Project not found.

Related Information

The “addproj Subroutine” on page 31, “chprojattr Subroutine” on page 156, “getprojdb Subroutine,”

“getprojs Subroutine” on page 411, rmproj Subroutine.

getprojdb Subroutine

Purpose

Retrieves the specified project record from the project database.

Library

The libaacct.a library.

Syntax

<sys/aacct.h>

getprojdb(void *handle, struct project *project, int flag)

Description

The getprojdb subroutine searches the project database associated with the handle parameter for the

specified project. The project database must be initialized before calling this subroutine. The routines

projdballoc and projdbfinit are provided for this purpose. The flag parameter indicates the type of

search. The following flags are defined:

v PROJ_NAME — Search by product name. The getprojdb subroutine scans the file to obtain a match

for the supplied project name and returns the matching entry.

v PROJ_NUM — Search by product number. The getprojdb subroutine scans the file to obtain a match

for the supplied project number and returns the matching entry.

The entire database is searched. If the specified record is found, the getprojdb subroutine stores the

relevant project information into the struct project buffer, which is passed as an argument to this

subroutine. The specified project is then made the current project in the database. If the specified project

is not found, the database is reset so that the first project in the database is the current project.

Parameters

 handle Pointer to the handle allocated for the project database.

project Pointer holding the project name whose information is required.

410 Technical Reference, Volume 1: Base Operating System and Extensions

flag Integer flag indicating what type of information is sent for matching; that is, whether the match

needs to be performed by project name or number.

Security

No restrictions. Any user can call this function.

Return Values

 0 Success

-1 Failure

Error Codes

 ENOENT Project definition not found.

EINVAL Invalid arguments if flag is not valid or passed pointer is NULL.

Related Information

The “addprojdb Subroutine” on page 32, “chprojattrdb Subroutine” on page 157, “getfirstprojdb Subroutine”

on page 360, “getnextprojdb Subroutine” on page 387, “getproj Subroutine” on page 409, “projdballoc

Subroutine” on page 1089, “projdbfinit Subroutine” on page 1090, “projdbfree Subroutine” on page 1091,

rmprojdb Subroutine.

getprojs Subroutine

Purpose

Retrieves the project details from the kernel project registry.

Library

The libaacct.a library.

Syntax

<sys/aacct.h>

getprojs(struct project *, int *)

Description

The getprojs subroutine retrieves the specified number of project definitions from the kernel project

registry. The number of definitions to be retrieved is passed as an argument to this subroutine, and it is

also passed with a buffer of type struct project, where the retrieved project definitions are stored.

When the getprojs subroutine is called with a NULL value passed instead of a pointer to a struct project,

the getprojs subroutine returns the total number of defined projects in the kernel project registry. This

number can be used by any subsequent calls to retrieve the project details.

If the integer value passed is smaller than the number of project definitions available, then the project

buffer will be filled with as many entries as requested. If the value is greater than the number of available

definitions, then the available records are filled in the structure and the integer value is updated with the

number of records actually retrieved.

Base Operating System (BOS) Runtime Services (A-P) 411

Generally, the projects are loaded from the system project definition file or LDAP, or from both. When more

than one of these project repositories are used, project name and project ID collisions are possible. These

projects are differentiated by the kernel using an origin flag. This origin flag designates the project

repository from where the project definition is obtained. Valid project origins values that can be passed are

defined in the sys/aacct.h file. The getproj subroutine also returns this origin information in the flags field

of the output project structures.

Parameters

 pointer Points to a project structure where the retrieved data is stored.

int An integer that indicates the number of elements to be retrieved.

Security

There are no restrictions. Any user can call this function.

Return Values

 0 Success

-1 Failure

Error Codes

 EINVAL Invalid arguments if passed int pointer is NULL

ENOENT No projects available.

Related Information

The “addproj Subroutine” on page 31, “chprojattr Subroutine” on page 156, “getproj Subroutine” on page

409, rmproj Subroutine.

getpw Subroutine

Purpose

Retrieves a user’s /etc/passwd file entry.

Library

Standard C Library (libc.a)

Syntax

int getpw (UserID, Buffer)

uid_t UserID

char *Buffer

Description

The getpw subroutine opens the /etc/passwd file and returns, in the Buffer parameter, the /etc/passwd

file entry of the user specified by the UserID parameter.

Parameters

 Buffer Specifies a character buffer large enough to hold any /etc/passwd entry.

412 Technical Reference, Volume 1: Base Operating System and Extensions

UserID Specifies the ID of the user for which the entry is desired.

Return Values

The getpw subroutine returns:

 0 Successful completion

-1 Not successful.

getpwent, getpwuid, getpwnam, putpwent, setpwent, or endpwent

Subroutine

Purpose

Accesses the basic user information in the user database.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <pwd.h>

struct passwd *getpwent ()

struct passwd *getpwuid (UserID)

uid_t UserID;

struct passwd *getpwnam (Name)

char *Name;

int putpwent (Password, File)

struct passwd *Password;

FILE *File;

void setpwent ()

void endpwent ()

Description

Attention: All information generated by the getpwent, getpwnam, and getpwuid subroutines is stored

in a static area. Subsequent calls to these subroutines overwrite this static area. To save the information in

the static area, applications should copy it.

These subroutines access the basic user attributes.

The setpwent subroutine opens the user database if it is not already open. Then, this subroutine sets the

cursor to point to the first user entry in the database. The endpwent subroutine closes the user database.

The getpwent, getpwnam, and getpwuid subroutines return information about a user. These subroutines

do the following:

 getpwent Returns the next user entry in the sequential search.

getpwnam Returns the first user entry in the database whose name matches the Name parameter.

getpwuid Returns the first user entry in the database whose ID matches the UserID parameter.

Base Operating System (BOS) Runtime Services (A-P) 413

The putpwent subroutine writes a password entry into a file in the colon-separated format of the

/etc/passwd file.

The user Structure

The getpwent, getpwnam, and getpwuid subroutines return a user structure. This structure The user

structure is defined in the pwd.h file and has the following fields:

 pw_name Contains the name of the user name.

pw_passwd Contains the user’s encrypted password.

Note: If the password is not stored in the /etc/passwd file and the invoker does not have

access to the shadow file that contains passwords, this field contains an undecryptable string,

usually an * (asterisk).

pw_uid Contains the user’s ID.

pw_gid Identifies the user’s principal group ID.

pw_gecos Contains general user information.

pw_dir Identifies the user’s home directory.

pw_shell Identifies the user’s login shell.

Note: If Network Information Services (NIS) is enabled on the system, these subroutines attempt to

retrieve the information from the NIS authentication server before attempting to retrieve the

information locally.

Parameters

 File Points to an open file whose format is similar to the /etc/passwd file format.

Name Specifies the user name.

Password Points to a password structure. This structure contains user attributes.

UserID Specifies the user ID.

Security

 Files Accessed:

 Mode File

rw /etc/passwd (write access for the putpwent subroutine only)

r /etc/security/passwd (if the password is desired)

Return Values

The getpwent, getpwnam, and getpwuid subroutines return a pointer to a valid password structure if

successful. Otherwise, a null pointer is returned.

The getpwent subroutine will return a null pointer and an errno value of ENOATTR when it detects a

corrupt entry. To get subsequent entries following the corrupt entry, call the getpwent subroutine again.

Files

 /etc/passwd Contains user IDs and their passwords

Related Information

The getgrent (“getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine” on page 363) subroutine,

getgroupattr (“getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine” on page 367) subroutine,

414 Technical Reference, Volume 1: Base Operating System and Extensions

getuserattr (“getuserattr, IDtouser, nextuser, or putuserattr Subroutine” on page 445) subroutine,

getuserpw, putuserpw, or putuserpwhist (“getuserpw, putuserpw, or putuserpwhist Subroutine” on page

459) subroutine, setuserdb subroutine.

List of Security and Auditing Subroutines, Subroutines, Example Programs, and Libraries in AIX 5L Version

5.3 General Programming Concepts: Writing and Debugging Programs.

getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine

Purpose

Controls maximum system resource consumption.

Library

Standard C Library (libc.a)

Syntax

#include <sys/time.h>

#include <sys/resource.h>

int setrlimit(Resource1, RLP)

int Resource1;

struct rlimit *RLP;

int setrlimit64 (Resource1, RLP)

int Resource1;

struct rlimit64 *RLP;

int getrlimit (Resource1, RLP)

int Resource1;

struct rlimit *RLP;

int getrlimit64 (Resource1, RLP)

int Resource1;

struct rlimit64 *RLP;

#include <sys/vlimit.h>

vlimit (Resource2, Value)

int Resource2, Value;

Description

The getrlimit subroutine returns the values of limits on system resources used by the current process and

its children processes. The setrlimit subroutine sets these limits. The vlimit subroutine is also supported,

but the getrlimit subroutine replaces it.

A resource limit is specified as either a soft (current) or hard limit. A calling process can raise or lower its

own soft limits, but it cannot raise its soft limits above its hard limits. A calling process must have root user

authority to raise a hard limit.

Note: The initial values returned by the getrlimit subroutine are the ulimit values in effect when the

process was started. For maxdata programs the initial soft limit for data is set to the lower of data

ulimit value or a value corresponding to the number of data segments reserved for data segments.
When a program is executing using the large address-space model, the operating system attempts

Base Operating System (BOS) Runtime Services (A-P) 415

to modify the soft limit on data size to match the maxdata value. If the maxdata value is larger than

the current hard limit on data size, either the program will not execute if the XPG_SUS_ENV

environment variable has the value set to ON, or the soft limit will be set to the current hard limit. If

the maxdata value is smaller than the size of the program’s static data, the program will not

execute.

The rlimit structure specifies the hard and soft limits for a resource, as defined in the sys/resource.h file.

The RLIM_INFINITY value defines an infinite value for a limit.

When compiled in 32-bit mode, RLIM_INFINITY is a 32-bit value; when compiled in 64-bit mode, it is a

64-bit value. 32-bit routines should use RLIM64_INFINITY when setting 64-bit limits with the setrlimit64

routine, and recognize this value when returned by getrlimit64.

This information is stored as per-process information. This subroutine must be executed directly by the

shell if it is to affect all future processes created by the shell.

Note: Raising the data limit does not raise the program break value. Use the brk/sbrk subroutines to

raise the break value. If the proper memory segments are not initialized at program load time,

raising your memory limit will not allow access to this memory. Use the -bmaxdata flag of the ld

command to set up these segments at load time.

When compiled in 32-bit mode, the struct rlimit values may be returned as RLIM_SAVED_MAX or

RLIM_SAVED_CUR when the actual resource limit is too large to represent as a 32-bit rlim_t.

These values can be used by library routines which set their own rlimits to save off potentially 64-bit

rlimit values (and prevent them from being truncated by the 32-bit struct rlimit). Unless the library routine

intends to permanently change the rlimits, the RLIM_SAVED_MAX and RLIM_SAVED_CUR values can

be used to restore the 64-bit rlimits.

Application limits may be further constrained by available memory or implementation defined constants

such as OPEN_MAX (maximum available open files).

416 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 Resource1 Can be one of the following values:

RLIMIT_AS

The maximum size of a process’ total available memory, in bytes. This limit is not

enforced.

RLIMIT_CORE

The largest size, in bytes, of a core file that can be created. This limit is enforced

by the kernel. If the value of the RLIMIT_FSIZE limit is less than the value of the

RLIMIT_CORE limit, the system uses the RLIMIT_FSIZE limit value as the soft limit.

RLIMIT_CPU

The maximum amount of central processing unit (CPU) time, in seconds, to be used

by each process. If a process exceeds its soft CPU limit, the kernel will send a

SIGXCPU signal to the process. After the hard limit is reached, the process will be

killed with SIGXCPU, even if it handles, blocks, or ignores that signal.

RLIMIT_DATA

The maximum size, in bytes, of the data region for a process. This limit defines how

far a program can extend its break value with the sbrk subroutine. This limit is

enforced by the kernel. If the XPG_SUS_ENV=ON environment variable is set in the

user’s environment before the process is executed and a process attempts to set

the limit lower than current usage, the operation fails with errno set to EINVAL. If

the XPG_SUS_ENV environment variable is not set, the operation fails with errno

set to EFAULT.

RLIMIT_FSIZE

The largest size, in bytes, of any single file that can be created. When a process

attempts to write, truncate, or clear beyond its soft RLIMIT_FSIZE limit, the

operation will fail with errno set to EFBIG. If the environment variable

XPG_SUS_ENV=ON is set in the user’s environment before the process is

executed, then the SIGXFSZ signal is also generated.

RLIMIT_NOFILE

This is a number one greater than the maximum value that the system may assign

to a newly-created descriptor.

RLIMIT_STACK

The maximum size, in bytes, of the stack region for a process. This limit defines

how far a program stack region can be extended. Stack extension is performed

automatically by the system. This limit is enforced by the kernel. When the stack

limit is reached, the process receives a SIGSEGV signal. If this signal is not caught

by a handler using the signal stack, the signal ends the process.

RLIMIT_RSS

The maximum size, in bytes, to which the resident set size of a process can grow.

This limit is not enforced by the kernel. A process may exceed its soft limit size

without being ended.

RLP Points to the rlimit or rlimit64 structure, which contains the soft (current) and hard limits. For

the getrlimit subroutine, the requested limits are returned in this structure. For the setrlimit

subroutine, the desired new limits are specified here.

Resource2 The flags for this parameter are defined in the sys/vlimit.h, and are mapped to

corresponding flags for the setrlimit subroutine.

Value Specifies an integer used as a soft-limit parameter to the vlimit subroutine.

Return Values

On successful completion, a return value of 0 is returned, changing or returning the resource limit.

Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error. If the current

limit specified is beyond the hard limit, the setrlimit subroutine sets the limit to to max limit and returns

successfully.

Base Operating System (BOS) Runtime Services (A-P) 417

Error Codes

The getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit subroutine is unsuccessful if one of the

following is true:

 EFAULT The address specified for the RLP parameter is not valid.

EINVAL The Resource1 parameter is not a valid resource, or the limit specified in the RLP parameter

is invalid.

EPERM The limit specified to the setrlimit subroutine would have raised the maximum limit value,

and the caller does not have root user authority.

Related Information

The sigaction, sigvec, or signal subroutines, sigstack subroutine, ulimit subroutine.

getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or endrpcent

Subroutine

Purpose

Accesses the /etc/rpc file.

Library

Standard C Library (libc.a)

Syntax

#include <netdb.h>

struct rpcent *getrpcent ()

struct rpcent *getrpcbyname (Name)

char *Name;

struct rpcent *getrpcbynumber (Number)

int Number;

void setrpcent (StayOpen)

int StayOpen

void endrpcent

Description

Attention: Do not use the getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or endrpcent

subroutine in a multithreaded environment.

 Attention: The information returned by the getrpcbyname, and getrpcbynumber subroutines is stored

in a static area and is overwritten on subsequent calls. Copy the information to save it.

The getprcbyname and getrpcbynumber subroutines each return a pointer to an object with the rpcent

structure. This structure contains the broken-out fields of a line from the /etc/rpc file. The getprcbyname

and getrpcbynumber subroutines searches the rpc file sequentially from the beginning of the file until it

finds a matching RPC program name or number, or until it reaches the end of the file. The getrpcent

subroutine reads the next line of the file, opening the file if necessary.

The setrpcent subroutine opens and rewinds the /etc/rpc file. If the StayOpen parameter does not equal

0, the rpc file is not closed after a call to the getrpcent subroutine.

The setrpcent subroutine rewinds the rpc file. The endrpcent subroutine closes it.

418 Technical Reference, Volume 1: Base Operating System and Extensions

The rpc file contains information about Remote Procedure Call (RPC) programs. The rpcent structure is in

the /usr/include/netdb.h file and contains the following fields:

 r_name Contains the name of the server for an RPC program

r_aliases Contains an alternate list of names for RPC programs. This list ends with a 0.

r_number Contains a number associated with an RPC program.

Parameters

 Name Specifies the name of a server for rpc program.

Number Specifies the rpc program number for service.

StayOpen Contains a value used to indicate whether to close the rpc file.

Return Values

These subroutines return a null pointer when they encounter the end of a file or an error.

Files

 /etc/rpc Contains information about Remote Procedure Call (RPC) programs.

Related Information

Remote Procedure Call (RPC) for Programming in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs

getrusage, getrusage64, times, or vtimes Subroutine

Purpose

Displays information about resource use.

Libraries

getrusage, getrusage64, times: Standard C Library (libc.a)

 vtimes: Berkeley Compatibility Library (libbsd.a)

Syntax

#include <sys/times.h>

#include <sys/resource.h>

int getrusage (Who, RUsage)

int Who;

struct rusage *RUsage;

int getrusage64 (Who, RUsage)

int Who;

struct rusage64 *RUsage;

#include <sys/types.h>

#include <sys/times.h>

clock_t times (Buffer)

struct tms *Buffer;

Base Operating System (BOS) Runtime Services (A-P) 419

#include <sys/times.h>

vtimes (ParentVM, ChildVM)

struct vtimes *ParentVm, ChildVm;

Description

The getrusage subroutine displays information about how resources are used by the current process or all

completed child processes.

When compiled in 64-bit mode, rusage counters are 64 bits. If getrusage is compiled in 32-bit mode,

rusage counters are 32 bits. If the kernel’s value of a usage counter has exceeded the capacity of the

corresponding 32-bit rusage value being returned, the rusage value is set to INT_MAX.

The getrusage64 subroutine can be called to make 64-bit rusage counters explicitly available in a 32-bit

environment.

In AIX 5.1 and later, 64-bit quantities are also available to 64-bit applications through the getrusage()

interface in the ru_utime and ru_stime fields of struct rusage.

The times subroutine fills the structure pointed to by the Buffer parameter with time-accounting

information. All time values reported by the times subroutine are measured in terms of the number of

clock ticks used. Applications should use sysconf (_SC_CLK_TCK) to determine the number of clock

ticks per second.

The tms structure defined in the /usr/include/sys/times.h file contains the following fields:

time_t tms_utime;

time_t tms_stime;

time_t tms_cutime;

time_t tms_cstime;

This information is read from the calling process as well as from each completed child process for which

the calling process executed a wait subroutine.

 tms_utime The CPU time used for executing instructions in the user space of the calling process

tms_stime The CPU time used by the system on behalf of the calling process.

tms_cutime The sum of the tms_utime and the tms_cutime values for all the child processes.

tms_cstime The sum of the tms_stime and the tms_cstime values for all the child processes.

Note: The system measures time by counting clock interrupts. The precision of the values reported by the

times subroutine depends on the rate at which the clock interrupts occur.

The vtimes subroutine is supported to provide compatibility with earlier programs.

The vtimes subroutine returns accounting information for the current process and for the completed child

processes of the current process. Either the ParentVm parameter, the ChildVm parameter, or both may be

0. In that case, only the information for the nonzero pointers is returned.

After a call to the vtimes subroutine, each buffer contains information as defined by the contents of the

/usr/include/sys/vtimes.h file.

Parameters

 Who Specifies a value of RUSAGE_THREAD, RUSAGE_SELF, or RUSAGE_CHILDREN.

420 Technical Reference, Volume 1: Base Operating System and Extensions

RUsage Points to a buffer described in the /usr/include/sys/resource.h file. The fields are interpreted

as follows:

ru_utime

The total amount of time running in user mode.

ru_stime

The total amount of time spent in the system executing on behalf of the processes.

ru_maxrss

The maximum size, in kilobytes, of the used resident set size.

ru_ixrss

An integral value indicating the amount of memory used by the text segment that was

also shared among other processes. This value is expressed in units of kilobytes *

seconds-of-execution and is calculated by adding the number of shared memory

pages in use each time the internal system clock ticks, and then averaging over

one-second intervals.

ru_idrss

An integral value of the amount of unshared memory in the data segment of a

process (expressed in units of kilobytes * seconds-of-execution).

ru_minflt

The number of page faults serviced without any I/O activity. In this case, I/O activity is

avoided by reclaiming a page frame from the list of pages awaiting reallocation.

ru_majflt

The number of page faults serviced that required I/O activity.

ru_nswap

The number of times a process was swapped out of main memory.

ru_inblock

The number of times the file system performed input.

ru_oublock

The number of times the file system performed output.

Note: The numbers that the ru_inblock and ru_oublock fields display account for

real I/O only; data supplied by the caching mechanism is charged only to the first

process to read or write the data.

ru_msgsnd

The number of IPC messages sent.

ru_msgrcv

The number of IPC messages received.

ru_nsignals

The number of signals delivered.

ru_nvcsw

The number of times a context switch resulted because a process voluntarily gave up

the processor before its time slice was completed. This usually occurs while the

process waits for availability of a resource.

ru_nivcsw

The number of times a context switch resulted because a higher priority process ran

or because the current process exceeded its time slice.

Buffer Points to a tms structure.

ParentVm Points to a vtimes structure that contains the accounting information for the current process.

ChildVm Points to a vtimes structure that contains the accounting information for the terminated child

processes of the current process.

Base Operating System (BOS) Runtime Services (A-P) 421

Return Values

Upon successful completion, the getrusage and getrusage64 subroutines return a value of 0. Otherwise,

a value of -1 is returned and the errno global variable is set to indicate the error.

Upon successful completion, the times subroutine returns the elapsed real time in units of ticks, whether

profiling is enabled or disabled. This reference time does not change from one call of the times subroutine

to another. If the times subroutine fails, it returns a value of -1 and sets the errno global variable to

indicate the error.

Error Codes

 The getrusage and getrusage64 subroutines do not run successfully if either of the following is true:

EINVAL The Who parameter is not a valid value.

EFAULT The address specified for RUsage is not valid.

The times subroutine does not run successfully if the following is true:

EFAULT The address specified by the buffer parameter is not valid.

Related Information

The gettimer, settimer, restimer, stime, or time (“gettimer, settimer, restimer, stime, or time Subroutine”

on page 437) subroutine, wait, waitpid, or wait3 subroutine.

Performance-Related Subroutines in AIX 5L Version 5.3 Performance Management Guide.

getroleattr, nextrole or putroleattr Subroutine

Purpose

Accesses the role information in the roles database.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

int getroleattr(Role, Attribute, Value, Type)

char *Role;

char *Attribute;

void *Value;

int Type;

char *nextrole(void)

int putroleattr(Role, Attribute, Value, Type)

char *Role;

char *Attribute;

void *Value;

int Type;

Description

The getroleattr subroutine reads a specified attribute from the role database. If the database is not

already open, this subroutine does an implicit open for reading.

Similarly, the putroleattr subroutine writes a specified attribute into the role database. If the database is

not already open, this subroutine does an implicit open for reading and writing. Data changed by the

422 Technical Reference, Volume 1: Base Operating System and Extensions

putroleattr subroutine must be explicitly committed by calling the putroleattr subroutine with a Type

parameter specifying SEC_COMMIT. Until all the data is committed, only the getroleattr subroutine within

the process returns written data.

The nextrole subroutine returns the next role in a linear search of the role database. The consistency of

consecutive searches depends upon the underlying storage-access mechanism and is not guaranteed by

this subroutine.

The setroledb and endroledb subroutines should be used to open and close the role database.

Parameters

 Attribute Specifies which attribute is read. The following possible attributes are defined in the usersec.h file:

S_ROLELIST

List of roles included by this role. The attribute type is SEC_LIST.

S_AUTHORIZATIONS

List of authorizations included by this role. The attribute type is SEC_LIST.

S_GROUPS

List of groups required for this role. The attribute type is SEC_LIST.

S_SCREENS

List of SMIT screens required for this role. The attribute type is SEC_LIST.

S_VISIBILITY

Number value stating the visibility of the role. The attribute type is SEC_INT.

S_MSGCAT

Message catalog file name. The attribute type is SEC_CHAR.

S_MSGNUMBER

Message number within the catalog. The attribute type is SEC_INT.

Base Operating System (BOS) Runtime Services (A-P) 423

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file and include:

SEC_INT

The format of the attribute is an integer.

 For the getroleattr subroutine, the user should supply a pointer to a defined integer

variable.

 For the putroleattr subroutine, the user should supply an integer.

SEC_CHAR

The format of the attribute is a null-terminated character string.

 For the getroleattr subroutine, the user should supply a pointer to a defined character

pointer variable. For the putroleattr subroutine, the user should supply a character

pointer.

SEC_LIST

The format of the attribute is a series of concatenated strings, each null-terminated. The

last string in the series must be an empty (zero character count) string.

 For the getroleattr subroutine, the user should supply a pointer to a defined character

pointer variable. For the putroleattr subroutine, the user should supply a character

pointer.

SEC_COMMIT

For the putroleattr subroutine, this value specified by itself indicates that changes to the

named role are to be committed to permanent storage. The Attribute and Value

parameters are ignored. If no role is specified, the changes to all modified roles are

committed to permanent storage.

SEC_DELETE

The corresponding attribute is deleted from the database.

SEC_NEW

Updates the role database file with the new role name when using the putroleattr

subroutine.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the Attribute and

Type parameters. See the Type parameter for more details.

Return Values

If successful, the getroleattr returns 0. Otherwise, a value of -1 is returned and the errno global variables

is set to indicate the error.

Error Codes

Possible return codes are:

 EACCES Access permission is denied for the data request.

ENOENT The specified Role parameter does not exist.

ENOATTR The specified role attribute does not exist for this role.

EINVAL The Attribute parameter does not contain one of the defined attributes or null.

EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of

attribute.

EPERM Operation is not permitted.

Related Information

The getuserattr, nextusracl, or putusraclattr (“getuserattr, IDtouser, nextuser, or putuserattr Subroutine”

on page 445) subroutine, setroledb, or endacldb subroutine.

424 Technical Reference, Volume 1: Base Operating System and Extensions

gets or fgets Subroutine

Purpose

Gets a string from a stream.

Library

Standard I/O Library (libc.a)

Syntax

#include <stdio.h>

char *gets (String)

char *String;

char *fgets (String, Number, Stream)

char *String;

int Number;

FILE *Stream;

Description

The gets subroutine reads bytes from the standard input stream, stdin, into the array pointed to by the

String parameter. It reads data until it reaches a new-line character or an end-of-file condition. If a new-line

character stops the reading process, the gets subroutine discards the new-line character and terminates

the string with a null character.

The fgets subroutine reads bytes from the data pointed to by the Stream parameter into the array pointed

to by the String parameter. The fgets subroutine reads data up to the number of bytes specified by the

Number parameter minus 1, or until it reads a new-line character and transfers that character to the String

parameter, or until it encounters an end-of-file condition. The fgets subroutine then terminates the data

string with a null character.

The first successful run of the fgetc (“getc, getchar, fgetc, or getw Subroutine” on page 340), fgets,

fgetwc (“getwc, fgetwc, or getwchar Subroutine” on page 468), fgetws (“getws or fgetws Subroutine” on

page 471), fread (“fread or fwrite Subroutine” on page 304), fscanf, getc (“getc, getchar, fgetc, or getw

Subroutine” on page 340), getchar (“getc, getchar, fgetc, or getw Subroutine” on page 340), gets or scanf

subroutine using a stream that returns data not supplied by a prior call to the ungetc or ungetwc

subroutine marks the st_atime field for update.

Parameters

 String Points to a string to receive bytes.

Stream Points to the FILE structure of an open file.

Number Specifies the upper bound on the number of bytes to read.

Return Values

If the gets or fgets subroutine encounters the end of the file without reading any bytes, it transfers no

bytes to the String parameter and returns a null pointer. If a read error occurs, the gets or fgets

subroutine returns a null pointer and sets the errno global variable (errors are the same as for the fgetc

(“getc, getchar, fgetc, or getw Subroutine” on page 340) subroutine). Otherwise, the gets or fgets

subroutine returns the value of the String parameter.

Note: Depending upon which library routine the application binds to, this subroutine may return

EINTR. Refer to the signal subroutine regarding the SA_RESTART value.

Base Operating System (BOS) Runtime Services (A-P) 425

Related Information

The feof, ferror, clearerr, or fileno (“feof, ferror, clearerr, or fileno Macro” on page 264) macro, fopen,

freopen, or fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 281) subroutine,

fread (“fread or fwrite Subroutine” on page 304) subroutine, getc, getchar, fgetc, or getw (“getc, getchar,

fgetc, or getw Subroutine” on page 340) subroutine, getwc, fgetwc, or getwchar (“getwc, fgetwc, or

getwchar Subroutine” on page 468) subroutine, getws or fgetws (“getws or fgetws Subroutine” on page

471) subroutine, puts or fputs (“puts or fputs Subroutine” on page 1236) subroutine, putws or fputws

(“putws or fputws Subroutine” on page 1246) subroutine, scanf, fscanf, or sscanf subroutine, ungetc or

ungetwc subroutine.

List of String Manipulation Services, Subroutines Overview in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

getfsent_r, getfsspec_r, getfsfile_r, getfstype_r, setfsent_r, or

endfsent_r Subroutine

Purpose

Gets information about a file system.

Library

Thread-Safe C Library (libc_r.a)

Syntax

#include <fstab.h>

int getfsent_r (FSSent, FSFile, PassNo)

struct fstab * FSSent;

AFILE_t * FSFile;

int * PassNo;

int getfsspec_r (Special, FSSent, FSFile, PassNo)

const char * Special;

struct fstab *FSSent;

AFILE_t *FSFile;

int *PassNo;

int getfsfile_r (File, FSSent, FSFile, PassNo)

const char * File;

struct fstab *FSSent;

AFILE_t *FSFile;

int *PassNo;

int getfstype_r (Type, FSSent, FSFile, PassNo)

const char * Type;

struct fstab *FSSent;

AFILE_t *FSFile;

int *PassNo;

int setfsent_r (FSFile, PassNo)

AFILE_t * FSFile;

int *PassNo;

int endfsent_r (FSFile)

AFILE_t *FSFile;

426 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The getfsent_r subroutine reads the next line of the /etc/filesystems file, opening it necessary.

The setfsent_r subroutine opens the filesystems file and positions to the first record.

The endfsent_r subroutine closes the filesystems file.

The getfsspec_r and getfsfile_r subroutines search sequentially from the beginning of the file until a

matching special file name or file-system file name is found, or until the end of the file is encountered. The

getfstype_r subroutine behaves similarly, matching on the file-system type field.

Programs using this subroutine must link to the libpthreads.a library.

Parameters

 FSSent Points to a structure containing information about the file system. The FSSent parameter must be

allocated by the caller. It cannot be a null value.

FSFile Points to an attribute structure. The FSFile parameter is used to pass values between

subroutines.

PassNo Points to an integer. The setfsent_r subroutine initializes the PassNo parameter.

Special Specifies a special file name to search for in the filesystems file.

File Specifies a file name to search for in the filesystems file.

Type Specifies a type to search for in the filesystems file.

Return Values

 0 Indicates that the subroutine was successful.

-1 Indicates that the subroutine was not successful.

Files

 /etc/filesystems Centralizes file-system characteristics.

Related Information

The getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent (“getvfsent,

getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent Subroutine” on page 467) subroutine.

The filesystems file in AIX 5L Version 5.3 Files Reference.

List of Multithread Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

getsid Subroutine

Purpose

Returns the session ID of the calling process.

Library

(libc.a)

Base Operating System (BOS) Runtime Services (A-P) 427

Syntax

#include <unistd.h>

pid_t getsid (pid_ t pid)

Description

The getsid subroutine returns the process group ID of the process that is the session leader of the

process specified by pid. If pid is equal to pid_t subroutine, it specifies the calling process.

Parameters

 pid A process ID of the process being queried.

Return Values

Upon successful completion, getsid subroutine returns the process group ID of the session leaded of the

specified process. Otherwise, it returns (pid_t)-1 and set errno to indicate the error.

 id The session ID of the requested process.

-1 Not successful and the errno global variable is set to one of the following error codes.

Error Codes

 ESRCH There is no process with a process ID equal to pid.

 EPERM The process specified by pid is not in the same session as the calling process.

ESRCH There is no process with a process ID equal to pid.

Related Information

The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

subroutines, fork (“fork, f_fork, or vfork Subroutine” on page 284) subroutines, getpid (“getpid, getpgrp, or

getppid Subroutine” on page 398) subroutines, setpgid subroutines.

getssys Subroutine

Purpose

Reads a subsystem record.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>

#include <spc.h>

int getssys(SubsystemName, SRCSubsystem)

char * SubsystemName;

struct SRCsubsys * SRCSubsystem;

428 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The getssys subroutine reads a subsystem record associated with the specified subsystem and returns

the ODM record in the SRCsubsys structure.

The SRCsubsys structure is defined in the sys/srcobj.h file.

Parameters

 SRCSubsystem Points to the SRCsubsys structure.

SubsystemName Specifies the name of the subsystem to be read.

Return Values

Upon successful completion, the getssys subroutine returns a value of 0. Otherwise, it returns a value of

-1 and the odmerrno variable is set to indicate the error, or an SRC error code is returned.

Error Codes

If the getssys subroutine fails, the following is returned:

 SRC_NOREC Subsystem name does not exist.

Files

 /etc/objrepos/SRCsubsys SRC Subsystem Configuration object class.

Related Information

The addssys (“addssys Subroutine” on page 33) subroutine, delssys (“delssys Subroutine” on page 207)

subroutine, getsubsvr (“getsubsvr Subroutine” on page 430) subroutine.

Defining Your Subsystem to the SRC, List of SRC Subroutines, System Resource Controller (SRC)

Overview for Programmers in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

getsubopt Subroutine

Purpose

Parse suboptions from a string.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int getsubopt (char **optionp,

char * const * tokens,

char ** valuep)

Description

The getsubopt subroutine parses suboptions in a flag parameter that were initially parsed by the getopt

subroutine. These suboptions are separated by commas and may consist of either a single token, or a

Base Operating System (BOS) Runtime Services (A-P) 429

token-value pair separated by an equal sign. Because commas delimit suboptions in the option string, they

are not allowed to be part of the suboption or the value of a suboption. similarly, because the equal sign

separates a token from its value, a token must not contain an equal sign.

The getsubopt subroutine takes the address of a pointer to the option string, a vector of possible tokens,

and the address of a value string pointer. It returns the index of the token that matched the suboption in

the input string or -1 if there was no match. If the option string at *optionp contains only one suboption, the

getsubopt subroutine updates *optionp to point to the start of the next suboption. It the suboption has an

associated value, the getsubopt subroutine updates *valuep to point to the value’s first character.

Otherwise it sets *valuep to a NULL pointer.

The token vector is organized as a series of pointers to strings. The end of the token vector is identified by

a NULL pointer.

When the getsubopt subroutine returns, if *valuep is not a NULL pointer then the suboption processed

included a value. The calling program may use this information to determine if the presence or lack of a

value for this suboption is an error.

Additionally, when the getsubopt subroutine fails to match the suboption with the tokens in the tokens

array, the calling program should decide if this is an error, or if the unrecognized option should be passed

on to another program.

Return Values

The getsubopt subroutine returns the index of the matched token string, or -1 if no token strings were

matched.

Related Information

The getopt (“getopt Subroutine” on page 388) subroutine.

getsubsvr Subroutine

Purpose

Reads a subsystem record.

Library

System Resource Controller Library (libsrc.a)

Syntax

#include <sys/srcobj.h>

#include <spc.h>

int getsubsvr(SubserverName, SRCSubserver)

char *SubserverName;

struct SRCSubsvr *SRCSubserver;

Description

The getsubsvr subroutine reads a subsystem record associated with the specified subserver and returns

the ODM record in the SRCsubsvr structure.

The SRCsubsvr structure is defined in the sys/srcobj.h file and includes the following fields:

 char sub_type[30];

430 Technical Reference, Volume 1: Base Operating System and Extensions

char subsysname[30];

short sub_code;

Parameters

 SRCSubserver Points to the SRCsubsvr structure.

SubserverName Specifies the subserver to be read.

Return Values

Upon successful completion, the getsubsvr subroutine returns a value of 0. Otherwise, it returns a value

of -1 and the odmerrno variable is set to indicate the error, or an SRC error code is returned.

Error Codes

If the getsubsvr subroutine fails, the following is returned:

 SRC_NOREC The specified SRCsubsvr record does not exist.

Files

 /etc/objrepos/SRCsubsvr SRC Subserver Configuration object class.

Related Information

The getssys (“getssys Subroutine” on page 428) subroutine.

Defining Your Subsystem to the SRC, List of SRC Subroutines, System Resource Controller (SRC)

Overview for Programmers in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

gettcbattr or puttcbattr Subroutine

Purpose

Accesses the TCB information in the user database.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

int gettcbattr (Entry, Attribute, Value, Type)

char * Entry;

char * Attribute;

void * Value;

int Type;

int puttcbattr (Entry, Attribute, Value, Type)

char *Entry;

char *Attribute;

void *Value;

int Type;

Base Operating System (BOS) Runtime Services (A-P) 431

Description

These subroutines access Trusted Computing Base (TCB) information.

The gettcbattr subroutine reads a specified attribute from the tcbck database. If the database is not

already open, the subroutine will do an implicit open for reading.

Similarly, the puttcbattr subroutine writes a specified attribute into the tcbck database. If the database is

not already open, the subroutine does an implicit open for reading and writing. Data changed by

puttcbattr must be explicitly committed by calling the puttcbattr subroutine with a Type parameter

specifying the SEC_COMMIT value. Until the data is committed, only get subroutine calls within the

process will return the written data.

New entries in the tcbck databases must first be created by invoking puttcbattr with the SEC_NEW type.

The tcbck database usually defines all the files and programs that are part of the TCB, but the root user

or a member of the security group can choose to define only those files considered to be security-relevant.

Parameters

 Attribute Specifies which attribute is read. The following possible values are defined in the sysck.h

file:

S_ACL The access control list for the file. Type: SEC_CHAR.

S_CHECKSUM

The checksum of the file. Type: SEC_CHAR.

S_CLASS

The logical group of the file. The attribute type is SEC_LIST.

S_GROUP

The file group. The attribute type is SEC_CHAR.

S_LINKS

The hard links to this file. Type: SEC_LIST.

S_MODE

The File mode. Type: SEC_CHAR.

S_OWNER

The file owner. Type: SEC_CHAR.

S_PROGRAM

The associated checking program for the file. Type: SEC_CHAR.

S_SIZE

The size of the file in bytes. Type: SEC_LONG.

S_SOURCE

The source for the file. Type: SEC_CHAR.

S_SYMLINKS

The symbolic links to the file. Type: SEC_LIST.

S_TARGET

The target file (if file is a symbolic link). Type: SEC_CHAR.

S_TCB The Trusted Computer Base. The attribute type is SEC_BOOL.

S_TYPE

The type of file. The attribute type is SEC_CHAR.

Additional user-defined attributes may be used and will be stored in the format specified by

the Type parameter.

Entry Specifies the name of the file for which an attribute is to be read or written.

432 Technical Reference, Volume 1: Base Operating System and Extensions

Type Specifies the type of attribute expected. Valid values are defined in the usersec.h file and

include:

SEC_BOOL

A pointer to an integer (int *) that has been cast to a null pointer.

SEC_CHAR

The format of the attribute is a null-terminated character string.

SEC_LIST

The format of the attribute is a series of concatenated strings, each null-terminated.

The last string in the series is terminated by two successive null characters.

SEC_LONG

The format of the attribute is a 32-bit integer.

Value Specifies the address of a pointer for the gettcbattr subroutine. The gettcbattr subroutine

will return the address of a buffer in the pointer. For the puttcbattr subroutine, the Value

parameter specifies the address of a buffer in which the attribute is stored. See the Type

parameter for more details.

Security

 Files Accessed:

 Mode File

rw /etc/security/sysck.cfg (write access for puttcbattr)

Return Values

The gettcbattr and puttcbattr subroutines, when successfully completed, return a value of 0. Otherwise, a

value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes

Note: These subroutines return errors from other subroutines.

These subroutines fail if the following is true:

 EACCES Access permission is denied for the data request.

The gettcbattr and puttcbattr subroutines fail if one or more of the following are true:

 EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of attribute.

Limited testing is possible and all errors may not be detected.

EINVAL The Entry parameter is null or contains a pointer to a null string.

EINVAL The Type parameter contains more than one of the SEC_BOOL, SEC_CHAR, SEC_LIST, or

SEC_LONG attributes.

EINVAL The Type parameter specifies that an individual attribute is to be committed, and the Entry

parameter is null.

ENOENT The specified Entry parameter does not exist or the attribute is not defined for this entry.

EPERM Operation is not permitted.

Base Operating System (BOS) Runtime Services (A-P) 433

Related Information

The getuserattr (“getuserattr, IDtouser, nextuser, or putuserattr Subroutine” on page 445) subroutine,

getuserpw (“getuserpw, putuserpw, or putuserpwhist Subroutine” on page 459) subroutine, setpwdb

subroutine, setuserdb subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

getthrds Subroutine

Purpose

Gets kernel thread table entries.

Library

Standard C library (libc.a)

Syntax

#include <procinfo.h>

#include <sys/types.h>

int

getthrds (ProcessIdentifier, ThreadBuffer, ThreadSize, IndexPointer, Count)

pid_t ProcessIdentifier;

struct thrdsinfo *ThreadBuffer;

or struct thrdsinfo64 *ThreadBuffer;

int ThreadSize;

tid_t *IndexPointer;

int Count;

int

getthrds64 (ProcessIdentifier, ThreadBuffer, ThreadSize, IndexPointer, Count)

pid_t ProcessIdentifier;

struct thrdentry64 *ThreadBuffer;

int ThreadSize;

tid64_t *IndexPointer;

int Count;

Description

The getthrds subroutine returns information about kernel threads, including kernel thread table information

defined by the thrdsinfo or thrdsinfo64 structure.

The getthrds subroutine retrieves up to Count kernel thread table entries, starting with the entry

corresponding to the thread identifier indicated by IndexPointer, and places them in the array of thrdsinfo

or thrdsinfo64, or thrdentry64 structures indicated by the ThreadBuffer parameter.

On return, the kernel thread identifier referenced by IndexPointer is updated to indicate the next kernel

thread table entry to be retrieved. The getthrds subroutine returns the number of kernel thread table

entries retrieved.

If the ProcessIdentifier parameter indicates a process identifier, only kernel threads belonging to that

process are considered. If this parameter is set to -1, all kernel threads are considered.

434 Technical Reference, Volume 1: Base Operating System and Extensions

The getthrds subroutine is normally called repeatedly in a loop, starting with a kernel thread identifier of

zero, and looping until the return value is less than Count, indicating that there are no more entries to

retrieve.

1. Do not use information from the procsinfo structure (see the getprocs (“getprocs Subroutine” on page

406) subroutine) to determine the value of the Count parameter; a process may create or destroy

kernel threads in the interval between a call to getprocs and a subsequent call to getthrds.

2. The kernel thread table may change while the getthrds subroutine is accessing it. Returned entries

will always be consistent, but since kernel threads can be created or destroyed while the getthrds

subroutine is running, there is no guarantee that retrieved entries will still exist, or that all existing

kernel threads have been retrieved.

When used in 32-bit mode, limits larger than can be represented in 32 bits are truncated to

RLIM_INFINITY. Large values are truncated to INT_MAX. 64-bit applications are required to use

getthrds64() and struct thrdentry64. Note that struct thrdentry64 contains the same information as

struct thrdsinfo64 with the only difference being support for the 64-bit tid_t and the 256-bit sigset_t.

Application developers are also encouraged to use getthrds64() in 32-bit applications to obtain 64-bit

thread information as this interface provides the new, larger types. The getthrds() interface will still be

supported for 32-bit applications using struct thrdsinfo or struct thrdsinfo64, but will not be available to

64-bit applications.

Parameters

ProcessIdentifier

Specifies the process identifier of the process whose kernel threads are to be retrieved. If this

parameter is set to -1, all kernel threads in the kernel thread table are retrieved.

ThreadBuffer

Specifies the starting address of an array of thrdsinfo or thrdsinfo64, or thrdentry64 structures

which will be filled in with kernel thread table entries. If a value of NULL is passed for this

parameter, the getthrds subroutine scans the kernel thread table and sets return values as

normal, but no kernel thread table entries are retrieved.

ThreadSize

Specifies the size of a single thrdsinfo, thrdsinfo64, or thrdentry64 structure.

IndexPointer

Specifies the address of a kernel thread identifier which indicates the required kernel thread table

entry (this does not have to correspond to an existing kernel thread). A kernel thread identifier of

zero selects the first entry in the table. The kernel thread identifier is updated to indicate the next

entry to be retrieved.

Count Specifies the number of kernel thread table entries requested.

Return Value

If successful, the getthrds subroutine returns the number of kernel thread table entries retrieved; if this is

less than the number requested, the end of the kernel thread table has been reached. A value of 0 is

returned when the end of the kernel thread table has been reached. Otherwise, a value of -1 is returned,

and the errno global variable is set to indicate the error.

Error Codes

The getthrds subroutine fails if the following are true:

 EINVAL The ThreadSize is invalid, or the IndexPointer parameter does not point to a valid kernel

thread identifier, or the Count parameter is not greater than zero.

ESRCH The process specified by the ProcessIdentifier parameter does not exist.

EFAULT The copy operation to one of the buffers failed.

Base Operating System (BOS) Runtime Services (A-P) 435

Related Information

The getpid (“getpid, getpgrp, or getppid Subroutine” on page 398), getpgrp (“getpid, getpgrp, or getppid

Subroutine” on page 398), or getppid (“getpid, getpgrp, or getppid Subroutine” on page 398) subroutines,

the getprocs (“getprocs Subroutine” on page 406) subroutine.

The ps command.

gettimeofday, settimeofday, or ftime Subroutine

Purpose

Displays, gets and sets date and time.

Libraries

gettimeofday, settimeofday: Standard C Library (libc.a)

ftime: Berkeley Compatibility Library (libbsd.a)

Syntax

#include <sys/time.h>

int gettimeofday (Tp, Tzp)

struct timeval *Tp;

void *Tzp;

int settimeofday (Tp, Tzp)

struct timeval *Tp;

struct timezone *Tzp;

#include <sys/types.h>

#include <sys/timeb.h>

int ftime (Tp)

struct timeb *Tp;

Description

Current Greenwich time and the current time zone are displayed with the gettimeofday subroutine, and

set with the settimeofday subroutine. The time is expressed in seconds and microseconds since midnight

(0 hour), January 1, 1970. The resolution of the system clock is hardware-dependent, and the time may be

updated either continuously or in ″ticks.″ If the Tzp parameter has a value of 0, the time zone information

is not returned or set.

If a recent adjtime subroutine call is causing the clock to be adjusted backwards, it is possible that two

closely spaced gettimeofday calls will observe that time has moved backwards. You can set the

GETTOD_ADJ_MONOTONIC environment value to cause the returned value to never decrease. After this

environment variable is set, the returned value briefly remains constant as necessary to always report a

nondecreasing time of day. This extra processing adds significant pathlength to gettimeofday. Although

any setting of this environment variable requires this extra processing, setting it to 1 is recommended for

future compatibility.

The Tp parameter returns a pointer to a timeval structure that contains the time since the epoch began in

seconds and microseconds.

The timezone structure indicates both the local time zone (measured in minutes of time westward from

Greenwich) and a flag that, if nonzero, indicates that daylight saving time applies locally during the

appropriate part of the year.

436 Technical Reference, Volume 1: Base Operating System and Extensions

In addition to the difference in timer granularity, the timezone structure distinguishes these subroutines

from the POSIX gettimer and settimer subroutines, which deal strictly with Greenwich Mean Time.

The ftime subroutine fills in a structure pointed to by its argument, as defined by <sys/timeb.h>. The

structure contains the time in seconds since 00:00:00 UTC (Coordinated Universal Time), January 1, 1970,

up to 1000 milliseconds of more-precise interval, the local timezone (measured in minutes of time

westward from UTC), and a flag that, if nonzero, indicates that Daylight Saving time is in effect, and the

values stored in the timeb structure have been adjusted accordingly.

Parameters

 Tp Pointer to a timeval structure, defined in the sys/time.h file.

Tzp Pointer to a timezone structure, defined in the sys/time.h file.

Return Values

If the subroutine succeeds, a value of 0 is returned. If an error occurs, a value of -1 is returned and errno

is set to indicate the error.

Error Codes

If the settimeofday subroutine is unsuccessful, the errno value is set to EPERM to indicate that the

process’s effective user ID does not have root user authority.

No errors are defined for the gettimeofday or ftime subroutine.

gettimer, settimer, restimer, stime, or time Subroutine

Purpose

Gets or sets the current value for the specified systemwide timer.

Library

Standard C Library (libc.a)

Syntax

#include <sys/time.h>

#include <sys/types.h>

int gettimer(TimerType, Value)

timer_t TimerType;

struct timestruc_t * Value;

#include <sys/timers.h>

#include <sys/types.h>

int gettimer(TimerType, Value)

timer_t TimerType;

struct itimerspec * Value;

int settimer(TimerType, TimePointer)

int TimerType;

const struct timestruc_t *TimePointer;

Base Operating System (BOS) Runtime Services (A-P) 437

int restimer(TimerType, Resolution, MaximumValue)

int TimerType;

struct timestruc_t *Resolution, *MaximumValue;

int stime(Tp)

long *Tp;

#include <sys/types.h>

time_t time(Tp)

time_t *Tp;

Description

The settimer subroutine is used to set the current value of the TimePointer parameter for the systemwide

timer, specified by the TimerType parameter.

When the gettimer subroutine is used with the function prototype in sys/timers.h, then except for the

parameters, the gettimer subroutine is identical to the getinterval (“getinterval, incinterval, absinterval,

resinc, resabs, alarm, ualarm, getitimer or setitimer Subroutine” on page 378) subroutine. Use of the

getinterval subroutine is recommended, unless the gettimer subroutine is required for a

standards-conformant application. The description and semantics of the gettimer subroutine are subject to

change between releases, pending changes in the draft standard upon which the current gettimer

subroutine description is based.

When the gettimer subroutine is used with the function prototype in /sys/timers.h, the gettimer

subroutine returns an itimerspec structure to the pointer specified by the Value parameter. The it_value

member of the itimerspec structure represents the amount of time in the current interval before the timer

(specified by the TimerType parameter) expires, or a zero interval if the timer is disabled. The members of

the pointer specified by the Value parameter are subject to the resolution of the timer.

When the gettimer subroutine is used with the function prototype in sys/time.h, the gettimer subroutine

returns a timestruc structure to the pointer specified by the Value parameter. This structure holds the

current value of the system wide timer specified by the Value parameter.

The resolution of any timer can be obtained by the restimer subroutine. The Resolution parameter

represents the resolution of the specified timer. The MaximumValue parameter represents the maximum

possible timer value. The value of these parameters are the resolution accepted by the settimer

subroutine.

Note: If a nonprivileged user attempts to submit a fine granularity timer (that is, a timer request of less

than 10 milliseconds), the timer request is raised to 10 milliseconds.

The time subroutine returns the time in seconds since the Epoch (that is, 00:00:00 GMT, January 1,

1970). The Tp parameter points to an area where the return value is also stored. If the Tp parameter is a

null pointer, no value is stored.

The stime subroutine is implemented to provide compatibility with older AIX, AT&T System V, and BSD

systems. It calls the settimer subroutine using the TIMEOFDAY timer.

Parameters

 Value Points to a structure of type itimerspec.

438 Technical Reference, Volume 1: Base Operating System and Extensions

TimerType Specifies the systemwide timer:

TIMEOFDAY

(POSIX system clock timer) This timer represents the time-of-day clock for

the system. For this timer, the values returned by the gettimer subroutine

and specified by the settimer subroutine represent the amount of time since

00:00:00 GMT, January 1, 1970.

TimePointer Points to a structure of type struct timestruc_t.

Resolution The resolution of a specified timer.

MaximumValue The maximum possible timer value.

Tp Points to a structure containing the time in seconds.

Return Values

The gettimer, settimer, restimer, and stime subroutines return a value of 0 (zero) if the call is

successful. A return value of -1 indicates an error occurred, and errno is set.

The time subroutine returns the value of time in seconds since Epoch. Otherwise, a value of ((time_t) - 1)

is returned and the errno global variable is set to indicate the error.

Error Codes

If an error occurs in the gettimer, settimer, restimer, or stime subroutine, a return value of - 1 is

received and the errno global variable is set to one of the following error codes:

 EINVAL The TimerType parameter does not specify a known systemwide timer, or the TimePointer

parameter of the settimer subroutine is outside the range for the specified systemwide timer.

EFAULT A parameter address referenced memory that was not valid.

EIO An error occurred while accessing the timer device.

EPERM The requesting process does not have the appropriate privilege to set the specified timer.

If the time subroutine is unsuccessful, a return value of -1 is received and the errno global variable is set

to the following:

 EFAULT A parameter address referenced memory that was not valid.

Related Information

The asctime (“ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine” on page 195)

subroutine, clock (“clock Subroutine” on page 167) subroutine, ctime (“ctime, localtime, gmtime, mktime,

difftime, asctime, or tzset Subroutine” on page 195) subroutine, difftime (“ctime, localtime, gmtime,

mktime, difftime, asctime, or tzset Subroutine” on page 195) subroutine, getinterval (“getinterval,

incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer or setitimer Subroutine” on page 378)

subroutine, gmtime (“ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine” on page

195) subroutine, localtime (“ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine” on

page 195) subroutine, mktime (“ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine”

on page 195) subroutine, strftime subroutine, strptime subroutine, utime subroutine.

List of Time Data Manipulation Services in AIX 5L Version 5.3 System Management Concepts: Operating

System and Devices.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Base Operating System (BOS) Runtime Services (A-P) 439

gettimerid Subroutine

Purpose

Allocates a per-process interval timer.

Library

Standard C Library (libc.a)

Syntax

#include <sys/time.h>

#include <sys/events.h>

timer_t gettimerid(TimerType, NotifyType)

int TimerType;

int NotifyType;

Description

The gettimerid subroutine is used to allocate a per-process interval timer based on the timer with the

given timer type. The unique ID is used to identify the interval timer in interval timer requests. (See

getinterval subroutine). The particular timer type, the TimerType parameter, is defined in the sys/time.h

file and can identify either a systemwide timer or a per-process timer. The mechanism by which the

process is to be notified of the expiration of the timer event is the NotifyType parameter, which is defined

in the sys/events.h file.

The TimerType parameter represents one of the following timer types:

 TIMEOFDAY (POSIX system clock timer) This timer represents the time-of-day clock for the

system. For this timer, the values returned by the gettimer subroutine and

specified by the settimer subroutine represent the amount of time since 00:00:00

GMT, January 1, 1970, in nanoseconds.

TIMERID_ALRM (Alarm timer) This timer schedules the delivery of a SIGALRM signal at a timer

specified in the call to the settimer subroutine.

TIMERID_REAL (Real-time timer) The real-time timer decrements in real time. A SIGALRM signal

is delivered when this timer expires.

TIMERID_VIRTUAL (Virtual timer) The virtual timer decrements in process virtual time. it runs only

when the process is executing in user mode. A SIGVTALRM signal is delivered

when it expires.

TIMERID_PROF (Profiling timer) The profiling timer decrements both when running in user mode

and when the system is running for the process. It is designed to be used by

processes to profile their execution statistically. A SIGPROF signal is delivered

when the profiling timer expires.

Interval timers with a notification value of DELIVERY_SIGNAL are inherited across an exec subroutine.

Parameters

 NotifyType Notifies the process of the expiration of the timer event.

TimerType Identifies either a systemwide timer or a per-process timer.

440 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

If the gettimerid subroutine succeeds, it returns a timer_t structure that can be passed to the per-process

interval timer subroutines, such as the getinterval subroutine. If an error occurs, the value -1 is returned

and errno is set.

Error Codes

If the gettimerid subroutine fails, the value -1 is returned and errno is set to one of the following error

codes:

 EAGAIN The calling process has already allocated all of the interval timers associated with the specified

timer type for this implementation.

EINVAL The specified timer type is not defined.

Related Information

The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

subroutine, fork (“fork, f_fork, or vfork Subroutine” on page 284) subroutine, getinterval, incinterval,

absinterval, resinc, or resabs (“getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm,

getitimer or setitimer Subroutine” on page 378) subroutine, gettimer, settimer, or restimer (“gettimer,

settimer, restimer, stime, or time Subroutine” on page 437) subroutine, reltimerid subroutine.

List of Time Data Manipulation Services in AIX 5L Version 5.3 System Management Concepts: Operating

System and Devices.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

getttyent, getttynam, setttyent, or endttyent Subroutine

Purpose

Gets a tty description file entry.

Library

Standard C Library (libc.a)

Syntax

#include <ttyent.h>

struct ttyent *getttyent()

struct ttyent *getttynam(Name)

char *Name;

void setttyent()

void endttyent()

Description

Attention: Do not use the getttyent, getttynam, setttyent, or endttyent subroutine in a multithreaded

environment.

The getttyent and getttynam subroutines each return a pointer to an object with the ttyent structure. This

structure contains the broken-out fields of a line from the tty description file. The ttyent structure is in the

/usr/include/sys/ttyent.h file and contains the following fields:

Base Operating System (BOS) Runtime Services (A-P) 441

tty_name The name of the character special file in the /dev directory. The character special file must

reside in the /dev directory.

ty_getty The command that is called by the init process to initialize tty line characteristics. This is

usually the getty command, but any arbitrary command can be used. A typical use is to initiate

a terminal emulator in a window system.

ty_type The name of the default terminal type connected to this tty line. This is typically a name from

the termcap database. The TERM environment variable is initialized with this name by the

getty or login command.

ty_status A mask of bit fields that indicate various actions to be allowed on this tty line. The following is a

description of each flag:

TTY_ON

Enables logins (that is, the init process starts the specified getty command on this

entry).

TTY_SECURE

Allows a user with root user authority to log in to this terminal. The TTY_ON flag must

be included.

ty_window The command to execute for a window system associated with the line. The window system is

started before the command specified in the ty_getty field is executed. If none is specified,

this is null.

ty_comment The trailing comment field. A leading delimiter and white space is removed.

The getttyent subroutine reads the next line from the tty file, opening the file if necessary. The setttyent

subroutine rewinds the file. The endttyent subroutine closes it.

The getttynam subroutine searches from the beginning of the file until a matching name (specified by the

Name parameter) is found (or until the EOF is encountered).

Parameters

 Name Specifies the name of a tty description file.

Return Values

These subroutines return a null pointer when they encounter an EOF (end-of-file) character or an error.

Files

 /usr/lib/libodm.a Specifies the ODM (Object Data Manager) library.

/usr/lib/libcfg.a Archives device configuration subroutines.

/etc/termcap Defines terminal capabilities.

Related Information

The ttyslot subroutine.

The getty command, init command, login command.

List of Files and Directories Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing

and Debugging Programs.

442 Technical Reference, Volume 1: Base Operating System and Extensions

getuid, geteuid, or getuidx Subroutine

Purpose

Gets the real or effective user ID of the current process.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <unistd.h>

uid_t getuid(void)

uid_t geteuid(void)

#include <id.h>

uid_t getuidx (int type);

Description

The getuid subroutine returns the real user ID of the current process. The geteuid subroutine returns the

effective user ID of the current process.

The getuidx subroutine returns the user ID indicated by the type parameter of the calling process.

These subroutines are part of Base Operating System (BOS) Runtime.

Return Values

The getuid, geteuid and getuidx subroutines return the corresponding user ID. The getuid and geteuid

subroutines always succeed.

The getuidx subroutine will return -1 and set the global errno variable to EINVAL if the type parameter is

not one of ID_REAL, ID_EFFECTIVE, ID_SAVED or ID_LOGIN.

Parameters

 type Specifies the user ID to get. Must be one of ID_REAL (real user ID), ID_EFFECTIVE (effective user

ID), ID_SAVED (saved set-user ID) or ID_LOGIN (login user ID).

Error Codes

If the getuidx subroutine fails the following is returned:

 EINVAL Indicates the value of the type parameter is invalid.

Related Information

The setuid subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 443

getuinfo Subroutine

Purpose

Finds a value associated with a user.

Library

Standard C Library (libc.a)

Syntax

char *getuinfo (Name)

char *Name;

Description

The getuinfo subroutine finds a value associated with a user. This subroutine searches a user information

buffer for a string of the form Name=Value and returns a pointer to the Value substring if the Name value

is found. A null value is returned if the Name value is not found.

The INuibp global variable points to the user information buffer:

extern char *INuibp;

This variable is initialized to a null value.

If the INuibp global variable is null when the getuinfo subroutine is called, the usrinfo subroutine is called

to read user information from the kernel into a local buffer. The INUuibp is set to the address of the local

buffer. If the INuibp external variable is not set, the usrinfo subroutine is automatically called the first time

the getuinfo subroutine is called.

Parameter

 Name Specifies a user name.

Related Information

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

getuinfox Subroutine

Purpose

Finds a value associated with a user.

Library

Standard C Library (libc.a)

Syntax

char *getuinfox (Name)

char *Name;

444 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The getuinfox subroutine finds a value associated with a user. This subroutine searches a privileged

kernel buffer for a string of the form Name=Value and returns a pointer to the Value substring if the Name

value is found. A Null value is returned if the Name value is not found. The caller is responsible for freeing

the memory returned by the getuinfox subroutine.

Parameters

 Name Specifies a name.

Return Values

Upon success, the getuinfox subroutine returns a pointer to the Value substring.

Error Codes

A Null value is returned if the Name value is not found.

getuserattr, IDtouser, nextuser, or putuserattr Subroutine

Purpose

Accesses the user information in the user database.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

int getuserattr (User, Attribute, Value, Type)

char * User;

char * Attribute;

void * Value;

int Type;

char *IDtouser(UID)

uid__t UID;

char *nextuser (Mode, Argument)

int Mode, Argument;

int putuserattr (User, Attribute, Value, Type)

char *User;

char *Attribute;

void *Value;

int Type;

Description

Attention: These subroutines and the setpwent and setgrent subroutines should not be used

simultaneously. The results can be unpredictable.

These subroutines access user information. Because of their greater granularity and extensibility, you

should use them instead of the getpwent routines.

Base Operating System (BOS) Runtime Services (A-P) 445

The getuserattr subroutine reads a specified attribute from the user database. If the database is not

already open, this subroutine does an implicit open for reading. A call to the getuserattr subroutine for

every new user verifies that the user exists.

Similarly, the putuserattr subroutine writes a specified attribute into the user database. If the database is

not already open, this subroutine does an implicit open for reading and writing. Data changed by the

putuserattr subroutine must be explicitly committed by calling the putuserattr subroutine with a Type

parameter specifying SEC_COMMIT. Until all the data is committed, only these subroutines within the

process return written data.

New entries in the user and group databases must first be created by invoking putuserattr with the

SEC_NEW type.

The IDtouser subroutine translates a user ID into a user name.

The nextuser subroutine returns the next user in a linear search of the user database. The consistency of

consecutive searches depends upon the underlying storage-access mechanism and is not guaranteed by

this subroutine.

The setuserdb and enduserdb subroutines should be used to open and close the user database.

The enduserdb subroutine frees all memory allocated by the getuserattr subroutine.

Parameters

Argument

Presently unused and must be specified as null.

Attribute

Specifies which attribute is read. The following possible attributes are defined in the usersec.h file:

S_CORECOMP

Core compression status. The attribute type is SEC_CHAR.

S_COREPATH

Core path specification status. The attribute type is SEC_CHAR.

S_COREPNAME

Core path specification location. The attribute type is SEC_CHAR.

S_CORENAMING

Core naming status. The attribute type is SEC_CHAR.

S_ID User ID. The attribute type is SEC_INT.

S_PGRP

Principle group name. The attribute type is SEC_CHAR.

S_GROUPS

Groups to which the user belongs. The attribute type is SEC_LIST.

S_ADMGROUPS

Groups for which the user is an administrator. The attribute type is SEC_LIST.

S_ADMIN

Administrative status of a user. The attribute type is SEC_BOOL.

S_AUDITCLASSES

Audit classes to which the user belongs. The attribute type is SEC_LIST.

S_AUTHSYSTEM

Defines the user’s authentication method. The attribute type is SEC_CHAR.

446 Technical Reference, Volume 1: Base Operating System and Extensions

S_HOME

Home directory. The attribute type is SEC_CHAR.

S_SHELL

Initial program run by a user. The attribute type is SEC_CHAR.

S_GECOS

Personal information for a user. The attribute type is SEC_CHAR.

S_USRENV

User-state environment variables. The attribute type is SEC_LIST.

S_SYSENV

Protected-state environment variables. The attribute type is SEC_LIST.

S_LOGINCHK

Specifies whether the user account can be used for local logins. The attribute type is

SEC_BOOL.

S_HISTEXPIRE

Defines the period of time (in weeks) that a user cannot reuse a password. The attribute

type is SEC_INT.

S_HISTSIZE

Specifies the number of previous passwords that the user cannot reuse. The attribute type

is SEC_INT.

S_MAXREPEAT

Defines the maximum number of times a user can repeat a character in a new password.

The attribute type is SEC_INT.

S_MINAGE

Defines the minimum age in weeks that the user’s password must exist before the user

can change it. The attribute type is SEC_INT.

S_PWDCHECKS

Defines the password restriction methods for this account. The attribute type is SEC_LIST.

S_MINALPHA

Defines the minimum number of alphabetic characters required in a new user’s password.

The attribute type is SEC_INT.

S_MINDIFF

Defines the minimum number of characters required in a new password that were not in

the old password. The attribute type is SEC_INT.

S_MINLEN

Defines the minimum length of a user’s password. The attribute type is SEC_INT.

S_MINOTHER

Defines the minimum number of non-alphabetic characters required in a new user’s

password. The attribute type is SEC_INT.

S_DICTIONLIST

Defines the password dictionaries for this account. The attribute type is SEC_LIST.

S_SUCHK

Specifies whether the user account can be accessed with the su command. Type

SEC_BOOL.

S_REGISTRY

Defines the user’s authentication registry. The attribute type is SEC_CHAR.

Base Operating System (BOS) Runtime Services (A-P) 447

S_RLOGINCHK

Specifies whether the user account can be used for remote logins using the telnet or

rlogin commands. The attribute type is SEC_BOOL.

S_DAEMONCHK

Specifies whether the user account can be used for daemon execution of programs and

subsystems using the cron daemon or src. The attribute type is SEC_BOOL.

S_TPATH

Defines how the account may be used on the trusted path. The attribute type is

SEC_CHAR. This attribute must be one of the following values:

nosak The secure attention key is not enabled for this account.

notsh The trusted shell cannot be accessed from this account.

always

This account may only run trusted programs.

on Normal trusted-path processing applies.

S_TTYS

List of ttys that can or cannot be used to access this account. The attribute type is

SEC_LIST.

S_SUGROUPS

Groups that can or cannot access this account. The attribute type is SEC_LIST.

S_EXPIRATION

Expiration date for this account is a string in the form MMDDhhmmyy, where MM is the

month, DD is the day, hh is the hour in 0 to 24 hour notation, mm is the minutes past the

hour, and yy is the last two digits of the year. The attribute type is SEC_CHAR.

S_AUTH1

Primary authentication methods for this account. The attribute type is SEC_LIST.

S_AUTH2

Secondary authentication methods for this account. The attribute type is SEC_LIST.

S_UFSIZE

Process file size soft limit. The attribute type is SEC_INT.

S_UCPU

Process CPU time soft limit. The attribute type is SEC_INT.

S_UDATA

Process data segment size soft limit. The attribute type is SEC_INT.

S_USTACK

Process stack segment size soft limit. Type: SEC_INT.

S_URSS

Process real memory size soft limit. Type: SEC_INT.

S_UCORE

Process core file size soft limit. The attribute type is SEC_INT.

S_UNOFILE

Process file descriptor table size soft limit. The attribute type is SEC_INT.

S_PWD

Specifies the value of the passwd field in the /etc/passwd file. The attribute type is

SEC_CHAR.

448 Technical Reference, Volume 1: Base Operating System and Extensions

S_UMASK

File creation mask for a user. The attribute type is SEC_INT.

S_LOCKED

Specifies whether the user’s account can be logged into. The attribute type is

SEC_BOOL.

S_ROLES

Defines the administrative roles for this account. The attribute type is SEC_LIST.

S_UFSIZE_HARD

Process file size hard limit. The attribute type is SEC_INT.

S_UCPU_HARD

Process CPU time hard limit. The attribute type is SEC_INT.

S_UDATA_HARD

Process data segment size hard limit. The attribute type is SEC_INT.

S_USREXPORT

Specifies if the DCE registry can overwrite the local user information with the DCE user

information during a DCE export operation. The attribute type is SEC_BOOL.

S_USTACK_HARD

Process stack segment size hard limit. Type: SEC_INT.

S_URSS_HARD

Process real memory size hard limit. Type: SEC_INT.

S_UCORE_HARD

Process core file size hard limit. The attribute type is SEC_INT.

S_UNOFILE_HARD

Process file descriptor table size hard limit. The attribute type is SEC_INT.

Note: These values are string constants that should be used by applications both for convenience

and to permit optimization in latter implementations. Additional user-defined attributes may

be used and will be stored in the format specified by the Type parameter.

Mode Specifies the search mode. This parameter can be used to delimit the search to one or more user

credentials databases. Specifying a non-null Mode value also implicitly rewinds the search. A null

Mode value continues the search sequentially through the database. This parameter must include

one of the following values specified as a bit mask; these are defined in the usersec.h file:

S_LOCAL

Locally defined users are included in the search.

S_SYSTEM

All credentials servers for the system are searched.

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file and include:

SEC_INT

The format of the attribute is an integer.

 For the getuserattr subroutine, the user should supply a pointer to a defined integer

variable. For the putuserattr subroutine, the user should supply an integer.

SEC_CHAR

The format of the attribute is a null-terminated character string.

Base Operating System (BOS) Runtime Services (A-P) 449

For the getuserattr subroutine, the user should supply a pointer to a defined character

pointer variable. For the putuserattr subroutine, the user should supply a character

pointer.

SEC_LIST

The format of the attribute is a series of concatenated strings, each null-terminated. The

last string in the series is terminated by two successive null characters.

 For the getuserattr subroutine, the user should supply a pointer to a defined character

pointer variable. For the putuserattr subroutine, the user should supply a character

pointer.

SEC_BOOL

The format of the attribute from getuserattr is an integer with the value of either 0 (false)

or 1 (true). The format of the attribute for putuserattr is a null-terminated string containing

one of the following strings: true, false, yes, no, always, or never.

 For the getuserattr subroutine, the user should supply a pointer to a defined integer

variable. For the putuserattr subroutine, the user should supply a character pointer.

SEC_COMMIT

For the putuserattr subroutine, this value specified by itself indicates that changes to the

named user are to be committed to permanent storage. The Attribute and Value

parameters are ignored. If no user is specified, the changes to all modified users are

committed to permanent storage.

SEC_DELETE

The corresponding attribute is deleted from the database.

SEC_NEW

Updates all the user database files with the new user name when using the putuserattr

subroutine.

UID Specifies the user ID to be translated into a user name.

User Specifies the name of the user for which an attribute is to be read.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the Attribute and

Type parameters. See the Type parameter for more details.

Security

 Files Accessed:

 Mode File

rw /etc/passwd

rw /etc/group

rw /etc/security/user

rw /etc/security/limits

rw /etc/security/group

rw /etc/security/environ

Return Values

If successful, the getuserattr subroutine with the S_LOGINCHK or S_RLOGINCHK attribute specified and

the putuserattr subroutine return 0. Otherwise, a value of -1 is returned and the errno global variable is

set to indicate the error. For all other attributes, the getuserattr subroutine returns 0.

450 Technical Reference, Volume 1: Base Operating System and Extensions

If successful, the IDtouser and nextuser subroutines return a character pointer to a buffer containing the

requested user name. Otherwise, a null pointer is returned and the errno global variable is set to indicate

the error.

Error Codes

If any of these subroutines fail, the following is returned:

 EACCES Access permission is denied for the data request.

If the getuserattr and putuserattr subroutines fail, one or more of the following is returned:

 ENOENT The specified User parameter does not exist.

EINVAL The Attribute parameter does not contain one of the defined attributes or null.

EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of attribute.

Limited testing is possible and all errors may not be detected.

EPERM Operation is not permitted.

ENOATTR The specified attribute is not defined for this user.

If the IDtouser subroutine fails, one or more of the following is returned:

 ENOENT The specified User parameter does not exist

If the nextuser subroutine fails, one or more of the following is returned:

 EINVAL The Mode parameter is not one of null, S_LOCAL, or S_SYSTEM.

EINVAL The Argument parameter is not null.

ENOENT The end of the search was reached.

Files

 /etc/passwd Contains user IDs.

Related Information

The “getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine” on page 367, “getuserpw, putuserpw,

or putuserpwhist Subroutine” on page 459, setpwdb subroutine, setuserdb subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

getuserattrs Subroutine

Purpose

Retrieves multiple user attributes in the user database.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

Base Operating System (BOS) Runtime Services (A-P) 451

int getuserattrs (User, Attributes, Count)

char * User;

dbattr_t * Attributes;

int Count

Description

Attention: Do not use this subroutine and the setpwent and setgrent subroutines simultaneously. The

results can be unpredictable.

The getuserattrs subroutine accesses user information. Because of its greater granularity and

extensibility, use it instead of the getpwent routines.

The getuserattrs subroutine reads one or more attributes from the user database. If the database is not

already open, this subroutine does an implicit open for reading. A call to the getuserattrs subroutine with

an Attributes parameter of null and Count parameter of 0 for every new user verifies that the user exists.

The Attributes array contains information about each attribute that is to be read. The dbattr_t data

structure contains the following fields:

attr_name

The name of the desired attribute.

attr_idx

Used internally by the getuserattrs subroutine.

attr_type

The type of the desired attribute. The following possible attributes are defined in the usersec.h

file:

S_CORECOMP

Core compression status. The attribute type is SEC_CHAR.

S_COREPATH

Core path specification status. The attribute type is SEC_CHAR.

S_COREPNAME

Core path specification location. The attribute type is SEC_CHAR.

S_CORENAMING

Core naming status. The attribute type is SEC_CHAR.

S_ID User ID. The attribute type is SEC_INT.

S_PGRP

Principle group name. The attribute type is SEC_CHAR.

S_GROUPS

Groups to which the user belongs. The attribute type is SEC_LIST.

S_ADMGROUPS

Groups for which the user is an administrator. The attribute type is SEC_LIST.

S_ADMIN

Administrative status of a user. The attribute type is SEC_BOOL.

S_AUDITCLASSES

Audit classes to which the user belongs. The attribute type is SEC_LIST.

S_AUTHSYSTEM

Defines the user’s authentication method. The attribute type is SEC_CHAR.

S_HOME

Home directory. The attribute type is SEC_CHAR.

452 Technical Reference, Volume 1: Base Operating System and Extensions

S_SHELL

Initial program run by a user. The attribute type is SEC_CHAR.

S_GECOS

Personal information for a user. The attribute type is SEC_CHAR.

S_USRENV

User-state environment variables. The attribute type is SEC_LIST.

S_SYSENV

Protected-state environment variables. The attribute type is SEC_LIST.

S_LOGINCHK

Specifies whether the user account can be used for local logins. The attribute type is

SEC_BOOL.

S_HISTEXPIRE

Defines the period of time (in weeks) that a user cannot reuse a password. The attribute

type is SEC_INT.

S_HISTSIZE

Specifies the number of previous passwords that the user cannot reuse. The attribute type

is SEC_INT.

S_MAXREPEAT

Defines the maximum number of times a user can repeat a character in a new password.

The attribute type is SEC_INT.

S_MINAGE

Defines the minimum age in weeks that the user’s password must exist before the user

can change it. The attribute type is SEC_INT.

S_PWDCHECKS

Defines the password restriction methods for this account. The attribute type is SEC_LIST.

S_MINALPHA

Defines the minimum number of alphabetic characters required in a new user’s password.

The attribute type is SEC_INT.

S_MINDIFF

Defines the minimum number of characters required in a new password that were not in

the old password. The attribute type is SEC_INT.

S_MINLEN

Defines the minimum length of a user’s password. The attribute type is SEC_INT.

S_MINOTHER

Defines the minimum number of non-alphabetic characters required in a new user’s

password. The attribute type is SEC_INT.

S_DICTIONLIST

Defines the password dictionaries for this account. The attribute type is SEC_LIST.

S_SUCHK

Specifies whether the user account can be accessed with the su command. Type

SEC_BOOL.

S_REGISTRY

Defines the user’s authentication registry. The attribute type is SEC_CHAR.

S_RLOGINCHK

Specifies whether the user account can be used for remote logins using the telnet or

rlogin commands. The attribute type is SEC_BOOL.

Base Operating System (BOS) Runtime Services (A-P) 453

S_DAEMONCHK

Specifies whether the user account can be used for daemon execution of programs and

subsystems using the cron daemon or src. The attribute type is SEC_BOOL.

S_TPATH

Defines how the account may be used on the trusted path. The attribute type is

SEC_CHAR. This attribute must be one of the following values:

nosak The secure attention key is not enabled for this account.

notsh The trusted shell cannot be accessed from this account.

always

This account may only run trusted programs.

on Normal trusted-path processing applies.

S_TTYS

List of ttys that can or cannot be used to access this account. The attribute type is

SEC_LIST.

S_SUGROUPS

Groups that can or cannot access this account. The attribute type is SEC_LIST.

S_EXPIRATION

Expiration date for this account is a string in the form MMDDhhmmyy, where MM is the

month, DD is the day, hh is the hour in 0 to 24 hour notation, mm is the minutes past the

hour, and yy is the last two digits of the year. The attribute type is SEC_CHAR.

S_AUTH1

Primary authentication methods for this account. The attribute type is SEC_LIST.

S_AUTH2

Secondary authentication methods for this account. The attribute type is SEC_LIST.

S_UFSIZE

Process file size soft limit. The attribute type is SEC_INT.

S_UCPU

Process CPU time soft limit. The attribute type is SEC_INT.

S_UDATA

Process data segment size soft limit. The attribute type is SEC_INT.

S_USTACK

Process stack segment size soft limit. Type: SEC_INT.

S_URSS

Process real memory size soft limit. Type: SEC_INT.

S_UCORE

Process core file size soft limit. The attribute type is SEC_INT.

S_UNOFILE

Process file descriptor table size soft limit. The attribute type is SEC_INT.

S_PWD

Specifies the value of the passwd field in the /etc/passwd file. The attribute type is

SEC_CHAR.

S_UMASK

File creation mask for a user. The attribute type is SEC_INT.

454 Technical Reference, Volume 1: Base Operating System and Extensions

S_LOCKED

Specifies whether the user’s account can be logged into. The attribute type is

SEC_BOOL.

S_ROLES

Defines the administrative roles for this account. The attribute type is SEC_LIST.

S_UFSIZE_HARD

Process file size hard limit. The attribute type is SEC_INT.

S_UCPU_HARD

Process CPU time hard limit. The attribute type is SEC_INT.

S_UDATA_HARD

Process data segment size hard limit. The attribute type is SEC_INT.

S_USREXPORT

Specifies if the DCE registry can overwrite the local user information with the DCE user

information during a DCE export operation. The attribute type is SEC_BOOL.

S_USTACK_HARD

Process stack segment size hard limit. Type: SEC_INT.

S_URSS_HARD

Process real memory size hard limit. Type: SEC_INT.

S_UCORE_HARD

Process core file size hard limit. The attribute type is SEC_INT.

S_UNOFILE_HARD

Process file descriptor table size hard limit. The attribute type is SEC_INT.

attr_flag

The results of the request to read the desired attribute.

attr_un

A union containing the returned values. Its union members that follow correspond to the definitions

of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:

un_char

Attributes of type SEC_CHAR and SEC_LIST store a pointer to the returned attribute in

this member when the requested attribute is successfully read. The caller is responsible

for freeing this memory.

un_int Attributes of type SEC_INT and SEC_BOOL store the value of the attribute in this

member when the requested attribute is successfully read.

un_long

Attributes of type SEC_LONG store the value of the attribute in this member when the

requested attribute is successfully read.

un_llong

Attributes of type SEC_LLONG store the value of the attribute in this member when the

requested attribute is successfully read.

attr_domain

The authentication domain containing the attribute. The getuserattrs subroutine is responsible for

managing the memory referenced by this pointer.

If attr_domain is specified for an attribute, the get request is sent only to that domain.

If attr_domain is not specified (that is, set to NULL), getuserattrs searches the domains known to

the system and sets this field to the name of the domain from which the value is retrieved. This

search space can be restricted with the setauthdb subroutine so that only the domain specified in

Base Operating System (BOS) Runtime Services (A-P) 455

the setauthdb call is searched.

If the request for a NULL domain was not satisfied, the request is tried from the local files using

the default stanza.

Use the setuserdb and enduserdb subroutines to open and close the user database. Failure to explicitly

open and close the user database can result in loss of memory and performance.

Parameters

 User Specifies the name of the user for which the attributes are to be read.

Attributes A pointer to an array of zero or more elements of type dbattr_t. The list of user attributes is

defined in the usersec.h header file.

Count The number of array elements in Attributes.

Security

Files accessed:

 Mode File

rw /etc/passwd

rw /etc/group

rw /etc/security/user

rw /etc/security/limits

rw /etc/security/group

rw /etc/security/environ

Return Values

If User exists, the getuserattrs subroutine returns 0. Otherwise, a value of -1 is returned and the errno

global variable is set to indicate the error. Each element in the Attributes array must be examined on a

successful call to getuserattrs to determine if the Attributes array entry was successfully retrieved.

Error Codes

The getuserattrs subroutine returns an error that indicates that the user does or does not exist. Additional

errors can indicate an error querying the information databases for the requested attributes.

 EINVAL The Count parameter is less than 0.

EINVAL The Attributes parameter is null and the Count parameter is greater than 0.

ENOENT The specified User parameter does not exist.

If the getuserattrs subroutine fails to query an attribute, one or more of the following errors is returned in

the attr_flag field of the corresponding Attributes element:

 EACCESS The user does not have access to the attribute specified in the attr_name field.

EINVAL The attr_type field in the Attributes entry contains an invalid type.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid data for

this type of attribute. Limited testing is possible and all errors might not be detected.

ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined for this

user or group.

Examples

The following sample test program displays the output to a call to getuserattrs. In this example, the

system has a user named foo.

456 Technical Reference, Volume 1: Base Operating System and Extensions

#include <stdio.h>

#include <usersec.h>

#define NATTR 3

#define USERNAME "foo"

main() {

 dbattr_t attributes[NATTR];

 int i;

 int rc;

 memset (&attributes, 0, sizeof(attributes));

 /*

 * Fill in the attributes array with "id", "expires" and

 * "SYSTEM" attributes.

 */

 attributes[0].attr_name = S_ID;

 attributes[0].attr_type = SEC_INT;;

 attributes[1].attr_name = S_ADMIN;

 attributes[1].attr_type = SEC_BOOL;

 attributes[2].attr_name = S_AUTHSYSTEM;

 attributes[2].attr_type = SEC_CHAR;

 /*

 * Make a call to getuserattrs.

 */

 setuserdb(S_READ);

 rc = getuserattrs(USERNAME, attributes, NATTR);

 enduserdb();

 if (rc) {

 printf("getuserattrs failed \n");

 exit(-1);

 }

 for (i = 0; i < NATTR; i++) {

 printf("attribute name : %s \n", attributes[i].attr_name);

 printf("attribute flag : %d \n", attributes[i].attr_flag);

 if (attributes[i].attr_flag) {

 /*

 * No attribute value. Continue.

 */

 printf("\n");

 continue;

 }

 /*

 * We have a value.

 */

 printf("attribute domain : %s \n", attributes[i].attr_domain);

 printf("attribute value : ");

 switch (attributes[i].attr_type)

 {

 case SEC_CHAR:

 if (attributes[i].attr_char) {

 printf("%s\n", attributes[i].attr_char);

Base Operating System (BOS) Runtime Services (A-P) 457

free(attributes[i].attr_char);

 }

 break;

 case SEC_INT:

 case SEC_BOOL:

 printf("%d\n", attributes[i].attr_int);

 break;

 default:

 break;

 }

 printf("\n");

 }

 exit(0);

}

The following output for the call is expected:

 attribute name : id

 attribute flag : 0

 attribute domain : files

 attribute value : 206

 attribute name : admin

 attribute flag : 0

 attribute domain : files

 attribute value : 0

 attribute name : SYSTEM

 attribute flag : 0

 attribute domain : files

 attribute value : compat

Files

 /etc/passwd Contains user IDs.

Related Information

The “getgroupattrs Subroutine” on page 370, “getuserpw, putuserpw, or putuserpwhist Subroutine” on page

459, setpwdb Subroutinesetuserdb Subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

GetUserAuths Subroutine

Purpose

Accesses the set of authorizations of a user.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

char *GetUserAuths(void);

458 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The GetUserAuths subroutine returns the list of authorizations associated with the real user ID and group

set of the process. By default, the ALL authorization is returned for the root user.

Return Values

If successful, the GetUserAuths subroutine returns a list of authorizations associated with the user. The

format of the list is a series of concatenated strings, each null-terminated. A null string terminates the list.

Otherwise, a null pointer is returned and the errno global variable is set to indicate the error.

getuserpw, putuserpw, or putuserpwhist Subroutine

Purpose

Accesses the user authentication data.

Library

Security Library (libc.a)

Syntax

#include <userpw.h>

struct userpw *getuserpw (User)

char *User;

int putuserpw (Password)

struct userpw *Password;

int putuserpwhist (Password, Message)

struct userpw *Password;

char **Message;

Description

These subroutines may be used to access user authentication information. Because of their greater

granularity and extensibility, you should use them instead of the getpwent routines.

The getuserpw subroutine reads the user’s locally defined password information. If the setpwdb

subroutine has not been called, the getuserpw subroutine will call it as setpwdb (S_READ). This can cause

problems if the putuserpw subroutine is called later in the program.

The putuserpw subroutine updates or creates a locally defined password information stanza in the

/etc/security/passwd file. The password entry created by the putuserpw subroutine is used only if there

is an ! (exclamation point) in the /etc/passwd file’s password field. The user application can use the

putuserattr subroutine to add an ! to this field.

The putuserpw subroutine will open the authentication database read/write if no other access has taken

place, but the program should call setpwdb (S_READ | S_WRITE) before calling the putuserpw subroutine.

The putuserpwhist subroutine updates or creates a locally defined password information stanza in the

etc/security/passwd file. The subroutine also manages a database of previous passwords used for

password reuse restriction checking. It is recommended to use the putuserpwhist subroutine, rather than

the putuserpw subroutine, to ensure the password is added to the password history database.

Base Operating System (BOS) Runtime Services (A-P) 459

Parameters

 Password Specifies the password structure used to update the password information for this user. This

structure is defined in the userpw.h file and contains the following members:

upw_name

Specifies the user’s name. (The first eight characters must be unique, since longer names

are truncated.)

upw_passwd

Specifies the user’s password.

upw_lastupdate

Specifies the time, in seconds, since the epoch (that is, 00:00:00 GMT, January 1, 1970),

when the password was last updated.

upw_flags

Specifies attributes of the password. This member is a bit mask of one or more of the

following values, defined in the userpw.h file.

PW_NOCHECK

Specifies that new passwords need not meet password restrictions in effect for the

system.

PW_ADMCHG

Specifies that the password was last set by an administrator and must be changed

at the next successful use of the login or su command.

PW_ADMIN

Specifies that password information for this user may only be changed by the root

user.

Message Indicates a message that specifies an error occurred while updating the password history database.

Upon return, the value is either a pointer to a valid string within the memory allocated storage or a

null pointer.

User Specifies the name of the user for which password information is read. (The first eight characters

must be unique, since longer names are truncated.)

Security

Files Accessed:

 Mode File

rw /etc/security/passwd

Return Values

If successful, the getuserpw subroutine returns a valid pointer to a pw structure. Otherwise, a null pointer

is returned and the errno global variable is set to indicate the error.

If successful, the putuserpwhist subroutine returns a value of 0. If the subroutine failed to update or

create a locally defined password information stanza in the /etc/security/ passwd file, the putuserpwhist

subroutine returns a nonzero value. If the subroutine was unable to update the password history database,

a message is returned in the Message parameter and a return code of 0 is returned.

Error Codes

If the getuserpw, putuserpw, and putuserpwhist subroutines fail if one of the following values is true:

 ENOATTR The user has an entry in the /etc/security/password file but does not have a Password

attribute.

460 Technical Reference, Volume 1: Base Operating System and Extensions

ENOENT The user does not have an entry in the /etc/security/passwd file.

Subroutines invoked by the getuserpw, putuserpw, or putuserpwhist subroutines can also set errors.

Files

 /etc/security/passwd Contains user passwords.

Related Information

The “getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine” on page 367, “getuserattr, IDtouser,

nextuser, or putuserattr Subroutine” on page 445, setpwdb or endpwdb subroutine, setuserdb

subroutine.

List of Security and Auditing Subroutines and Subroutines, Example Programs, and Libraries in AIX 5L

Version 5.3 General Programming Concepts: Writing and Debugging Programs.

getuserpwx Subroutine

Purpose

Accesses the user authentication data.

Library

Security Library (libc.a)

Syntax

#include <userpw.h>

struct userpwx *getuserpwx (User)

char * User;

Description

The getuserpwx subroutine accesses user authentication information. Because of its greater granularity

and extensibility, use it instead of the getpwent routines.

The getuserpwx subroutine reads the user’s password information from the local administrative domain or

from a loadable authentication module that supports the required user attributes.

The getuserpw subroutine opens the authentication database read-only if no other access has taken

place, but the program should call setpwdb (S_READ) followed by endpwdb after access to the

authentication database is no longer required.

The data returned by getuserpwx is stored in allocated memory and must be freed by the caller when the

data is no longer required. The entire structure can be freed by invoking the free subroutine with the

pointer returned by getuserpwx.

Parameters

 User Specifies the name of the user for which password information is read.

Base Operating System (BOS) Runtime Services (A-P) 461

Security

Files accessed:

 Mode File

r /etc/passwd

r /etc/security/passwd

Return Values

If successful, the getuserpwx subroutine returns a valid pointer to a userpwx structure. Otherwise, a null

pointer is returned and the errno global variable is set to indicate the error. The fields in a userpwx

structure are defined in the userpw.h file, and they include the following members:

 upw_name Specifies the user’s name.

upw_passwd Specifies the user’s encrypted password.

upw_lastupdate Specifies the time, in seconds, since the epoch (that is, 00:00:00 GMT, 1 January

1970), when the password was last updated.

upw_flags Specifies attributes of the password. This member is a bit mask of one or more of

the following values, defined in the userpw.h file:

PW_NOCHECK

Specifies that new passwords need not meet password restrictions in

effect for the system.

PW_ADMCHG

Specifies that the password was last set by an administrator and must

be changed at the next successful use of the login or su command.

PW_ADMIN

Specifies that password information for this user can only be changed by

the root user.

upw_authdb Specifies the administrative domain containing the authentication data.

Error Codes

The getuserpwx subroutine fails if one of the following values is true:

 EACCESS The user is not able to open the files that contain the password attributes.

ENOENT The user does not have an entry in the /etc/security/passwd file or other

administrative domain.

Subroutines invoked by the getuserpwx subroutine can also set errors.

Files

 /etc/security/passwd Contains user passwords.

Related Information

The “getgroupattrs Subroutine” on page 370, “getuserattr, IDtouser, nextuser, or putuserattr Subroutine” on

page 445, “getuserattrs Subroutine” on page 451, setpwdb Subroutinesetuserdb Subroutine.

getusraclattr, nextusracl or putusraclattr Subroutine

Purpose

Accesses the user screen information in the SMIT ACL database.

462 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

int getusraclattr(User, Attribute, Value, Type)

char *User;

char *Attribute;

void *Value;

int Type;

char *nextusracl(void)

int putusraclattr(User, Attribute, Value, Type)

char *User;

char *Attribute;

void *Value;

int Type;

Description

The getusraclattr subroutine reads a specified user attribute from the SMIT ACL database. If the

database is not already open, this subroutine does an implicit open for reading.

Similarly, the putusraclattr subroutine writes a specified attribute into the user SMIT ACL database. If the

database is not already open, this subroutine does an implicit open for reading and writing. Data changed

by the putusraclattr subroutine must be explicitly committed by calling the putusraclattr subroutine with a

Type parameter specifying SEC_COMMIT. Until all the data is committed, only the getusraclattr

subroutine within the process returns written data.

The nextusracl subroutine returns the next user in a linear search of the user SMIT ACL database. The

consistency of consecutive searches depends upon the underlying storage-access mechanism and is not

guaranteed by this subroutine.

The setacldb and endacldb subroutines should be used to open and close the database.

Parameters

 Attribute Specifies which attribute is read. The following possible attributes are defined in the usersec.h file:

S_SCREENS

String of SMIT screens. The attribute type is SEC_LIST.

S_ACLMODE

String specifying the SMIT ACL database search scope. The attribute type is SEC_CHAR.

S_FUNCMODE

String specifying the databases to be searched. The attribute type is SEC_CHAR.

Base Operating System (BOS) Runtime Services (A-P) 463

Type Specifies the type of attribute expected. Valid types are defined in the usersec.h file and include:

SEC_CHAR

The format of the attribute is a null-terminated character string.

 For the getusraclattr subroutine, the user should supply a pointer to a defined character

pointer variable. For the putusraclattr subroutine, the user should supply a character

pointer.

SEC_LIST

The format of the attribute is a series of concatenated strings, each null-terminated. The

last string in the series must be an empty (zero character count) string.

 For the getusraclattr subroutine, the user should supply a pointer to a defined character

pointer variable. For the putusraclattr subroutine, the user should supply a character

pointer.

SEC_COMMIT

For the putusraclattr subroutine, this value specified by itself indicates that changes to

the named user are to be committed to permanent storage. The Attribute and Value

parameters are ignored. If no user is specified, the changes to all modified users are

committed to permanent storage.

SEC_DELETE

The corresponding attribute is deleted from the user SMIT ACL database.

SEC_NEW

Updates the user SMIT ACL database file with the new user name when using the

putusraclattr subroutine.

Value Specifies a buffer, a pointer to a buffer, or a pointer to a pointer depending on the Attribute and

Type parameters. See the Type parameter for more details.

Return Values

If successful, the getusraclattr returns 0. Otherwise, a value of -1 is returned and the errno global

variable is set to indicate the error.

Error Codes

Possible return codes are:

 EACCES Access permission is denied for the data request.

ENOENT The specified User parameter does not exist or the attribute is not defined for this user.

ENOATTR The specified user attribute does not exist for this user.

EINVAL The Attribute parameter does not contain one of the defined attributes or null.

EINVAL The Value parameter does not point to a valid buffer or to valid data for this type of attribute.

EPERM Operation is not permitted.

Related Information

The getgrpaclattr, nextgrpacl, or putgrpaclattr (“getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine” on

page 376) subroutine, setacldb, or endacldb subroutine.

getutent, getutid, getutline, pututline, setutent, endutent, or utmpname

Subroutine

Purpose

Accesses utmp file entries.

464 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Standard C Library (libc.a)

Syntax

#include <utmp.h>

struct utmp *getutent ()

struct utmp *getutid (ID)

struct utmp *ID;

struct utmp *getutline (Line)

struct utmp *Line;

void pututline (Utmp)

struct utmp *Utmp;

void setutent ()

void endutent ()

void utmpname (File)

char *File;

Description

The getutent, getutid, and getutline subroutines return a pointer to a structure of the following type:

struct utmp

> {

> char ut_user[256]; /* User name */

> char ut_id[14]; /* /etc/inittab ID */

> char ut_line[64]; /* Device name (console, lnxx) */

> pid_t ut_pid; /* Process ID */

> short ut_type; /* Type of entry */

> int __time_t_space; /* for 32vs64-bit time_t PPC */

> time_t ut_time; /* time entry was made */

> struct exit_status

> {

> short e_termination; /* Process termination status */

> short e_exit; /* Process exit status */

> }

> ut_exit; /* The exit status of a process

> /* marked as DEAD_PROCESS. */

> char ut_host[256]; /* host name */

> int __dbl_word_pad; /* for double word alignment */

> int __reservedA[2];

> int __reservedV[6];

> };

The getutent subroutine reads the next entry from a utmp-like file. If the file is not open, this subroutine

opens it. If the end of the file is reached, the getutent subroutine fails.

The pututline subroutine writes the supplied Utmp parameter structure into the utmp file. It is assumed

that the user of the pututline subroutine has searched for the proper entry point using one of the getut

subroutines. If not, the pututline subroutine calls getutid to search forward for the proper place. If so,

pututline does not search. If the pututline subroutine does not find a matching slot for the entry, it adds a

new entry to the end of the file.

Base Operating System (BOS) Runtime Services (A-P) 465

The setutent subroutine resets the input stream to the beginning of the file. Issue a setuid call before

each search for a new entry if you want to examine the entire file.

The endutent subroutine closes the file currently open.

The utmpname subroutine changes the name of a file to be examined from /etc/utmp to any other file.

The name specified is usually /var/adm/wtmp. If the specified file does not exist, no indication is given.

You are not aware of this fact until your first attempt to reference the file. The utmpname subroutine does

not open the file. It closes the old file, if currently open, and saves the new file name.

The most current entry is saved in a static structure. To make multiple accesses, you must copy or use the

structure between each access. The getutid and getutline subroutines examine the static structure first. If

the contents of the static structure match what they are searching for, they do not read the utmp file.

Therefore, you must fill the static structure with zeros after each use if you want to use these subroutines

to search for multiple occurrences.

If the pututline subroutine finds that it is not already at the correct place in the file, the implicit read it

performs does not overwrite the contents of the static structure returned by the getutent subroutine, the

getuid subroutine, or the getutline subroutine. This allows you to get an entry with one of these

subroutines, modify the structure, and pass the pointer back to the pututline subroutine for writing.

These subroutines use buffered standard I/O for input. However, the pututline subroutine uses an

unbuffered nonstandard write to avoid race conditions between processes trying to modify the utmp and

wtmp files.

Parameters

 ID If you specify a type of RUN_LVL, BOOT_TIME, OLD_TIME, or NEW_TIME in the ID parameter,

the getutid subroutine searches forward from the current point in the utmp file until an entry with

a ut_type matching ID->ut_type is found.

If you specify a type of INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or

DEAD_PROCESS in the ID parameter, the getutid subroutine returns a pointer to the first entry

whose type is one of these four and whose ut_id field matches Id->ut_id. If the end of the file is

reached without a match, the getutid subroutine fails.

Line The getutline subroutine searches forward from the current point in the utmp file until it finds an

entry of type LOGIN_PROCESS or USER_PROCESS that also has a ut_line string matching the

Line->ut_line parameter string. If the end of file is reached without a match, the getutline

subroutine fails.

Utmp Points to the utmp structure.

File Specifies the name of the file to be examined.

Return Values

These subroutines fail and return a null pointer if a read or write fails due to a permission conflict or

because the end of the file is reached.

Files

 /etc/utmp Path to the utmp file, which contains a record of users logged into the system.

/var/adm/wtmp Path to the wtmp file, which contains accounting information about users logged

in.

466 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The ttyslot subroutine.

The failedlogin, utmp, or wtmp file.

getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or

endvfsent Subroutine

Purpose

Gets a vfs file entry.

Library

Standard C Library(libc.a)

Syntax

#include <sys/vfs.h>

#include <sys/vmount.h>

struct vfs_ent *getvfsent()

struct vfs_ent *getvfsbytype(vfsType)

int vfsType;

struct vfs_ent *getvfsbyname(vfsName)

char *vfsName;

struct vfs_ent *getvfsbyflag(vfsFlag)

int vfsFlag;

void setvfsent()

void endvfsent()

Description

Attention: All information is contained in a static area and so must be copied to be saved.

The getvfsent subroutine, when first called, returns a pointer to the first vfs_ent structure in the file. On

the next call, it returns a pointer to the next vfs_ent structure in the file. Successive calls are used to

search the entire file.

The vfs_ent structure is defined in the vfs.h file and it contains the following fields:

char vfsent_name;

int vfsent_type;

int vfsent_flags;

char *vfsent_mnt_hlpr;

char *vfsent_fs_hlpr;

The getvfsbytype subroutine searches from the beginning of the file until it finds a vfs type matching the

vfsType parameter. The subroutine then returns a pointer to the structure in which it was found.

The getvfsbyname subroutine searches from the beginning of the file until it finds a vfs name matching

the vfsName parameter. The search is made using flattened names; the search-string uses ASCII

equivalent characters.

The getvfsbytype subroutine searches from the beginning of the file until it finds a type matching the

vfsType parameter.

Base Operating System (BOS) Runtime Services (A-P) 467

The getvfsbyflag subroutine searches from the beginning of the file until it finds the entry whose flag

corresponds flags defined in the vfs.h file. Currently, these are VFS_DFLT_LOCAL and

VFS_DFLT_REMOTE.

The setvfsent subroutine rewinds the vfs file to allow repeated searches.

The endvfsent subroutine closes the vfs file when processing is complete.

Parameters

 vfsType Specifies a vfs type.

vfsName Specifies a vfs name.

vfsFlag Specifies either VFS_DFLT_LOCAL or VFS_DFLT_REMOTE.

Return Values

The getvfsent, getvfsbytype, getvfsbyname, and getvfsbyflag subroutines return a pointer to a vfs_ent

structure containing the broken-out fields of a line in the /etc/vfs file. If an end-of-file character or an error

is encountered on reading, a null pointer is returned.

Files

 /etc/vfs Describes the virtual file system (VFS) installed on the system.

Related Information

The getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent (“getfsent, getfsspec, getfsfile,

getfstype, setfsent, or endfsent Subroutine” on page 361) subroutine.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

getwc, fgetwc, or getwchar Subroutine

Purpose

Gets a wide character from an input stream.

Library

Standard I/O Package (libc.a)

Syntax

#include <stdio.h>

wint_t getwc (Stream)

FILE *Stream;

wint_t fgetwc (Stream)

FILE *Stream;

wint_t getwchar (void)

Description

The fgetwc subroutine obtains the next wide character from the input stream specified by the Stream

parameter, converts it to the corresponding wide character code, and advances the file position indicator

468 Technical Reference, Volume 1: Base Operating System and Extensions

the number of bytes corresponding to the obtained multibyte character. The getwc subroutine is equivalent

to the fgetwc subroutine, except that when implemented as a macro, it may evaluate the Stream

parameter more than once. The getwchar subroutine is equivalent to the getwc subroutine with stdin (the

standard input stream).

The first successful run of the fgetc (“getc, getchar, fgetc, or getw Subroutine” on page 340), fgets (“gets

or fgets Subroutine” on page 425), fgetwc, fgetws (“getws or fgetws Subroutine” on page 471), fread

(“fread or fwrite Subroutine” on page 304), fscanf, getc (“getc, getchar, fgetc, or getw Subroutine” on page

340), getchar (“getc, getchar, fgetc, or getw Subroutine” on page 340), gets (“gets or fgets Subroutine” on

page 425), or scanf subroutine using a stream that returns data not supplied by a prior call to the ungetc

or ungetwc subroutine marks the st_atime field for update.

Parameters

 Stream Specifies input data.

Return Values

Upon successful completion, the getwc and fgetwc subroutines return the next wide character from the

input stream pointed to by the Stream parameter. The getwchar subroutine returns the next wide

character from the input stream pointed to by stdin.

If the end of the file is reached, an indicator is set and WEOF is returned. If a read error occurs, an error

indicator is set, WEOF is returned, and the errno global variable is set to indicate the error.

Error Codes

If the getwc, fgetwc, or getwchar subroutine is unsuccessful because the stream is not buffered or data

needs to be read into the buffer, it returns one of the following error codes:

 EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor underlying the

Stream parameter, delaying the process.

EBADF Indicates that the file descriptor underlying the Stream parameter is not valid and

cannot be opened for reading.

EINTR Indicates that the process has received a signal that terminates the read operation.

EIO Indicates that a physical error has occurred, or the process is in a background process

group attempting to read from the controlling terminal, and either the process is

ignoring or blocking the SIGTTIN signal or the process group is orphaned.

EOVERFLOW Indicates that the file is a regular file and an attempt has been made to read at or

beyond the offset maximum associated with the corresponding stream.

The getwc, fgetwc, or getwchar subroutine is also unsuccessful due to the following error conditions:

 ENOMEM Indicates that storage space is insufficient.

ENXIO Indicates that the process sent a request to a nonexistent device, or the device cannot

handle the request.

EILSEQ Indicates that the wc wide-character code does not correspond to a valid character.

Related Information

Other wide character I/O subroutines: getws or fgetws (“getws or fgetws Subroutine” on page 471)

subroutine, putwc, putwchar, or fputwc (“putwc, putwchar, or fputwc Subroutine” on page 1244)

subroutine, putws or fputws (“putws or fputws Subroutine” on page 1246) subroutine, ungetwc

subroutine.

Base Operating System (BOS) Runtime Services (A-P) 469

Related standard I/O subroutines: fopen, freopen, or fdopen (“fopen, fopen64, freopen, freopen64 or

fdopen Subroutine” on page 281) subroutine, gets or fgets (“gets or fgets Subroutine” on page 425)

subroutine, fread (“fread or fwrite Subroutine” on page 304) subroutine, fwrite (“fread or fwrite Subroutine”

on page 304) subroutine, printf, fprintf, sprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf (“printf,

fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1079) subroutine,

putc, putchar, fputc, or putw (“putc, putchar, fputc, or putw Subroutine” on page 1227) subroutine, puts

or fputs (“puts or fputs Subroutine” on page 1236) subroutine.

Subroutines, Example Programs, and Libraries and Understanding Wide Character Input/Output

Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

getwd Subroutine

Purpose

Gets current directory path name.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

char *getwd (PathName)

char *PathName;

Description

The getwd subroutine determines the absolute path name of the current directory, then copies that path

name into the area pointed to by the PathName parameter.

The maximum path-name length, in characters, is set by the PATH_MAX value, as specified in the

limits.h file.

Parameters

 PathName Points to the full path name.

Return Values

If the call to the getwd subroutine is successful, a pointer to the absolute path name of the current

directory is returned. If an error occurs, the getwd subroutine returns a null value and places an error

message in the PathName parameter.

Related Information

The getcwd (“getcwd Subroutine” on page 351) subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

470 Technical Reference, Volume 1: Base Operating System and Extensions

getws or fgetws Subroutine

Purpose

Gets a string from a stream.

Library

Standard I/O Library (libc.a)

Syntax

#include <stdio.h>

wchar_t *fgetws (WString, Number, Stream)

wchar_t *WString;

int Number;

FILE *Stream;

wchar_t *getws (WString)

wchar_t *WString;

Description

The fgetws subroutine reads characters from the input stream, converts them to the corresponding wide

character codes, and places them in the array pointed to by the WString parameter. The subroutine

continues until either the number of characters specified by the Number parameter minus 1 are read or the

subroutine encounters a new-line or end-of-file character. The fgetws subroutine terminates the wide

character string specified by the WString parameter with a null wide character.

The getws subroutine reads wide characters from the input stream pointed to by the standard input

stream (stdin) into the array pointed to by the WString parameter. The subroutine continues until it

encounters a new-line or the end-of-file character, then it discards any new-line character and places a null

wide character after the last character read into the array.

Parameters

 WString Points to a string to receive characters.

Stream Points to the FILE structure of an open file.

Number Specifies the maximum number of characters to read.

Return Values

If the getws or fgetws subroutine reaches the end of the file without reading any characters, it transfers

no characters to the String parameter and returns a null pointer. If a read error occurs, the getws or

fgetws subroutine returns a null pointer and sets the errno global variable to indicate the error.

Error Codes

If the getws or fgetws subroutine is unsuccessful because the stream is not buffered or data needs to be

read into the stream’s buffer, it returns one or more of the following error codes:

 EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor underlying the Stream

parameter, and the process is delayed in the fgetws subroutine.

EBADF Indicates that the file descriptor specifying the Stream parameter is not a read-access file.

EINTR Indicates that the read operation is terminated due to the receipt of a signal, and either no

data was transferred or the implementation does not report partial transfer for this file.

EIO Indicates that insufficient storage space is available.

Base Operating System (BOS) Runtime Services (A-P) 471

ENOMEM Indicates that insufficient storage space is available.

EILSEQ Indicates that the data read from the input stream does not form a valid character.

Related Information

Other wide character I/O subroutines: fgetwc (“getwc, fgetwc, or getwchar Subroutine” on page 468)

subroutine, fputwc (“putwc, putwchar, or fputwc Subroutine” on page 1244) subroutine, fputws (“putws or

fputws Subroutine” on page 1246) subroutine, getwc (“getwc, fgetwc, or getwchar Subroutine” on page

468) subroutine, getwchar (“getwc, fgetwc, or getwchar Subroutine” on page 468) subroutine, putwc

(“putwc, putwchar, or fputwc Subroutine” on page 1244) subroutine, putwchar (“putwc, putwchar, or fputwc

Subroutine” on page 1244) subroutine, putws (“putws or fputws Subroutine” on page 1246) subroutine,

ungetwc subroutine.

Related standard I/O subroutines: fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on

page 281) subroutine, fgetc (“getc, getchar, fgetc, or getw Subroutine” on page 340) subroutine, fgets

(“gets or fgets Subroutine” on page 425) subroutine, fopen (“fopen, fopen64, freopen, freopen64 or fdopen

Subroutine” on page 281) subroutine, fprintf (“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf,

vsprintf, or vwsprintf Subroutine” on page 1079) subroutine, fputc (“putc, putchar, fputc, or putw

Subroutine” on page 1227) subroutine, fputs (“puts or fputs Subroutine” on page 1236) subroutine, fread

(“fread or fwrite Subroutine” on page 304) subroutine, freopen (“fopen, fopen64, freopen, freopen64 or

fdopen Subroutine” on page 281) subroutine, fscanf subroutine, fwrite (“fread or fwrite Subroutine” on

page 304) subroutine, getc (“getc, getchar, fgetc, or getw Subroutine” on page 340) subroutine, getchar

(“getc, getchar, fgetc, or getw Subroutine” on page 340) subroutine, gets (“gets or fgets Subroutine” on

page 425) subroutine, printf (“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf

Subroutine” on page 1079) subroutine, putc (“putc, putchar, fputc, or putw Subroutine” on page 1227)

subroutine, putchar (“putc, putchar, fputc, or putw Subroutine” on page 1227) subroutine, puts (“puts or

fputs Subroutine” on page 1236) subroutine, putw (“putc, putchar, fputc, or putw Subroutine” on page

1227) subroutine, scanf subroutine, sprintf (“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf,

vsprintf, or vwsprintf Subroutine” on page 1079) subroutine, ungetc subroutine.

Understanding Wide Character Input/Output Subroutines and Subroutines, Example Programs, and

Libraries in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

glob Subroutine

Purpose

Generates path names.

Library

Standard C Library (libc.a)

Syntax

#include <glob.h>

int glob (Pattern, Flags, (Errfunc)(), Pglob)

const char *Pattern;

int Flags;

int *Errfunc (Epath, Eerrno)

472 Technical Reference, Volume 1: Base Operating System and Extensions

const char *Epath;

int Eerrno;

glob_t *Pglob;

Description

The glob subroutine constructs a list of accessible files that match the Pattern parameter.

The glob subroutine matches all accessible path names against this pattern and develops a list of all

matching path names. To have access to a path name, the glob subroutine requires search permission on

every component of a path except the last, and read permission on each directory of any file name

component of the Pattern parameter that contains any of the special characters * (asterisk), ? (question

mark), or [(left bracket). The glob subroutine stores the number of matched path names and a pointer to

a list of pointers to path names in the Pglob parameter. The path names are in sort order, based on the

setting of the LC_COLLATE category in the current locale. The first pointer after the last path name is a

null character. If the pattern does not match any path names, the returned number of matched paths is

zero.

Parameters

Pattern

Contains the file name pattern to compare against accessible path names.

Flags Controls the customizable behavior of the glob subroutine.

 The Flags parameter controls the behavior of the glob subroutine. The Flags value is the bitwise

inclusive OR of any of the following constants, which are defined in the glob.h file:

GLOB_APPEND

Appends path names located with this call to any path names previously located. If the

GLOB_APPEND constant is not set, new path names overwrite previous entries in the

Pglob array. The GLOB_APPEND constant should not be set on the first call to the glob

subroutine. It may, however, be set on subsequent calls.

 The GLOB_APPEND flag can be used to append a new set of path names to those found

in a previous call to the glob subroutine. If the GLOB_APPEND flag is specified in the

Flags parameter, the following rules apply:

v If the application sets the GLOB_DOOFFS flag in the first call to the glob subroutine, it

is also set in the second. The value of the Pglob parameter is not modified between the

calls.

v If the application did not set the GLOB_DOOFFS flag in the first call to the glob

subroutine, it is not set in the second.

v After the second call, the Pglob parameter points to a list containing the following:

– Zero or more null characters, as specified by the GLOB_DOOFFS flag.

– Pointers to the path names that were in the Pglob list before the call, in the same

order as after the first call to the glob subroutine.

– Pointers to the new path names generated by the second call, in the specified order.

v The count returned in the Pglob parameter is the total number of path names from the

two calls.

v The application should not modify the Pglob parameter between the two calls.

It is the caller’s responsibility to create the structure pointed to by the Pglob parameter.

The glob subroutine allocates other space as needed.

GLOB_DOOFFS

Uses the gl_offs structure to specify the number of null pointers to add to the beginning of

the gl_pathv component of the Pglob parameter.

Base Operating System (BOS) Runtime Services (A-P) 473

GLOB_ERR

Causes the glob subroutine to return when it encounters a directory that it cannot open or

read. If the GLOB_ERR flag is not set, the glob subroutine continues to find matches if it

encounters a directory that it cannot open or read.

GLOB_MARK

Specifies that each path name that is a directory should have a / (slash) appended.

GLOB_NOCHECK

If the Pattern parameter does not match any path name, the glob subroutine returns a list

consisting only of the Pattern parameter, and the number of matched patterns is one.

GLOB_NOSORT

Specifies that the list of path names need not be sorted. If the GLOB_NOSORT flag is not

set, path names are collated according to the current locale.

GLOB_QUOTE

If the GLOB_QUOTE flag is set, a \ (backslash) can be used to escape metacharacters.

Errfunc

Specifies an optional subroutine that, if specified, is called when the glob subroutine detects an

error condition.

Pglob Contains a pointer to a glob_t structure. The structure is allocated by the caller. The array of

structures containing the file names matching the Pattern parameter are defined by the glob

subroutine. The last entry is a null pointer.

Epath Specifies the path that failed because a directory could not be opened or read.

Eerrno Specifies the errno value of the failure indicated by the Epath parameter. This value is set by the

opendir, readdir, or stat subroutines.

Return Values

On successful completion, the glob subroutine returns a value of 0. The Pglob parameter returns the

number of matched path names and a pointer to a null-terminated list of matched and sorted path names.

If the number of matched path names in the Pglob parameter is zero, the pointer in the Pglob parameter is

undefined.

Error Codes

If the glob subroutine terminates due to an error, it returns one of the nonzero constants below. These are

defined in the glob.h file. In this case, the Pglob values are still set as defined in the Return Values

section.

 GLOB_ABORTED Indicates the scan was stopped because the GLOB_ERROR flag was set or the

subroutine specified by the errfunc parameter returned a nonzero value.

GLOB_NOSPACE Indicates a failed attempt to allocate memory.

If, during the search, a directory is encountered that cannot be opened or read and the Errfunc parameter

is not a null value, the glob subroutine calls the subroutine specified by the errfunc parameter with two

arguments:

v The Epath parameter specifies the path that failed.

v The Eerrno parameter specifies the value of the errno global variable from the failure, as set by the

opendir, readdir, or stat subroutine.

If the subroutine specified by the Errfunc parameter is called and returns nonzero, or if the GLOB_ERR

flag is set in the Flags parameter, the glob subroutine stops the scan and returns GLOB_ABORTED after

474 Technical Reference, Volume 1: Base Operating System and Extensions

setting the Pglob parameter to reflect the paths already scanned. If GLOB_ERR is not set and either the

Errfunc parameter is null or *errfunc returns zero, the error is ignored.

The Pglob parameter has meaning even if the glob subroutine fails. Therefore, the glob subroutine can

report partial results in the event of an error. However, if the number of matched path names is 0, the

pointer in the Pglob parameter is unspecified even if the glob subroutine did not return an error.

Examples

The GLOB_NOCHECK flag can be used with an application to expand any path name using wildcard

characters. However, the GLOB_NOCHECK flag treats the pattern as just a string by default. The sh

command can use this facility for option parameters, for example.

The GLOB_DOOFFS flag can be used by applications that build an argument list for use with the execv,

execve, or execvp subroutine. For example, an application needs to do the equivalent of ls -l *.c, but

for some reason cannot. The application could still obtain approximately the same result using the

sequence:

globbuf.gl_offs = 2;

glob ("*.c", GLOB_DOOFFS, NULL, &globbuf);

globbuf.gl_pathv[0] = "ls";

globbuf.gl_pathv[1] ="-l";

execvp ("ls", &globbuf.gl_pathv[0]);

Using the same example, ls -l *.c *.h could be approximated using the GLOB_APPEND flag as

follows:

globbuf.gl_offs = 2;

glob ("*.c", GLOB_DOOFFS, NULL, &globbuf);

glob ("*.h", GLOB_DOOFFS|GLOB_APPEND, NULL, &globbuf);

The new path names generated by a subsequent call with the GLOB_APPEND flag set are not sorted

together with the previous path names. This is the same way the shell handles path name expansion

when multiple expansions are done on a command line.

Related Information

The exec: execl, execv, execle, execve, execlp, execvp, or exect (“exec: execl, execle, execlp, execv,

execve, execvp, or exect Subroutine” on page 232) subroutine, fnmatch (“fnmatch Subroutine” on page

279) subroutine, opendir, readdir, telldir, seekdir, rewinddir, or closedir (“opendir, readdir, telldir,

seekdir, rewinddir, closedir, opendir64, readdir64, telldir64, seekdir64, rewinddir64, or closedir64

Subroutine” on page 902) subroutine, statx, stat, lstat, fstatx, fstat, fullstat, or ffullstat subroutine.

The ls command.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

globfree Subroutine

Purpose

Frees all memory associated with the pglob parameter.

Library

Standard C Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 475

Syntax

#include <glob.h>

void globfree (pglob)

glob_t *pglob;

Description

The globfree subroutine frees any memory associated with the pglob parameter due to a previous call to

the glob subroutine.

Parameters

 pglob Structure containing the results of a previous call to the glob subroutine.

Related Information

The glob (“glob Subroutine” on page 472) subroutine.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

grantpt Subroutine

Purpose

Changes the mode and ownership of a pseudo-terminal device.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int grantpt (FileDescriptor)

int FileDescriptor;

Description

The grantpt subroutine changes the mode and the ownership of the slave pseudo-terminal associated

with the master pseudo-terminal device defined by the FileDescriptor parameter. The user ID of the slave

pseudo-terminal is set to the real UID of the calling process. The group ID of the slave pseudo-terminal is

set to an unspecified group ID. The permission mode of the slave pseudo-terminal is set to readable and

writeable by the owner, and writeable by the group.

Parameters

 FileDescriptor Specifies the file descriptor of the master pseudo-terminal device.

Return Value

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno

global variable is set to indicate the error.

476 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The grantpt function may fail if:

 EBADF The fildes argument is not a valid open file descriptor.

EINVAL The fildes argument is not associated with a master pseudo-terminal device.

EACCES The corresponding slave pseudo-terminal device could not be accessed.

Related Information

The unlockpt subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

HBA_CloseAdapter Subroutine

Purpose

Closes the adapter opened by the HBA_OpenAdapter subroutine.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

void HBA_CloseAdapter (handle)

HBA_HANDLE handle;

Description

The HBA_CloseAdapter subroutine closes the file associated with the file handle that was the result of a

call to the HBA_OpenAdapter subroutine. The HBA_CloseAdapter subroutine calls the close subroutine,

and applies it to the file handle. After performing the operation, the handle is set to NULL.

Parameters

 handle Specifies the open file descriptor obtained from a successful call to the open subroutine.

Related Information

The “HBA_OpenAdapter Subroutine” on page 493.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define

devices.

HBA_FreeLibrary Subroutine

Purpose

Frees all the resources allocated to build the Common HBA API Library.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Base Operating System (BOS) Runtime Services (A-P) 477

Syntax

#include <sys/hbaapi.h>

HBA_STATUS HBA_FreeLibrary ()

Description

The HBA_FreeLibrary subroutine frees all resources allocated to build the Common HBA API library. This

subroutine must be called after calling any other routine from the Common HBA API library.

Error Codes

The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

 HBA_STATUS_OK A value of 0 on successful

completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

Related Information

The “HBA_LoadLibrary Subroutine” on page 493.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define

devices.

HBA_GetAdapterAttributes, HBA_GetPortAttributes,

HBA_GetDiscoveredPortAttributes, HBA_GetPortAttributesByWWN

Subroutine

Purpose

Gets the attributes of the end device’s adapter, port, or remote port.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

HBA_STATUS HBA_GetAdapterAttributes (handle, hbaattributes)

HBA_STATUS HBA_GetAdapterPortAttributes (handle, portindex, portattributes)

HBA_STATUS HBA_GetDiscoveredPortAttributes (handle, portindex, discoveredportindex, portattributes)

HBA_STATUS HBA_GetPortAttributesByWWN (handle, PortWWN, portattributes)

HBA_HANDLE handle;

HBA_ADAPTERATTRIBUTES *hbaattributes;

HBA_UINT32 portindex;

HBA_PORTATTRIBUTES *portattributes;

HBA_UINT32 discoveredportindex;

HBA_WWN PortWWN;

Description

The HBA_GetAdapterAttributes subroutine queries the ODM and makes system calls to gather

information pertaining to the adapter. This information is returned to the HBA_ADAPTERATTRIBUTES

structure. This structure is defined in the /usr/include/sys/hbaapi.h file.

478 Technical Reference, Volume 1: Base Operating System and Extensions

The HBA_GetAdapterAttributes, HBA_GetAdapterPortAttributes, HBA_GetDiscoveredPortAttributes,

and HBA_GetPortAttributesByWWN subroutines return the attributes of the adapter, port or remote port.

These attributes include:

v Manufacturer

v SerialNumber

v Model

v ModelDescription

v NodeWWN

v NodeSymbolicName

v HardwareVersion

v DriverVersion

v OptionROMVersion

v FirmwareVersion

v VendorSpecificID

v NumberOfPorts

v Drivername

The HBA_GetAdapterPortAttributes, HBA_GetDiscoveredPortAttributes, and

HBA_GetPortAttributesByWWN subroutines also query the ODM and make system calls to gather

information. The gathered information pertains to the port attached to the adapter or discovered on the

network. The attributes are stored in the HBA_PORTATTRIBUTES structure. This structure is defined in

the /usr/include/sys/hbaapi.h file.

These attributes include:

v NodeWWN

v PortWWN

v PortFcId

v PortType

v PortState

v PortSupportedClassofService

v PortSupportedFc4Types

v PortActiveFc4Types

v OSDeviceName

v PortSpeed

v NumberofDiscoveredPorts

v PortSymbolicName

v PortSupportedSpeed

v PortMaxFrameSize

v FabricName

The HBA_GetAdapterPortAttributes subroutine returns the attributes of the attached port.

The HBA_GetDiscoveredPortAttributes, and HBA_GetPortAttributesByWWN subroutines return the

same information. However, these subroutines differ in the way they are called, and in the way they

acquire the information.

Base Operating System (BOS) Runtime Services (A-P) 479

Parameters

 handle Specifies the open file descriptor obtained from a successful call to the open

subroutine.

hbaatributes Points to an HBA_AdapterAttributes structure, which is used to store information

pertaining to the Host Bus Adapter.

portindex Specifies the index number of the port where the information was obtained.

portattributes Points to an HBA_PortAttributes structure used to store information pertaining to the

port attached to the Host Bus Adapter.

discoveredportindex Specifies the index of the attached port discovered over the network.

PortWWN Specifies the world wide name or port name of the target device.

Return Values

Upon successful completion, the attributes and a value of HBA_STATUS_OK, or 0 are returned.

If no information for a particular attribute is available, a null value is returned for that attribute.

HBA_STATUS_ERROR or 1 is returned if certain ODM queries or system calls fail while trying to retrieve

the attributes.

Error Codes

The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

 HBA_STATUS_OK A value of 0 on successful completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file

handle.

HBA_STATUS_ERROR_ARG A value of 4 if there was a bad argument.

HBA_STATUS_ERROR_ILLEGAL_WWN A value of 5 if the world wide name was not

recognized.

Related Information

“HBA_GetAdapterName Subroutine,” and “HBA_GetNumberOfAdapters Subroutine” on page 488.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define

devices.

HBA_GetAdapterName Subroutine

Purpose

Gets the name of a Common Host Bus Adapter.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

HBA_STATUS HBA_GetAdapterName (adapterindex, adaptername)

HBA_UINT32 adapterindex;

char *adaptername;

480 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The HBA_GetAdapterName subroutine gets the name of a Common Host Bus Adapter. The adapterindex

parameter is an index into an internal table containing all FCP adapters on the machine. The adapterindex

parameter is used to search the table and obtain the adapter name. The name of the adapter is returned

in the form of mgfdomain-model-adapterindex. The name of the adapter is used as an argument for the

HBA_OpenAdapter subroutine. From the HBA_OpenAdapter subroutine, the file descriptor will be

obtained where additional Common HBA API routines can then be called using the file descriptor as the

argument.

Parameters

 adapterindex Specifies the index of the adapter held in the adapter table for which the name of the adapter

is to be returned.

adaptername Points to a character string that will be used to hold the name of the adapter.

Return Values

Upon successful completion, the HBA_GetAdapterName subroutine returns the name of the adapter and

a 0, or a status code of HBA_STATUS_OK. If unsuccessful, a null value will be returned for adaptername

and an value of 1, or a status code of HBA_STATUS_ERROR.

Error Codes

The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

 HBA_STATUS_OK A value of 0 on successful completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

HBA_STATUS_ERROR_NOT_SUPPORTED A value of 2 if the function is not supported.

HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file

handle.

HBA_STATUS_ERROR_ARG A value of 4 if there was a bad argument.

HBA_STATUS_ERROR_ILLEGAL_WWN A value of 5 if the world wide name was

not recognized.

HBA_STATUS_ERROR_ILLEGAL_INDEX A value of 6 if an index was not

recognized.

HBA_STATUS_ERROR_MORE_DATA A value of 7 if a larger buffer is required.

HBA_STATUS_ERROR_STALE_DATA A value of 8 if information has changed

since the last call to the

HBA_RefreshInformation subroutine.

HBA_STATUS_SCSI_CHECK_CONDITION A value of 9 if a SCSI Check Condition was

reported.

HBA_STATUS_ERROR_BUSY A value of 10 if the adapter was busy or

reserved. Try again later.

HBA_STATUS_ERROR_TRY_AGAIN A value of 11 if the request timed out. Try

again later.

HBA_STATUS_ERROR_UNAVAILABLE A value of 12 if the referenced HBA has

been removed or deactivated.

Related Information

The “HBA_GetNumberOfAdapters Subroutine” on page 488.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define

devices.

Base Operating System (BOS) Runtime Services (A-P) 481

HBA_GetEventBuffer Subroutine

Purpose

Removes and returns the next events from the HBA’s event queue.

Syntax

HBA_STATUS HBA_GetEventBuffer(

 HBA_HANDLE handle,

 HBA_EVENTINFO *pEventBuffer,

 HBA_UINT32 *pEventCount,

);

Description

The HBA_GetEventBuffer function removes and returns the next events from the HBA’s event queue.

The number of events returned is the lesser of the value of the EventCount parameter at the time of the

call and the number of entries available in the event queue.

Parameters

 handle A handle to an open HBA.

pEventBuffer Pointer to a buffer to receive events.

pEventCount Pointer to the number of event records that fit in the space allocated for the buffer to receive

events. It is set to the size (in event records) of the buffer for receiving events on call, and is

returned as the number of events actually delivered.

Return Values

The value of the HBA_GetEventBuffer function is a valid status return value that indicates the reason for

completion of the requested function. HBA_STATUS_OK is returned to indicate that no errors were

encountered and pEventCount indicates the number of event records returned. A valid status return value

that most closely describes the result of the function should be returned to indicate a reason with no

required value.

The return values for the following parameters are as follows:

 pEventBuffer Remains unchanged. The buffer to which it points contains event records representing

previously undelivered events.

pEventCount Remains unchanged. The value of the integer to which it points contains the number of

event records that actually were delivered.

Error Codes

 HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information

“HBA_GetFC4Statistics Subroutine” on page 483, “HBA_GetFCPStatistics Subroutine” on page 485,

“HBA_GetFcpTargetMappingV2 Subroutine” on page 486, “HBA_GetPersistentBindingV2 Subroutine” on

page 489, “HBA_OpenAdapterByWWN Subroutine” on page 494, “HBA_ScsiInquiryV2 Subroutine” on

page 496, “HBA_ScsiReadCapacityV2 Subroutine” on page 498, “HBA_ScsiReportLunsV2 Subroutine” on

page 499, “HBA_SendCTPassThruV2 Subroutine” on page 502, “HBA_SendRLS Subroutine” on page

505, “HBA_SendRNIDV2 Subroutine” on page 508, “HBA_SendRPL Subroutine” on page 509,

“HBA_SendRPS Subroutine” on page 511

482 Technical Reference, Volume 1: Base Operating System and Extensions

HBA_GetFC4Statistics Subroutine

Purpose

Returns traffic statistics for a specific FC-4 protocol through a specific local HBA and local end port.

Syntax

HBA_STATUS HBA_GetFC4Statistics(

 HBA_HANDLE handle,

 HBA_WWN hbaPortWWN,

 HBA_UINT8 FC4type,

 HBA_FC4STATISTICS *statistics

);

Description

The HBA_GetFC4Statistics function returns traffic statistics for a specific FC-4 protocol through a specific

local HBA and local end port.

Note: Basic Link Service, Extended Link Service, and CT each have specific Data Structure TYPE values,

so their traffic can be requested.

Parameters

 handle A handle to an open HBA containing the end port for which FC-4 statistics can return.

hbaPortWWN The Port Name of the local HBA end port for which FC-4 statistics can return.

FC4type The Data Structure TYPE assigned by FC-FS to the FC-4 protocol for which FC-4 statistics

are requested.

statistics A pointer to an FC-4 Statistics structure in which the statistics for the specified FC-4 protocol

can be returned.

Return Values

The value of the HBA_GetFC4Statistics function is a valid status return value that indicates the reason

for completion of the requested function. HBA_STATUS_OK is returned to indicate that the statistics for

the specified FC-4 and end port have been returned. A valid status return value that most closely

describes the result of the function should be returned to indicate a reason with no required value.

The return value for the following parameter is as follows:

 statistics Remains unchanged. The structure to which it points contains the statistics for the specified FC-4

protocol.

Error Codes

 HBA_STATUS_ERROR_ILLEGAL_WWN Indicates that the HBA referenced by handle does not

contain an end port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_UNSUPPORTED_FC4 Indicates that the specified HBA end port does not

support the specified FC-4 protocol.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information

“HBA_GetEventBuffer Subroutine” on page 482, “HBA_GetFCPStatistics Subroutine” on page 485,

“HBA_GetFcpTargetMappingV2 Subroutine” on page 486, “HBA_GetPersistentBindingV2 Subroutine” on

page 489, “HBA_OpenAdapterByWWN Subroutine” on page 494, “HBA_ScsiInquiryV2 Subroutine” on

page 496

Base Operating System (BOS) Runtime Services (A-P) 483

page 496, “HBA_ScsiReadCapacityV2 Subroutine” on page 498, “HBA_ScsiReportLunsV2 Subroutine” on

page 499, “HBA_SendCTPassThruV2 Subroutine” on page 502, “HBA_SendRLS Subroutine” on page

505, “HBA_SendRNIDV2 Subroutine” on page 508, “HBA_SendRPL Subroutine” on page 509,

“HBA_SendRPS Subroutine” on page 511

HBA_GetFcpPersistentBinding Subroutine

Purpose

Gets persistent binding information of SCSI LUNs.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

HBA_STATUS HBA_GetFcpPersistentBinding (handle, binding)

HBA_HANDLE handle;

PHBA_FCPBinding binding;

Description

For the specified HBA_HANDLE, the HBA_GetFcpPersistentBinding subroutine returns the full binding

information of local SCSI LUNs to FCP LUNs for each child of the specified HBA_HANDLE. Applications

must allocate memory for the HBA_FCPBINDING structure, and also pass to the subroutine the number of

entries allocated. If the subroutine determines that the structure is not large enough to represent the full

binding information, it will set the NumberOfEntries variable to the correct value and return an error.

Parameters

 handle An HBA_HANDLE to an open adapter.

binding A pointer to a structure containing the binding information of the handle’s children. The

HBA_FCPBINDING structure has the following form:

struct HBA_FCPBinding {

 HBA_UINT32 NumberOfEntries;

 HBA_FCPBINDINGENTRY entry[1]; /* Variable length array */

 };

The size of the structure is determined by the calling application, and is passed in by the

NumberOfEntries variable.

Return Values

Upon successful completion, HBA_STATUS_OK is returned, and the binding parameter points to the full

binding structure. If the application has not allocated enough space for the full binding,

HBA_STATUS_ERROR_MORE_DATA is returned and the NumberOfEntries field in the binding structure is

set to the correct value.

Error Codes

If there is insufficient space allocated for the full binding. HBA_STATUS_ERROR_MORE_DATA is

returned.

Related Information

The “HBA_GetFcpTargetMapping Subroutine” on page 487.

484 Technical Reference, Volume 1: Base Operating System and Extensions

HBA_GetFCPStatistics Subroutine

Purpose

Returns traffic statistics for a specific OS SCSI logical unit provided by the FCP protocol on a specific local

HBA.

Syntax

HBA_STATUS HBA_GetFCPStatistics(

 HBA_HANDLE handle,

 const HBA_SCSIID *lunit,

 HBA_FC4STATISTICS *statistics

);

Description

The HBA_GetFCPStatistics function returns traffic statistics for a specific OS SCSI logical unit provided

by the FCP protocol on a specific local HBA.

Parameters

 handle A handle to an open HBA containing the end port for which FCP-2 statistics can be returned.

lunit Pointer to a structure specifying the OS SCSI logical unit for which FCP-2 statistics are

requested.

statistics Pointer to a FC-4 Statistics structure in which the FCP-2 statistics for the specified logical unit

can be returned.

Return Values

The value of the HBA_GetFCPStatistics function is a valid status return value that indicates the reason

for completion of the requested function. HBA_STATUS_OK is returned to indicate that FCP-2 statistics

have been returned for the specified HBA. A valid status return value that most closely describes the result

of the function should be returned to indicate a reason with no required value.

The return value for the following parameter is as follows:

 statistics Remains unchanged. The structure to which it points contains the FCP-2 statistics for the

specified HBA and logical unit.

Error Codes

 HBA_STATUS_ERROR_INVALID_LUN The HBA referenced by handle does not support the

logical unit referenced by lunit.

HBA_STATUS_ERROR_UNSUPPORTED_FC4 The specified HBA end port does not support FCP-2.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information

“HBA_GetEventBuffer Subroutine” on page 482, “HBA_GetFC4Statistics Subroutine” on page 483,

“HBA_GetFcpTargetMappingV2 Subroutine” on page 486, “HBA_GetPersistentBindingV2 Subroutine” on

page 489, “HBA_OpenAdapterByWWN Subroutine” on page 494, “HBA_ScsiInquiryV2 Subroutine” on

page 496, “HBA_ScsiReadCapacityV2 Subroutine” on page 498, “HBA_ScsiReportLunsV2 Subroutine” on

page 499, “HBA_SendCTPassThruV2 Subroutine” on page 502, “HBA_SendRLS Subroutine” on page

505, “HBA_SendRNIDV2 Subroutine” on page 508, “HBA_SendRPL Subroutine” on page 509,

“HBA_SendRPS Subroutine” on page 511

Base Operating System (BOS) Runtime Services (A-P) 485

HBA_GetFcpTargetMappingV2 Subroutine

Purpose

Returns the mapping between OS targets or logical units and FCP targets or logical units offered by the

specified HBA end port at the time the function call is processed.

Syntax

HBA_STATUS HBA_GetFcpTargetMappingV2(

 HBA_HANDLE handle,

 HBA_WWN hbaPortWWN,

 HBA_FCPTARGETMAPPINGV2 *pMapping

);

Description

The HBA_GetFcpTargetMappingV2 function returns the mapping between OS identification of SCSI

targets or logical units and FCP identification of targets or logical units offered by the specified HBA end

port at the time the function call is processed. Space in the pMapping structure permitting, one mapping

entry is returned for each FCP logical unit represented in the OS and one mapping entry is returned for

each FCP target that is represented in the OS but for which no logical units are represented in the OS. No

target mapping entries are returned to represent FCP objects that are not represented in the OS (that is,

objects that are unmapped).

The mappings returned include a Logical Unit Unique Device Identifier (LUID) for each logical unit that

provides one. For logical units that provide more than one LUID, the LUID returned is the type 3 (FC

Name_Identifier) LUID with the smallest identifier value if any LUID of type 3 is provided; otherwise, the

type 2 (IEEE EUI-64) LUID with the smallest identifier value if any LUID of type 2 is provided; otherwise,

the type 1 (T10 vendor identification) LUID with the smallest identifier value if any LUID of type 1 is

provided; otherwise, the type 0 (vendor specific) LUID with the smallest identifier value. If the logical unit

provides no LUID, the value of the first four bytes of the LUID field are 0.

Parameters

 handle A handle to an open HBA containing the end port for which target mappings are requested.

hbaPortWWN Port Name of the local HBA end port for which target mappings are requested.

pMapping Pointer to an HBA_FCPTARGETMAPPINGV2 structure. The size of this structure shall be

limited by the NumberOfEntries value within the structure.

Return Values

The value of the HBA_GetFcpTargetMappingV2 function is a valid status return value that indicates the

reason for completion of the requested function. HBA_STATUS_OK is returned to indicate that all

mapping entries have been returned for the specified end port. A valid status return value that most closely

describes the result of the function should be returned to indicate a reason with no required value.

The return value for the following parameter is as follows:

 pMapping Remains unchanged. The structure to which it points contains mapping information from OS

identifications of SCSI logical units to FCP identifications of logical units for the specified local

HBA end port. The number of entries in the structure is the minimum of the number of entries

specified at function call or the full mapping. The value of the NumberOfEntries field of the

returned structure is the total number of mappings the end port has established. This is true even

when the function returns an error stating that the buffer is too small to return all of the

established mappings. An upper-level application can either allocate a sufficiently large buffer and

check this value after a read, or do a read of the NumberOfEntries value separately and allocate a

new buffer given the size to accommodate the entire mapping structure.

486 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

 HBA_STATUS_ERROR_MORE_DATA More space in the buffer is required to contain mapping

information.

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end

port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_NOT_SUPPORTED The HBA referenced by handle does not support target

mapping.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information

“HBA_GetEventBuffer Subroutine” on page 482, “HBA_GetFC4Statistics Subroutine” on page 483,

“HBA_GetFCPStatistics Subroutine” on page 485, “HBA_GetPersistentBindingV2 Subroutine” on page 489,

“HBA_OpenAdapterByWWN Subroutine” on page 494, “HBA_ScsiInquiryV2 Subroutine” on page 496,

“HBA_ScsiReadCapacityV2 Subroutine” on page 498, “HBA_ScsiReportLunsV2 Subroutine” on page 499,

“HBA_SendCTPassThruV2 Subroutine” on page 502, “HBA_SendRLS Subroutine” on page 505,

“HBA_SendRNIDV2 Subroutine” on page 508, “HBA_SendRPL Subroutine” on page 509, “HBA_SendRPS

Subroutine” on page 511

HBA_GetFcpTargetMapping Subroutine

Purpose

Gets mapping of OS identification to FCP indentification for each child of the specified HBA_HANDLE.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

HBA_STATUS HBA_GetFcpTargetMapping (handle, mapping)

HBA_HANDLE handle;

PHBA_FCPTARGETMAPPING mapping;

Description

For the specified HBA_HANDLE, the HBA_GetFcpTargetMapping subroutine maps OS identification of

all its SCSI logical units to their FCP indentification. Applications must allocate memory for the

HBA_FCPTargetMapping structure, and also pass to the subroutine the number of entries allocated. If the

subroutine determines that the structure is not large enough to represent the entire mapping, it will set the

NumberOfEntries variable to the correct value and return an error.

Parameters

 handle An HBA_HANDLE to an open adapter.

Base Operating System (BOS) Runtime Services (A-P) 487

mapping A pointer to a structure containing a mapping of the handle’s children. The

HBA_FCPTARGETMAPPING structure has the following form:

struct HBA_FCPTargetMapping (

HBA_UINT32 NumberOfEntries;

HBA_FCPSCSIENTRY entry[1] /* Variable length array containing mappings */

);

The size of the structure is determined by the calling application, and is passed in by the

NumberOfEntries variable.

Return Values

If successful, HBA_STATUS_OK is returned and the mapping parameter points to the full mapping

structure. If the application has not allocated enough space for the full mapping,

HBA_STATUS_ERROR_MORE_DATA is returned, and the NumberOfEntries field in the mapping structure

is set to the correct value.

Error Codes

If there is insufficient space allocated for the full mapping, HBA_STATUS_ERROR_MORE_DATA is

returned.

Related Information

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define

devices.

HBA_GetNumberOfAdapters Subroutine

Purpose

Returns the number of adapters discovered on the system.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

HBA_UINT32 HBA_GetNumberOfAdapters ()

Description

The HBA_GetNumberOfAdapters subroutine returns the number of HBAs supported by the library. The

value returned is the current number of HBAs and reflects dynamic change of the HBA inventory without

requiring a restart of the system, driver, or library.

Return Values

The HBA_GetNumberOfAdapters subroutine returns an integer representing the number of adapters on

the machine.

Related Information

The “HBA_GetAdapterName Subroutine” on page 480.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define

devices.

488 Technical Reference, Volume 1: Base Operating System and Extensions

HBA_GetPersistentBindingV2 Subroutine

Purpose

Returns persistent bindings between an FCP target and a SCSI ID for a specified HBA end port.

Syntax

HBA_STATUS HBA_GetPersistentBindingV2(

 HBA_HANDLE handle,

 HBA_WWN hbaPortWWN,

 HBA_FCPTARGETMAPPINGV2 *binding

);

Description

The HBA_GetFcpPersistentBindingV2 function returns persistent bindings between an FCP target and a

SCSI ID for a specified HBA end port. The binding information can include bindings to Logical Unit Unique

Device Identifiers (LUIDs).

Parameters

 handle A handle to an open HBA containing the end port for which persistent binding can be returned.

hbaPortWWN The Port Name of the local HBA end port for which persistent binding can be returned.

binding Pointer to an HBA_FCPBINDING2 structure. The NumberOfEntries field in the structure limits

the number of entries that are returned.

Return Values

The value of the HBA_GetPersistentBindingV2 function is a valid status return value that indicates the

reason for completion of the requested function. HBA_STATUS_OK is returned to indicate that all binding

entries have been returned for the specified end port. A valid status return value that most closely

describes the result of the function should be returned to indicate a reason with no required value.

The return value for the following parameter is as follows:

 binding Remains unchanged. The structure to which it points contains binding information from OS

identifications of SCSI logical units to FCP and LUID identifications of logical units for the specified

HBA end port. The number of entries in the structure is the minimum of the number of entries

specified at function call or the full set of bindings. The NumberOfEntries field contains the total

number of bindings established by the end port. An application can either call

HBA_GetPersistentBindingV2 with NumberOfEntries set to 0 to retrieve the number of entries

available, or allocate a sufficiently large buffer to retrieve entries at first call. The Status field of

each HBA_FCPBINDINGENTRY2 substructure is 0.

Error Codes

 HBA_STATUS_ERROR_MORE_DATA More space in the buffer is required to contain binding

information.

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end

port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_NOT_SUPPORTED The HBA referenced by handle does not support

persistent binding.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Base Operating System (BOS) Runtime Services (A-P) 489

Related Information

“HBA_GetEventBuffer Subroutine” on page 482, “HBA_GetFC4Statistics Subroutine” on page 483,

“HBA_GetFCPStatistics Subroutine” on page 485, “HBA_GetFcpTargetMappingV2 Subroutine” on page

486, “HBA_OpenAdapterByWWN Subroutine” on page 494, “HBA_ScsiInquiryV2 Subroutine” on page 496,

“HBA_ScsiReadCapacityV2 Subroutine” on page 498, “HBA_ScsiReportLunsV2 Subroutine” on page 499,

“HBA_SendCTPassThruV2 Subroutine” on page 502, “HBA_SendRLS Subroutine” on page 505,

“HBA_SendRNIDV2 Subroutine” on page 508, “HBA_SendRPL Subroutine” on page 509, “HBA_SendRPS

Subroutine” on page 511

HBA_GetPortStatistics Subroutine

Purpose

Gets the statistics for a Host Bus Adapter (HBA).

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

HBA_STATUS HBA_GetPortStatistics (handle, portindex, portstatistics)

HBA_HANDLE handle;

HBA_UINT32 portindex;

HBA_PORTSTATISTICS *portstatistics;

Description

The HBA_GetPortStatistics subroutine retrieves the statistics for the specified adapter. Only single-port

adapters are supported, and the portindex parameter is disregarded. The exact meaning of events being

counted for each statistic is vendor specific. The HBA_PORTSTATISTICS structure includes the following

fields:

v SecondsSinceLastReset

v TxFrames

v TxWords

v RxFrames

v RxWords

v LIPCount

v NOSCount

v ErrorFrames

v DumpedFrames

v LinkFailureCount

v LossOfSyncCount

v LossOfSignalCount

v PrimitiveSeqProtocolErrCount

v InvalidTxWordCount

v InvalidCRCCount

Parameters

 handle HBA_HANDLE to an open adapter.

490 Technical Reference, Volume 1: Base Operating System and Extensions

portindex Not used.

portstatistics Pointer to an HBA_PORTSTATISTICS structure.

Return Values

Upon successful completion, HBA_STATUS_OK is returned. If the subroutine is unable to retrieve the

statistics for an HBA, it returns HBA_STATUS_ERROR.

HBA_GetRNIDMgmtInfo Subroutine

Purpose

Sends a SCSI GET RNID command to a remote port of the end device.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

HBA_STATUS HBA_GetRNIDMgmtInfo (handle, pInfo)

HBA_HANDLE handle;

HBA_MGMTINFO *pInfo;

Description

The HBA_SetRNIDMgmtInfo subroutine sends a SCSI GET RNID (Request Node Identification Data)

command through a call to ioctl with the SCIOLCHBA operation as its argument. The arg parameter for

the SCIOLCHBA operation is the address of a scsi_chba structure. This structure is defined in the

/usr/include/sys/scsi_buf.h file. The scsi_chba parameter block allows the caller to select the GET RNID

command to be sent to the adapter. The pInfo structure stores the RNID data returned from SCIOLCHBA.

The pInfo structure is defined in the /usr/include/sys/hbaapi.h file. The structure includes:

v wwn

v unittype

v PortId

v NumberOfAttachedNodes

v IPVersion

v UDPort

v IPAddress

v reserved

v TopologyDiscoveryFlags

If successful, the GET RNID data in pInfo is returned from the adapter.

Parameters

 handle Specifies the open file descriptor obtained from a successful call to the open subroutine.

pInfo Specifies the structure containing the information to get or set from the RNID command

Base Operating System (BOS) Runtime Services (A-P) 491

Return Values

Upon successful completion, the HBA_GetRNIDMgmtInfo subroutine returns a pointer to a structure

containing the data from the GET RNID command and a value of HBA_STATUS_OK, or a value of 0. If

unsuccessful, a null value is returned along with a value of HBA_STATUS_ERROR, or a value of 1.

Upon successful completion, the HBA_SetRNIDMgmtInfo subroutine returns a value of

HBA_STATUS_OK, or a value of 0. If unsuccessful, an HBA_STATUS_ERROR value, or a value of 1 is

returned.

Error Codes

The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

 HBA_STATUS_OK A value of 0 on successful completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file handle.

Related Information

“HBA_SendScsiInquiry Subroutine” on page 512, “HBA_SendReadCapacity Subroutine” on page 503,

“HBA_SendCTPassThru Subroutine” on page 501, “HBA_SendReportLUNs Subroutine” on page 504,

“HBA_SendRNID Subroutine” on page 506, and “HBA_SetRNIDMgmtInfo Subroutine” on page 513.

SCSI Adapter Device Driver in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 2.

Special Files in AIX 5L Version 5.3 Files Reference.

SCSI Subsystem Overview, A Typical Initiator-Mode SCSI Driver Transaction Sequence, Required SCSI

Adapter Device Driver ioctl Commands, Understanding the Execution of Initiator I/O Requests, SCSI Error

Recovery, and Understanding the sc_buf Structure in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

HBA_GetVersion Subroutine

Purpose

Returns the version number of the Common HBA API.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

HBA_UINT32 HBA_GetVersion ()

Description

The HBA_GetVersion subroutine returns the version number representing the release of the Common

HBA API.

Return Values

Upon successful completion, the HBA_GetVersion subroutine returns an integer value designating the

version number of the Common HBA API.

492 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

“HBA_LoadLibrary Subroutine” and “HBA_FreeLibrary Subroutine” on page 477.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define

devices.

HBA_LoadLibrary Subroutine

Purpose

Loads a vendor specific library from the Common HBA API.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

HBA_STATUS HBA_LoadLibrary ()

Description

The HBA_LoadLibrary subroutine loads a vendor specific library from the Common HBA API. This library

must be called first before calling any other routine from the Common HBA API.

Return Values

The HBA_LoadLibrary subroutine returns a value of 0, or HBA_STATUS_OK.

Related Information

The “HBA_FreeLibrary Subroutine” on page 477.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define

devices.

HBA_OpenAdapter Subroutine

Purpose

Opens the specified adapter for reading.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

HBA_HANDLE HBA_OpenAdapter (adaptername)

char *adaptername;

Description

The HBA_OpenAdapter subroutine opens the adapter for reading for the purpose of getting it ready for

additional calls from other subroutines in the Common HBA API.

Base Operating System (BOS) Runtime Services (A-P) 493

The HBA_OpenAdapter subroutine allows an application to open a specified HBA device, giving the

application access to the device through the HBA_HANDLE return value. The library ensures that all

access to this HBA_HANDLE between HBA_OpenAdapter and HBA_CloseAdapter calls is to the same

device.

Parameters

 adaptername Specifies a string that contains the description of the adapter as returned by the

HBA_GetAdapterName subroutine.

Return Values

If successful, the HBA_OpenAdapter subroutine returns an HBA_HANDLE with a value greater than 0. If

unsuccessful, the subroutine returns a 0.

Related Information

“HBA_CloseAdapter Subroutine” on page 477, and “HBA_GetAdapterName Subroutine” on page 480.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define

devices.

HBA_OpenAdapterByWWN Subroutine

Purpose

Attempts to open a handle to the HBA that contains a Node_Name or N_Port_Name matching the wwn

argument.

Syntax

HBA_STATUS HBA_OpenAdapterByWWN(

 HBA_HANDLE *pHandle,

 HBA_WWN wwn

);

Description

The HBA_OpenAdapterByWWN function attempts to open a handle to the HBA that contains a

Node_Name or N_Port_Name matching the wwn argument. The specified Name_Identifier matches the

Node_Name or N_Port_Name of the HBA. Discovered end ports (remote end ports) are not checked for a

match.

Parameters

 pHandle Pointer to a handle. The value at entry is irrelevant.

wwn Name_Identifier to match the Node_Name or N_Port_Name of the HBA to open.

Return Values

The value of the HBA_OpenAdapterByWWN function is a valid status return value that indicates the

reason for completion of the requested function. HBA_STATUS_OK is returned to indicate that the handle

contains a valid HBA handle.

494 Technical Reference, Volume 1: Base Operating System and Extensions

The return values for the following parameter is as follows:

 pHandle Remains unchanged. If the open succeeds, the value to which it points is a handle to the

requested HBA. On failure, the value is undefined.

Error Codes

 HBA_STATUS_ERROR_ILLEGAL_WWN There is no HBA with a Node_Name or N_Port_Name

that matches wwn.

HBA_STATUS_ERROR_AMBIGUOUS_WWN Multiple HBAs have a matching Name_Identifier. This

can occur if the Node_Names of multiple HBAs are

identical.

HBA_STATUS_ERROR Returned to indicate any other problem with opening the

HBA.

Related Information

“HBA_GetEventBuffer Subroutine” on page 482, “HBA_GetFC4Statistics Subroutine” on page 483,

“HBA_GetFCPStatistics Subroutine” on page 485, “HBA_GetFcpTargetMappingV2 Subroutine” on page

486, “HBA_GetPersistentBindingV2 Subroutine” on page 489, “HBA_ScsiInquiryV2 Subroutine” on page

496, “HBA_ScsiReadCapacityV2 Subroutine” on page 498, “HBA_ScsiReportLunsV2 Subroutine” on page

499, “HBA_SendCTPassThruV2 Subroutine” on page 502, “HBA_SendRLS Subroutine” on page 505,

“HBA_SendRNIDV2 Subroutine” on page 508, “HBA_SendRPL Subroutine” on page 509, “HBA_SendRPS

Subroutine” on page 511

HBA_RefreshInformation Subroutine

Purpose

Refreshes stale information from the Host Bus Adapter.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

void HBA_RefreshInformation (handle)

HBA_HANDLE handle;

Description

The HBA_RefreshInformation subroutine refreshes stale information from the Host Bus Adapter. This

would reflect changes to information obtained from calls to the HBA_GetAdapterPortAttributes, or

HBA_GetDiscoveredPortAttributes subroutine. Once the application calls the HBA_RefreshInformation

subroutine, it can proceed to the attributes’s call to get the new data.

Parameters

 handle Specifies the open file descriptor obtained from a successful call to the open subroutine for which the

refresh operation is to be performed.

Base Operating System (BOS) Runtime Services (A-P) 495

Related Information

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define

devices.

HBA_ScsiInquiryV2 Subroutine

Purpose

Sends a SCSI INQUIRY command to a remote end port.

Syntax

HBA_STATUS HBA_ScsiInquiryV2 (

 HBA_HANDLE handle,

 HBA_WWN hbaPortWWN,

 HBA_WWN discoveredPortWWN,

 HBA_UINT64 fcLUN,

 HBA_UINT8 CDB_Byte1,

 HBA_UINT8 CDB_Byte2,

 void *pRspBuffer,

 HBA_UINT32 *pRspBufferSize,

 HBA_UINT8 *pScsiStatus,

 void *pSenseBuffer,

 HBA_UINT32 *pSenseBufferSize

);

Description

The HBA_ScsiInquiryV2 function sends a SCSI INQUIRY command to a remote end port.

A SCSI command is never sent to an end port that does not have SCSI target functionality. If sending a

SCSI command causes a SCSI overlapped command condition with a correctly operating target, the

command does not get sent. Proper use of tagged commands is an acceptable means of avoiding a SCSI

overlapped command condition with targets that support tagged commands.

Parameters

 handle Open HBA through which the SCSI INQUIRY command can be issued.

hbaPortWWN The Port Name for a local HBA end port through which the SCSI INQUIRY command can

be issued.

discoveredPortWWN The Port Name for an end port to which the SCSI INQUIRY command can be sent.

fcLUN The SCSI LUN to which the SCSI INQUIRY command can be sent.

CDB_Byte1 The second byte of the CDB for the SCSI INQUIRY command. This contains control flag

bits. At the time this standard was written, the effects of the value of CDB_Byte1 on a

SCSI INQUIRY command were as follows:

v 0

– Requests the standard SCSI INQUIRY data.

v 1

– Requests the vital product data (EVPD) specified by CDB_Byte2.

v 2

– Requests command support data (CmdDt) for the command specified in

CDB_Byte2.

v Other values

– Can cause SCSI Check Condition.

496 Technical Reference, Volume 1: Base Operating System and Extensions

CDB_Byte2 The third byte of the CDB for the SCSI INQUIRY command. If CDB_Byte1 is 1,

CDB_Byte2 is the Vital Product Data page code to request. If CDB_Byte1 is 2,

CDB_Byte2 is the Operation Code of the command support data requested. For other

values of CDB_Byte1, the value of CDB_Byte2 is unspecified, and values other than 0

can cause a SCSI Check Condition.

pRspBuffer A pointer to a buffer to receive the SCSI INQUIRY command response.

pRspBufferSize A pointer to the size in bytes of the buffer to receive the SCSI INQUIRY command

response.

pScsiStatus A pointer to a buffer to receive SCSI status.

pSenseBuffer A pointer to a buffer to receive SCSI sense data.

pSenseBufferSize A pointer to the size in bytes of the buffer to receive SCSI sense data.

Return Values

The value of the HBA_ScsiInquiryV2 function is a valid status return value that indicates the reason for

completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete payload

of a reply to the SCSI INQUIRY command has been returned. A valid status return value that most closely

describes the result of the function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

 pRspBuffer Remains unchanged. If the function value is HBA_STATUS_OK, the buffer to which it points

contains the response to the SCSI INQUIRY command.

pRspBufferSize Remains unchanged. The value of the integer to which it points is the size in bytes of the

response returned by the command. This cannot exceed the size passed as an argument at

this pointer.

pScsiStatus Remains unchanged. The value of the byte to which it points is the SCSI status. If the

function value is HBA_STATUS_OK or HBA_STATUS_SCSI_CHECK_CONDITION, the

value of the SCSI status can be interpreted based on the SCSI spec. A SCSI status of

HBA_STATUS_OK indicates that a SCSI response is in the response buffer. A SCSI status

of HBA_STATUS_SCSI_CHECK_CONDITION indicates that no value is stored in the

response, and the sense buffer contains failure information if available.

pSenseBuffer Remains unchanged. If the function value is HBA_STATUS_SCSI_CHECK_CONDITION, the

buffer to which it points contains the sense data for the command.

pSenseBufferSize Remains unchanged. The value of the integer to which it points is the size in bytes of the

sense information returned by the command. This cannot exceed the size passed as an

argument at this pointer.

Error Codes

 HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end

port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_NOT_A_TARGET The identified remote end port does not have SCSI

Target functionality.

HBA_STATUS_ERROR_TARGET_BUSY Unable to send the requested command without causing

a SCSI overlapped command condition.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information

“HBA_GetEventBuffer Subroutine” on page 482, “HBA_GetFC4Statistics Subroutine” on page 483,

“HBA_GetFCPStatistics Subroutine” on page 485, “HBA_GetFcpTargetMappingV2 Subroutine” on page

486, “HBA_GetPersistentBindingV2 Subroutine” on page 489, “HBA_OpenAdapterByWWN Subroutine” on

page 494, “HBA_ScsiReadCapacityV2 Subroutine” on page 498, “HBA_ScsiReportLunsV2 Subroutine” on

page 499

Base Operating System (BOS) Runtime Services (A-P) 497

page 499, “HBA_SendCTPassThruV2 Subroutine” on page 502, “HBA_SendRLS Subroutine” on page

505, “HBA_SendRNIDV2 Subroutine” on page 508, “HBA_SendRPL Subroutine” on page 509,

“HBA_SendRPS Subroutine” on page 511

HBA_ScsiReadCapacityV2 Subroutine

Purpose

Sends a SCSI READ CAPACITY command to a remote end port.

Syntax

HBA_STATUS HBA_ScsiReadCapacityV2(

 HBA_HANDLE handle,

 HBA_WWN hbaPortWWN,

 HBA_WWN discoveredPortWWN,

 HBA_UINT64 fcLUN,

 void *pRspBuffer,

 HBA_UINT32 *pRspBufferSize,

 HBA_UINT8 *pScsiStatus,

 void *pSenseBuffer,

 HBA_UINT32 *pSenseBufferSize

);

Description

The HBA_ScsiReadCapacityV2 function sends a SCSI READ CAPACITY command to a remote end port.

A SCSI command is never sent to an end port that does not have SCSI target functionality. If sending a

SCSI command causes a SCSI overlapped command condition with a correctly operating target, the

command will not be sent. Proper use of tagged commands is an acceptable means of avoiding a SCSI

overlapped command condition with targets that support tagged commands.

Parameters

 handle A handle to an open HBA through which the SCSI READ CAPACITY command is issued.

hbaPortWWN The Port Name for a local HBA end port through which the SCSI READ CAPACITY command

is issued.

discoveredPortWWN The Port Name for an end port to which the SCSI READ CAPACITY command is sent.

fcLUN The SCSI LUN to which the SCSI READ CAPACITY command is sent.

pRspBuffer Pointer to a buffer to receive the SCSI READ CAPACITY command response.

pRspBufferSize Pointer to the size in bytes of the buffer to receive the SCSI READ CAPACITY command

response.

pScsiStatus Pointer to a buffer to receive SCSI status.

pSenseBuffer Pointer to a buffer to receive SCSI sense data.

pSenseBufferSize Pointer to the size in bytes of the buffer to receive SCSI sense data.

Return Values

The value of the HBA_ScsiReadCapacityV2 function is a valid status return value that indicates the

reason for completion of the requested function. HBA_STATUS_OK is returned to indicate that the

complete payload of a reply to the SCSI READ CAPACITY command has been returned. A valid status

return value that most closely describes the result of the function should be returned to indicate a reason

with no required value.

498 Technical Reference, Volume 1: Base Operating System and Extensions

The return values for the following parameters are as follows:

 pRspBuffer Remains unchanged. If the function value is HBA_STATUS_OK, the buffer to which it

points contains the response to the SCSI READ CAPACITY command.

pRspBufferSize Remains unchanged. The value of the integer to which it points is the size in bytes of the

response returned by the command. This cannot exceed the size passed as an argument

at this pointer.

pScsiStatus Remains unchanged. The value of the byte to which it points is the SCSI status. If the

function value is HBA_STATUS_OK or HBA_STATUS_SCSI_CHECK_CONDITION, the

value of the SCSI status can be interpreted based on the SCSI spec. A SCSI status of

HBA_STATUS_OK indicates that a SCSI response is in the response buffer. A SCSI

status of HBA_STATUS_SCSI_CHECK_CONDITION indicates that no value is stored in

the response, and the sense buffer contains failure information if available.

pSenseBuffer Remains unchanged. If the function value is HBA_STATUS_SCSI_CHECK_CONDITION,

the buffer to which it points contains the sense data for the command.

pSenseBufferSize Remains unchanged. The value of the integer to which it points is the size in bytes of the

sense information returned by the command. This cannot exceed the size passed as an

argument at this pointer.

Error Codes

 HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end

port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_NOT_A_TARGET The identified remote end port does not have SCSI

Target functionality.

HBA_STATUS_ERROR_TARGET_BUSY Unable to send the requested command without causing

a SCSI overlapped command condition.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information

“HBA_GetEventBuffer Subroutine” on page 482, “HBA_GetFC4Statistics Subroutine” on page 483,

“HBA_GetFCPStatistics Subroutine” on page 485, “HBA_GetFcpTargetMappingV2 Subroutine” on page

486, “HBA_GetPersistentBindingV2 Subroutine” on page 489, “HBA_OpenAdapterByWWN Subroutine” on

page 494, “HBA_ScsiInquiryV2 Subroutine” on page 496, “HBA_ScsiReportLunsV2 Subroutine,”

“HBA_SendCTPassThruV2 Subroutine” on page 502, “HBA_SendRLS Subroutine” on page 505,

“HBA_SendRNIDV2 Subroutine” on page 508, “HBA_SendRPL Subroutine” on page 509, “HBA_SendRPS

Subroutine” on page 511

HBA_ScsiReportLunsV2 Subroutine

Purpose

Sends a SCSI REPORT LUNS command to Logical Unit Number 0 of a remote end port.

Syntax

HBA_STATUS HBA_ScsiReportLUNsV2(

 HBA_HANDLE handle,

 HBA_WWN hbaPortWWN,

 HBA_WWN discoveredPortWWN,

 void *pRspBuffer,

 HBA_UINT32 *pRspBufferSize,

 HBA_UINT8 *pScsiStatus,

 void *pSenseBuffer,

 HBA_UINT32 *pSenseBufferSize

);

Base Operating System (BOS) Runtime Services (A-P) 499

Description

The HBA_ScsiReportLunsV2 function shall send a SCSI REPORT LUNS command to Logical Unit

Number 0 of a remote end port.

A SCSI command is never sent to an end port that does not have SCSI target functionality. If sending a

SCSI command causes a SCSI overlapped command condition with a correctly operating target, the

command will not be sent. Proper use of tagged commands is an acceptable means of avoiding a SCSI

overlapped command condition with targets that support tagged commands.

Parameters

 handle A handle to an open HBA through which the SCSI REPORT LUNS command is issued.

hbaPortWWN The Port Name for a local HBA end port through which the SCSI REPORT LUNS command is

issued.

discoveredPortWWN The Port Name for an end port to which the SCSI REPORT LUNS command is sent.

pRspBuffer Pointer to a buffer to receive the SCSI REPORT LUNS command response.

pRspBufferSize Pointer to the size in bytes of the buffer to receive the SCSI REPORT LUNS command

response.

pScsiStatus Pointer to a buffer to receive SCSI status.

pSenseBuffer Pointer to a buffer to receive SCSI sense data.

pSenseBufferSize Pointer to the size in bytes of the buffer to receive SCSI sense data.

Return Values

The value of the HBA_ScsiReportLunsV2 function is a valid status return value that indicates the reason

for completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete

payload of a reply to the SCSI REPORT LUNS command has been returned. A valid status return value

that most closely describes the result of the function should be returned to indicate a reason with no

required value.

The return values for the following parameters are as follows:

 pRspBuffer Remains unchanged. If the function value is HBA_STATUS_OK, the buffer to which it

points contains the response to the SCSI REPORT LUNS command.

pRspBufferSize Remains unchanged. The value of the integer to which it points is the size in bytes of the

response returned by the command. This cannot exceed the size passed as an argument

at this pointer.

pScsiStatus Remains unchanged. The value of the byte to which it points is the SCSI status. If the

function value is HBA_STATUS_OK or HBA_STATUS_SCSI_CHECK_CONDITION, the

value of the SCSI status can be interpreted based on the SCSI spec. A SCSI status of

HBA_STATUS_OK indicates that a SCSI response is in the response buffer. A SCSI

status of HBA_STATUS_SCSI_CHECK_CONDITION indicates that no value is stored in

the response, and the sense buffer contains failure information if available.

pSenseBuffer Remains unchanged. If the function value is HBA_STATUS_SCSI_CHECK_CONDITION,

the buffer to which it points contains the sense data for the command.

pSenseBufferSize Remains unchanged. The value of the integer to which it points is the size in bytes of the

sense information returned by the command. This cannot exceed the size passed as an

argument at this pointer.

Error Codes

 HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end

port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_NOT_A_TARGET The identified remote end port does not have SCSI

Target functionality.

500 Technical Reference, Volume 1: Base Operating System and Extensions

HBA_STATUS_ERROR_TARGET_BUSY Unable to send the requested command without causing

a SCSI overlapped command condition.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information

“HBA_GetEventBuffer Subroutine” on page 482, “HBA_GetFC4Statistics Subroutine” on page 483,

“HBA_GetFCPStatistics Subroutine” on page 485, “HBA_GetFcpTargetMappingV2 Subroutine” on page

486, “HBA_GetPersistentBindingV2 Subroutine” on page 489, “HBA_OpenAdapterByWWN Subroutine” on

page 494, “HBA_ScsiInquiryV2 Subroutine” on page 496, “HBA_ScsiReadCapacityV2 Subroutine” on page

498, “HBA_SendCTPassThruV2 Subroutine” on page 502, “HBA_SendRLS Subroutine” on page 505,

“HBA_SendRNIDV2 Subroutine” on page 508, “HBA_SendRPL Subroutine” on page 509, “HBA_SendRPS

Subroutine” on page 511

HBA_SendCTPassThru Subroutine

Purpose

Sends a CT pass through frame.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

HBA_STATUS HBA_SendCTPassThru (handle, pReqBuffer, ReqBufferSize, pRspBuffer, RspBufferSize)

HBA_HANDLE handle;

void *pReqBuffer;

HBA_UINT32 ReqBufferSize;

void *pRspBuffer;

HBA_UINT32 RspBufferSize;

Description

The HBA_SendCTPassThru subroutine sends a CT pass through frame to a fabric connected to the

specified handle. The CT frame is routed in the fabric according to the GS_TYPE field in the CT frame.

Parameters

 handle HBA_HANDLE to an open adapter.

pReqBuffer Pointer to a buffer that contains the CT request.

ReqBufferSize Size of the request buffer.

pRspBuffer Pointer to a buffer that receives the response of the command.

RspBufferSize Size of the response buffer.

Return Values

If successful, HBA_STATUS_OK is returned, and the pRspBuffer parameter points to the CT response.

Error Codes

If the adapter specified by the handle parameter is connected to an arbitrated loop, the

HBA_SendCTPassThru subroutine returns HBA_STATUS_ERROR_NOT_SUPPORTED. This subroutine

is only valid when connected to a fabric.

Base Operating System (BOS) Runtime Services (A-P) 501

Related Information

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define

devices.

HBA_SendCTPassThruV2 Subroutine

Purpose

Sends a CT request payload.

Syntax

HBA_STATUS HBA_SendCTPassThruV2(

 HBA_HANDLE handle,

 HBA_WWN hbaPortWWN,

 void *pReqBuffer,

 HBA_UINT32 *ReqBufferSize,

 void *pRspBuffer,

 HBA_UINT32 *pRspBufferSize,

);

Description

The HBA_SendCTPassThruV2 function sends a CT request payload. An HBA should decode this CT_IU

request by, routing the CT frame in a fabric according to the GS_TYPE field within the CT frame.

Parameters

 handle A handle to an open HBA through which the CT request is issued.

hbaPortWWN The Port Name for a local HBA Nx_Port through which the CT request is issued.

pReqBuffer Pointer to a buffer containing the full CT payload, including the CT header, to be sent with byte

ordering.

ReqBufferSize The size of the full CT payload, including the CT header, in bytes.

pRSPBuffer Pointer to a buffer for the CT response.

pRSPBufferSize Pointer to the size in bytes of the buffer for the CT response payload.

Return Values

The value of the SendCTPassThruV2 function is a valid status return value that indicates the reason for

completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete reply to

the CT Passthru command has been returned. A valid status return value that most closely describes the

result of the function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

 pRspBuffer Remains unchanged. The buffer to which it points contains the CT response payload,

including the CT header received in response to the frame sent, with byte ordering. If the

size of the actual response exceeds the size of the response buffer, trailing data is

truncated from the response so that the returned data equals the size of the buffer.

pRspBufferSize Remains unchanged. The value of the integer to which it points is set to the size (in

bytes) of the actual response data.

Error Codes

 HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an

Nx_Port with Port Name hbaPortWWN.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

502 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

“HBA_GetEventBuffer Subroutine” on page 482, “HBA_GetFC4Statistics Subroutine” on page 483,

“HBA_GetFCPStatistics Subroutine” on page 485, “HBA_GetFcpTargetMappingV2 Subroutine” on page

486, “HBA_GetPersistentBindingV2 Subroutine” on page 489, “HBA_OpenAdapterByWWN Subroutine” on

page 494, “HBA_ScsiInquiryV2 Subroutine” on page 496, “HBA_ScsiReadCapacityV2 Subroutine” on page

498, “HBA_ScsiReportLunsV2 Subroutine” on page 499, “HBA_SendRLS Subroutine” on page 505,

“HBA_SendRNIDV2 Subroutine” on page 508, “HBA_SendRPL Subroutine” on page 509, “HBA_SendRPS

Subroutine” on page 511

HBA_SendReadCapacity Subroutine

Purpose

Sends a SCSI READ CAPACITY command to a Fibre Channel port.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

HBA_STATUS HBA_SendReadCapacity (handle, portWWN, fcLUN, pRspBuffer, RspBufferSize, pSenseBuffer,

SenseBufferSize)

HBA_HANDLE handle;

HBA_WWN portWWN;

HBA_UINT64 fcLUN;

void *pRspBuffer;

HBA_UINT32 RspBufferSize;

void *pSenseBuffer;

HBA_UINT32 SenseBufferSize;

Description

The HBA_SendReadCapacity subroutine sends a SCSI READ CAPACITY command to the Fibre

Channel port connected to the handle parameter and specified by the portWWN and fcLUN parameters.

Parameters

 handle HBA_HANDLE to an open adapter.

portWWN Port world-wide name of an adapter.

fcLUN Fibre Channel LUN to send the SCSI READ CAPACITY command to.

pRspBuffer Pointer to a buffer that receives the response of the command.

RspBufferSize Size of the response buffer.

pSenseBuffer Pointer to a buffer that receives sense information.

SenseBufferSize Size of the sense buffer.

Return Values

If successful, HBA_STATUS_OK is returned and the pRspBuffer parameter points to the response to the

READ CAPACITY command. If an error occurs, HBA_STATUS_ERROR is returned.

Base Operating System (BOS) Runtime Services (A-P) 503

Error Codes

If the portWWN value is not a valid world-wide name connected to the specified handle,

HBA_STATUS_ERROR_ILLEGAL_WWN is returned. On any other types of failures,

HBA_STATUS_ERROR is returned.

Related Information

The “HBA_SendScsiInquiry Subroutine” on page 512.

Special Files in AIX 5L Version 5.3 Files Reference describes specific qualities of the files that define

devices.

HBA_SendReportLUNs Subroutine

Purpose

Sends a SCSI REPORT LUNs command to a remote port of the end device.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

HBA_STATUS HBA_SendReportLUNs (handle, PortWWN, pRspBuffer, RspBufferSize, pSenseBuffer, SenseBufferSize)

HBA_HANDLE handle;

HBA_WWN PortWWN;

void *pRspBuffer;

HBA_UINT32 RspBufferSize;

void *pSenseBuffer;

HBA_UINT32 SenseBufferSize;

Description

The HBA_SendReportLUNs subroutine sends a SCSI REPORT LUNs command through a call to ioctl

with the SCIOLCMD operation as its argument. The arg parameter for the SCIOLCMD operation is the

address of a scsi_iocmd structure. This structure is defined in the /usr/include/sys/scsi_buf.h file. The

scsi_iocmd parameter block allows the caller to select the SCSI and LUN IDs to be queried. The caller

also specifies the SCSI command descriptor block area, command length (SCSI command block length),

the time-out value for the command, and a flags field.

If successful, the report LUNs data is returned in pRspBuffer. The returned report LUNs data must be

examined to see if the requested LUN exists.

Parameters

 handle Specifies the open file descriptor obtained from a successful call to the open subroutine.

PortWWN Specifies the world wide name or port name of the target device.

pRspBuffer Points to a buffer containing the requested instruction for a send/read capacity request to an

open adapter.

RspBufferSize Specifies the size of the buffer to the pRspBuffer parameter.

pSenseBuffer Points to a buffer containing the data returned from a send/read capacity request to an open

adapter.

SenseBufferSize Specifies the size of the buffer to the pSenseBuffer parameter.

504 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, the HBA_SendReportLUNs subroutine returns a buffer in bytes containing

the SCSI report of LUNs, a buffer containing the SCSI sense data, and a value of HBA_STATUS_OK, or a

value of 0.

If unsuccessful, an empty buffer for the SCSI report of LUNs, a response buffer containing the failure, and

a value of HBA_STATUS_ERROR, or a value of 1 is returned.

Error Codes

The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

 HBA_STATUS_OK A value of 0 on successful completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file handle.

HBA_STATUS_ERROR_ILLEGAL_WWN A value of 5 if the world wide name was not recognized.

HBA_STATUS_SCSI_CHECK_CONDITION A value of 9 if a SCSI Check Condition was reported.

Related Information

“HBA_SendScsiInquiry Subroutine” on page 512, “HBA_SendReadCapacity Subroutine” on page 503,

“HBA_SendCTPassThru Subroutine” on page 501, “HBA_SendRNID Subroutine” on page 506,

“HBA_SetRNIDMgmtInfo Subroutine” on page 513, and “HBA_GetRNIDMgmtInfo Subroutine” on page

491.

SCSI Adapter Device Driver in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 2.

Special Files in AIX 5L Version 5.3 Files Reference.

SCSI Subsystem Overview, A Typical Initiator-Mode SCSI Driver Transaction Sequence, Required SCSI

Adapter Device Driver ioctl Commands, Understanding the Execution of Initiator I/O Requests, SCSI Error

Recovery, and Understanding the sc_buf Structure in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

HBA_SendRLS Subroutine

Purpose

Issues a Read Link Error Status Block (RLS) Extended Link Service through the specified HBA end port.

Syntax

HBA_STATUS HBA_SendRLS (

 HBA_HANDLE handle,

 HBA_WWN hbaPortWWN,

 HBA_WWN destWWN,

 void *pRspBuffer,

 HBA_UINT32 *pRspBufferSize,

);

Description

The HBA_SendRLS function issues a Read Link Error Status Block (RLS) Extended Link Service through

the specified HBA end port to request a specified remote FC_Port to return the Link Error Status Block

associated with the destination Port Name.

Base Operating System (BOS) Runtime Services (A-P) 505

Parameters

 handle A handle to an open HBA through which the ELS is sent.

hbaPortWWN Port Name of the local HBA end port through which the ELS is sent.

destWWN Port Name of the remote FC_Port to which the ELS is sent.

pRspBuffer Pointer to a buffer to receive the ELS response.

pRSPBufferSize Pointer to the size in bytes of pRspBuffer. A size of 28 is sufficient for the largest response.

Return Values

The value of the HBA_SendRLS function is a valid status return value that indicates the reason for

completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete LS_ACC

to the RLS ELS has been returned. A valid status return value that most closely describes the result of the

function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

 pRspBuffer Remains unchanged. The buffer to which it points contains the payload data from the

RLS Reply. Note that if the ELS was rejected, this is the LS_RJT payload. If the size of

the reply payload exceeds the size specified in the pRspBufferSize parameter at entry to

the function, the returned data is truncated to the size specified in the argument.

pRspBufferSize Remains unchanged. The value of the integer to which it points contains the size in bytes

of the complete ELS reply payload. This can exceed the size specified as an argument.

This indicates that the data in pRspBuffer has been truncated.

Error Codes

 HBA_STATUS_ERROR_ELS_REJECT The RNID ELS was rejected by the destination FC_Port.

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end

port with Port Name hbaPortWWN.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information

“HBA_GetEventBuffer Subroutine” on page 482, “HBA_GetFC4Statistics Subroutine” on page 483,

“HBA_GetFCPStatistics Subroutine” on page 485, “HBA_GetFcpTargetMappingV2 Subroutine” on page

486, “HBA_GetPersistentBindingV2 Subroutine” on page 489, “HBA_OpenAdapterByWWN Subroutine” on

page 494, “HBA_ScsiInquiryV2 Subroutine” on page 496, “HBA_ScsiReadCapacityV2 Subroutine” on page

498, “HBA_ScsiReportLunsV2 Subroutine” on page 499, “HBA_SendCTPassThruV2 Subroutine” on page

502, “HBA_SendRNIDV2 Subroutine” on page 508, “HBA_SendRPL Subroutine” on page 509,

“HBA_SendRPS Subroutine” on page 511

HBA_SendRNID Subroutine

Purpose

Sends an RNID command through a call to SCIOLPAYLD to a remote port of the end device.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

506 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <sys/hbaapi.h>

HBA_STATUS HBA_SendRNID (handle, wwn, wwntype, pRspBuffer, RspBufferSize)

HBA_HANDLE handle;

HBA_WWN wwn;

HBA_WWNTYPE wwntype;

void *pRspBuffer;

HBA_UINT32 RspBufferSize;

Description

The HBA_SendRNID subroutine sends a SCSI RNID command with the Node Identification Data Format

set to indicate the default Topology Discovery format. This is done through a call to ioctl with the

SCIOLPAYLD operation as its argument. The arg parameter for the SCIOLPAYLD operation is the

address of an scsi_trans_payld structure. This structure is defined in the /usr/include/sys/scsi_buf.h

file. The scsi_trans_payld parameter block allows the caller to select the SCSI and LUN IDs to be queried.

In addition, the caller must specify the fcph_rnid_payld_t structure to hold the command and the topology

format for SCIOLPAYLD. The structure for the fcph_rnid_payld_t structure is defined in the

/usr/include/sys/fcph.h file.

If successful, the RNID data is returned in pRspBuffer. The returned RNID data must be examined to see

if the requested information exists.

Parameters

 handle Specifies the open file descriptor obtained from a successful call to the open subroutine.

wwn Specifies the world wide name or port name of the target device.

wwntype Specifies the type of the world wide name or port name of the target device.

pRspBuffer Points to a buffer containing the requested instruction for a send/read capacity request to an

open adapter.

RspBufferSize Specifies the size of the buffer to the pRspBuffer parameter.

Return Values

Upon successful completion, the HBA_SendRNID subroutine returns a buffer in bytes containing the SCSI

RNID data and a value of HBA_STATUS_OK, or a value of 0. If unsuccessful, an empty buffer for the

SCSI RNID and a value of HBA_STATUS_ERROR, or a value of 1 is returned.

Error Codes

The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

 HBA_STATUS_OK A value of 0 on successful completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

HBA_STATUS_ERROR_NOT_SUPPORTED A value of 2 if the function is not supported.

HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file handle.

HBA_STATUS_ERROR_ILLEGAL_WWN A value of 5 if the world wide name was not recognized.

Related Information

“HBA_SendScsiInquiry Subroutine” on page 512, “HBA_SendReadCapacity Subroutine” on page 503,

“HBA_SendCTPassThru Subroutine” on page 501, “HBA_SendReportLUNs Subroutine” on page 504,

“HBA_SetRNIDMgmtInfo Subroutine” on page 513, and “HBA_GetRNIDMgmtInfo Subroutine” on page

491.

SCSI Adapter Device Driver in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 2.

Base Operating System (BOS) Runtime Services (A-P) 507

Special Files in AIX 5L Version 5.3 Files Reference.

SCSI Subsystem Overview, A Typical Initiator-Mode SCSI Driver Transaction Sequence, Required SCSI

Adapter Device Driver ioctl Commands, Understanding the Execution of Initiator I/O Requests, SCSI Error

Recovery, and Understanding the sc_buf Structure in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

HBA_SendRNIDV2 Subroutine

Purpose

Issues an RNID ELS to another FC_Port requesting a specified Node Identification Data Format.

Syntax

HBA_STATUS HBA_SendRNIDV2(

 HBA_HANDLE handle,

 HBA_WWN hbaPortWWN,

 HBA_WWN destWWN,

 HBA_UINT32 destFCID,

 HBA_UINT32 NodeIdDataFormat,

 void *pRspBuffer,

 HBA_UINT32 *pRspBufferSize,

);

Description

The HBA_SendRNIDV2 function issues an RNID ELS to another FC_Port requesting a specified Node

Identification Data Format.

The destFCID parameter can be set to allow the RNID ELS to be sent to an FC_Port that might not be

registered with the name server. If destFCID is set to x’00 00 00’, the parameter is ignored. If destFCID is

not 0, the HBA API library verifies that the destWWN/destFCID pair match in order to limit visibility that can

violate scoping mechanisms (such as soft zoning):

v If the destWWN/destFCID pair matches an entry in the discovered ports table, the RNID is sent.

v If there is no entry in the discovered ports table for the destWWN or destFCID, the RNID is sent.

v If there is an entry in the discovered ports table for the destWWN, but the destFCID does not match,

then the request is rejected.

v On completion of the HBA_SendRNIDV2, if the Common Identification Data Length is nonzero in the

RNID response, the API library compares the N_Port_Name in the Common Identification Data of the

RNID response with destWWN and fails the operation without returning the response data if they do not

match. If the Common Identification Data Length is 0 in the RNID response, this test is omitted.

Parameters

 handle A handle to an open HBA through which the ELS is sent.

hbaPortWWN Port Name of the local HBA end port through which the ELS is sent.

destWWN Port Name of the remote FC_Port to which the ELS is sent.

destFCID Address identifier of the destination to which the ELS is sent if destFCID is nonzero. destFCID

is ignored if destFCID is 0.

NodeIdDataFormat Valid value for Node Identification Data Format.

pRSPBuffer Pointer to a buffer to receive the ELS response.

pRSPBufferSize Pointer to the size in bytes of pRspBuffer.

508 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

The value of the HBA_SendRNIDV2 function is a valid status return value that indicates the reason for

completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete LS_ACC

to the RNID ELS has been returned. A valid status return value that most closely describes the result of

the function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

 pRspBuffer Remains unchanged. The buffer to which it points contains the payload data from the

RNID Reply. Note that if the ELS was rejected, this is the LS_RJT payload. If the size of

the reply payload exceeds the size specified in the pRspBufferSize parameter at entry to

the function, the returned data is truncated to the size specified in the argument.

pRspBufferSize Remains unchanged. The value of the integer to which it points contains the size in bytes

of the complete ELS reply payload. This can exceed the size specified as an argument.

This indicates that the data in pRspBuffer has been truncated.

Error Codes

 HBA_STATUS_ERROR_ELS_REJECT The RNID ELS was rejected by the destination end port.

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end

port with Port Name hbaPortWWN.

HBA_STATUS_ERROR_ILLEGAL_FCID The destWWN/destFCID pair conflicts with a discovered

Port Name/address identifier pair known by the HBA

referenced by handle.

HBA_STATUS_ERROR_ILLEGAL_FCID The N_Port_Name in the RNID response does not

match the destWWN.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information

“HBA_GetEventBuffer Subroutine” on page 482, “HBA_GetFC4Statistics Subroutine” on page 483,

“HBA_GetFCPStatistics Subroutine” on page 485, “HBA_GetFcpTargetMappingV2 Subroutine” on page

486, “HBA_GetPersistentBindingV2 Subroutine” on page 489, “HBA_OpenAdapterByWWN Subroutine” on

page 494, “HBA_ScsiInquiryV2 Subroutine” on page 496, “HBA_ScsiReadCapacityV2 Subroutine” on page

498, “HBA_ScsiReportLunsV2 Subroutine” on page 499, “HBA_SendCTPassThruV2 Subroutine” on page

502, “HBA_SendRLS Subroutine” on page 505, “HBA_SendRPL Subroutine,” “HBA_SendRPS Subroutine”

on page 511

HBA_SendRPL Subroutine

Purpose

Issues a Read Port List (RPL) Extended Link Service through the specified HBA to a specified end port or

domain controller.

Syntax

HBA_STATUS HBA_SendRPL (

 HBA_HANDLE handle,

 HBA_WWN hbaPortWWN,

 HBA_WWN agent_wwn,

 HBA_UINT32 agent_domain,

 HBA_UINT32 portIndex,

 void *pRspBuffer,

 HBA_UINT32 *pRspBufferSize,

);

Base Operating System (BOS) Runtime Services (A-P) 509

Description

The HBA_SendRPL function issues a Read Port List (RPL) Extended Link Service through the specified

HBA to a specified end port or domain controller.

Parameters

 handle A handle to an open HBA through which the ELS is sent.

hbaPortWWN Port Name of the local HBA end port through which the ELS is sent.

agent_wwn Port Name of an FC_Port that is requested to provide its list of FC_Ports if agent_wwn is

nonzero. If agent_wwn is 0, it is ignored.

agent_domain Domain number and the domain controller for that domain shall be the entity that shall be

requested to provide its list of FC_Ports if agent_wwn is 0. If agent_wwn is nonzero,

agent_domain is ignored.

portIndex Index of the first FC_Port requested in the response list.

Note: If the recipient has proper compliance, the index of the first FC_Port in the complete list

maintained by the recipient of the request is 0.

pRSPBuffer Pointer to a buffer to receive the ELS response.

pRSPBufferSize Pointer to the size in bytes of pRspBuffer.

Note: If the responding entity has proper compliance, it truncates the list in the response to

the number of FC_Ports that fit.

Return Values

The value of the HBA_SendRPL function is a valid status return value that indicates the reason for

completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete LS_ACC

to the RPL ELS has been returned. A valid status return value that most closely describes the result of the

function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

 pRspBuffer Remains unchanged. The buffer to which it points contains the payload data from the

RPL Reply. If the ELS was rejected, this is the LS_RJT payload. If the size of the reply

payload exceeds the size specified in the pRspBufferSize parameter at entry to the

function, the returned data is truncated to the size specified in the argument.

pRspBufferSize Remains unchanged. The value of the integer to which it points contains the size in bytes

of the complete ELS reply payload. This can exceed the size specified as an argument.

This indicates that the data in pRspBuffer has been truncated.

Note: Truncation is not necessary if the responding entity is of proper compliance.

Error Codes

 HBA_STATUS_ERROR_ELS_REJECT The RPL ELS was rejected by the destination end port.

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end

port with Port Name hbaPortWWN.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information

“HBA_GetEventBuffer Subroutine” on page 482, “HBA_GetFC4Statistics Subroutine” on page 483,

“HBA_GetFCPStatistics Subroutine” on page 485, “HBA_GetFcpTargetMappingV2 Subroutine” on page

486, “HBA_GetPersistentBindingV2 Subroutine” on page 489, “HBA_OpenAdapterByWWN Subroutine” on

page 494, “HBA_ScsiInquiryV2 Subroutine” on page 496, “HBA_ScsiReadCapacityV2 Subroutine” on page

498, “HBA_ScsiReportLunsV2 Subroutine” on page 499, “HBA_SendCTPassThruV2 Subroutine” on page

502, “HBA_SendRLS Subroutine” on page 505, “HBA_SendRNIDV2 Subroutine” on page 508,

“HBA_SendRPS Subroutine” on page 511

510 Technical Reference, Volume 1: Base Operating System and Extensions

HBA_SendRPS Subroutine

Purpose

Issues a Read Port Status Block (RPS) Extended Link Service through the specified HBA to a specified

FC_Port or domain controller.

Syntax

HBA_STATUS HBA_SendRPS (

 HBA_HANDLE handle,

 HBA_WWN hbaPortWWN,

 HBA_WWN agent_wwn,

 HBA_UINT32 agent_domain,

 HBA_WWN object_wwn,

 HBA_UINT32 object_port_number,

 void *pRspBuffer,

 HBA_UINT32 *pRspBufferSize,

);

Description

The HBA_SendRPS function issues a Read Port Status Block (RPS) Extended Link Service through the

specified HBA to a specified FC_Port or domain controller.

Parameters

 handle A handle to an open HBA through which the ELS is sent.

hbaPortWWN Port Name of the local HBA end port through which the ELS is sent.

agent_wwn Port Name of an FC_Port that is requested to provide Port Status if agent_wwn is nonzero.

agent_wwn is ignored if its value is 0.

agent_domain Domain number for the domain controller that is requested to provide Port status if agent_wwn

is 0. agent_domain is ignored if agent_wwn is nonzero.

object_wwn Port Name of an FC_Port for which Port Status is returned if object_wwn is nonzero.

object_wwn is ignored if its value is 0.

object_port_number Relative port number of the FC_Port for which Port Status is returned if object_wwn is 0. The

relative port number is defined in a vendor-specific manner within the entity to which the

request is sent. object_port_number is ignored if object_wwn is nonzero.

pRspBuffer Pointer to a buffer to receive the ELS response.

pRSPBufferSize Pointer to the size in bytes of pRspBuffer. A size of 56 is sufficient for the largest response.

Return Values

The value of the HBA_SendRPS function is a valid status return value that indicates the reason for

completion of the requested function. HBA_STATUS_OK is returned to indicate that the complete LS_ACC

to the RPS ELS has been returned. A valid status return value that most closely describes the result of the

function should be returned to indicate a reason with no required value.

The return values for the following parameters are as follows:

 pRspBuffer Remains unchanged. The buffer to which it points contains the payload data from the

RPS Reply. If the ELS was rejected, this is the LS_RJT payload. If the size of the reply

payload exceeds the size specified in the pRspBufferSize parameter at entry to the

function, the returned data is truncated to the size specified in the argument.

pRspBufferSize Remains unchanged. The value of the integer to which it points contains the size in bytes

of the complete ELS reply payload. This can exceed the size specified as an argument.

This indicates that the data in pRspBuffer has been truncated.

Base Operating System (BOS) Runtime Services (A-P) 511

Error Codes

 HBA_STATUS_ERROR_ELS_REJECT The RPS ELS was rejected by the destination end port.

HBA_STATUS_ERROR_ILLEGAL_WWN The HBA referenced by handle does not contain an end

port with Port Name hbaPortWWN.

HBA_STATUS_ERROR Returned to indicate any problem with no required value.

Related Information

“HBA_GetEventBuffer Subroutine” on page 482, “HBA_GetFC4Statistics Subroutine” on page 483,

“HBA_GetFCPStatistics Subroutine” on page 485, “HBA_GetFcpTargetMappingV2 Subroutine” on page

486, “HBA_GetPersistentBindingV2 Subroutine” on page 489, “HBA_OpenAdapterByWWN Subroutine” on

page 494, “HBA_ScsiInquiryV2 Subroutine” on page 496, “HBA_ScsiReadCapacityV2 Subroutine” on page

498, “HBA_ScsiReportLunsV2 Subroutine” on page 499, “HBA_SendCTPassThruV2 Subroutine” on page

502, “HBA_SendRLS Subroutine” on page 505, “HBA_SendRNIDV2 Subroutine” on page 508,

“HBA_SendRPL Subroutine” on page 509

HBA_SendScsiInquiry Subroutine

Purpose

Sends a SCSI device inquiry command to a remote port of the end device.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Syntax

#include <sys/hbaapi.h>

HBA_STATUS HBA_SendScsiInquiry (handle, PortWWN, fcLUN, EVPD, PageCode, pRspBuffer, RspBufferSize, pSenseBuffer,

SenseBufferSize)

HBA_HANDLE handle;

HBA_WWN PortWWN;

HBA_UINT64 fcLUN;

HBA_UINT8 EVPD;

HBA_UINT32 PageCode;

void *pRspBuffer;

HBA_UINT32 RspBufferSize;

void *pSenseBuffer;

HBA_UINT32 SenseBufferSize;

Description

The HBA_SendScsiInquiry subroutine sends a SCSI INQUIRY command through a call to ioctl with the

SCIOLINQU operation as its argument. The arg parameter for the SCIOLINQU operation is the address of

an scsi_inquiry structure. This structure is defined in the /usr/include/sys/scsi_buf.h file. The

scsi_inquiry parameter block allows the caller to select the SCSI and LUN IDs to be queried. If successful,

the inquiry data is returned in the pRspBuffer parameter. Successful completion occurs if a device

responds at the requested SCSI ID, but the returned inquiry data must be examined to see if the

requested LUN exists.

Parameters

 handle Specifies the open file descriptor obtained from a successful call to the open subroutine.

PortWWN Specifies the world wide name or port name of the target device.

fcLUN Specifies the fcLUN.

EVPD Specifies the value for the EVPD bit. If the value is 1, the Vital Product Data page code

will be specified by the PageCode parameter.

512 Technical Reference, Volume 1: Base Operating System and Extensions

PageCode Specifies the Vital Product Data that is to be requested if the EVPD parameter is set to

1.

pRspBuffer Points to a buffer containing the requested instruction for a send/read capacity request to

an open adapter. The size of this buffer must not be greater than 255 bytes.

RspBufferSize Specifies the size of the buffer to the pRspBuffer parameter.

pSenseBuffer Points to a buffer containing the data returned from a send/read capacity request to an

open adapter.

SenseBufferSize Specifies the size of the buffer to the pSenseBuffer parameter.

Return Values

Upon successful completion, the HBA_SendScsiInquiry subroutine returns a buffer in bytes containing

the SCSI inquiry, a buffer containing the SCSI sense data, and a value of HBA_STATUS_OK, or a value of

0.

If unsuccessful, an empty buffer for the SCSI inquiry, a response buffer containing the failure, and a value

of HBA_STATUS_ERROR, or a value of 1 is returned.

Error Codes

The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

 HBA_STATUS_OK A value of 0 on successful completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file handle.

HBA_STATUS_ERROR_ARG A value of 4 if there was a bad argument.

HBA_STATUS_ERROR_ILLEGAL_WWN A value of 5 if the world wide name was not recognized.

HBA_STATUS_SCSI_CHECK_CONDITION A value of 9 if a SCSI Check Condition was reported.

Related Information

“HBA_SendReportLUNs Subroutine” on page 504, “HBA_SendReadCapacity Subroutine” on page 503,

“HBA_SendCTPassThru Subroutine” on page 501, “HBA_SendRNID Subroutine” on page 506,

“HBA_SetRNIDMgmtInfo Subroutine,” and “HBA_GetRNIDMgmtInfo Subroutine” on page 491.

SCSI Adapter Device Driver in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 2.

Special Files in AIX 5L Version 5.3 Files Reference.

SCSI Subsystem Overview, A Typical Initiator-Mode SCSI Driver Transaction Sequence, Required SCSI

Adapter Device Driver ioctl Commands, Understanding the Execution of Initiator I/O Requests, SCSI Error

Recovery, and Understanding the sc_buf Structure in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

HBA_SetRNIDMgmtInfo Subroutine

Purpose

Sends a SCSI SET RNID command to a remote port of the end device.

Library

Common Host Bus Adapter Library (libHBAAPI.a)

Base Operating System (BOS) Runtime Services (A-P) 513

Syntax

#include <sys/hbaapi.h>

HBA_STATUS HBA_SetRNIDMgmtInfo (handle, info)

HBA_HANDLE handle;

HBA_MGMTINFO info;

Description

The HBA_SetRNIDMgmtInfo subroutine sends a SCSI SET RNID (Request Node Identification Data)

command with the SCIOLCHBA operation as its argument. This is done through a call to ioctl. The arg

parameter for the SCIOLCHBA operation is the address of a scsi_chba structure. This structure is

defined in the /usr/include/sys/scsi_buf.h file. The scsi_chba parameter block allows the caller to select

the SET RNID command to be sent to the adapter. The info structure stores the RNID data to be set. The

info structure is defined in the /usr/include/sys/hbaapi.h file. The structure includes:

v wwn

v unittype

v PortId

v NumberOfAttachedNodes

v IPVersion

v UDPort

v IPAddress

v reserved

v TopologyDiscoveryFlags

If successful, the SET RNID data in info is sent to the adapter.

Parameters

 handle Specifies the open file descriptor obtained from a successful call to the open subroutine.

info Specifies the structure containing the information to be set or received from the RNID command

Return Values

Upon successful completion, the HBA_SetRNIDMgmtInfo subroutine returns a value of

HBA_STATUS_OK, or a value of 0. If unsuccessful, a value of HBA_STATUS_ERROR, or a 1 is returned.

Error Codes

The Storage Area Network Host Bus Adapter API subroutines return the following error codes:

 HBA_STATUS_OK A value of 0 on successful completion.

HBA_STATUS_ERROR A value of 1 if an error occurred.

HBA_STATUS_ERROR_INVALID_HANDLE A value of 3 if there was an invalid file handle.

Related Information

“HBA_SendScsiInquiry Subroutine” on page 512, “HBA_SendReadCapacity Subroutine” on page 503,

“HBA_SendCTPassThru Subroutine” on page 501, “HBA_SendReportLUNs Subroutine” on page 504,

“HBA_SendRNID Subroutine” on page 506, and “HBA_GetRNIDMgmtInfo Subroutine” on page 491.

SCSI Adapter Device Driver in AIX 5L Version 5.3 Technical Reference: Kernel and Subsystems Volume 2.

Special Files in AIX 5L Version 5.3 Files Reference.

514 Technical Reference, Volume 1: Base Operating System and Extensions

SCSI Subsystem Overview, A Typical Initiator-Mode SCSI Driver Transaction Sequence, Required SCSI

Adapter Device Driver ioctl Commands, Understanding the Execution of Initiator I/O Requests, SCSI Error

Recovery, and Understanding the sc_buf Structure in AIX 5L Version 5.3 Kernel Extensions and Device

Support Programming Concepts.

hpmInit, f_hpminit, hpmStart, f_hpmstart, hpmStop, f_hpmstop,

hpmTstart, f_hpmtstart, hpmTstop, f_hpmtstop,

hpmGetTimeAndCounters, f_hpmgettimeandcounters,

hpmGetCounters, f_hpmgetcounters, hpmTerminate, and

f_hpmterminate Subroutine

Purpose

Provides application instrumentation for performance monitoring.

Library

HPM Library (libhpm.a)

HPM Library (libhpm.a) includes four additional subroutines for threaded applications.

Syntax

#include <libhpm.h>

void hpmInit(int taskID, char *progName);

void f_hpminit(int taskID, char *progName);

void hpmStart(int instID, char *label);

void f_hpmstart(int instID, char *label);

void hpmStop(int instID);

void f_hpmstop(int instID);

(libhpm_r only)

void hpmTstart(int instID, char *label);

void f_hpmtstart(int instID, char *label);

(libhpm_r only)

void hpmTstop(int instID);

void f_hpmtstop(int instID);

void hpmGetTimeAndCounters(int numCounters, double *time, long long *values);

void f_hpmgettimeandcounters(int numCounters, double *time, long long *values);

void hpmGetCounters(long long *values);

void f_hpmgetcounters(long long *values);

void hpmTerminate(int taskID);

void f_hpmterminate(int taskID);

Description

The hpmInit and f_hpminit subroutines initialize tasks specified by the taskID and progName parameters.

The hpmStart and f_hpmstart subroutines debut an instrumented code segment. If more than 100

instrumented sections are required, the HPM_NUM_INST_PTS environment variable can be set to indicate

the higher value and instID should be less than this value.

Base Operating System (BOS) Runtime Services (A-P) 515

The hpmStop and f_hpmstop subroutines indicate the end of the instrumented code segment instID. For

each call to hpmStart and f_hpmstart, there should be a corresponding call to hpmStop and f_hpmstop

with the matching instID.

The hpmTstart and f_hpmtstart subroutines perform the same function as hpmStart and f_hpmstart, but

are used in threaded applications.

The hpmTstop and f_hpmtstop subroutines perform the same function as hpmStop and f_hpmstop, but

are used in threaded applications.

The hpmGetTimeAndCounters and f_hpmgettimeandcounters subroutines are used to return the time

in seconds and the accumulated counts since the call to hpmInit or f_hpminit.

The hpmGetCounters and f_hpmgetcounters subroutines return all the accumulated counts since the

call to hpmInit or f_hpminit. To minimize intrusion and overhead, the hpmGetCounters and

f_hpmgetcounters subroutines do not perform any check on the size of the values array. The number of

counters can be obtained from the pm_info2_t.maxpmcs structure element supplied by pm_initialize or

by using the pmlist -s command. Alternatively, the application can use the current maximum value of 8.

The hpmTerminate and f_hpmterminate subroutines end the taskID and generate the output.

Applications that do not call hpmTerminate or f_hpmterminate, do not generate performance information.

A summary report for each task is written by default in the progName_pid_taskID.hpm file, where

progName is the second parameter to the hpmInit subroutine. If progName contains a space or tab

character, or is otherwise invalid, a diagnostic message is written to stderr and the library exits with an

error to avoid further problems.

The output file name can be defined with the HPM_OUTPUT_NAME environment flag. The libhpm still

adds the file name suffix _taskID.hpm for the performance files. By using this environment variable, you

can specify the date and time for the output file name. For example:

MYDATE=$(date +"%Y%m%d:%H%M%S")

export HPM_OUTPUT_NAME=myprogram_$MYDATE

where the output file for task 27 will have the following name:

myprogram_yyyymmdd:HHMMSS_0027.hpm

The GUI and .viz output is deactivated by default. The aligned set of performance files named

progName_pid_taskID.viz or HPM_OUTPUT_NAME_taskID.viz will not be generated (the generation of

the .viz file was previously activated by default and avoided with the HPM_VIZ_OUTPUT = FALSE

environment variable).

Parameters

 instID Specifies the instrumented section ID as an integer value greater than 0 and less than 100.

label Specifies a label with a character string.

numCounters Specifies an integer value that indicates the number of counters to be accessed.

progName Specifies a program name using a character string label.

taskID Specifies a node ID with an integer value.

time Specifies a double precision float.

values Specifies an array of type long long of size numCounters.

Execution Environment

Functionality provided by the libhpm library is dependent upon corresponding functions in the libpmapi

and libm libraries. Therefore, the -lpmapi -lm link flags must be specified when compiling applications.

516 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

No return values are defined.

Error Codes

Upon failure, these libhpm subroutines either write error messages explicitly to stderr or use the PMAPI

pm_error function. The pm_error function is called following an error return from any of the following

subroutines:

v pm_init_private

v pm_set_program_mygroup

v pm_stop_mygroup

v pm_get_data_mygroup

v pm_start_mygroup

v pm_stop_mythread

v pm_get_data_mythread

v pm_start_mythread

v pm_get_data_mythread

Diagnostic messages are explicitly written to stderr or stdout in the following situations:

v pm_cycles or gettimeofday returns an error

v The value of the instID parameter is invalid

v An event set is out of range

v The libHPMevents file or HPM_flags.env file has an incorrect format

v There are internal errors.

Error messages that are not fatal are written to stdout or stderr with the text WARNING.

Related Information

The “getrusage, getrusage64, times, or vtimes Subroutine” on page 419, “pm_initialize Subroutine” on

page 1014.

Performance Monitor API Programming in AIX 5L Version 5.3 Performance Tools Guide and Reference.

hsearch, hcreate, or hdestroy Subroutine

Purpose

Manages hash tables.

Library

Standard C Library (libc.a)

Syntax

#include <search.h>

ENTRY *hsearch (Item, Action)

ENTRY Item;

Action Action;

int hcreate (NumberOfElements)

size_t NumberOfElements;

void hdestroy ()

Base Operating System (BOS) Runtime Services (A-P) 517

Description

Attention: Do not use the hsearch, hcreate, or hdestroy subroutine in a multithreaded environment.

The hsearch subroutine searches a hash table. It returns a pointer into a hash table that indicates the

location of the given item. The hsearch subroutine uses open addressing with a multiplicative hash

function.

The hcreate subroutine allocates sufficient space for the table. You must call the hcreate subroutine

before calling the hsearch subroutine. The NumberOfElements parameter is an estimate of the maximum

number of entries that the table will contain. This number may be adjusted upward by the algorithm in

order to obtain certain mathematically favorable circumstances.

The hdestroy subroutine deletes the hash table. This action allows you to start a new hash table since

only one table can be active at a time. After the call to the hdestroy subroutine, the data can no longer be

considered accessible.

Parameters

 Item Identifies a structure of the type ENTRY as defined in the search.h file. It contains

two pointers:

Item.key

Points to the comparison key. The key field is of the char type.

Item.data

Points to any other data associated with that key. The data field is of the

void type.

 Pointers to data types other than the char type should be declared to

pointer-to-character.

Action Specifies the value of the Action enumeration parameter that indicates what is to be

done with an entry if it cannot be found in the table. Values are:

ENTER Enters the value of the Item parameter into the table at the appropriate point.

If the table is full, the hsearch subroutine returns a null pointer.

FIND Does not enter the value of the Item parameter into the table. If the value of

the Item parameter cannot be found, the hsearch subroutine returns a null

pointer. If the value of the Item parameter is found, the subroutine returns

the address of the item in the hash table.

NumberOfElements Provides an estimate of the maximum number of entries that the table contains.

Under some circumstances, the hcreate subroutine may actually make the table

larger than specified.

Return Values

The hcreate subroutine returns a value of 0 if it cannot allocate sufficient space for the table.

Related Information

The bsearch (“bsearch Subroutine” on page 121) subroutine, lsearch (“lsearch or lfind Subroutine” on

page 750) subroutine, malloc (“malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc,

or posix_memalign Subroutine” on page 764) subroutine, strcmp subroutine, tsearch subroutine.

Searching and Sorting Example Program and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

518 Technical Reference, Volume 1: Base Operating System and Extensions

hypot, hypotf, or hypotl Subroutine

Purpose

Computes the Euclidean distance function and complex absolute value.

Libraries

IEEE Math Library (libm.a)

System V Math Library (libmsaa.a)

Syntax

#include <math.h>

double hypot (x, y)

double x, y;

float hypotf (x, y)

float x;

float y;

long double hypotl (x, y)

long double x;

long double y;

Description

The hypot, hypotf and hypotl subroutines compute the value of the square root of x2 + y2 without undue

overflow or underflow.

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies some double-precision floating-point value.

y Specifies some double-precision floating-point value.

Return Values

Upon successful completion, the hypot, hypotf and hypotl subroutines return the length of the

hypotenuse of a right-angled triangle with sides of length x and y.

If the correct value would cause overflow, a range error occurs and the hypotf and hypotl subroutines

return the value of the macro HUGE_VALF and HUGE_VALL, respectively.

If x or y is ±Inf, +Inf is returned (even if one of x or y is NaN).

If x or y is NaN, and the other is not ±Inf, a NaN is returned.

If both arguments are subnormal and the correct result is subnormal, a range error may occur and the

correct result is returned.

Base Operating System (BOS) Runtime Services (A-P) 519

Error Codes

When using the libm.a (-lm) library, if the correct value overflows, the hypot subroutine returns a

HUGE_VAL value.

Note: (hypot (INF, value) and hypot (value, INF) are both equal to +INF for all values, even if value =

NaN.

When using libmsaa.a (-lmsaa), if the correct value overflows, the hypot subroutine returns HUGE_VAL

and sets the global variable errno to ERANGE.

These error-handling procedures may be changed with the matherr subroutine when using the libmsaa.a

(-lmsaa) library.

Related Information

“feclearexcept Subroutine” on page 259, “fetestexcept Subroutine” on page 267, and “class, _class, finite,

isnan, or unordered Subroutines” on page 165.

The matherr (“matherr Subroutine” on page 775) subroutine, sqrt subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

math.h in AIX 5L Version 5.3 Files Reference.

iconv Subroutine

Purpose

Converts a string of characters in one character code set to another character code set.

Library

The iconv Library (libiconv.a)

Syntax

#include <iconv.h>

size_t iconv (CD, InBuf, InBytesLeft, OutBuf, OutBytesLeft)

iconv_t CD;

char **OutBuf, **InBuf;

size_t *OutBytesLeft, *InBytesLeft;

Description

The iconv subroutine converts the string specified by the InBuf parameter into a different code set and

returns the results in the OutBuf parameter. The required conversion method is identified by the CD

parameter, which must be valid conversion descriptor returned by a previous, successful call to the

iconv_open subroutine.

On calling, the InBytesLeft parameter indicates the number of bytes in the InBuf buffer to be converted,

and the OutBytesLeft parameter indicates the number of bytes remaining in the OutBuf buffer that do not

contain converted data. These values are updated upon return so they indicate the new state of their

associated buffers.

520 Technical Reference, Volume 1: Base Operating System and Extensions

For state-dependent encodings, calling the iconv subroutine with the InBuf buffer set to null will reset the

conversion descriptor in the CD parameter to its initial state. Subsequent calls with the InBuf buffer,

specifying other than a null pointer, may cause the internal state of the subroutine to be altered a

necessary.

Parameters

 CD Specifies the conversion descriptor that points to the correct code set converter.

InBuf Points to a buffer that contains the number of bytes in the InBytesLeft parameter to be

converted.

InBytesLeft Points to an integer that contains the number of bytes in the InBuf parameter.

OutBuf Points to a buffer that contains the number of bytes in the OutBytesLeft parameter that has

been converted.

OutBytesLeft Points to an integer that contains the number of bytes in the OutBuf parameter.

Return Values

Upon successful conversion of all the characters in the InBuf buffer and after placing the converted

characters in the OutBuf buffer, the iconv subroutine returns 0, updates the InBytesLeft and OutBytesLeft

parameters, and increments the InBuf and OutBuf pointers. Otherwise, it updates the varibles pointed to

by the parameters to indicate the extent to the conversion, returns the number of bytes still left to be

converted in the input buffer, and sets the errno global variable to indicate the error.

Error Codes

If the iconv subroutine is unsuccessful, it updates the variables to reflect the extent of the conversion

before it stopped and sets the errno global variable to one of the following values:

 EILSEQ Indicates an unusable character. If an input character does not belong to the input code set, no

conversion is attempted on the unusable on the character. In InBytesLeft parameters indicates the bytes

left to be converted, including the first byte of the unusable character. InBuf parameter points to the first

byte of the unusable character sequence.

The values of OutBuf and OutBytesLeft are updated according to the number of bytes available in the

output buffer that do not contain converted data.

E2BIG Indicates an output buffer overflow. If the OutBuf buffer is too small to contain all the converted

characters, the character that causes the overflow is not converted. The InBytesLeft parameter indicates

the bytes left to be converted (including the character that caused the overflow). The InBuf parameter

points to the first byte of the characters left to convert.

EINVAL Indicates the input buffer was truncated. If the original value of InBytesLeft is exhausted in the middle of

a character conversion or shift/lock block, the InBytesLeft parameter indicates the number of bytes

undefined in the character being converted.

If an input character of shift sequence is truncated by the InBuf buffer, no conversion is attempted on the

truncated data, and the InBytesLeft parameter indicates the bytes left to be converted. The InBuf

parameter points to the first bytes if the truncated sequence. The OutBuf and OutBytesLeft values are

updated according to the number of characters that were previously converted. Because some encoding

may have ambiguous data, the EINVAL return value has a special meaning at the end of stream

conversion. As such, if a user detects an EOF character on a stream that is being converted and the last

return code from the iconv subroutine was EINVAL, the iconv subroutine should be called again, with

the same InBytesLeft parameter and the same character string pointed to by the InBuf parameter as

when the EINVAL return occurred. As a result, the converter will either convert the string as is or declare

it an unusable sequence (EILSEQ).

Files

 /usr/lib/nls/loc/iconv/* Contains code set converter methods.

Base Operating System (BOS) Runtime Services (A-P) 521

Related Information

The iconv command, genxlt command.

The iconv_close (“iconv_close Subroutine”) subroutine, iconv_open (“iconv_open Subroutine” on page

523) subroutine.

iconv_close Subroutine

Purpose

Closes a specified code set converter.

Library

iconv Library (libiconv.a)

Syntax

#include <iconv.h>

int iconv_close (CD)

iconv_t CD;

Description

The iconv_close subroutine closes a specified code set converter and deallocates any resources used by

the converter.

Parameters

 CD Specifies the conversion descriptor to be closed.

Return Values

When successful, the iconv_close subroutine returns a value of 0. Otherwise, it returns a value of -1 and

sets the errno global variable to indicate the error.

Error Codes

The following error code is defined for the iconv_close subroutine:

 EBADF The conversion descriptor is not valid.

Related Information

The iconv (“iconv Subroutine” on page 520) subroutine, iconv_open (“iconv_open Subroutine” on page

523) subroutine.

The genxlt command, iconv command.

National Language Support Overview and Converters Overview for Programming in AIX 5L Version 5.3

National Language Support Guide and Reference

522 Technical Reference, Volume 1: Base Operating System and Extensions

iconv_open Subroutine

Purpose

Opens a character code set converter.

Library

iconv Library (libiconv.a)

Syntax

#include <iconv.h>

iconv_t iconv_open (ToCode, FromCode)

const char *ToCode, *FromCode;

Description

The iconv_open subroutine initializes a code set converter. The code set converter is used by the iconv

subroutine to convert characters from one code set to another. The iconv_open subroutine finds the

converter that performs the character code set conversion specified by the FromCode and ToCode

parameters, initializes that converter, and returns a conversion descriptor of type iconv_t to identify the

code set converter.

The iconv_open subroutine first searches the LOCPATH environment variable for a converter, using the

two user-provided code set names, based on the file name convention that follows:

FromCode: "IBM-850"

ToCode: "ISO8859-1"

conversion file: "IBM-850_ISO8859-1"

The conversion file name is formed by concatenating the ToCode code set name onto the FromCode code

set name, with an _ (underscore) between them.

The LOCPATH environment variable contains a list of colon-separated directory names. The system

default for the LOCPATH environment variable is:

LOCPATH=/usr/lib/nls/loc

See Locales in AIX 5L Version 5.3 National Language Support Guide and Reference for more information

on the LOCPATH environment variable.

The iconv_open subroutine first attempts to find the specified converter in an iconv subdirectory under

any of the directories specified by the LOCPATH environment variable, for example, /usr/lib/nls/loc/iconv.

If the iconv_open subroutine cannot find a converter in any of these directories, it looks for a conversion

table in an iconvTable subdirectory under any of the directories specified by the LOCPATH environment

variable, for example, /usr/lib/nls/loc/iconvTable.

If the iconv_open subroutine cannot find the specified converter in either of these locations, it returns

(iconv_t) -1 to the calling process and sets the errno global variable.

The iconvTable directories are expected to contain conversion tables that are the output of the genxlt

command. The conversion tables are limited to single-byte stateless code sets. See the ″List of PC, ISO,

and EBCDIC Code Set Converters″ in AIX 5L Version 5.3 National Language Support Guide and

Reference for more information.

If the named converter is found, the iconv_open subroutine will perform the load subroutine operation

and initialize the converter. A converter descriptor (iconv_t) is returned.

Base Operating System (BOS) Runtime Services (A-P) 523

Note: When a process calls the exec subroutine or a fork subroutine, all of the opened converters are

discarded.

The iconv_open subroutine links the converter function using the load subroutine, which is similar to the

exec subroutine and effectively performs a run-time linking of the converter program. Since the

iconv_open subroutine is called as a library function, it must ensure that security is preserved for certain

programs. Thus, when the iconv_open subroutine is called from a set root ID program (a program with

permission —-s—s—x), it will ignore the LOCPATH environment variable and search for converters only in

the /usr/lib/nls/loc/iconv directory.

Parameters

 ToCode Specifies the destination code set.

FromCode Specifies the originating code set.

Return Values

A conversion descriptor (iconv_t) is returned if successful. Otherwise, the subroutine returns -1, and the

errno global variable is set to indicate the error.

Error Codes

 EINVAL The conversion specified by the FromCode and ToCode parameters is not supported by the

implementation.

EMFILE The number of file descriptors specified by the OPEN_MAX configuration variable is currently

open in the calling process.

ENFILE Too many files are currently open in the system.

ENOMEM Insufficient storage space is available.

Files

 /usr/lib/nls/loc/iconv Contains loadable method converters.

/usr/lib/nls/loc/iconvTable Contains conversion tables for single-byte stateless code sets.

Related Information

The “iconv Subroutine” on page 520, “iconv_close Subroutine” on page 522.

The genxlt command, iconv command.

Code Sets for National Language Support, List of PC, ISO, and EBCDIC Code Set Converters, National

Language Support Overview , and Converters Overview for Programming in AIX 5L Version 5.3 National

Language Support Guide and Reference.

ilogbf, ilogbl, or ilogb Subroutine

Purpose

Returns an unbiased exponent.

Syntax

#include <math.h>

int ilogbf (x)

524 Technical Reference, Volume 1: Base Operating System and Extensions

float x;

int ilogbl (x)

long double x;

int ilogb (x)

double x;

Description

The ilogbf, ilogbl, and ilogb subroutines return the exponent part of the x parameter. The return value is

the integral part of logr

| x | as a signed integral value, for nonzero x, where r is the radix of the machine’s

floating-point arithmetic (r=2).

An application wishing to check for error situations should set thre errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

Return Values

Upon successful completion, the ilogbf, ilogbl, and ilogb subroutines return the exponent part of x as a

signed integer value. They are equivalent to calling the corresponding logb function and casting the

returned value to type int.

If x is 0, a domain error occurs, and the value FP_ILOGB0 is returned.

If x is ±Inf, a domain error occurs, and the value {INT_MAX} is returned.

If x is a NaN, a domain error occurs, and the value FP_ILOGBNAN is returned.

If the correct value is greater than {INT_MAX}, {INT_MAX} is returned and a domain error occurs.

If the correct value is less than {INT_MIN}, {INT_MIN} is returned and a domain error occurs.

Related Information

“feclearexcept Subroutine” on page 259 and “fetestexcept Subroutine” on page 267.

math.h in AIX 5L Version 5.3 Files Reference.

imaxabs Subroutine

Purpose

Returns absolute value.

Syntax

#include <inttypes.h>

intmax_t imaxabs (j)

intmax_t j;

Base Operating System (BOS) Runtime Services (A-P) 525

Description

The imaxabs subroutine computes the absolute value of an integer j. If the result cannot be represented,

the behavior is undefined.

Parameters

 j Specifies the value to be computed.

Return Values

The imaxabs subroutine returns the absolute value.

Related Information

The “imaxdiv Subroutine.”

inttypes.h File in AIX 5L Version 5.3 Files Reference.

imaxdiv Subroutine

Purpose

Returns quotient and remainder.

Syntax

#include <inttypes.h>

imaxdiv_t imaxdiv (numer, denom)

intmax_t numer;

intmax_t denom;

Description

The imaxdiv subroutine computes numer / denom and numer % denom in a single operation.

Parameters

 numer Specifies the numerator value to be computed.

denom Specifies the denominator value to be computed.

Return Values

The imaxdiv subroutine returns a structure of type imaxdiv_t, comprising both the quotient and the

remainder. The structure contains (in either order) the members quot (the quotient) and rem (the

remainder), each of which has type intmax_t.

If either part of the result cannot be represented, the behavior is undefined.

Related Information

The “imaxabs Subroutine” on page 525.

inttypes.h File in AIX 5L Version 5.3 Files Reference.

526 Technical Reference, Volume 1: Base Operating System and Extensions

IMAIXMapping Subroutine

Purpose

Translates a pair of Key and State parameters to a string and returns a pointer to this string.

Library

Input Method Library (libIM.a)

Syntax

caddr_t IMAIXMapping(IMMap, Key, State, NBytes)

IMMap IMMap;

KeySym Key;

uint State;

int * NBytes;

Description

The IMAIXMapping subroutine translates a pair of Key and State parameters to a string and returns a

pointer to this string.

This function handles the diacritic character sequence and Alt-NumPad key sequence.

Parameters

 IMMap Identifies the keymap.

Key Specifies the key symbol to which the string is mapped.

State Specifies the state to which the string is mapped.

NBytes Returns the length of the returning string.

Return Values

If the length set by the NBytes parameter has a positive value, the IMAIXMapping subroutine returns a

pointer to the returning string.

Note: The returning string is not null-terminated.

IMAuxCreate Callback Subroutine

Purpose

Tells the application program to create an auxiliary area.

Syntax

int IMAuxCreate(IM, AuxiliaryID, UData)

IMObject IM;

caddr_t *AuxiliaryID;

caddr_t UData;

Description

The IMAuxCreate subroutine is invoked by the input method of the operating system to create an auxiliary

area. The auxiliary area can contain several different forms of data and is not restricted by the interface.

Base Operating System (BOS) Runtime Services (A-P) 527

Most input methods display one auxiliary area at a time, but callbacks must be capable of handling

multiple auxiliary areas.

This subroutine is provided by applications that use input methods.

Parameters

 IM Indicates the input method instance.

AuxiliaryID Identifies the newly created auxiliary area.

UData Identifies an argument passed by the IMCreate subroutine.

Return Values

On successful return of the IMAuxCreate subroutine, a newly created auxiliary area is set to the

AuxiliaryID value and the IMError global variable is returned. Otherwise, the IMNoError value is returned.

Related Information

The IMCreate (“IMCreate Subroutine” on page 531) subroutine.

Input Methods, National Language Support Overview, and Using Callbacksin AIX 5L Version 5.3 National

Language Support Guide and Reference

IMAuxDestroy Callback Subroutine

Purpose

Tells the application to destroy the auxiliary area.

Syntax

int IMAuxDestroy(IM, AuxiliaryID, UData)

IMObject IM;

caddr_t AuxiliaryID;

caddr_t UData;

Description

The IMAuxDestroy subroutine is called by the input method of the operating system to tell the application

to destroy an auxiliary area.

This subroutine is provided by applications that use input methods.

Parameters

 IM Indicates the input method instance.

AuxiliaryID Identifies the auxiliary area to be destroyed.

UData An argument passed by the IMCreate subroutine.

Return Values

If an error occurs, the IMAuxDestroy subroutine returns the IMError global variable. Otherwise, the

IMNoError value is returned.

Related Information

The IMCreate (“IMCreate Subroutine” on page 531) subroutine.

528 Technical Reference, Volume 1: Base Operating System and Extensions

Input Methods, and National Language Support Overview, and Using Callbacks in AIX 5L Version 5.3

National Language Support Guide and Reference.

IMAuxDraw Callback Subroutine

Purpose

Tells the application program to draw the auxiliary area.

Syntax

int IMAuxDraw(IM, AuxiliaryID, AuxiliaryInformation, UData)

IMObject IM;

caddr_t AuxiliaryID;

IMAuxInfo * AuxiliaryInformation;

caddr_t UData;

Description

The IMAuxDraw subroutine is invoked by the input method to draw an auxiliary area. The auxiliary area

should have been previously created.

This subroutine is provided by applications that use input methods.

Parameters

 IM Indicates the input method instance.

AuxiliaryID Identifies the auxiliary area.

AuxiliaryInformation Points to the IMAuxInfo structure.

UData An argument passed by the IMCreate subroutine.

Return Values

If an error occurs, the IMAuxDraw subroutine returns the IMError global variable. Otherwise, the

IMNoError value is returned.

Related Information

The IMAuxCreate (“IMAuxCreate Callback Subroutine” on page 527) subroutine, IMCreate (“IMCreate

Subroutine” on page 531) subroutine.

Input Methods, National Language Support Overview, and Using Callbacks in AIX 5L Version 5.3 National

Language Support Guide and Reference.

IMAuxHide Callback Subroutine

Purpose

Tells the application program to hide an auxiliary area.

Syntax

int IMAuxHide(IM, AuxiliaryID, UData)

IMObject IM;

caddr_t AuxiliaryID;

caddr_t UData;

Base Operating System (BOS) Runtime Services (A-P) 529

Description

The IMAuxHide subroutine is called by the input method to hide an auxiliary area.

This subroutine is provided by applications that use input methods.

Parameters

 IM Indicates the input method instance.

AuxiliaryID Identifies the auxiliary area to be hidden.

UData An argument passed by the IMCreate subroutine.

Return Values

If an error occurs, the IMAuxHide subroutine returns the IMError global variable. Otherwise, the

IMNoError value is returned.

Related Information

The IMAuxCreate (“IMAuxCreate Callback Subroutine” on page 527) subroutine, IMCreate (“IMCreate

Subroutine” on page 531) subroutine.

Input Methods, National Language Support Overview, and Using Callbacks in AIX 5L Version 5.3 National

Language Support Guide and Reference.

IMBeep Callback Subroutine

Purpose

Tells the application program to emit a beep sound.

Syntax

int IMBeep(IM, Percent, UData)

IMObject IM;

int Percent;

caddr_t UData;

Description

The IMBeep subroutine tells the application program to emit a beep sound.

This subroutine is provided by applications that use input methods.

Parameters

 IM Indicates the input method instance.

Percent Specifies the beep level. The value range is from -100 to 100, inclusively. A -100 value means no beep.

UData An argument passed by the IMCreate subroutine.

Return Values

If an error occurs, the IMBeep subroutine returns the IMError global variable. Otherwise, the IMNoError

value is returned.

530 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The IMCreate (“IMCreate Subroutine”) subroutine.

Input Methods, National Language Support Overview, and Using Callbacks in AIX 5L Version 5.3 National

Language Support Guide and Reference.

IMClose Subroutine

Purpose

Closes the input method.

Library

Input Method Library (libIM.a)

Syntax

void IMClose(IMfep)

IMFep IMfep;

Description

The IMClose subroutine closes the input method. Before the IMClose subroutine is called, all previously

created input method instances must be destroyed with the IMDestroy subroutine, or memory will not be

cleared.

Parameters

 IMfep Specifies the input method.

Related Information

The IMDestroy (“IMDestroy Subroutine” on page 532) subroutine.

Input Method Overview and National Language Support Overview in AIX 5L Version 5.3 National

Language Support Guide and Reference.

IMCreate Subroutine

Purpose

Creates one instance of an IMObject object for a particular input method.

Library

Input Method Library (libIM.a)

Syntax

IMObject IMCreate(IMfep, IMCallback, UData)

IMFep IMfep;

IMCallback *IMCallback;

caddr_t UData;

Base Operating System (BOS) Runtime Services (A-P) 531

Description

The IMCreate subroutine creates one instance of a particular input method. Several input method

instances can be created under one input method.

Parameters

 IMfep Specifies the input method.

IMCallback Specifies a pointer to the caller-supplied IMCallback structure.

UData Optionally specifies an application’s own information to the callback functions. With this

information, the application can avoid external references from the callback functions. The input

method does not change this parameter, but merely passes it to the callback functions. The

UData parameter is usually a pointer to the application data structure, which contains the

information about location, font ID, and so forth.

Return Values

The IMCreate subroutine returns a pointer to the created input method instance of type IMObject. If the

subroutine is unsuccessful, a null value is returned and the imerrno global variable is set to indicate the

error.

Related Information

The IMDestroy (“IMDestroy Subroutine”) subroutine, IMFilter (“IMFilter Subroutine” on page 533)

subroutine, IMLookupString (“IMLookupString Subroutine” on page 540) subroutine, IMProcess

(“IMProcess Subroutine” on page 540) subroutine.

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support

Guide and Reference.

IMDestroy Subroutine

Purpose

Destroys an input method instance.

Library

Input Method Library (libIM.a)

Syntax

void IMDestroy(IM)

IMObject IM;

Description

The IMDestroy subroutine destroys an input method instance.

Parameters

 IM Specifies the input method instance to be destroyed.

Related Information

The IMClose (“IMClose Subroutine” on page 531) subroutine, IMCreate (“IMCreate Subroutine” on page

531) subroutine.

532 Technical Reference, Volume 1: Base Operating System and Extensions

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support

Guide and Reference.

IMFilter Subroutine

Purpose

Determines if a keyboard event is used by the input method for internal processing.

Library

Input Method Library (libIM.a)

Syntax

int IMFilter(Im, Key, State, String, Length)

IMObect Im;

Keysym Key;

uint State, * Length;

caddr_t * String;

Description

The IMFilter subroutine is used to process a keyboard event and determine if the input method for this

operating system uses this event. The return value indicates:

v The event is filtered (used by the input method) if the return value is IMInputUsed. Otherwise, the input

method did not accept the event.

v Independent of the return value, a string may be generated by the keyboard event if pre-editing is

complete.

Note: The buffer returned from the IMFilter subroutine is owned by the input method editor and can not

continue between calls.

Parameters

 Im Specifies the input method instance.

Key Specifies the keysym for the event.

State Defines the state of the keysym. A value of 0 means that the keysym is not redefined.

String Holds the returned string if one exists. A null value means that no composed string is ready.

Length Defines the length of the input string. If the string is not null, returns the length.

Return Values

 IMInputUsed The input method for this operating system filtered the event.

IMInputNotUsed The input method for this operating system did not use the event.

Related Information

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support

Guide and Reference.

Base Operating System (BOS) Runtime Services (A-P) 533

IMFreeKeymap Subroutine

Purpose

Frees resources allocated by the IMInitializeKeymap subroutine.

Library

Input Method Library (libIM.a)

Syntax

void IMFreeKeymap(IMMap)

IMMap IMMap;

Description

The IMFreeKeymap subroutine frees resources allocated by the IMInitializeKeymap subroutine.

Parameters

 IMMap Identifies the keymap.

Related Information

The IMInitializeKeymap (“IMInitializeKeymap Subroutine” on page 537) subroutine.

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support

Guide and Reference.

IMIndicatorDraw Callback Subroutine

Purpose

Tells the application program to draw the indicator.

Syntax

int IMIndicatorDraw(IM, IndicatorInformation, UData)

IMObject IM;

IMIndicatorInfo *IndicatorInformation;

caddr_t UData;

Description

The IMIndicatorDraw callback subroutine is called by the input method when the value of the indicator is

changed. The application program then draws the indicator.

This subroutine is provided by applications that use input methods.

Parameters

 IM Indicates the input method instance.

IndicatorInformation Points to the IMIndicatorInfo structure that holds the current value of the

indicator. The interpretation of this value varies among phonic languages.

However, the input method provides a function to interpret this value.

UData An argument passed by the IMCreate subroutine.

534 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

If an error happens, the IMIndicatorDraw subroutine returns the IMError global variable. Otherwise, the

IMNoError value is returned.

Related Information

The IMCreate (“IMCreate Subroutine” on page 531) subroutine, IMIndicatorHide (“IMIndicatorHide

Callback Subroutine”) subroutine.

Input Methods, National Language Support Overview and Using Callbacks in AIX 5L Version 5.3 National

Language Support Guide and Reference.

IMIndicatorHide Callback Subroutine

Purpose

Tells the application program to hide the indicator.

Syntax

int IMIndicatorHide(IM, UData)

IMObject IM;

caddr_t UData;

Description

The IMIndicatorHide subroutine is called by the input method to tell the application program to hide the

indicator.

This subroutine is provided by applications that use input methods.

Parameters

 IM Indicates the input method instance.

UData Specifies an argument passed by the IMCreate subroutine.

Return Values

If an error occurs, the IMIndicatorHide subroutine returns the IMError global variable. Otherwise, the

IMNoError value is returned.

Related Information

The IMCreate (“IMCreate Subroutine” on page 531) subroutine, IMIndicatorDraw (“IMIndicatorDraw

Callback Subroutine” on page 534) subroutine.

Input Methods, National Language Support Overview and Understanding Callbacks in AIX 5L Version 5.3

National Language Support Guide and Reference.

IMInitialize Subroutine

Purpose

Initializes the input method for a particular language.

Base Operating System (BOS) Runtime Services (A-P) 535

Library

Input Method Library (libIM.a)

Syntax

IMFep IMInitialize(Name)

char *Name;

Description

The IMInitialize subroutine initializes an input method. The IMCreate, IMFilter, and IMLookupString

subroutines use the input method to perform input processing of keyboard events in the form of keysym

state modifiers. The IMInitialize subroutine finds the input method that performs the input processing

specified by the Name parameter and returns an Input Method Front End Processor (IMFep) descriptor.

Before calling any of the key event-handling functions, the application must create an instance of an

IMObject object using the IMFep descriptor. Each input method can produce one or more instances of

IMObject object with the IMCreate subroutine.

When the IMInitialize subroutine is called, strings returned from the input method are encoded in the code

set of the locale. Each IMFep description inherits the code set of the locale when the input method is

initialized. The locale setting does not change the code set of the IMFep description after it is created.

The IMInitialize subroutine calls the load subroutine to load a file whose name is in the form Name.im.

The Name parameter is passed to the IMInitialize subroutine. The loadable input method file is accessed

in the directories specified by the LOCPATH environment variable. The default location for loadable

input-method files is the /usr/lib/nls/loc directory. If none of the LOCPATH directories contain the input

method specified by the Name parameter, the default location is searched.

Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

The name of the input method file usually corresponds to the locale name, which is in the form

Language_territory.codesest@modifier. In the environment, the modifier is in the form @im=modifier.

The IMInitialize subroutine converts the @im= substring to @ when searching for loadable input-method

files.

Parameters

 Name Specifies the language to be used. Each input method is dynamically linked to the application

program.

Return Values

If IMInitialize succeeds, it returns an IMFep handle. Otherwise, null is returned and the imerrno global

variable is set to indicate the error.

Files

 /usr/lib/nls/loc Contains loadable input-method files.

Related Information

The IMCreate (“IMCreate Subroutine” on page 531) subroutine.

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support

Guide and Reference.

536 Technical Reference, Volume 1: Base Operating System and Extensions

IMInitializeKeymap Subroutine

Purpose

Initializes the keymap associated with a specified language.

Library

Input Method Library (libIM.a)

Syntax

IMMap IMInitializeKeymap(Name)

char *Name;

Description

The IMInitializeKeymap subroutine initializes an input method keymap (imkeymap). The IMAIXMapping

and IMSimpleMapping subroutines use the imkeymap to perform mapping of keysym state modifiers to

strings. The IMInitializeKeymap subroutine finds the imkeymap that performs the keysym mapping and

returns an imkeymap descriptor, IMMap. The strings returned by the imkeymap mapping functions are

treated as unsigned bytes.

The applications that use input methods usually do not need to manage imkeymaps separately. The

imkeymaps are managed internally by input methods.

The IMInitializeKeymap subroutine searches for an imkeymap file whose name is in the form Name.im.

The Name parameter is passed to the IMInitializeKeymap subroutine. The imkeymap file is accessed in

the directories specified by the LOCPATH environment variable. The default location for input method files

is the /usr/lib/nls/loc directory. If none of the LOCPATH directories contain the keymap method specified

by the Name parameter, the default location is searched.

Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

The name of the imkeymap file usually corresponds to the locale name, which is in the form

Language_territory.codesest@modifier. In the AIXwindows environment, the modifier is in the form

@im=modifier. The IMInitializeKeymap subroutine converts the @im= substring to @ (at sign) when

searching for loadable input method files.

Parameters

 Name Specifies the name of the imkeymap.

Return Values

The IMInitializeKeymap subroutine returns a descriptor of type IMMap. Returning a null value indicates

the occurrence of an error. The IMMap descriptor is defined in the im.h file as the caddr_t structure. This

descriptor is used for keymap manipulation functions.

Files

 /usr/lib/nls/loc Contains loadable input-method files.

Base Operating System (BOS) Runtime Services (A-P) 537

Related Information

The IMFreeKeymap (“IMFreeKeymap Subroutine” on page 534), IMQueryLanguage (“IMQueryLanguage

Subroutine” on page 543) subroutine.

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support

Guide and Reference.

IMIoctl Subroutine

Purpose

Performs a variety of control or query operations on the input method.

Library

Input Method Library (libIM.a)

Syntax

int IMIoctl(IM, Operation, Argument)

IMObject IM;

int Operation;

char *Argument;

Description

The IMIoctl subroutine performs a variety of control or query operations on the input method specified by

the IM parameter. In addition, this subroutine can be used to control the unique function of each language

input method because it provides input method-specific extensions. Each input method defines its own

function.

Parameters

IM Specifies the input method instance.

Operation

Specifies the operation.

Argument

The use of this parameter depends on which of the following operations is performed.

IM_Refresh

Refreshes the text area, auxiliary areas, and indicator by calling the needed callback

functions if these areas are not empty. The Argument parameter is not used.

IM_GetString

Gets the current pre-editing string. The Argument parameter specifies the address of the

IMSTR structure supplied by the caller. The callback function is invoked to clear the

pre-editing if it exists.

IM_Clear

Clears the text and auxiliary areas if they exist. If the Argument parameter is not a null

value, this operation invokes the callback functions to clear the screen. The keyboard state

remains the same.

IM_Reset

Clears the auxiliary area if it currently exists. If the Argument parameter is a null value,

this operation clears only the internal buffer of the input method. Otherwise, the

IMAuxHide subroutine is called, and the input method returns to its initial state.

538 Technical Reference, Volume 1: Base Operating System and Extensions

IM_ChangeLength

Changes the maximum length of the pre-editing string.

IM_ChangeMode

Sets the Processing Mode of the input method to the mode specified by the Argument

parameter. The valid value for Argument is:

IMNormalMode

Specifies the normal mode of pre-editing.

IMSuppressedMode

Suppresses pre-editing.

IM_QueryState

Returns the status of the text area, the auxiliary area, and the indicator. It also returns the

beep status and the processing mode. The results are stored into the caller-supplied

IMQueryState structure pointed to by the Argument parameter.

IM_QueryText

Returns detailed information about the text area. The results are stored in the

caller-supplied IMQueryText structure pointed to by the Argument parameter.

IM_QueryAuxiliary

Returns detailed information about the auxiliary area. The results are stored in the

caller-supplied IMQueryAuxiliary structure pointed to by the Argument parameter.

IM_QueryIndicator

Returns detailed information about the indicator. The results are stored in the

caller-supplied IMQueryIndicator structure pointed to by the Argument parameter.

IM_QueryIndicatorString

Returns an indicator string corresponding to the current indicator. Results are stored in the

caller-supplied IMQueryIndicatorString structure pointed to by the Argument parameter.

The caller can request either a short or long form with the format member of the

IMQueryIndicatorString structure.

IM_SupportSelection

Informs the input method whether or not an application supports an auxiliary area

selection list. The application must support selections inside the auxiliary area and

determine how selections are displayed. If this operation is not performed, the input

method assumes the application does not support an auxiliary area selection list.

Return Values

The IMIoctl subroutine returns a value to the IMError global variable that indicates the type of error

encountered. Some error types are provided in the /usr/include/imerrno.h file.

Related Information

The IMFilter (“IMFilter Subroutine” on page 533) subroutine, IMLookupString (“IMLookupString

Subroutine” on page 540) subroutine, IMProcess (“IMProcess Subroutine” on page 540) subroutine.

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support

Guide and Reference.

Base Operating System (BOS) Runtime Services (A-P) 539

IMLookupString Subroutine

Purpose

Maps a Key/State (key symbol/state) pair to a string.

Library

Input Method Library (libIM.a)

Syntax

int IMLookupString(Im, Key, State, String, Length)

IMObject Im;

KeySym Key;

uint State, * Length;

caddr_t * String;

Description

The IMLookupString subroutine is used to map a Key/State pair to a localized string. It uses an internal

input method keymap (imkeymap) file to map a keysym/modifier to a string. The string returned is

encoded in the same code set as the locale of IMObject and IM Front End Processor.

Note: The buffer returned from the IMLookupString subroutine is owned by the input method editor and

can not continue between calls.

Parameters

 Im Specifies the input method instance.

Key Specifies the key symbol for the event.

State Defines the state for the event. A value of 0 means that the key is not redefined.

String Holds the returned string, if one exists. A null value means that no composed string is ready.

Length Defines the length string on input. If the string is not null, identifies the length returned.

Return Values

 IMError Error encountered.

IMReturnNothing No string or keysym was returned.

IMReturnString String returned.

Related Information

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support

Guide and Reference.

IMProcess Subroutine

Purpose

Processes keyboard events and language-specific input.

Library

Input Method Library (libIM.a)

540 Technical Reference, Volume 1: Base Operating System and Extensions

Note: This subroutine will be removed in future releases. Use the IMFilter (“IMFilter Subroutine” on page

533) and IMLookupString (“IMLookupString Subroutine” on page 540) subroutines to process

keyboard events.

Syntax

int IMProcess (IM, KeySymbol, State, String, Length)

IMObject IM;

KeySym KeySymbol;

uint State;

caddr_t * String;

uint * Length;

Description

This subroutine is a main entry point to the input method of the operating system. The IMProcess

subroutine processes one keyboard event at a time. Processing proceeds as follows:

v Validates the IM parameter.

v Performs keyboard translation for all supported modifier states.

v Invokes internal function to do language-dependent processing.

v Performs any necessary callback functions depending on the internal state.

v Returns to application, setting the String and Length parameters appropriately.

Parameters

 IM Specifies the input method instance.

KeySymbol Defines the set of keyboard symbols that will be handled.

State Specifies the state of the keyboard.

String Holds the returned string. Returning a null value means that the input is used or discarded by the

input method.

Note: The String parameter is not a null-terminated string.

Length Stores the length, in bytes, of the String parameter.

Return Values

This subroutine returns the IMError global variable if an error occurs. The IMerrno global variable is set to

indicate the error. Some of the variable values include:

 IMError Error occurred during this subroutine.

IMTextAndAuxiliaryOff No text string in the Text area, and the Auxiliary area is not shown.

IMTextOn Text string in the Text area, but no Auxiliary area.

IMAuxiliaryOn No text string in the Text area, and the Auxiliary area is shown.

IMTextAndAuxiliaryOn Text string in the Text area, and the Auxiliary is shown.

Related Information

The IMClose (“IMClose Subroutine” on page 531) subroutine, IMCreate (“IMCreate Subroutine” on page

531) subroutine IMFilter (“IMFilter Subroutine” on page 533) subroutine, IMLookupString

(“IMLookupString Subroutine” on page 540) subroutine.

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support

Guide and Reference.

Base Operating System (BOS) Runtime Services (A-P) 541

IMProcessAuxiliary Subroutine

Purpose

Notifies the input method of input for an auxiliary area.

Library

Input Method Library (libIM.a)

Syntax

int IMProcessAuxiliary(IM, AuxiliaryID, Button, PanelRow

 PanelColumn, ItemRow, ItemColumn, String, Length)

IMObject IM;

caddr_t AuxiliaryID;

uint Button;

uint PanelRow;

uint PanelColumn;

uint ItemRow;

uint ItemColumn;

caddr_t *String;

uint *Length;

Description

The IMProcessAuxiliary subroutine notifies the input method instance of input for an auxiliary area.

Parameters

 IM Specifies the input method instance.

AuxiliaryID Identifies the auxiliary area.

Button Specifies one of the following types of input:

IM_ABORT

Abort button is pushed.

IM_CANCEL

Cancel button is pushed.

IM_ENTER

Enter button is pushed.

IM_HELP

Help button is pushed.

IM_IGNORE

Ignore button is pushed.

IM_NO No button is pushed.

IM_OK OK button is pushed.

IM_RETRY

Retry button is pushed.

IM_SELECTED

Selection has been made. Only in this case do the PanelRow, PanelColumn,

ItemRow, and ItemColumn parameters have meaningful values.

IM_YES

Yes button is pushed.

PanelRow Indicates the panel on which the selection event occurred.

542 Technical Reference, Volume 1: Base Operating System and Extensions

PanelColumn Indicates the panel on which the selection event occurred.

ItemRow Indicates the selected item.

ItemColumn Indicates the selected item.

String Holds the returned string. If a null value is returned, the input is used or discarded by the input

method. Note that the String parameter is not a null-terminated string.

Length Stores the length, in bytes, of the String parameter.

Related Information

The IMAuxCreate (“IMAuxCreate Callback Subroutine” on page 527) subroutine.

Input Methods and National Language Support Overview in AIX 5L Version 5.3 National Language Support

Guide and Reference.

IMQueryLanguage Subroutine

Purpose

Checks to see if the specified input method is supported.

Library

Input Method Library (libIM.a)

Syntax

uint IMQueryLanguage(Name)

IMLanguage Name;

Description

The IMQueryLanguage subroutine checks to see if the input method specified by the Name parameter is

supported.

Parameters

 Name Specifies the input method.

Return Values

The IMQueryLanguage subroutine returns a true value if the specified input method is supported, a false

value if not.

Related Information

The IMClose (“IMClose Subroutine” on page 531) subroutine, IMInitialize (“IMInitialize Subroutine” on

page 535) subroutine.

Input Methods, National Language Support Overview, Understanding Keyboard Mapping contains a list of

supported languages in AIX 5L Version 5.3 National Language Support Guide and Reference.

IMSimpleMapping Subroutine

Purpose

Translates a pair of KeySymbol and State parameters to a string and returns a pointer to this string.

Base Operating System (BOS) Runtime Services (A-P) 543

Library

Input Method Library (libIM.a)

Syntax

caddr_t IMSimpleMapping (IMMap, KeySymbol, State, NBytes)

IMMap IMMap;

KeySym KeySymbol;

uint State;

int * NBytes;

Description

Like the IMAIXMapping subroutine, the IMSimpleMapping subroutine translates a pair of KeySymbol and

State parameters to a string and returns a pointer to this string. The parameters have the same meaning

as those in the IMAIXMapping subroutine.

The IMSimpleMapping subroutine differs from the IMAIXMapping subroutine in that it does not support

the diacritic character sequence or the Alt-NumPad key sequence.

Parameters

 IMMap Identifies the keymap.

KeySymbol Key symbol to which the string is mapped.

State Specifies the state to which the string is mapped.

NBytes Returns the length of the returning string.

Related Information

The IMAIXMapping (“IMAIXMapping Subroutine” on page 527) subroutine, IMFreeKeymap

(“IMFreeKeymap Subroutine” on page 534) subroutine, IMInitializeKeymap (“IMInitializeKeymap

Subroutine” on page 537) subroutine.

Input Method Overview and National Language Support Overview for Programming in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

IMTextCursor Callback Subroutine

Purpose

Asks the application to move the text cursor.

Syntax

int IMTextCursor(IM, Direction, Cursor, UData)

IMObject IM;

uint Direction;

int * Cursor;

caddr_t UData;

Description

The IMTextCursor subroutine is called by the Input Method when the Cursor Up or Cursor Down key is

input to the IMFilter and IMLookupString subroutines.

544 Technical Reference, Volume 1: Base Operating System and Extensions

This subroutine sets the new display cursor position in the text area to the integer pointed to by the Cursor

parameter. The cursor position is relative to the top of the text area. A value of -1 indicates the cursor

should not be moved.

Because the input method does not know the actual length of the screen it always treats a text string as

one-dimensional (a single line). However, in the terminal emulator, the text string sometimes wraps to the

next line. The IMTextCursor subroutine performs this conversion from single-line to multiline text strings.

When you move the cursor up or down, the subroutine interprets the cursor position on the text string

relative to the input method.

This subroutine is provided by applications that use input methods.

Parameters

 IM Indicates the Input Method instance.

Direction Specifies up or down.

Cursor Specifies the new cursor position or -1.

UData Specifies an argument passed by the IMCreate subroutine.

Return Values

If an error occurs, the IMTextCursor subroutine returns the IMError global variable. Otherwise, the

IMNoError value is returned.

Related Information

The IMCreate (“IMCreate Subroutine” on page 531) subroutine, IMFilter (“IMFilter Subroutine” on page

533) subroutine, IMLookupString (“IMLookupString Subroutine” on page 540) subroutine, IMTextDraw

(“IMTextDraw Callback Subroutine”) subroutine.

Input Methods, National Language Support Overview and Using Callbacks in AIX 5L Version 5.3 National

Language Support Guide and Reference.

IMTextDraw Callback Subroutine

Purpose

Tells the application program to draw the text string.

Syntax

int IMTextDraw(IM, TextInfo, UData)

IMObject IM;

IMTextInfo *TextInfo;

caddr_t UData;

Description

The IMTextDraw subroutine is invoked by the Input Method whenever it needs to update the screen with

its internal string. This subroutine tells the application program to draw the text string.

This subroutine is provided by applications that use input methods.

Parameters

 IM Indicates the input method instance.

Base Operating System (BOS) Runtime Services (A-P) 545

TextInfo Points to the IMTextInfo structure.

UData An argument passed by the IMCreate subroutine.

Return Values

If an error occurs, the IMTextDraw subroutine returns the IMError global variable. Otherwise, the

IMNoError value is returned.

Related Information

The IMCreate (“IMCreate Subroutine” on page 531) subroutine.

Input Methods, National Language Support Overview, and Using Callbacks in AIX 5L Version 5.3 National

Language Support Guide and Reference.

IMTextHide Callback Subroutine

Purpose

Tells the application program to hide the text area.

Syntax

int IMTextHide(IM, UData)

IMObject IM;

caddr_t UData;

Description

The IMTextHide subroutine is called by the input method when the text area should be cleared. This

subroutine tells the application program to hide the text area.

This subroutine is provided by applications that use input methods.

Parameters

 IM Indicates the input method instance.

UData Specifies an argument passed by the IMCreate subroutine.

Return Values

If an error occurs, the IMTextHide subroutine returns an IMError value. Otherwise, an IMNoError value is

returned.

Related Information

The IMTextDraw (“IMTextDraw Callback Subroutine” on page 545) subroutine.

Input Methods, National Language Support Overview, and Using Callbacks in AIX 5L Version 5.3 National

Language Support Guide and Reference.

IMTextStart Callback Subroutine

Purpose

Notifies the application program of the length of the pre-editing space.

546 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

int IMTextStart(IM, Space, UData)

IMObject IM;

int *Space;

caddr_t UData;

Description

The IMTextStart subroutine is called by the input method when the pre-editing is started, but prior to

calling the IMTextDraw callback subroutine. This subroutine notifies the input method of the length, in

terms of bytes, of pre-editing space. It sets the length of the available space (>=0) on the display to the

integer pointed to by the Space parameter. A value of -1 indicates that the pre-editing space is dynamic

and has no limit.

This subroutine is provided by applications that use input methods.

Parameters

 IM Indicates the input method instance.

Space Maximum length of pre-editing string.

UData An argument passed by the IMCreate subroutine.

Related Information

The IMCreate (“IMCreate Subroutine” on page 531) subroutine, IMTextDraw (“IMTextDraw Callback

Subroutine” on page 545) subroutine.

Input Methods, Using Callbacks, and National Language Support Overview in AIX 5L Version 5.3 National

Language Support Guide and Reference.

inet_aton Subroutine

Purpose

Converts an ASCII string into an Internet address.

Library

Standard C Library (libc.a)

Syntax

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

int inet_aton (CharString, InternetAddr)

char * CharString;

struct in_addr * InternetAddr;

Description

The inet_aton subroutine takes an ASCII string representing the Internet address in dot notation and

converts it into an Internet address.

Base Operating System (BOS) Runtime Services (A-P) 547

All applications containing the inet_aton subroutine must be compiled with _BSD set to a specific value.

Acceptable values are 43 and 44. In addition, all socket applications must include the BSD libbsd.a

library.

Parameters

 CharString Contains the ASCII string to be converted to an Internet address.

InternetAddr Contains the Internet address that was converted from the ASCII string.

Return Values

Upon successful completion, the inet_aton subroutine returns 1 if CharString is a valid ASCII

representation of an Internet address.

The inet_aton subroutine returns 0 if CharString is not a valid ASCII representation of an Internet address.

Files

 /etc/hosts Contains host names.

/etc/networks Contains network names.

Related Information

The endhostent subroutine, endnetent subroutine, gethostbyaddr subroutine, gethostbyname

subroutine, getnetbyaddr subroutine, getnetbyname subroutine, getnetent subroutine, inet_addr

subroutine, inet_lnaof subroutine, inet_makeaddr subroutine, inet_network subroutine, inet_ntoa

subroutine, sethostent subroutine, setnetent subroutine.

Sockets Overview and Network Address Translation in AIX 5L Version 5.3 Communications Programming

Concepts.

initgroups Subroutine

Purpose

Initializes supplementary group ID.

Library

Standard C Library (libc.a)

Syntax

int initgroups (User, BaseGID)

const char *User;

int BaseGID;

Description

Attention: The initgroups subroutine uses the getgrent and getpwent family of subroutines. If the

program that invokes the initgroups subroutine uses any of these subroutines, calling the initgroups

subroutine overwrites the static storage areas used by these subroutines.

The initgroups subroutine reads the defined group membership of the specified User parameter and sets

the supplementary group ID of the current process to that value. The BaseGID parameter is always

548 Technical Reference, Volume 1: Base Operating System and Extensions

included in the supplementary group ID. The supplementary group is normally the principal user’s group. If

the user is in more than NGROUPS_MAX groups, set in the limits.h file, only NGROUPS_MAX groups

are set, including the BaseGID group.

Parameters

 User Identifies a user.

BaseGID Specifies an additional group to include in the group set.

Return Values

 0 Indicates that the subroutine was success.

-1 Indicates that the subroutine failed. The errno global variable is set to indicate the error.

Related Information

The getgid (“getgid, getegid or gegidx Subroutine” on page 362) subroutine, getgrent, getgrgid,

getgrnam, putgrent, setgrent, or endgrent (“getgrent, getgrgid, getgrnam, setgrent, or endgrent

Subroutine” on page 363) subroutine, getgroups (“getgroups Subroutine” on page 375) subroutine,

setgroups subroutine.

The groups command, setgroups command.

List of Security and Auditing Subroutines, Subroutines, Example Programs, and Libraries in AIX 5L Version

5.3 General Programming Concepts: Writing and Debugging Programs.

initialize Subroutine

Purpose

Performs printer initialization.

Library

None (provided by the formatter).

Syntax

#include <piostruct.h>

int initialize ()

Description

The initialize subroutine is invoked by the formatter driver after the setup subroutine returns.

If the -j flag passed from the qprt command has a nonzero value (true), the initialize subroutine uses the

piocmdout subroutine to send a command string to the printer. This action initializes the printer to the

proper state for printing the file. Any variables referenced by the command string should be the attribute

values from the database, overridden by values from the command line.

If the -j flag passed from the qprt command has a nonzero value (true), any necessary fonts should be

downloaded.

Base Operating System (BOS) Runtime Services (A-P) 549

Return Values

 0 Indicates a successful operation.

If the initialize subroutine detects an error, it uses the piomsgout subroutine to invoke an error message.

It then invokes the pioexit subroutine with a value of PIOEXITBAD.

Note: If either the piocmdout or piogetstr subroutine detects an error, it issues its own error messages

and terminates the print job.

Related Information

The piocmdout subroutine, pioexit subroutine, piogetstr subroutine, piomsgout subroutine, setup

subroutine.

Adding a New Printer Type to Your System, Printer Addition Management Subsystem: Programming

Overview, Understanding Embedded References in Printer Attribute Strings in AIX 5L Version 5.3 Kernel

Extensions and Device Support Programming Concepts.

Example of Print Formatter in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

insque or remque Subroutine

Purpose

Inserts or removes an element in a queue.

Library

Standard C Library (libc.a)

Syntax

#include <search.h>

insque (Element, Pred)

void *Element, *Pred;

 remque (Element)

void *Element;

Description

The insque and remque subroutines manipulate queues built from double-linked lists. Each element in the

queue must be in the form of a qelem structure. The next and prev elements of that structure must point

to the elements in the queue immediately before and after the element to be inserted or deleted.

The insque subroutine inserts the element pointed to by the Element parameter into a queue immediately

after the element pointed to by the Pred parameter.

The remque subroutine removes the element defined by the Element parameter from a queue.

Parameters

 Pred Points to the element in the queue immediately before the element to be inserted or deleted.

Element Points to the element in the queue immediately after the element to be inserted or deleted.

550 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

Searching and Sorting Example Program in AIX 5L Version 5.3 General Programming Concepts: Writing

and Debugging Programs.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

install_lwcf_handler Subroutine

Purpose

Registers the signal handler to dump a lightweight core file for signals that normally cause the generation

of a core file.

Library

PTools Library (libptools_ptr.a)

Syntax

void install_lwcf_handler (void);

Description

The install_lwcf_handler subroutine registers the signal handler to dump a lightweight core file for signals

that normally cause a core file to be generated. The format of lightweight core files complies with the

Parallel Tools Consortium Lightweight Core File Format.

The install_lwcf_handler subroutine uses the LIGHTWEIGHT_CORE environment variable to determine

the target lightweight core file. If the LIGHTWEIGHT_CORE environment variable is defined, a lightweight

core file will be generated. Otherwise, a normal core file will be generated.

If the LIGHTWEIGHT_CORE environment variable is defined without a value, the lightweight core file is

assigned the default file name lw_core and is created under the current working directory if it does not

already exist.

If the LIGHTWEIGHT_CORE environment variable is defined with a value of STDERR, the lightweight

core file is output to the standard error output device of the process. Keyword STDERR is not

case-sensitive.

If the LIGHTWEIGHT_CORE environment variable is defined with the value of a character string other

than STDERR, the string is used as a path name for the lightweight core file generated.

If the target lightweight core file already exists, the traceback information is appended to the file.

The install_lwcf_handler subroutine can be called directly from an application to register the signal

handler. Alternatively, linker option -binitfini:install_lwcf_handler can be used when linking an

application, which specifies to execute the install_lwcf_handler subroutine when the application is

initialized. The advantage of the second method is that the application code does not need to change to

invoke the install_lwcf_handler subroutine.

Related Information

The mt__trce and sigaction subroutines.

Base Operating System (BOS) Runtime Services (A-P) 551

ioctl, ioctlx, ioctl32, or ioctl32x Subroutine

Purpose

Performs control functions associated with open file descriptors.

Library

Standard C Library (libc.a)

BSD Library (libbsd.a)

Syntax

#include <sys/ioctl.h>

#include <sys/types.h>

#include <unistd.h>

#include <stropts.h>

int ioctl (FileDescriptor, Command, Argument)

int FileDescriptor, Command;

void * Argument;

int ioctlx (FileDescriptor, Command, Argument, Ext)

int FileDescriptor , Command ;

void *Argument;

int Ext;

int ioct132 (FileDescriptor, Command , Argument)

int FileDescriptor, Command;

unsigned int Argument;

int ioct132x (FileDescriptor, Command , Argument, Ext)

int FileDescriptor, Command;

unsigned int Argument;

unsigned int Ext;

Description

The ioctl subroutine performs a variety of control operations on the object associated with the specified

open file descriptor. This function is typically used with character or block special files, sockets, or generic

device support such as the termio general terminal interface.

The control operation provided by this function call is specific to the object being addressed, as are the

data type and contents of the Argument parameter. The ioctlx form of this function can be used to pass

an additional extension parameter to objects supporting it. The ioct132 and ioct132x forms of this function

behave in the same way as ioctl and ioctlx, but allow 64-bit applications to call the ioctl routine for an

object that does not normally work with 64-bit applications.

Performing an ioctl function on a file descriptor associated with an ordinary file results in an error being

returned.

Parameters

 FileDescriptor Specifies the open file descriptor for which the control operation is to be performed.

Command Specifies the control function to be performed. The value of this parameter depends on

which object is specified by the FileDescriptor parameter.

552 Technical Reference, Volume 1: Base Operating System and Extensions

Argument Specifies additional information required by the function requested in the Command

parameter. The data type of this parameter (a void pointer) is object-specific, and is

typically used to point to an object device-specific data structure. However, in some

device-specific instances, this parameter is used as an integer.

Ext Specifies an extension parameter used with the ioctlx subroutine. This parameter is

passed on to the object associated with the specified open file descriptor. Although

normally of type int, this parameter can be used as a pointer to a device-specific

structure for some devices.

File Input/Output (FIO) ioctl Command Values

A number of file input/output (FIO) ioctl commands are available to enable the ioctl subroutine to function

similar to the fcntl subroutine:

 FIOCLEX and FIONCLEX Manipulate the close-on-exec flag to determine if a file descriptor should be

closed as part of the normal processing of the exec subroutine. If the flag is

set, the file descriptor is closed. If the flag is clear, the file descriptor is left

open.

The following code sample illustrates the use of the fcntl subroutine to set

and clear the close-on-exec flag:

/* set the close-on-exec flag for fd1 */

fcntl(fd1,F_SETFD,FD_CLOEXEC);

/* clear the close-on-exec flag for fd2 */

fcntl(fd2,F_SETFD,0);

Although the fcntl subroutine is normally used to set the close-on-exec flag,

the ioctl subroutine may be used if the application program is linked with the

Berkeley Compatibility Library (libbsd.a) or the Berkeley Thread Safe Library

(libbsd_r.a) (4.2.1 and later versions). The following ioctl code fragment is

equivalent to the preceding fcntl fragment:

/* set the close-on-exec flag for fd1 */

ioctl(fd1,FIOCLEX,0);

/* clear the close-on-exec flag for fd2 */

ioctl(fd2,FIONCLEX,0);

The third parameter to the ioctl subroutine is not used for the FIOCLEX and

FIONCLEX ioctl commands.

FIONBIO Enables nonblocking I/O. The effect is similar to setting the O_NONBLOCK

flag with the fcntl subroutine. The third parameter to the ioctl subroutine for

this command is a pointer to an integer that indicates whether nonblocking I/O

is being enabled or disabled. A value of 0 disables non-blocking I/O. Any

nonzero value enables nonblocking I/O. A sample code fragment follows:

int flag;

/* enable NBIO for fd1 */

flag = 1;

ioctl(fd1,FIONBIO,&flag);

/* disable NBIO for fd2 */

flag = 0;

ioctl(fd2,FIONBIO,&flag);

FIONREAD Determines the number of bytes that are immediately available to be read on

a file descriptor. The third parameter to the ioctl subroutine for this command

is a pointer to an integer variable where the byte count is to be returned. The

following sample code illustrates the proper use of the FIONREAD ioctl

command:

int nbytes;

ioctl(fd,FIONREAD,&nbytes);

Base Operating System (BOS) Runtime Services (A-P) 553

FIOASYNC Enables a simple form of asynchronous I/O notification. This command

causes the kernel to send SIGIO signal to a process or a process group when

I/O is possible. Only sockets, ttys, and pseudo-ttys implement this

functionality.

The third parameter of the ioctl subroutine for this command is a pointer to

an integer variable that indicates whether the asynchronous I/O notification

should be enabled or disabled. A value of 0 disables I/O notification; any

nonzero value enables I/O notification. A sample code segment follows:

int flag;

/* enable ASYNC on fd1 */

flag = 1;

ioctl(fd, FIOASYNC,&flag);

/* disable ASYNC on fd2 */

flag = 0;

ioctl(fd,FIOASYNC,&flag);

FIOSETOWN Sets the recipient of the SIGIO signals when asynchronous I/O notification

(FIOASYNC) is enabled. The third parameter to the ioctl subroutine for this

command is a pointer to an integer that contains the recipient identifier. If the

value of the integer pointed to by the third parameter is negative, the value is

assumed to be a process group identifier. If the value is positive, it is

assumed to be a process identifier.

Sockets support both process groups and individual process recipients, while

ttys and psuedo-ttys support only process groups. Attempts to specify an

individual process as the recipient will be converted to the process group to

which the process belongs. The following code example illustrates how to set

the recipient identifier:

int owner;

owner = -getpgrp();

ioctl(fd,FIOSETOWN,&owner);

Note: In this example, the asynchronous I/O signals are being enabled on a

process group basis. Therefore, the value passed through the owner

parameter must be a negative number.

The following code sample illustrates enabling asynchronous I/O signals to an

individual process:

int owner;

owner = getpid();

ioctl(fd,FIOSETOWN,&owner);

FIOGETOWN Determines the current recipient of the asynchronous I/O signals of an object

that has asynchronous I/O notification (FIOASYNC) enabled. The third

parameter to the ioctl subroutine for this command is a pointer to an integer

used to return the owner ID. For example:

int owner;

ioctl(fd,FIOGETOWN,&owner);

If the owner of the asynchronous I/O capability is a process group, the value

returned in the reference parameter is negative. If the owner is an individual

process, the value is positive.

Return Values

If the ioctl subroutine fails, a value of -1 is returned. The errno global variable is set to indicate the error.

The ioctl subroutine fails if one or more of the following are true:

 EBADF The FileDescriptor parameter is not a valid open file

descriptor.

554 Technical Reference, Volume 1: Base Operating System and Extensions

EFAULT The Argument or Ext parameter is used to point to data

outside of the process address space.

EINTR A signal was caught during the ioctl or ioctlx subroutine

and the process had not enabled re-startable subroutines

for the signal.

EINTR A signal was caught during the ioctl , ioctlx , ioctl32 , or

ioct132x subroutine and the process had not enabled

re-startable subroutines for the signal.

EINVAL The Command or Argument parameter is not valid for the

specified object.

ENOTTY The FileDescriptor parameter is not associated with an

object that accepts control functions.

ENODEV The FileDescriptor parameter is associated with a valid

character or block special file, but the supporting device

driver does not support the ioctl function.

ENXIO The FileDescriptor parameter is associated with a valid

character or block special file, but the supporting device

driver is not in the configured state.

Object-specific error codes are defined in the documentation for associated objects.

Related Information

The ddioctl device driver entry point and the fp_ioctl kernel service in AIX 5L Version 5.3 Technical

Reference: Kernel and Subsystems.

The Special Files Overview in AIX 5L Version 5.3 Files Reference.

The Input and Output Handling Programmer’s Overview, the tty Subsystem Overview, in AIX 5L Version

5.3 General Programming Concepts: Writing and Debugging Programs.

The Sockets Overview and Understanding Socket Data Transfer in AIX 5L Version 5.3 Communications

Programming Concepts.

isblank Subroutine

Purpose

Tests for a blank character.

Syntax

#include <ctype.h>

int isblank (c)

int c;

Description

The isblank subroutine tests whether the c parameter is a character of class blank in the program’s

current locale.

The c parameter is a type int, the value of which the application shall ensure is a character representable

as an unsigned char or equal to the value of the macro EOF. If the parameter has any other value, the

behavior is undefined.

Base Operating System (BOS) Runtime Services (A-P) 555

Parameters

 c Specifies the character to be tested.

Return Values

The isblank subroutine returns nonzero if c is a <blank>; otherwise, it returns 0.

Related Information

The “ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or

isascii Subroutines” on page 203.

setlocale Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions

Volume 2.

isendwin Subroutine

Purpose

Determines whether the endwin subroutine was called without any subsequent refresh calls.

Library

Curses Library (libcurses.a)

Syntax

#include <curses.h>

isendwin()

Description

The isendwin subroutine determines whether the endwin subroutine was called without any subsequent

refresh calls. If the endwin was called without any subsequent calls to the wrefresh or doupdate

subroutines, the isendwin subroutine returns TRUE.

Return Values

 TRUE Indicates the endwin subroutine was called without any subsequent calls to the wrefresh or doupdate

subroutines.

FALSE Indicates subsequest calls to the refresh subroutines.

Related Information

The doupdate subroutine, endwin subroutine, wrefresh subroutine.

Curses Overview for Programming, Initializing Curses, List of Curses Subroutines in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

isfinite Macro

Purpose

Tests for finite value.

556 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <math.h>

int isfinite (x)

real-floating x;

Description

The isfinite macro determines whether its argument has a finite value (zero, subnormal, or normal, and

not infinite or NaN). An argument represented in a format wider than its semantic type is converted to its

semantic type. Determination is based on the type of the argument.

Parameters

 x Specifies the value to be tested.

Return Values

The isfinite macro returns a nonzero value if its argument has a finite value.

Related Information

“fpclassify Macro” on page 303, “isinf Subroutine” on page 558, “class, _class, finite, isnan, or unordered

Subroutines” on page 165, “isnormal Macro” on page 561.

The signbit Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions

Volume 2.

math.h in AIX 5L Version 5.3 Files Reference.

isgreater Macro

Purpose

Tests if x is greater than y.

Syntax

#include <math.h>

int isgreater (x, y)

real-floating x;

real-floating y;

Description

The isgreater macro determines whether its first argument is greater than its second argument. The value

of isgreater(x, y) is equal to (x) > (y); however, unlike (x) > (y), isgreater(x, y) does not raise the invalid

floating-point exception when x and y are unordered.

Parameters

 x Specifies the first value to be compared.

y Specifies the first value to be compared.

Base Operating System (BOS) Runtime Services (A-P) 557

Return Values

Upon successful completion, the isgreater macro returns the value of (x) > (y).

If x or y is NaN, 0 is returned.

Related Information

“isgreaterequal Subroutine,” “isless Macro” on page 559, “islessequal Macro” on page 560, “islessgreater

Macro” on page 560, and “isunordered Macro” on page 562.

math.h in AIX 5L Version 5.3 Files Reference.

isgreaterequal Subroutine

Purpose

Tests if x is greater than or equal to y.

Syntax

#include <math.h>

int isgreaterequal (x, y)

real-floating x;

real-floating y;

Description

The isgreaterequal macro determines whether its first argument is greater than or equal to its second

argument. The value of isgreaterequal (x, y) is equal to (x) >= (y); however, unlike (x) >= (y),

isgreaterequal (x, y) does not raise the invalid floating-point exception when x and y are unordered.

Parameters

 x Specifies the first value to be compared.

y Specifies the second value to be compared.

Return Values

Upon successful completion, the isgreaterequal macro returns the value of (x) >= (y).

If x or y is NaN, 0 is returned.

Related Information

“isgreater Macro” on page 557, “isless Macro” on page 559, “islessequal Macro” on page 560,

“islessgreater Macro” on page 560, and “isunordered Macro” on page 562.

math.h in AIX 5L Version 5.3 Files Reference.

isinf Subroutine

Purpose

Tests for infinity.

558 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <math.h>

int isinf (x)

real-floating x;

Description

The isinf macro determines whether its argument value is an infinity (positive or negative). An argument

represented in a format wider than its semantic type is converted to its semantic type. Determination is

based on the type of the argument.

Parameters

 x Specifies the value to be checked.

Return Values

The isinf macro returns a nonzero value if its argument has an infinite value.

Related Information

“fpclassify Macro” on page 303, “isfinite Macro” on page 556, “class, _class, finite, isnan, or unordered

Subroutines” on page 165, “isnormal Macro” on page 561.

The signbit Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions

Volume 2.

math.h in AIX 5L Version 5.3 Files Reference.

isless Macro

Purpose

Tests if x is less than y.

Syntax

#include <math.h>

int isless (x, y)

real-floating x;

real-floating y;

Description

The isless macro determines whether its first argument is less than its second argument. The value of

isless(x, y) is equal to (x) < (y); however, unlike (x) < (y), isless(x, y) does not raise the invalid

floating-point exception when x and y are unordered.

Parameters

 x Specifies the first value to be compared.

y Specifies the second value to be compared.

Base Operating System (BOS) Runtime Services (A-P) 559

Return Values

Upon successful completion, the isless macro returns the value of (x) < (y).

If x or y is NaN, 0 is returned.

Related Information

“isgreater Macro” on page 557, “isgreaterequal Subroutine” on page 558, “islessequal Macro,”

“islessgreater Macro,” and “isunordered Macro” on page 562.

math.h in AIX 5L Version 5.3 Files Reference.

islessequal Macro

Purpose

Tests if x is less than or equal to y.

Syntax

#include <math.h>

int islessequal (x, y)

real-floating x;

real-floating y;

Description

The islessequal macro determines whether its first argument is less than or equal to its second argument.

The value of islessequal(x, y) is equal to (x) <= (y); however, unlike (x) <= (y), islessequal(x, y) does not

raise the invalid floating-point exception when x and y are unordered.

Parameters

 x Specifies the first value to be compared.

y Specifies the second value to be compared.

Return Values

Upon successful completion, the islessequal macro returns the value of (x) <= (y).

If x or y is NaN, 0 is returned.

Related Information

“isgreater Macro” on page 557, “isgreaterequal Subroutine” on page 558, “islessequal Macro,”

“islessgreater Macro,” and “isunordered Macro” on page 562.

math.h in AIX 5L Version 5.3 Files Reference.

islessgreater Macro

Purpose

Tests if x is less than or greater than y.

560 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <math.h>

int islessgreater (x, y)

real-floating x;

real-floating y;

Description

The islessgreater macro determines whether its first argument is less than or greater than its second

argument. The islessgreater(x, y) macro is similar to (x) < (y) || (x) > (y); however, islessgreater(x, y)

does not raise the invalid floating-point exception when x and y are unordered (nor does it evaluate x and

y twice).

Parameters

 x Specifies the first value to be compared.

y Specifies the second value to be compared.

Return Values

Upon successful completion, the islessgreater macro returns the value of (x) < (y) || (x) > (y).

If x or y is NaN, 0 is returned.

Related Information

“isgreater Macro” on page 557, “isgreaterequal Subroutine” on page 558, “isless Macro” on page 559,

“islessequal Macro” on page 560, and “isunordered Macro” on page 562.

math.h in AIX 5L Version 5.3 Files Reference.

isnormal Macro

Purpose

Tests for a normal value.

Syntax

#include <math.h>

int isnormal (x)

real-floating x;

Description

The isnormal macro determines whether its argument value is normal (neither zero, subnormal, infinite,

nor NaN) or not. An argument represented in a format wider than its semantic type is converted to its

semantic type. Determination is based on the type of the argument.

Parameters

 x Specifies the value to be tested.

Return Values

The isnormal macro returns a nonzero value if its argument has a normal value.

Base Operating System (BOS) Runtime Services (A-P) 561

Related Information

“fpclassify Macro” on page 303, “isfinite Macro” on page 556, “isinf Subroutine” on page 558, “class,

_class, finite, isnan, or unordered Subroutines” on page 165.

The signbit Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions

Volume 2.

math.h in AIX 5L Version 5.3 Files Reference.

isunordered Macro

Purpose

Tests if arguments are unordered.

Syntax

#include <math.h>

int isunordered (x, y)

real-floating x;

real-floating y;

Description

The isunordered macro determines whether its arguments are unordered.

Parameters

 x Specifies the first value in the order.

y Specifies the second value in the order.

Return Values

Upon successful completion, the isunordered macro returns 1 if its arguments are unordered, and 0

otherwise.

If x or y is NaN, 0 is returned.

Related Information

“isgreater Macro” on page 557, “isgreaterequal Subroutine” on page 558, “isless Macro” on page 559,

“islessequal Macro” on page 560, and “islessgreater Macro” on page 560.

math.h in AIX 5L Version 5.3 Files Reference.

iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint,

iswpunct, iswspace, iswupper, or iswxdigit Subroutine

Purpose

Tests a wide character for membership in a specific character class.

Library

Standard C Library (libc.a)

562 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <wchar.h>

int iswalnum (WC)

wint_t WC;

int iswalpha (WC)

wint_t WC;

int iswcntrl (WC)

wint_t WC;

int iswdigit (WC)

wint_t WC;

int iswgraph (WC)

wint_t WC;

int iswlower (WC)

wint_t WC;

int iswprint (WC)

wint_t WC;

int iswpunct (WC)

wint_t WC;

int iswspace (WC)

wint_t WC;

int iswupper (WC)

wint_t WC;

int iswxdigit (WC)

wint_t WC;

Description

The isw subroutines check the character class status of the wide character code specified by the WC

parameter. Each subroutine tests to see if a wide character is part of a different character class. If the

wide character is part of the character class, the isw subroutine returns true; otherwise, it returns false.

Each subroutine is named by adding the isw prefix to the name of the character class that the subroutine

tests. For example, the iswalpha subroutine tests whether the wide character specified by the WC

parameter is an alphabetic character. The character classes are defined as follows:

 alnum Alphanumeric character.

alpha Alphabetic character.

cntrl Control character. No characters in the alpha or print classes are included.

digit Numeric digit character.

graph Graphic character for printing, not including the space character or cntrl characters. Includes all

characters in the digit and punct classes.

lower Lowercase character. No characters in cntrl, digit, punct, or space are included.

print Print character. All characters in the graph class are included, but no characters in cntrl are included.

punct Punctuation character. No characters in the alpha, digit, or cntrl classes, or the space character are

included.

space Space characters.

upper Uppercase character.

xdigit Hexadecimal character.

Parameters

 WC Specifies a wide character for testing.

Base Operating System (BOS) Runtime Services (A-P) 563

Return Values

If the wide character tested is part of the particular character class, the isw subroutine returns a nonzero

value; otherwise it returns a value of 0.

Related Information

The iswctype subroutine, (“iswctype or is_wctype Subroutine” on page 565)setlocale subroutine,

towlower subroutine, towupper subroutine wctype subroutine.

Subroutines, Example Programs, and Libraries, Wide Character Classification Subroutines in AIX 5L

Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

iswblank Subroutine

Purpose

Tests for a blank wide-character code.

Syntax

#include <wctype.h>

int iswblank (wc)

wint_t wc;

Description

The iswblank subroutine tests whether the wc parameter is a wide-character code representing a

character of class blank in the program’s current locale.

The wc parameter is a wint_t, the value of which the application ensures is a wide-character code

corresponding to a valid character in the current locale, or equal to the value of the macro WEOF. If the

parameter has any other value, the behavior is undefined.

Parameters

 wc Specifies the value to be tested.

Return Values

The iswblank subroutine returns a nonzero value if the wc parameter is a blank wide-character code;

otherwise, it returns a 0.

Related Information

“iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, or

iswxdigit Subroutine” on page 562 and “iswctype or is_wctype Subroutine” on page 565.

setlocale Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions

Volume 2.

wctype.h in AIX 5L Version 5.3 Files Reference.

564 Technical Reference, Volume 1: Base Operating System and Extensions

iswctype or is_wctype Subroutine

Purpose

Determines properties of a wide character.

Library

Standard C Library (libc. a)

Syntax

#include <wchar.h>

int iswctype (WC, Property)

wint_t WC;

wctype_t Property;

int is_wctype (WC, Property)

wint_t WC;

wctype_t Property;

Description

The iswctype subroutine tests the wide character specified by the WC parameter to determine if it has the

property specified by the Property parameter. The iswctype subroutine is defined for the wide-character

null value and for values in the character range of the current code set, defined in the current locale. The

is_wctype subroutine is identical to the iswctype subroutine.

The iswctype subroutine adheres to X/Open Portability Guide Issue 5.

Parameters

 WC Specifies the wide character to be tested.

Property Specifies the property for which to test.

Return Values

If the WC parameter has the property specified by the Property parameter, the iswctype subroutine

returns a nonzero value. If the value specified by the WC parameter does not have the property specified

by the Property parameter, the iswctype subroutine returns a value of zero. If the value specified by the

WC parameter is not in the subroutine’s domain, the result is undefined. If the value specified by the

Property parameter is not valid (that is, not obtained by a call to the wctype subroutine, or the Property

parameter has been invalidated by a subsequent call to the setlocale subroutine that has affected the

LC_CTYPE category), the result is undefined.

Related Information

The “iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, or

iswxdigit Subroutine” on page 562.

Subroutines, Example Programs, and Libraries, Wide Character Classification Subroutines in AIX 5L

Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

Base Operating System (BOS) Runtime Services (A-P) 565

jcode Subroutines

Purpose

Perform string conversion on 8-bit processing codes.

Library

Standard C Library (libc.a)

Syntax

#include <jcode.h>

char *jistosj(String1, String2)

char *String1, *String2;

char *jistouj(String1, String2)

char *String1, *String2;

char *sjtojis(String1, String2)

char *String1, *String2;

char *sjtouj(String1, String2)

char *String1, *String2;

char *ujtojis(String1, String2)

char *String1, *String2;

char *ujtosj(String1, String2)

char *String1, *String2;

char *cjistosj(String1, String2)

char *String1, *String2;

char *cjistouj(String1, String2)

char *String1, *String2;

char *csjtojis(String1, String2)

char *String1, *String2;

char *csjtouj(String1, String2)

char *String1, *String2;

char *cujtojis(String1, String2)

char *String1, *String2;

char *cujtosj(String1, String2)

char *String1, *String2;

Description

The jistosj, jistouj, sjtojis, sjtouj, ujtojis, and ujtosj subroutines perform string conversion on 8-bit

processing codes. The String2 parameter is converted and the converted string is stored in the String1

parameter. The overflow of the String1 parameter is not checked. Also, the String2 parameter must be a

valid string. Code validation is not permitted.

The jistosj subroutine converts JIS to SJIS. The jistouj subroutine converts JIS to UJIS. The sjtojis

subroutine converts SJIS to JIS. The sjtouj subroutine converts SJIS to UJIS. The ujtojis subroutine

converts UJIS to JIS. The ujtosj subroutine converts UJIS to SJIS.

The cjistosj, cjistouj, csjtojis, csjtouj, cujtojis, and cujtosj macros perform code conversion on 8-bit

processing JIS Kanji characters. A character is removed from the String2 parameter, and its code is

converted and stored in the String1 parameter. The String1 parameter is returned. The validity of the

String2 parameter is not checked.

566 Technical Reference, Volume 1: Base Operating System and Extensions

The cjistosj macro converts from JIS to SJIS. The cjistouj macro converts from JIS to UJIS. The csjtojis

macro converts from SJIS to JIS. The csjtouj macro converts from SJIS to UJIS. The cujtojis macro

converts from UJIS to JIS. The cujtosj macro converts from UJIS to SJIS.

Parameters

 String1 Stores converted string or code.

String2 Stores string or code to be converted.

Related Information

The “Japanese conv Subroutines” and “Japanese ctype Subroutines” on page 569.

List of String Manipulation Services in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

National Language Support Overview for Programming in AIX 5L Version 5.3 National Language Support

Guide and Reference.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

Japanese conv Subroutines

Purpose

Translates predefined Japanese character classes.

Library

Standard C Library (libc.a)

Syntax

#include <ctype.h>

int atojis (Character)

int Character;

int jistoa (Character)

int Character;

int _atojis (Character)

int Character;

int _jistoa (Character)

int Character;

int tojupper (Character)

int Character;

int tojlower (Character)

int Character;

int _tojupper (Character)

int Character;

Base Operating System (BOS) Runtime Services (A-P) 567

int _tojlower (Character)

int Character;

int toujis (Character)

int Character;

int kutentojis (Character)

int Character;

int tojhira (Character)

int Character;

int tojkata (Character)

int Character;

Description

When running the operating system with Japanese Language Support on your system, the legal value of

the Character parameter is in the range from 0 to NLCOLMAX.

The jistoa subroutine converts an SJIS ASCII equivalent to the corresponding ASCII equivalent. The

atojis subroutine converts an ASCII character to the corresponding SJIS equivalent. Other values are

returned unchanged.

The _jistoa and _atojis routines are macros that function like the jistoa and atojis subroutines, but are

faster and have no error checking function.

The tojlower subroutine converts a SJIS uppercase letter to the corresponding SJIS lowercase letter. The

tojupper subroutine converts an SJIS lowercase letter to the corresponding SJIS uppercase letter. All

other values are returned unchanged.

The _tojlower and _tojupper routines are macros that function like the tojlower and tojupper

subroutines, but are faster and have no error-checking function.

The toujis subroutine sets all parameter bits that are not 16-bit SJIS code to 0.

The kutentojis subroutine converts a kuten code to the corresponding SJIS code. The kutentojis routine

returns 0 if the given kuten code is invalid.

The tojhira subroutine converts an SJIS katakana character to its SJIS hiragana equivalent. Any value

that is not an SJIS katakana character is returned unchanged.

The tojkata subroutine converts an SJIS hiragana character to its SJIS katakana equivalent. Any value

that is not an SJIS hiragana character is returned unchanged.

The _tojhira and _tojkata subroutines attempt the same conversions without checking for valid input.

For all functions except the toujis subroutine, the out-of-range parameter values are returned without

conversion.

Parameters

 Character Character to be converted.

Pointer Pointer to the escape sequence.

CharacterPointer Pointer to a single NLchar data type.

568 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The “ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or

isascii Subroutines” on page 203, “conv Subroutines” on page 181, “getc, getchar, fgetc, or getw

Subroutine” on page 340, “getwc, fgetwc, or getwchar Subroutine” on page 468, and setlocale subroutine.

List of Character Manipulation Subroutines and Subroutines, Example Programs, and Libraries in AIX 5L

Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference

Japanese ctype Subroutines

Purpose

Classify characters.

Library

Standard Character Library (libc.a)

Syntax

#include <ctype.h>

int isjalpha (Character)

int Character;

int isjupper (Character)

int Character;

int isjlower (Character)

int Character;

int isjlbytekana (Character)

int Character;

int isjdigit (Character)

int Character;

int isjxdigit (Character)

int Character;

int isjalnum (Character)

int Character;

int isjspace (Character)

int Character;

int isjpunct (Character)

int Character;

int isjparen (Character)

int Character;

int isparent (Character)

Base Operating System (BOS) Runtime Services (A-P) 569

intCharacter;

int isjprint (Character)

int Character;

int isjgraph (Character)

int Character;

int isjis (Character)

int Character;

int isjhira (wc)

wchar_t wc;

int isjkanji (wc)

wchar_wc;

int isjkata (wc)

wchar_t wc;

Description

The Japanese ctype subroutines classify character-coded integer values specified in a table. Each of

these subroutines returns a nonzero value for True and 0 for False.

Parameters

 Character Character to be tested.

Return Values

The isjprint and isjgraph subroutines return a 0 value for user-defined characters.

Related Information

The “ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or

isascii Subroutines” on page 203, and setlocale subroutine.

List of Character Manipulation Services and Subroutines, Example Programs, and Libraries in AIX 5L

Version 5.3 General Programming Concepts: Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

kill or killpg Subroutine

Purpose

Sends a signal to a process or to a group of processes.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <signal.h>

570 Technical Reference, Volume 1: Base Operating System and Extensions

int kill(

 Process,

 Signal)

pid_t Process;

int Signal;

killpg(

 ProcessGroup, Signal)

int ProcessGroup, Signal;

Description

The kill subroutine sends the signal specified by the Signal parameter to the process or group of

processes specified by the Process parameter.

To send a signal to another process, either the real or the effective user ID of the sending process must

match the real or effective user ID of the receiving process, and the calling process must have root user

authority.

The processes that have the process IDs of 0 and 1 are special processes and are sometimes referred to

here as proc0 and proc1, respectively.

Processes can send signals to themselves.

Note: Sending a signal does not imply that the operation is successful. All signal operations must pass

the access checks prescribed by each enforced access control policy on the system.

The following interface is provided for BSD Compatibility:

killpg(ProcessGroup, Signal)

int ProcessGroup; Signal;

This interface is equivalent to:

if (ProcessGroup < 0)

{

 errno = ESRCH;

 return (-1);

}

return (kill(-ProcessGroup, Signal));

Base Operating System (BOS) Runtime Services (A-P) 571

Parameters

 Process Specifies the ID of a process or group of processes.

If the Process parameter is greater than 0, the signal specified by the Signal parameter is

sent to the process identified by the Process parameter.

If the Process parameter is 0, the signal specified by the Signal parameter is sent to all

processes, excluding proc0 and proc1, whose process group ID matches the process group

ID of the sender.

If the value of the Process parameter is a negative value other than -1 and if the calling

process passes the access checks for the process to be signaled, the signal specified by the

Signal parameter is sent to all the processes, excluding proc0 and proc1. If the user ID of the

calling process has root user authority, all processes, excluding proc0 and proc1, are

signaled.

If the value of the Process parameter is a negative value other than -1, the signal specified

by the Signal parameter is sent to all processes having a process group ID equal to the

absolute value of the Process parameter.

If the value of the Process parameter is -1, the signal specified by the Signal parameter is

sent to all processes which the process has permission to send that signal.

Signal Specifies the signal. If the Signal parameter is a null value, error checking is performed but

no signal is sent. This parameter is used to check the validity of the Process parameter.

ProcessGroup Specifies the process group.

Return Values

Upon successful completion, the kill subroutine returns a value of 0. Otherwise, a value of -1 is returned

and the errno global variable is set to indicate the error.

Error Codes

The kill subroutine is unsuccessful and no signal is sent if one or more of the following are true:

 EINVAL The Signal parameter is not a valid signal number.

EINVAL The Signal parameter specifies the SIGKILL, SIGSTOP, SIGTSTP, or SIGCONT signal, and the Process

parameter is 1 (proc1).

ESRCH No process can be found corresponding to that specified by the Process parameter.

EPERM The real or effective user ID does not match the real or effective user ID of the receiving process, or else

the calling process does not have root user authority.

Related Information

The getpid, getpgrp, or getppid (“getpid, getpgrp, or getppid Subroutine” on page 398) subroutine,

setpgid or setpgrp subroutine, sigaction, sigvec, or signal subroutine.

The kill command.

Signal Management in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs provides more information about signal management in multi-threaded processes.

kleenup Subroutine

Purpose

Cleans up the run-time environment of a process.

572 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Syntax

int kleenup(FileDescriptor, SigIgn, SigKeep)

int FileDescriptor;

int SigIgn[];

int SigKeep[];

Description

The kleenup subroutine cleans up the run-time environment for a trusted process by:

v Closing unnecessary file descriptors.

v Resetting the alarm time.

v Resetting signal handlers.

v Clearing the value of the real directory read flag described in the ulimit subroutine.

v Resetting the ulimit value, if it is less than a reasonable value (8192).

Parameters

 FileDescriptor Specifies a file descriptor. The kleenup subroutine closes all file descriptors greater than

or equal to the FileDescriptor parameter.

SigIgn Points to a list of signal numbers. If these are nonnull values, this list is terminated by 0s.

Any signals specified by the SigIgn parameter are set to SIG_IGN. The handling of all

signals not specified by either this list or the SigKeep list are set to SIG_DFL. Some

signals cannot be reset and are left unchanged.

SigKeep Points to a list of signal numbers. If these are nonnull values, this list is terminated by 0s.

The handling of any signals specified by the SigKeep parameter is left unchanged. The

handling of all signals not specified by either this list or the SigIgn list are set to

SIG_DFL. Some signals cannot be reset and are left unchanged.

Return Values

The kleenup subroutine is always successful and returns a value of 0. Errors in closing files are not

reported. It is not an error to attempt to modify a signal that the process is not allowed to handle.

Related Information

The ulimit subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

knlist Subroutine

Purpose

Translates names to addresses in the running system.

Syntax

#include <nlist.h>

Base Operating System (BOS) Runtime Services (A-P) 573

int knlist(NList, NumberOfElements, Size)

struct nlist *NList;

int NumberOfElements;

int Size;

Description

The knlist subroutine allows a program to examine the list of symbols exported by kernel routines to other

kernel modules.

The first field in the nlist structure is an input parameter to the knlist subroutine. The n_value field is

modified by the knlist subroutine, and all the others remain unchanged. The nlist structure consists of the

following fields:

 char *n_name Specifies the name of the symbol whose attributes are to be retrieved.

long n_value Indicates the virtual address of the object. This will also be the offset when using segment

descriptor 0 as the extension parameter of the readx or writex subroutines against the

/dev/mem file.

If the name is not found, all fields, other than n_name, are set to 0.

The nlist.h file is automatically included by the a.out.h file for compatibility. However, do not include the

a.out.h file if you only need the information necessary to use the knlist subroutine. If you do include the

a.out.h file, follow the #include statement with the line:

#undef n_name

Notes:

1. If both the nlist.h and netdb.h files are to be included, the netdb.h file should be included before the

nlist.h file in order to avoid a conflict with the n_name structure member. Likewise, if both the a.out.h

and netdb.h files are to be included, the netdb.h file should be included before the a.out.h file to

avoid a conflict with the n_name structure.

2. If the netdb.h file and either the nlist.h or syms.h file are included, the n_name field will be defined as

_n._n_name. This definition allows you to access the n_name field in the nlist or syment structure. If you

need to access the n_name field in the netent structure, undefine the n_name field by entering:

#undef n_name

before accessing the n_name field in the netent structure. If you need to access the n_name field in a

syment or nlist structure after undefining it, redefine the n_name field with:

#define n_name _n._n_name

Parameters

 NList Points to an array of nlist structures.

NumberOfElements Specifies the number of structures in the array of nlist structures.

Size Specifies the size of each structure.

Return Values

Upon successful completion, knlist returns a value of 0. Otherwise, a value of -1 is returned, and the

errno global variable is set to indicate the error.

Error Codes

The knlist subroutine fails when the following is true:

 EFAULT Indicates that the NList parameter points outside the limit of the array of nlist structures.

574 Technical Reference, Volume 1: Base Operating System and Extensions

kpidstate Subroutine

Purpose

Returns the status of a process.

Syntax

kpidstate (pid)

pid_t pid;

Description

The kpidstate subroutine returns the state of a process specified by the pid parameter. The kpidstate

subroutine can only be called by a process.

Parameters

 pid Specifies the product ID.

Return Values

If the pid parameter is not valid, KP_NOTFOUND is returned. If the pid parameter is valid, the following

settings in the process state determine what is returned:

 SNONE Return KP_NOTFOUND.

SIDL Return KP_INITING.

SZOMB Return KP_EXITING, also if SEXIT in pv_flag.

SSTOP Return KP_STOPPED.

Otherwise the pid is alive and KP_ALIVE is returned.

Error Codes

_lazySetErrorHandler Subroutine

Purpose

Installs an error handler into the lazy loading runtime system for the current process.

Library

Standard C Library (libc.a)

Syntax

#include <sys/ldr.h>

#include <sys/errno.h>

typedef void (*_handler_t(

char *_module,

char *_symbol,

unsigned int _errVal))();

handler_t *_lazySetErrorHandler(err_handler)

handler_t *err_handler;

Base Operating System (BOS) Runtime Services (A-P) 575

Description

This function allows a process to install a custom error handler to be called when a lazy loading reference

fails to find the required module or function. This function should only be used when the main program or

one of its dependent modules was linked with the -blazy option. To call _lazySetErrorHandler from a

module that is not linked with the -blazy option, you must use the -lrtl option. If you use -blazy, you do

not need to specify -lrtl.

This function is not thread safe. The calling program should ensure that _lazySetErrorHandler is not

called by multiple threads at the same time.

The user-supplied error handler may print its own error message, provide a substitute function to be used

in place of the called function, or call the longjmp subroutine. To provide a substitute function that will be

called instead of the originally referenced function, the error handler should return a pointer to the

substitute function. This substitute function will be called by all subsequent calls to the intended function

from the same module. If the value returned by the error handler appears to be invalid (for example, a

NULL pointer), the default error handler will be used.

Each calling module resolves its lazy references independent of other modules. That is, if module A and B

both call foo subroutine in module C, but module C does not export foo subroutine, the error handler will

be called once when foo subroutine is called for the first time from A, and once when foo subroutine is

called for the first time from B.

The default lazy loading error handler will print a message containing: the name of module that the

program required; the name of the symbol being accessed; and the error value generated by the failure.

Since the default handler considers a lazy load error to be fatal, the process will exit with a status of 1.

During execution of a program that utilizes lazy loading, there are a few conditions that may cause an

error to occur. In all cases the current error handler will be called.

1. The referenced module (which is to be loaded upon function invocation) is unavailable or cannot be

loaded. The errVal parameter will probably indicate the reason for the error if a system call failed.

2. A function is referenced, but the loaded module does not contain a definition for the function. In this

case, errVal parameter will be EINVAL.

Some possibilities as to why either of these errors might occur:

1. The LIBPATH environment variable may contain a set of search paths that cause the application to

load the wrong version of a module.

2. A module has been changed and no longer provides the same set of symbols that it did when the

application was built.

3. The load subroutine fails due to a lack of resources available to the process.

Parameters

 err_handler A pointer to the new error handler function. The new function should accept 3 arguments:

module The name of the referenced module.

symbol The name of the function being called at the time the failure occurred.

errVal The value of errno at the time the failure occurred, if a system call used to load the

module fails. For other failures, errval may be EINVAL or ENOMEM.

Note that the value of module or symbol may be NULL if the calling module has somehow been corrupted.

If the err_handler parameter is NULL, the default error handler is restored.

576 Technical Reference, Volume 1: Base Operating System and Extensions

Return Value

The function returns a pointer to the previous user-supplied error handler, or NULL if the default error

handler was in effect.

Related Information

The load (“load Subroutine” on page 717) subroutine.

The ld command.

The Shared Library Overview and Subroutines Overview in AIX 5L Version 5.3 General Programming

Concepts.

The Shared Library and Lazy Loading in AIX 5L Version 5.3 General Programming Concepts.

l3tol or ltol3 Subroutine

Purpose

Converts between 3-byte integers and long integers.

Library

Standard C Library (libc.a)

Syntax

void l3tol (LongPointer, CharacterPointer, Number)

long *LongPointer;

char *CharacterPointer;

int Number;

void ltol3 (CharacterPointer, LongPointer, Number)

char *CharacterPointer;

long *LongPointer;

int Number;

Description

The l3tol subroutine converts a list of the number of 3-byte integers specified by the Number parameter

packed into a character string pointed to by the CharacterPointer parameter into a list of long integers

pointed to by the LongPointer parameter.

The ltol3 subroutine performs the reverse conversion, from long integers (the LongPointer parameter) to

3-byte integers (the CharacterPointer parameter).

These functions are useful for file system maintenance where the block numbers are 3 bytes long.

Parameters

 LongPointer Specifies the address of a list of long integers.

CharacterPointer Specifies the address of a list of 3-byte integers.

Number Specifies the number of list elements to convert.

Related Information

The filsys.h file format.

Base Operating System (BOS) Runtime Services (A-P) 577

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

l64a_r Subroutine

Purpose

Converts base-64 long integers to strings.

Library

Thread-Safe C Library (libc_r.a)

Syntax

#include <stdlib.h>

int l64a_r (Convert, Buffer, Length)

long Convert;

char * Buffer;

int Length;

Description

The l64a_r subroutine converts a given long integer into a base-64 string.

Programs using this subroutine must link to the libpthreads.a library.

For base-64 characters, the following ASCII characters are used:

 Character Description

. Represents 0.

/ Represents 1.

0 -9 Represents the numbers 2-11.

A-Z Represents the numbers 12-37.

a-z Represents the numbers 38-63.

The l64a_r subroutine places the converted base-64 string in the buffer pointed to by the Buffer

parameter.

Parameters

 Convert Specifies the long integer that is to be converted into a base-64 ASCII string.

Buffer Specifies a working buffer to hold the converted long integer.

Length Specifies the length of the Buffer parameter.

Return Values

 0 Indicates that the subroutine was successful.

-1 Indicates that the subroutine was not successful. If the l64a_r subroutine is not successful, the errno global

variable is set to indicate the error.

578 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

If the l64a_r subroutine is not successful, it returns the following error code:

 EINVAL The Buffer parameter value is invalid or too small to hold the resulting ASCII string.

Related Information

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

List of Multithread Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

LAPI_Addr_get Subroutine

Purpose

Retrieves a function address that was previously registered using LAPI_Addr_set.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Addr_get(hndl, addr, addr_hndl)

lapi_handle_t hndl;

void **addr;

int addr_hndl;

FORTRAN Syntax

include ’lapif.h’

LAPI_ADDR_GET(hndl, addr, addr_hndl, ierror)

INTEGER hndl

INTEGER (KIND=LAPI_ADDR_TYPE) :: addr

INTEGER addr_hndl

INTEGER ierror

Description

Type of call: local address manipulation

Use this subroutine to get the pointer that was previously registered with LAPI and is associated with the

index addr_hndl. The value of addr_hndl must be in the range 1 <= addr_hndl < LOC_ADDRTBL_SZ.

Parameters

INPUT

hndl Specifies the LAPI handle.

addr_hndl Specifies the index of the function address to retrieve. You should have previously

registered the address at this index using LAPI_Addr_set. The value of this parameter

must be in the range 1 <= addr_hndl < LOC_ADDRTBL_SZ.

OUTPUT

Base Operating System (BOS) Runtime Services (A-P) 579

addr Returns a function address that the user registered with LAPI.

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples

To retrieve a header handler address that was previously registered using LAPI_Addr_set:

lapi_handle_t hndl; /* the LAPI handle */

void **addr; /* the address to retrieve */

int addr_hndl; /* the index returned from LAPI_Addr_set */

 ...

addr_hndl = 1;

LAPI_Addr_get(hndl, &addr, addr_hndl);

/* addr now contains the address that was previously registered */

/* using LAPI_Addr_set */

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_ADDR_HNDL_RANGE

Indicates that the value of addr_hndl is not in the range 1 <= addr_hndl <

LOC_ADDRTBL_SZ.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_RET_PTR_NULL Indicates that the value of the addr pointer is NULL (in C) or that the value

of addr is LAPI_ADDR_NULL (in FORTRAN).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Addr_set, LAPI_Qenv

LAPI_Addr_set Subroutine

Purpose

Registers the address of a function.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Addr_set(hndl, addr, addr_hndl)

lapi_handle_t hndl;

void *addr;

int addr_hndl;

580 Technical Reference, Volume 1: Base Operating System and Extensions

FORTRAN Syntax

include ’lapif.h’

LAPI_ADDR_SET(hndl, addr, addr_hndl, ierror)

INTEGER hndl

INTEGER (KIND=LAPI_ADDR_TYPE) :: addr

INTEGER addr_hndl

INTEGER ierror

Description

Type of call: local address manipulation

Use this subroutine to register the address of a function (addr). LAPI maintains the function address in an

internal table. The function address is indexed at location addr_hndl. In subsequent LAPI calls, addr_hndl

can be used in place of addr. The value of addr_hndl must be in the range 1 <= addr_hndl <

LOC_ADDRTBL_SZ.

For active message communication, you can use addr_hndl in place of the corresponding header handler

address. LAPI only supports this indexed substitution for remote header handler addresses (but not other

remote addresses, such as target counters or base data addresses). For these other types of addresses,

the actual address value must be passed to the API call.

Parameters

INPUT

hndl Specifies the LAPI handle.

addr Specifies the address of the function handler that the user wants to register with LAPI.

addr_hndl Specifies a user function address that can be passed to LAPI calls in place of a header

handler address. The value of this parameter must be in the range 1 <= addr_hndl <

LOC_ADDRTBL_SZ.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples

To register a header handler address:

lapi_handle_t hndl; /* the LAPI handle */

void *addr; /* the remote header handler address */

int addr_hndl; /* the index to associate */

 ...

addr = my_func;

addr_hndl = 1;

LAPI_Addr_set(hndl, addr, addr_hndl);

/* addr_hndl can now be used in place of addr in LAPI_Amsend, */

/* LAPI_Amsendv, and LAPI_Xfer calls */

 ...

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

Base Operating System (BOS) Runtime Services (A-P) 581

LAPI_ERR_ADDR_HNDL_RANGE

Indicates that the value of addr_hndl is not in the range 1 <= addr_hndl <

LOC_ADDRTBL_SZ.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Addr_get, LAPI_Amsend, LAPI_Amsendv, LAPI_Qenv, LAPI_Xfer

LAPI_Address Subroutine

Purpose

Returns an unsigned long value for a specified user address.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Address(my_addr, ret_addr)

void *my_addr;

ulong *ret_addr;

Note: This subroutine is meant to be used by FORTRAN programs. The C version of LAPI_Address is

provided for compatibility purposes only.

FORTRAN Syntax

include ’lapif.h’

LAPI_ADDRESS(my_addr, ret_addr, ierror)

INTEGER (KIND=any_type) :: my_addr

INTEGER (KIND=LAPI_ADDR_TYPE) :: ret_addr

INTEGER ierror

where:

any_type Is any FORTRAN datatype. This type declaration has the same meaning as the type void

* in C.

Description

Type of call: local address manipulation

Use this subroutine in FORTRAN programs when you need to store specified addresses in an array. In

FORTRAN, the concept of address (&) does not exist as it does in C. LAPI_Address provides FORTRAN

programmers with this function.

Parameters

INPUT

582 Technical Reference, Volume 1: Base Operating System and Extensions

my_addr Specifies the address to convert. The value of this parameter cannot be NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

OUTPUT

ret_addr Returns the address that is stored in my_addr as an unsigned long for use in LAPI calls.

The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

FORTRAN Examples

To retrieve the address of a variable:

! Contains the address of the target counter

integer (KIND=LAPI_ADDR_TYPE) :: cntr_addr

! Target Counter

type (LAPI_CNTR_T) :: tgt_cntr

! Return code

integer :: ierror

call LAPI_ADDRESS(tgt_cntr, cntr_addr, ierror)

! cntr_addr now contains the address of tgt_cntr

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_ORG_ADDR_NULL

Indicates that the value of my_addr is NULL (in C) or LAPI_ADDR_NULL

(in FORTRAN).

LAPI_ERR_TGT_ADDR_NULL

Indicates that the value of ret_addr is NULL (in C) or LAPI_ADDR_NULL

(in FORTRAN).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Address_init, LAPI_Address_init64

LAPI_Address_init Subroutine

Purpose

Creates a remote address table.

Library

Availability Library (liblapi_r.a)

Base Operating System (BOS) Runtime Services (A-P) 583

C Syntax

#include <lapi.h>

int LAPI_Address_init(hndl, my_addr, add_tab)

lapi_handle_t hndl;

void *my_addr;

void *add_tab[];

FORTRAN Syntax

include ’lapif.h’

LAPI_ADDRESS_INIT(hndl, my_addr, add_tab, ierror)

INTEGER hndl

INTEGER (KIND=LAPI_ADDR_TYPE) :: my_addr

INTEGER (KIND=LAPI_ADDR_TYPE) :: add_tab(*)

INTEGER ierror

Description

Type of call: collective communication (blocking)

LAPI_Address_init exchanges virtual addresses among tasks of a parallel application. Use this

subroutine to create tables of such items as header handlers, target counters, and data buffer addresses.

LAPI_Address_init is a collective call over the LAPI handle hndl, which fills the table add_tab with the

virtual address entries that each task supplies. Collective calls must be made in the same order at all

participating tasks.

The addresses that are stored in the table add_tab are passed in using the my_addr parameter. Upon

completion of this call, add_tab[i] contains the virtual address entry that was provided by task i. The array

is opaque to the user.

Parameters

INPUT

hndl Specifies the LAPI handle.

my_addr Specifies the entry supplied by each task. The value of this parameter can be NULL (in C)

or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT

add_tab Specifies the address table containing the addresses that are to be supplied by all tasks.

add_tab is an array of pointers, the size of which is greater than or equal to NUM_TASKS.

The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples

To collectively transfer target counter addresses for use in a communication API call, in which all nodes

are either 32-bit or 64-bit:

lapi_handle_t hndl; /* the LAPI handle */

void *addr_tbl[NUM_TASKS]; /* the table for all tasks’ addresses */

lapi_cntr_t tgt_cntr; /* the target counter */

 ...

LAPI_Address_init(hndl, (void *)&tgt_cntr, addr_tbl);

584 Technical Reference, Volume 1: Base Operating System and Extensions

/* for communication with task t, use addr_tbl[t] */

/* as the address of the target counter */

 ...

For a combination of 32-bit and 64-bit nodes, use LAPI_Address_init64.

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_COLLECTIVE_PSS

Indicates that a collective call was made while in persistent subsystem

(PSS) mode.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_RET_PTR_NULL Indicates that the value of the add_tab pointer is NULL (in C) or that the

value of add_tab is LAPI_ADDR_NULL (in FORTRAN).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Address, LAPI_Address_init64

LAPI_Address_init64 Subroutine

Purpose

Creates a 64-bit remote address table.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Address_init64(hndl, my_addr, add_tab)

lapi_handle_t hndl;

lapi_long_t my_addr;

lapi_long_t *add_tab;

FORTRAN Syntax

include ’lapif.h’

LAPI_ADDRESS_INIT64(hndl, my_addr, add_tab, ierror)

INTEGER hndl

INTEGER (KIND=LAPI_ADDR_TYPE) :: my_addr

INTEGER (KIND=LAPI_LONG_LONG_TYPE) :: add_tab(*)

INTEGER ierror

Description

Type of call: collective communication (blocking)

Base Operating System (BOS) Runtime Services (A-P) 585

LAPI_Address_init64 exchanges virtual addresses among a mixture of 32-bit and 64-bit tasks of a

parallel application. Use this subroutine to create 64-bit tables of such items as header handlers, target

counters, and data buffer addresses.

LAPI_Address_init64 is a collective call over the LAPI handle hndl, which fills the 64-bit table add_tab

with the virtual address entries that each task supplies. Collective calls must be made in the same order at

all participating tasks.

The addresses that are stored in the table add_tab are passed in using the my_addr parameter. Upon

completion of this call, add_tab[i] contains the virtual address entry that was provided by task i. The array

is opaque to the user.

Parameters

INPUT

hndl Specifies the LAPI handle.

my_addr Specifies the address entry that is supplied by each task. The value of this parameter can

be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN). To ensure 32-bit/64-bit

interoperability, it is passed as a lapi_long_t type in C.

OUTPUT

add_tab Specifies the 64-bit address table that contains the 64-bit values supplied by all tasks.

add_tab is an array of type lapi_long_t (in C) or LAPI_LONG_LONG_TYPE (in

FORTRAN). The size of add_tab is greater than or equal to NUM_TASKS. The value of

this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples

To collectively transfer target counter addresses for use in a communication API call with a mixed task

environment (any combination of 32-bit and 64-bit):

lapi_handle_t hndl; /* the LAPI handle */

lapi_long_t addr_tbl[NUM_TASKS]; /* the table for all tasks’ addresses */

lapi_long_t tgt_cntr; /* the target counter */

 ...

LAPI_Address_init64(hndl, (lapi_long_t)&tgt_cntr, addr_tbl);

/* For communication with task t, use addr_tbl[t] as the address */

/* of the target counter. For mixed (32-bit and 64-bit) jobs, */

/* use the LAPI_Xfer subroutine for communication. */

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_COLLECTIVE_PSS

Indicates that a collective call was made while in persistent subsystem

(PSS) mode.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_RET_PTR_NULL Indicates that the value of the add_tab pointer is NULL (in C) or that the

value of add_tab is LAPI_ADDR_NULL (in FORTRAN).

586 Technical Reference, Volume 1: Base Operating System and Extensions

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Address, LAPI_Address_init, LAPI_Xfer

LAPI_Amsend Subroutine

Purpose

Transfers a user message to a remote task, obtaining the target address on the remote task from a

user-specified header handler.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

typedef void (compl_hndlr_t) (hndl, user_info);

lapi_handle_t *hndl; /* pointer to LAPI context passed in from LAPI_Amsend */

void *user_info; /* buffer (user_info) pointer passed in */

 /* from header handler (void *(hdr_hndlr_t)) */

typedef void *(hdr_hndlr_t)(hndl, uhdr, uhdr_len, msg_len, comp_h, user_info);

lapi_handle_t *hndl; /* pointer to LAPI context passed in from LAPI_Amsend */

void *uhdr; /* uhdr passed in from LAPI_Amsend */

uint *uhdr_len; /* uhdr_len passed in from LAPI_Amsend */

ulong *msg_len; /* udata_len passed in fom LAPI_Amsend */

compl_hndlr_t **comp_h; /* function address of completion handler */

 /* (void (compl_hndlr_t)) that needs to be filled */

 /* out by this header handler function. */

void **user_info; /* pointer to the parameter to be passed */

 /* in to the completion handler */

int LAPI_Amsend(hndl, tgt, hdr_hdl, uhdr, uhdr_len, udata, udata_len,

 tgt_cntr, org_cntr, cmpl_cntr)

lapi_handle_t hndl;

uint tgt;

void *hdr_hdl;

void *uhdr;

uint uhdr_len;

void *udata;

ulong udata_len;

lapi_cntr_t *tgt_cntr;

lapi_cntr_t *org_cntr;

lapi_cntr_t *cmpl_cntr;

FORTRAN Syntax

include ’lapif.h’

INTEGER SUBROUTINE COMPL_H (hndl, user_info)

INTEGER hndl

INTEGER user_info

Base Operating System (BOS) Runtime Services (A-P) 587

INTEGER FUNCTION HDR_HDL (hndl, uhdr, uhdr_len, msg_len, comp_h, user_info)

INTEGER hndl

INTEGER uhdr

INTEGER uhdr_len

INTEGER (KIND=LAPI_LONG_TYPE) :: msg_len

EXTERNAL INTEGER FUNCTION comp_h

TYPE (LAPI_ADDR_T) :: user_info

LAPI_AMSEND(hndl, tgt, hdr_hdl, uhdr, uhdr_len, udata, udata_len,

 tgt_cntr, org_cntr, cmpl_cntr, ierror)

INTEGER hndl

INTEGER tgt

EXTERNAL INTEGER FUNCTION hdr_hdl

INTEGER uhdr

INTEGER uhdr_len

TYPE (LAPI_ADDR_T) :: udata

INTEGER (KIND=LAPI_LONG_TYPE) :: udata_len

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr

TYPE (LAPI_CNTR_T) :: org_cntr

TYPE (LAPI_CNTR_T) :: cmpl_cntr

INTEGER ierror

Description

Type of call: point-to-point communication (non-blocking)

Use this subroutine to transfer data to a target task, where it is desirable to run a handler on the target

task before message delivery begins or after delivery completes. LAPI_Amsend allows the user to provide

a header handler and optional completion handler. The header handler is used to specify the target buffer

address for writing the data, eliminating the need to know the address on the origin task when the

subroutine is called.

User data (uhdr and udata) are sent to the target task. Once these buffers are no longer needed on the

origin task, the origin counter is incremented, which indicates the availability of origin buffers for

modification. Using the LAPI_Xfer call with the LAPI_AM_XFER type provides the same type of transfer,

with the option of using a send completion handler instead of the origin counter to specify buffer

availability.

Upon arrival of the first data packet at the target, the user’s header handler is invoked. Note that a header

handler must be supplied by the user because it returns the base address of the buffer in which LAPI will

write the data sent from the origin task (udata). See RSCT for AIX 5L: LAPI Programming Guide for an

optimization exception to this requirement that a buffer address be supplied to LAPI for single-packet

messages.

The header handler also provides additional information to LAPI about the message delivery, such as the

completion handler. LAPI_Amsend and similar calls (such as LAPI_Amsendv and corresponding

LAPI_Xfer transfers) also allow the user to specify their own message header information, which is

available to the header handler. The user may also specify a completion handler parameter from within the

header handler. LAPI will pass the information to the completion handler at execution.

Note that the header handler is run inline by the thread running the LAPI dispatcher. For this reason, the

header handler must be non-blocking because no other progress on messages will be made until it

returns. It is also suggested that execution of the header handler be simple and quick. The completion

handler, on the other hand, is normally enqueued for execution by a separate thread. It is possible to

request that the completion handler be run inline. See RSCT for AIX 5L: LAPI Programming Guide for

more information on inline completion handlers.

If a completion handler was not specified (that is, set to LAPI_ADDR_NULL in FORTRAN or its pointer

set to NULL in C), the arrival of the final packet causes LAPI to increment the target counter on the

588 Technical Reference, Volume 1: Base Operating System and Extensions

remote task and send an internal message back to the origin task. The message causes the completion

counter (if it is not NULL in C or LAPI_ADDR_NULL in FORTRAN) to increment on the origin task.

If a completion handler was specified, the above steps take place after the completion handler returns. To

guarantee that the completion handler has executed on the target, you must wait on the completion

counter. See RSCT for AIX 5L: LAPI Programming Guide for a time-sequence diagram of events in a

LAPI_Amsend call.

User details

As mentioned above, the user must supply the address of a header handler to be executed on the target

upon arrival of the first data packet. The signature of the header handler is as follows:

void *hdr_hndlr(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len, ulong *msg_len,

 compl_hndlr_t **cmpl_hndlr, void **user_info);

The value returned by the header handler is interpreted by LAPI as an address for writing the user data

(udata) that was passed to the LAPI_Amsend call. The uhdr and uhdr_len parameters are passed by

LAPI into the header handler and contain the information passed by the user to the corresponding

parameters of the LAPI_Amsend call.

Use of LAPI_Addr_set

Remote addresses are commonly exchanged by issuing a collective LAPI_Address_init call within a few

steps of initializing LAPI. LAPI also provides the LAPI_Addr_set mechanism, whereby users can register

one or more header handler addresses in a table, associating an index value with each address. This

index can then be passed to LAPI_Amsend instead of an actual address. On the target side, LAPI will

use the index to get the header handler address. Note that, if all tasks use the same index for their header

handler, the initial collective communication can be avoided. Each task simply registers its own header

handler address using the well-known index. Then, on any LAPI_Amsend calls, the reserved index can be

passed to the header handler address parameter.

Role of the header handler

The user optionally returns the address of a completion handler function through the cmpl_hndlr parameter

and a completion handler parameter through the user_info parameter. The address passed through the

user_info parameter can refer to memory containing a datatype defined by the user and then cast to the

appropriate type from within the completion handler if desired.

The signature for a user completion handler is as follows:

typedef void (compl_hndlr_t)(lapi_handle_t *hndl, void *completion_param);

The argument returned by reference through the user_info member of the user’s header handler will be

passed to the completion_param argument of the user’s completion handler. See the C Examples for an

example of setting the completion handler and parameter in the header handler.

As mentioned above, the value returned by the header handler must be an address for writing the user

data sent from the origin task. There is one exception to this rule. In the case of a single-packet message,

LAPI passes the address of the packet in the receive FIFO, allowing the entire message to be consumed

within the header handler. In this case, the header handler should return NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN) so that LAPI does not copy the message to a target buffer. See RSCT

for AIX 5L: LAPI Programming Guide for more information (including a sample header handler that uses

this method for fast retrieval of a single-packet message).

Passing additional information through lapi_return_info_t

Base Operating System (BOS) Runtime Services (A-P) 589

LAPI allows additional information to be passed to and returned from the header handler by passing a

pointer to lapi_return_info_t through the msg_len argument. On return from a header handler that is

invoked by a call to LAPI_Amsend, the ret_flags member of lapi_return_info_t can contain one of these

values: LAPI_NORMAL (the default), LAPI_SEND_REPLY (to run the completion handler inline), or

LAPI_LOCAL_STATE (no reply is sent). The dgsp_handle member of lapi_return_info_t should not be

used in conjunction with LAPI_Amsend.

For a complete description of the lapi_return_info_t type, see RSCT for AIX 5L: LAPI Programming

Guide

Inline execution of completion handlers

Under normal operation, LAPI uses a separate thread for executing user completion handlers. After the

final packet arrives, completion handler pointers are placed in a queue to be handled by this thread. For

performance reasons, the user may request that a given completion handler be run inline instead of being

placed on this queue behind other completion handlers. This mechanism gives users a greater degree of

control in prioritizing completion handler execution for performance-critical messages.

LAPI places no restrictions on completion handlers that are run ″normally″ (that is, by the completion

handler thread). Inline completion handlers should be short and should not block, because no progress

can be made while the main thread is executing the handler. The user must use caution with inline

completion handlers so that LAPI’s internal queues do not fill up while waiting for the handler to complete.

I/O operations must not be performed with an inline completion handler.

Parameters

INPUT

hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task. The value of this parameter must be in the range 0

<= tgt < NUM_TASKS.

hdr_hdl Specifies the pointer to the remote header handler function to be invoked at the target.

The value of this parameter can take an address handle that has already been registered

using LAPI_Addr_set. The value of this parameter cannot be NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

uhdr Specifies the pointer to the user header data. This data will be passed to the user header

handler on the target. If uhdr_len is 0, The value of this parameter can be NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

uhdr_len Specifies the length of the user’s header. The value of this parameter must be a multiple

of the processor’s word size in the range 0 <= uhdr_len <= MAX_UHDR_SZ.

udata Specifies the pointer to the user data. If udata_len is 0, The value of this parameter can

be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

udata_len Specifies the length of the user data in bytes. The value of this parameter must be in the

range 0 <= udata_len <= the value of LAPI constant LAPI_MAX_MSG_SZ.

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is incremented after the

completion handler (if specified) completes or after the completion of data transfer. If the

value of this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the target

counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin

counter is incremented after data is copied out of the origin address (in C) or the origin (in

590 Technical Reference, Volume 1: Base Operating System and Extensions

FORTRAN). If the value of this parameter is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), the origin counter is not updated.

cmpl_cntr Specifies the counter at the origin that signifies completion of the completion handler. It is

updated once the completion handler completes. If no completion handler is specified, the

counter is incremented at the completion of message delivery. If the value of this

parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the completion counter is

not updated.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_DATA_LEN Indicates that the value of udata_len is greater than the value of LAPI

constant LAPI_MAX_MSG_SZ.

LAPI_ERR_HDR_HNDLR_NULL

Indicates that the value of the hdr_hdl passed in is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_ORG_ADDR_NULL

Indicates that the value of the udata parameter passed in is NULL (in C)

or LAPI_ADDR_NULL (in FORTRAN), but the value of udata_len is

greater than 0.

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the

job.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()

was called.

LAPI_ERR_UHDR_LEN Indicates that the uhdr_len value passed in is greater than

MAX_UHDR_SZ or is not a multiple of the processor’s doubleword size.

LAPI_ERR_UHDR_NULL Indicates that the uhdr passed in is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), but uhdr_len is not 0.

C Examples

To send an active message and then wait on the completion counter:

/* header handler routine to execute on target task */

void *hdr_hndlr(lapi_handle_t *hndl, void *uhdr, uint *uhdr_len,

 ulong *msg_len, compl_hndlr_t **cmpl_hndlr,

 void **user_info)

{

/* set completion handler pointer and other information */

/* return base address for LAPI to begin its data copy */

}

{

 lapi_handle_t hndl; /* the LAPI handle */

 int task_id; /* the LAPI task ID */

 int num_tasks; /* the total number of tasks */

 void *hdr_hndlr_list[NUM_TASKS]; /* the table of remote header handlers */

 int buddy; /* the communication partner */

 lapi_cntr_t cmpl_cntr; /* the completion counter */

 int data_buffer[DATA_LEN]; /* the data to transfer */

Base Operating System (BOS) Runtime Services (A-P) 591

.

 .

 .

 /* retrieve header handler addresses */

 LAPI_Address_init(hndl, (void *)&hdr_hndlr, hdr_hndlr_list);

 /*

 ** up to this point, all instructions have executed on all

 ** tasks. we now begin differentiating tasks.

 */

 if (sender) { /* origin task */

 /* initialize data buffer, cmpl_cntr, etc. */

 .

 .

 .

 /* synchronize before starting data transfer */

 LAPI_Gfence(hndl);

 LAPI_Amsend(hndl, buddy, (void *)hdr_hndlr_list[buddy], NULL,

 0,&(data_buffer[0]),DATA_LEN*(sizeof(int)),

 NULL, NULL, cmpl_cntr);

 /* Wait on completion counter before continuing. Completion */

 /* counter will update when message completes at target. */

 } else { /* receiver */

 .

 .

 .

 /* to match the origin’s synchronization before data transfer */

 LAPI_Gfence(hndl);

 }

 .

 .

 .

}

For a complete program listing, see RSCT for AIX 5L: LAPI Programming Guide. Sample code illustrating

the LAPI_Amsend call can be found in the LAPI sample files. See RSCT for AIX 5L: LAPI Programming

Guide for more information about the sample programs that are shipped with LAPI.

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Addr_get, LAPI_Addr_set, LAPI_Getcntr, LAPI_Msgpoll, LAPI_Qenv,

LAPI_Setcntr, LAPI_Waitcntr, LAPI_Xfer

LAPI_Amsendv Subroutine

Purpose

Transfers a user vector to a remote task, obtaining the target address on the remote task from a

user-specified header handler.

592 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

typedef void (compl_hndlr_t) (hndl, user_info);

lapi_handle_t *hndl; /* the LAPI handle passed in from LAPI_Amsendv */

void *user_info; /* the buffer (user_info) pointer passed in */

 /* from vhdr_hndlr (void *(vhdr_hndlr_t)) */

typedef lapi_vec_t *(vhdr_hndlr_t) (hndl, uhdr, uhdr_len, len_vec, comp_h, uinfo);

lapi_handle_t *hndl; /* pointer to the LAPI handle passed in from LAPI_Amsendv */

void *uhdr; /* uhdr passed in from LAPI_Amsendv */

uint *uhdr_len; /* uhdr_len passed in from LAPI_Amsendv */

ulong *len_vec[]; /* vector of lengths passed in LAPI_Amsendv */

compl_hndlr_t **comp_h; /* function address of completion handler */

 /* (void (compl_hndlr_t)) that needs to be */

 /* filled out by this header handler function */

void **user_info; /* pointer to the parameter to be passed */

 /* in to the completion handler */

int LAPI_Amsendv(hndl, tgt, hdr_hdl, uhdr, uhdr_len, org_vec,

 tgt_cntr, org_cntr, cmpl_cntr);

lapi_handle_t hndl;

uint tgt;

void *hdr_hdl;

void *uhdr;

uint uhdr_len;

lapi_vec_t *org_vec;

lapi_cntr_t *tgt_cntr;

lapi_cntr_t *org_cntr;

lapi_cntr_t *cmpl_cntr;

FORTRAN Syntax

include ’lapif.h’

INTEGER SUBROUTINE COMPL_H (hndl, user_info)

INTEGER hndl

INTEGER user_info(*)

INTEGER FUNCTION VHDR_HDL (hndl, uhdr, uhdr_len, len_vec, comp_h, user_info)

INTEGER hndl

INTEGER uhdr

INTEGER uhdr_len

INTEGER (KIND=LAPI_LONG_TYPE) :: len_vec

EXTERNAL INTEGER FUNCTION comp_h

TYPE (LAPI_ADDR_T) :: user_info

LAPI_AMSENDV(hndl, tgt, hdr_hdl, uhdr, uhdr_len, org_vec,

 tgt_cntr, org_cntr, cmpl_cntr, ierror)

INTEGER hndl

INTEGER tgt

EXTERNAL INTEGER FUNCTION hdr_hdl

INTEGER uhdr

INTEGER uhdr_len

TYPE (LAPI_VEC_T) :: org_vec

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr

TYPE (LAPI_CNTR_T) :: org_cntr

TYPE (LAPI_CNTR_T) :: cmpl_cntr

INTEGER ierror

Base Operating System (BOS) Runtime Services (A-P) 593

Description

Type of call: point-to-point communication (non-blocking)

LAPI_Amsendv is the vector-based version of the LAPI_Amsend call. You can use it to specify

multi-dimensional and non-contiguous descriptions of the data to transfer. Whereas regular LAPI calls

allow the specification of a single data buffer address and length, the vector versions allow the

specification of a vector of address and length combinations. Additional information is allowed in the data

description on the origin task and the target task.

Use this subroutine to transfer a vector of data to a target task, when you want a handler to run on the

target task before message delivery begins or after message delivery completes.

To use LAPI_Amsendv, you must provide a header handler, which returns the address of the target vector

description that LAPI uses to write the data that is described by the origin vector. The header handler is

used to specify the address of the vector description for writing the data, which eliminates the need to

know the description on the origin task when the subroutine is called. The header handler is called upon

arrival of the first data packet at the target.

Optionally, you can also provide a completion handler. The header handler provides additional information

to LAPI about the message delivery, such as the completion handler. You can also specify a completion

handler parameter from within the header handler. LAPI passes the information to the completion handler

at execution.

With the exception of the address that is returned by the completion handler, the use of counters, header

handlers, and completion handlers in LAPI_Amsendv is identical to that of LAPI_Amsend. In both cases,

the user header handler returns information that LAPI uses for writing at the target. See LAPI_Amsend for

more information. This section presents information that is specific to the vector version of the call

(LAPI_Amsendv).

LAPI vectors are structures of type lapi_vec_t, defined as follows:

typedef struct {

 lapi_vectype_t vec_type;

 uint num_vecs;

 void **info;

 ulong *len;

} lapi_vec_t;

vec_type is an enumeration that describes the type of vector transfer, which can be:

LAPI_GEN_GENERIC, LAPI_GEN_IOVECTOR, or LAPI_GEN_STRIDED_XFER.

For transfers of type LAPI_GEN_GENERIC and LAPI_GEN_IOVECTOR, the fields are used as follows:

num_vecs indicates the number of data vectors to transfer. Each data vector is defined by a base

address and data length.

info is the array of addresses.

len is the array of data lengths.

For example, consider the following vector description:

vec_type = LAPI_GEN_IOVECTOR

num_vecs = 3

info = {addr_0, addr_1, addr_2}

len = {len_0, len_1, len_2}

On the origin side, this example would tell LAPI to read len_0 bytes from addr_0, len_1 bytes from addr_1,

and len_2 bytes from addr_2. As a target vector, this example would tell LAPI to write len_0 bytes to

addr_0, len_1 bytes to addr_1, and len_2 bytes to addr_2.

594 Technical Reference, Volume 1: Base Operating System and Extensions

Recall that vector transfers require an origin and target vector. For LAPI_Amsendv calls, the origin vector

is passed to the API call on the origin task. The address of the target vector is returned by the header

handler.

For transfers of type LAPI_GEN_GENERIC, the target vector description must also have type

LAPI_GEN_GENERIC. The contents of the info and len arrays are unrestricted in the generic case; the

number of vectors and the length of vectors on the origin and target do not need to match. In this case,

LAPI transfers a given number of bytes in noncontiguous buffers specified by the origin vector to a set of

noncontiguous buffers specified by the target vector.

If the sum of target vector data lengths (say TGT_LEN) is less than the sum of origin vector data lengths

(say ORG_LEN), only the first TGT_LEN bytes from the origin buffers are transferred and the remaining

bytes are discarded. If TGT_LEN is greater than ORG_LEN, all ORG_LEN bytes are transferred. Consider

the following example:

Origin_vector: {

 num_vecs = 3;

 info = {orgaddr_0, orgaddr_1, orgaddr_2};

 len = {5, 10, 5}

}

Target_vector: {

 num_vecs = 4;

 info = {tgtaddr_0, tgtaddr_1, tgtaddr_2, tgtaddr_3};

 len = {12, 2, 4, 2}

}

LAPI copies data as follows:

1. 5 bytes from orgaddr_0 to tgtaddr_0 (leaves 7 bytes of space at a 5-byte offset from tgtaddr_0)

2. 7 bytes from orgaddr_1 to remaining space in tgtaddr_0 (leaves 3 bytes of data to transfer from

orgaddr_1)

3. 2 bytes from orgaddr_1 to tgtaddr_1 (leaves 1 byte to transfer from orgaddr_1)

4. 1 byte from orgaddr_1 followed by 3 bytes from orgaddr_2 to tgt_addr_2 (leaves 3 bytes to transfer

from orgaddr_2)

5. 2 bytes from orgaddr_2 to tgtaddr_3

LAPI will copy data from the origin until the space described by the target is filled. For example:

Origin_vector: {

 num_vecs = 1;

 info = {orgaddr_0};

 len = {20}

}

Target_vector: {

 num_vecs = 2;

 info = {tgtaddr_0, tgtaddr_1};

 len = {5, 10}

}

LAPI will copy 5 bytes from orgaddr_0 to tgtaddr_0 and the next 10 bytes from orgaddr_0 to tgtaddr_1.

The remaining 5 bytes from orgaddr_0 will not be copied.

For transfers of type LAPI_GEN_IOVECTOR, the lengths of the vectors must match and the target vector

description must match the origin vector description. More specifically, the target vector description must:

v also have type LAPI_GEN_IOVECTOR

v have the same num_vecs as the origin vector

v initialize the info array with num_vecs addresses in the target address space. For LAPI vectors

origin_vector and target_vector described similarly to the example above, data is copied as follows:

Base Operating System (BOS) Runtime Services (A-P) 595

1. transfer origin_vector.len[0] bytes from the address at origin_vector.info[0] to the address at

target_vector.info[0]

2. transfer origin_vector.len[1] bytes from the address at origin_vector.info[1] to the address at

target_vector.info[1]

3. transfer origin_vector.len[n] bytes from the address at origin_vector.info[n] to the address at

target_vector.info[n], for n = 2 to n = [num_vecs-3]

4. transfer origin_vector.len[num_vecs-2] bytes from the address at origin_vector.info[num_vecs-2] to

the address at target_vector.info[num_vecs-2]

5. copy origin_vector.len[num_vecs-1] bytes from the address at origin_vector.info[num_vecs-1] to the

address at target_vector.info[num_vecs-1]

Strided vector transfers

For transfers of type LAPI_GEN_STRIDED_XFER, the target vector description must match the origin

vector description. Rather than specifying the set of address and length pairs, the info array of the origin

and target vectors is used to specify a data block ″template″, consisting of a base address, block size and

stride. LAPI thus expects the info array to contain three integers. The first integer contains the base

address, the second integer contains the block size to copy, and the third integer contains the byte stride.

In this case, num_vecs indicates the number of blocks of data that LAPI should copy, where the first block

begins at the base address. The number of bytes to copy in each block is given by the block size and the

starting address for all but the first block is given by previous address + stride. The total amount of data to

be copied will be num_vecs*block_size. Consider the following example:

Origin_vector {

 num_vecs = 3;

 info = {orgaddr, 5, 8}

}

Based on this description, LAPI will transfer 5 bytes from orgaddr, 5 bytes from orgaddr+8 and 5 bytes

from orgaddr+16.

Call details

As mentioned above, counter and handler behavior in LAPI_Amsendv is nearly identical to that of

LAPI_Amsend. A short summary of that behavior is provided here. See the LAPI_Amsend description for

full details.

This is a non-blocking call. The calling task cannot change the uhdr (origin header) and org_vec data until

completion at the origin is signaled by the org_cntr being incremented. The calling task cannot assume

that the org_vec structure can be changed before the origin counter is incremented. The structure (of type

lapi_vec_t) that is returned by the header handler cannot be modified before the target counter has been

incremented. Also, if a completion handler is specified, it may execute asynchronously, and can only be

assumed to have completed after the target counter increments (on the target) or the completion counter

increments (at the origin).

The length of the user-specified header (uhdr_len) is constrained by the implementation-specified

maximum value MAX_UHDR_SZ. uhdr_len must be a multiple of the processor’s doubleword size. To get

the best bandwidth, uhdr_len should be as small as possible.

If the following requirement is not met, an error condition occurs:

v If a strided vector is being transferred, the size of each block must not be greater than the stride size in

bytes.

LAPI does not check for any overlapping regions among vectors either at the origin or the target. If the

overlapping regions exist on the target side, the contents of the target buffer are undefined after the

operation.

596 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task. The value of this parameter must be in the range 0

<= tgt < NUM_TASKS.

hdr_hdl Points to the remote header handler function to be invoked at the target. The value of this

parameter can take an address handle that had been previously registered using the

LAPI_Addr_set/LAPI_Addr_get mechanism. The value of this parameter cannot be NULL

(in C) or LAPI_ADDR_NULL (in FORTRAN).

uhdr Specifies the pointer to the local header (parameter list) that is passed to the handler

function. If uhdr_len is 0, The value of this parameter can be NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

uhdr_len Specifies the length of the user’s header. The value of this parameter must be a multiple

of the processor’s doubleword size in the range 0 <= uhdr_len <= MAX_UHDR_SZ.

org_vec Points to the origin vector.

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is incremented after the

completion handler (if specified) completes or after the completion of data transfer. If the

value of this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the target

counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin

counter is incremented after data is copied out of the origin address (in C) or the origin (in

FORTRAN). If the value of this parameter is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), the origin counter is not updated.

cmpl_cntr Specifies the counter at the origin that signifies completion of the completion handler. It is

updated once the completion handler completes. If no completion handler is specified, the

counter is incremented at the completion of message delivery. If the value of this

parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the completion counter is

not updated.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples

1. To send a LAPI_GEN_IOVECTOR using active messages:

/* header handler routine to execute on target task */

lapi_vec_t *hdr_hndlr(lapi_handle_t *handle, void *uhdr, uint *uhdr_len,

 ulong *len_vec[], compl_hndlr_t **completion_handler,

 void **user_info)

{

 /* set completion handler pointer and other info */

 /* set up the vector to return to LAPI */

 /* for a LAPI_GEN_IOVECTOR: num_vecs, vec_type, and len must all have */

 /* the same values as the origin vector. The info array should */

 /* contain the buffer addresses for LAPI to write the data */

 vec->num_vecs = NUM_VECS;

 vec->vec_type = LAPI_GEN_IOVECTOR;

 vec->len = (unsigned long *)malloc(NUM_VECS*sizeof(unsigned long));

 vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 for(i=0; i < NUM_VECS; i++) {

 vec->info[i] = (void *) &data_buffer[i];

 vec->len[i] = (unsigned long)(sizeof(int));

Base Operating System (BOS) Runtime Services (A-P) 597

}

 return vec;

}

{

 .

 .

 .

 void *hdr_hndlr_list[NUM_TASKS]; /* table of remote header handlers */

 lapi_vec_t *vec; /* data for data transfer */

 vec->num_vecs = NUM_VECS;

 vec->vec_type = LAPI_GEN_IOVECTOR;

 vec->len = (unsigned long *) malloc(NUM_VECS*sizeof(unsigned long));

 vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 /* each vec->info[i] gets a base address */

 /* each vec->len[i] gets the number of bytes to transfer from vec->info[i] */

 LAPI_Amsendv(hndl, tgt, (void *) hdr_hdl_list[buddy], NULL, 0, vec,

 tgt_cntr, org_cntr, cmpl_cntr);

 /* data will be copied as follows: */

 /* len[0] bytes of data starting from address info[0] */

 /* len[1] bytes of data starting from address info[1] */

 .

 .

 .

 /* len[NUM_VECS-1] bytes of data starting from address info[NUM_VECS-1] */

}

The above example could also illustrate the LAPI_GEN_GENERIC type, with the following

modifications:

v Both vectors would need LAPI_GEN_GENERIC as the vec_type.

v There are no restrictions on symmetry of number of vectors and lengths between the origin and

target sides.

2. To send a LAPI_STRIDED_VECTOR using active messages:

/* header handler routine to execute on target task */

lapi_vec_t *hdr_hndlr(lapi_handle_t *handle, void *uhdr, uint *uhdr_len,

 ulong *len_vec[], compl_hndlr_t **completion_handler,

 void **user_info)

{

 int block_size; /* block size */

 int data_size; /* stride */

 .

 .

 .

 vec->num_vecs = NUM_VECS; /* NUM_VECS = number of vectors to transfer */

 /* must match that of the origin vector */

 vec->vec_type = LAPI_GEN_STRIDED_XFER; /* same as origin vector */

 /* see comments in origin vector setup for a description of how data */

 /* will be copied based on these settings. */

 vec->info[0] = buffer_address; /* starting address for data copy */

 vec->info[1] = block_size; /* bytes of data to copy */

 vec->info[2] = stride; /* distance from copy block to copy block */

 .

598 Technical Reference, Volume 1: Base Operating System and Extensions

.

 .

 return vec;

}

{

 .

 .

 .

 lapi_vec_t *vec; /* data for data transfer */

 vec->num_vecs = NUM_VECS; /* NUM_VECS = number of vectors to transfer */

 /* must match that of the target vector */

 vec->vec_type = LAPI_GEN_STRIDED_XFER; /* same as target vector */

 vec->info[0] = buffer_address; /* starting address for data copy */

 vec->info[1] = block_size; /* bytes of data to copy */

 vec->info[2] = stride; /* distance from copy block to copy block */

 /* data will be copied as follows: */

 /* block_size bytes will be copied from buffer_address */

 /* block_size bytes will be copied from buffer_address+stride */

 /* block_size bytes will be copied from buffer_address+(2*stride) */

 /* block_size bytes will be copied from buffer_address+(3*stride) */

 .

 .

 .

 /* block_size bytes will be copied from buffer_address+((NUM_VECS-1)*stride) */

 .

 .

 .

 /* if uhdr isn’t used, uhdr should be NULL and uhdr_len should be 0 */

 /* tgt_cntr, org_cntr and cmpl_cntr can all be NULL */

 LAPI_Amsendv(hndl, tgt, (void *) hdr_hdl_list[buddy], uhdr, uhdr_len,

 vec, tgt_cntr, org_cntr, cmpl_cntr);

 .

 .

 .

}

For complete examples, see the sample programs shipped with LAPI.

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HDR_HNDLR_NULL

Indicates that the hdr_hdl passed in is NULL (in C) or LAPI_ADDR_NULL

(in FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_ORG_EXTENT Indicates that the org_vec’s extent (stride * num_vecs) is greater than the

value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_STRIDE Indicates that the org_vec stride is less than block.

LAPI_ERR_ORG_VEC_ADDR

Indicates that the org_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), but its length (org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN Indicates that the sum of org_vec->len is greater than the value of LAPI

constant LAPI_MAX_MSG_SZ.

Base Operating System (BOS) Runtime Services (A-P) 599

LAPI_ERR_ORG_VEC_NULL Indicates that org_vec is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

LAPI_ERR_ORG_VEC_TYPE Indicates that the org_vec->vec_type is not valid.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL

Indicates that the strided vector address org_vec->info[0] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the

job.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()

was called.

LAPI_ERR_UHDR_LEN Indicates that the uhdr_len value passed in is greater than

MAX_UHDR_SZ or is not a multiple of the processor’s doubleword size.

LAPI_ERR_UHDR_NULL Indicates that the uhdr passed in is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), but uhdr_len is not 0.

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Address_init, LAPI_Addr_get, LAPI_Addr_set, LAPI_Amsend, LAPI_Getcntr,

LAPI_Getv, LAPI_Putv, LAPI_Qenv, LAPI_Waitcntr, LAPI_Xfer

LAPI_Fence Subroutine

Purpose

Enforces order on LAPI calls.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Fence(hndl)

lapi_handle_t hndl;

FORTRAN Syntax

include ’lapif.h’

LAPI_FENCE(hndl, ierror)

INTEGER hndl

INTEGER ierror

Description

Type of call: Local data synchronization (blocking) (may require progress on the remote task)

Use this subroutine to enforce order on LAPI calls. If a task calls LAPI_Fence, all the LAPI operations that

were initiated by that task, before the fence using the LAPI context hndl, are guaranteed to complete at

the target tasks. This occurs before any of its communication operations using hndl, initiated after the

600 Technical Reference, Volume 1: Base Operating System and Extensions

LAPI_Fence, start transmission of data. This is a data fence which means that the data movement is

complete. This is not an operation fence which would need to include active message completion handlers

completing on the target.

LAPI_Fence may require internal protocol processing on the remote side to complete the fence request.

Parameters

INPUT

hndl Specifies the LAPI handle.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

C Examples

To establish a data barrier in a single task:

lapi_handle_t hndl; /* the LAPI handle */

 ...

/* API communication call 1 */

/* API communication call 2 */

 ...

/* API communication call n */

LAPI_Fence(hndl);

/* all data movement from above communication calls has completed by this point */

/* any completion handlers from active message calls could still be running. */

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Amsend, LAPI_Gfence

LAPI_Get Subroutine

Purpose

Copies data from a remote task to a local task.

Library

Availability Library (liblapi_r.a)

Base Operating System (BOS) Runtime Services (A-P) 601

C Syntax

#include <lapi.h>

int LAPI_Get(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr)

lapi_handle_t hndl;

uint tgt;

ulong len;

void *tgt_addr;

void *org_addr;

lapi_cntr_t *tgt_cntr;

lapi_cntr_t *org_cntr;

FORTRAN Syntax

include ’lapif.h’

LAPI_GET(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr, ierror)

INTEGER hndl

INTEGER tgt

INTEGER (KIND=LAPI_LONG_TYPE) :: len

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_addr

INTEGER (KIND=LAPI_ADDR_TYPE) :: org_addr

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr

TYPE (LAPI_CNTR_T) :: org_cntr

INTEGER ierror

Description

Type of call: point-to-point communication (non-blocking)

Use this subroutine to transfer data from a remote (target) task to a local (origin) task. Note that in this

case the origin task is actually the receiver of the data. This difference in transfer type makes the counter

behavior slightly different than in the normal case of origin sending to target.

The origin buffer will still increment on the origin task upon availability of the origin buffer. But in this case,

the origin buffer becomes available once the transfer of data is complete. Similarly, the target counter will

increment once the target buffer is available. Target buffer availability in this case refers to LAPI no longer

needing to access the data in the buffer.

This is a non-blocking call. The caller cannot assume that data transfer has completed upon the return of

the function. Instead, counters should be used to ensure correct buffer addresses as defined above.

Note that a zero-byte message does not transfer data, but it does have the same semantic with respect to

counters as that of any other message.

Parameters

INPUT

hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task that is the source of the data. The value of this

parameter must be in the range 0 <= tgt < NUM_TASKS.

len Specifies the number of bytes of data to be copied. This parameter must be in the range 0

<= len <= the value of LAPI constant LAPI_MAX_MSG_SZ.

tgt_addr Specifies the target buffer address of the data source. If len is 0, The value of this

parameter can be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is incremented once the data

602 Technical Reference, Volume 1: Base Operating System and Extensions

buffer on the target can be modified. If the value of this parameter is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), the target counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin

counter is incremented after data arrives at the origin. If the value of this parameter is

NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the origin counter is not updated.

OUTPUT

org_addr Specifies the local buffer address into which the received data is copied. If len is 0, The

value of this parameter can be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples

{

 /* initialize the table buffer for the data addresses */

 /* get remote data buffer addresses */

 LAPI_Address_init(hndl,(void *)data_buffer,data_buffer_list);

 .

 .

 .

 LAPI_Get(hndl, tgt, (ulong) data_len, (void *) (data_buffer_list[tgt]),

 (void *) data_buffer, tgt_cntr, org_cntr);

 /* retrieve data_len bytes from address data_buffer_list[tgt] on task tgt. */

 /* write the data starting at address data_buffer. tgt_cntr and org_cntr */

 /* can be NULL. */

}

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_DATA_LEN Indicates that the value of udata_len is greater than the value of LAPI

constant LAPI_MAX_MSG_SZ.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_ORG_ADDR_NULL

Indicates that the org_addr passed in is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), but len is greater than 0.

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the

job.

LAPI_ERR_TGT_ADDR_NULL

Indicates that the tgt_addr passed in is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), but len is greater than 0.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()

was called.

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Address_init, LAPI_Getcntr, LAPI_Put, LAPI_Qenv, LAPI_Waitcntr, LAPI_Xfer

Base Operating System (BOS) Runtime Services (A-P) 603

LAPI_Getcntr Subroutine

Purpose

Gets the integer value of a specified LAPI counter.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Getcntr(hndl, cntr, val)

lapi_handle_t hndl;

lapi_cntr_t *cntr;

int *val;

FORTRAN Syntax

include ’lapif.h’

LAPI_GETCNTR(hndl, cntr, val, ierror)

INTEGER hndl

TYPE (LAPI_CNTR_T) :: cntr

INTEGER val

INTEGER ierror

Description

Type of call: Local counter manipulation

This subroutine gets the integer value of cntr. It is used to check progress on hndl.

Parameters

INPUT

hndl Specifies the LAPI handle.

cntr Specifies the address of the counter. The value of this parameter cannot be NULL (in C)

or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT

val Returns the integer value of the counter cntr. The value of this parameter cannot be NULL

(in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples

{

 lapi_cntr_t cntr;

 int val;

 /* cntr is initialized */

 /* processing/communication takes place */

604 Technical Reference, Volume 1: Base Operating System and Extensions

LAPI_Getcntr(hndl, &cntr, &val)

 /* val now contains the current value of cntr */

}

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_CNTR_NULL Indicates that the cntr pointer is NULL (in C) or that the value of cntr is

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_RET_PTR_NULL Indicates that the value of the val pointer is NULL (in C) or that the value

of val is LAPI_ADDR_NULL (in FORTRAN).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Amsend, LAPI_Amsendv, LAPI_Get, LAPI_Getv, LAPI_Put, LAPI_Putv,

LAPI_Rmw, LAPI_Setcntr, LAPI_Waitcntr, LAPI_Xfer

LAPI_Getv Subroutine

Purpose

Copies vectors of data from a remote task to a local task.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Getv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr)

lapi_handle_t hndl;

uint tgt;

lapi_vec_t *tgt_vec;

lapi_vec_t *org_vec;

lapi_cntr_t *tgt_cntr;

lapi_cntr_t *org_cntr;

typedef struct {

 lapi_vectype_t vec_type; /* operation code */

 uint num_vecs; /* number of vectors */

 void **info; /* vector of information */

 ulong *len; /* vector of lengths */

} lapi_vec_t;

FORTRAN Syntax

include ’lapif.h’

LAPI_GETV(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr, ierror)

INTEGER hndl

INTEGER tgt

Base Operating System (BOS) Runtime Services (A-P) 605

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_vec

TYPE (LAPI_VEC_T) :: org_vec

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr

TYPE (LAPI_CNTR_T) :: org_cntr

INTEGER ierror

The 32-bit version of the LAPI_VEC_T type is defined as:

TYPE LAPI_VEC_T

 SEQUENCE

 INTEGER(KIND = 4) :: vec_type

 INTEGER(KIND = 4) :: num_vecs

 INTEGER(KIND = 4) :: info

 INTEGER(KIND = 4) :: len

END TYPE LAPI_VEC_T

The 64-bit version of the LAPI_VEC_T type is defined as:

TYPE LAPI_VEC_T

 SEQUENCE

 INTEGER(KIND = 4) :: vec_type

 INTEGER(KIND = 4) :: num_vecs

 INTEGER(KIND = 8) :: info

 INTEGER(KIND = 8) :: len

END TYPE LAPI_VEC_T

Description

Type of call: point-to-point communication (non-blocking)

This subroutine is the vector version of the LAPI_Get call. Use LAPI_Getv to transfer vectors of data from

the target task to the origin task. Both the origin and target vector descriptions are located in the address

space of the origin task. But, the values specified in the info array of the target vector must be addresses

in the address space of the target task.

The calling program cannot assume that the origin buffer can be changed or that the contents of the origin

buffers on the origin task are ready for use upon function return. After the origin counter (org_cntr) is

incremented, the origin buffers can be modified by the origin task. After the target counter (tgt_cntr) is

incremented, the target buffers can be modified by the target task. If you provide a completion counter

(cmpl_cntr), it is incremented at the origin after the target counter (tgt_cntr) has been incremented at the

target. If the values of any of the counters or counter addresses are NULL (in C) or LAPI_ADDR_NULL

(in FORTRAN), the data transfer occurs, but the corresponding counter increments do not occur.

If any of the following requirements are not met, an error condition occurs:

v The vector types org_vec−>vec_type and tgt_vec->vec_type must be the same.

v If a strided vector is being transferred, the size of each block must not be greater than the stride size in

bytes.

v The length of any vector that is pointed to by tgt_vec must be equal to the length of the corresponding

vector that is pointed to by org_vec.

LAPI does not check for any overlapping regions among vectors either at the origin or the target. If the

overlapping regions exist on the origin side, the contents of the origin buffer are undefined after the

operation.

See LAPI_Amsendv for details about commuication using different LAPI vector types. (LAPI_Getv does

not support the LAPI_GEN_GENERIC type.)

Parameters

INPUT

606 Technical Reference, Volume 1: Base Operating System and Extensions

hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task. The value of this parameter must be in the range 0

<= tgt < NUM_TASKS.

tgt_vec Points to the target vector description.

org_vec Points to the origin vector description.

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is incremented once the data

buffer on the target can be modified. If the value of this parameter is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), the target counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin

counter is incremented after data arrives at the origin. If the value of this parameter is

NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the origin counter is not updated.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples

To get a LAPI_GEN_IOVECTOR:

{

 /* retrieve a remote data buffer address for data to transfer, */

 /* such as through LAPI_Address_init */

 /* task that calls LAPI_Getv sets up both org_vec and tgt_vec */

 org_vec->num_vecs = NUM_VECS;

 org_vec->vec_type = LAPI_GEN_IOVECTOR;

 org_vec->len = (unsigned long *)

 malloc(NUM_VECS*sizeof(unsigned long));

 org_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 /* each org_vec->info[i] gets a base address on the origin task */

 /* each org_vec->len[i] gets the number of bytes to write to */

 /* org_vec->info[i] */

 tgt_vec->num_vecs = NUM_VECS;

 tgt_vec->vec_type = LAPI_GEN_IOVECTOR;

 tgt_vec->len = (unsigned long *)

 malloc(NUM_VECS*sizeof(unsigned long));

 tgt_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 /* each tgt_vec->info[i] gets a base address on the target task */

 /* each tgt_vec->len[i] gets the number of bytes to transfer */

 /* from vec->info[i] */

 /* For LAPI_GEN_IOVECTOR, num_vecs, vec_type, and len must be */

 /* the same */

 LAPI_Getv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr);

 /* tgt_cntr and org_cntr can both be NULL */

 /* data will be retrieved as follows: */

 /* org_vec->len[0] bytes will be retrieved from */

 /* tgt_vec->info[0] and written to org_vec->info[0] */

 /* org_vec->len[1] bytes will be retrieved from */

 /* tgt_vec->info[1] and written to org_vec->info[1] */

 .

 .

 .

 /* org_vec->len[NUM_VECS-1] bytes will be retrieved */

Base Operating System (BOS) Runtime Services (A-P) 607

/* from tgt_vec->info[NUM_VECS-1] and written to */

 /* org_vec->info[NUM_VECS-1] */

}

For examples of other vector types, see LAPI_Amsendv.

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_ORG_EXTENT Indicates that the org_vec’s extent (stride * num_vecs) is greater than the

value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_STRIDE Indicates that the org_vec stride is less than block size.

LAPI_ERR_ORG_VEC_ADDR

Indicates that some org_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL

(in FORTRAN). but the corresponding length (org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN Indicates that the total sum of all org_vec->len[i] (where [i] is in the range

0 <= i <= org_vec->num_vecs) is greater than the value of LAPI constant

LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_VEC_NULL Indicates that the org_vec is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

LAPI_ERR_ORG_VEC_TYPE Indicates that the org_vec->vec_type is not valid.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL

Indicates that the strided vector base address org_vec->info[0] is NULL (in

C) or LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_STRIDE_TGT_VEC_ADDR_NULL

Indicates that the strided vector address tgt_vec->info[0] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the

job.

LAPI_ERR_TGT_EXTENT Indicates that tgt_vec’s extent (stride * num_vecs) is greater than the

value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()

was called.

LAPI_ERR_TGT_STRIDE Indicates that the tgt_vec’s stride is less than its block size.

LAPI_ERR_TGT_VEC_ADDR Indicates that the tgt_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), but its length (tgt_vec->len[i]) is not 0.

LAPI_ERR_TGT_VEC_LEN Indicates that the sum of tgt_vec->len is greater than the value of LAPI

constant LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_VEC_NULL Indicates that tgt_vec is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

LAPI_ERR_TGT_VEC_TYPE Indicates that the tgt_vec->vec_type is not valid.

LAPI_ERR_VEC_LEN_DIFF Indicates that org_vec and tgt_vec have different lengths (len[]).

LAPI_ERR_VEC_NUM_DIFF Indicates that org_vec and tgt_vec have different num_vecs.

608 Technical Reference, Volume 1: Base Operating System and Extensions

LAPI_ERR_VEC_TYPE_DIFF

Indicates that org_vec and tgt_vec have different vector types (vec_type).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Amsendv, LAPI_Getcntr, LAPI_Putv, LAPI_Qenv, LAPI_Waitcntr

LAPI_Gfence Subroutine

Purpose

Enforces order on LAPI calls across all tasks and provides barrier synchronization among them.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Gfence(hndl)

lapi_handle_t hndl;

FORTRAN Syntax

include ’lapif.h’

LAPI_GFENCE(hndl, ierror)

INTEGER hndl

INTEGER ierror

Description

Type of call: collective data synchronization (blocking)

Use this subroutine to enforce global order on LAPI calls. This is a collective call. Collective calls must be

made in the same order at all participating tasks.

On completion of this call, it is assumed that all LAPI communication associated with hndl from all tasks

has quiesced. Although hndl is local, it represents a set of tasks that were associated with it at LAPI_Init,

all of which must participate in this operation for it to complete. This is a data fence, which means that the

data movement is complete. This is not an operation fence, which would need to include active message

completion handlers completing on the target.

Parameters

INPUT

hndl Specifies the LAPI handle.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Base Operating System (BOS) Runtime Services (A-P) 609

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Fence

LAPI_Init Subroutine

Purpose

Initializes a LAPI context.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Init(hndl,lapi_info)

lapi_handle_t *hndl;

lapi_info_t *lapi_info;

FORTRAN Syntax

include ’lapif.h’

LAPI_INIT(hndl,lapi_info,ierror)

INTEGER hndl

TYPE (LAPI_INFO_T) :: lapi_info

INTEGER ierror

Description

Type of call: Local initialization

Use this subroutine to instantiate and initialize a new LAPI context. A handle to the newly-created LAPI

context is returned in hndl. All subsequent LAPI calls can use hndl to specify the context of the LAPI

operation. Except for LAPI_Address() and LAPI_Msg_string(), the user cannot make any LAPI calls

before calling LAPI_Init().

The lapi_info structure (lapi_info_t) must be ″zeroed out″ before any fields are filled in. To do this in C,

use this statement: bzero (lapi_info, size of (lapi_info_t)). In FORTRAN, you need to ″zero out″ each

field manually in the LAPI_INFO_T type. Fields with a description of Future support should not be used

because the names of those fields might change.

The lapi_info_t structure is defined as follows:

typedef struct {

 lapi_dev_t protocol; /* Protocol device returned */

 lapi_lib_t lib_vers; /* LAPI library version -- user-supplied */

 uint epoch_num; /* No longer used */

610 Technical Reference, Volume 1: Base Operating System and Extensions

int num_compl_hndlr_thr; /* Number of completion handler threads */

 uint instance_no; /* Instance of LAPI to initialize [1-16] */

 int info6; /* Future support */

 LAPI_err_hndlr *err_hndlr; /* User-registered error handler */

 com_thread_info_t *lapi_thread_attr; /* Support thread att and init function */

 void *adapter_name; /* What adapter to initialize, i.e. css0, ml0 */

 lapi_extend_t *add_info; /* Additional structure extension */

} lapi_info_t;

The fields are used as follows:

protocol LAPI sets this field to the protocol that has been initialized.

lib_vers Is used to indicate a library version to LAPI for compatibility purposes. Valid values for this

field are:

L1_LIB Provides basic functionality (this is the default).

L2_LIB Provides the ability to use counters as structures.

LAST_LIB Provides the most current level of functionality. For new users of LAPI,

lib_vers should be set to LAST_LIB.

This field must be set to L2_LIB or LAST_LIB to use LAPI_Nopoll_wait and

LAPI_Setcntr_wstatus.

epoch_num This field is no longer used.

num_compl_hndlr_thr

Indicates to LAPI the number of completion handler threads to initialize.

instance_no Specifies the instance of LAPI to initialize (1 to 16).

info6 This field is for future use.

err_hndlr Use this field to optionally pass a callback pointer to an error-handler routine.

lapi_thread_attr

Supports thread attributes and initialization function.

adapter_name Is used in persistent subsystem (PSS) mode to pass an adapter name.

add_info Is used for additional information in standalone UDP mode.

Parameters

INPUT/OUTPUT

lapi_info Specifies a structure that provides the parallel job information with which this LAPI context

is associated. The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL

(in FORTRAN).

OUTPUT

hndl Specifies a pointer to the LAPI handle to initialize.

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_ALL_HNDL_IN_USE

All available LAPI instances are in use.

Base Operating System (BOS) Runtime Services (A-P) 611

LAPI_ERR_BOTH_NETSTR_SET

Both the MP_LAPI_NETWORK and MP_LAPI_INET statements are set

(only one should be set).

LAPI_ERR_CSS_LOAD_FAILED

LAPI is unable to load the communication utility library.

LAPI_ERR_HNDL_INVALID The lapi_handle_t * passed to LAPI for initialization is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_INFO_NONZERO_INFO

The future support fields in the lapi_info_t structure that was passed to

LAPI are not set to zero (and should be).

LAPI_ERR_INFO_NULL The lapi_info_t pointer passed to LAPI is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_MEMORY_EXHAUSTED

LAPI is unable to obtain memory from the system.

LAPI_ERR_MSG_API Indicates that the MP_MSG_API environment variable is not set correctly.

LAPI_ERR_NO_NETSTR_SET

No network statement is set. Note that if running with POE, this will be

returned if MP_MSG_API is not set correctly.

LAPI_ERR_NO_UDP_HNDLR You passed a value of NULL (in C) or LAPI_ADDR_NULL (in FORTRAN)

for both the UDP handler and the UDP list. One of these (the UDP handler

or the UDP list) must be initialized for standalone UDP initialization. This

error is returned in standalone UDP mode only.

LAPI_ERR_PSS_NON_ROOT You tried to initialize the persistent subsystem (PSS) protocol as a

non-root user.

LAPI_ERR_SHM_KE_NOT_LOADED

LAPI’s shared memory kernel extension is not loaded.

LAPI_ERR_SHM_SETUP LAPI is unable to set up shared memory. This error will be returned if

LAPI_USE_SHM=only and tasks are assigned to more than one node.

LAPI_ERR_UDP_PKT_SZ The UDP packet size you indicated is not valid.

LAPI_ERR_UNKNOWN An internal error has occurred.

LAPI_ERR_USER_UDP_HNDLR_FAIL

The UDP handler you passed has returned a non-zero error code. This

error is returned in standalone UDP mode only.

C Examples

The following environment variable must be set before LAPI is initialized:

MP_MSG_API=[lapi | [lapi,mpi | mpi,lapi] | mpi_lapi]

The following environment variables are also commonly used:

MP_EUILIB=[ip | us] (ip is the default)

MP_PROCS=number_of_tasks_in_job

LAPI_USE_SHM=[yes | no | only] (no is the default)

To initialize LAPI, follow these steps:

612 Technical Reference, Volume 1: Base Operating System and Extensions

1. Set environment variables (as described in RSCT for AIX 5L: LAPI Programming Guide) before the

user application is invoked. The remaining steps are done in the user application.

2. Clear lapi_info_t, then set any fields.

3. Call LAPI_Init.

For systems running PE

Both US and UDP/IP are supported for shared handles as long as they are the same for both handles.

Mixed transport protocols such as LAPI IP and shared user space (US) are not supported.

To initialize a LAPI handle:

{

 lapi_handle_t hndl;

 lapi_info_t info;

 bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */

 LAPI_Init(&hndl, &info);

}

To initialize a LAPI handle and register an error handler:

void my_err_hndlr(lapi_handle_t *hndl, int *error_code, lapi_err_t *err_type,

 int *task_id, int *src)

{

 /* examine passed parameters and delete desired information */

 if (user wants to terminate) {

 LAPI_Term(*hndl); /* will terminate LAPI */

 exit(some_return_code);

 }

 /* any additional processing */

 return; /* signals to LAPI that error is non-fatal; execution should continue */

}

{

 lapi_handle_t hndl;

 lapi_info_t info;

 bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */

 /* set error handler pointer */

 info.err_hndlr = (LAPI_err_hndlr) my_err_hndlr;

 LAPI_Init(&hndl, &info);

}

For standalone systems (not running PE)

To initialize a LAPI handle for UDP/IP communication using a user handler:

int my_udp_hndlr(lapi_handle_t *hndl, lapi_udp_t *local_addr, lapi_udp_t *addr_list,

 lapi_udpinfo_t *info)

{

 /* LAPI will allocate and free addr_list pointer when using */

 /* a user handler */

Base Operating System (BOS) Runtime Services (A-P) 613

/* use the AIX inet_addr call to convert an IP address */

 /* from a dotted quad to a long */

 task_0_ip_as_long = inet_addr(task_0_ip_as_string);

 addr_list[0].ip_addr = task_0_ip_as_long;

 addr_list[0].port_no = task_0_port_as_unsigned;

 task_1_ip_as_long = inet_addr(task_1_ip_as_string);

 addr_list[1].ip_addr = task_1_ip_as_long;

 addr_list[1].port_no = task_1_port_as_unsigned;

 .

 .

 .

 task_num_tasks-1_ip_as_long = inet_addr(task_num_tasks-1_ip_as_string);

 addr_list[num_tasks-1].ip_addr = task_num_tasks-1_ip_as_long;

 addr_list[num_tasks-1].port_no = task_num_tasks-1_port_as_unsigned;

}

{

 lapi_handle_t hndl;

 lapi_info_t info;

 lapi_extend_t extend_info;

 bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */

 bzero(&extend_info, sizeof(lapi_extend_t)); /* clear lapi_extend_info */

 extend_info.udp_hndlr = (udp_init_hndlr *) my_udp_hndlr;

 info.add_info = &extend_info;

 LAPI_Init(&hndl, &info);

}

To initialize a LAPI handle for UDP/IP communication using a user list:

{

 lapi_handle_t hndl;

 lapi_info_t info;

 lapi_extend_t extend_info;

 lapi_udp_t *addr_list;

 bzero(&info, sizeof(lapi_info_t)); /* clear lapi_info */

 bzero(&extend_info, sizeof(lapi_extend_t)); /* clear lapi_extend_info */

 /* when using a user list, the user is responsible for allocating */

 /* and freeing the list pointer */

 addr_list = malloc(num_tasks);

 /* Note, since we need to know the number of tasks before LAPI is */

 /* initialized, we can’t use LAPI_Qenv. getenv("MP_PROCS") will */

 /* do the trick. */

 /* populate addr_list */

 /* use the AIX inet_addr call to convert an IP address */

 /* from a dotted quad to a long */

 task_0_ip_as_long = inet_addr(task_0_ip_as_string);

 addr_list[0].ip_addr = task_0_ip_as_long;

 addr_list[0].port_no = task_0_port_as_unsigned;

 task_1_ip_as_long = inet_addr(task_1_ip_as_string);

 addr_list[1].ip_addr = task_1_ip_as_long;

 addr_list[1].port_no = task_1_port_as_unsigned;

 .

 .

614 Technical Reference, Volume 1: Base Operating System and Extensions

.

 task_num_tasks-1_ip_as_long = inet_addr(task_num_tasks-1_ip_as_string);

 addr_list[num_tasks-1].ip_addr = task_num_tasks-1_ip_as_long;

 addr_list[num_tasks-1].port_no = task_num_tasks-1_port_as_unsigned;

 /* then assign to extend pointer */

 extend_info.add_udp_addrs = addr_list;

 info.add_info = &extend_info;

 LAPI_Init(&hndl, &info);

 .

 .

 .

 /* user’s responsibility only in the case of user list */

 free(addr_list);

}

See the LAPI sample programs for complete examples of initialization in standalone mode.

To initialize a LAPI handle for user space (US) communication in standalone mode:

export MP_MSG_API=lapi

export MP_EUILIB=us

export MP_PROCS= /* number of tasks in job */

export MP_PARTITION= /* unique job key */

export MP_CHILD= /* unique task ID */

export MP_LAPI_NETWORK=@1:164,sn0 /* LAPI network information */

run LAPI jobs as normal

See the README.LAPI.STANDALONE.US file in the standalone/us directory of the LAPI sample files for

complete details.

Location

/usr/lib/liblapi_r.a

Related Information

Books: RSCT for AIX 5L: LAPI Programming Guide for information about

v Initializing LAPI on systems running PE

v Initializing LAPI on standalone systems

v Bulk message transfer

Subroutines: LAPI_Msg_string, LAPI_Term

LAPI_Msg_string Subroutine

Purpose

Retrieves the message that is associated with a subroutine return code.

Library

Availability Library (liblapi_r.a)

Base Operating System (BOS) Runtime Services (A-P) 615

C Syntax

#include <lapi.h>

LAPI_Msg_string(error_code, buf)

int error_code;

void *buf;

FORTRAN Syntax

include ’lapif.h’

LAPI_MSG_STRING(error_code, buf, ierror)

INTEGER error_code

CHARACTER buf(LAPI_MAX_ERR_STRING)

INTEGER ierror

Description

Type of call: local queries

Use this subroutine to retrieve the message string that is associated with a LAPI return code. LAPI tries to

find the messages of any return codes that come from the AIX operating system or its communication

subsystem.

Parameters

INPUT

error_code Specifies the return value of a previous LAPI call.

OUTPUT

buf Specifies the buffer to store the message string.

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples

To get the message string associated with a LAPI return code:

{

 char msg_buf[LAPI_MAX_ERR_STRING]; /* constant defined in lapi.h */

 int rc, errc;

 rc = some_LAPI_call();

 errc = LAPI_Msg_string(rc, msg_buf);

 /* msg_buf now contains the message string for the return code */

}

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_CATALOG_FAIL Indicates that the message catalog cannot be opened. An English-only

string is copied into the user’s message buffer (buf).

LAPI_ERR_CODE_UNKNOWN

Indicates that error_code is outside of the range known to LAPI.

LAPI_ERR_RET_PTR_NULL Indicates that the value of the buf pointer is NULL (in C) or that the value

of buf is LAPI_ADDR_NULL (in FORTRAN).

616 Technical Reference, Volume 1: Base Operating System and Extensions

Location

/usr/lib/liblapi_r.a

Related Information

RSCT for AIX 5L: LAPI Programming Guide contains information about

v Initializing LAPI

v Bulk message transfer

Subroutines: LAPI_Msg_string, LAPI_Term

LAPI_Msgpoll Subroutine

Purpose

Allows the calling thread to check communication progress.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Msgpoll(hndl, cnt, info)

lapi_handle_t hndl;

uint cnt;

lapi_msg_info_t *info;

typedef struct {

 lapi_msg_state_t status; /* Message status returned from LAPI_Msgpoll */

 ulong reserve[10]; /* Reserved */

} lapi_msg_info_t;

FORTRAN Syntax

include ’lapif.h’

LAPI_MSGPOLL(hndl, cnt, info, ierror)

INTEGER hndl

INTEGER cnt

TYPE (LAPI_MSG_STATE_T) :: info

INTEGER ierror

Description

Type of call: local progress monitor (blocking)

The LAPI_Msgpoll subroutine allows the calling thread to check communication progress. With this

subroutine, LAPI provides a means of running the dispatcher several times until either progress is made or

a specified maximum number of dispatcher loops have executed. Here, progress is defined as the

completion of either a message send operation or a message receive operation.

LAPI_Msgpoll is intended to be used when interrupts are turned off. If the user has not explicitly turned

interrupts off, LAPI temporarily disables interrupt mode while in this subroutine because the dispatcher is

called, which will process any pending receive operations. If the LAPI dispatcher loops for the specified

Base Operating System (BOS) Runtime Services (A-P) 617

maximum number of times, the call returns. If progress is made before the maximum count, the call will

return immediately. In either case, LAPI will report status through a data structure that is passed by

reference.

The lapi_msg_info_t structure contains a flags field (status), which is of type lapi_msg_state_t. Flags in

the status field are set as follows:

LAPI_DISP_CNTR If the dispatcher has looped cnt times without making progress

LAPI_SEND_COMPLETE If a message send operation has completed

LAPI_RECV_COMPLETE If a message receive operation has completed

LAPI_BOTH_COMPLETE If both a message send operation and a message receive operation have

completed

LAPI_POLLING_NET If another thread is already polling the network or shared memory

completion

Parameters

INPUT

hndl Specifies the LAPI handle.

cnt Specifies the maximum number of times the dispatcher should loop with no progress

before returning.

info Specifies a status structure that contains the result of the LAPI_Msgpoll() call.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples

To loop through the dispatcher no more than 1000 times, then check what progress has been made:

{

 lapi_msg_info_t msg_info;

 int cnt = 1000;

 .

 .

 .

 LAPI_Msgpoll(hndl, cnt, &msg_info);

 if (msg_info.status & LAPI_BOTH_COMPLETE) {

 /* both a message receive and a message send have been completed */

 } else if (msg_info.status & LAPI_RECV_COMPLETE) {

 /* just a message receive has been completed */

 } else if (msg_info.status & LAPI_SEND_COMPLETE) {

 /* just a message send has been completed */

 } else {

 /* cnt loops and no progress */

 }

}

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

618 Technical Reference, Volume 1: Base Operating System and Extensions

LAPI_ERR_MSG_INFO_NULL

Indicates that the info pointer is NULL (in C) or that the value of info is

LAPI_ADDR_NULL (in FORTRAN).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Getcntr, LAPI_Probe, LAPI_Setcntr, LAPI_Waitcntr

LAPI_Nopoll_wait Subroutine

Purpose

Waits for a counter update without polling.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

void LAPI_Nopoll_wait(hndl, cntr_ptr, val, cur_cntr_val)

lapi_handle_t hndl;

lapi_cntr_t *cntr_ptr;

int val;

int *cur_cntr_val;

FORTRAN Syntax

include ’lapif.h’

int LAPI_NOPOLL_WAIT(hndl, cntr, val, cur_cntr_val, ierror)

INTEGER hndl

TYPE (LAPI_CNTR_T) :: cntr

INTEGER val

INTEGER cur_cntr_val

INTEGER ierror

Description

Type of call: recovery (blocking)

This subroutine waits for a counter update without polling (that is, without explicitly invoking LAPI’s internal

communication dispatcher). This call may or may not check for message arrivals over the LAPI context

hndl. The cur_cntr_val variable is set to the current counter value. Although it has higher latency than

LAPI_Waitcntr, LAPI_Nopoll_wait frees up the processor for other uses.

Note: To use this subroutine, the lib_vers field in the lapi_info_t structure must be set to L2_LIB or

LAST_LIB.

Parameters

INPUT

hndl Specifies the LAPI handle.

Base Operating System (BOS) Runtime Services (A-P) 619

val Specifies the relative counter value (starting from 1) that the counter needs to reach

before returning.

cur_cntr_val Specifies the integer value of the current counter. The value of The value of this parameter

can be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT

cntr_ptr Points to the lapi_cntr_t structure in C.

cntr Is the lapi_cntr_t structure in FORTRAN.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_CNTR_NULL Indicates that the cntr_ptr pointer is NULL (in C) or that the value of cntr is

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_CNTR_VAL Indicates that the val passed in is less than or equal to 0.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_MULTIPLE_WAITERS

Indicates that more than one thread is waiting for the counter.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()

was called.

Restrictions

Use of this subroutine is not recommended on a system that is running Parallel Environment (PE).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Init, LAPI_Purge_totask, LAPI_Resume_totask, LAPI_Setcntr_wstatus

LAPI_Probe Subroutine

Purpose

Transfers control to the communication subsystem to check for arriving messages and to make progress in

polling mode.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Probe(hndl)

lapi_handle_t hndl;

620 Technical Reference, Volume 1: Base Operating System and Extensions

FORTRAN Syntax

include ’lapif.h’

int LAPI_PROBE(hndl, ierror)

INTEGER hndl

INTEGER ierror

Description

Type of call: local progress monitor (non-blocking)

This subroutine transfers control to the communication subsystem in order to make progress on messages

associated with the context hndl. A LAPI_Probe operation lasts for one round of the communication

dispatcher.

Note: There is no guarantee about receipt of messages on the return from this function.

Parameters

INPUT

hndl Specifies the LAPI handle.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Getcntr, LAPI_Msgpoll, LAPI_Nopoll_wait, LAPI_Waitcntr

LAPI_Purge_totask Subroutine

Purpose

Allows a task to cancel messages to a given destination.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Purge_totask(hndl, dest)

lapi_handle_t hndl;

uint dest;

Base Operating System (BOS) Runtime Services (A-P) 621

FORTRAN Syntax

include ’lapif.h’

int LAPI_PURGE_TOTASK(hndl, dest, ierror)

INTEGER hndl

INTEGER dest

INTEGER ierror

Description

Type of call: recovery

This subroutine cancels messages and resets the state corresponding to messages in flight or submitted

to be sent to a particular target task. This is an entirely local operation. For correct behavior a similar

invocation is expected on the destination (if it exists). This function cleans up all the state associated with

pending messages to the indicated target task. It is assumed that before the indicated task starts

communicating with this task again, it also purges this instance (or that it was terminated and initialized

again). It will also wake up all threads that are in LAPI_Nopoll_wait depending on how the arguments are

passed to the LAPI_Nopoll_wait function. The behavior of LAPI_Purge_totask is undefined if LAPI

collective functions are used.

Note: This subroutine should not be used when the parallel application is running in a PE/LoadLeveler

environment.

LAPI_Purge_totask is normally used after connectivity has been lost between two tasks. If connectivity is

restored, the tasks can restored for LAPI communication by calling LAPI_Resume_totask.

Parameters

INPUT

hndl Specifies the LAPI handle.

dest Specifies the destination instance ID to which pending messages need to be cancelled.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions

Use of this subroutine is not recommended on a system that is running Parallel Environment (PE).

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_TGT Indicates that dest is outside the range of tasks defined in the job.

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Init, LAPI_Nopoll_wait, LAPI_Resume_totask, LAPI_Term

622 Technical Reference, Volume 1: Base Operating System and Extensions

LAPI_Put Subroutine

Purpose

Transfers data from a local task to a remote task.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Put(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr, cmpl_cntr)

lapi_handle_t hndl;

uint tgt;

ulong len;

void *tgt_addr;

void *org_addr;

lapi_cntr_t *tgt_cntr;

lapi_cntr_t *org_cntr;

lapi_cntr_t *cmpl_cntr;

FORTRAN Syntax

include ’lapif.h’

int LAPI_PUT(hndl, tgt, len, tgt_addr, org_addr, tgt_cntr, org_cntr, ierror)

INTEGER hndl

INTEGER tgt

INTEGER (KIND=LAPI_LONG_TYPE) :: len

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_addr

INTEGER org_addr

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr

TYPE (LAPI_CNTR_T) :: org_cntr

TYPE (LAPI_CNTR_T) :: cmpl_cntr

INTEGER ierror

Description

Type of call: point-to-point communication (non-blocking)

Use this subroutine to transfer data from a local (origin) task to a remote (target) task. The origin counter

will increment on the origin task upon origin buffer availability. The target counter will increment on the

target and the completion counter will increment at the origin task upon message completion. Because

there is no completion handler, message completion and target buffer availability are the same in this

case.

This is a non-blocking call. The caller cannot assume that the data transfer has completed upon the return

of the function. Instead, counters should be used to ensure correct buffer accesses as defined above.

Note that a zero-byte message does not transfer data, but it does have the same semantic with respect to

counters as that of any other message.

Parameters

INPUT

hndl Specifies the LAPI handle.

Base Operating System (BOS) Runtime Services (A-P) 623

tgt Specifies the task ID of the target task. The value of this parameter must be in the range 0

<= tgt < NUM_TASKS.

len Specifies the number of bytes to be transferred. This parameter must be in the range 0 <=

len <= the value of LAPI constant LAPI_MAX_MSG_SZ.

tgt_addr Specifies the address on the target task where data is to be copied into. If len is 0, The

value of this parameter can be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

org_addr Specifies the address on the origin task from which data is to be copied. If len is 0, The

value of this parameter can be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is incremented upon message

completion. If this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the

target counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin

counter is incremented at buffer availability. If this parameter is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), the origin counter is not updated.

cmpl_cntr Specifies the completion counter address (in C) or the completion counter (in FORTRAN)

that is a reflection of tgt_cntr. The completion counter is incremented at the origin after

tgt_cntr is incremented. If this parameter is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), the completion counter is not updated.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples

{

 /* initialize the table buffer for the data addresses */

 /* get remote data buffer addresses */

 LAPI_Address_init(hndl,(void *)data_buffer,data_buffer_list);

 .

 .

 .

 LAPI_Put(hndl, tgt, (ulong) data_len, (void *)(data_buffer_list[tgt]),

 (void *) data_buffer, tgt_cntr, org_cntr, compl_cntr);

 /* transfer data_len bytes from local address data_buffer. */

 /* write the data starting at address data_buffer_list[tgt] on */

 /* task tgt. tgt_cntr, org_cntr, and compl_cntr can be NULL. */

}

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_DATA_LEN Indicates that the value of len is greater than the value of LAPI constant

LAPI_MAX_MSG_SZ.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_ORG_ADDR_NULL

Indicates that the org_addr parameter passed in is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), but len is greater than 0.

624 Technical Reference, Volume 1: Base Operating System and Extensions

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the

job.

LAPI_ERR_TGT_ADDR_NULL

Indicates that the tgt_addr parameter passed in is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), but len is greater than 0.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()

was called.

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Get, LAPI_Getcntr, LAPI_Qenv, LAPI_Setcntr, LAPI_Waitcntr, LAPI_Xfer

LAPI_Putv Subroutine

Purpose

Transfers vectors of data from a local task to a remote task.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Putv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr, cmpl_cntr)

lapi_handle_t hndl;

uint tgt;

lapi_vec_t *tgt_vec;

lapi_vec_t *org_vec;

lapi_cntr_t *tgt_cntr;

lapi_cntr_t *org_cntr;

lapi_cntr_t *cmpl_cntr;

typedef struct {

 lapi_vectype_t vec_type; /* operation code */

 uint num_vecs; /* number of vectors */

 void **info; /* vector of information */

 ulong *len; /* vector of lengths */

} lapi_vec_t;

FORTRAN Syntax

include ’lapif.h’

LAPI_PUTV(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr , cmpl_cntr, ierror)

INTEGER hndl

INTEGER tgt

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_vec

TYPE (LAPI_VEC_T) :: org_vec

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_cntr

TYPE (LAPI_CNTR_T) :: org_cntr

TYPE (LAPI_CNTR_T) :: cmpl_cntr

INTEGER ierror

Base Operating System (BOS) Runtime Services (A-P) 625

The 32-bit version of the LAPI_VEC_T type is defined as:

TYPE LAPI_VEC_T

 SEQUENCE

 INTEGER(KIND = 4) :: vec_type

 INTEGER(KIND = 4) :: num_vecs

 INTEGER(KIND = 4) :: info

 INTEGER(KIND = 4) :: len

END TYPE LAPI_VEC_T

The 64-bit version of the LAPI_VEC_T type is defined as:

TYPE LAPI_VEC_T

 SEQUENCE

 INTEGER(KIND = 4) :: vec_type

 INTEGER(KIND = 4) :: num_vecs

 INTEGER(KIND = 8) :: info

 INTEGER(KIND = 8) :: len

END TYPE LAPI_VEC_T

Description

Type of call: point-to-point communication (non-blocking)

LAPI_Putv is the vector version of the LAPI_Put call. Use this subroutine to transfer vectors of data from

the origin task to the target task. The origin vector descriptions and the target vector descriptions are

located in the address space of the origin task. However, the values specified in the info array of the target

vector must be addresses in the address space of the target task.

The calling program cannot assume that the origin buffer can be changed or that the contents of the target

buffers on the target task are ready for use upon function return. After the origin counter (org_cntr) is

incremented, the origin buffers can be modified by the origin task. After the target counter (tgt_cntr) is

incremented, the target buffers can be modified by the target task. If you provide a completion counter

(cmpl_cntr), it is incremented at the origin after the target counter (tgt_cntr) has been incremented at the

target. If the values of any of the counters or counter addresses are NULL (in C) or LAPI_ADDR_NULL

(in FORTRAN), the data transfer occurs, but the corresponding counter increments do not occur.

If a strided vector is being transferred, the size of each block must not be greater than the stride size in

bytes.

The length of any vector pointed to by org_vec must be equal to the length of the corresponding vector

pointed to by tgt_vec.

LAPI does not check for any overlapping regions among vectors either at the origin or the target. If the

overlapping regions exist on the target side, the contents of the target buffer are undefined after the

operation.

See LAPI_Amsendv for more information about using the various vector types. (LAPI_Putv does not

support the LAPI_GEN_GENERIC type.)

Parameters

INPUT

hndl Specifies the LAPI handle.

tgt Specifies the task ID of the target task. The value of this parameter must be in the range 0

<= tgt < NUM_TASKS.

tgt_vec Points to the target vector description.

org_vec Points to the origin vector description.

626 Technical Reference, Volume 1: Base Operating System and Extensions

INPUT/OUTPUT

tgt_cntr Specifies the target counter address. The target counter is incremented upon message

completion. If this parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), the

target counter is not updated.

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). The origin

counter is incremented at buffer availability. If this parameter is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN), the origin counter is not updated.

cmpl_cntr Specifies the completion counter address (in C) or the completion counter (in FORTRAN)

that is a reflection of tgt_cntr. The completion counter is incremented at the origin after

tgt_cntr is incremented. If this parameter is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), the completion counter is not updated.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

C Examples

To put a LAPI_GEN_IOVECTOR:

{

 /* retrieve a remote data buffer address for data to transfer, */

 /* such as through LAPI_Address_init */

 /* task that calls LAPI_Putv sets up both org_vec and tgt_vec */

 org_vec->num_vecs = NUM_VECS;

 org_vec->vec_type = LAPI_GEN_IOVECTOR;

 org_vec->len = (unsigned long *)

 malloc(NUM_VECS*sizeof(unsigned long));

 org_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 /* each org_vec->info[i] gets a base address on the origin task */

 /* each org_vec->len[i] gets the number of bytes to transfer */

 /* from org_vec->info[i] */

 tgt_vec->num_vecs = NUM_VECS;

 tgt_vec->vec_type = LAPI_GEN_IOVECTOR;

 tgt_vec->len = (unsigned long *)

 malloc(NUM_VECS*sizeof(unsigned long));

 tgt_vec->info = (void **) malloc(NUM_VECS*sizeof(void *));

 /* each tgt_vec->info[i] gets a base address on the target task */

 /* each tgt_vec->len[i] gets the number of bytes to write to vec->info[i] */

 /* For LAPI_GEN_IOVECTOR, num_vecs, vec_type, and len must be the same */

 LAPI_Putv(hndl, tgt, tgt_vec, org_vec, tgt_cntr, org_cntr, compl_cntr);

 /* tgt_cntr, org_cntr and compl_cntr can all be NULL */

 /* data will be transferred as follows: */

 /* org_vec->len[0] bytes will be retrieved from */

 /* org_vec->info[0] and written to tgt_vec->info[0] */

 /* org_vec->len[1] bytes will be retrieved from */

 /* org_vec->info[1] and written to tgt_vec->info[1] */

 .

 .

 .

 /* org_vec->len[NUM_VECS-1] bytes will be retrieved */

 /* from org_vec->info[NUM_VECS-1] and written to */

 /* tgt_vec->info[NUM_VECS-1] */

}

See the example in LAPI_Amsendv for information on other vector types.

Base Operating System (BOS) Runtime Services (A-P) 627

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_ORG_EXTENT Indicates that the org_vec’s extent (stride * num_vecs) is greater than the

value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_STRIDE Indicates that the org_vec stride is less than block.

LAPI_ERR_ORG_VEC_ADDR

Indicates that the org_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), but its length (org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN Indicates that the sum of org_vec->len is greater than the value of LAPI

constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_VEC_NULL Indicates that the org_vec is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

LAPI_ERR_ORG_VEC_TYPE Indicates that the org_vec->vec_type is not valid.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL

Indicates that the strided vector address org_vec->info[0] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_STRIDE_TGT_VEC_ADDR_NULL

Indicates that the strided vector address tgt_vec->info[0] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the

job.

LAPI_ERR_TGT_EXTENT Indicates that tgt_vec’s extent (stride * num_vecs) is greater than the

value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()

was called.

LAPI_ERR_TGT_STRIDE Indicates that the tgt_vec stride is less than block.

LAPI_ERR_TGT_VEC_ADDR Indicates that the tgt_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), but its length (tgt_vec->len[i]) is not 0.

LAPI_ERR_TGT_VEC_LEN Indicates that the sum of tgt_vec->len is greater than the value of LAPI

constant LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_VEC_NULL Indicates that tgt_vec is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

LAPI_ERR_TGT_VEC_TYPE Indicates that the tgt_vec->vec_type is not valid.

LAPI_ERR_VEC_LEN_DIFF Indicates that org_vec and tgt_vec have different lengths (len[]).

LAPI_ERR_VEC_NUM_DIFF Indicates that org_vec and tgt_vec have different num_vecs.

LAPI_ERR_VEC_TYPE_DIFF

Indicates that org_vec and tgt_vec have different vector types (vec_type).

Location

/usr/lib/liblapi_r.a

628 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

Subroutines: LAPI_Amsendv, LAPI_Getcntr, LAPI_Getv, LAPI_Qenv, LAPI_Setcntr, LAPI_Waitcntr,

LAPI_Xfer

LAPI_Qenv Subroutine

Purpose

Used to query LAPI for runtime task information.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapif.h>

int LAPI_Qenv(hndl, query, ret_val)

lapi_handle_t hndl;

lapi_query_t query;

int *ret_val; /* ret_val’s type varies (see Additional query types) */

FORTRAN Syntax

include ’lapif.h’

LAPI_QENV(hndl, query, ret_val, ierror)

INTEGER hndl

INTEGER query

INTEGER ret_val /* ret_val’s type varies (see Additional query types) */

INTEGER ierror

Description

Type of call: local queries

Use this subroutine to query runtime settings and statistics from LAPI. LAPI defines a set of query types

as an enumeration in lapi.h for C and explicitly in the 32-bit and 64-bit versions of lapif.h for FORTRAN.

For example, you can query the size of the table that LAPI uses for the LAPI_Addr_set subroutine using

a query value of LOC_ADDRTBL_SZ:

LAPI_Qenv(hndl, LOC_ADDRTBL_SZ, &ret_val);

ret_val will contain the upper bound on the table index. A subsequent call to LAPI_Addr_set (hndl, addr,

addr_hndl); could then ensure that the value of addr_hndl is between 0 and ret_val.

When used to show the size of a parameter, a comparison of values, or a range of values, valid values for

the query parameter of the LAPI_Qenv subroutine appear in SMALL, BOLD capital letters. For example:

NUM_TASKS

is a shorthand notation for:

LAPI_Qenv(hndl, NUM_TASKS, ret_val)

Base Operating System (BOS) Runtime Services (A-P) 629

In C, lapi_query_t defines the valid types of LAPI queries:

typedef enum {

 TASK_ID=0, /* Query the task ID of the current task in the job */

 NUM_TASKS, /* Query the number of tasks in the job */

 MAX_UHDR_SZ, /* Query the maximum user header size for active messaging */

 MAX_DATA_SZ, /* Query the maximum data length that can be sent */

 ERROR_CHK, /* Query and set parameter checking on (1) or off (0) */

 TIMEOUT, /* Query and set the current communication timeout setting */

 /* in seconds */

 MIN_TIMEOUT, /* Query the minimum communication timeout setting in seconds */

 MAX_TIMEOUT, /* Query the maximum communication timeout setting in seconds */

 INTERRUPT_SET, /* Query and set interrupt mode on (1) or off (0) */

 MAX_PORTS, /* Query the maximum number of available communication ports */

 MAX_PKT_SZ, /* This is the payload size of 1 packet */

 NUM_REX_BUFS, /* Number of retransmission buffers */

 REX_BUF_SZ, /* Size of each retransmission buffer in bytes */

 LOC_ADDRTBL_SZ, /* Size of address store table used by LAPI_Addr_set */

 EPOCH_NUM, /* No longer used by LAPI (supports legacy code) */

 USE_THRESH, /* No longer used by LAPI (supports legacy code) */

 RCV_FIFO_SIZE, /* No longer used by LAPI (supports legacy code) */

 MAX_ATOM_SIZE,/* Query the maximum atom size for a DGSP accumulate transfer*/

 BUF_CP_SIZE, /* Query the size of the message buffer to save (default 128b)*/

 MAX_PKTS_OUT, /* Query the maximum number of messages outstanding / */

 /* destination */

 ACK_THRESHOLD, /* Query and set the threshold of acknowledgments going */

 /* back to the source */

 QUERY_SHM_ENABLED, /* Query to see if shared memory is enabled */

 QUERY_SHM_NUM_TASKS, /* Query to get the number of tasks that use shared */

 /* memory */

 QUERY_SHM_TASKS, /* Query to get the list of task IDs that make up shared */

 /* memory; pass in an array of size QUERY_SHM_NUM_TASKS */

 QUERY_STATISTICS, /* Query to get packet statistics from LAPI, as */

 /* defined by the lapi_statistics_t structure. For */

 /* this query, pass in ’lapi_statistics_t *’ rather */

 /* than ’int *ret_val’; otherwise, the data will */

 /* overflow the buffer. */

 PRINT_STATISTICS, /* Query debug print function to print out statistics */

 QUERY_SHM_STATISTICS,/* Similar query as QUERY_STATISTICS for shared */

 /* memory path. */

 QUERY_LOCAL_SEND_STATISTICS ,/* Similar query as QUERY_STATISTICS */

 /* for local copy path. */

 BULK_XFER, /* Query to see if bulk transfer is enabled (1) or disabled (0) */

 BULK_MIN_MSG_SIZE, /* Query the current bulk transfer minimum message size */

 LAST_QUERY

} lapi_query_t;

typedef struct {

 lapi_long_t Tot_dup_pkt_cnt; /* Total duplicate packet count */

 lapi_long_t Tot_retrans_pkt_cnt; /* Total retransmit packet count */

 lapi_long_t Tot_gho_pkt_cnt; /* Total Ghost packet count */

 lapi_long_t Tot_pkt_sent_cnt; /* Total packet sent count */

 lapi_long_t Tot_pkt_recv_cnt; /* Total packet receive count */

 lapi_long_t Tot_data_sent; /* Total data sent */

 lapi_long_t Tot_data_recv; /* Total data receive */

 } lapi_statistics_t;

In FORTRAN, the valid types of LAPI queries are defined in lapif.h as follows:

 integer TASK_ID,NUM_TASKS,MAX_UHDR_SZ,MAX_DATA_SZ,ERROR_CHK

 integer TIMEOUT,MIN_TIMEOUT,MAX_TIMEOUT

 integer INTERRUPT_SET,MAX_PORTS,MAX_PKT_SZ,NUM_REX_BUFS

 integer REX_BUF_SZ,LOC_ADDRTBL_SZ,EPOCH_NUM,USE_THRESH

 integer RCV_FIFO_SIZE,MAX_ATOM_SIZE,BUF_CP_SIZE

 integer MAX_PKTS_OUT,ACK_THRESHOLD,QUERY_SHM_ENABLED

630 Technical Reference, Volume 1: Base Operating System and Extensions

integer QUERY_SHM_NUM_TASKS,QUERY_SHM_TASKS

 integer QUERY_STATISTICS,PRINT_STATISTICS

 integer QUERY_SHM_STATISTICS,QUERY_LOCAL_SEND_STATISTICS

 integer BULK_XFER,BULK_MIN_MSG_SIZE,

 integer LAST_QUERY

 parameter (TASK_ID=0,NUM_TASKS=1,MAX_UHDR_SZ=2,MAX_DATA_SZ=3)

 parameter (ERROR_CHK=4,TIMEOUT=5,MIN_TIMEOUT=6)

 parameter (MAX_TIMEOUT=7,INTERRUPT_SET=8,MAX_PORTS=9)

 parameter (MAX_PKT_SZ=10,NUM_REX_BUFS=11,REX_BUF_SZ=12)

 parameter (LOC_ADDRTBL_SZ=13,EPOCH_NUM=14,USE_THRESH=15)

 parameter (RCV_FIFO_SIZE=16,MAX_ATOM_SIZE=17,BUF_CP_SIZE=18)

 parameter (MAX_PKTS_OUT=19,ACK_THRESHOLD=20)

 parameter (QUERY_SHM_ENABLED=21,QUERY_SHM_NUM_TASKS=22)

 parameter (QUERY_SHM_TASKS=23,QUERY_STATISTICS=24)

 parameter (PRINT_STATISTICS=25)

 parameter (QUERY_SHM_STATISTICS=26,QUERY_LOCAL_SEND_STATISTICS=27)

 parameter (BULK_XFER=28,BULK_MIN_MSG_SIZE=29)

 parameter (LAST_QUERY=30)

Additional query types

LAPI provides additional query types for which the behavior of LAPI_Qenv is slightly different:

PRINT_STATISTICS When passed this query type, LAPI sends data transfer statistics to

standard output. In this case, ret_val is unaffected. However, LAPI’s error

checking requires that the value of ret_val is not NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN) for all LAPI_Qenv types (including

PRINT_STATISTICS).

QUERY_LOCAL_SEND_STATISTICS

When passed this query type, LAPI_Qenv interprets ret_val as a pointer

to type lapi_statistics_t. Upon function return, the fields of the structure

contain LAPI’s data transfer statistics for data transferred through

intra-task local copy. The packet count will be 0.

QUERY_SHM_STATISTICS When passed this query type, LAPI_Qenv interprets ret_val as a pointer

to type lapi_statistics_t. Upon function return, the fields of the structure

contain LAPI’s data transfer statistics for data transferred through shared

memory.

QUERY_SHM_TASKS When passed this query type, LAPI_Qenv returns a list of task IDs with

which this task can communicate using shared memory. ret_val must be

an int * with enough space to hold NUM_TASKS integers. For each task i,

if it is possible to use shared memory, ret_val[i] will contain the shared

memory task ID. If it is not possible to use shared memory, ret_val[i] will

contain -1.

QUERY_STATISTICS When passed this query type, LAPI_Qenv interprets ret_val as a pointer

to type lapi_statistics_t. Upon function return, the fields of the structure

contain LAPI’s data transfer statistics for data transferred using the user

space (US) protocol or UDP/IP.

Parameters

INPUT

hndl Specifies the LAPI handle.

query Specifies the type of query you want to request. In C, the values for query are defined by

the lapi_query_t enumeration in lapi.h. In FORTRAN, these values are defined explicitly

in the 32-bit version and the 64-bit version of lapif.h.

OUTPUT

Base Operating System (BOS) Runtime Services (A-P) 631

ret_val Specifies the reference parameter for LAPI to store as the result of the query. The value of

this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_QUERY_TYPE Indicates that the query passed in is not valid.

LAPI_ERR_RET_PTR_NULL Indicates that the value of the ret_val pointer is NULL (in C) or that the

value of ret_val is LAPI_ADDR_NULL (in FORTRAN).

C Examples

To query runtime values from LAPI:

{

 int task_id;

 lapi_statistics_t stats;

 .

 .

 .

 LAPI_Qenv(hndl, TASK_ID, &task_id);

 /* task_id now contains the task ID */

 .

 .

 .

 LAPI_Qenv(hndl, QUERY_STATISTICS, (int *)&stats);

 /* the fields of the stats structure are now

 filled in with runtime values */

 .

 .

 .

}

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Amsend, LAPI_Get, LAPI_Put, LAPI_Senv, LAPI_Xfer

LAPI_Resume_totask Subroutine

Purpose

Re-enables the sending of messages to the task.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Resume_totask(hndl, dest)

lapi_handle_t hndl;

uint dest;

632 Technical Reference, Volume 1: Base Operating System and Extensions

FORTRAN Syntax

include ’lapif.h’

int LAPI_RESUME_TOTASK(hndl, dest, ierror)

INTEGER hndl

INTEGER dest

INTEGER ierror

Description

Type of call: recovery

This subroutine is used in conjunction with LAPI_Purge_totask. It enables LAPI communication to be

reestablished for a task that had previously been purged. The purged task must either restart LAPI or

execute a LAPI_Purge_totask/LAPI_Resume_totask sequence for this task.

Parameters

INPUT

hndl Specifies the LAPI handle.

dest Specifies the destination instance ID with which to resume communication.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions

Use of this subroutine is not recommmended on a system that is running Parallel Environment (PE).

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the

job.

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Init, LAPI_Nopoll_wait, LAPI_Purge_totask, LAPI_Term

LAPI_Rmw Subroutine

Purpose

Provides data synchronization primitives.

Library

Availability Library (liblapi_r.a)

Base Operating System (BOS) Runtime Services (A-P) 633

C Syntax

#include <lapi.h>

int LAPI_Rmw(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr)

lapi_handle_t hndl;

RMW_ops_t op;

uint tgt;

int *tgt_var;

int *in_val;

int *prev_tgt_val;

lapi_cntr_t *org_cntr;

FORTRAN Syntax

include ’lapif.h’

LAPI_RMW(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr, ierror)

INTEGER hndl

INTEGER op

INTEGER tgt

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_var

INTEGER in_val

INTEGER prev_tgt_val

TYPE (LAPI_CNTR_T) :: org_cntr

INTEGER ierror

Description

Type of call: point-to-point communication (non-blocking)

Use this subroutine to synchronize two independent pieces of data, such as two tasks sharing a common

data structure. The operation is performed at the target task (tgt) and is atomic. The operation takes an

input value (in_val) from the origin and performs one of four operations (op) on a variable (tgt_var) at the

target (tgt), and then replaces the target variable (tgt_var) with the results of the operation (op). The

original value (prev_tgt_val) of the target variable (tgt_var) is returned to the origin.

The operations (op) are performed over the context referred to by hndl. The outcome of the execution of

these calls is as if the following code was executed atomically:

*prev_tgt_val = *tgt_var;

*tgt_var = f(*tgt_var, *in_val);

where:

f(a,b) = a + b for FETCH_AND_ADD

f(a,b) = a | b for FETCH_AND_OR (bitwise or)

f(a,b) = b for SWAP

For COMPARE_AND_SWAP, in_val is treated as a pointer to an array of two integers, and the op is the

following atomic operation:

 if(*tgt_var == in_val[0]) {

 *prev_tgt_val = TRUE;

 *tgt_var = in_val[1];

} else {

 *prev_tgt_val = FALSE;

}

634 Technical Reference, Volume 1: Base Operating System and Extensions

All LAPI_Rmw calls are non-blocking. To test for completion, use the LAPI_Getcntr and LAPI_Waitcntr

subroutines. LAPI_Rmw does not include a target counter (tgt_cntr), so LAPI_Rmw calls do not provide

any indication of completion on the target task (tgt).

Parameters

INPUT

hndl Specifies the LAPI handle.

op Specifies the operation to be performed. The valid operations are:

v COMPARE_AND_SWAP

v FETCH_AND_ADD

v FETCH_AND_OR

v SWAP

tgt Specifies the task ID of the target task where the read-modify-write (Rmw) variable

resides. The value of this parameter must be in the range 0 <= tgt < NUM_TASKS.

tgt_var Specifies the target read-modify-write (Rmw) variable (in FORTRAN) or its address (in C).

The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

in_val Specifies the value that is passed in to the operation (op). This value cannot be NULL (in

C) or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT

prev_tgt_val Specifies the location at the origin in which the previous tgt_var on the target task is

stored before the operation (op) is executed. The value of this parameter can be NULL (in

C) or LAPI_ADDR_NULL (in FORTRAN).

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). If

prev_tgt_val is set, the origin counter (org_cntr) is incremented when prev_tgt_val is

returned to the origin side. If prev_tgt_val is not set, the origin counter (org_cntr) is

updated after the operation (op) is completed at the target side.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions

LAPI statistics are not reported for shared memory communication and data transfer, or for messages that

a task sends to itself.

C Examples

1. To synchronize a data value between two tasks (with FETCH_AND_ADD):

{

 int local_var;

 int *addr_list;

 /* both tasks initialize local_var to a value */

 /* local_var addresses are exchanged and stored */

 /* in addr_list (using LAPI_Address_init). */

 /* addr_list[tgt] now contains the address of */

 /* local_var on tgt */

 .

 .

 .

 /* add value to local_var on some task */

Base Operating System (BOS) Runtime Services (A-P) 635

/* use LAPI to add value to local_var on remote task */

 LAPI_Rmw(hndl, FETCH_AND_ADD, tgt, addr_list[tgt],

 value, prev_tgt_val, &org_cntr);

 /* local_var on the remote task has been increased */

 /* by value. prev_tgt_val now contains the value */

 /* of local_var on remote task before the addition */

}

2. To synchronize a data value between two tasks (with SWAP):

{

 int local_var;

 int *addr_list;

 /* local_var addresses are exchanged and stored */

 /* in addr_list (using LAPI_Address_init). */

 /* addr_list[tgt] now contains the address of */

 /* local_var on tgt. */

 .

 .

 .

 /* local_var is assigned some value */

 /* assign local_var to local_var on remote task */

 LAPI_Rmw(hndl, SWAP, tgt, addr_list[tgt],

 local_var, prev_tgt_val, &org_cntr);

 /* local_var on the remote task is now equal to */

 /* local_var on the local task. prev_tgt_val now */

 /* contains the value of local_var on the remote */

 /* task before the swap. */

}

3. To conditionally swap a data value (with COMPARE_AND_SWAP):

{

 int local_var;

 int *addr_list;

 int in_val[2];

 /* local_var addresses are exchanged and stored */

 /* in addr_list (using LAPI_Address_init). */

 /* addr_list[tgt] now contains the address of */

 /* local_var on tgt. */

 .

 .

 .

 /* if local_var on remote_task is equal to comparator, */

 /* assign value to local_var on remote task */

 in_val[0] = comparator;

 in_val[1] = value;

 LAPI_Rmw(hndl, COMPARE_AND_SWAP, tgt, addr_list[tgt],

 in_val, prev_tgt_val, &org_cntr);

 /* local_var on the remote task is now in_val[1] if it */

 /* had previously been equal to in_val[0]. If the swap */

 /* was performed, prev_tgt_val now contains TRUE; */

 /* otherwise, it contains FALSE. */

}

636 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_IN_VAL_NULL Indicates that the in_val pointer is NULL (in C) or that the value of in_val

is LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_RMW_OP Indicates that op is not valid.

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the

job.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()

was called.

LAPI_ERR_TGT_VAR_NULL Indicates that the tgt_var address is NULL (in C) or that the value of

tgt_var is LAPI_ADDR_NULL (in FORTRAN).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Address_init, LAPI_Getcntr, LAPI_Qenv, LAPI_Rmw64, LAPI_Setcntr,

LAPI_Waitcntr, LAPI_Xfer

LAPI_Rmw64 Subroutine

Purpose

Provides data synchronization primitives for 64-bit applications.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Rmw64(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr)

lapi_handle_t hndl;

Rmw_ops_t op;

uint tgt;

long long *tgt_var;

long long *in_val;

long long *prev_tgt_val;

lapi_cntr_t *org_cntr;

FORTRAN Syntax

include ’lapif.h’

LAPI_RMW64(hndl, op, tgt, tgt_var, in_val, prev_tgt_val, org_cntr, ierror)

INTEGER hndl

INTEGER op

INTEGER tgt

Base Operating System (BOS) Runtime Services (A-P) 637

INTEGER (KIND=LAPI_ADDR_TYPE) :: tgt_var

INTEGER (KIND=LAPI_LONG_LONG_TYPE) :: in_val, prev_tgt_val

TYPE (LAPI_CNTR_T) :: org_cntr

INTEGER ierror

Description

Type of call: point-to-point communication (non-blocking)

This subroutine is the 64-bit version of LAPI_Rmw. It is used to synchronize two independent pieces of

64-bit data, such as two tasks sharing a common data structure. The operation is performed at the target

task (tgt) and is atomic. The operation takes an input value (in_val) from the origin and performs one of

four operations (op) on a variable (tgt_var) at the target (tgt), and then replaces the target variable

(tgt_var) with the results of the operation (op). The original value (prev_tgt_val) of the target variable

(tgt_var) is returned to the origin.

The operations (op) are performed over the context referred to by hndl. The outcome of the execution of

these calls is as if the following code was executed atomically:

*prev_tgt_val = *tgt_var;

*tgt_var = f(*tgt_var, *in_val);

where:

f(a,b) = a + b for FETCH_AND_ADD

f(a,b) = a | b for FETCH_AND_OR (bitwise or)

f(a,b) = b for SWAP

For COMPARE_AND_SWAP, in_val is treated as a pointer to an array of two integers, and the op is the

following atomic operation:

if(*tgt_var == in_val[0]) {

 *prev_tgt_val = TRUE;

 *tgt_var = in_val[1];

} else {

 *prev_tgt_val = FALSE;

}

This subroutine can also be used on a 32-bit processor.

All LAPI_Rmw64 calls are non-blocking. To test for completion, use the LAPI_Getcntr and LAPI_Waitcntr

subroutines. LAPI_Rmw64 does not include a target counter (tgt_cntr), so LAPI_Rmw64 calls do not

provide any indication of completion on the target task (tgt).

Parameters

INPUT

hndl Specifies the LAPI handle.

op Specifies the operation to be performed. The valid operations are:

v COMPARE_AND_SWAP

v FETCH_AND_ADD

v FETCH_AND_OR

v SWAP

638 Technical Reference, Volume 1: Base Operating System and Extensions

tgt Specifies the task ID of the target task where the read-modify-write (Rmw64) variable

resides. The value of this parameter must be in the range 0 <= tgt < NUM_TASKS.

tgt_var Specifies the target read-modify-write (Rmw64) variable (in FORTRAN) or its address (in

C). The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

in_val Specifies the value that is passed in to the operation (op). This value cannot be NULL (in

C) or LAPI_ADDR_NULL (in FORTRAN).

INPUT/OUTPUT

prev_tgt_val Specifies the location at the origin in which the previous tgt_var on the target task is

stored before the operation (op) is executed. The value of this parameter can be NULL (in

C) or LAPI_ADDR_NULL (in FORTRAN).

org_cntr Specifies the origin counter address (in C) or the origin counter (in FORTRAN). If

prev_tgt_val is set, the origin counter (org_cntr) is incremented when prev_tgt_val is

returned to the origin side. If prev_tgt_val is not set, the origin counter (org_cntr) is

updated after the operation (op) is completed at the target side.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions

LAPI statistics are not reported for shared memory communication and data transfer, or for messages that

a task sends to itself.

C Examples

1. To synchronize a data value between two tasks (with FETCH_AND_ADD):

{

 long long local_var;

 long long *addr_list;

 /* both tasks initialize local_var to a value */

 /* local_var addresses are exchanged and stored */

 /* in addr_list (using LAPI_Address_init64) */

 /* addr_list[tgt] now contains address of */

 /* local_var on tgt */

 .

 .

 .

 /* add value to local_var on some task */

 /* use LAPI to add value to local_var on remote task */

 LAPI_Rmw64(hndl, FETCH_AND_ADD, tgt, addr_list[tgt],

 value, prev_tgt_val, &org_cntr);

 /* local_var on remote task has been increased */

 /* by value. prev_tgt_val now contains value of */

 /* local_var on remote task before the addition */

}

2. To synchronize a data value between two tasks (with SWAP):

{

 long long local_var;

 long long *addr_list;

Base Operating System (BOS) Runtime Services (A-P) 639

/* local_var addresses are exchanged and stored */

 /* in addr_list (using LAPI_Address_init64). */

 /* addr_list[tgt] now contains the address of */

 /* local_var on tgt. */

 .

 .

 .

 /* local_var is assigned some value */

 /* assign local_var to local_var on the remote task */

 LAPI_Rmw64(hndl, SWAP, tgt, addr_list[tgt],

 local_var, prev_tgt_val, &org_cntr);

 /* local_var on the remote task is now equal to local_var */

 /* on the local task. prev_tgt_val now contains the value */

 /* of local_var on the remote task before the swap. */

}

3. To conditionally swap a data value (with COMPARE_AND_SWAP):

{

 long long local_var;

 long long *addr_list;

 long long in_val[2];

 /* local_var addresses are exchanged and stored */

 /* in addr_list (using LAPI_Address_init64). */

 /* addr_list[tgt] now contains the address of */

 /* local_var on tgt. */

 .

 .

 .

 /* if local_var on remote_task is equal to comparator, */

 /* assign value to local_var on the remote task */

 in_val[0] = comparator;

 in_val[1] = value;

 LAPI_Rmw64(hndl, COMPARE_AND_SWAP, tgt, addr_list[tgt],

 in_val, prev_tgt_val, &org_cntr);

 /* local_var on remote task is now in_val[1] if it */

 /* had previously been equal to in_val[0]. If the */

 /* swap was performed, prev_tgt_val now contains */

 /* TRUE; otherwise, it contains FALSE. */

}

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_IN_VAL_NULL Indicates that the in_val pointer is NULL (in C) or that the value of in_val

is LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_RMW_OP Indicates that op is not valid.

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the

job.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()

was called.

640 Technical Reference, Volume 1: Base Operating System and Extensions

LAPI_ERR_TGT_VAR_NULL Indicates that the tgt_var address is NULL (in C) or that the value of

tgt_var is LAPI_ADDR_NULL (in FORTRAN).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Address_init64, LAPI_Getcntr, LAPI_Qenv, LAPI_Rmw, LAPI_Setcntr,

LAPI_Waitcntr, LAPI_Xfer

LAPI_Senv Subroutine

Purpose

Used to set a runtime variable.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapif.h>

int LAPI_Senv(hndl, query, set_val)

lapi_handle_t hndl;

lapi_query_t query;

int set_val;

FORTRAN Syntax

include ’lapif.h’

LAPI_SENV(hndl, query, set_val, ierror)

INTEGER hndl

INTEGER query

INTEGER set_val

INTEGER ierror

Description

Type of call: local queries

Use this subroutine to set runtime attributes for a specific LAPI instance. In C, the lapi_query_t

enumeration defines the attributes that can be set at runtime. These attributes are defined explicitly in

FORTRAN. See LAPI_Qenv for more information.

You can use LAPI_Senv to set these runtime attributes: ACK_THRESHOLD, ERROR_CHK,

INTERRUPT_SET, and TIMEOUT.

Parameters

INPUT

hndl Specifies the LAPI handle.

query Specifies the type of query that you want to set. In C, the values for query are defined by

the lapi_query_t enumeration in lapi.h. In FORTRAN, these values are defined explicitly

in the 32-bit version and the 64-bit version of lapif.h.

Base Operating System (BOS) Runtime Services (A-P) 641

set_val Specifies the integer value of the query that you want to set.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions

LAPI statistics are not reported for shared memory communication and data transfer, or for messages that

a task sends to itself.

C Examples

The following values can be set using LAPI_Senv:

ACK_THRESHOLD:

int value;

LAPI_Senv(hndl, ACK_THRESHOLD, value);

/* LAPI sends packet acknowledgements (acks) in groups, waiting until */

/* ACK_THRESHOLD packets have arrived before returning a group of acks */

/* The valid range for ACK_THRESHOLD is (1 <= value <= 30) */

/* The default is 30. */

ERROR_CHK:

boolean toggle;

LAPI_Senv(hndl, ERROR_CHK, toggle);

/* Indicates whether LAPI should perform error checking. If set, LAPI */

/* calls will perform bounds-checking on parameters. Error checking */

/* is disabled by default. */

INTERRUPT_SET:

boolean toggle;

LAPI_Senv(hndl, INTERRUPT_SET, toggle);

/* Determines whether LAPI will respond to interrupts. If interrupts */

/* are disabled, LAPI will poll for message completion. */

/* toggle==True will enable interrupts, False will disable. */

/* Interrupts are enabled by default. */

TIMEOUT:

int value;

LAPI_Senv(hndl, TIMEOUT, value);

/* LAPI will time out on a communication if no response is received */

/* within timeout seconds. Valid range is (10 <= timeout <= 86400). */

/* 86400 seconds = 24 hours. Default value is 900 (15 minutes). */

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_QUERY_TYPE Indicates the query passed in is not valid.

LAPI_ERR_SET_VAL Indicates the set_val pointer is not in valid range.

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Qenv

642 Technical Reference, Volume 1: Base Operating System and Extensions

LAPI_Setcntr Subroutine

Purpose

Used to set a counter to a specified value.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Setcntr(hndl, cntr, val)

lapi_handle_t hndl;

lapi_cntr_t *cntr;

int val;

FORTRAN Syntax

include ’lapif.h’

LAPI_SETCNTR(hndl, cntr, val, ierror)

INTEGER hndl

TYPE (LAPI_CNTR_T) :: cntr

INTEGER val

INTEGER ierror

Description

Type of call: Local counter manipulation

This subroutine sets cntr to the value specified by val. Because the LAPI_Getcntr/LAPI_Setcntr

sequence cannot be made atomic, you should only use LAPI_Setcntr when you know there will not be

any competing operations.

Parameters

INPUT

hndl Specifies the LAPI handle.

val Specifies the value to which the counter needs to be set.

INPUT/OUTPUT

cntr Specifies the address of the counter to be set (in C) or the counter structure (in

FORTRAN). The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions

LAPI statistics are not reported for shared memory communication and data transfer, or for messages that

a task sends to itself.

C Examples

To initialize a counter for use in a communication API call:

Base Operating System (BOS) Runtime Services (A-P) 643

{

 lapi_cntr_t my_tgt_cntr, *tgt_cntr_array;

 int initial_value, expected_value, current_value;

 lapi_handle_t hndl;

 .

 .

 .

 /*

 * Note: the code below is executed on all tasks

 */

 /* initialize, allocate and create structures */

 initial_value = 0;

 expected_value = 1;

 /* set the cntr to zero */

 LAPI_Setcntr(hndl, &my_tgt_cntr, initial_value);

 /* set other counters */

 .

 .

 .

 /* exchange counter addresses, LAPI_Address_init synchronizes */

 LAPI_Address_init(hndl, &my_tgt_cntr, tgt_cntr_array);

 /* more address exchanges */

 .

 .

 .

 /* Communication calls using my_tgt_cntr */

 LAPI_Put(....., tgt_cntr_array[tgt], );

 .

 .

 .

 /* Wait for counter to reach value */

 for (;;) {

 LAPI_Getcntr(hndl, &my_tgt_cntr, ¤t_value);

 if (current_value >= expected_value) {

 break; /* out of infinite loop */

 } else {

 LAPI_Probe(hndl);

 }

 }

 .

 .

 .

 /* Quiesce/synchronize to ensure communication using our counter is done */

 LAPI_Gfence(hndl);

 /* Reset the counter */

 LAPI_Setcntr(hndl, &my_tgt_cntr, initial_value);

 /*

 * Synchronize again so that no other communication using the counter can

 * begin from any other task until we’re all finished resetting the counter.

 */

 LAPI_Gfence(hndl);

 /* More communication calls */

 .

 .

 .

}

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_CNTR_NULL Indicates that the cntr value passed in is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

644 Technical Reference, Volume 1: Base Operating System and Extensions

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Getcntr, LAPI_Waitcntr

LAPI_Setcntr_wstatus Subroutine

Purpose

Used to set a counter to a specified value and to set the associated destination list array and destination

status array to the counter.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Setcntr_wstatus(hndl, cntr, num_dest, dest_list, dest_status)

lapi_handle_t hndl;

lapi_cntr_t *cntr;

int num_dest;

uint *dest_list;

int *dest_status;

FORTRAN Syntax

include ’lapif.h’

LAPI_SETCNTR_WSTATUS(hndl, cntr, num_dest, dest_list, dest_status, ierror)

INTEGER hndl

TYPE (LAPI_CNTR_T) :: cntr

INTEGER num_dest

INTEGER dest_list(*)

INTEGER dest_status

INTEGER ierror

Description

Type of call: recovery

This subroutine sets cntr to 0. Use LAPI_Setcntr_wstatus to set the associated destination list array

(dest_list) and destination status array (dest_status) to the counter. Use a corresponding

LAPI_Nopoll_wait call to access these arrays. These arrays record the status of a task from where the

thread calling LAPI_Nopoll_wait() is waiting for a response.

The return values for dest_status are:

LAPI_MSG_INITIAL The task is purged or is not received.

LAPI_MSG_RECVD The task is received.

LAPI_MSG_PURGED The task is purged, but not received.

Base Operating System (BOS) Runtime Services (A-P) 645

LAPI_MSG_PURGED_RCVD The task is received and then purged.

LAPI_MSG_INVALID Not valid; the task is already purged.

Note: To use this subroutine, the lib_vers field in the lapi_info_t structure must be set to L2_LIB or

LAST_LIB.

Parameters

INPUT

hndl Specifies the LAPI handle.

num_dest Specifies the number of tasks in the destination list.

dest_list Specifies an array of destinations waiting for this counter update. If the value of this

parameter is NULL (in C) or LAPI_ADDR_NULL (in FORTRAN), no status is returned to

the user.

INPUT/OUTPUT

cntr Specifies the address of the counter to be set (in C) or the counter structure (in

FORTRAN). The value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

OUTPUT

dest_status Specifies an array of status that corresponds to dest_list. The value of this parameter can

be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions

Use of this subroutine is not recommmended on a system that is running Parallel Environment (PE).

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_CNTR_NULL Indicates that the cntr value passed in is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_RET_PTR_NULL Indicates that the value of dest_status is NULL in C (or

LAPI_ADDR_NULL in FORTRAN), but the value of dest_list is not NULL

in C (or LAPI_ADDR_NULL in FORTRAN).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Getcntr, LAPI_Nopoll_wait, LAPI_Purge_totask, LAPI_Setcntr

LAPI_Term Subroutine

Purpose

Terminates and cleans up a LAPI context.

646 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Term(hndl)

lapi_handle_t hndl;

FORTRAN Syntax

include ’lapif.h’

LAPI_TERM(hndl, ierror)

INTEGER hndl

INTEGER ierror

Description

Type of call: local termination

Use this subroutine to terminate the LAPI context that is specified by hndl. Any LAPI notification threads

that are associated with this context are terminated. An error occurs when any LAPI calls are made using

hndl after LAPI_Term is called.

A DGSP that is registered under that LAPI handle remains valid even after LAPI_Term is called on hndl.

Parameters

INPUT

hndl Specifies the LAPI handle.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions

LAPI statistics are not reported for shared memory communication and data transfer, or for messages that

a task sends to itself.

C Examples

To terminate a LAPI context (represented by hndl):

LAPI_Term(hndl);

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Init, LAPI_Purge_totask, LAPI_Resume_totask

Base Operating System (BOS) Runtime Services (A-P) 647

LAPI_Util Subroutine

Purpose

Serves as a wrapper function for such data gather/scatter operations as registration and reservation, for

updating UDP port information, and for obtaining pointers to locking and signaling functions that are

associated with a shared LAPI lock.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Util(hndl, util_cmd)

lapi_handle_t hndl;

lapi_util_t *util_cmd;

FORTRAN Syntax

include ’lapif.h’

LAPI_UTIL(hndl, util_cmd, ierror)

INTEGER hndl

TYPE (LAPI_UTIL_T) :: util_cmd

INTEGER ierror

Description

Type of call: Data gather/scatter program (DGSP), UDP port information, and lock sharing utilities

This subroutine is used for several different operations, which are indicated by the command type value in

the beginning of the command structure. The lapi_util_t structure is defined as:

typedef union {

 lapi_util_type_t Util_type;

 lapi_reg_dgsp_t RegDgsp;

 lapi_dref_dgsp_t DrefDgsp;

 lapi_resv_dgsp_t ResvDgsp;

 lapi_reg_ddm_t DdmFunc;

 lapi_add_udp_port_t Udp;

 lapi_pack_dgsp_t PackDgsp;

 lapi_unpack_dgsp_t UnpackDgsp;

 lapi_thread_func_t ThreadFunc;

} lapi_util_t;

The enumerated type lapi_util_type_t has these values:

 Table 1. lapi_util_type_t types

Value of Util_type Union member as interpreted by LAPI_Util

LAPI_REGISTER_DGSP lapi_reg_dgsp_t

LAPI_UNRESERVE_DGSP lapi_dref_dgsp_t

LAPI_RESERVE_DGSP lapi_resv_dgsp_t

LAPI_REG_DDM_FUNC lapi_reg_ddm_t

LAPI_ADD_UDP_DEST_PORT lapi_add_udp_port_t

LAPI_DGSP_PACK lapi_pack_dgsp_t

LAPI_DGSP_UNPACK lapi_unpack_dgsp_t

648 Technical Reference, Volume 1: Base Operating System and Extensions

Table 1. lapi_util_type_t types (continued)

Value of Util_type Union member as interpreted by LAPI_Util

LAPI_GET_THREAD_FUNC lapi_thread_func_t

hndl is not checked for command type LAPI_REGISTER_DGSP, LAPI_RESERVE_DGSP, or

LAPI_UNRESERVE_DGSP.

LAPI_REGISTER_DGSP

You can use this operation to register a LAPI DGSP that you have created. To register a LAPI DGSP,

lapi_dgsp_descr_t idgsp must be passed in. LAPI returns a handle (lapi_dg_handle_t dgsp_handle) to

use for all future LAPI calls. The dgsp_handle that is returned by a register operation is identified as a

lapi_dg_handle_t type, which is the appropriate type for LAPI_Xfer and LAPI_Util calls that take a

DGSP. This returned dgsp_handle is also defined to be castable to a pointer to a lapi_dgsp_descr_t for

those situations where the LAPI user requires read-only access to information that is contained in the

cached DGSP. The register operation delivers a DGSP to LAPI for use in future message send, receive,

pack, and unpack operations. LAPI creates its own copy of the DGSP and protects it by reference count.

All internal LAPI operations that depend on a DGSP cached in LAPI ensure the preservation of the DGSP

by incrementing the reference count when they begin a dependency on the DGSP and decrementing the

count when that dependency ends. A DGSP, once registered, can be used from any LAPI instance.

LAPI_Term does not discard any DGSPs.

You can register a DGSP, start one or more LAPI operations using the DGSP, and then unreserve it with

no concern about when the LAPI operations that depend on the DGSP will be done using it. See

LAPI_RESERVE_DGSP and LAPI_UNRESERVE_DGSP for more information.

In general, the DGSP you create and pass in to the LAPI_REGISTER_DGSP call using the dgsp

parameter is discarded after LAPI makes and caches its own copy. Because DGSP creation is complex,

user errors may occur, but extensive error checking at data transfer time would hurt performance. When

developing code that creates DGSPs, you can invoke extra validation at the point of registration by setting

the LAPI_VERIFY_DGSP environment variable. LAPI_Util will return any detected errors. Any errors that

exist and are not detected at registration time will cause problems during data transfer. Any errors detected

during data transfer will be reported by an asynchronous error handler. A segmentation fault is one

common symptom of a faulty DGSP. If multiple DGSPs are in use, the asynchronous error handler will not

be able to identify which DGSP caused the error. For more information about asynchronous error handling,

see LAPI_Init.

LAPI_REGISTER_DGSP uses the lapi_reg_dgsp_t command structure.

 Table 2. The lapi_reg_dgsp_t fields

lapi_reg_dgsp_t field lapi_reg_dgsp_t field type lapi_reg_dgsp_t usage

Util_type lapi_util_type_t LAPI_REGISTER_DGSP

idgsp lapi_dgsp_descr_t IN - pointer to DGSP program

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP program

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_RESERVE_DGSP

You can use this operation to reserve a DGSP. This operation is provided because a LAPI client might

cache a LAPI DGSP handle for later use. The client needs to ensure the DGSP will not be discarded

before the cached handle is used. A DGSP handle, which is defined to be a pointer to a DGSP description

that is already cached inside LAPI, is passed to this operation. The DGSP handle is also defined to be a

structure pointer, so that client programs can get direct access to information in the DGSP. Unless the

client can be certain that the DGSP will not be ″unreserved″ by another thread while it is being accessed,

Base Operating System (BOS) Runtime Services (A-P) 649

the client should bracket the access window with its own reserve/unreserve operation. The client is not to

modify the cached DGSP, but LAPI has no way to enforce this. The reserve operation increments the user

reference count, thus protecting the DGSP until an unreserve operation occurs. This is needed because

the thread that placed the reservation will expect to be able to use or examine the cached DGSP until it

makes an unreserve call (which decrements the user reference count), even if the unreserve operation

that matches the original register operation occurs within this window on some other thread.

LAPI_RESERVE_DGSP uses the lapi_resv_dgsp_t command structure.

 Table 3. The lapi_resv_dgsp_t fields

lapi_resv_dgsp_t field lapi_resv_dgsp_t field type lapi_resv_dgsp_t usage

Util_type lapi_util_type_t LAPI_RESERVE_DGSP

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP program

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_UNRESERVE_DGSP

You can use this operation to unregister or unreserve a DGSP. This operation decrements the user

reference count. If external and internal reference counts are zero, this operation lets LAPI free the DGSP.

All operations that decrement a reference count cause LAPI to check to see if the counts have both

become 0 and if they have, dispose of the DGSP. Several internal LAPI activities increment and

decrement a second reference count. The cached DGSP is disposable only when all activities (internal

and external) that depend on it and use reference counting to preserve it have discharged their reference.

The DGSP handle is passed to LAPI as a value parameter and LAPI does not nullify the caller’s handle. It

is your responsibility to not use this handle again because in doing an unreserve operation, you have

indicated that you no longer count on the handle remaining valid.

LAPI_UNRESERVE_DGSP uses the lapi_dref_dgsp_t command structure.

 Table 4. The lapi_dref_dgsp_t fields

lapi_dref_dgsp_t field lapi_dref_dgsp_t field type lapi_dref_dgsp_t usage

Util_type lapi_util_type_t LAPI_UNRESERVE_DGSP

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP program

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_REG_DDM_FUNC

You can use this operation to register data distribution manager (DDM) functions. It works in conjunction

with the DGSM CONTROL instruction. Primarily, it is used for MPI_Accumulate, but LAPI clients can

provide any DDM function. It is also used to establish a callback function for processing data that is being

scattered into a user buffer on the destination side.

The native LAPI user can install a callback without affecting the one MPI has registered for

MPI_Accumulate. The function prototype for the callback function is:

typedef long ddm_func_t (/* return number of bytes processed */

 void *in, /* pointer to inbound data */

 void *inout, /* pointer to destination space */

 long bytes, /* number of bytes inbound */

 int operand, /* CONTROL operand value */

 int operation /* CONTROL operation value */

);

650 Technical Reference, Volume 1: Base Operating System and Extensions

A DDM function acts between the arrival of message data and the target buffer. The most common usage

is to combine inbound data with data already in the target buffer. For example, if the target buffer is an

array of integers and the incoming message consists of integers, the DDM function can be written to add

each incoming integer to the value that is already in the buffer. The operand and operation fields of the

DDM function allow one DDM function to support a range of operations with the CONTROL instruction by

providing the appropriate values for these fields.

See RSCT for AIX 5L: LAPI Programming Guide for more information about DGSP programming.

LAPI_REG_DDM_FUNC uses the lapi_reg_ddm_t command structure. Each call replaces the previous

function pointer, if there was one.

 Table 5. The lapi_reg_ddm_t fields

lapi_reg_ddm_t field lapi_reg_ddm_t field type lapi_reg_ddm_t usage

Util_type lapi_util_type_t LAPI_REG_DDM_FUNC

ddm_func ddm_func_t * IN - DDM function pointer

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_DGSP_PACK

You can use this operation to gather data to a pack buffer from a user buffer under control of a DGSP. A

single buffer may be packed by a series of calls. The caller provides a position value that is initialized to

the starting offset within the buffer. Each pack operation adjusts position, so the next pack operation can

begin where the previous pack operation ended. In general, a series of pack operations begins with

position initialized to 0, but any offset is valid. There is no state carried from one pack operation to the

next. Each pack operation starts at the beginning of the DGSP it is passed.

LAPI_DGSP_PACK uses the lapi_pack_dgsp_t command structure.

 Table 6. The lapi_pack_dgsp_t fields

lapi_pack_dgsp_t field lapi_pack_dgsp_t field type lapi_pack_dgsp_t usage

Util_type lapi_util_type_t LAPI_DGSP_PACK

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP program

in_buf void * IN - source buffer to pack

bytes ulong IN - number of bytes to pack

out_buf void * OUT - output buffer for pack

out_size ulong IN - output buffer size in bytes

position ulong IN/OUT - current buffer offset

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_DGSP_UNPACK

You can use this operation to scatter data from a packed buffer to a user buffer under control of a DGSP.

A single buffer may be unpacked by a series of calls. The caller provides a position value that is initialized

to the starting offset within the packed buffer. Each unpack operation adjusts position, so the next unpack

operation can begin where the previous unpack operation ended. In general, a series of unpack operations

begins with position initialized to 0, but any offset is valid. There is no state carried from one unpack

operation to the next. Each unpack operation starts at the beginning of the DGSP it is passed.

Base Operating System (BOS) Runtime Services (A-P) 651

LAPI_DGSP_UNPACK uses the lapi_unpack_dgsp_t command structure.

 Table 7. The lapi_unpack_dgsp_t fields

lapi_unpack_dgsp_t field lapi_unpack_dgsp_t field type lapi_unpack_dgsp_t usage

Util_type lapi_util_type_t LAPI_DGSP_UNPACK

dgsp_handle lapi_dg_handle_t OUT - handle for a registered DGSP program

buf void * IN - source buffer for unpack

in_size ulong IN - source buffer size in bytes

out_buf void * OUT - output buffer for unpack

bytes ulong IN - number of bytes to unpack

out_size ulong IN - output buffer size in bytes

position ulong IN/OUT - current buffer offset

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_ADD_UDP_DEST_PORT

You can use this operation to update UDP port information about the destination task. This operation can

be used when you have written your own UDP handler (udp_hndlr) and you need to support recovery of

failed tasks. You cannot use this operation under the POE runtime environment.

LAPI_ADD_UDP_DEST_PORT uses the lapi_add_udp_port_t command structure.

 Table 8. The lapi_add_udp_port_t fields

lapi_add_udp_port_t field lapi_add_udp_port_t field type lapi_add_udp_port_t usage

Util_type lapi_util_type_t LAPI_ADD_UDP_DEST_PORT

tgt uint IN - destination task ID

udp_port lapi_udp_t * IN - UDP port information for the target

instance_no uint IN - Instance number of UDP

in_usr_func lapi_usr_fcall_t For debugging only

status lapi_status_t OUT - future support

LAPI_GET_THREAD_FUNC

You can use this operation to retrieve various shared locking and signalling functions. Retrieval of these

functions is valid only after LAPI is initialized and before LAPI is terminated. You should not call any of

these functions after LAPI is terminated.

LAPI_GET_THREAD_FUNC uses the lapi_thread_func_t command structure.

 Table 9. The lapi_thread_func_t fields

lapi_thread_func_t field lapi_thread_func_t field type lapi_thread_func_t usage

Util_type lapi_util_type_t LAPI_GET_THREAD_FUNC

mutex_lock lapi_mutex_lock_t OUT - mutex lock function pointer

mutex_unlock lapi_mutex_unlock_t OUT - mutex unlock function pointer

mutex_trylock lapi_mutex_trylock_t OUT - mutex try lock function pointer

mutex_getowner lapi_mutex_getowner_t OUT - mutex get owner function pointer

cond_wait lapi_cond_wait_t OUT - condition wait function pointer

cond_timedwait lapi_cond_timedwait_t OUT - condition timed wait function pointer

652 Technical Reference, Volume 1: Base Operating System and Extensions

Table 9. The lapi_thread_func_t fields (continued)

lapi_thread_func_t field lapi_thread_func_t field type lapi_thread_func_t usage

cond_signal lapi_cond_signal_t OUT - condition signal function pointer

cond_init lapi_cond_init_t OUT - initialize condition function pointer

cond_destroy lapi_cond_destroy_t OUT - destroy condition function pointer

LAPI uses the pthread library for thread ID management. You can therefore use pthread_self() to get the

running thread ID and lapi_mutex_getowner_t to get the thread ID that owns the shared lock. Then, you

can use pthread_equal() to see if the two are the same.

Mutex thread functions: LAPI_GET_THREAD_FUNC includes the following mutex thread functions:

mutex lock, mutex unlock, mutex try lock, and mutex get owner.

Mutex lock function pointer

int (*lapi_mutex_lock_t)(lapi_handle_t hndl);

This function acquires the lock that is associated with the specified LAPI handle. The call blocks if the lock

is already held by another thread. Deadlock can occur if the calling thread is already holding the lock. You

are responsible for preventing and detecting deadlocks.

Parameters

INPUT

hndl Specifies the LAPI handle.

Return values

0 Indicates that the lock was acquired successfully.

EINVAL Is returned if the lock is not valid because of an incorrect hndl value.

Mutex unlock function pointer

int (*lapi_mutex_unlock_t)(lapi_handle_t hndl);

This function releases the lock that is associated with the specified LAPI handle. A thread should only

unlock its own locks.

Parameters

INPUT

hndl Specifies the LAPI handle.

Return values

0 Indicates that the lock was released successfully.

EINVAL Is returned if the lock is not valid because of an incorrect hndl value.

Mutex try lock function pointer

int (*lapi_mutex_trylock_t)(lapi_handle_t hndl);

This function tries to acquire the lock that is associated with the specified LAPI handle, but returns

immediately if the lock is already held.

Parameters

Base Operating System (BOS) Runtime Services (A-P) 653

INPUT

hndl Specifies the LAPI handle.

Return values

0 Indicates that the lock was acquired successfully.

EBUSY Indicates that the lock is being held.

EINVAL Is returned if the lock is not valid because of an incorrect hndl value.

Mutex get owner function pointer

int (*lapi_mutex_getowner_t)(lapi_handle_t hndl, pthread_t *tid);

This function gets the pthread ID of the thread that is currently holding the lock associated with the

specified LAPI handle. LAPI_NULL_THREAD_ID indicates that the lock is not held at the time the function

is called.

Parameters

INPUT

hndl Specifies the LAPI handle.

OUTPUT

tid Is a pointer to hold the pthread ID to be retrieved.

Return values

0 Indicates that the lock owner was retrieved successfully.

EINVAL Is returned if the lock is not valid because of an incorrect hndl value.

Condition functions: LAPI_GET_THREAD_FUNC includes the following condition functions: condition

wait, condition timed wait, condition signal, initialize condition, and destroy condition.

Condition wait function pointer

int (*lapi_cond_wait_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function waits on a condition variable (cond). The user must hold the lock associated with the LAPI

handle (hndl) before making the call. Upon the return of the call, LAPI guarantees that the lock is still

being held. The same LAPI handle must be supplied to concurrent lapi_cond_wait_t operations on the

same condition variable.

Parameters

INPUT

hndl Specifies the LAPI handle.

cond Is a pointer to the condition variable to be waited on.

Return values

0 Indicates that the condition variable has been signaled.

EINVAL Indicates that the value specified by hndl or cond is not valid.

Condition timed wait function pointer

654 Technical Reference, Volume 1: Base Operating System and Extensions

int (*lapi_cond_timedwait_t)(lapi_handle_t hndl,

 lapi_cond_t *cond,

 struct timespec *timeout);

This function waits on a condition variable (cond). The user must hold the lock associated with the LAPI

handle (hndl) before making the call. Upon the return of the call, LAPI guarantees that the lock is still

being held. The same LAPI handle must be supplied to concurrent lapi_cond_timedwait_t operations on

the same condition variable.

Parameters

INPUT

hndl Specifies the LAPI handle.

cond Is a pointer to the condition variable to be waited on.

timeout Is a pointer to the absolute time structure specifying the timeout.

Return values

0 Indicates that the condition variable has been signaled.

ETIMEDOUT Indicates that time specified by timeout has passed.

EINVAL Indicates that the value specified by hndl, cond, or timeout is not valid.

Condition signal function pointer

int (*lapi_cond_wait_t)(lapi_handle_t hndl, lapi_cond_t *cond);

typedef int (*lapi_cond_signal_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function signals a condition variable (cond) to wake up a thread that is blocked on the condition. If

there are multiple threads waiting on the condition variable, which thread to wake up is decided randomly.

Parameters

INPUT

hndl Specifies the LAPI handle.

cond Is a pointer to the condition variable to be signaled.

Return values

0 Indicates that the condition variable has been signaled.

EINVAL Indicates that the value specified by hndl or cond is not valid.

Initialize condition function pointer

int (*lapi_cond_init_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function initializes a condition variable.

Parameters

INPUT

hndl Specifies the LAPI handle.

cond Is a pointer to the condition variable to be initialized.

Return values

0 Indicates that the condition variable was initialized successfully.

Base Operating System (BOS) Runtime Services (A-P) 655

EAGAIN Indicates that the system lacked the necessary resources (other than

memory) to initialize another condition variable.

ENOMEM Indicates that there is not enough memory to initialize the condition

variable.

EINVAL Is returned if the hndl value is not valid.

Destroy condition function pointer

int (*lapi_cond_destroy_t)(lapi_handle_t hndl, lapi_cond_t *cond);

This function destroys a condition variable.

Parameters

INPUT

hndl Specifies the LAPI handle.

cond Is a pointer to the condition variable to be destroyed.

Return values

0 Indicates that the condition variable was destroyed successfully.

EBUSY Indicates that the implementation has detected an attempt to destroy the

object referenced by cond while it is referenced (while being used in a

lapi_cond_wait_t or lapi_cond_timedwait_t by another thread, for

example).

EINVAL Indicates that the value specified by hndl or cond is not valid.

Parameters

INPUT

hndl Specifies the LAPI handle.

INPUT/OUTPUT

util_cmd Specifies the command type of the utility function.

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_DGSP Indicates that the DGSP that was passed in is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN) or is not a registered DGSP.

LAPI_ERR_DGSP_ATOM Indicates that the DGSP has an atom_size that is less than 0 or greater

than MAX_ATOM_SIZE.

LAPI_ERR_DGSP_BRANCH Indicates that the DGSP attempted a branch that fell outside of the code

array. This is returned only in validation mode.

LAPI_ERR_DGSP_COPY_SZ Is returned with DGSP validation turned on when MCOPY block < 0 or

COPY instruction with bytes < 0. This is returned only in validation mode.

LAPI_ERR_DGSP_FREE Indicates that LAPI tried to free a DGSP that is not valid or is no longer

registered. There should be one LAPI_UNRESERVE_DGSP operation to

656 Technical Reference, Volume 1: Base Operating System and Extensions

close the LAPI_REGISTER_DGSP operation and one

LAPI_UNRESERVE_DGSP operation for each LAPI_RESERVE_DGSP

operation.

LAPI_ERR_DGSP_OPC Indicates that the DGSP opcode is not valid. This is returned only in

validation mode.

LAPI_ERR_DGSP_STACK Indicates that the DGSP has a greater GOSUB depth than the allocated

stack supports. Stack allocation is specified by the dgsp->depth member.

This is returned only in validation mode.

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_MEMORY_EXHAUSTED

Indicates that LAPI is unable to obtain memory from the system.

LAPI_ERR_UDP_PORT_INFO

Indicates that the udp_port information pointer is NULL (in C) or that the

value of udp_port is LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_UTIL_CMD Indicates that the command type is not valid.

C Examples

1. To create and register a DGSP:

{

 /*

 ** DGSP code array. DGSP instructions are stored

 ** as ints (with constants defined in lapi.h for

 ** the number of integers needed to store each

 ** instruction). We will have one COPY and one ITERATE

 ** instruction in our DGSP. We use LAPI’s constants

 ** to allocate the appropriate storage.

 */

 int code[LAPI_DGSM_COPY_SIZE+LAPI_DGSM_ITERATE_SIZE];

 /* DGSP description */

 lapi_dgsp_descr_t dgsp_d;

 /*

 ** Data structure for the xfer call.

 */

 lapi_xfer_t xfer_struct;

 /* DGSP data structures */

 lapi_dgsm_copy_t *copy_p; /* copy instruction */

 lapi_dgsm_iterate_t *iter_p; /* iterate instruction */

 int *code_ptr; /* code pointer */

 /* constant for holding code array info */

 int code_less_iterate_size;

 /* used for DGSP registration */

 lapi_reg_dgsp_t reg_util;

 /*

 ** Set up dgsp description

 */

 /* set pointer to code array */

 dgsp_d.code = &code[0];

Base Operating System (BOS) Runtime Services (A-P) 657

/* set size of code array */

 dgsp_d.code_size = LAPI_DGSM_COPY_SIZE + LAPI_DGSM_ITERATE_SIZE;

 /* not using DGSP gosub instruction */

 dgsp_d.depth = 1;

 /*

 ** set density to show internal gaps in the

 ** DGSP data layout

 */

 dgsp_d.density = LAPI_DGSM_SPARSE;

 /* transfer 4 bytes at a time */

 dgsp_d.size = 4;

 /* advance the template by 8 for each iteration */

 dgsp_d.extent = 8;

 /*

 ** ext specifies the memory ’footprint’ of

 ** data to be transferred. The lext specifies

 ** the offset from the base address to begin

 ** viewing the data. The rext specifies the

 ** length from the base address to use.

 */

 dgsp_d.lext = 0;

 dgsp_d.rext = 4;

 /* atom size of 0 lets LAPI choose the packet size */

 dgsp_d.atom_size = 0;

 /*

 ** set up the copy instruction

 */

 copy_p = (lapi_dgsm_copy_t *)(dgsp_d.code);

 copy_p->opcode = LAPI_DGSM_COPY;

 /* copy 4 bytes at a time */

 copy_p->bytes = (long) 4;

 /* start at offset 0 */

 copy_p->offset = (long) 0;

 /* set code pointer to address of iterate instruction */

 code_less_iterate_size = dgsp_d.code_size - LAPI_DGSM_ITERATE_SIZE;

 code_ptr = ((int *)(code))+code_less_iterate_size;

 /*

 ** Set up iterate instruction

 */

 iter_p = (lapi_dgsm_iterate_t *) code_ptr;

 iter_p->opcode = LAPI_DGSM_ITERATE;

 iter_p->iter_loc = (-code_less_iterate_size);

 /* Set up and do DGSP registration */

 reg_util.Util_type = LAPI_REGISTER_DGSP;

 reg_util.idgsp = &dgsp_d;

 LAPI_Util(hndl, (lapi_util_t *)®_util);

 /*

 ** LAPI returns a usable DGSP handle in

 ** reg_util.dgsp_handle

 ** Use this handle for subsequent reserve/unreserve

 ** and Xfer calls. On the receive side, this

 ** handle can be returned by the header handler using the

 ** return_info_t mechanism. The DGSP will then be used for

658 Technical Reference, Volume 1: Base Operating System and Extensions

** scattering data.

 */

}

2. To reserve a DGSP handle:

{

 reg_util.dgsp_handle = dgsp_handle;

 /*

 ** dgsp_handle has already been created and

 ** registered as in the above example

 */

 reg_util.Util_type = LAPI_RESERVE_DGSP;

 LAPI_Util(hndl, (lapi_util_t *)®_util);

 /*

 ** LAPI’s internal reference count to dgsp_handle

 ** will be incremented. DGSP will

 ** remain available until an unreserve is

 ** done for each reserve, plus one more for

 ** the original registration.

 */

}

3. To unreserve a DGSP handle:

{

 reg_util.dgsp_handle = dgsp_handle;

 /*

 ** dgsp_handle has already created and

 ** registered as in the above example, and

 ** this thread no longer needs it.

 */

 reg_util.Util_type = LAPI_UNRESERVE_DGSP;

 LAPI_Util(hndl, (lapi_util_t *)®_util);

 /*

 ** An unreserve is required for each reserve,

 ** plus one more for the original registration.

 */

}

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Init, LAPI_Xfer

LAPI_Waitcntr Subroutine

Purpose

Waits until a specified counter reaches the value specified.

Base Operating System (BOS) Runtime Services (A-P) 659

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Waitcntr(hndl, cntr, val, cur_cntr_val)

lapi_handle_t hndl;

lapi_cntr_t *cntr;

int val;

int *cur_cntr_val;

FORTRAN Syntax

include ’lapif.h’

LAPI_WAITCNTR(hndl, cntr, val, cur_cntr_val, ierror)

INTEGER hndl

TYPE (LAPI_CNTR_T) :: cntr

INTEGER val

INTEGER cur_cntr_val

INTEGER ierror

Description

Type of call: local progress monitor (blocking)

This subroutine waits until cntr reaches or exceeds the specified val. Once cntr reaches val, cntr is

decremented by the value of val. In this case, ″decremented″ is used (as opposed to ″set to zero″)

because cntr could have contained a value that was greater than the specified val when the call was

made. This call may or may not check for message arrivals over the LAPI context hndl. The cur_cntr_val

variable is set to the current counter value.

Parameters

INPUT

hndl Specifies the LAPI handle.

val Specifies the value the counter needs to reach.

INPUT/OUTPUT

cntr Specifies the counter structure (in FORTRAN) to be waited on or its address (in C). The

value of this parameter cannot be NULL (in C) or LAPI_ADDR_NULL (in FORTRAN).

OUTPUT

cur_cntr_val Specifies the integer value of the current counter. This value can be NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

ierror Specifies a FORTRAN return code. This is always the last parameter.

Restrictions

LAPI statistics are not reported for shared memory communication and data transfer, or for messages that

a task sends to itself.

C Examples

To wait on a counter to reach a specified value:

660 Technical Reference, Volume 1: Base Operating System and Extensions

{

 int val;

 int cur_cntr_val;

 lapi_cntr_t some_cntr;

 .

 .

 .

 LAPI_Waitcntr(hndl, &some_cntr, val, &cur_cntr_val);

 /* Upon return, some_cntr has reached val */

}

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_CNTR_NULL Indicates that the cntr pointer is NULL (in C) or that the value of cntr is

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

Location

/usr/lib/liblapi_r.a

Related Information

Subroutines: LAPI_Amsend, LAPI_Amsendv, LAPI_Get, LAPI_Getcntr, LAPI_Getv, LAPI_Put,

LAPI_Putv, LAPI_Rmw, LAPI_Rmw64, LAPI_Setcntr, LAPI_Xfer

LAPI_Xfer Subroutine

Purpose

Serves as a wrapper function for LAPI data transfer functions.

Library

Availability Library (liblapi_r.a)

C Syntax

#include <lapi.h>

int LAPI_Xfer(hndl, xfer_cmd)

lapi_handle_t hndl;

lapi_xfer_t *xfer_cmd;

typedef struct {

 uint src; /* Target task ID */

 uint reason; /* LAPI return codes */

 ulong reserve[6]; /* Reserved */

} lapi_sh_info_t;

typedef void (scompl_hndlr_t)(lapi_handle_t *hndl, void *completion_param,

 lapi_sh_info_t *info);

Base Operating System (BOS) Runtime Services (A-P) 661

FORTRAN Syntax

include ’lapif.h’

LAPI_XFER(hndl, xfer_cmd, ierror)

INTEGER hndl

TYPE (fortran_xfer_type) :: xfer_cmd

INTEGER ierror

Description

Type of call: point-to-point communication (non-blocking)

The LAPI_Xfer subroutine provides a superset of the functionality of these subroutines: LAPI_Amsend,

LAPI_Amsendv, LAPI_Put, LAPI_Putv, LAPI_Get, LAPI_Getv, and LAPI_Rmw. In addition, LAPI_Xfer

provides data gather/scatter program (DGSP) messages transfer.

In C, the LAPI_Xfer command is passed a pointer to a union. It examines the first member of the union,

Xfer_type, to determine the transfer type, and to determine which union member was passed. LAPI_Xfer

expects every field of the identified union member to be set. It does not examine or modify any memory

outside of the identified union member. LAPI_Xfer treats all union members (except status) as read-only

data.

This subroutine provides the following functions:

v The remote address fields are expanded to be of type lapi_long_t, which is long enough for a 64-bit

address. This allows a 32-bit task to send data to 64-bit addresses, which may be important in

client/server programs.

v LAPI_Xfer allows the origin counter to be replaced with a send completion callback.

v LAPI_Xfer is used to transfer data using LAPI’s data gather/scatter program (DGSP) interface.

The lapi_xfer_t structure is defined as:

typedef union {

 lapi_xfer_type_t Xfer_type;

 lapi_get_t Get;

 lapi_am_t Am;

 lapi_rmw_t Rmw;

 lapi_put_t Put;

 lapi_getv_t Getv;

 lapi_putv_t Putv;

 lapi_amv_t Amv;

 lapi_amdgsp_t Dgsp;

} lapi_xfer_t;

Though the lapi_xfer_t structure applies only to the C version of LAPI_Xfer, the following tables include

the FORTRAN equivalents of the C datatypes.

Table 10 list the values of the lapi_xfer_type_t structure for C and the explicit Xfer_type values for

FORTRAN.

 Table 10. LAPI_Xfer structure types

Value of Xfer_type (C or FORTRAN)

Union member as interpreted by

LAPI_Xfer (C)

Value of fortran_xfer_type

(FORTRAN)

LAPI_AM_XFER lapi_am_t LAPI_AM_T

LAPI_AMV_XFER lapi_amv_t LAPI_AMV_T

LAPI_DGSP_XFER lapi_amdgsp_t LAPI_AMDGSP_T

LAPI_GET_XFER lapi_get_t LAPI_GET_T

LAPI_GETV_XFER lapi_getv_t LAPI_GETV_T

662 Technical Reference, Volume 1: Base Operating System and Extensions

Table 10. LAPI_Xfer structure types (continued)

Value of Xfer_type (C or FORTRAN)

Union member as interpreted by

LAPI_Xfer (C)

Value of fortran_xfer_type

(FORTRAN)

LAPI_PUT_XFER lapi_put_t LAPI_PUT_T

LAPI_PUTV_XFER lapi_putv_t LAPI_PUTV_T

LAPI_RMW_XFER lapi_rmw_t LAPI_RMW_T

lapi_am_t details

Table 11 shows the correspondence among the parameters of the LAPI_Amsend subroutine, the fields of

the C lapi_am_t structure and their datatypes, and the equivalent FORTRAN datatypes. The lapi_am_t

fields are listed in Table 11 in the order that they occur in the lapi_xfer_t structure.

 Table 11. LAPI_Amsend and lapi_am_t equivalents

lapi_am_t field name

(C)

lapi_am_t field type

(C) Equivalent FORTRAN datatype

Equivalent LAPI_Amsend

parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:

LAPI_AM_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in

FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN: pad

hdr_hdl lapi_long_t INTEGER(KIND = 8) hdr_hdl

uhdr_len uint INTEGER(KIND = 4) uhdr_len

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (64-bit): pad2

uhdr void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

uhdr

udata void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

udata

udata_len ulong INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

udata_len

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: sinfo

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

cmpl_cntr

When the origin data buffer is free to be used, the pointer to the send completion handler (shdlr) is called

Base Operating System (BOS) Runtime Services (A-P) 663

with the send completion data (sinfo) if shdlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in

FORTRAN). Otherwise, the behavior is identical to that of LAPI_Amsend.

lapi_amv_t details

Table 12 shows the correspondence among the parameters of the LAPI_Amsendv subroutine, the fields

of the C lapi_amv_t structure and their datatypes, and the equivalent FORTRAN datatypes. The

lapi_amv_t fields are listed in Table 12 in the order that they occur in the lapi_xfer_t structure.

 Table 12. LAPI_Amsendv and lapi_amv_t equivalents

lapi_amv_t field

name (C)

lapi_amv_t field type

(C) Equivalent FORTRAN datatype

Equivalent LAPI_Amsendv

parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:

LAPI_AMV_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in

FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN: pad

hdr_hdl lapi_long_t INTEGER(KIND = 8) hdr_hdl

uhdr_len uint INTEGER(KIND = 4) uhdr_len

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (64-bit): pad2

uhdr void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

uhdr

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: sinfo

org_vec lapi_vec_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_vec

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (32-bit): pad2

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

cmpl_cntr

lapi_amdgsp_t details

Table 13 on page 665 shows the correspondence among the fields of the C lapi_amdgsp_t structure and

their datatypes, how they are used in LAPI_Xfer, and the equivalent FORTRAN datatypes. The

lapi_amdgsp_t fields are listed in Table 13 on page 665 in the order that they occur in the lapi_xfer_t

structure.

664 Technical Reference, Volume 1: Base Operating System and Extensions

Table 13. The lapi_amdgsp_t fields

lapi_amdgsp_t field

name (C)

lapi_amdgsp_t field

type (C) Equivalent FORTRAN datatype LAPI_Xfer usage

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) LAPI_DGSP_XFER

flags int INTEGER(KIND = 4) This field allows users to specify

directives or hints to LAPI. If you

do not want to use any directives

or hints, you must set this field to

0. See “The lapi_amdgsp_t flags

field” for more information.

tgt uint INTEGER(KIND = 4) target task

none none INTEGER(KIND = 4) pad (padding alignment for

FORTRAN only)

hdr_hdl lapi_long_t INTEGER(KIND = 8) header handler to invoke at target

uhdr_len uint INTEGER(KIND = 4) user header length (multiple of

processor’s doubleword size)

none none INTEGER(KIND = 4) pad2 (padding alignment for

64-bit FORTRAN only)

uhdr void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

pointer to user header

udata void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

pointer to user data

udata_len ulong INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

user data length

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

send completion handler

(optional)

sinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

data pointer to pass to send

completion handler (optional)

tgt_cntr lapi_long_t INTEGER(KIND = 8) target counter (optional)

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

origin counter (optional)

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

completion counter (optional)

dgsp lapi_dg_handle_t INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

Handle of a registered DGSP

status lapi_status_t INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

Status to return (future use)

none none INTEGER(KIND = 4) pad3 (padding alignment for

64-bit FORTRAN only)

When the origin data buffer is free to be modified, the send completion handler (shdlr) is called with the

send completion data (sinfo), if shdlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in FORTRAN).

See “Using lapi_am_dgsp_t for scatter-side DGSP processing” on page 666 for more information.

The lapi_amdgsp_t flags field: One or more flags can be set using the | (bitwise or) operator. User

directives are always followed and could result in incorrect results if used improperly. Appropriate hints

might improve performance, but they may be ignored by LAPI. Inappropriate hints might degrade

performance, but they will not cause incorrect results.

Base Operating System (BOS) Runtime Services (A-P) 665

The following directive flags are defined:

USE_TGT_VEC_TYPE Instructs LAPI to use the vector type of the target vector (tgt_vec). In other

words, tgt_vec is to be interpreted as type lapi_vec_t; otherwise, it is

interpreted as type lapi_lvec_t. The lapi_lvec_t type uses lapi_long_t.

The lapi_vec_t type uses void * or long. Incorrect results will occur if one

type is used in place of the other.

BUFFER_BOTH_CONTIGUOUS

Instructs LAPI to treat all data to be transferred as contiguous, which can

improve performance. If this flag is set when non-contiguous data is sent,

data will likely be corrupted.

The following hint flags are defined:

LAPI_NOT_USE_BULK_XFER

Instructs LAPI not to use bulk transfer, independent of the current setting

for the task.

LAPI_USE_BULK_XFER Instructs LAPI to use bulk transfer, independent of the current setting for

the task.

If neither of these hint flags is set, LAPI will use the behavior defined for the task. If both of these hint

flags are set, LAPI_NOT_USE_BULK_XFER will take precedence.

These hints may or may not be honored by the communication library.

Using lapi_am_dgsp_t for scatter-side DGSP processing: Beginning with AIX 5.2, LAPI allows

additional information to be returned from the header handler through the use of the lapi_return_info_t

datatype. See RSCT for AIX 5L: LAPI Programming Guide for more information about lapi_return_info_t.

In the case of transfer type lapi_am_dgsp_t, this mechanism can be used to instruct LAPI to run a user

DGSP to scatter data on the receive side.

To use this mechanism, pass a lapi_return_info_t * pointer back to LAPI through the msg_len member of

the user header handler. The dgsp_handle member of the passed structure must point to a DGSP

description that has been registered on the receive side. See LAPI_Util and RSCT for AIX 5L: LAPI

Programming Guide for details on building and registering DGSPs.

lapi_get_t details

Table 14 shows the correspondence among the parameters of the LAPI_Get subroutine, the fields of the C

lapi_get_t structure and their datatypes, and the equivalent FORTRAN datatypes. The lapi_get_t fields

are listed in Table 14 in the order that they occur in the lapi_xfer_t structure.

 Table 14. LAPI_Get and lapi_get_t equivalents

lapi_get_t field name

(C)

lapi_get_t field type

(C) Equivalent FORTRAN datatype Equivalent LAPI_Get parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:

LAPI_GET_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in

FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN: pad

666 Technical Reference, Volume 1: Base Operating System and Extensions

Table 14. LAPI_Get and lapi_get_t equivalents (continued)

lapi_get_t field name

(C)

lapi_get_t field type

(C) Equivalent FORTRAN datatype Equivalent LAPI_Get parameter

tgt_addr lapi_long_t INTEGER(KIND = 8) tgt_addr

org_addr void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_addr

len ulong INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

len

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_cntr

chndlr compl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: chndlr

cinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: cinfo

When the origin data buffer has completely arrived, the pointer to the completion handler (chndlr) is called

with the completion data (cinfo), if chndlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in

FORTRAN). Otherwise, the behavior is identical to that of LAPI_Get.

lapi_getv_t details

Table 15 shows the correspondence among the parameters of the LAPI_Getv subroutine, the fields of the

C lapi_getv_t structure and their datatypes, and the equivalent FORTRAN datatypes. The lapi_getv_t

fields are listed in Table 14 on page 666 in the order that they occur in the lapi_xfer_t structure.

 Table 15. LAPI_Getv and lapi_getv_t equivalents

lapi_getv_t field

name (C)

lapi_getv_t field type

(C) Equivalent FORTRAN datatype

Equivalent LAPI_Getv

parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:

LAPI_GETV_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in

FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (64-bit): pad

org_vec lapi_vec_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_vec

tgt_vec void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

tgt_vec

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (32-bit): pad

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_cntr

Base Operating System (BOS) Runtime Services (A-P) 667

Table 15. LAPI_Getv and lapi_getv_t equivalents (continued)

lapi_getv_t field

name (C)

lapi_getv_t field type

(C) Equivalent FORTRAN datatype

Equivalent LAPI_Getv

parameter

chndlr compl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: chndlr

cinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: cinfo

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (32-bit): pad2

The flags field accepts USE_TGT_VEC_TYPE (see “The lapi_amdgsp_t flags field” on page 665) to

indicate that tgt_vec is to be interpreted as type lapi_vec_t; otherwise, it is interpreted as type

lapi_lvec_t. Note the corresponding field is lapi_vec_t in the LAPI_Getv call.

When the origin data buffer has completely arrived, the pointer to the completion handler (chndlr) is called

with the completion data (cinfo) if chndlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in

FORTRAN). Otherwise, the behavior is identical to that of LAPI_Getv.

lapi_put_t details

Table 16 shows the correspondence among the parameters of the LAPI_Put subroutine, the fields of the C

lapi_put_t structure and their datatypes, and the equivalent FORTRAN datatypes. The lapi_put_t fields

are listed in Table 16 in the order that they occur in the lapi_xfer_t structure.

 Table 16. LAPI_Put and lapi_put_t equivalents

lapi_put_t field name

(C)

lapi_put_t field type

(C) Equivalent FORTRAN datatype Equivalent LAPI_Put parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:

LAPI_PUT_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in

FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN: pad

tgt_addr lapi_long_t INTEGER(KIND = 8) tgt_addr

org_addr void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_addr

len ulong INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

len

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: sinfo

668 Technical Reference, Volume 1: Base Operating System and Extensions

Table 16. LAPI_Put and lapi_put_t equivalents (continued)

lapi_put_t field name

(C)

lapi_put_t field type

(C) Equivalent FORTRAN datatype Equivalent LAPI_Put parameter

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

cmpl_cntr

When the origin data buffer is free to be used, the pointer to the send completion handler (shdlr) is called

with the send completion data (sinfo), if shdlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in

FORTRAN). Otherwise, the behavior is identical to that of LAPI_Put.

lapi_putv_t details

Table 17 shows the correspondence among the parameters of the LAPI_Putv subroutine, the fields of the

C lapi_putv_t structure and their datatypes, and the equivalent FORTRAN datatypes. The lapi_putv_t

fields are listed in Table 16 on page 668 in the order that they occur in the lapi_xfer_t structure.

 Table 17. LAPI_Putv and lapi_putv_t equivalents

lapi_putv_t field

name (C)

lapi_putv_t field type

(C) Equivalent FORTRAN datatype

Equivalent LAPI_Putv

parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:

LAPI_PUT_XFER

flags int INTEGER(KIND = 4) none

LAPI_Xfer parameter in

FORTRAN: flags

tgt uint INTEGER(KIND = 4) tgt

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (64-bit): pad

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: sinfo

org_vec lapi_vec_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_vec

tgt_vec void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

tgt_vec

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (32-bit): pad

tgt_cntr lapi_long_t INTEGER(KIND = 8) tgt_cntr

org_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_cntr

cmpl_cntr lapi_cntr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

cmpl_cntr

The flags field accepts USE_TGT_VEC_TYPE (see “The lapi_amdgsp_t flags field” on page 665) to

Base Operating System (BOS) Runtime Services (A-P) 669

indicate that tgt_vec is to be interpreted as lapi_vec_t; otherwise, it is interpreted as a lapi_lvec_t. Note

that the corresponding field is lapi_vec_t in the LAPI_Putv call.

When the origin data buffer is free to be modified, the pointer to the send completion handler (shdlr) is

called with the send completion data (sinfo), if shdlr is not a NULL pointer (in C) or LAPI_ADDR_NULL

(in FORTRAN). Otherwise, the behavior is identical to that of LAPI_Putv.

lapi_rmw_t details

Table 18 shows the correspondence among the parameters of the LAPI_Rmw subroutine, the fields of the

C lapi_rmw_t structure and their datatypes, and the equivalent FORTRAN datatypes. The lapi_rmw_t

fields are listed in Table 16 on page 668 in the order that they occur in the lapi_xfer_t structure.

 Table 18. LAPI_Rmw and lapi_rmw_t equivalents

lapi_rmw_t field

name (C)

lapi_rmw_t field type

(C) Equivalent FORTRAN datatype

Equivalent LAPI_Rmw

parameter

Xfer_type lapi_xfer_type_t INTEGER(KIND = 4) implicit in C

LAPI_Xfer value in FORTRAN:

LAPI_RMW_XFER

op Rmw_ops_t INTEGER(KIND = 4) op

tgt uint INTEGER(KIND = 4) tgt

size uint INTEGER(KIND = 4) implicit in C

LAPI_Xfer parameter in

FORTRAN: size (must be 32 or

64)

tgt_var lapi_long_t INTEGER(KIND = 8) tgt_var

in_val void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

in_val

prev_tgt_val void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

prev_tgt_val

org_cntr lapi_cntr t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

org_cntr

shdlr scompl_hndlr_t * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: shdlr

sinfo void * INTEGER(KIND = 4) (32-bit)

INTEGER(KIND = 8) (64-bit)

none

LAPI_Xfer parameter in

FORTRAN: shdlr

none none INTEGER(KIND = 4) LAPI_Xfer parameter in

FORTRAN (32-bit): pad

When the origin data buffer is free to be used, the pointer to the send completion handler (shdlr) is called

with the send completion data (sinfo), if shdlr is not a NULL pointer (in C) or LAPI_ADDR_NULL (in

FORTRAN). The size value must be either 32 or 64, indicating whether you want the in_val and

prev_tgt_val fields to point to a 32-bit or 64-bit quantity, respectively. Otherwise, the behavior is identical to

that of LAPI_Rmw.

Parameters

INPUT

hndl Specifies the LAPI handle.

xfer_cmd Specifies the name and parameters of the data transfer function.

670 Technical Reference, Volume 1: Base Operating System and Extensions

OUTPUT

ierror Specifies a FORTRAN return code. This is always the last parameter.

Return Values

LAPI_SUCCESS Indicates that the function call completed successfully.

LAPI_ERR_DATA_LEN Indicates that the value of udata_len or len is greater than the value of

LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_DGSP Indicates that the DGSP that was passed in is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN) or is not a registered DGSP.

LAPI_ERR_DGSP_ATOM Indicates that the DGSP has an atom_size that is less than 0 or greater

than MAX_ATOM_SIZE.

LAPI_ERR_DGSP_BRANCH Indicates that the DGSP attempted a branch that fell outside the code

array.

LAPI_ERR_DGSP_CTL Indicates that a DGSP control instruction was encountered in a non-valid

context (such as a gather-side control or scatter-side control with an atom

size of 0 at gather, for example).

LAPI_ERR_DGSP_OPC Indicates that the DGSP op-code is not valid.

LAPI_ERR_DGSP_STACK Indicates that the DGSP has greater GOSUB depth than the allocated

stack supports. Stack allocation is specified by the dgsp->depth member.

LAPI_ERR_HDR_HNDLR_NULL

Indicates that the hdr_hdl passed in is NULL (in C) or LAPI_ADDR_NULL

(in FORTRAN).

LAPI_ERR_HNDL_INVALID Indicates that the hndl passed in is not valid (not initialized or in

terminated state).

LAPI_ERR_IN_VAL_NULL Indicates that the in_val pointer is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

LAPI_ERR_MEMORY_EXHAUSTED

LAPI is unable to obtain memory from the system.

LAPI_ERR_OP_SZ Indicates that the lapi_rmw_t size field is not set to 32 or 64.

LAPI_ERR_ORG_ADDR_NULL

Indicates either that the udata parameter passed in is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN) and udata_len is greater than 0, or

that the org_addr passed in is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN) and len is greater than 0.

 Note: if Xfer_type = LAPI_DGSP_XFER, the case in which udata is NULL

(in C) or LAPI_ADDR_NULL (in FORTRAN) and udata_len is greater than

0 is valid, so an error is not returned.

LAPI_ERR_ORG_EXTENT Indicates that the org_vec’s extent (stride * num_vecs) is greater than the

value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_ORG_STRIDE Indicates that the org_vec stride is less than block.

LAPI_ERR_ORG_VEC_ADDR

Indicates that the org_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), but its length (org_vec->len[i]) is not 0.

LAPI_ERR_ORG_VEC_LEN Indicates that the sum of org_vec->len is greater than the value of LAPI

constant LAPI_MAX_MSG_SZ.

Base Operating System (BOS) Runtime Services (A-P) 671

LAPI_ERR_ORG_VEC_NULL Indicates that the org_vec value is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

LAPI_ERR_ORG_VEC_TYPE Indicates that the org_vec->vec_type is not valid.

LAPI_ERR_RMW_OP Indicates the op is not valid.

LAPI_ERR_STRIDE_ORG_VEC_ADDR_NULL

Indicates that the strided vector address org_vec->info[0] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_STRIDE_TGT_VEC_ADDR_NULL

Indicates that the strided vector address tgt_vec->info[0] is NULL (in C) or

LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT Indicates that the tgt passed in is outside the range of tasks defined in the

job.

LAPI_ERR_TGT_ADDR_NULL

Indicates that ret_addr is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

LAPI_ERR_TGT_EXTENT Indicates that tgt_vec’s extent (stride * num_vecs) is greater than the

value of LAPI constant LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_PURGED Indicates that the subroutine returned early because LAPI_Purge_totask()

was called.

LAPI_ERR_TGT_STRIDE Indicates that the tgt_vec stride is less than block.

LAPI_ERR_TGT_VAR_NULL Indicates that the tgt_var address is NULL (in C) or that the value of

tgt_var is LAPI_ADDR_NULL (in FORTRAN).

LAPI_ERR_TGT_VEC_ADDR Indicates that the tgt_vec->info[i] is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), but its length (tgt_vec->len[i]) is not 0.

LAPI_ERR_TGT_VEC_LEN Indicates that the sum of tgt_vec->len is greater than the value of LAPI

constant LAPI_MAX_MSG_SZ.

LAPI_ERR_TGT_VEC_NULL Indicates that tgt_vec is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN).

LAPI_ERR_TGT_VEC_TYPE Indicates that the tgt_vec->vec_type is not valid.

LAPI_ERR_UHDR_LEN Indicates that the uhdr_len value passed in is greater than

MAX_UHDR_SZ or is not a multiple of the processor’s doubleword size.

LAPI_ERR_UHDR_NULL Indicates that the uhdr passed in is NULL (in C) or LAPI_ADDR_NULL (in

FORTRAN), but uhdr_len is not 0.

LAPI_ERR_VEC_LEN_DIFF Indicates that org_vec and tgt_vec have different lengths (len[]).

LAPI_ERR_VEC_NUM_DIFF Indicates that org_vec and tgt_vec have different num_vecs.

LAPI_ERR_VEC_TYPE_DIFF

Indicates that org_vec and tgt_vec have different vector types (vec_type).

LAPI_ERR_XFER_CMD Indicates that the Xfer_cmd is not valid.

C Examples

1. To run the sample code shown in LAPI_Get using the LAPI_Xfer interface:

{

 lapi_xfer_t xfer_struct;

 /* initialize the table buffer for the data addrsesses */

672 Technical Reference, Volume 1: Base Operating System and Extensions

/* get remote data buffer addresses */

 LAPI_Address_init(hndl,(void *)data_buffer,data_buffer_list);

 .

 .

 .

 /* retrieve data_len bytes from address data_buffer_list[tgt] on */

 /* task tgt. write the data starting at address data_buffer. */

 /* tgt_cntr and org_cntr can be NULL. */

 xfer_struct.Get.Xfer_type = LAPI_GET_XFER;

 xfer_struct.Get.flags = 0;

 xfer_struct.Get.tgt = tgt;

 xfer_struct.Get.tgt_addr = data_buffer_list[tgt];

 xfer_struct.Get.org_addr = data_buffer;

 xfer_struct.Get.len = data_len;

 xfer_struct.Get.tgt_cntr = tgt_cntr;

 xfer_struct.Get.org_cntr = org_cntr;

 LAPI_Xfer(hndl, &xfer_struct);

}

2. To implement the LAPI_STRIDED_VECTOR example from LAPI_Amsendv using the LAPI_Xfer

interface:

{

 lapi_xfer_t xfer_struct; /* info for LAPI_Xfer call */

 lapi_vec_t vec; /* data for data transfer */

 .

 .

 .

 vec->num_vecs = NUM_VECS; /* NUM_VECS = number of vectors to transfer */

 /* must match that of the target vector */

 vec->vec_type = LAPI_GEN_STRIDED_XFER; /* same as target vector */

 vec->info[0] = buffer_address; /* starting address for data copy */

 vec->info[1] = block_size; /* bytes of data to copy */

 vec->info[2] = stride; /* distance from copy block to copy block */

 /* data will be copied as follows: */

 /* block_size bytes will be copied from buffer_address */

 /* block_size bytes will be copied from buffer_address+stride */

 /* block_size bytes will be copied from buffer_address+(2*stride) */

 /* block_size bytes will be copied from buffer_address+(3*stride) */

 .

 .

 .

 /* block_size bytes will be copied from buffer_address+((NUM_VECS-1)*stride) */

 .

 .

 .

 xfer_struct.Amv.Xfer_type = LAPI_AMV_XFER;

 xfer_struct.Amv.flags = 0;

 xfer_struct.Amv.tgt = tgt;

 xfer_struct.Amv.hdr_hdl = hdr_hdl_list[tgt];

 xfer_struct.Amv.uhdr_len = uhdr_len; /* user header length */

 xfer_struct.Amv.uhdr = uhdr;

 /* LAPI_AMV_XFER allows the use of a send completion handler */

 /* If non-null, the shdlr function is invoked at the point */

 /* the origin counter would increment. Note that both the */

 /* org_cntr and shdlr can be used. */

 /* The user’s shdlr must be of type scompl_hndlr_t *. */

 /* scompl_hndlr_t is defined in /usr/include/lapi.h */

 xfer_struct.shdlr = shdlr;

Base Operating System (BOS) Runtime Services (A-P) 673

/* Use sinfo to pass user-defined data into the send */

 /* completion handler, if desired. */

 xfer_struct.sinfo = sinfo; /* send completion data */

 xfer_struct.org_vec = vec;

 xfer_struct.tgt_cntr = tgt_cntr;

 xfer_struct.org_cntr = org_cntr;

 xfer_struct.cmpl_cntr = cmpl_cntr;

 LAPI_Xfer(hndl, &xfer_struct);

 .

 .

 .

}

See the LAPI_Amsendv subroutine for more information about the header handler definition.

Location

/usr/lib/liblapi_r.a

Related Information

Books: RSCT for AIX 5L: LAPI Programming Guide for information about bulk message transfer

Subroutines: LAPI_Amsend, LAPI_Amsendv, LAPI_Get, LAPI_Getv, LAPI_Put, LAPI_Putv, LAPI_Rmw

layout_object_create Subroutine

Purpose

Initializes a layout context.

Library

Layout Library (libi18n.a)

Syntax

#include <sys/lc_layout.h>

int layout_object_create (locale_name, layout_object)

const char * locale_name;

LayoutObject * layout_object;

Description

The layout_object_create subroutine creates the LayoutObject structure associated with the locale

specified by the locale_name parameter. The LayoutObject structure is a symbolic link containing all the

data and methods necessary to perform the layout operations on context dependent and bidirectional

characters of the locale specified.

When the layout_object_create subroutine completes without errors, the layout_object parameter points

to a valid LayoutObject structure that can be used by other BIDI subroutines. The returned LayoutObject

structure is initialized to an initial state that defines the behavior of the BIDI subroutines. This initial state is

locale dependent and is described by the layout values returned by the layout_ object_getvalue

subroutine. You can change the layout values of the LayoutObject structure using the

layout_object_setvalue subroutine. Any state maintained by the LayoutObject structure is independent

of the current global locale set with the setlocale subroutine.

674 Technical Reference, Volume 1: Base Operating System and Extensions

Note: If you are developing internationalized applications that may support multibyte locales, please see

Use of the libcur Package in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs

Parameters

 locale_name Specifies a locale. It is recommended that you use the LC_CTYPE category by calling the

setlocale (LC_CTYPE,NULL) subroutine.

layout_object Points to a valid LayoutObject structure that can be used by other layout subroutines. This

parameter is used only when the layout_object_create subroutine completes without

errors.

The layout_object parameter is not set and a non-zero value is returned if a valid

LayoutObject structure cannot be created.

Return Values

Upon successful completion, the layout_object_create subroutine returns a value of 0. The layout_object

parameter points to a valid handle.

Error Codes

If the layout_object_create subroutine fails, it returns the following error codes:

 LAYOUT_EINVAL The locale specified by the locale_name parameter is not available.

LAYOUT_EMFILE The OPEN_MAX value of files descriptors are currently open in the calling process.

LAYOUT_ENOMEM Insufficient storage space is available.

Related Information

The “layout_object_editshape or wcslayout_object_editshape Subroutine,” “layout_object_free Subroutine”

on page 686, “layout_object_getvalue Subroutine” on page 678, “layout_object_setvalue Subroutine” on

page 680, “layout_object_shapeboxchars Subroutine” on page 682, “layout_object_transform or

wcslayout_object_transform Subroutine” on page 683.

Bidirectionality and Character Shaping and National Language Support Overview in AIX 5L Version 5.3

National Language Support Guide and Reference.

layout_object_editshape or wcslayout_object_editshape Subroutine

Purpose

Edits the shape of the context text.

Library

Layout library (libi18n.a)

Base Operating System (BOS) Runtime Services (A-P) 675

Syntax

 #include <sys/lc_layout.h>

int layout_editshape (layout_object, EditType, index, InpBuf, Inpsize, OutBuf, OutSize)

LayoutObject layout_object;

BooleanValue EditType;

size_t *index;

const char *InpBuf;

size_t *Inpsize;

void *OutBuf;

size_t *OutSize;

int wcslayout_object_editshape(layout_object, EditType, index, InpBuf, Inpsize, OutBuf, OutSize)

LayoutObject layout_object;

BooleanValue EditType;

size_t *index;

const wchar t *InpBuf;

size_t *InpSize;

void *OutBuf;

size_t *OutSize;

Description

The layout_object_editshape and wcslayout_object_editshape subroutines provide the shapes of the

context text. The shapes are defined by the code element specified by the index parameter and any

surrounding code elements specified by the ShapeContextSize layout value of the LayoutObject structure.

The layout_object parameter specifies this LayoutObject structure.

Use the layout_object_editshape subroutine when editing code elements of one byte. Use the

wcslayout_object_editshape subroutine when editing single code elements of multibytes. These

subroutines do not affect any state maintained by the layout_object_transform or

wcslayout_object_transform subroutine.

Note: If you are developing internationalized applications that may support multibyte locales, please see

Use of the libcur Package in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs

Parameters

 layout_object Specifies the LayoutObject structure created by the layout_object_create subroutine.

676 Technical Reference, Volume 1: Base Operating System and Extensions

EditType Specifies the type of edit shaping. When the EditType parameter stipulates the EditInput

field, the subroutine reads the current code element defined by the index parameter and

any preceding code elements defined by ShapeContextSize layout value of the

LayoutObject structure. When the EditType parameter stipulates the EditReplace field, the

subroutine reads the current code element defined by the index parameter and any

surrounding code elements defined by ShapeContextSize layout value of the LayoutObject

structure.

Note: The editing direction defined by the Orientation and TEXT_VISUAL of the

TypeOfText layout values of the LayoutObject structure determines which code elements

are preceding and succeeding.

When the ActiveShapeEditing layout value of the LayoutObject structure is set to True, the

LayoutObject structure maintains the state of the EditInput field that may affect

subsequent calls to these subroutines with the EditInput field defined by the EditType

parameter. The state of the EditInput field of LayoutObject structure is not affected when

the EditType parameter is set to the EditReplace field. To reset the state of the EditInput

field to its initial state, call these subroutines with the InpBuf parameter set to NULL. The

state of the EditInput field is not affected if errors occur within the subroutines.

index Specifies an offset (in bytes) to the start of a code element in the InpBuf parameter on

input. The InpBuf parameter provides the base text to be edited. In addition, the context of

the surrounding code elements is considered where the minimum set of code elements

needed for the specific context dependent script(s) is identified by the ShapeContextSize

layout value.

If the set of surrounding code elements defined by the index, InpBuf, and InpSize

parameters is less than the size of front and back of the ShapeContextSize layout value,

these subroutines assume there is no additional context available. The caller must provide

the minimum context if it is available. The index parameter is in units associated with the

type of the InpBuf parameter.

On return, the index parameter is modified to indicate the offset to the first code element of

the InpBuf parameter that required shaping. The number of code elements that required

shaping is indicated on return by the InpSize parameter.

InpBuf Specifies the source to be processed. A Null value with the EditInput field in the EditType

parameter indicates a request to reset the state of the EditInput field to its initial state.

Any portion of the InpBuf parameter indicates the necessity for redrawing or shaping.

InpSize Specifies the number of code elements to be processed in units on input. These units are

associated with the types for these subroutines. A value of -1 indicates that the input is

delimited by a Null code element.

On return, the value is modified to the actual number of code elements needed by the

InpBuf parameter. A value of 0 when the value of the EditType parameter is the EditInput

field indicates that the state of the EditInput field is reset to its initial state. If the OutBuf

parameter is not NULL, the respective shaped code elements are written into the OutBuf

parameter.

OutBuf Contains the shaped output text. You can specify this parameter as a Null pointer to

indicate that no transformed text is required. If Null, the subroutines return the index and

InpSize parameters, which specify the amount of text required, to be redrawn.

The encoding of the OutBuf parameter depends on the ShapeCharset layout value defined

in layout_object parameter. If the ActiveShapeEditing layout value is set to False, the

encoding of the OutBuf parameter is to be the same as the code set of the locale

associated with the specified LayoutObject structure.

Base Operating System (BOS) Runtime Services (A-P) 677

OutSize Specifies the size of the output buffer on input in number of bytes. Only the code elements

required to be shaped are written into the OutBuf parameter.

The output buffer should be large enough to contain the shaped result; otherwise, only

partial shaping is performed. If the ActiveShapeEditing layout value is set to True, the

OutBuf parameter should be allocated to contain at least the number of code elements in

the InpBuf parameter multiplied by the value of the ShapeCharsetSize layout value.

On return, the OutSize parameter is modified to the actual number of bytes placed in the

output buffer.

When the OutSize parameter is specified as 0, the subroutines calculate the size of an

output buffer large enough to contain the transformed text from the input buffer. The result

will be returned in this field. The content of the buffers specifies by the InpBuf and OutBuf

parameters, and the value of the InpSize parameter, remain unchanged.

Return Values

Upon successful completion, these subroutines return a value of 0. The index and InpSize parameters

return the minimum set of code elements required to be redrawn.

Error Codes

If these subroutines fail, they return the following error codes:

 LAYOUT_EILSEQ Shaping stopped due to an input code element that cannot be shaped. The

index parameter indicates the code element that caused the error. This code

element is either a valid code element that cannot be shaped according to the

ShapeCharset layout value or an invalid code element not defined by the code

set defined in the LayoutObject structure. Use the mbtowc or wctomb

subroutine in the same locale as the LayoutObject structure to determine if

the code element is valid.

LAYOUT_E2BIG The output buffer is too small and the source text was not processed. The

index and InpSize parameters are not guaranteed on return.

LAYOUT_EINVAL Shaping stopped due to an incomplete code element or shift sequence at the

end of input buffer. The InpSize parameter indicates the number of code

elements successfully transformed.

Note: You can use this error code to determine the code element causing the

error.

LAYOUT_ERANGE Either the index parameter is outside the range as defined by the InpSize

parameter, more than 15 embedding levels are in the source text, or the

InpBuf parameter contains unbalanced Directional Format (Push/Pop).

Related Information

The “layout_object_create Subroutine” on page 674, “layout_object_free Subroutine” on page 686,

“layout_object_getvalue Subroutine,” “layout_object_setvalue Subroutine” on page 680,

“layout_object_shapeboxchars Subroutine” on page 682, “layout_object_transform or

wcslayout_object_transform Subroutine” on page 683.

Bidirectionality and Character Shaping and National Language Support Overview in AIX 5L Version 5.3

National Language Support Guide and Reference.

layout_object_getvalue Subroutine

Purpose

Queries the current layout values of a LayoutObject structure.

678 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Layout Library (libi18n.a)

Syntax

#include <sys/lc_layout.h>

int layout_object_getvalue(layout_object, values, index)

LayoutObject layout_object;

LayoutValues values;

int *index;

Description

The layout_object_getvalue subroutine queries the current setting of layout values within the

LayoutObject structure. The layout_object parameter specifies the LayoutObject structure created by the

layout_object_create subroutine.

The name field of the LayoutValues structure contains the name of the layout value to be queried. The

value field is a pointer to where the layout value is stored. The values are queried from the LayoutObject

structure and represent its current state.

For example, if the layout value to be queried is of type T, the value parameter must be of type T*. If T

itself is a pointer, the layout_object_getvalue subroutine allocates space to store the actual data. The

caller must free this data by calling the free(T) subroutine with the returned pointer.

When setting the value field, an extra level of indirection is present that is not present using the

layout_object_setvalue parameter. When you set a layout value of type T, the value field contains T.

However, when querying the same layout value, the value field contains &T.

Note: If you are developing internationalized applications that may support multibyte locales, please see

Use of the libcur Package in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs

Parameters

 layout_object Specifies the LayoutObject structure created by the layout_object_create subroutine.

values Specifies an array of layout values of type LayoutValueRec that are to be queried in the

LayoutObject structure. The end of the array is indicated by name=0.

index Specifies a layout value to be queried. If the value cannot be queried, the index parameter

causing the error is returned and the subroutine returns a non-zero value.

Return Values

Upon successful completion, the layout_object_getvalue subroutine returns a value of 0. All layout values

were successfully queried.

Error Codes

If the layout_object_getvalue subroutine fails, it returns the following values:

 LAYOUT_EINVAL The layout value specified by the index parameter is unknown or the layout_object

parameter is invalid.

LAYOUT_EMOMEM Insufficient storage space is available.

Base Operating System (BOS) Runtime Services (A-P) 679

Examples

The following example queries whether the locale is bidirectional and gets the values of the in and out

orienations.

#include <sys/lc_layout.h>

#include <locale.h>

main()

{

LayoutObject plh;

int RC=0;

LayoutValues layout;

LayoutTextDescriptor Descr;

int index;

RC=layout_object_create(setlocale(LC_CTYPE,""),&plh); /* create object */

if (RC) {printf("Create error !!\n"); exit(0);}

layout=malloc(3*sizeof(LayoutValueRec));

 /* allocate layout array */

layout[0].name=ActiveBidirection; /* set name */

layout[1].name=Orientation; /* set name */

layout[1].value=(caddr_t)&Descr;

 /* send address of memory to be allocated by function */

layout[2].name=0; /* indicate end of array */

RC=layout_object_getvalue(plh,layout,&index);

if (RC) {printf("Getvalue error at %d !!\n",index); exit(0);}

printf("ActiveBidirection = %d \n",*(layout[0].value));

 /*print output*/

printf("Orientation in = %x out = %x \n", Descr->>in, Descr->>out);

free(layout); /* free layout array */

free (Descr); /* free memory allocated by function */

RC=layout_object_free(plh); /* free layout object */

if (RC) printf("Free error !!\n");

}

Related Information

The “layout_object_create Subroutine” on page 674, “layout_object_editshape or

wcslayout_object_editshape Subroutine” on page 675, “layout_object_free Subroutine” on page 686,

“layout_object_setvalue Subroutine,” “layout_object_shapeboxchars Subroutine” on page 682, and

“layout_object_transform or wcslayout_object_transform Subroutine” on page 683.

Bidirectionality and Character Shaping and National Language Support Overview in AIX 5L Version 5.3

National Language Support Guide and Reference.

layout_object_setvalue Subroutine

Purpose

Sets the layout values of a LayoutObject structure.

Library

Layout Library (libi18n.a)

Syntax

#include <sys/lc_layout.h>

680 Technical Reference, Volume 1: Base Operating System and Extensions

int layout_object_setvalue(layout_object, values, index)

LayoutObject layout_object;

LayoutValues values;

int *index;

Description

The layout_object_setvalue subroutine changes the current layout values of the LayoutObject structure.

The layout_object parameter specifies the LayoutObject structure created by the layout_object_create

subroutine. The values are written into the LayoutObject structure and may affect the behavior of

subsequent layout functions.

Note: Some layout values do alter internal states maintained by a LayoutObject structure.

The name field of the LayoutValueRec structure contains the name of the layout value to be set. The value

field contains the actual value to be set. The value field is large enough to support all types of layout

values. For more information on layout value types, see ″Layout Values for the Layout Library″ in AIX 5L

Version 5.3 General Programming Concepts: Writing and Debugging Programs.

Note: If you are developing internationalized applications that may support multibyte locales, please see

Use of the libcur Package in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs

Parameters

 layout_object Specifies the LayoutObject structure returned by the layout_object_create subroutine.

values Specifies an array of layout values of the type LayoutValueRec that this subroutine sets. The end

of the array is indicated by name=0.

index Specifies a layout value to be queried. If the value cannot be queried, the index parameter

causing the error is returned and the subroutine returns a non-zero value. If an error is

generated, a subset of the values may have been previously set.

Return Values

Upon successful completion, the layout_object_setvalue subroutine returns a value of 0. All layout values

were successfully set.

Error Codes

If the layout_object_setvalue subroutine fails, it returns the following values:

 LAYOUT_EINVAL The layout value specified by the index parameter is unknown, its value is invalid, or the

layout_object parameter is invalid.

LAYOUT_EMFILE The (OPEN_MAX) file descriptors are currently open in the calling process.

LAYOUT_ENOMEM Insufficient storage space is available.

Examples

The following example sets the TypeofText value to Implicit and the out value to Visual.

#include <sys/lc_layout.h>

#include <locale.h>

main()

{

LayoutObject plh;

int RC=0;

LayoutValues layout;

LayoutTextDescriptor Descr;

Base Operating System (BOS) Runtime Services (A-P) 681

int index;

RC=layout_object_create(setlocale(LC_CTYPE,""),&plh); /* create object */

if (RC) {printf("Create error !!\n"); exit(0);}

layout=malloc(2*sizeof(LayoutValueRec)); /*allocate layout array*/

Descr=malloc(sizeof(LayoutTextDescriptorRec)); /* allocate text descriptor */

layout[0].name=TypeOfText; /* set name */

layout[0].value=(caddr_t)Descr; /* set value */

layout[1].name=0; /* indicate end of array */

Descr->in=TEXT_IMPLICIT;

Descr->out=TEXT_VISUAL; RC=layout_object_setvalue(plh,layout,&index);

if (RC) printf("SetValue error at %d!!\n",index); /* check return code */

free(layout); /* free allocated memory */

free (Descr);

RC=layout_object_free(plh); /* free layout object */

if (RC) printf("Free error !!\n");

}

Related Information

The “layout_object_create Subroutine” on page 674, “layout_object_editshape or

wcslayout_object_editshape Subroutine” on page 675, “layout_object_free Subroutine” on page 686,

“layout_object_getvalue Subroutine” on page 678, “layout_object_shapeboxchars Subroutine,” and

“layout_object_transform or wcslayout_object_transform Subroutine” on page 683.

Bidirectionality and Character Shaping and National Language Support Overview in AIX 5L Version 5.3

National Language Support Guide and Reference.

layout_object_shapeboxchars Subroutine

Purpose

Shapes box characters.

Library

Layout Library (libi18n.a)

Syntax

#include <sys/lc_layout.h>

int layout_object_shapeboxchars(layout_object, InpBuf, InpSize, OutBuf)

LayoutObject layout_object;

const char *InpBuf;

const size_t InpSize;

char *OutBuf;

Description

The layout_object_shapeboxchars subroutine shapes box characters into the VT100 box character set.

Note: If you are developing internationalized applications that may support multibyte locales, please see

Use of the libcur Package in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs

682 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 layout_object Specifies the LayoutObject structure created by the layout_object_create subroutine.

InpBuf Specifies the source text to be processed.

InpSize Specifies the number of code elements to be processed.

OutBuf Contains the shaped output text.

Return Values

Upon successful completion, this subroutine returns a value of 0.

Error Codes

If this subroutine fails, it returns the following values:

 LAYOUT_EILSEQ Shaping stopped due to an input code element that cannot be mapped into the VT100 box

character set.

LAYOUT_EINVAL Shaping stopped due to an incomplete code element or shift sequence at the end of the

input buffer.

Related Information

The “layout_object_create Subroutine” on page 674, “layout_object_editshape or

wcslayout_object_editshape Subroutine” on page 675, “layout_object_free Subroutine” on page 686,

“layout_object_getvalue Subroutine” on page 678, “layout_object_setvalue Subroutine” on page 680, and

“layout_object_transform or wcslayout_object_transform Subroutine.”

Bidirectionality and Character Shaping and National Language Support Overview in AIX 5L Version 5.3

National Language Support Guide and Reference.

layout_object_transform or wcslayout_object_transform Subroutine

Purpose

Transforms text according to the current layout values of a LayoutObject structure.

Library

Layout Library (libi18n.a)

Syntax

#include <sys/lc_layout.h>

int layout_object_transform (layout_object, InpBuf, InpSize, OutBuf, OutSize, InpToOut, OutToInp, BidiLvl)

LayoutObject layout_object;

const char *InpBuf;

size_t *InpSize;

void * OutBuf;

size_t *OutSize;

size_t *InpToOut;

size_t *OutToInp;

unsigned char *BidiLvl;

int wcslayout_object_transform (layout_object, InpBuf, InpSize, OutBuf, OutSize, InpToOut, OutToInp, BidiLvl)

LayoutObject layout_object;

const char *InpBuf;

size_t *InpSize;

void *OutBuf;

Base Operating System (BOS) Runtime Services (A-P) 683

Size_t *OutSize;

size_t *InpToOut;

size_t *OutToInp;

unsigned char *BidiLvl;

Description

The layout_object_transform and wcslayout_object_transform subroutines transform the text specified

by the InpBuf parameter according to the current layout values in the LayoutObject structure. Any layout

value whose type is LayoutTextDescriptor describes the attributes within the InpBuf and OutBuf

parameters. If the attributes are the same as the InpBuf and OutBuf parameters themselves, a null

transformation is done with respect to that specific layout value.

The output of these subroutines may be one or more of the following results depending on the setting of

the respective parameters:

 OutBuf, OutSize Any transformed data is stored in the OutBuf parameter.

InpToOut A cross reference from each code element of the InpBuf parameter to the transformed

data.

OutToInp A cross reference to each code element of the InpBuf parameter from the transformed

data.

BidiLvl A weighted value that represents the directional level of each code element of the

InpBuf parameter. The level is dependent on the internal directional algorithm of the

LayoutObject structure.

You can specify each of these output parameters as Null to indicate that no output is needed for the

specific parameter. However, you should set at least one of these parameters to a nonNULL value to

perform any significant work.

To perform shaping of a text string without reordering of code elements, set the TypeOfText layout value to

TEXT_VISUAL and the in and out values of the Orientation layout value alike. These layout values are in

the LayoutObject structure.

Note: If you are developing internationalized applications that may support multibyte locales, please see

Use of the libcur Package in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs

Parameters

 layout_object Specifies the LayoutObject structure created by the layout_object_create subroutine.

InpBuf Specifies the source text to be processed. This parameter cannot be null.

InpSize Specifies the units of code elements processed associated with the bytes for the

layout_object_transform and wcslayout_object_transform subroutines. A value of -1

indicates that the input is delimited by a null code element. On return, the value is modified

to the actual number of code elements processed in the InBuf parameter. However, if the

value in the OutSize parameter is zero, the value of the InpSize parameter is not changed.

OutBuf Contains the transformed data. You can specify this parameter as a null pointer to indicate

that no transformed data is required.

The encoding of the OutBuf parameter depends on the ShapeCharset layout value defined

in the LayoutObject structure. If the ActiveShapeEditing layout value is set to True, the

encoding of the OutBuf parameter is the same as the code set of the locale associated with

the LayoutObject structure.

684 Technical Reference, Volume 1: Base Operating System and Extensions

OutSize Specifies the size of the output buffer in number of bytes. The output buffer should be large

enough to contain the transformed result; otherwise, only a partial transformation is

performed. If the ActiveShapeEditing layout value is set to True, the OutBuf parameter

should be allocated to contain at least the number of code elements multiplied by the

ShapeCharsetSize layout value.

On return, the OutSize parameter is modified to the actual number of bytes placed in this

parameter.

When you specify the OutSize parameter as 0, the subroutine calculates the size of an

output buffer to be large enough to contain the transformed text. The result is returned in

this field. The content of the buffers specified by the InpBuf and OutBuf parameters, and a

value of the InpSize parameter remains unchanged.

InpToOut Represents an array of values with the same number of code elements as the InpBuf

parameter if InpToOut parameter is not a null pointer.

On output, the nth value in InpToOut parameter corresponds to the nth code element in

InpBuf parameter. This value is the index in OutBuf parameter which identifies the

transformed ShapeCharset element of the nth code element in InpBuf parameter. You can

specify the InpToOut parameter as null if no index array from the InpBuf to OutBuf

parameters is desired.

OutTolnp Represents an array of values with the same number of code elements as contained in the

OutBuf parameter if the OutToInp parameter is not a null pointer.

On output, the nth value in the OutTolnp parameter corresponds to the nth ShapeCharset

element in the OutBuf parameter. This value is the index in the InpBuf parameter which

identifies the original code element of the nth ShapeCharset element in the OutBuf

parameter. You can specify the OutTolnp parameter as NULL if no index array from the

OutBuf to InpBuf parameters is desired.

BidiLvl Represents an array of values with the same number of elements as the source text if the

BidiLvl parameter is not a null pointer. The nth value in the BidiLvl parameter corresponds

to the nth code element in the InpBuf parameter. This value is the level of this code

element as determined by the bidirectional algorithm. You can specify the BidiLvl parameter

as null if a levels array is not desired.

Return Values

Upon successful completion, these subroutines return a value of 0.

Error Codes

If these subroutines fail, they return the following values:

 LAYOUT_EILSEQ Transformation stopped due to an input code element that cannot be

shaped or is invalid. The InpSize parameter indicates the number of the

code element successfully transformed.

Note: You can use this error code to determine the code element

causing the error.

This code element is either a valid code element but cannot be shaped

into the ShapeCharset layout value or is an invalid code element not

defined by the code set of the locale of the LayoutObject structure. You

can use the mbtowc and wctomb subroutines to determine if the code

element is valid when used in the same locale as the LayoutObject

structure.

LAYOUT_E2BIG The output buffer is full and the source text is not entirely processed.

Base Operating System (BOS) Runtime Services (A-P) 685

LAYOUT_EINVAL Transformation stopped due to an incomplete code element or shift

sequence at the end of the input buffer. The InpSize parameter indicates

the number of the code elements successfully transformed.

Note: You can use this error code to determine the code element

causing the error.

LAYOUT_ERANGE More than 15 embedding levels are in the source text or the InpBuf

parameter contains unbalanced Directional Format (Push/Pop).

When the size of OutBuf parameter is not large enough to contain the

entire transformed text, the input text state at the end of the

LAYOUT_E2BIG error code is returned. To resume the transformation on

the remaining text, the application calls the layout_object_transform

subroutine with the same LayoutObject structure, the same InpBuf

parameter, and InpSize parameter set to 0.

Examples

The following is an example of transformation of both directional re-ordering and shaping.

Notes:

1. Uppercase represent left-to-right characters; lowercase represent right-to-left characters.

2. xyz represent the shapes of cde.

Position: 0123456789

InpBuf: AB cde 12Z

Position: 0123456789

OutBuf: AB 12 zyxZ

Position: 0123456789

ToTarget: 0128765349

Position: 0123456789

ToSource: 0127865439

Position: 0123456789

BidiLevel: 0001111220

Related Information

The “layout_object_create Subroutine” on page 674, “layout_object_editshape or

wcslayout_object_editshape Subroutine” on page 675, “layout_object_free Subroutine,”

“layout_object_getvalue Subroutine” on page 678, “layout_object_setvalue Subroutine” on page 680, and

“layout_object_shapeboxchars Subroutine” on page 682.

Bidirectionality and Character Shaping and National Language Support Overview in AIX 5L Version 5.3

National Language Support Guide and Reference.

layout_object_free Subroutine

Purpose

Frees a LayoutObject structure.

Library

Layout library (libi18n.a)

Syntax

#include <sys/lc_layout.h>

686 Technical Reference, Volume 1: Base Operating System and Extensions

int layout_object_free(layout_object)

LayoutObject layout_object;

Description

The layout_object_free subroutine releases all the resources of the LayoutObject structure created by

the layout_object_create subroutine. The layout_object parameter specifies this LayoutObject structure.

Note: If you are developing internationalized applications that may support multibyte locales, please see

Use of the libcur Package in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs

Parameters

 layout_object Specifies a LayoutObject structure returned by the layout_object_create subroutine.

Return Values

Upon successful completion, the layout_object_free subroutine returns a value of 0. All resources

associated with the layout_object parameter are successfully deallocated.

Error Codes

If the layout_object_free subroutine fails, it returns the following error code:

 LAYOUT_EFAULT Errors occurred while processing the request.

Related Information

The “layout_object_create Subroutine” on page 674, “layout_object_editshape or

wcslayout_object_editshape Subroutine” on page 675, “layout_object_getvalue Subroutine” on page 678,

“layout_object_setvalue Subroutine” on page 680, “layout_object_shapeboxchars Subroutine” on page 682,

and “layout_object_transform or wcslayout_object_transform Subroutine” on page 683.

Bidirectionality and Character Shaping and National Language Support Overview in AIX 5L Version 5.3

National Language Support Guide and Reference.

ldahread Subroutine

Purpose

Reads the archive header of a member of an archive file.

Library

Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>

#include <ar.h>

#include <ldfcn.h>

int ldahread(ldPointer, ArchiveHeader)

LDFILE *ldPointer;

ARCHDR *ArchiveHeader;

Base Operating System (BOS) Runtime Services (A-P) 687

Description

If the TYPE(ldPointer) macro from the ldfcn.h file is the archive file magic number, the ldahread

subroutine reads the archive header of the extended common object file currently associated with the

ldPointer parameter into the area of memory beginning at the ArchiveHeader parameter.

Parameters

 ldPointer Points to the LDFILE structure that was returned as the result of a successful call to

ldopen or ldaopen.

ArchiveHeader Points to a ARCHDR structure.

Return Values

The ldahread subroutine returns a SUCCESS or FAILURE value.

Error Codes

The ldahread routine fails if the TYPE(ldPointer) macro does not represent an archive file, or if it cannot

read the archive header.

Related Information

The ldfhread (“ldfhread Subroutine” on page 690) subroutine, ldgetname (“ldgetname Subroutine” on

page 692) subroutine, ldlread, ldlinit, or ldlitem (“ldlread, ldlinit, or ldlitem Subroutine” on page 694)

subroutine, ldshread or ldnshread (“ldshread or ldnshread Subroutine” on page 700) subroutine, ldtbread

(“ldtbread Subroutine” on page 704) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

ldclose or ldaclose Subroutine

Purpose

Closes a common object file.

Library

Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>

#include <ldfcn.h>

int ldclose(ldPointer)

LDFILE *ldPointer;

int ldaclose(ldPointer)

LDFILE *ldPointer;

Description

The ldopen and ldclose subroutines provide uniform access to both simple object files and object files

that are members of archive files. Thus, an archive of common object files can be processed as if it were

a series of simple common object files.

688 Technical Reference, Volume 1: Base Operating System and Extensions

If the ldfcn.h file TYPE(ldPointer) macro is the magic number of an archive file, and if there are any more

files in the archive, the ldclose subroutine reinitializes the ldfcn.h file OFFSET(ldPointer) macro to the file

address of the next archive member and returns a failure value. The ldfile structure is prepared for a

subsequent ldopen.

If the TYPE(ldPointer) macro does not represent an archive file, the ldclose subroutine closes the file and

frees the memory allocated to the ldfile structure associated with ldPointer.

The ldaclose subroutine closes the file and frees the memory allocated to the ldfile structure associated

with the ldPointer parameter regardless of the value of the TYPE(ldPointer) macro.

Parameters

 ldPointer Pointer to the LDFILE structure that was returned as the result of a successful call to ldopen or

ldaopen.

Return Values

The ldclose subroutine returns a SUCCESS or FAILURE value.

The ldaclose subroutine always returns a SUCCESS value and is often used in conjunction with the

ldaopen subroutine.

Error Codes

The ldclose subroutine returns a failure value if there are more files to archive.

Related Information

The ldaopen or ldopen (“ldopen or ldaopen Subroutine” on page 697) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

ldexp, ldexpf, or ldexpl Subroutine

Purpose

Loads exponent of a floating-point number.

Syntax

#include <math.h>

float ldexpf (x, exp)

float x;

int exp;

long double ldexpl (x, exp)

long double x;

int exp;

double ldexp (x, exp)

double x;

int exp;

Description

The ldexpf, ldexpl, and ldexp subroutines compute the quantity x * 2exp.

Base Operating System (BOS) Runtime Services (A-P) 689

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these functions. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

exp Specifies the exponent of 2.

Return Values

Upon successful completion, the ldexpf, ldexpl, and ldexp subroutines return x multiplied by 2, raised to

the power exp.

If the ldexpf, ldexpl, or ldexp subroutines would cause overflow, a range error occurs and the ldexpf,

ldexpl, and ldexp subroutines return ±HUGE_VALF, ±HUGE_VALL, and ±HUGE_VAL (according to the

sign of x), respectively.

If the correct value would cause underflow, and is not representable, a range error may occur, and 0.0 is

returned.

If x is NaN, a NaN is returned.

If x is ±0 or Inf, x is returned.

If exp is 0, x is returned.

If the correct value would cause underflow, and is representable, a range error may occur and the correct

value is returned.

Error Codes

If the result of the ldexp or ldexpl subroutine overflows, then +/- HUGE_VAL is returned, and the global

variable errno is set to ERANGE.

If the result of the ldexp or ldexpl subroutine underflows, 0 is returned, and the errno global variable is

set to a ERANGE value.

Related Information

“feclearexcept Subroutine” on page 259, “fetestexcept Subroutine” on page 267, and “class, _class, finite,

isnan, or unordered Subroutines” on page 165

math.h in AIX 5L Version 5.3 Files Reference.

ldfhread Subroutine

Purpose

Reads the file header of an XCOFF file.

Library

Object File Access Routine Library (libld.a)

690 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <stdio.h>

#include <ldfcn.h>

int ldfhread (ldPointer, FileHeader)

LDFILE *ldPointer;

void *FileHeader;

Description

The ldfhread subroutine reads the file header of the object file currently associated with the ldPointer

parameter into the area of memory beginning at the FileHeader parameter. For AIX 4.3.2 and above, it is

the responsibility of the calling routine to provide a pointer to a buffer large enough to contain the file

header of the associated object file. Since the ldopen subroutine provides magic number information (via

the HEADER(ldPointer).f_magic macro), the calling application can always determine whether the

FileHeader pointer should refer to a 32-bit FILHDR or 64-bit FILHDR_64 structure.

Parameters

 ldPointer Points to the LDFILE structure that was returned as the result of a successful call to ldopen or

ldaopen subroutine.

FileHeader Points to a buffer large enough to accommodate a FILHDR structure, according to the object

mode of the file being read.

Return Values

The ldfhread subroutine returns Success or Failure.

Error Codes

The ldfhread subroutine fails if it cannot read the file header.

Note: In most cases, the use of ldfhread can be avoided by using the HEADER (ldPointer) macro

defined in the ldfcn.h file. The information in any field or fieldname of the header file may be

accessed using the header (ldPointer) fieldname macro.

Examples

The following is an example of code that opens an object file, determines its mode, and uses the ldfhread

subroutine to acquire the file header. This code would be compiled with both _XCOFF32_ and

XCOFF64 defined:

#define __XCOFF32__

#define __XCOFF64__

#include <ldfcn.h>

/* for each FileName to be processed */

if ((ldPointer = ldopen(fileName, ldPointer)) != NULL)

{

 FILHDR FileHead32;

 FILHDR_64 FileHead64;

 void *FileHeader;

 if (HEADER(ldPointer).f_magic == U802TOCMAGIC)

 FileHeader = &FileHead32;

 else if (HEADER(ldPointer).f_magic == U803XTOCMAGIC)

 FileHeader = &FileHead64;

 else

Base Operating System (BOS) Runtime Services (A-P) 691

FileHeader = NULL;

 if (FileHeader && (ldfhread(ldPointer, &FileHeader) == SUCCESS))

 {

 /* ...successfully read header... */

 /* ...process according to magic number... */

 }

}

Related Information

The ldahread (“ldahread Subroutine” on page 687) subroutine, ldgetname (“ldgetname Subroutine”)

subroutine, ldlread, ldlinit, or ldlitem (“ldlread, ldlinit, or ldlitem Subroutine” on page 694) subroutine,

ldopen (“ldopen or ldaopen Subroutine” on page 697) subroutine, ldshread or ldnshread (“ldshread or

ldnshread Subroutine” on page 700) subroutine, ldtbread (“ldtbread Subroutine” on page 704) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

ldgetname Subroutine

Purpose

Retrieves symbol name for common object file symbol table entry.

Library

Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>

#include <ldfcn.h>

char *ldgetname (ldPointer, Symbol)

LDFILE *ldPointer;

void *Symbol;

Description

The ldgetname subroutine returns a pointer to the name associated with Symbol as a string. The string is

in a static buffer local to the ldgetname subroutine that is overwritten by each call to the ldgetname

subroutine and must therefore be copied by the caller if the name is to be saved.

The common object file format handles arbitrary length symbol names with the addition of a string table.

The ldgetname subroutine returns the symbol name associated with a symbol table entry for an

XCOFF-format object file.

The calling routine to provide a pointer to a buffer large enough to contain a symbol table entry for the

associated object file. Since the ldopen subroutine provides magic number information (via the

HEADER(ldPointer).f_magic macro), the calling application can always determine whether the Symbol

pointer should refer to a 32-bit SYMENT or 64-bit SYMENT_64 structure.

The maximum length of a symbol name is BUFSIZ, defined in the stdio.h file.

692 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 ldPointer Points to an LDFILE structure that was returned as the result of a successful call to the ldopen or

ldaopen subroutine.

Symbol Points to an initialized 32-bit or 64-bit SYMENT structure.

Error Codes

The ldgetname subroutine returns a null value (defined in the stdio.h file) for a COFF-format object file if

the name cannot be retrieved. This situation can occur if one of the following is true:

v The string table cannot be found.

v The string table appears invalid (for example, if an auxiliary entry is handed to the ldgetname

subroutine wherein the name offset lies outside the boundaries of the string table).

v The name’s offset into the string table is past the end of the string table.

Typically, the ldgetname subroutine is called immediately after a successful call to the ldtbread subroutine

to retrieve the name associated with the symbol table entry filled by the ldtbread subroutine.

Examples

The following is an example of code that determines the object file type before making a call to the

ldtbread and ldgetname subroutines.

#define __XCOFF32__

#define __XCOFF64__

#include <ldfcn.h>

SYMENT Symbol32;

SYMENT_64 Symbol64;

void *Symbol;

if (HEADER(ldPointer).f_magic == U802TOCMAGIC)

 Symbol = &Symbol32;

else if (HEADER(ldPointer).f_magic == U64_TOCMAGIC)

 Symbol = &Symbol64;

else

 Symbol = NULL;

if (Symbol)

 /* for each symbol in the symbol table */

 for (symnum = 0 ; symnum < HEADER(ldPointer).f_nsyms ; symnum++)

 {

 if (ldtbread(ldPointer,symnum,Symbol) == SUCCESS)

 {

 char *name = ldgetname(ldPointer,Symbol)

 if (name)

 {

 /* Got the name... */

 .

 .

 }

 /* Increment symnum by the number of auxiliary entries */

 if (HEADER(ldPointer).f_magic == U802TOCMAGIC)

 symnum += Symbol32.n_numaux;

 else if (HEADER(ldPointer).f_magic == U64_TOCMAGIC)

 symnum += Symbol64.n_numaux;

 }

 else

 {

Base Operating System (BOS) Runtime Services (A-P) 693

/* Should have been a symbol...indicate the error */

 .

 .

 }

 }

Related Information

The ldahread (“ldahread Subroutine” on page 687) subroutine, ldfhread (“ldfhread Subroutine” on page

690) subroutine, ldlread, ldlinit, or ldlitem (“ldlread, ldlinit, or ldlitem Subroutine”)subroutine, ldshread or

ldnshread (“ldshread or ldnshread Subroutine” on page 700) subroutine, ldtbread (“ldtbread Subroutine”

on page 704) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

ldlread, ldlinit, or ldlitem Subroutine

Purpose

Manipulates line number entries of a common object file function.

Library

Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>

#include <ldfcn.h>

int ldlread (ldPointer, FunctionIndex, LineNumber, LineEntry)

LDFILE *ldPointer;

int FunctionIndex;

unsigned short LineNumber;

void *LineEntry;

int ldlinit (ldPointer, FunctionIndex)

LDFILE *ldPointer;

int FunctionIndex;

int ldlitem (ldPointer, LineNumber, LineEntry)

LDFILE *ldPointer;

unsigned short LineNumber;

void *LineEntry;

Description

The ldlread subroutine searches the line number entries of the XCOFF file currently associated with the

ldPointer parameter. The ldlread subroutine begins its search with the line number entry for the beginning

of a function and confines its search to the line numbers associated with a single function. The function is

identified by the FunctionIndex parameter, the index of its entry in the object file symbol table. The ldlread

subroutine reads the entry with the smallest line number equal to or greater than the LineNumber

parameter into the memory beginning at the LineEntry parameter. It is the responsibility of the calling

routine to provide a pointer to a buffer large enough to contain the line number entry for the associated

object file type. Since the ldopen subroutine provides magic number information (via the

HEADER(ldPointer).f_magic macro), the calling application can always determine whether the LineEntry

pointer should refer to a 32-bit LINENO or 64-bit LINENO_64 structure.

694 Technical Reference, Volume 1: Base Operating System and Extensions

The ldlinit and ldlitem subroutines together perform the same function as the ldlread subroutine. After an

initial call to the ldlread or ldlinit subroutine, the ldlitem subroutine may be used to retrieve successive

line number entries associated with a single function. The ldlinit subroutine simply locates the line number

entries for the function identified by the FunctionIndex parameter. The ldlitem subroutine finds and reads

the entry with the smallest line number equal to or greater than the LineNumber parameter into the

memory beginning at the LineEntry parameter.

Parameters

 ldPointer Points to the LDFILE structure that was returned as the result of a successful call to the

ldopen , lddopen,or ldaopen subroutine.

LineNumber Specifies the index of the first LineNumber parameter entry to be read.

LineEntry Points to a buffer that will be filled in with a LINENO structure from the object file.

FunctionIndex Points to the symbol table index of a function.

Return Values

The ldlread, ldlinit, and ldlitem subroutines return a SUCCESS or FAILURE value.

Error Codes

The ldlread subroutine fails if there are no line number entries in the object file, if the FunctionIndex

parameter does not index a function entry in the symbol table, or if it finds no line number equal to or

greater than the LineNumber parameter. The ldlinit subroutine fails if there are no line number entries in

the object file or if the FunctionIndex parameter does not index a function entry in the symbol table. The

ldlitem subroutine fails if it finds no line number equal to or greater than the LineNumber parameter.

Related Information

The ldahread (“ldahread Subroutine” on page 687) subroutine, ldfhread (“ldfhread Subroutine” on page

690) subroutine, ldgetname (“ldgetname Subroutine” on page 692) subroutine, ldshread or ldnshread

(“ldshread or ldnshread Subroutine” on page 700) subroutine, ldtbread (“ldtbread Subroutine” on page

704) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

ldlseek or ldnlseek Subroutine

Purpose

Seeks to line number entries of a section of a common object file.

Library

Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>

#include <ldfcn.h>

int ldlseek (ldPointer, SectionIndex)

LDFILE *ldPointer;

unsigned short SectionIndex;

Base Operating System (BOS) Runtime Services (A-P) 695

int ldnlseek (ldPointer, SectionName)

LDFILE *ldPointer;

char *SectionName;

Description

The ldlseek subroutine seeks to the line number entries of the section specified by the SectionIndex

parameter of the common object file currently associated with the ldPointer parameter. The first section

has an index of 1.

The ldnlseek subroutine seeks to the line number entries of the section specified by the SectionName

parameter.

Both subroutines determine the object mode of the associated file before seeking to the relocation entries

of the indicated section.

Parameters

 ldPointer Points to the LDFILE structure that was returned as the result of a successful call to the

ldopen or ldaopen subroutine.

SectionIndex Specifies the index of the section whose line number entries are to be seeked to.

SectionName Specifies the name of the section whose line number entries are to be seeked to.

Return Values

The ldlseek and ldnlseek subroutines return a SUCCESS or FAILURE value.

Error Codes

The ldlseek subroutine fails if the SectionIndex parameter is greater than the number of sections in the

object file. The ldnlseek subroutine fails if there is no section name corresponding with the SectionName

parameter. Either function fails if the specified section has no line number entries or if it cannot seek to the

specified line number entries.

Related Information

The ldohseek (“ldohseek Subroutine”) subroutine, ldrseek or ldnrseek (“ldrseek or ldnrseek Subroutine”

on page 699)subroutine, ldsseek or ldnsseek (“ldsseek or ldnsseek Subroutine” on page 702) subroutine,

ldtbseek (“ldtbseek Subroutine” on page 705) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

ldohseek Subroutine

Purpose

Seeks to the optional file header of a common object file.

Library

Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>

#include <ldfcn.h>

696 Technical Reference, Volume 1: Base Operating System and Extensions

int ldohseek (ldPointer)

LDFILE *ldPointer;

Description

The ldohseek subroutine seeks to the optional auxiliary header of the common object file currently

associated with the ldPointer parameter. The subroutine determines the object mode of the associated file

before seeking to the end of its file header.

Parameters

 ldPointer Points to the LDFILE structure that was returned as the result of a successful call to ldopen or

ldaopen subroutine.

Return Values

The ldohseek subroutine returns a SUCCESS or FAILURE value.

Error Codes

The ldohseek subroutine fails if the object file has no optional header, if the file is not a 32-bit or 64-bit

object file, or if it cannot seek to the optional header.

Related Information

The ldlseek or ldnlseek (“ldlseek or ldnlseek Subroutine” on page 695) subroutine, ldrseek or ldnrseek

(“ldrseek or ldnrseek Subroutine” on page 699)subroutine, ldsseek or ldnsseek (“ldsseek or ldnsseek

Subroutine” on page 702) subroutine, ldtbseek (“ldtbseek Subroutine” on page 705) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

ldopen or ldaopen Subroutine

Purpose

Opens an object or archive file for reading.

Library

Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>

#include <ldfcn.h>

LDFILE *ldopen(FileName, ldPointer)

char *FileName;

LDFILE *ldPointer;

LDFILE *ldaopen(FileName, ldPointer)

char *FileName;

LDFILE *ldPointer;

LDFILE *lddopen(FileDescriptor, type, ldPointer)

Base Operating System (BOS) Runtime Services (A-P) 697

int FileDescriptor;

char *type;

LDFILE *ldPointer;

Description

The ldopen and ldclose subroutines provide uniform access to both simple object files and object files

that are members of archive files. Thus, an archive of object files can be processed as if it were a series

of ordinary object files.

If the ldPointer is null, the ldopen subroutine opens the file named by the FileName parameter and

allocates and initializes an LDFILE structure, and returns a pointer to the structure.

If the ldPointer parameter is not null and refers to an LDFILE for an archive, the structure is updated for

reading the next archive member. In this case, and if the value of the TYPE(ldPointer) macro is the archive

magic number ARTYPE.

The ldopen and ldclose subroutines are designed to work in concert. The ldclose subroutine returns

failure only when the ldPointer refers to an archive containing additional members. Only then should the

ldopen subroutine be called with a num-null ldPointer argument. In all other cases, in particular whenever

a new FileName parameter is opened, the ldopen subroutine should be called with a null ldPointer

argument.

If the value of the ldPointer parameter is not null, the ldaopen subroutine opens the FileName parameter

again and allocates and initializes a new LDFILE structure, copying the TYPE, OFFSET, and HEADER

fields from the ldPointer parameter. The ldaopen subroutine returns a pointer to the new ldfile structure.

This new pointer is independent of the old pointer, ldPointer. The two pointers may be used concurrently to

read separate parts of the object file. For example, one pointer may be used to step sequentially through

the relocation information, while the other is used to read indexed symbol table entries.

The lddopen function accesses the previously opened file referenced by the FileDescriptor parameter. In

all other respects, it functions the same as the ldopen subroutine.

For AIX 4.3.2 and above, the functions transparently open both 32-bit and 64-bit object files, as well as

both small format and large format archive files. Once a file or archive is successfully opened, the calling

application can examine the HEADER(ldPointer).f_magic field to check the magic number of the file or

archive member associated with ldPointer. (This is necessary due to an archive potentially containing

members that are not object files.) The magic numbers U802TOCMAGIC and (for AIX 4.3.2 and above)

U803XTOCMAGIC are defined in the ldfcn.h file. If the value of TYPE(ldPointer) is the archive magic

numberARTYPE, the flags field can be checked for the archive type. Large format archives will have the

flag bit AR_TYPE_BIG set in LDFLAGS(ldPointer). Large format archives are available on AIX 4.3 and

later.

Parameters

 FileName Specifies the file name of an object file or archive.

ldPointer Points to an LDFILE structure.

FileDescriptor Specifies a valid open file descriptor.

type Points to a character string specifying the mode for the open file. The fdopen function is

used to open the file.

Error Codes

Both the ldopen and ldaopen subroutines open the file named by the FileName parameter for reading.

Both functions return a null value if the FileName parameter cannot be opened, or if memory for the

LDFILE structure cannot be allocated.

698 Technical Reference, Volume 1: Base Operating System and Extensions

A successful open does not ensure that the given file is a common object file or an archived object file.

Examples

The following is an example of code that uses the ldopen and ldclose subroutines:

/* for each FileName to be processed */

 ldPointer = NULL;

 do

 if((ldPointer = ldopen(FileName, ldPointer)) != NULL)

 /* check magic number */

 /* process the file */

 "

 "

 while(ldclose(ldPointer) == FAILURE);

Related Information

The ldclose or ldaclose (“ldclose or ldaclose Subroutine” on page 688) subroutine, fopen, fopen64,

freopen, freopen64, or fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 281)

subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

ldrseek or ldnrseek Subroutine

Purpose

Seeks to the relocation entries of a section of an XCOFF file.

Library

Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>

#include <ldfcn.h>

int ldrseek (ldPointer, SectionIndex)

ldfile *ldPointer;

unsigned short SectionIndex;

int ldnrseek (ldPointer, SectionName)

ldfile *ldPointer;

char *SectionName;

Description

The ldrseek subroutine seeks to the relocation entries of the section specified by the SectionIndex

parameter of the common object file currently associated with the ldPointer parameter.

The ldnrseek subroutine seeks to the relocation entries of the section specified by the SectionName

parameter.

For AIX 4.3.2 and above, both subroutines determine the object mode of the associated file before seeking

to the relocation entries of the indicated section.

Base Operating System (BOS) Runtime Services (A-P) 699

Parameters

 ldPointer Points to an LDFILE structure that was returned as the result of a successful call to the

ldopen, lddopen, or ldaopen subroutines.

SectionIndex Specifies an index for the section whose relocation entries are to be sought.

SectionName Specifies the name of the section whose relocation entries are to be sought.

Return Values

The ldrseek and ldnrseek subroutines return a SUCCESS or FAILURE value.

Error Codes

The ldrseek subroutine fails if the contents of the SectionIndex parameter are greater than the number of

sections in the object file. The ldnrseek subroutine fails if there is no section name corresponding with the

SectionName parameter. Either function fails if the specified section has no relocation entries or if it cannot

seek to the specified relocation entries.

Note: The first section has an index of 1.

Related Information

The ldohseek (“ldohseek Subroutine” on page 696) subroutine, ldlseek or ldnlseek (“ldlseek or ldnlseek

Subroutine” on page 695) subroutine, ldsseek or ldnsseek (“ldsseek or ldnsseek Subroutine” on page

702)subroutine, ldtbseek (“ldtbseek Subroutine” on page 705) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

ldshread or ldnshread Subroutine

Purpose

Reads a section header of an XCOFF file.

Library

Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>

#include <ldfcn.h>

int ldshread (ldPointer, SectionIndex, SectionHead)

LDFILE *ldPointer;

unsigned short SectionIndex;

void *SectionHead;

int ldnshread (ldPointer, SectionName, SectionHead)

LDFILE *ldPointer;

char *SectionName;

void *SectionHead;

700 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The ldshread subroutine reads the section header specified by the SectionIndex parameter of the

common object file currently associated with the ldPointer parameter into the area of memory beginning at

the location specified by the SectionHead parameter.

The ldnshread subroutine reads the section header named by the SectionName argument into the area of

memory beginning at the location specified by the SectionHead parameter. It is the responsibility of the

calling routine to provide a pointer to a buffer large enough to contain the section header of the associated

object file. Since the ldopen subroutine provides magic number information (via the HEADER(ldPointer

).f_magic macro), the calling application can always determine whether the SectionHead pointer should

refer to a 32-bit SCNHDR or 64-bit SCNHDR_64 structure.

Only the first section header named by the SectionName argument is returned by the ldshread

subroutine.

Parameters

 ldPointer Points to an LDFILE structure that was returned as the result of a successful call to the

ldopen, lldopen, or ldaopen subroutine.

SectionIndex Specifies the index of the section header to be read.

Note: The first section has an index of 1.

SectionHead Points to a buffer large enough to accept either a 32-bit or a 64-bit SCNHDR structure,

according to the object mode of the file being read.

SectionName Specifies the name of the section header to be read.

Return Values

The ldshread and ldnshread subroutines return a SUCCESS or FAILURE value.

Error Codes

The ldshread subroutine fails if the SectionIndex parameter is greater than the number of sections in the

object file. The ldnshread subroutine fails if there is no section with the name specified by the

SectionName parameter. Either function fails if it cannot read the specified section header.

Examples

The following is an example of code that opens an object file, determines its mode, and uses the

ldnshread subroutine to acquire the .text section header. This code would be compiled with both

__XCOFF32__ and __XCOFF64__ defined:

#define __XCOFF32__

#define __XCOFF64__

#include <ldfcn.h>

/* for each FileName to be processed */

if ((ldPointer = ldopen(FileName, ldPointer)) != NULL)

{

 SCNHDR SectionHead32;

 SCNHDR_64 SectionHead64;

 void *SectionHeader;

 if (HEADER(ldPointer).f_magic == U802TOCMAGIC)

 SectionHeader = &SectionHead32;

 else if (HEADER(ldPointer).f_magic == U803XTOCMAGIC)

 SectionHeader = &SectionHead64;

Base Operating System (BOS) Runtime Services (A-P) 701

else

 SectionHeader = NULL;

 if (SectionHeader && (ldnshread(ldPointer, ".text", SectionHeader) == SUCCESS))

 {

 /* ...successfully read header... */

 /* ...process according to magic number... */

 }

}

Related Information

The ldahread (“ldahread Subroutine” on page 687) subroutine, ldfhread (“ldfhread Subroutine” on page

690) subroutine, ldgetname (“ldgetname Subroutine” on page 692) subroutine, ldlread, ldlinit, or ldlitem

(“ldlread, ldlinit, or ldlitem Subroutine” on page 694)subroutine, ldtbread (“ldtbread Subroutine” on page

704) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

ldsseek or ldnsseek Subroutine

Purpose

Seeks to an indexed or named section of a common object file.

Library

Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>

#include <ldfcn.h>

int ldsseek (ldPointer, SectionIndex)

LDFILE *ldPointer;

unsigned short SectionIndex;

int ldnsseek (ldPointer, SectionName)

LDFILE *ldPointer;

char *SectionName;

Description

The ldsseek subroutine seeks to the section specified by the SectionIndex parameter of the common

object file currently associated with the ldPointer parameter. The subroutine determines the object mode of

the associated file before seeking to the indicated section.

The ldnsseek subroutine seeks to the section specified by the SectionName parameter.

Parameters

 ldPointer Points to the LDFILE structure that was returned as the result of a successful call to the

ldopen or ldaopen subroutine.

SectionIndex Specifies the index of the section whose line number entries are to be seeked to.

SectionName Specifies the name of the section whose line number entries are to be seeked to.

702 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

The ldsseek and ldnsseek subroutines return a SUCCESS or FAILURE value.

Error Codes

The ldsseek subroutine fails if the SectionIndex parameter is greater than the number of sections in the

object file. The ldnsseek subroutine fails if there is no section name corresponding with the SectionName

parameter. Either function fails if there is no section data for the specified section or if it cannot seek to the

specified section.

Note: The first section has an index of 1.

Related Information

The ldlseek or ldnlseek (“ldlseek or ldnlseek Subroutine” on page 695) subroutine, ldohseek (“ldohseek

Subroutine” on page 696) subroutine, ldrseek or ldnrseek (“ldrseek or ldnrseek Subroutine” on page 699)

subroutine, ldtbseek (“ldtbseek Subroutine” on page 705) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

ldtbindex Subroutine

Purpose

Computes the index of a symbol table entry of a common object file.

Library

Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>

#include <ldfcn.h>

long ldtbindex (ldPointer)

LDFILE *ldPointer;

Description

The ldtbindex subroutine returns the index of the symbol table entry at the current position of the common

object file associated with the ldPointer parameter.

The index returned by the ldtbindex subroutine may be used in subsequent calls to the ldtbread

subroutine. However, since the ldtbindex subroutine returns the index of the symbol table entry that

begins at the current position of the object file, if the ldtbindex subroutine is called immediately after a

particular symbol table entry has been read, it returns the index of the next entry.

Parameters

 ldPointer Points to the LDFILE structure that was returned as a result of a successful call to the ldopen or

ldaopen subroutine.

Base Operating System (BOS) Runtime Services (A-P) 703

Return Values

The ldtbindex subroutine returns the value BADINDEX upon failure. Otherwise a value greater than or

equal to zero is returned.

Error Codes

The ldtbindex subroutine fails if there are no symbols in the object file or if the object file is not positioned

at the beginning of a symbol table entry.

Note: The first symbol in the symbol table has an index of 0.

Related Information

The ldtbread (“ldtbread Subroutine”) subroutine, ldtbseek (“ldtbseek Subroutine” on page 705) subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

ldtbread Subroutine

Purpose

Reads an indexed symbol table entry of a common object file.

Library

Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>

#include <ldfcn.h>

int ldtbread (ldPointer, SymbolIndex, Symbol)

LDFILE *ldPointer;

long SymbolIndex;

void *Symbol;

Description

The ldtbread subroutine reads the symbol table entry specified by the SymbolIndex parameter of the

common object file currently associated with the ldPointer parameter into the area of memory beginning at

the Symbol parameter. It is the responsibility of the calling routine to provide a pointer to a buffer large

enough to contain the symbol table entry of the associated object file. Since the ldopen subroutine

provides magic number information (via the HEADER(ldPointer).f_magic macro), the calling application

can always determine whether the Symbol pointer should refer to a 32-bit SYMENT or 64-bit SYMENT_64

structure.

Parameters

 ldPointer Points to the LDFILE structure that was returned as the result of a successful call to the

ldopen or ldaopen subroutine.

SymbolIndex Specifies the index of the symbol table entry to be read.

Symbol Points to a either a 32-bit or a 64-bit SYMENT structure.

704 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

The ldtbread subroutine returns a SUCCESS or FAILURE value.

Error Codes

The ldtbread subroutine fails if the SymbolIndex parameter is greater than or equal to the number of

symbols in the object file, or if it cannot read the specified symbol table entry.

Note: The first symbol in the symbol table has an index of 0.

Related Information

The ldahread (“ldahread Subroutine” on page 687) subroutine, ldfhread (“ldfhread Subroutine” on page

690) subroutine, ldgetname (“ldgetname Subroutine” on page 692) subroutine, ldlread, ldlinit, or ldlitem

(“ldlread, ldlinit, or ldlitem Subroutine” on page 694) subroutine, ldshread or ldnshread (“ldshread or

ldnshread Subroutine” on page 700) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

ldtbseek Subroutine

Purpose

Seeks to the symbol table of a common object file.

Library

Object File Access Routine Library (libld.a)

Syntax

#include <stdio.h>

#include <ldfcn.h>

int ldtbseek (ldPointer)

LDFILE *ldPointer;

Description

The ldtbseek subroutine seeks to the symbol table of the common object file currently associated with the

ldPointer parameter.

Parameters

 ldPointer Points to the LDFILE structure that was returned as the result of a successful call to the ldopen or

ldaopen subroutine.

Return Values

The ldtbseek subroutine returns a SUCCESS or FAILURE value.

Error Codes

The ldtbseek subroutine fails if the symbol table has been stripped from the object file or if the subroutine

cannot seek to the symbol table.

Base Operating System (BOS) Runtime Services (A-P) 705

Related Information

The ldlseek or ldnlseek (“ldlseek or ldnlseek Subroutine” on page 695) subroutine, ldohseek (“ldohseek

Subroutine” on page 696) subroutine, ldrseek or ldnrseek (“ldrseek or ldnrseek Subroutine” on page 699)

subroutine, ldsseek or ldnsseek (“ldsseek or ldnsseek Subroutine” on page 702) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

lgamma, lgammaf, or lgammal Subroutine

Purpose

Computes the log gamma.

Syntax

#include <math.h>

extern int signgam;

double lgamma (x)

double x;

float lgammaf (x)

float x;

long double lgammal (x)

long double x;

Description

The sign of Gamma (x) is returned in the external integer signgam.

The lgamma, lgammaf, and lgammal subroutines are not reentrant. A function that is not required to be

reentrant is not required to be thread-safe.

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

Return Values

Upon successful completion, the lgamma, lgammaf, and lgammal subroutines return the logarithmic

gamma of x.

If x is a non-positive integer, a pole error shall occur and lgamma, lgammaf, and lgammal will return

+HUGE_VAL, +HUGE_VALF, and +HUGE_VALL.

If the correct value would cause overflow, a range error shall occur and lgamma, lgammaf, and lgammal

will return ±HUGE_VAL, ±HUGE_VALF, ±HUGE_VALL, respectively.

If x is NaN, a NaN is returned.

706 Technical Reference, Volume 1: Base Operating System and Extensions

If x is 1 or 2, +0 is returned.

If x is ±Inf, +Inf is returned.

Related Information

“exp, expf, or expl Subroutine” on page 241, “feclearexcept Subroutine” on page 259, “fetestexcept

Subroutine” on page 267, and “class, _class, finite, isnan, or unordered Subroutines” on page 165.

math.h in AIX 5L Version 5.3 Files Reference.

lineout Subroutine

Purpose

Formats a print line.

Library

None (provided by the print formatter)

Syntax

#include <piostruct.h>

int lineout (fileptr)

FILE *fileptr;

Description

The lineout subroutine is invoked by the formatter driver only if the setup subroutine returns a non-null

pointer. This subroutine is invoked for each line of the document being formatted. The lineout subroutine

reads the input data stream from the fileptr parameter. It then formats and outputs the print line until it

recognizes a situation that causes vertical movement on the page.

The lineout subroutine should process all characters to be printed and all printer commands related to

horizontal movement on the page.

The lineout subroutine should not output any printer commands that cause vertical movement on the

page. Instead, it should update the vpos (new vertical position) variable pointed to by the shars_vars

structure that it shares with the formatter driver to indicate the new vertical position on the page. It should

also refresh the shar_vars variables for vertical increment and vertical decrement (reverse line-feed)

commands.

When the lineout subroutine returns, the formatter driver sends the necessary commands to the printer to

advance to the new vertical position on the page. This position is specified by the vpos variable. The

formatter driver automatically handles top and bottom margins, new pages, initial pages to be skipped, and

progress reports to the qdaemon daemon.

The following conditions can cause vertical movements:

v Line-feed control character or variable line-feed control sequence

v Vertical-tab control character

v Form-feed control character

v Reverse line-feed control character

v A line too long for the printer that wraps to the next line

Other conditions unique to a specific printer also cause vertical movement.

Base Operating System (BOS) Runtime Services (A-P) 707

Parameters

 fileptr Specifies a file structure for the input data stream.

Return Values

Upon successful completion, the lineout subroutine returns the number of bytes processed from the input

data stream. It excludes the end-of-file character and any control characters or escape sequences that

result only in vertical movement on the page (for example, line feed or vertical tab).

If a value of 0 is returned and the value in the vpos variable pointed to by the shars_vars structure has

not changed, or there are no more data bytes in the input data stream, the formatter driver assumes that

printing is complete.

If the lineout subroutine detects an error, it uses the piomsgout subroutine to issue an error message. It

then invokes the pioexit subroutine with a value of PIOEXITBAD.

Note: If either the piocmdout or piogetstr subroutine detects an error, it automatically issues its own

error messages and terminates the print job.

Related Information

The piocmdout subroutine, pioexit subroutine, piogetstr subroutine, piomsgout subroutine, setup

subroutine.

Adding a New Printer Type to Your System and Printer Addition Management Subsystem: Programming

Overview in AIX 5L Version 5.3 Kernel Extensions and Device Support Programming Concepts.

Example of Print Formatter in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

link Subroutine

Purpose

Creates an additional directory entry for an existing file.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

int link (Path1, Path2)

const char *Path1, *Path2;

Description

The link subroutine creates an additional hard link (directory entry) for an existing file. Both the old and

the new links share equal access rights to the underlying object.

Parameters

 Path1 Points to the path name of an existing file.

Path2 Points to the path name of the directory entry to be created.

708 Technical Reference, Volume 1: Base Operating System and Extensions

Notes:

1. If Network File System (NFS) is installed on your system, these paths can cross into another node.

2. With hard links, both the Path1 and Path2 parameters must reside on the same file system. If Path1 is

a symbolic link, an error is returned. Creating links to directories requires root user authority.

Return Values

Upon successful completion, the link subroutine returns a value of 0. Otherwise, a value of -1 is returned,

and the errno global variable is set to indicate the error.

Error Codes

The link subroutine is unsuccessful if one of the following is true:

 EACCES Indicates the requested link requires writing in a directory that denies write permission.

EDQUOT Indicates the directory in which the entry for the new link is being placed cannot be extended, or disk

blocks could not be allocated for the link because the user or group quota of disk blocks or i-nodes on

the file system containing the directory has been exhausted.

EEXIST Indicates the link named by the Path2 parameter already exists.

EMLINK Indicates the file already has the maximum number of links.

ENOENT Indicates the file named by the Path1 parameter does not exist.

ENOSPC Indicates the directory in which the entry for the new link is being placed cannot be extended because

there is no space left on the file system containing the directory.

EPERM Indicates the file named by the Path1 parameter is a directory, and the calling process does not have

root user authority.

EROFS Indicates the requested link requires writing in a directory on a read-only file system.

EXDEV Indicates the link named by the Path2 parameter and the file named by the Path1 parameter are on

different file systems, or the file named by Path1 refers to a named STREAM.

The link subroutine can be unsuccessful for other reasons. See Appendix A, “Base Operating System

Error Codes for Services That Require Path-Name Resolution,” on page 1251 for a list of additional errors.

If NFS is installed on the system, the link subroutine is unsuccessful if the following is true:

 ETIMEDOUT Indicates the connection timed out.

Related Information

The symlink subroutine, unlink subroutine.

The link or unlink command, ln command, rm command.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

lio_listio or lio_listio64 Subroutine

The lio_listio or lio_listio64 subroutine includes information for the POSIX AIO lio_listio subroutine (as

defined in the IEEE std 1003.1-2001), and the Legacy AIO lio_listio subroutine.

POSIX AIO lio_listio Subroutine

Purpose

Initiates a list of asynchronous I/O requests with a single call.

Base Operating System (BOS) Runtime Services (A-P) 709

Syntax

#include <aio.h>

int lio_listio(mode, list, nent, sig)

int mode;

struct aiocb *restrict const list[restrict];

int nent;

struct sigevent *restrict sig;

Description

The lio_listio subroutine initiates a list of I/O requests with a single function call.

The mode parameter takes one of the values (LIO_WAIT, LIO_NOWAIT or LIO_NOWAIT_AIOWAIT)

declared in <aio.h> and determines whether the subroutine returns when the I/O operations have been

completed, or as soon as the operations have been queued. If the mode parameter is set to LIO_WAIT,

the subroutine waits until all I/O is complete and the sig parameter is ignored.

If the mode parameter is set to LIO_NOWAIT or LIO_NOWAIT_AIOWAIT, the subroutine returns

immediately. If LIO_NOWAIT is set, asynchronous notification occurs, according to the sig parameter,

when all I/O operations complete. If sig is NULL, no asynchronous notification occurs. If sig is not NULL,

asynchronous notification occurs when all the requests in list have completed. If LIO_NOWAIT_AIOWAIT

is set, the aio_nwait subroutine must be called for the aio control blocks to be updated. For more

information, see the “aio_nwait Subroutine” on page 46.

The I/O requests enumerated by list are submitted in an unspecified order.

The list parameter is an array of pointers to aiocb structures. The array contains nent elements. The array

may contain NULL elements, which are ignored.

The aio_lio_opcode field of each aiocb structure specifies the operation to be performed. The supported

operations are LIO_READ, LIO_WRITE, and LIO_NOP; these symbols are defined in <aio.h>. The

LIO_NOP operation causes the list entry to be ignored. If the aio_lio_opcode element is equal to

LIO_READ, an I/O operation is submitted as if by a call to aio_read with the aiocbp equal to the address

of the aiocb structure. If the aio_lio_opcode element is equal to LIO_WRITE, an I/O operation is submitted

as if by a call to aio_write with the aiocbp argument equal to the address of the aiocb structure.

The aio_fildes member specifies the file descriptor on which the operation is to be performed.

The aio_buf member specifies the address of the buffer to or from which the data is transferred.

The aio_nbytes member specifies the number of bytes of data to be transferred.

The members of the aiocb structure further describe the I/O operation to be performed, in a manner

identical to that of the corresponding aiocb structure when used by the aio_read and aio_write

subroutines.

The nent parameter specifies how many elements are members of the list.

The behavior of the lio_listio subroutine is altered according to the definitions of synchronized I/O data

integrity completion and synchronized I/O file integrity completion if synchronized I/O is enabled on the file

associated with aio_fildes .

For regular files, no data transfer occurs past the offset maximum established in the open file description.

710 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 mode Determines whether the subroutine returns when the I/O operations are completed, or as soon as

the operations are queued.

list An array of pointers to aio control structures defined in the aio.h file.

nent Specifies the length of the array.

sig Determines when asynchronous notification occurs.

Execution Environment

The lio_listio and lio_listio64 subroutines can be called from the process environment only.

Return Values

 EAGAIN The resources necessary to queue all the I/O requests were not available. The

application may check the error status of each aiocb to determine the individual

request(s) that failed.

The number of entries indicated by nent would cause the system-wide limit (AIO_MAX)

to be exceeded.

EINVAL The mode parameter is not a proper value, or the value of nent was greater than

AIO_LISTIO_MAX.

EINTR A signal was delivered while waiting for all I/O requests to complete during an

LIO_WAIT operation. Since each I/O operation invoked by the lio_listio subroutine may

provoke a signal when it completes, this error return may be caused by the completion

of one (or more) of the very I/O operations being awaited. Outstanding I/O requests are

not canceled, and the application examines each list element to determine whether the

request was initiated, canceled, or completed.

EIO One or more of the individual I/O operations failed. The application may check the error

status for each aiocb structure to determine the individual request(s) that failed.

If the lio_listio subroutine succeeds or fails with errors of EAGAIN, EINTR, or EIO, some of the I/O

specified by the list may have been initiated. If the lio_listio subroutine fails with an error code other than

EAGAIN, EINTR, or EIO, no operations from the list were initiated. The I/O operation indicated by each list

element can encounter errors specific to the individual read or write function being performed. In this

event, the error status for each aiocb control block contains the associated error code. The error codes

that can be set are the same as would be set by the read or write subroutines, with the following

additional error codes possible:

 EAGAIN The requested I/O operation was not queued due to resource limitations.

ECANCELED The requested I/O was canceled before the I/O completed due to an aio_cancel

request.

EFBIG The aio_lio_opcode argument is LIO_WRITE, the file is a regular file, aio_nbytes is

greater than 0, and aio_offset is greater than or equal to the offset maximum in the

open file description associated with aio_fildes.

EINPROGRESS The requested I/O is in progress.

EOVERFLOW The aio_lio_opcode argument is set to LIO_READ, the file is a regular file, aio_nbytes is

greater than 0, and the aio_offset argument is before the end-of-file and is greater than

or equal to the offset maximum in the open file description associated with aio_fildes.

Related Information

“aio_cancel or aio_cancel64 Subroutine” on page 38, “aio_error or aio_error64 Subroutine” on page 42,

“aio_read or aio_read64 Subroutine” on page 50, “aio_return or aio_return64 Subroutine” on page 54,

“aio_suspend or aio_suspend64 Subroutine” on page 57, “aio_write or aio_write64 Subroutine” on page

60, “close Subroutine” on page 173, “exec: execl, execle, execlp, execv, execve, execvp, or exect

Base Operating System (BOS) Runtime Services (A-P) 711

Subroutine” on page 232, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239, “fork, f_fork, or

vfork Subroutine” on page 284, and “lseek, llseek or lseek64 Subroutine” on page 751.

The read, readx, readv, readvx, or pread Subroutine in AIX 5L Version 5.3 Technical Reference: Base

Operating System and Extensions Volume 2.

Legacy AIO lio_listio Subroutine

Purpose

Initiates a list of asynchronous I/O requests with a single call.

Syntax

#include <aio.h>

int lio_listio (cmd,

list, nent, eventp)

int cmd, nent;

struct liocb * list[];

struct event * eventp;

int lio_listio64

(cmd, list,nent, eventp)

int cmd, nent; struct liocb64 *list;

struct event *eventp;

Description

The lio_listio subroutine allows the calling process to initiate the nent parameter asynchronous I/O

requests. These requests are specified in the liocb structures pointed to by the elements of the list array.

The call may block or return immediately depending on the cmd parameter. If the cmd parameter requests

that I/O completion be asynchronously notified, a SIGIO signal is delivered when all I/O operations are

completed.

The lio_listio64 subroutine is similar to the lio_listio subroutine except that it takes an array of pointers to

liocb64 structures. This allows the lio_listio64 subroutine to specify offsets in excess of OFF_MAX (2

gigbytes minus 1).

In the large file enabled programming environment, lio_listio is redefined to be lio_listio64.

Note: The pointer to the event structure eventp parameter is currently not in use, but is included for future

compatibility.

712 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 cmd The cmd parameter takes one of the following values:

LIO_WAIT

Queues the requests and waits until they are complete before returning.

LIO_NOWAIT

Queues the requests and returns immediately, without waiting for them to complete. The event

parameter is ignored.

LIO_NOWAIT_AIOWAIT

Queues the requests and returns immediately, without waiting for them to complete. The aio_nwait

subroutine must be called for the aio control blocks to be updated.

LIO_ASYNC

Queues the requests and returns immediately, without waiting for them to complete. An enhanced

signal is delivered when all the operations are completed. Currently this command is not

implemented.

LIO_ASIG

Queues the requests and returns immediately, without waiting for them to complete. A SIGIO signal

is generated when all the I/O operations are completed.

list Points to an array of pointers to liocb structures. The structure array contains nent elements:

lio_aiocb

The asynchronous I/O control block associated with this I/O request. This is an actual aiocb

structure, not a pointer to one.

lio_fildes

Identifies the file object on which the I/O is to be performed.

lio_opcode

This field may have one of the following values defined in the /usr/include/sys/aio.h file:

LIO_READ

Indicates that the read I/O operation is requested.

LIO_WRITE

Indicates that the write I/O operation is requested.

LIO_NOP

Specifies that no I/O is requested (that is, this element will be ignored).

nent Specifies the number of entries in the array of pointers to listio structures.

eventp Points to an event structure to be used when the cmd parameter is set to the LIO_ASYNC value. This

parameter is currently ignored.

Execution Environment

The lio_listio and lio_listio64 subroutines can be called from the process environment only.

Return Values

When the lio_listio subroutine is successful, it returns a value of 0. Otherwise, it returns a value of -1 and

sets the errno global variable to identify the error. The returned value indicates the success or failure of

the lio_listio subroutine itself and not of the asynchronous I/O requests (except when the command is

LIO_WAIT). The aio_error subroutine returns the status of each I/O request.

If the lio_listio subroutine succeeds or fails with errors of EAGAIN, EINTR, or EIO, some of the I/O

specified by the list might have been initiated. If the lio_listio subroutine fails with an error code other than

EAGAIN, EINTR, or EIO, no operations from the list were initiated. The I/O operation indicated by each list

element can encounter errors specific to the individual read or write function being performed. In this

Base Operating System (BOS) Runtime Services (A-P) 713

event, the error status for each aiocb control block contains the associated error code. The error codes

that can be set are the same as would be set by the read or write subroutines, with the following additional

error codes possible:

 EAGAIN Indicates that the system resources required to queue the request are not available. Specifically, the

transmit queue may be full, or the maximum number of opens may have been reached.

EINTR Indicates that a signal or event interrupted the lio_listio subroutine call.

EINVAL Indicates that the aio_whence field does not have a valid value or that the resulting pointer is not valid.

EIO One or more of the individual I/O operations failed. The application can check the error status for each

aiocb structure to determine the individual request that failed.

Related Information

The aio_cancel or aio_cancel64 (“aio_cancel or aio_cancel64 Subroutine” on page 38) subroutine,

aio_error or aio_error64 (“aio_error or aio_error64 Subroutine” on page 42) subroutine, aio_read or

aio_read64 (“aio_read or aio_read64 Subroutine” on page 50) subroutine, aio_return or aio_return64

(“aio_return or aio_return64 Subroutine” on page 54) subroutine, aio_suspend or aio_suspend64

(“aio_suspend or aio_suspend64 Subroutine” on page 57) subroutine, aio_write or aio_write64 (“aio_write

or aio_write64 Subroutine” on page 60) subroutine.

The Asynchronous I/O Overview and the Communications I/O Subsystem: Programming Introduction in

AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs describes the files, commands, and subroutines used for

low-level, stream, terminal, and asynchronous I/O interfaces.

listea Subroutine

Purpose

Lists the extended attributes associated with a file.

Syntax

#include <sys/ea.h>

ssize_t listea(const char *path, char *list, size_t size);

ssize_t flistea (int filedes, char *list, size_t size);

ssize_t llistea (const char *path, char *list, size_t size);

Description

Extended attributes are name:value pairs associated with the file system objects (such as files, directories,

and symlinks). They are extensions to the normal attributes that are associated with all objects in the file

system (that is, the stat(2) data).

The listea subroutine retrieves the list of extended attribute names associated with the given path in the

file system. The list is the set of (NULL-terminated) names, one after the other. Names of extended

attributes to which the calling process does not have access might be omitted from the list. The length of

the attribute name list is returned. The flistea subroutine is identical to listea, except that it takes a file

descriptor instead of a path. The llistea subroutine is identical to listea, except, in the case of a symbolic

link, the link itself is interrogated, not the file that it refers to.

An empty buffer of size 0 can be passed into these calls to return the current size of the list of extended

attribute names, which can be used to estimate whether the size of a buffer is sufficiently large to hold the

list of names.

714 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 path The path name of the file.

list A pointer to a buffer in which the list of attributes will be stored.

size The size of the buffer.

filedes A file descriptor for the file.

Return Values

If the listea subroutine succeeds, a nonnegative number is returned that indicates the length in bytes of

the attribute name list. Upon failure, -1 is returned and errno is set appropriately.

Error Codes

 EACCES Caller lacks read permission on the base file, or lacks the appropriate ACL privileges for

named attribute read.

EFAULT A bad address was passed for path or list.

EFORMAT File system is capable of supporting EAs, but EAs are disabled.

ENOTSUP Extended attributes are not supported by the file system.

ERANGE The size of the value buffer is too small to hold the result.

Related Information

“getea Subroutine” on page 356, removeea Subroutine, setea Subroutine, stateea Subroutine.

llrint, llrintf, or llrintl Subroutine

Purpose

Rounds to the nearest integer value using current rounding direction.

Syntax

#include <math.h>

long long llrint (x)

double x;

long long llrintf (x)

float x;

long long llrintl (x)

long double x;

Description

The llrint, llrintf, and llrintl subroutines round the x parameter to the nearest integer value, rounding

according to the current rounding direction.

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be rounded.

Base Operating System (BOS) Runtime Services (A-P) 715

Return Values

Upon successful completion, the llrint, llrintf, and llrintl subroutines return the rounded integer value.

If x is NaN, a domain error occurs, and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is −Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, a domain error occur and an

unspecified value is returned.

If the correct value is negative and too large to represent as a long long, a domain error occurs and an

unspecified value is returned.

Related Information

“feclearexcept Subroutine” on page 259 and “fetestexcept Subroutine” on page 267.

math.h in AIX 5L Version 5.3 Files Reference.

llround, llroundf, or llroundl Subroutine

Purpose

Rounds to the nearest integer value.

Syntax

#include <math.h>

long long llround (x)

double x;

long long llroundf (x)

float x;

long long llroundl (x)

long double x;

Description

The llround, llroundf, or llroundl subroutines round the x parameter to the nearest integer value,

rounding halfway cases away from zero, regardless of the current rounding direction.

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be rounded.

Return Values

Upon successful completion, the llround, llroundf, or llroundl subroutines return the rounded integer

value.

716 Technical Reference, Volume 1: Base Operating System and Extensions

If x is NaN, a domain error occurs, and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is –Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, a domain error occurs and an

unspecified value is returned.

If the correct value is negative and too large to represent as a long long, a domain error occurs and an

unspecified value is returned.

Related Information

“feclearexcept Subroutine” on page 259 and “fetestexcept Subroutine” on page 267.

math.h in AIX 5L Version 5.3 Files Reference.

load Subroutine

Purpose

Loads a module into the current process.

Syntax

int *load (ModuleName, Flags, LibraryPath)

char *ModuleName;

uint Flags;

char *LibraryPath;

Description

The load subroutine loads the specified module into the calling process’s address space. A module can be

a regular file or a member of an archive. When adding a new module to the address space of a 32-bit

process, the load operation may cause the break value to change.

The exec subroutine is similar to the load subroutine, except that:

v The load subroutine does not replace the current program with a new one.

v The exec subroutine does not have an explicit library path parameter; it has only the LIBPATH and

LD_LIBRARY_PATH environment variables. Also, these library path environment variables are ignored

when the program using the exec subroutine has more privilege than the caller (for example, in the

case of a set-UID program).

A large application can be split up into one or more modules in one of two ways that allow execution within

the same process. The first way is to create each of the application’s modules separately and use load to

explicitly load a module when it is needed. The other way is to specify the relationship between the

modules when they are created by defining imported and exported symbols.

Modules can import symbols from other modules. Whenever symbols are imported from one or more other

modules, these modules are automatically loaded to resolve the symbol references if the required modules

are not already loaded, and if the imported symbols are not specified as deferred imports. These modules

can be archive members in libraries or individual files and can have either shared or private file

characteristics that control how and where they are loaded.

Base Operating System (BOS) Runtime Services (A-P) 717

Shared modules (typically members of a shared library archive) are loaded into the shared library region,

when their access permissions allow sharing, that is, when they have read-other permission. Private

modules, and shared modules without the required permissions for sharing, are loaded into the process

private region.

When the loader resolves a symbol, it uses the file name recorded with that symbol to find the module that

exports the symbol. If the file name contains any / (slash) characters, it is used directly and must name an

appropriate file or archive member. However, if the file name is a base name (contains no / characters),

the loader searches the directories specified in the default library path for a file (i.e. a module or an

archive) with that base name.

The LibraryPath is a string containing one or more directory path names separated by colons. See the

section “Searching for Dependent Modules” for information on library path searching.

(This paragraph only applies to AIX 4.3.1 and previous releases.) When a process is executing under

ptrace control, portions of the process’s address space are recopied after the load processing completes.

For a 32-bit process, the main program text (loaded in segment 1) and shared library modules (loaded in

segment 13) are recopied. Any breakpoints or other modifications to these segments must be reinserted

after the load call. For a 64-bit process, shared library modules are recopied after a load call. The

debugger will be notified by setting the W_SLWTED flag in the status returned by wait, so that it can

reinsert breakpoints.

(This paragraph only applies to AIX 4.3.2 and later releases.) When a process executing under ptrace

control calls load, the debugger is notified by setting the W_SLWTED flag in the status returned by wait.

Any modules newly loaded into the shared library segments will be copied to the process’s private copy of

these segments, so that they can be examined or modified by the debugger.

If the program calling the load subroutine was linked on AIX 4.2 or a later release, the load subroutine will

call initialization routines (init routines) for the new module and any of its dependents if they were not

already loaded.

Modules loaded by this subroutine are automatically unloaded when the process terminates or when the

exec subroutine is executed. They are explicitly unloaded by calling the unload subroutine.

Searching for Dependent Modules

The load operation and the exec operation differ slightly in their dependent module search mechanism.

When a module is added to the address space of a running process (the load operation), the rules

outlined in the next section are used to find the named module. Note that dependency relationships may

be loosely defined as a tree but recursive relationships between modules may also exist. The following

components may used to create a complete library search path:

1. If the L_LIBPATH_EXEC flag is set, the library search path used at exec-time.

2. The value of the LibraryPath parameter if it is non-null. Note that a null string is a valid search path

which refers to the current working directory. If the LibraryPath parameter is NULL, the value of the

LIBPATH environment variable, or alternatively the LD_LIBRARY_PATH environment variable (if

LIBPATH is not set), is used instead.

3. The library search path contained in the loader section of the module being loaded (the ModuleName

parameter).

4. The library search path contained in the loader section of the module whose immediate dependents

are being loaded. Note that this per-module information changes when searching for each module’s

immediate dependents.

To find the ModuleName module, components 1 and 2 are used. To find dependents, components 1, 2, 3

and 4 are used in order. Note that if any modules that are already part of the running process satisfy the

dependency requirements of the newly loaded module(s), pre-existing modules are not loaded again.

718 Technical Reference, Volume 1: Base Operating System and Extensions

For each colon-separated portion of the aggregate search specification, if the base name is not found the

search continues. The first instance of the base name found is used; if the file is not of the proper form, or

in the case of an archive does not contain the required archive member, or does not export a definition of

a required symbol, an error occurs. The library path search is not performed when either a relative or an

absolute path name is specified for a dependent module.

The library search path stored within the module is specified at link-edit time.

The load subroutine may cause the calling process to fail if the module specified has a very long chain of

dependencies, (for example, lib1.a, which depends on lib2.a, which depends on lib3.a, etc). This is

because the loader processes such relationships recursively on a fixed-size stack. This limitation is

exposed only when processing a dependency chain that has over one thousand elements.

Parameters

 ModuleName Points to the name of the module to be loaded. The module name consists of a path name,

and, an optional member name. If the path name contains at least on / character, the name is

used directly, and no directory searches are performed to locate the file. If the path name

contains no / characters, it is treated as a base name, and should be in one of the directories

listed in the library path.

The library path is either the value of the LibraryPath parameter if not a null value, or the value

of the LIBPATH environment variable (if set; otherwise, LD_LIBRARY_PATH environment

variable, if set) or the library path used at process exec time (if the L_LIBPATH_EXEC is set).

If no library path is provided, the module should be in the current directory.

The ModuleName parameter may explicitly name an archive member. The syntax is

pathname(member) where pathname follows the rules specified in the previous paragraph, and

member is the name of a specific archive member. The parentheses are a required portion of

the specification and no intervening spaces are allowed. If an archive member is named, the

L_LOADMEMBER flag must be added to the Flags parameter. Otherwise, the entire

ModuleName parameter is treated as an explicit filename.

Flags Modifies the behavior of the load service as follows (see the ldr.h file). If no special behavior is

required, set the value of the flags parameter to 0 (zero). For compatibility, a value of 1 (one)

may also be specified.

L_LIBPATH_EXEC

Specifies that the library path used at process exec time should be prepended to any

library path specified in the load call (either as an argument or environment variable).

It is recommended that this flag be specified in all calls to the load subroutine.

L_LOADMEMBER

 Indicates that the ModuleName parameter may specify an archive member. The

ModuleName argument is searched for parentheses, and if found the parameter is

treated as a filename/member name pair. If this flag is present and the ModuleName

parameter does not contain parenthesis the entire ModuleName parameter is treated

as a filename specification. Under either condition the filename is expected to be

found within the library path or the current directory.

L_NOAUTODEFER

Specifies that any deferred imports in the module being loaded must be explicitly

resolved by use of the loadbind subroutine. This allows unresolved imports to be

explicitly resolved at a later time with a specified module. If this flag is not specified,

deferred imports (marked for deferred resolution) are resolved at the earliest

opportunity when any subsequently loaded module exports symbols matching

unresolved imports.

Base Operating System (BOS) Runtime Services (A-P) 719

LibraryPath Points to a character string that specifies the default library search path.

If the LibraryPath parameter is NULL, the LIBPATH environment variable is used, if set;

otherwise, the LD_LIBRARY_PATH environment variable is used. See the section “Searching

for Dependent Modules” on page 718 for more information.

The library path is used to locate dependent modules that are specified as basenames (that is,

their pathname components do not contain a / (slash) character.

Note the difference between setting the LibraryPath parameter to null, and having the

LibraryPath parameter point to a null string (″ ″). A null string is a valid library path which

consists of a single directory: the current directory.

Return Values

Upon successful completion, the load subroutine returns the pointer to function for the entry point of the

module. If the module has no entry point, the address of the data section of the module is returned.

Error Codes

If the load subroutine fails, a null pointer is returned, the module is not loaded, and errno global variable

is set to indicate the error. The load subroutine fails if one or more of the following are true of a module to

be explicitly or automatically loaded:

 EACCES Indicates the file is not an ordinary file, or the mode of the program file denies execution

permission, or search permission is denied on a component of the path prefix.

EINVAL Indicates the file or archive member has a valid magic number in its header, but the header is

damaged or is incorrect for the machine on which the file is to be run.

ELOOP Indicates too many symbolic links were encountered in translating the path name.

ENOEXEC Indicates an error occurred when loading or resolving symbols for the specified module. This

can be due to an attempt to load a module with an invalid XCOFF header, a failure to resolve

symbols that were not defined as deferred imports or several other load time related

problems. The loadquery subroutine can be used to return more information about the load

failure. If the main program was linked on a AIX 4.2 or later system, and if runtime linking is

used, the load subroutine will fail if the runtime linker could not resolve some symbols. In this

case, errno will be set to ENOEXEC, but the loadquery subroutine will not return any

additional information.

ENOMEM Indicates the program requires more memory than is allowed by the system-imposed

maximum.

ETXTBSY Indicates the file is currently open for writing by some process.

ENAMETOOLONG Indicates a component of a path name exceeded 255 characters, or an entire path name

exceeded 1023 characters.

ENOENT Indicates a component of the path prefix does not exist, or the path name is a null value. For

the dlopen subroutine, RTLD_MEMBER is not used when trying to open a member within

the archive file.

ENOTDIR Indicates a component of the path prefix is not a directory.

ESTALE Indicates the process root or current directory is located in a virtual file system that has been

unmounted.

Related Information

The dlopen (“dlopen Subroutine” on page 213) subroutine, exec (“exec: execl, execle, execlp, execv,

execve, execvp, or exect Subroutine” on page 232) subroutine, loadbind (“loadbind Subroutine” on page

721) subroutine, loadquery (“loadquery Subroutine” on page 722) subroutine, ptrace (“ptrace, ptracex,

ptrace64 Subroutine” on page 1215) subroutine, unload subroutine.

The ld command.

720 Technical Reference, Volume 1: Base Operating System and Extensions

The Shared Library Overview and Subroutines Overview in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

loadbind Subroutine

Purpose

Provides specific run-time resolution of a module’s deferred symbols.

Syntax

int loadbind(Flag, ExportPointer, ImportPointer)

int Flag;

void *ExportPointer, *ImportPointer;

Description

The loadbind subroutine controls the run-time resolution of a previously loaded object module’s

unresolved imported symbols.

The loadbind subroutine is used when two modules are loaded. Module A, an object module loaded at

run time with the load subroutine, has designated that some of its imported symbols be resolved at a later

time. Module B contains exported symbols to resolve module A’s unresolved imports.

To keep module A’s imported symbols from being resolved until the loadbind service is called, you can

specify the load subroutine flag, L_NOAUTODEFER, when loading module A.

(This paragraph only applies to AIX 4.3.1 and previous releases.) When a 32-bit process is executing

under ptrace control, portions of the process’s address space are recopied after the loadbind processing

completes. The main program text (loaded in segment 1) and shared library modules (loaded in segment

13) are recopied. Any breakpoints or other modifications to these segments must be reinserted after the

loadbind call.

(This paragraph only applies to AIX 4.3.2 and later releases.) When a 32-bit process executing under

ptrace control calls loadbind, the debugger is notified by setting the W_SLWTED flag in the status

returned by wait.

When a 64-bit process under ptrace control calls loadbind, the debugger is not notified and execution of

the process being debugged continues normally.

Parameters

 Flag Currently not used.

ExportPointer Specifies the function pointer returned by the load subroutine when module B was loaded.

ImportPointer Specifies the function pointer returned by the load subroutine when module A was loaded.

Note: The ImportPointer or ExportPointer parameter may also be set to any exported static data area

symbol or function pointer contained in the associated module. This would typically be the function

pointer returned from the load of the specified module.

Return Values

A 0 is returned if the loadbind subroutine is successful.

Base Operating System (BOS) Runtime Services (A-P) 721

Error Codes

A -1 is returned if an error is detected, with the errno global variable set to an associated error code:

 EINVAL Indicates that either the ImportPointer or ExportPointer parameter is not valid (the pointer to the

ExportPointer or ImportPointer parameter does not correspond to a loaded program module or library).

ENOMEM Indicates that the program requires more memory than allowed by the system-imposed maximum.

After an error is returned by the loadbind subroutine, you may also use the loadquery subroutine to

obtain additional information about the loadbind error.

Related Information

The load (“load Subroutine” on page 717)subroutine, loadquery (“loadquery Subroutine”)subroutine,

unload subroutine.

The ld command.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

loadquery Subroutine

Purpose

Returns error information from the load or exec subroutine; also provides a list of object files loaded for

the current process.

Syntax

int loadquery(Flags, Buffer, BufferLength)

int Flags;

void *Buffer;

unsigned int BufferLength;

Description

The loadquery subroutine obtains detailed information about an error reported on the last load or exec

subroutine executed by a calling process. The loadquery subroutine may also be used to obtain a list of

object file names for all object files that have been loaded for the current process, or the library path that

was used at process exec time.

Parameters

 Buffer Points to a Buffer in which to store the information.

BufferLength Specifies the number of bytes available in the Buffer parameter.

722 Technical Reference, Volume 1: Base Operating System and Extensions

Flags Specifies the action of the loadquery subroutine as follows:

L_GETINFO

Returns a list of all object files loaded for the current process, and stores the list in the

Buffer parameter. The object file information is contained in a sequence of LD_INFO

structures as defined in the sys/ldr.h file. Each structure contains the module location in

virtual memory and the path name that was used to load it into memory. The file

descriptor field in the LD_INFO structure is not filled in by this function.

L_GETMESSAGE

Returns detailed error information describing the failure of a previously invoked load or

exec function, and stores the error message information in Buffer. Upon successful return

from this function the beginning of the Buffer contains an array of character pointers.

Each character pointer points to a string in the buffer containing a loader error message.

The character array ends with a null character pointer. Each error message string

consists of an ASCII message number followed by zero or more characters of

error-specific message data. Valid message numbers are listed in the sys/ldr.h file.

 You can format the error messages returned by the L_GETMESSAGE function and write

them to standard error using the standard system command /usr/sbin/execerror as

follows:

 char *buffer[1024];

buffer[0] = "execerror";

buffer[1] = "name of program that failed to load";

loadquery(L_GETMESSAGES, &buffer[2],\

 sizeof buffer-2*sizeof(char*));

execvp("/usr/sbin/execerror",buffer);

This sample code causes the application to terminate after the messages are written to

standard error.

L_GETLIBPATH

Returns the library path that was used at process exec time. The library path is a null

terminated character string.

Return Values

Upon successful completion, loadquery returns the requested information in the caller’s buffer specified by

the Buffer and BufferLength parameters.

Error Codes

The loadquery subroutine returns with a return code of -1 and the errno global variable is set to one of

the following when an error condition is detected:

 ENOMEM Indicates that the caller’s buffer specified by the Buffer and BufferLength parameters is too small to

return the information requested. When this occurs, the information in the buffer is undefined.

EINVAL Indicates the function specified in the Flags parameter is not valid.

EFAULT Indicates the address specified in the Buffer parameter is not valid.

Related Information

The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

subroutine, load (“load Subroutine” on page 717) subroutine, loadbind (“loadbind Subroutine” on page

721) subroutine, unload subroutine.

The ld command.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Base Operating System (BOS) Runtime Services (A-P) 723

localeconv Subroutine

Purpose

Sets the locale-dependent conventions of an object.

Library

Standard C Library (libc.a)

Syntax

#include <locale.h>

struct lconv *localeconv ()

Description

The localeconv subroutine sets the components of an object using the lconv structure. The lconv

structure contains values appropriate for the formatting of numeric quantities (monetary and otherwise)

according to the rules of the current locale.

The fields of the structure with the type char * are strings, any of which (except decimal_point) can point

to a null string, which indicates that the value is not available in the current locale or is of zero length. The

fields with type char are nonnegative numbers, any of which can be the CHAR_MAX value which

indicates that the value is not available in the current locale. The fields of the Iconv structure include the

following:

 char *decimal_point The decimal-point character used to format non-monetary quantities.

char *thousands_sep The character used to separate groups of digits to the left of the

decimal point in formatted non-monetary quantities.

char *grouping A string whose elements indicate the size of each group of digits in

formatted non-monetary quantities.

The value of the grouping field is interpreted according to the following:

CHAR_MAX

No further grouping is to be performed.

0 The previous element is to be repeatedly used for the

remainder of the digits.

other The value is the number of digits that comprise the current

group. The next element is examined to determine the size of

the next group of digits to the left of the current group.

char *int_curr_symbol The international currency symbol applicable to the current locale,

left-justified within a four-character space-padded field. The character

sequences are in accordance with those specified in ISO 4217, ″Codes

for the Representation of Currency and Funds.″

char *currency_symbol The local currency symbol applicable to the current locale.

char *mon_decimal_point The decimal point used to format monetary quantities.

char *mon_thousands_sep The separator for groups of digits to the left of the decimal point in

formatted monetary quantities.

724 Technical Reference, Volume 1: Base Operating System and Extensions

char *mon_grouping A string whose elements indicate the size of each group of digits in

formatted monetary quantities.

The value of the mon_grouping field is interpreted according to the

following:

CHAR_MAX

No further grouping is to be performed.

0 The previous element is to be repeatedly used for the

remainder of the digits.

other The value is the number of digits that comprise the current

group. The next element is examined to determine the size of

the next group of digits to the left of the current group.

char *positive_sign The string used to indicate a nonnegative formatted monetary quantity.

char *negative_sign The string used to indicate a negative formatted monetary quantity.

char int_frac_digits The number of fractional digits (those to the right of the decimal point)

to be displayed in a formatted monetary quantity.

char p_cs_precedes Set to 1 if the specified currency symbol (the currency_symbol or

int_curr_symbol field) precedes the value for a nonnegative formatted

monetary quantity and set to 0 if the specified currency symbol follows

the value for a nonnegative formatted monetary quantity.

char p_sep_by_space Set to 1 if the currency_symbol or int_curr_symbol field is separated by

a space from the value for a nonnegative formatted monetary quantity

and set to 0 if the currency_symbol or int_curr_symbol field is not

separated by a space from the value for a nonnegative formatted

monetary quantity.

char n_cs_precedes Set to 1 if the currency_symbol or int_curr_symbol field precedes the

value for a negative formatted monetary quantity and set to 0 if the

currency_symbol or int_curr_symbol field follows the value for a

negative formatted monetary quantity.

char n_sep_by_space Set to 1 if the currency_symbol or int_curr_symbol field is separated by

a space from the value for a negative formatted monetary quantity and

set to 0 if the currency_symbol or int_curr_symbol field is not

separated by a space from the value for a negative formatted monetary

quantity. Set to 2 if the symbol and the sign string are adjacent and

separated by a blank character.

char p_sign_posn Set to a value indicating the positioning of the positive sign (the

positive_sign fields) for nonnegative formatted monetary quantity.

char n_sign_posn Set to a value indicating the positioning of the negative sign (the

negative_sign fields) for a negative formatted monetary quantity.

The values of the p_sign_posn and n_sign_posn fields are interpreted

according to the following definitions:

0 Parentheses surround the quantity and the specified currency

symbol or international currency symbol.

1 The sign string precedes the quantity and the currency symbol

or international currency symbol.

2 The sign string follows the quantity and currency symbol or

international currency symbol.

3 The sign string immediately precedes the currency symbol or

international currency symbol.

4 The sign string immediately follows the currency symbol or

international currency symbol.

Base Operating System (BOS) Runtime Services (A-P) 725

The following table illustrates the rules that can be used by three countries to format monetary quantities:

 Country Formats

Italy

Positive Format:

L.1234

Negative Format:

-L.1234

International Format:

ITL.1234

Norway

Positive Format:

krl.234.56

Negative Format:

krl.234.56-

International Format:

NOK 1.234.56

Switzerland

Positive Format:

SFrs.1.234.56

Negative Format:

SFrs.1.234.56C

International Format:

CHF 1.234.56

The following table shows the values of the monetary members of the structure returned by the

localeconv subroutine for these countries:

 struct localeconv Countries

char *in_curr_symbol

Italy: ″ITL.″

Norway:

″NOK″

Switzerland:

″CHF″

char *currency_symbol

Italy: ″L.″

Norway:

″kr″

Switzerland:

″SFrs.″

char *mon_decimal_point

Italy: ″ ″

Norway:

″.″

Switzerland:

″.″

726 Technical Reference, Volume 1: Base Operating System and Extensions

struct localeconv Countries

char *mon_thousands_sep

Italy: ″.″

Norway:

″.″

Switzerland:

″.″

char *mon_grouping

Italy: ″\3″

Norway:

″\3″

Switzerland:

″\3″

char *positive_sign

Italy: ″ ″

Norway:

″ ″

Switzerland:

″ ″

char *negative_sign

Italy: ″_″

Norway:

″_″

Switzerland:

″C″

char int_frac_digits

Italy: 0

Norway:

2

Switzerland:

2

char frac_digits

Italy: 0

Norway:

2

Switzerland:

2

char p_cs_precedes

Italy: 1

Norway:

1

Switzerland:

1

char p_sep_by_space

Italy: 0

Norway:

0

Switzerland:

0

Base Operating System (BOS) Runtime Services (A-P) 727

struct localeconv Countries

char n_cs_precedes

Italy: 1

Norway:

1

Switzerland:

1

char n_sep_by_space

Italy: 0

Norway:

0

Switzerland:

0

char p_sign_posn

Italy: 1

Norway:

1

Switzerland:

1

char n_sign_posn

Italy: 1

Norway:

2

Switzerland:

2

Return Values

A pointer to the filled-in object is returned. In addition, calls to the setlocale subroutine with the LC_ALL,

LC_MONETARY or LC_NUMERIC categories may cause subsequent calls to the localeconv subroutine

to return different values based on the selection of the locale.

Note: The structure pointed to by the return value is not modified by the program but may be overwritten

by a subsequent call to the localeconv subroutine.

Related Information

The “nl_langinfo Subroutine” on page 866, rpmatch subroutine, setlocale subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overview and Setting the Locale in AIX 5L Version 5.3 National Language

Support Guide and Reference.

lockfx, lockf, flock, or lockf64 Subroutine

Purpose

Locks and unlocks sections of open files.

728 Technical Reference, Volume 1: Base Operating System and Extensions

Libraries

lockfx, lockf: Standard C Library (libc.a)

 flock: Berkeley Compatibility Library (libbsd.a)

Syntax

#include <fcntl.h>

int lockfx (FileDescriptor,

Command, Argument)

int FileDescriptor;

int Command;

struct flock * Argument;

#include <sys/lockf.h>

#include <unistd.h>

int lockf

(FileDescriptor, Request, Size)

int FileDescriptor;

int Request;

off_t Size;

int lockf64 (FileDescriptor,

Request, Size)

int FileDescriptor;

int Request;

off64_t Size;

 #include <sys/file.h>

int flock (FileDescriptor, Operation)

int FileDescriptor;

int Operation;

Description

Attention: Buffered I/O does not work properly when used with file locking. Do not use the standard I/O

package routines on files that are going to be locked.

The lockfx subroutine locks and unlocks sections of an open file. The lockfx subroutine provides a subset

of the locking function provided by the fcntl (“fcntl, dup, or dup2 Subroutine” on page 251) subroutine.

The lockf subroutine also locks and unlocks sections of an open file. However, its interface is limited to

setting only write (exclusive) locks.

Although the lockfx, lockf, flock, and fcntl interfaces are all different, their implementations are fully

integrated. Therefore, locks obtained from one subroutine are honored and enforced by any of the lock

subroutines.

The Operation parameter to the lockfx subroutine, which creates the lock, determines whether it is a read

lock or a write lock.

The file descriptor on which a write lock is being placed must have been opened with write access.

lockf64 is equivalent to lockf except that a 64-bit lock request size can be given. For lockf, the largest

value which can be used is OFF_MAX, for lockf64, the largest value is LONGLONG_MAX.

Base Operating System (BOS) Runtime Services (A-P) 729

In the large file enabled programming environment, lockf is redefined to be lock64.

The flock subroutine locks and unlocks entire files. This is a limited interface maintained for BSD

compatibility, although its behavior differs from BSD in a few subtle ways. To apply a shared lock, the file

must be opened for reading. To apply an exclusive lock, the file must be opened for writing.

Locks are not inherited. Therefore, a child process cannot unlock a file locked by the parent process.

Parameters

 Argument A pointer to a structure of type flock, defined in the flock.h file.

Command Specifies one of the following constants for the lockfx subroutine:

F_SETLK

Sets or clears a file lock. The l_type field of the flock structure indicates

whether to establish or remove a read or write lock. If a read or write lock

cannot be set, the lockfx subroutine returns immediately with an error value of

-1.

F_SETLKW

Performs the same function as F_SETLK unless a read or write lock is blocked

by existing locks. In that case, the process sleeps until the section of the file is

free to be locked.

F_GETLK

Gets the first lock that blocks the lock described in the flock structure. If a lock

is found, the retrieved information overwrites the information in the flock

structure. If no lock is found that would prevent this lock from being created, the

structure is passed back unchanged except that the l_type field is set to

F_UNLCK.

FileDescriptor A file descriptor returned by a successful open or fcntl subroutine, identifying the file to

which the lock is to be applied or removed.

Operation Specifies one of the following constants for the flock subroutine:

LOCK_SH

Apply a shared (read) lock.

LOCK_EX

Apply an exclusive (write) lock.

LOCK_NB

Do not block when locking. This value can be logically ORed with either

LOCK_SH or LOCK_EX.

LOCK_UN

Remove a lock.

730 Technical Reference, Volume 1: Base Operating System and Extensions

Request Specifies one of the following constants for the lockf subroutine:

F_ULOCK

Unlocks a previously locked region in the file.

F_LOCK

Locks the region for exclusive (write) use. This request causes the calling

process to sleep if the requested region overlaps a locked region, and to resume

when granted the lock.

F_TEST

Tests to see if another process has already locked a region. The lockf

subroutine returns 0 if the region is unlocked. If the region is locked, then -1 is

returned and the errno global variable is set to EACCES.

F_TLOCK

Locks the region for exclusive use if another process has not already locked the

region. If the region has already been locked by another process, the lockf

subroutine returns a -1 and the errno global variable is set to EACCES.

Size The number of bytes to be locked or unlocked for the lockf subroutine. The region starts

at the current location in the open file, and extends forward if the Size value is positive

and backward if the Size value is negative. If the Size value is 0, the region starts at the

current location and extends forward to the maximum possible file size, including the

unallocated space after the end of the file.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno

global variable is set to indicate the error.

Error Codes

The lockfx, lockf, and flock subroutines fail if one of the following is true:

 EBADF The FileDescriptor parameter is not a valid open file descriptor.

EINVAL The function argument is not one of F_LOCK, F_TLOCK, F_TEST or F_ULOCK; or size plus the

current file offset is less than 0.

EINVAL An attempt was made to lock a fifo or pipe.

EDEADLK The lock is blocked by a lock from another process. Putting the calling process to sleep while

waiting for the other lock to become free would cause a deadlock.

ENOLCK The lock table is full. Too many regions are already locked.

EINTR The command parameter was F_SETLKW and the process received a signal while waiting to

acquire the lock.

EOVERFLOW The offset of the first, or if size is not 0 then the last, byte in the requested section cannot be

represented correctly in an object of type off_t.

The lockfx and lockf subroutines fail if one of the following is true:

 EACCES The Command parameter is F_SETLK, the l_type field is F_RDLCK, and the segment of the file to be

locked is already write-locked by another process.

EACCES The Command parameter is F_SETLK, the l_type field is F_WRLCK, and the segment of a file to be

locked is already read-locked or write-locked by another process.

The flock subroutine fails if the following is true:

 EWOULDBLOCK The file is locked and the LOCK_NB option was specified.

Base Operating System (BOS) Runtime Services (A-P) 731

Related Information

The close (“close Subroutine” on page 173) subroutine, exec: execl, execv, execle, execlp, execvp, or

exect (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232) subroutine,

fcntl (“fcntl, dup, or dup2 Subroutine” on page 251) subroutine, fork (“fork, f_fork, or vfork Subroutine” on

page 284) subroutine, open, openx, or creat (“open, openx, open64, creat, or creat64 Subroutine” on

page 894) subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

log10, log10f, or log10l Subroutine

Purpose

Computes the Base 10 logarithm.

Syntax

#include <math.h>

float log10f (x)

float x;

long double log10l (x)

long double x;

double log10 (x)

double x;

Description

The log10f, log10l, and log10 subroutines compute the base 10 logarithm of the x parameter, log10

(x).

An application wishing to check for error situations should set errno to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

Return Values

Upon successful completion, the log10, log10f, and log10l, subroutines return the base 10 logarithm of x.

If x is ±0, a pole error occurs and log10, log10f, and log10l subroutines return -HUGE_VAL,

-HUGE_VALF and -HUGE_VALL, respectively.

For finite values of x that are less than 0, or if x is -Inf, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is 1, +0 is returned.

If x is +Inf, +Inf is returned.

732 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

When using the libm.a library:

 log10 If the x parameter is less than 0, the log10 subroutine returns a NaNQ value and sets errno to EDOM.

If x= 0, the log10 subroutine returns a -HUGE_VAL value but does not modify errno.

When using libmsaa.a(-lmsaa):

 log10 If the x parameter is not positive, the log10 subroutine returns a -HUGE_VAL value and sets errno

to EDOM. A message indicating DOMAIN error (or SING error when x = 0) is output to standard

error.

log10 If x < 0, log10l returns the value NaNQ and sets errno to EDOM. If x equals 0, log10l returns the

value -HUGE_VAL but does not modify errno.

Related Information

“feclearexcept Subroutine” on page 259, “fetestexcept Subroutine” on page 267, “class, _class, finite,

isnan, or unordered Subroutines” on page 165, and “madd, msub, mult, mdiv, pow, gcd, invert, rpow,

msqrt, mcmp, move, min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv, or itom Subroutine” on page

771.

math.h in AIX 5L Version 5.3 Files Reference.

log1p, log1pf, or log1pl Subroutine

Purpose

Computes a natural logarithm.

Syntax

#include <math.h>

float log1pf (x)

float x;

long double log1pl (x)

long double x;

double log1p (x)

double x;

Description

The log1pf, log1pl, and log1p subroutines compute loge

(1.0 + x).

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

Base Operating System (BOS) Runtime Services (A-P) 733

Return Values

Upon successful completion, the log1pf, log1pl, and log1p subroutines return the natural logarithm of 1.0

+ x.

If x is -1, a pole error occurs and the log1pf, log1pl, and log1p subroutines return -HUGE_VALF,

-HUGE_VALL, and -HUGE_VAL, respectively.

For finite values of x that are less than -1, or if x is -Inf, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is ±0, or +Inf, x is returned.

If x is subnormal, a range error may occur and x should be returned.

Related Information

“feclearexcept Subroutine” on page 259 and “fetestexcept Subroutine” on page 267.

math.h in AIX 5L Version 5.3 Files Reference.

log2, log2f, or log2l Subroutine

Purpose

Computes base 2 logarithm.

Syntax

#include <math.h>

double log2 (x)

double x;

float log2f (x)

float x;

long double log2l (x)

long double x;

Description

The log2, log2f, and log2l subroutines compute the base 2 logarithm of the x parameter, log2

(x).

An application wishing to check for error situations should set errno to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

Return Values

Upon successful completion, the log2, log2f, and log2l subroutines return the base 2 logarithm of x.

734 Technical Reference, Volume 1: Base Operating System and Extensions

If x is ±0, a pole error occurs and the log2, log2f, and log2l subroutines return -HUGE_VAL,

-HUGE_VALF, and -HUGE_VALL, respectively.

For finite values of x that are less than 0, or if x is -Inf, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is 1, +0 is returned.

If x is +Inf, x is returned.

Related Information

“feclearexcept Subroutine” on page 259 and “fetestexcept Subroutine” on page 267.

math.h in AIX 5L Version 5.3 Files Reference.

logbf, logbl, or logb Subroutine

Purpose

Computes the radix-independent exponent.

Syntax

#include <math.h>

float logbf (x)

float x;

long double logbl (x)

long double x;

double logb(x)

double x;

Description

The logbf and logbl subroutines compute the exponent of x, which is the integral part of logr

| x |, as a

signed floating-point value, for nonzero x, where r is the radix of the machine’s floating-point arithmetic.

For AIX, FLT_RADIX r=2.

If x is subnormal, it is treated as though it were normalized; thus for finite positive x:

1 <= x * FLT_RADIX-logb(x) < FLT_RADIX

An application wishing to check for error situations should set errno to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Note: When the x parameter is finite and not zero, the logb (x) subroutine satisfies the following equation:

1 < = scalb (|x|, -(int) logb (x)) < 2

Parameters

 x Specifies the value to be computed.

Base Operating System (BOS) Runtime Services (A-P) 735

Return Values

Upon successful completion, the logbf and logbl subroutines return the exponent of x.

If x is ±0, a pole error occurs and the logbf and logbl subroutines return -HUGE_VALF and

-HUGE_VALL, respectively.

If x is NaN, a NaN is returned.

If x is ±Inf, +Inf is returned.

Error Codes

The logb function returns -HUGE_VAL when the x parameter is set to a value of 0 and sets errno to

EDOM.

Related Information

“feclearexcept Subroutine” on page 259 and “fetestexcept Subroutine” on page 267.

math.h in AIX 5L Version 5.3 Files Reference.

log, logf, or logl Subroutine

Purpose

Computes the natural logarithm.

Syntax

#include <math.h>

float logf (x)

float x;

long double logl (x)

long double x;

double log (x)

double x;

Description

The logf, logl, and log subroutines compute the natural logarithm of the x parameter, loge

(x).

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

Return Values

Upon successful completion, the logf, logl, and log subroutines return the natural logarithm of x.

736 Technical Reference, Volume 1: Base Operating System and Extensions

If x is ±0, a pole error occurs and the logf, logl, and log subroutines return -HUGE_VALF and

-HUGE_VALL, and -HUGE_VAL, respectively.

For finite values of x that are less than 0, or if x is -Inf, a domain error occurs, and a NaN is returned.

If x is NaN, a NaN is returned.

If x is 1, +0 is returned.

If x is +Inf, x is returned.

Error Codes

When using the libm.a library:

 log If the x parameter is less than 0, the log subroutine returns a NaNQ value and sets errno to EDOM. If

x= 0, the log subroutine returns a -HUGE_VAL value but does not modify errno.

When using libmsaa.a(-lmsaa):

 log If the x parameter is not positive, the log subroutine returns a -HUGE_VAL value, and sets errno to

a EDOM value. A message indicating DOMAIN error (or SING error when x = 0) is output to

standard error.

log If x<0, the logl subroutine returns a NaNQ value

Related Information

“exp, expf, or expl Subroutine” on page 241, “feclearexcept Subroutine” on page 259, “fetestexcept

Subroutine” on page 267, “class, _class, finite, isnan, or unordered Subroutines” on page 165, and “log10,

log10f, or log10l Subroutine” on page 732.

math.h in AIX 5L Version 5.3 Files Reference.

loginfailed Subroutine

Purpose

Records an unsuccessful login attempt.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

int loginfailed (User, Host, Tty, Reason)

char *User;

char *Host;

char *Tty;

int Reason;

Note: This subroutine is not thread-safe.

Base Operating System (BOS) Runtime Services (A-P) 737

Description

The loginfailed subroutine performs the processing necessary when an unsuccessful login attempt

occurs. If the specified user name is not valid, the UNKNOWN_USER value is substituted for the user

name. This substitution prevents passwords entered as the user name from appearing on screen.

The following attributes in /etc/security/lastlog file are updated for the specified user, if the user name is

valid:

 time_last_unsuccessful_login Contains the current time.

tty_last_unsuccessful_login Contains the value specified by the Tty parameter.

host_last_unsuccessful_login Contains the value specified by the Host parameter, or the

local hostname if the Host parameter is a null value.

unsuccessful_login_count Indicates the number of unsuccessful login attempts. The

loginfailed subroutine increments this attribute by one for

each failed attempt.

A login failure audit record is cut to indicate that an unsuccessful login attempt occurred. A utmp entry is

appended to /etc/security/failedlogin file, which tracks all failed login attempts.

If the current unsuccessful login and the previously recorded unsuccessful logins constitute too many

unsuccessful login attempts within too short of a time period (as specified by the logindisable and

logininterval port attributes), the port is locked. When a port is locked, a PORT_Locked audit record is

written to inform the system administrator that the port has been locked.

If the login retry delay is enabled (as specified by the logindelay port attribute), a sleep occurs before this

subroutine returns. The length of the sleep (in seconds) is determined by the logindelay value multiplied

by the number of unsuccessful login attempts that occurred in this process.

Parameters

 User Specifies the user’s login name who has unsuccessfully attempted to login.

Host Specifies the name of the host from which the user attempted to login. If the Host parameter is Null, the

name of the local host is used.

Tty Specifies the name of the terminal on which the user attempted to login.

Reason Specifies a reason code for the login failure. Valid values are AUDIT_FAIL and AUDIT_FAIL_AUTH

defined in the sys/audit.h file.

Security

Access Control: The calling process must have access to the account information in the user database

and the port information in the port database.

File Accessed:

 Mode File

r /etc/security/user

rw /etc/security/lastlog

r /etc/security/login.cfg

rw /etc/security/portlog

w /etc/security/failedlogin

738 Technical Reference, Volume 1: Base Operating System and Extensions

Auditing Events:

 Event Information

USER_Login username

PORT_Locked portname

Return Values

Upon successful completion, the loginfailed subroutine returns a value of 0. If an error occurs, a value of

-1 is returned and errno is set to indicate the error.

Error Codes

The loginfailed subroutine fails if one or more of the following values is true:

 EACCES The current process does not have access to the user or port database.

EPERM The current process does not have permission to write an audit record.

Related Information

The authenticate (“authenticate Subroutine” on page 111) subroutine, getpcred (“getpcred Subroutine” on

page 394) subroutine, getpenv (“getpenv Subroutine” on page 396) subroutine, loginrestrictions

(“loginrestrictions Subroutine”) subroutine, loginsuccess (“loginsuccess Subroutine” on page 744)

subroutine, setpcred subroutine, setpenv subroutine.

List of Security and Auditing Services in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

loginrestrictions Subroutine

Purpose

Determines if a user is allowed to access the system.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

#include <login.h>

int loginrestrictions (Name, Mode, Tty, Msg)

char * Name;

int Mode;

char * Tty;

char ** Msg;

Note: This subroutine is not thread-safe.

Base Operating System (BOS) Runtime Services (A-P) 739

Description

The loginrestrictions subroutine determines if the user specified by the Name parameter is allowed to

access the system. The Mode parameter gives the mode of account usage and the Tty parameter defines

the terminal used for access. The Msg parameter returns an informational message explaining why the

loginrestrictions subroutine failed.

This subroutine is unsuccessful if any of the following conditions exists:

v The user’s account has expired as defined by the expires user attribute.

v The user’s account has been locked as defined by the account_locked user attribute.

v The user attempted too many unsuccessful logins as defined by the loginretries user attribute.

v The user is not allowed to access the given terminal as defined by the ttys user attribute.

v The user is not allowed to access the system at the present time as defined by the logintimes user

attribute.

v The Mode parameter is set to the S_LOGIN value or the S_RLOGIN value, and too many users are

logged in as defined by the maxlogins system attribute.

v The Mode parameter is set to the S_LOGIN value and the user is not allowed to log in as defined by

the login user attribute.

v The Mode parameter is set to the S_RLOGIN value and the user is not allowed to log in from the

network as defined by the rlogin user attribute.

v The Mode parameter is set to the S_SU value and other users are not allowed to use the su command

as defined by the su user attribute, or the group ID of the current process cannot use the su command

to switch to this user as defined by the sugroups user attribute.

v The Mode parameter is set to the S_DAEMON value and the user is not allowed to run processes from

the cron or src subsystem as defined by the daemon user attribute.

v The terminal is locked as defined by the locktime port attribute.

v The user cannot use the terminal to access the system at the present time as defined by the

logintimes port attribute.

v The user is not the root user and the /etc/nologin file exists.

Note: The loginrestrictions subroutine is not safe in a multi-threaded environment. To use

loginrestrictions in a threaded application, the application must keep the integrity of each thread.

Parameters

 Name Specifies the user’s login name whose account is to be validated.

Mode Specifies the mode of usage. Valid values as defined in the login.h file are listed below. The Mode

parameter has a value of 0 or one of the following values:

S_LOGIN

Verifies that local logins are permitted for this account.

S_SU Verifies that the su command is permitted and the current process has a group ID that can invoke

the su command to switch to the account.

S_DAEMON

Verifies the account can invoke daemon or batch programs through the src or cron subsystems.

S_RLOGIN

Verifies the account can be used for remote logins through the rlogind or telnetd programs.

Tty Specifies the terminal of the originating activity. If this parameter is a null pointer or a null string, no tty origin

checking is done.

Msg Returns an informative message indicating why the loginrestrictions subroutine failed. Upon return, the

value is either a pointer to a valid string within memory allocated storage or a null value. If a message is

displayed, it is provided based on the user interface.

740 Technical Reference, Volume 1: Base Operating System and Extensions

Security

Access Control:The calling process must have access to the account information in the user database and

the port information in the port database.

File Accessed:

 Mode Files

r /etc/security/user

r /etc/security/login.cfg

r /etc/security/portlog

r /etc/passwd

Return Values

If the account is valid for the specified usage, the loginrestrictions subroutine returns a value of 0.

Otherwise, a value of -1 is returned, the errno global value is set to the appropriate error code, and the

Msg parameter returns an informative message explaining why the specified account usage is invalid.

Error Codes

The loginrestrictions subroutine fails if one or more of the following values is true:

 ENOENT The user specified does not have an account.

ESTALE The user’s account is expired.

EPERM The user’s account is locked, the specified terminal is locked, the user has had too many unsuccessful

login attempts, or the user cannot log in because the /etc/nologin file exists.

EACCES One of the following conditions exists:

v The specified terminal does not have access to the specified account.

v The Mode parameter is the S_SU value and the current process is not permitted to use the su

command to access the specified user.

v Access to the account is not permitted in the specified mode.

v Access to the account is not permitted at the current time.

v Access to the system with the specified terminal is not permitted at the current time.

EAGAIN The Mode parameter is either the S_LOGIN value or the S_RLOGIN value, and all the user licenses are

in use.

EINVAL The Mode parameter has a value other than S_LOGIN, S_SU, S_DAEMON, S_RLOGIN, or 0.

Related Information

The authenticate (“authenticate Subroutine” on page 111) subroutine, getpcred (“getpcred Subroutine” on

page 394) subroutine, getpenv (“getpenv Subroutine” on page 396) subroutine, loginfailed (“loginfailed

Subroutine” on page 737) subroutine, loginsuccess (“loginsuccess Subroutine” on page 744) subroutine,

setpcred subroutine, setpenv subroutine.

The cron daemon.

The login command, rlogin command, telnet, tn, or tn3270 command, su command.

List of Security and Auditing Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing

and Debugging Programs.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 741

loginrestrictionsx Subroutine

Purpose

Determines, in multiple methods, if a user is allowed to access the system.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

#include <login.h>

int loginrestrictionsx (Name, Mode, Tty, Message, State)

char * Name;

int Mode;

char *Tty;

char **Message;

char **State;

Description

The loginrestrictionsx subroutine determines if the user specified by the Name parameter is allowed to

access the system. The Mode parameter gives the mode of account usage, and the Tty parameter defines

the terminal used for access. The Msg parameter returns an informational message explaining why the

loginrestrictionsx subroutine failed. The user’s SYSTEM attribute determines the administrative domains

to examine for permission.

The State parameter contains information about the login restrictions for the user. A call to the

authenticatex subroutine will not use an administrative domain for authentication if an earlier call to

loginrestrictionsx indicated that the user was unable to log in using that administrative domain’s

authentication data. The result is that administrative domains that are used for authentication must permit

the user to log in. The State parameter returned by loginrestrictionsx can be used as input to a

subsequent call to the authenticatex subroutine.

This subroutine is unsuccessful if any of the following conditions exists:

v The user’s account has been locked as defined by the account_locked user attribute.

v The user’s account has expired as defined by the expires user attribute.

v The Mode parameter is set to the S_LOGIN value or the S_RLOGIN value, and too many users are

logged in as defined by the maxlogins system attribute.

v The Mode parameter is not set to the S_SU or S_DAEMON value, and the user is not allowed to log in

to the current host as defined by the user’s hostallowedlogin and hostdeniedlogin attributes.

v The user is not allowed to access the system at the present time as defined by the logintimes user

attribute.

v The user attempted too many unsuccessful logins as defined by the loginretries user attribute.

v The user is not allowed to access the given terminal or network protocol as defined by the ttys user

attribute. This test is not performed when the Mode parameter is set to the S_DAEMON value.

v The Mode parameter is set to the S_LOGIN value, and the user is not allowed to log in as defined by

the login user attribute.

v The Mode parameter is set to the S_RLOGIN value and the user is not allowed to log in from the

network as defined by the rlogin user attribute.

742 Technical Reference, Volume 1: Base Operating System and Extensions

v The Mode parameter is set to the S_SU value, and other users are not allowed to use the su command

as defined by the su user attribute; or, the group ID of the current process cannot use the su command

to switch to this user as defined by the sugroups user attribute.

v The Mode parameter is set to the S_DAEMON value, and the user is not allowed to run processes from

the cron or src subsystem as defined by the daemon user attribute.

v The terminal is locked as defined by the locktime port attribute.

v The user cannot use the terminal to access the system at the present time as defined by the

logintimes port attribute.

v The user is not the root user, and the /etc/nologin file exists.

Additional restrictions can be enforced by loadable authentication modules for any administrative domain

used in the user’s SYSTEM attribute.

Parameters

 Name Specifies the user’s login name whose account is to be validated.

Mode Specifies the mode of usage. The valid values in the following list are defined in the login.h

file. The Mode parameter has a value of 0 or one of the following values:

S_LOGIN

Verifies that local logins are permitted for this account.

S_SU Verifies that the su command is permitted and the current process has a group ID

that can invoke the su command to switch to the account.

S_DAEMON

Verifies that the account can invoke daemon or batch programs through the src or

cron subsystems.

S_RLOGIN

Verifies that the account can be used for remote logins through the rlogind or

telnetd programs.

Tty Specifies the terminal of the originating activity. If this parameter is a null pointer or a null

string, no tty origin checking is done. The Tty parameter can also have the value RSH or

REXEC to indicate that the caller is the rsh or rexec command.

Message Returns an informative message indicating why the loginrestrictionsx subroutine failed.

Upon return, the value is either a pointer to a valid string within memory-allocated storage or

a null value. If a message is displayed, it is provided based on the user interface.

State Points to a pointer that the loginrestrictionsx subroutine allocates memory for and fills in.

The State parameter can also be the result of an earlier call to the authenticatex subroutine.

The State parameter contains information about the results of the loginrestrictionsx

subroutine for each term in the user’s SYSTEM attribute. The calling application is

responsible for freeing this memory when it is no longer needed for a subsequent call to the

authenticatex, passwdexpiredx, or chpassx subroutines.

Security

Access Control: The calling process must have access to the account information in the user database

and the port information in the port database.

Files accessed:

 Mode File

r /etc/security/user

r /etc/security/login.cfg

r /etc/security/portlog

r /etc/passwd

Base Operating System (BOS) Runtime Services (A-P) 743

Return Values

If the account is valid for the specified usage, the loginrestrictionsx subroutine returns a value of 0.

Otherwise, a value of -1 is returned, the errno global value is set to the appropriate error code, and the

Message parameter returns an informative message explaining why the specified account usage is invalid.

Error Codes

If the loginrestrictionsx subroutine fails if one of the following values is true:

 EACCESS One of the following conditions exists:

v The specified terminal does not have access to the specified account.

v The Mode parameter is the S_SU value, and the current process is not permitted to

use the su command to access the specified user.

v Access to the account is not permitted in the specified mode.

v Access to the account is not permitted at the current time.

v Access to the system with the specified terminal is not permitted at the current time.

EAGAIN The Mode parameter is either the S_LOGIN value or the S_RLOGIN value, and all the

user licenses are in use.

EINVAL The Mode parameter has a value other than S_LOGIN, S_SU, S_DAEMON,

S_RLOGIN, or 0.

ENOENT The user specified does not have an account.

EPERM The user’s account is locked, the specified terminal is locked, the user has had too

many unsuccessful login attempts, or the user cannot log in because the /etc/nologin

file exists.

ESTALE The user’s account is expired.

Related Information

The “authenticatex Subroutine” on page 113, “getpcred Subroutine” on page 394, “getpenv Subroutine” on

page 396, “loginfailed Subroutine” on page 737, “loginsuccess Subroutine,” “getgroupattrs Subroutine” on

page 370, “getuserpw, putuserpw, or putuserpwhist Subroutine” on page 459, setpcred Subroutinesetpenv

Subroutine.

The cron Daemon.

The login Command, rlogin Command, telnet, tn, or tn3270 Command, suCommand.

List of Security and Auditing Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing

and Debugging Programs.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

loginsuccess Subroutine

Purpose

Records a successful log in.

Library

Security Library (libc.a)

744 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <usersec.h>

int loginsuccess (User, Host, Tty, Msg)

char * User;

char * Host;

char * Tty;

char ** Msg;

Note: This subroutine is not thread-safe.

Description

The loginsuccess subroutine performs the processing necessary when a user successfully logs into the

system. This subroutine updates the following attributes in the /etc/security/lastlog file for the specified

user:

 time_last_login Contains the current time.

tty_last_login Contains the value specified by the Tty parameter.

host_last_login Contains the value specified by the Host parameter or the local host

name if the Host parameter is a null value.

unsuccessful_login_count Indicates the number of unsuccessful login attempts. The

loginsuccess subroutine resets this attribute to a value of 0.

Additionally, a login success audit record is cut to indicate in the audit trail that this user has successfully

logged in.

A message is returned in the Msg parameter that indicates the time, host, and port of the last successful

and unsuccessful login. The number of unsuccessful login attempts since the last successful login is also

provided to the user.

Parameters

 User Specifies the login name of the user who has successfully logged in.

Host Specifies the name of the host from which the user logged in. If the Host parameter is a null value, the name

of the local host is used.

Tty Specifies the name of the terminal which the user used to log in.

Msg Returns a message indicating the delete time, host, and port of the last successful and unsuccessful logins.

The number of unsuccessful login attempts since the last successful login is also provided. Upon return, the

value is either a pointer to a valid string within memory allocated storage or a null pointer. It is the

responsibility of the calling program to free() the returned storage.

Security

Access Control: The calling process must have access to the account information in the user database.

File Accessed:

 Mode File

rw /etc/security/lastlog

Auditing Events:

 Event Information

USER_Login username

Base Operating System (BOS) Runtime Services (A-P) 745

Return Values

Upon successful completion, the loginsuccess subroutine returns a value of 0. Otherwise, a value of -1 is

returned and the errno global value is set to indicate the error.

Error Codes

The loginsuccess subroutine fails if one or more of the following values is true:

 ENOENT The specified user does not exist.

EACCES The current process does not have write access to the user database.

EPERM The current process does not have permission to write an audit record.

Related Information

The authenticate (“authenticate Subroutine” on page 111) subroutine, getpcred (“getpcred Subroutine” on

page 394) subroutine, getpenv (“getpenv Subroutine” on page 396) subroutine, loginfailed (“loginfailed

Subroutine” on page 737) subroutine, loginrestrictions (“loginrestrictions Subroutine” on page 739)

subroutine, setpcred subroutine, setpenv subroutine.

List of Security and Auditing Services in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

lpar_get_info Subroutine

Purpose

Retrieves the calling partition’s characteristics.

Syntax

#include <sys/dr.h>

int lpar_get_info (command, lparinfo, bufsize)

int command;

void *lparinfo;

size_t bufsize;

Description

The lpar_get_info subroutine retrieves LPAR and Micro-Partitioning attributes of both low-frequency use

and high-frequency use. Because the low-frequency attributes, as defined in the lpar_info_format1_t

structure, are static in nature, a reboot is required to effect any change. The high-frequency attributes, as

defined in the lpar_info_format2_t structure, can be changed dynamically while the partition is running.

The signature of this system call, its parameter types, and the order of the member fields in both the

lpar_info_format1_t and lpar_info_format2_t structures are specific to the AIX platform.

To see the complete structures of lpar_info_format1_t and lpar_info_format2_t, refer to the dr.h header

file.

Parameters

 command Specifies whether the user wants format1 or format2 details.

lparinfo Pointer to the user-allocated buffer that is passed in.

bufsize Size of the structure that is passed in.

746 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon success, the lpar_get_info subroutine returns a value of 0. Upon failure, a value of -1 is returned,

and errno is set to indicate the appropriate error.

Error Codes

 EFAULT Buffer size is smaller than expected.

EINVAL Invalid input parameter.

ENOTSUP The platform does not support this operation.

Related Information

The klpar_get_info kernel service.

lpar_set_resources Subroutine

Purpose

Modifies the calling partition’s characteristics.

Library

Standard C Library (lib.c)

Syntax

#include <sys/dr.h>

int lpar_set_resources (lpar_resource_id,lpar_resource)

int lpar_resource_id;

void *lpar_resource;

Description

The lpar_set_resources subroutine modifies the configuration attributes (dynamic resources) on a current

partition indicated by the lpar_resource_id. The pointer to a value of the dynamic resource indicated by

lpar_resource_id is passed to this call in lpar_resource. This subroutine modifies one partition dynamic

resource at a time. To reconfigure multiple resources, multiple calls must be made. The following

resources for the calling partition can be modified:

v Entitled Capacity

v Variable Capacity Weight

v Number of online virtual CPUs

v Number of available memory in MB

These resource IDs are defined in the <sys/dr.h> header file. In order to modify the Entitled Capacity and

Variable Capacity Weight attributes, ensure that the current partition is an SPLPAR partition; otherwise, an

error is returned. The lpar_set_resources subroutine can only be called in a process owned by a root

user (super user) or a user with the CAP_EWLM_AGENT capability; otherwise, an error is returned.

Parameters

 lpar_resource_id Identifies the dynamic resource whose value is being changed.

lpar_resource Pointer to a new value of the dynamic resource identified by the lpar_resource_id.

Base Operating System (BOS) Runtime Services (A-P) 747

Security

The lpar_set_resources subroutine can only be called in a process owned by a root user (super user) or

a user with the CAP_EWLM_AGENT capability.

Return Values

Upon success, the lpar_set_resources subroutine returns a value of 0. Upon failure, a negative value is

returned, and errno is set to the appropriate error.

Error Codes

 EINVAL Invalid configuration parameters.

EPERM Insufficient authority.

EEXIST Resource already exists.

EBUSY Resource is busy.

EAGAIN Resource is temporarily unavailable.

ENOMEM Resource allocation failed.

ENOTREADY Resource is not ready.

ENOTSUP Operation is not supported.

EFAULT/EIO Operation failed because of an I/O error.

EINPROGRESS Operation in progress.

ENXIO Resource is not available.

ERANGE Parameter value is out of range.

All others Internal error.

lrint, lrintf, or lrintl Subroutine

Purpose

Rounds to nearest integer value using the current rounding direction.

Syntax

#include <math.h>

long lrint (x)

double x;

long lrintf (x)

float x;

long lrintl (x)

long double x;

Description

The lrint, lrintf, and lrintl subroutines round the x parameter to the nearest integer value, rounding

according to the current rounding direction.

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be rounded.

748 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, the lrint, lrintf, and lrintl subroutines return the rounded integer value.

If x is NaN, a domain error occurs and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is -Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, a domain error occurs and an

unspecified value is returned.

If the correct value is negative and too large to represent as a long, a domain error occurs and an

unspecified value is returned.

Related Information

“feclearexcept Subroutine” on page 259, “fetestexcept Subroutine” on page 267, and “llrint, llrintf, or llrintl

Subroutine” on page 715.

math.h in AIX 5L Version 5.3 Files Reference.

lround, lroundf, or lroundl Subroutine

Purpose

Rounds to the nearest integer value.

Syntax

#include <math.h>

long lround (x)

double x;

long lroundf (x)

float x;

long lroundl (x)

long double x;

Description

The lround, lroundf, and lroundl subroutines round the x parameter to the nearest integer value,

rounding halfway cases away from zero, regardless of the current rounding direction.

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be rounded.

Base Operating System (BOS) Runtime Services (A-P) 749

Return Values

Upon successful completion, the lround, lroundf, and lroundl subroutines return the rounded integer

value.

If x is NaN, a domain error occurs and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is -Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, a domain error occurs and an

unspecified value is returned.

If the correct value is negative and too large to represent as a long, a domain error occurs and an

unspecified value is returned.

Related Information

“feclearexcept Subroutine” on page 259, “fetestexcept Subroutine” on page 267, and “llround, llroundf, or

llroundl Subroutine” on page 716.

math.h in AIX 5L Version 5.3 Files Reference.

lsearch or lfind Subroutine

Purpose

Performs a linear search and update.

Library

Standard C Library (libc.a)

Syntax

void *lsearch (Key, Base, NumberOfElementsPointer, Width, ComparisonPointer)

const void *Key;

void *Base;

size_t Width, *NumberOfElementsPointer;

int (*ComparisonPointer) (cont void*, const void*);

void *lfind (Key, Base, NumberOfElementsPointer, Width, ComparisonPointer)

const void *Key, Base;

size_t Width, *NumberOfElementsPointer;

int (*ComparisonPointer) (cont void*, const void*);

Description

Warning: Undefined results can occur if there is not enough room in the table for the lsearch subroutine

to add a new item.

The lsearch subroutine performs a linear search.

The algorithm returns a pointer to a table where data can be found. If the data is not in the table, the

program adds it at the end of the table.

The lfind subroutine is identical to the lsearch subroutine, except that if the data is not found, it is not

added to the table. In this case, a NULL pointer is returned.

750 Technical Reference, Volume 1: Base Operating System and Extensions

The pointers to the Key parameter and the element at the base of the table should be of type

pointer-to-element and cast to type pointer-to-character. The value returned should be cast into type

pointer-to-element.

The comparison function need not compare every byte; therefore, the elements can contain arbitrary data

in addition to the values being compared.

Parameters

 Base Points to the first element in the table.

ComparisonPointer Specifies the name (that you supply) of the comparison function

(strcmp, for example). It is called with two parameters that point to the

elements being compared.

Key Specifies the data to be sought in the table.

NumberOfElementsPointer Points to an integer containing the current number of elements in the

table. This integer is incremented if the data is added to the table.

Width Specifies the size of an element in bytes.

The comparison function compares its parameters and returns a value as follows:

v If the first parameter equals the second parameter, the ComparisonPointer parameter returns a value of

0.

v If the first parameter does not equal the second parameter, the ComparisonPointer parameter returns a

value of 1.

Return Values

If the sought entry is found, both the lsearch and lfind subroutines return a pointer to it. Otherwise, the

lfind subroutine returns a null pointer and the lsearch subroutine returns a pointer to the newly added

element.

Related Information

The bsearch (“bsearch Subroutine” on page 121) subroutine, hsearch (“hsearch, hcreate, or hdestroy

Subroutine” on page 517) subroutine, qsort subroutine, tsearch subroutine.

Donald E. Knuth. The Art of Computer Programming, Volume 3, 6.1, Algorithm S. Reading,

Massachusetts: Addison-Wesley, 1981.

Searching and Sorting Example Program and Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

lseek, llseek or lseek64 Subroutine

Purpose

Moves the read-write file pointer.

Library

Standard C Library (libc.a)

Syntax

off_t lseek (FileDescriptor, Offset, Whence)

int FileDescriptor, Whence;

off_t Offset;

Base Operating System (BOS) Runtime Services (A-P) 751

offset_t llseek (FileDescriptor, Offset, Whence)

int FileDescriptor, Whence;

offset_t Offset;

off64_t lseek64 (FileDescriptor, Offset, Whence)

int FileDescriptor, Whence;

off64_t Offset;

Description

The lseek, llseek, and lseek64 subroutines set the read-write file pointer for the open file specified by the

FileDescriptor parameter. The lseek subroutine limits the Offset to OFF_MAX.

In the large file enabled programming environment, lseek subroutine is redefined to lseek64.

If the FileDescriptor parameter refers to a shared memory object, the lseek subroutine fails with EINVAL.

Parameters

 FileDescriptor Specifies a file descriptor obtained from a successful open or fcntl subroutine.

Offset Specifies a value, in bytes, that is used in conjunction with the Whence parameter to set the

file pointer. A negative value causes seeking in the reverse direction.

Whence Specifies how to interpret the Offset parameter by setting the file pointer associated with the

FileDescriptor parameter to one of the following variables:

SEEK_SET

Sets the file pointer to the value of the Offset parameter.

SEEK_CUR

Sets the file pointer to its current location plus the value of the Offset parameter.

SEEK_END

Sets the file pointer to the size of the file plus the value of the Offset parameter.

Return Values

Upon successful completion, the resulting pointer location, measured in bytes from the beginning of the

file, is returned. If either the lseek or llseek subroutines are unsuccessful, a value of -1 is returned and

the errno global variable is set to indicate the error.

Error Codes

The lseek or llseek subroutines are unsuccessful and the file pointer remains unchanged if any of the

following are true:

 EBADF The FileDescriptor parameter is not an open file descriptor.

EINVAL The resulting offset would be greater than the maximum offset allowed for the file or device

associated with FileDescriptor. The lseek subroutine was used with a file descriptor obtained

from a call to the shm_open subroutine.

EINVAL Whence is not one of the supported values.

EOVERFLOW The resulting offset is larger than can be returned properly.

ESPIPE The FileDescriptor parameter is associated with a pipe (FIFO) or a socket.

Files

 /usr/include/unistd.h Defines standard macros, data types and subroutines.

752 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The fcntl (“fcntl, dup, or dup2 Subroutine” on page 251) subroutine, fseek, rewind, ftell, fgetpos, or

fsetpos (“fseek, fseeko, fseeko64, rewind, ftell, ftello, ftello64, fgetpos, fgetpos64, fsetpos, or fsetpos64

Subroutine” on page 311) subroutine, open, openx, or creat (“open, openx, open64, creat, or creat64

Subroutine” on page 894) subroutine, read, readx, readv, or readvx subroutine, write, writex, writev, or

writevx subroutine.

File Systems and Directories in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

lvm_querylv Subroutine

Purpose

Queries a logical volume and returns all pertinent information.

Library

Logical Volume Manager Library (liblvm.a)

Syntax

#include <lvm.h>

int lvm_querylv (LV_ID, QueryLV, PVName)

struct lv_id *LV_ID;

struct querylv **QueryLV;

char *PVName;

Description

Note: The lvm_querylv subroutine uses the sysconfig system call, which requires root user authority, to

query and update kernel data structures describing a volume group. You must have root user

authority to use the lvm_querylv subroutine.

The lvm_querylv subroutine returns information for the logical volume specified by the LV_ID parameter.

The querylv structure, found in the lvm.h file, is defined as follows:

struct querylv {

 char lvname[LVM_NAMESIZ];

 struct unique_id vg_id;

 long maxsize;

 long mirror_policy;

 long lv_state;

 long currentsize;

 long ppsize;

 long permissions;

 long bb_relocation;

 long write_verify;

 long mirwrt_consist;

 long open_close;

 struct pp *mirrors[LVM_NUMCOPIES];

 unsigned int stripe_exp;

 unsigned int striping_width;

}

struct pp {

 struct unique_id pv_id;

Base Operating System (BOS) Runtime Services (A-P) 753

long lp_num;

 long pp_num;

 long ppstate;

 }

 Field Description

lvname Specifies the special file name of the logical volume and can be either the full path name

or a single file name that must reside in the /dev directory (for example, rhd1). All name

fields must be null-terminated strings of from 1 to LVM_NAMESIZ bytes, including the null

byte. If a raw or character device is not specified for the lvname field, the Logical Volume

Manager (LVM) will add an r to the file name to have a raw device name. If there is no

raw device entry for this name, the LVM will return the LVM_NOTCHARDEV error code.

vg_id Specifies the unique ID of the volume group that contains the logical volume.

maxsize Indicates the maximum size in logical partitions for the logical volume and must be in the

range of 1 to LVM_MAXLPS.

mirror_policy Specifies how the physical copies are written. The mirror_policy field should be either

LVM_SEQUENTIAL or LVM_PARALLEL to indicate how the physical copies of a logical

partition are to be written when there is more than one copy.

lv_state Specifies the current state of the logical volume and can have any of the following

bit-specific values ORed together:

LVM_LVDEFINED

The logical volume is defined.

LVM_LVSTALE

The logical volume contains stale partitions.

currentsize Indicates the current size in logical partitions of the logical volume. The size, in bytes, of

every physical partition is 2 to the power of the ppsize field.

ppsize Specifies the size of the physical partitions of all physical volumes in the volume group.

permissions Specifies the permission assigned to the logical volume and can be one of the following

values:

LVM_RDONLY

Access to this logical volume is read only.

LVM_RDWR

Access to this logical volume is read/write.

bb_relocation Specifies if bad block relocation is desired and is one of the following values:

LVM_NORELOC

Bad blocks will not be relocated.

LVM_RELOC

Bad blocks will be relocated.

write_verify Specifies if write verification for the logical volume is desired and returns one of the

following values:

LVM_NOVERIFY

Write verification is not performed for this logical volume.

LVM_VERIFY

Write verification is performed on all writes to the logical volume.

754 Technical Reference, Volume 1: Base Operating System and Extensions

Field Description

mirwrt_consist Indicates whether mirror-write consistency recovery will be performed for this logical

volume.

The LVM always ensures data consistency among mirrored copies of a logical volume

during normal I/O processing. For every write to a logical volume, the LVM generates a

write request for every mirror copy. A problem arises if the system crashes in the middle

of processing a mirrored write (before all copies are written). If mirror write consistency

recovery is requested for a logical volume, the LVM keeps additional information to allow

recovery of these inconsistent mirrors. Mirror write consistency recovery should be

performed for most mirrored logical volumes. Logical volumes, such as page space, that

do not use the existing data when the volume group is re-varied on do not need this

protection.

Values for the mirwrt_consist field are:

LVM_CONSIST

Mirror-write consistency recovery will be done for this logical volume.

LVM_NOCONSIST

Mirror-write consistency recovery will not be done for this logical volume.

open_close Specifies if the logical volume is opened or closed. Values for this field are:

LVM_QLV_NOTOPEN

The logical volume is closed.

LVM_QLVOPEN

The logical volume is opened by one or more processes.

mirrors Specifies an array of pointers to partition map lists (physical volume id, logical partition

number, physical partition number, and physical partition state for each copy of the logical

partitions for the logical volume). The ppstate field can be LVM_PPFREE,

LVM_PPALLOC, or LVM_PPSTALE. If a logical partition does not contain any copies, its

pv_id, lp_num, and pp_num fields will contain zeros.

stripe_exp Specifies the log base 2 of the logical volume stripe size. For example, 2^20 is 1048576

(that is, 1 MB). Therefore, if the stripe size is 1 MB, the stripe_exp field is 20. If the

logical volume is not striped, the stripe_exp field is 0.

stripe_width Specifies the number of disks that form the striped logical volume. If the logical volume is

not striped, the striping_width field is 0.

The PVName parameter enables the user to query from a volume group descriptor area on a specific

physical volume instead of from the Logical Volume Manager’s (LVM) most recent, in-memory copy of the

descriptor area. This method should only be used if the volume group is varied off.

Note: The data returned is not guaranteed to be the most recent or correct, and it can reflect a back-level

descriptor area.

The PVName parameter should specify either the full path name of the physical volume that contains the

descriptor area to query, or a single file name that must reside in the /dev directory (for example,

rhdisk1). This parameter must be a null-terminated string between 1 and LVM_NAMESIZ bytes, including

the null byte, and must represent a raw device entry. If a raw or character device is not specified for the

PVName parameter, the LVM adds an r to the file name to have a raw device name. If there is no raw

device entry for this name, the LVM returns the LVM_NOTCHARDEV error code.

If a PVName parameter is specified, only the minor_num field of the LV_ID parameter need be supplied.

The LVM fills in the vg_id field and returns it to the user. If the user wishes to query from the LVM’s

in-memory copy, the PVName parameter should be set to null. When using this method of query, the

volume group must be varied on, or an error is returned.

Note: As long as the PVName parameter is not null, the LVM will attempt a query from a physical volume

and not from its in-memory copy of data.

Base Operating System (BOS) Runtime Services (A-P) 755

In addition to the PVName parameter, the caller passes the ID of the logical volume to be queried (LV_ID

parameter) and the address of a pointer to the querylv structure, specified by the QueryLV parameter.

The LVM separately allocates the space needed for the querylv structure and the struct pp arrays, and

returns the querylv structure’s address in the pointer variable passed in by the user. The user is

responsible for freeing the space by first freeing the struct pp pointers in the mirrors array and then

freeing the querylv structure.

 Attention: To prevent corruption when there are many pp arrays, the caller of lvm_querylv must set

QueryLV->mirrors k != NULL.

Parameters

 LV_ID Points to an lv_id structure that specifies the logical volume to query.

QueryLV Contains the address of a pointer to the querylv structure.

PVName Names the physical volume from which to use the volume group descriptor for the query. This

parameter can also be null.

Return Values

If the lvm_querylv subroutine is successful, it returns a value of 0.

Error Codes

If the lvm_querylv subroutine does not complete successfully, it returns one of the following values:

 LVM_ALLOCERR The subroutine could not allocate enough space for the complete buffer.

LVM_INVALID_MIN_NUM The minor number of the logical volume is not valid.

LVM_INVALID_PARAM A parameter passed into the routine is not valid.

LVM_INV_DEVENT The device entry for the physical volume specified by the Pvname parameter is

not valid and cannot be checked to determine if it is raw.

LVM_NOTCHARDEV The physical volume name given does not represent a raw or character device.

LVM_OFFLINE The volume group containing the logical volume to query was offline.

If the query originates from the varied-on volume group’s current volume group

descriptor area, one of the following error codes is returned:

LVM_DALVOPN The volume group reserved logical volume could not be opened.

LVM_MAPFBSY The volume group is currently locked because system management on the

volume group is being done by another process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group descriptor area

used for making changes to the volume group, could not be opened.

LVM_MAPFRDWR The mapped file could not be read or written.

If a physical volume name has been passed, requesting that the query originate from a specific physical

volume, one of the following error codes is returned:

 LVM_BADBBDIR The bad-block directory could not be read or written.

LVM_LVMRECERR The LVM record, which contains information about the volume group descriptor area, could

not be read.

LVM_NOPVVGDA There are no volume group descriptor areas on the physical volume specified.

LVM_NOTVGMEM The physical volume specified is not a member of a volume group.

LVM_PVDAREAD An error occurred while trying to read the volume group descriptor area from the specified

physical volume.

LVM_PVOPNERR The physical volume device could not be opened.

LVM_VGDA_BB A bad block was found in the volume group descriptor area located on the physical volume

that was specified for the query. Therefore, a query cannot be done from the specified

physical volume.

756 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

lvm_querypv Subroutine

Purpose

Queries a physical volume and returns all pertinent information.

Library

Logical Volume Manager Library (liblvm.a)

Syntax

#include <lvm.h>

int lvm_querypv (VG_ID, PV_ID, QueryPV, PVName)

struct unique_id * VG_ID;

struct unique_id * PV_ID;

struct querypv ** QueryPV;

char * PVName;

Description

Note: The lvm_querypv subroutine uses the sysconfig system call, which requires root user authority, to

query and update kernel data structures describing a volume group. You must have root user

authority to use the lvm_querypv subroutine.

The lvm_querypv subroutine returns information on the physical volume specified by the PV_ID

parameter.

The querypv structure, defined in the lvm.h file, contains the following fields:

struct querypv {

 long ppsize;

 long pv_state;

 long pp_count;

 long alloc_ppcount;

 long pvnum_vgdas;

 struct pp_map *pp_map;

 char hotspare;

 struct unique_id pv_id;

 long freespace;

 }

 struct pp_map {

 long pp_state;

 struct lv_id lv_id;

 long lp_num;

 long copy;

 struct unique_id fst_alt_vol;

 long fst_alt_part;

 struct unique_id snd_alt_vol;

 long snd_alt_part;

 }

 Field Description

ppsize Specifies the size of the physical partitions, which is the same for all partitions within a

volume group. The size in bytes of a physical partition is 2 to the power of ppsize.

Base Operating System (BOS) Runtime Services (A-P) 757

Field Description

pv_state Contains the current state of the physical volume.

pp_count Contains the total number of physical partitions on the physical volume.

alloc_ppcount Contains the number of allocated physical partitions on the physical volume.

pp_map Points to an array that has entries for each physical partition of the physical volume. Each

entry in this array will contain the pp_state that specifies the state of the physical partition

(LVM_PPFREE, LVM_PPALLOC, or LVM_PPSTALE) and the lv_id, field, the ID of the

logical volume that it is a member of. The pp_map array also contains the physical volume

IDs (fst_alt_vol and snd_alt_vol) and the physical partition numbers (fst_alt_part and

snd_alt_part) for the first and second alternate copies of the physical partition, and the

logical partition number (lp_num) that the physical partition corresponds to.

If the physical partition is free (that is, not allocated), all of its pp_map fields will be zero.

fst_alt_vol

Contains zeros if the logical partition has only one physical copy.

fst_alt_part

Contains zeros if the logical partition has only one physical copy.

snd_alt_vol

Contains zeros if the logical partition has only one or two physical copies.

snd_alt_part

Contains zeros if the logical partition has only one or two physical copies.

copy Specifies which copy of a logical partition this physical partition is allocated to. This

field will contain one of the following values:

LVM_PRIMARY

Primary and only copy of a logical partition

LVM_PRIMOF2

Primary copy of a logical partition with two physical copies

LVM_PRIMOF3

Primary copy of a logical partition with three physical copies

LVM_SCNDOF2

Secondary copy of a logical partition with two physical copies

LVM_SCNDOF3

Secondary copy of a logical partition with three physical copies

LVM_TERTOF3

Tertiary copy of a logical partition with three physical copies.

pvnum_vgdas Contains the number of volume group descriptor areas (0, 1, or 2) that are on the

specified physical volume.

hotspare Specifies that the physical volume is a hotspare.

pv_id Specifies the physical volume identifier.

freespace Specifies the number of physical partitions in the volume group.

The PVName parameter enables the user to query from a volume group descriptor area on a specific

physical volume instead of from the Logical Volume Manager’s (LVM) most recent, in-memory copy of the

descriptor area. This method should only be used if the volume group is varied off. The data returned is

not guaranteed to be most recent or correct, and it can reflect a back level descriptor area.

The PVname parameter should specify either the full path name of the physical volume that contains the

descriptor area to query or a single file name that must reside in the /dev directory (for example, rhdisk1).

This field must be a null-terminated string of from 1 to LVM_NAMESIZ bytes, including the null byte, and

represent a raw or character device. If a raw or character device is not specified for the PVName

parameter, the LVM will add an r to the file name in order to have a raw device name. If there is no raw

758 Technical Reference, Volume 1: Base Operating System and Extensions

device entry for this name, the LVM will return the LVM_NOTCHARDEV error code. If a PVName is

specified, the volume group identifier, VG_ID, will be returned by the LVM through the VG_ID parameter

passed in by the user. If the user wishes to query from the LVM in-memory copy, the PVName parameter

should be set to null. When using this method of query, the volume group must be varied on, or an error

will be returned.

Note: As long as the PVName is not null, the LVM will attempt a query from a physical volume and not

from its in-memory copy of data.

In addition to the PVName parameter, the caller passes the VG_ID parameter, indicating the volume group

that contains the physical volume to be queried, the unique ID of the physical volume to be queried, the

PV_ID parameter, and the address of a pointer of the type QueryPV. The LVM will separately allocate

enough space for the querypv structure and the struct pp_map array and return the address of the

querypv structure in the QueryPV pointer passed in. The user is responsible for freeing the space by

freeing the struct pp_map pointer and then freeing the QueryPV pointer.

Parameters

 VG_ID Points to a unique_id structure that specifies the volume group of which the physical volume to query

is a member.

PV_ID Points to a unique_id structure that specifies the physical volume to query.

QueryPV Specifies the address of a pointer to a querypv structure.

PVName Names a physical volume from which to use the volume group descriptor area for the query. This

parameter can be null.

Return Values

The lvm_querypv subroutine returns a value of 0 upon successful completion.

Error Codes

If the lvm_querypv subroutine fails it returns one of the following error codes:

 LVM_ALLOCERR The routine cannot allocate enough space for a complete buffer.

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

LVM_INV_DEVENT The device entry for the physical volume is invalid and cannot be checked to

determine if it is raw.

LVM_OFFLINE The volume group specified is offline and should be online.

If the query originates from the varied-on volume group’s current volume group descriptor area, one of the

following error codes may be returned:

 LVM_DALVOPN The volume group reserved logical volume could not be opened.

LVM_MAPFBSY The volume group is currently locked because system management on the volume group is

being done by another process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group descriptor area used for making

changes to the volume group, could not be opened.

LVM_MAPFRDWR Either the mapped file could not be read, or it could not be written.

If a physical volume name has been passed, requesting that the query originate from a specific physical

volume, then one of the following error codes may be returned:

 LVM_BADBBDIR The bad-block directory could not be read or written.

LVM_LVMRECERR The LVM record, which contains information about the volume group descriptor area,

could not be read.

Base Operating System (BOS) Runtime Services (A-P) 759

LVM_NOPVVGDA There are no volume group descriptor areas on this physical volume.

LVM_NOTCHARDEV A device is not a raw or character device.

LVM_NOTVGMEM The physical volume is not a member of a volume group.

LVM_PVDAREAD An error occurred while trying to read the volume group descriptor area from the specified

physical volume.

LVM_PVOPNERR The physical volume device could not be opened.

LVM_VGDA_BB A bad block was found in the volume group descriptor area located on the physical

volume that was specified for the query. Therefore, a query cannot be done from the

specified physical volume.

Related Information

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

lvm_queryvg Subroutine

Purpose

Queries a volume group and returns pertinent information.

Library

Logical Volume Manager Library (liblvm.a)

Syntax

#include <lvm.h>

int lvm_queryvg (VG_ID, QueryVG, PVName)

struct unique_id *VG_ID;

struct queryvg **QueryVG;

char *PVName;

Description

Note: The lvm_queryvg subroutine uses the sysconfig system call, which requires root user authority, to

query and update kernel data structures describing a volume group. You must have root user

authority to use the lvm_queryvg subroutine.

The lvm_queryvg subroutine returns information on the volume group specified by the VG_ID parameter.

The queryvg structure , found in the lvm.h file, contains the following fields:

struct queryvg {

 long maxlvs;

 long ppsize;

 long freespace;

 long num_lvs;

 long num_pvs;

 long total_vgdas;

 struct lv_array *lvs;

 struct pv_array *pvs;

 short conc_capable;

 short default_mode;

 short conc_status;

 unsigned int maxpvs;

 unsigned int maxpvpps;

 unsigned int maxvgpps;

760 Technical Reference, Volume 1: Base Operating System and Extensions

}

 struct pv_array {

 struct unique_id pv_id;

 char state;

 char res[3];

 long pvnum_vgdas;

 }

 struct lv_array {

 struct lv_id lv_id;

 char lvname[LVM_NAMESIZ];

 char state;

 char res[3];

 }

 Field Description

maxlvs Specifies the maximum number of logical volumes allowed in the volume group.

ppsize Specifies the size of all physical partitions in the volume group. The size in bytes of

each physical partitions is 2 to the power of the ppsize field.

freespace Contains the number of free physical partitions in this volume group.

num_lvs Indicates the number of logical volumes.

num_pvs Indicates the number of physical volumes.

total_vgdas Specifies the total number of volume group descriptor areas for the entire volume

group.

lvs Points to an array of unique IDs, names, and states of the logical volumes in the

volume group.

pvs Points to an array of unique IDs, states, and the number of volume group descriptor

areas for each of the physical volumes in the volume group.

conc_capable Indicates that the volume group was created concurrent mode capable if the value is

equal to 1.

default_mode The behavior of this value is undefined.

conc_status Indicates that the volume group is varied on in concurrent mode.

maxpvs Specifies the maximum number of physical volumes allowed in the volume group.

maxpvpps Specifies the maximum number of physical partitions allowed for a physical volume in

the volume group.

maxvgpps Specifies the maximum number of physical partitions allowed for the entire volume

group.

The PVName parameter enables the user to query from a descriptor area on a specific physical volume

instead of from the Logical Volume Manager’s (LVM) most recent, in-memory copy of the descriptor area.

This method should only be used if the volume group is varied off. The data returned is not guaranteed to

be most recent or correct, and it can reflect a back level descriptor area. The Pvname parameter should

specify either the full path name of the physical volume that contains the descriptor area to query or a

single file name that must reside in the /dev directory (for example, rhdisk1). The name must represent a

raw device. If a raw or character device is not specified for the PVName parameter, the Logical Volume

Manager will add an r to the file name in order to have a raw device name. If there is no raw device entry

for this name, the LVM returns the LVM_NOTCHARDEV error code. This field must be a null-terminated

string of from 1 to LVM_NAMESIZ bytes, including the null byte. If a PVName is specified, the LVM will

return the VG_ID to the user through the VG_ID pointer passed in. If the user wishes to query from the

LVM in-memory copy, the PVName parameter should be set to null. When using this method of query, the

volume group must be varied on, or an error will be returned.

Note: As long as the PVName parameter is not null, the LVM will attempt a query from a physical volume

and not its in-memory copy of data.

In addition to the PVName parameter, the caller passes the unique ID of the volume group to be queried

(VG_ID) and the address of a pointer to a queryvg structure. The LVM will separately allocate enough

space for the queryvg structure, as well as the lv_array and pv_array structures, and return the address

Base Operating System (BOS) Runtime Services (A-P) 761

of the completed structure in the QueryVG parameter passed in by the user. The user is responsible for

freeing the space by freeing the lv and pv pointers and then freeing the QueryVG pointer.

Parameters

 VG_ID Points to a unique_id structure that specifies the volume group to be queried.

QueryVG Specifies the address of a pointer to the queryvg structure.

PVName Specifies the name of the physical volume that contains the descriptor area to query and must

be the name of a raw device.

Return Values

The lvm_queryvg subroutine returns a value of 0 upon successful completion.

Error Codes

If the lvm_queryvg subroutine fails it returns one of the following error codes:

 LVM_ALLOCERR The subroutine cannot allocate enough space for a complete buffer.

LVM_FORCEOFF The volume group has been forcefully varied off due to a loss of

quorum.

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

LVM_OFFLINE The volume group is offline and should be online.

If the query originates from the varied-on volume group’s current volume group descriptor area, one of the

following error codes may be returned:

 LVM_DALVOPN The volume group reserved logical volume could not be opened.

LVM_INV_DEVENT The device entry for the physical volume specified by the PVName

parameter is invalid and cannot be checked to determine if it is raw.

LVM_MAPFBSY The volume group is currently locked because system management on the

volume group is being done by another process.

LVM_MAPFOPN The mapped file, which contains a copy of the volume group descriptor area

used for making changes to the volume group, could not be opened.

LVM_MAPFRDWR Either the mapped file could not be read, or it could not be written.

LVM_NOTCHARDEV A device is not a raw or character device.

If a physical volume name has been passed, requesting that the query originate from a specific physical

volume, one of the following error codes may be returned:

 LVM_BADBBDIR The bad-block directory could not be read or written.

LVM_LVMRECERR The LVM record, which contains information about the volume group

descriptor area, could not be read.

LVM_NOPVVGDA There are no volume group descriptor areas on this physical volume.

LVM_NOTVGMEM The physical volume is not a member of a volume group.

LVM_PVDAREAD An error occurred while trying to read the volume group descriptor area from

the specified physical volume.

LVM_PVOPNERR The physical volume device could not be opened.

LVM_VGDA_BB A bad block was found in the volume group descriptor area located on the

physical volume that was specified for the query. Therefore, a query cannot

be done from this physical volume.

Related Information

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

762 Technical Reference, Volume 1: Base Operating System and Extensions

lvm_queryvgs Subroutine

Purpose

Queries volume groups and returns information to online volume groups.

Library

Logical Volume Manager Library (liblvm.a)

Syntax

#include <lvm.h>

int lvm_queryvgs (QueryVGS, Kmid)

struct queryvgs **QueryVGS;

mid_t Kmid;

Description

Note: The lvm_queryvgs subroutine uses the sysconfig system call, which requires root user authority,

to query and update kernel data structures describing a volume group. You must have root user

authority to use the lvm_queryvgs subroutine.

The lvm_queryvgs subroutine returns the volume group IDs and major numbers for all volume groups in

the system that are online.

The caller passes the address of a pointer to a queryvgs structure, and the Logical Volume Manager

(LVM) allocates enough space for the structure and returns the address of the structure in the pointer

passed in by the user. The caller also passes in a Kmid parameter, which identifies the entry point of the

logical device driver module:

struct queryvgs {

 long num_vgs;

 struct {

 long major_num

 struct unique_id vg_id;

 } vgs [LVM_MAXVGS];

 }

 Field Description

num_vgs Contains the number of online volume groups on the system. The vgs is an array of the volume group

IDs and major numbers of all online volume groups in the system.

Parameters

 QueryVGS Points to the queryvgs structure.

Kmid Identifies the address of the entry point of the logical volume device driver module.

Return Values

The lvm_queryvgs subroutine returns a value of 0 upon successful completion.

Error Codes

If the lvm_queryvgs subroutine fails, it returns one of the following error codes:

 LVM_ALLOCERR The routine cannot allocate enough space for the complete buffer.

Base Operating System (BOS) Runtime Services (A-P) 763

LVM_INVALID_PARAM An invalid parameter was passed into the routine.

LVM_INVCONFIG An error occurred while attempting to configure this volume group into the kernel.

This error will normally result if the module ID is invalid, if the major number given

is already in use, or if the volume group device could not be opened.

Related Information

List of Logical Volume Subroutines and Logical Volume Programming Overview in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca,

valloc, or posix_memalign Subroutine

Purpose

Provides a complete set of memory allocation, reallocation, deallocation, and heap management tools.

Libraries

Berkeley Compatibility Library (libbsd.a)

Standard C Library (libc.a)

Malloc Subsystem APIs

v malloc

v free

v realloc

v calloc

v mallopt

v mallinfo

v mallinfo_heap

v alloca

v valloc

v posix_memalign

malloc

Syntax

#include <stdlib.h>

void *malloc (Size)

size_t Size;

Description

The malloc subroutine returns a pointer to a block of memory of at least the number of bytes specified by

the Size parameter. The block is aligned so that it can be used for any type of data. Undefined results

occur if the space assigned by the malloc subroutine is overrun.

Parameters

 Size Specifies the size, in bytes, of memory to allocate.

764 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, the malloc subroutine returns a pointer to space suitably aligned for the

storage of any type of object. If the size requested is 0, malloc returns NULL in normal circumstances.

However, if the program was compiled with the macro _LINUX_SOURCE_COMPAT defined, malloc

returns a valid pointer to a space of size 0.

If the request cannot be satisfied for any reason, malloc returns NULL.

Error Codes

 EINVAL 0 bytes was requested (in a mode other than Linux mode), or an internal error was

detected.

ENOMEM Insufficient storage space is available to service the request.

free

Syntax

#include <stdlib.h>

void free (Pointer)

void * Pointer;

Description

The free subroutine deallocates a block of memory previously allocated by the malloc subsystem.

Undefined results occur if Pointer is not an address that has previously been allocated by the malloc

subsystem, or if Pointer has already been deallocated. If Pointer is NULL, no action occurs.

Parameters

 Pointer Specifies a pointer to space previously allocated by the malloc subsystem.

Return Values

The free subroutine does not return a value. Upon successful completion with nonzero arguments, realloc

returns a pointer to the (possibly moved) allocated space. If Size is 0 and Pointer non-NULL, no action

occurs.

Error Codes

The free subroutine does not set errno.

realloc

Syntax

#include <stdlib.h>

void *realloc (Pointer, Size)

void *Pointer;

size_t Size;

Base Operating System (BOS) Runtime Services (A-P) 765

Description

The realloc subroutine changes the size of the memory object pointed to by Pointer to the number of

bytes specified by the Size parameter. The Pointer parameter must point to an address returned by a

malloc subsystem allocation routine, and must not have been deallocated previously. Undefined results

occur if Pointer does not meet these criteria.

The contents of the memory object remain unchanged up to the lesser of the old and new sizes. If the

current memory object cannot be enlarged to satisfy the request, the realloc subroutine acquires a new

memory object and copies the existing data to the new space. The old memory object is then freed. If no

memory object can be acquired to accommodate the request, the object remains unchanged.

If Pointer is NULL, realloc is equivalent to a malloc of the same size.

If Size is 0 and Pointer is not NULL, realloc is equivalent to a free of the same size.

Parameters

 Pointer Specifies a Pointer to space previously allocated by the malloc subsystem.

Size Specifies the new size, in bytes, of the memory object.

Return Values

Upon successful completion with nonzero arguments, realloc returns a pointer to the (possibly moved)

allocated space. If Size is 0 and Pointer non-NULL, return behavior is equivalent to free. If Pointer is

NULL and Size is nonzero, return behavior is equivalent to malloc.

Error Codes

 EINVAL 0 bytes was requested (in a mode other than Linux mode), or an internal error was

detected.

ENOMEM Insufficient storage space is available to service the request.

calloc

Syntax

#include <stdlib.h>

void *calloc (NumberOfElements, ElementSize)

size_t NumberOfElements;

size_t ElementSize;

Description

The calloc subroutine allocates space for an array containing NumberOfElements objects. The

ElementSize parameter specifies the size of each element in bytes. After the array has been allocated, all

bits are initialized to 0.

The order and contiguity of storage allocated by successive calls to the calloc subroutine is unspecified.

The pointer returned points to the first (lowest) byte address of the allocated space. The allocated space is

aligned so that it can be used for any type of data. Undefined results occur if the space assigned by the

calloc subroutine is overrun.

766 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 NumberOfElements Specifies the number of elements in the array.

ElementSize Specifies the size, in bytes, of each element in the array.

Return Values

Upon successful completion, the calloc subroutine returns a pointer to the allocated, zero-initialized array.

If the size requested is 0, calloc returns NULL in normal circumstances. However, if the program was

compiled with the macro _LINUX_SOURCE_COMPAT defined, calloc returns a valid pointer to a space of

size 0.

If the request cannot be satisfied for any reason, calloc returns NULL.

Error Codes

 EINVAL 0 bytes was requested (in a mode other than Linux mode), or an internal error was

detected.

ENOMEM Insufficient storage space is available to service the request.

mallopt

Syntax

#include <malloc.h>

#include <stdlib.h>

int mallopt (Command, Value)

int Command;

int Value;

Description

The mallopt subroutine is provided for source-level compatibility with the System V malloc subroutine.

The mallopt subroutine supports the following commands:

 Command Value Effect

M_MXFAST 0 If called before any other malloc subsystem subroutine, this enables

the Default allocation policy for the process.

M_MXFAST 1 If called before any other malloc subsystem subroutine, this enables

the 3.1 allocation policy for the process.

M_DISCLAIM 0 If called while the Default Allocator is enabled, all free memory in the

process heap is disclaimed.

M_MALIGN N If called at runtime, sets the default malloc allocation alignment to the

value N. The N value must be a power of 2 (greater than or equal to

the size of a pointer).

Parameters

 Command Specifies the mallopt command to be executed.

Value Specifies the size of each element in the array.

Base Operating System (BOS) Runtime Services (A-P) 767

Return Values

Upon successful completion, mallopt returns 0. Otherwise, 1 is returned. If an invalid alignment is

requested (one that is not a power of 2), mallopt fails with a return value of 1, although subsequent calls

to malloc are unaffected and continue to provide the alignment value from before the failed mallopt call.

Error Codes

The mallopt subroutine does not set errno.

mallinfo

Syntax

#include <malloc.h>

#include <stdlib.h>

struct mallinfo mallinfo();

Description

The mallinfo subroutine can be used to obtain information about the heap managed by the malloc

subsystem.

Return Values

The mallinfo subroutine returns a structure of type struct mallinfo, filled in with relevant information and

statistics about the heap. The contents of this structure can be interpreted using the definition of struct

mallinfo in /usr/include/malloc.h.

Error Codes

The mallinfo subroutine does not set errno.

mallinfo_heap

Syntax

#include <malloc.h>

#include <stdlib.h>

struct mallinfo_heap mallinfo_heap (Heap)

int Heap;

Description

In a multiheap context, the mallinfo_heap subroutine can be used to obtain information about a specific

heap managed by the malloc subsystem.

Parameters

 Heap Specifies which heap to query.

Return Values

mallinfo_heap returns a structure of type struct mallinfo_heap, filled in with relevant information and

statistics about the heap. The contents of this structure can be interpreted using the definition of struct

mallinfo_heap in /usr/include/malloc.h.

768 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The mallinfo_heap subroutine does not set errno.

alloca

Syntax

#include <stdlib.h>

char *alloca (Size)

int Size;

Description

The alloca subroutine returns a pointer to a block of memory of at least the number of bytes specified by

the Size parameter. The space is allocated from the stack frame of the caller and is automatically freed

when the calling subroutine returns.

If alloca is used in code compiled with the C++ compiler, #pragma alloca must be added to the source

before the reference to alloca. Alternatively, the -ma compiler option can be used during compilation.

Parameters

 Size Specifies the size, in bytes, of memory to allocate.

Return Values

The alloca subroutine returns a pointer to space of the requested size.

Error Codes

The alloca subroutine does not set errno.

valloc

Syntax

#include <stdlib.h>

void *valloc (Size)

size_t Size;

Description

The valloc subroutine is supported as a compatibility interface in the Berkeley Compatibility Library

(libbsd.a), as well as in libc.a. The valloc subroutine has the same effect as malloc, except that the

allocated memory is aligned to a multiple of the value returned by sysconf (_ SC_PAGESIZE).

Parameters

 Size Specifies the size, in bytes, of memory to allocate.

Base Operating System (BOS) Runtime Services (A-P) 769

Return Values

Upon successful completion, valloc returns a pointer to a memory object that is Size bytes in length,

aligned to a page-boundary. Undefined results occur if the space assigned by the valloc subroutine is

overrun.

If the request cannot be satisfied for any reason, valloc returns NULL.

Error Codes

 EINVAL 0 bytes was requested (in a mode other than Linux mode), or an internal error was

detected.

ENOMEM Insufficient storage space is available to service the request.

posix_memalign

Syntax

#include <stdlib.h>

int posix_memalign(void **Pointer2Pointer, Align, Size)

void ** Pointer2Pointer;

size_t Align;

size_t Size;

Description

The posix_memalign subroutine allocates Size bytes of memory aligned on a boundary specified by

Align. The address of this memory is stored in Pointer2Pointer.

Parameters

 Pointer2Pointer Specifies the location in which the address should be copied.

Align Specifies the alignment of the allocated memory, in bytes. The Align parameter must

be a power-of-two multiple of the size of a pointer.

Size Specifies the size, in bytes, of memory to allocate.

Return Values

Upon successful completion, posix_memalign returns 0. Otherwise, an error number is returned to

indicate the error.

Error Codes

 EINVAL The value of Align is not a power-of-two multiple of the size of a pointer.

ENOMEM Insufficient storage space is available to service the request.

Related Information

The _end, _etext, or _edata (“_end, _etext, or _edata Identifier” on page 220) identifier.

User Defined Malloc Replacement, Debug Malloc, Malloc Multiheap, Malloc Buckets, Malloc Log, Malloc

Trace, System Memory Allocation Using the malloc Subsystem, Subroutines, Example Programs, and

Libraries in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs, and

Understanding Paging Space Allocation Policies section in AIX 5L Version 5.3 System Management

Concepts: Operating System and Devices.

770 Technical Reference, Volume 1: Base Operating System and Extensions

madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move,

min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv, or itom

Subroutine

Purpose

Multiple-precision integer arithmetic.

Library

Berkeley Compatibility Library (libbsd.a)

Syntax

#include <mp.h>

#include <stdio.h>

typedef struct mint {int Length; short * Value} MINT;

madd(a, b, c)

msub(a,b,c)

mult(a,b,c)

mdiv(a,b, q, r)

pow(a,b, m,c)

gcd(a,b,c)

invert(a,b,c)

rpow(a,n,c)

msqrt(a,b,r)

mcmp(a,b)

move(a,b)

min(a)

omin(a)

fmin(a,f)

m_in(a, n,f)

mout(a)

omout(a)

fmout(a,f)

m_out(a,n,f)

MINT *a, *b, *c, *m, *q, *r;

FILE * f;

int n;

sdiv(a,n,q,r)

MINT *a, *q;

short n;

short *r;

MINT *itom(n)

Description

These subroutines perform arithmetic on integers of arbitrary Length. The integers are stored using the

defined type MINT. Pointers to a MINT can be initialized using the itom subroutine, which sets the initial

Value to n. After that, space is managed automatically by the subroutines.

The madd subroutine, msub subroutine, and mult subroutine assign to c the sum, difference, and

product, respectively, of a and b.

The mdiv subroutine assigns to q and r the quotient and remainder obtained from dividing a by b.

Base Operating System (BOS) Runtime Services (A-P) 771

The sdiv subroutine is like the mdiv subroutine except that the divisor is a short integer n and the

remainder is placed in a short whose address is given as r.

The msqrt subroutine produces the integer square root of a in b and places the remainder in r.

The rpow subroutine calculates in c the value of a raised to the (regular integral) power n, while the pow

subroutine calculates this with a full multiple precision exponent b and the result is reduced modulo m.

Note: The pow subroutine is also present in the IEEE Math Library, libm.a, and the System V Math

Library, libmsaa.a. The pow subroutine in libm.a or libmsaa.a may be loaded in error unless the

libbsd.a library is listed before the libm.a or libmsaa.a library on the command line.

The gcd subroutine returns the greatest common denominator of a and b in c, and the invert subroutine

computes c such that a*c mod b=1, for a and b relatively prime.

The mcmp subroutine returns a negative, 0, or positive integer value when a is less than, equal to, or

greater than b, respectively.

The move subroutine copies a to b. The min subroutine and mout subroutine do decimal input and output

while the omin subroutine and omout subroutine do octal input and output. More generally, the fmin

subroutine and fmout subroutine do decimal input and output using file f, and the m_in subroutine and

m_out subroutine do inputs and outputs with arbitrary radix n. On input, records should have the form of

strings of digits terminated by a new line; output records have a similar form.

Programs that use the multiple-precision arithmetic functions must link with the libbsd.a library.

Bases for input and output should be less than or equal to 10.

pow is also the name of a standard math library routine.

Parameters

 Length Specifies the length of an integer.

Value Specifies the initial value to be used in the routine.

a Specifies the first operand of the multiple-precision routines.

b Specifies the second operand of the multiple-precision routines.

c Contains the integer result.

f A pointer of the type FILE that points to input and output files used with input/output routines.

m Indicates modulo.

n Provides a value used to specify radix with m_in and m_out, power with rpow, and divisor with sdiv.

q Contains the quotient obtained from mdiv.

r Contains the remainder obtained from mdiv, sdiv, and msqrt.

Error Codes

Error messages and core images are displayed as a result of illegal operations and running out of

memory.

Files

 /usr/lib/libbsd.a Object code library.

Related Information

The bc command, dc command.

772 Technical Reference, Volume 1: Base Operating System and Extensions

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

madvise Subroutine

Purpose

Advises the system of expected paging behavior.

Library

Standard C Library (libc.a).

Syntax

#include <sys/types.h>

#include <sys/mman.h>

int madvise(addr, len, behav)

caddr_t addr;

size_t len;

int behav;

Description

The madvise subroutine permits a process to advise the system about its expected future behavior in

referencing a mapped file region or anonymous memory region.

The madvise subroutine has no functionality and is supported for compatibility only.

Parameters

 addr Specifies the starting address of the memory region. Must be a multiple of the page size returned by the

sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter.

len Specifies the length, in bytes, of the memory region. If the len value is not a multiple of page size as

returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter, the length

of the region will be rounded up to the next multiple of the page size.

behav Specifies the future behavior of the memory region. The following values for the behav parameter are

defined in the /usr/include/sys/mman.h file:

Value Paging Behavior Message

MADV_NORMAL

The system provides no further special treatment for the memory region.

MADV_RANDOM

The system expects random page references to that memory region.

MADV_SEQUENTIAL

The system expects sequential page references to that memory region.

MADV_WILLNEED

The system expects the process will need these pages.

MADV_DONTNEED

The system expects the process does not need these pages.

MADV_SPACEAVAIL

The system will ensure that memory resources are reserved.

Base Operating System (BOS) Runtime Services (A-P) 773

Return Values

When successful, the madvise subroutine returns 0. Otherwise, it returns -1 and sets the errno global

variable to indicate the error.

Error Codes

If the madvise subroutine is unsuccessful, the errno global variable can be set to one of the following

values:

 EINVAL The behav parameter is invalid.

ENOSPC The behav parameter specifies MADV_SPACEAVAIL and resources cannot be reserved.

Related Information

The mmap (“mmap or mmap64 Subroutine” on page 803) subroutine, sysconf subroutine.

List of Memory Manipulation Services and Understanding Paging Space Programming Requirements in

AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

makecontext or swapcontext Subroutine

Purpose

Modifies the context specified by ucp.

Library

(libc.a)

Syntax

#include <ucontext.h>

void makecontext (ucontext_t *ucp, (void *func) (), int argc, ...);
int swapcontext (uncontext_t *oucp, const uncontext_t *ucp);

Description

The makecontext subroutine modifies the context specified by ucp, which has been initialized using

getcontext subroutine. When this context is resumed using swapcontext subroutine or setcontext

subroutine, program execution continues by calling func parameter, passing it the arguments that follow

argc in the makecontext subroutine.

Before a call is made to makecontext subroutine, the context being modified should have a stack

allocated for it. The value of argc must match the number of integer argument passed to func parameter,

otherwise the behavior is undefined.

The uc_link member is used to determine the context that will be resumed when the context being

modified by makecontext subroutine returns. The uc_link member should be initialized prior to the call to

makecontext subroutine.

The swapcontext subroutine function saves the current context in the context structure pointed to by oucp

parameter and sets the context to the context structure pointed to by ucp.

Parameters

 ucp A pointer to a user structure.

774 Technical Reference, Volume 1: Base Operating System and Extensions

oucp A pointer to a user structure.

func A pointer to a function to be called when ucp is restored.

argc The number of arguments being passed to func parameter.

Return Values

On successful completion, swapcontext subroutine returns 0. Otherwise, a value of -1 is returned and

errno is set to indicate the error.

 -1 Not successful and the errno global variable is set to one of the following error codes.

Error Codes

 ENOMEM The ucp argument does not have enough stack left to complete the operation.

Related Information

The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

subroutine, exit (“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239) subroutine, wait

subroutine, getcontext (“getcontext or setcontext Subroutine” on page 350)subroutine, sigaction

subroutine, and sigprocmask subroutine.

matherr Subroutine

Purpose

Math error handling function.

Library

System V Math Library (libmsaa.a)

Syntax

#include <math.h>

int matherr (x)

struct exception *x;

Description

The matherr subroutine is called by math library routines when errors are detected.

You can use matherr or define your own procedure for handling errors by creating a function named

matherr in your program. Such a user-designed function must follow the same syntax as matherr. When

an error occurs, a pointer to the exception structure will be passed to the user-supplied matherr function.

This structure, which is defined in the math.h file, includes:

int type;

char *name;

double arg1, arg2, retval;

Base Operating System (BOS) Runtime Services (A-P) 775

Parameters

 type Specifies an integer describing the type of error that has occurred from the following list defined by the

math.h file:

DOMAIN

Argument domain error

SING Argument singularity

OVERFLOW

Overflow range error

UNDERFLOW

Underflow range error

TLOSS Total loss of significance

PLOSS

Partial loss of significance.

name Points to a string containing the name of the routine that caused the error.

arg1 Points to the first argument with which the routine was invoked.

arg2 Points to the second argument with which the routine was invoked.

retval Specifies the default value that is returned by the routine unless the user’s matherr function sets it to a

different value.

Return Values

If the user’s matherr function returns a non-zero value, no error message is printed, and the errno global

variable will not be set.

Error Codes

If the function matherr is not supplied by the user, the default error-handling procedures, described with

the math library routines involved, will be invoked upon error. In every case, the errno global variable is

set to EDOM or ERANGE and the program continues.

Related Information

The bessel: j0, j1, jn, y0, y1, yn (“bessel: j0, j1, jn, y0, y1, or yn Subroutine” on page 117) subroutine,

exp, expm1, log, log10, log1p, pow (“exp, expf, or expl Subroutine” on page 241) subroutine, lgamma

(“gamma Subroutine” on page 329) subroutine, hypot, cabs (“hypot, hypotf, or hypotl Subroutine” on page

519) subroutine, sin, cos, tan, asin, acos, atan,atan2 subroutine, sinh, cosh, tanh subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

MatchAllAuths, MatchAnyAuths, MatchAllAuthsList, or

MatchAnyAuthsList Subroutine

Purpose

Compare authorizations.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

776 Technical Reference, Volume 1: Base Operating System and Extensions

int MatchAllAuths(CommaListOfAuths)

char *CommaListOfAuths;

int MatchAllAuthsList(CommaListOfAuths, NSListOfAuths)

char *CommaListOfAuths;

char *NSListOfAuths;

int MatchAnyAuths(CommaListOfAuths)

char *CommaListOfAuths;

int MatchAnyAuthsList(CommaListOfAuths, NSListOfAuths)

char *CommaListOfAuths;

char *NSListOfAuths;

Description

The MatchAllAuthsList subroutine compares the CommaListOfAuths against the NSListOfAuths. It

returns a non-zero value if all the authorizations in CommaListOfAuths are contained in NSListOfAuths.

The MatchAllAuths subroutine calls the MatchAllAuthsList subroutine passing in the results of the

GetUserAuths subroutine in place of NSListOfAuths. If NSListOfAuths contains the OFF keyword,

MatchAllAuthsList will return a zero value. If NSListOfAuths contains the ALL keyword and not the OFF

keyword, MatchAllAuthsList will return a non-zero value.

The MatchAnyAuthsList subroutine compares the CommaListOfAuths against the NSListOfAuths. It

returns a non-zero value if one or more of the authorizations in CommaListOfAuths are contained in

NSListOfAuths. The MatchAnyAuths subroutine calls the MatchAnyAuthsList subroutine passing in the

results of the GetUserAuths subroutine in place of NSListOfAuths. If NSListOfAuths contains the OFF

keyword, MatchAnyAuthsList will return a zero value. If NSListOfAuths contains the ALL keyword and not

the OFF keyword, MatchAnyAuthsList will return a non-zero value.

Parameters

 CommaListOfAuths Specifies one or more authorizations, each separated by a comma.

NSListOfAuths Specifies zero or more authorizations. Each authorization is null terminated. The last

entry in the list must be a null string.

Return Values

The subroutines return a non-zero value if a proper match was found. Otherwise, they will return zero. If

an error occurs, the subroutines will return zero and set errno to indicate the error. If the subroutine

returns zero and no error occurred, errno is set to zero.

mblen Subroutine

Purpose

Determines the length in bytes of a multibyte character.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int mblen(MbString, Number)

const char *MbString;

size_t Number;

Base Operating System (BOS) Runtime Services (A-P) 777

Description

The mblen subroutine determines the length, in bytes, of a multibyte character.

Parameters

 Mbstring Points to a multibyte character string.

Number Specifies the maximum number of bytes to consider.

Return Values

The mblen subroutine returns 0 if the MbString parameter points to a null character. It returns -1 if a

character cannot be formed from the number of bytes specified by the Number parameter. If MbString is a

null pointer, 0 is returned.

Related Information

The “mbslen Subroutine” on page 784, “mbstowcs Subroutine” on page 790, and “mbtowc Subroutine” on

page 791.

Subroutines, Example Programs, and Libraries, in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overview and Multibyte Code and Wide Character Code Conversion

Subroutines in AIX 5L Version 5.3 National Language Support Guide and Reference.

mbrlen Subroutine

Purpose

Get number of bytes in a character (restartable).

Library

Standard Library (libc.a)

Syntax

#include <wchar.h>

size_t mbrlen (const char *s, size_t n, mbstate_t *ps)

Description

If s is not a null pointer, mbrlen determines the number of bytes constituting the character pointed to by s.

It is equivalent to:

 mbstate_t internal;

 mbrtowc(NULL, s, n, ps != NULL ? ps : &internal);

If ps is a null pointer, the mbrlen function uses its own internal mbstate_t object, which is initialized at

program startup to the initial conversion state. Otherwise, the mbstate_t object pointed to by ps is used to

completely describe the current conversion state of the associated character sequence. The

implementation will behave as if no function defined in this specification calls mbrlen.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

778 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

The mbrlen function returns the first of the following that applies:

 0 If the next n or fewer bytes complete the character that corresponds to the null wide-character

positive If the next n or fewer bytes complete a valid character; the value returned is the number of

bytes that complete the character.

(size_t)-2 If the next n bytes contribute to an incomplete but potentially valid character, and all n bytes

have been processed. When n has at least the value of the MB_CUR_MAX macro, this case

can only occur if s points at a sequence of redundant shift sequences (for implementations with

state-dependent encodings).

(size_t)-1 If an encoding error occurs, in which case the next n or fewer bytes do not contribute to a

complete and valid character. In this case, EILSEQ is stored in errno and the conversion state

is undefined.

Error Codes

The mbrlen function may fail if:

 EINVAL ps points to an object that contains an invalid conversion state.

EILSEQ Invalid character sequence is detected.

Related Information

The mbsinit (“mbsinit Subroutine” on page 783) subroutine, mbrtowc (“mbrtowc Subroutine”) subroutine.

mbrtowc Subroutine

Purpose

Convert a character to a wide-character code (restartable).

Library

Standard Library (libc.a)

Syntax

#include <wchar.h>

size_t mbrtowc (wchar_t * pwc, const char * s, size_t n, mbstate_t * ps) ;

Description

If s is a null pointer, the mbrtowc function is equivalent to the call:

mbrtowc(NULL, ’’’’, 1, ps)

In this case, the values of the arguments pwc and n are ignored.

If s is not a null pointer, the mbrtowc function inspects at most n bytes beginning at the byte pointed to by

s to determine the number of bytes needed to complete the next character (including any shift sequences).

If the function determines that the next character is completed, it determines the value of the

corresponding wide-character and then, if pwc is not a null pointer, stores that value in the object pointed

to by pwc. If the corresponding wide-character is the null wide-character, the resulting state described is

the initial conversion state.

If ps is a null pointer, the mbrtowc function uses its own internal mbstate_t object, which is initialized at

program startup to the initial conversion state. Otherwise, the mbstate_t object pointed to by ps is used to

Base Operating System (BOS) Runtime Services (A-P) 779

completely describe the current conversion state of the associated character sequence. The

implementation will behave as if no function defined in this specification calls mbrtowc.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values

The mbrtowc function returns the first of the following that applies:

 0 If the next n or fewer bytes complete the character that corresponds to the null wide-character

(which is the value stored).

positive If the next n or fewer bytes complete a valid character (which is the value stored); the value

returned is the number of bytes that complete the character.

(size_t)-2 If the next n bytes contribute to an incomplete but potentially valid character, and all n bytes

have been processed (no value is stored). When n has at least the value of the MB_CUR_MAX

macro, this case can only occur if s points at a sequence of redundant shift sequences (for

implementations with state-dependent encodings).

(size_t)-1 If an encoding error occurs, in which case the next n or fewer bytes do not contribute to a

complete and valid character (no value is stored). In this case, EILSEQ is stored in errno and

the conversion state is undefined.

Error Codes

The mbrtowc function may fail if:

 EINVAL ps points to an object that contains an invalid conversion state.

EILSEQ Invalid character sequence is detected.

Related Information

The mbsinit (“mbsinit Subroutine” on page 783) subroutine.

mbsadvance Subroutine

Purpose

Advances to the next multibyte character.

Note: The mbsadvance subroutine is specific to the manufacturer. It is not defined in the POSIX, ANSI,

or X/Open standards. Use of this subroutine may affect portability.

Library

Standard C Library (libc.a)

Syntax

#include <mbstr.h>

char *mbsadvance (S)

const char *S;

Description

The mbsadvance subroutine locates the next character in a multibyte character string. The LC_CTYPE

category affects the behavior of the mbsadvance subroutine.

780 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 S Contains a multibyte character string.

Return Values

If the S parameter is not a null pointer, the mbsadvance subroutine returns a pointer to the next multibyte

character in the string pointed to by the S parameter. The character at the head of the string pointed to by

the S parameter is skipped. If the S parameter is a null pointer or points to a null string, a null pointer is

returned.

Examples

To find the next character in a multibyte string, use the following:

#include <mbstr.h>

#include <locale.h>

#include <stdlib.h>

main()

{

 char *mbs, *pmbs;

 (void) setlocale(LC_ALL, "");

 /*

 ** Let mbs point to the beginning of a multi-byte string.

 */

 pmbs = mbs;

 while(pmbs){

 pmbs = mbsadvance(mbs);

 /* pmbs points to the next multi-byte character

 ** in mbs */

}

Related Information

The mbsinvalid (“mbsinvalid Subroutine” on page 784) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

mbscat, mbscmp, or mbscpy Subroutine

Purpose

Performs operations on multibyte character strings.

Library

Standard C Library (libc.a)

Syntax

#include <mbstr.h>

char *mbscat(MbString1, MbString2)

char *MbString1, *MbString2;

int mbscmp(MbString1, MbString2)

char *MbString1, *MbString2;

Base Operating System (BOS) Runtime Services (A-P) 781

char *mbscpy(MbString1, MbString2)

char *MbString1, *MbString2;

Description

The mbscat, mbscmp, and mbscpy subroutines operate on null-terminated multibyte character strings.

The mbscat subroutine appends multibyte characters from the MbString2 parameter to the end of the

MbString1 parameter, appends a null character to the result, and returns MbString1.

The mbscmp subroutine compares multibyte characters based on their collation weights as specified in

the LC_COLLATE category. The mbscmp subroutine compares the MbString1 parameter to the

MbString2 parameter, and returns an integer greater than 0 if MbString1 is greater than MbString2. It

returns 0 if the strings are equivalent and returns an integer less than 0 if MbString1 is less than

MbString2.

The mbscpy subroutine copies multibyte characters from the MbString2 parameter to the MbString1

parameter and returns MbString1. The copy operation terminates with the copying of a null character.

Related Information

The mbsncat, mbsncmp, mbsncpy (“mbsncat, mbsncmp, or mbsncpy Subroutine” on page 785)

subroutine, wcscat, wcscmp, wcscpy subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

mbschr Subroutine

Purpose

Locates a character in a multibyte character string.

Library

Standard C Library (libc.a)

Syntax

#include <mbstr.h>

char *mbschr(MbString, MbCharacter)

char *MbString;

mbchar_t MbCharacter;

Description

The mbschr subroutine locates the first occurrence of the value specified by the MbCharacter parameter

in the string pointed to by the MbString parameter. The MbCharacter parameter specifies a multibyte

character represented as an integer. The terminating null character is considered to be part of the string.

The LC_CTYPE category affects the behavior of the mbschr subroutine.

782 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 MbString Points to a multibyte character string.

MbCharacter Specifies a multibyte character represented as an integer.

Return Values

The mbschr subroutine returns a pointer to the value specified by the MbCharacter parameter within the

multibyte character string, or a null pointer if that value does not occur in the string.

Related Information

The “mbspbrk Subroutine” on page 786, “mbsrchr Subroutine” on page 787, “mbstomb Subroutine” on

page 789, wcschr subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

mbsinit Subroutine

Purpose

Determine conversion object status.

Library

Standard Library (libc.a)

Syntax

#include <wchar.h>

int mbsinit (const mbstate_t * p) ;

Description

If ps is not a null pointer, the mbsinit function determines whether the object pointed to by ps describes

an initial conversion state.

The mbstate_t object is used to describe the current conversion state from a particular character

sequence to a wide-character sequence (or vice versa) under the rules of a particular setting of the

LC_CTYPE category of the current locale.

The initial conversion state corresponds, for a conversion in either direction, to the beginning of a new

character sequence in the initial shift state. A zero valued mbstate_t object is at least one way to describe

an initial conversion state. A zero valued mbstate_t object can be used to initiate conversion involving any

character sequence, in any LC_CTYPE category setting.

Return Values

The mbsinit function returns non-zero if ps is a null pointer, or if the pointed-to object describes an initial

conversion state; otherwise, it returns zero.

If an mbstate_t object is altered by any of the functions described as restartable, and is then used with

a different character sequence, or in the other conversion direction, or with a different LC_CTYPE category

setting than on earlier function calls, the behavior is undefined.

Base Operating System (BOS) Runtime Services (A-P) 783

Related Information

The “mbrlen Subroutine” on page 778, “mbrtowc Subroutine” on page 779, wctomb subroutine,

“mbsrtowcs Subroutine” on page 788, wcsrtombs subroutine.

mbsinvalid Subroutine

Purpose

Validates characters of multibyte character strings.

Note: The mbsinvalid subroutine is specific to the manufacturer. It is not defined in the POSIX, ANSI, or

X/Open standards. Use of this subroutine may affect portability.

Library

Standard C Library (libc.a)

Syntax

#include <mbstr.h>

char *mbsinvalid (S)

const char *S;

Description

The mbsinvalid subroutine examines the string pointed to by the S parameter to determine the validity of

characters. The LC_CTYPE category affects the behavior of the mbsinvalid subroutine.

Parameters

 S Contains a multibyte character string.

Return Values

The mbsinvalid subroutine returns a pointer to the byte following the last valid multibyte character in the S

parameter. If all characters in the S parameter are valid multibyte characters, a null pointer is returned. If

the S parameter is a null pointer, the behavior of the mbsinvalid subroutine is unspecified.

Related Information

The “mbsadvance Subroutine” on page 780.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference

mbslen Subroutine

Purpose

Determines the number of characters (code points) in a multibyte character string.

Note: The mbslen subroutine is specific to the manufacturer. It is not defined in the POSIX, ANSI, or

X/Open standards. Use of this subroutine may affect portability.

784 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

size_t mbslen(MbString)

char *mbs;

Description

The mbslen subroutine determines the number of characters (code points) in a multibyte character string.

The LC_CTYPE category affects the behavior of the mbslen subroutine.

Parameters

 MbString Points to a multibyte character string.

Return Values

The mbslen subroutine returns the number of multibyte characters in a multibyte character string. It

returns 0 if the MbString parameter points to a null character or if a character cannot be formed from the

string pointed to by this parameter.

Related Information

The mblen (“mblen Subroutine” on page 777) subroutine, mbstowcs (“mbstowcs Subroutine” on page

790) subroutine, mbtowc (“mbtowc Subroutine” on page 791) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overview and Multibyte Code and Wide Character Code Conversion

Subroutines in AIX 5L Version 5.3 National Language Support Guide and Reference.

mbsncat, mbsncmp, or mbsncpy Subroutine

Purpose

Performs operations on a specified number of null-terminated multibyte characters.

Note: These subroutines are specific to the manufacturer. They are not defined in the POSIX, ANSI, or

X/Open standards. Use of these subroutines may affect portability.

Library

Standard C Library (libc.a)

Syntax

#include <mbstr.h>

char *mbsncat(MbString1, MbString2, Number)

char * MbString1, * MbString2;

size_t Number;

Base Operating System (BOS) Runtime Services (A-P) 785

int mbsncmp(MbString1, MbString2, Number)

char *MbString1, *MbString2;

size_t Number;

char *mbsncpy(MbString1, MbString2, Number)

char *MbString1, *MbString2;

size_t Number;

Description

The mbsncat, mbsncmp, and mbsncpy subroutines operate on null-terminated multibyte character

strings.

The mbsncat subroutine appends up to the specified maximum number of multibyte characters from the

MbString2 parameter to the end of the MbString1 parameter, appends a null character to the result, and

then returns the MbString1 parameter.

The mbsncmp subroutine compares the collation weights of multibyte characters. The LC_COLLATE

category specifies the collation weights for all characters in a locale. The mbsncmp subroutine compares

up to the specified maximum number of multibyte characters from the MbString1 parameter to the

MbString2 parameter. It then returns an integer greater than 0 if MbString1 is greater than MbString2. It

returns 0 if the strings are equivalent. It returns an integer less than 0 if MbString1 is less than MbString2.

The mbsncpy subroutine copies up to the value of the Number parameter of multibyte characters from the

MbString2 parameter to the MbString1 parameter and returns MbString1. If MbString2 is shorter than

Number multi-byte characters, MbString1 is padded out to Number characters with null characters.

Parameters

 MbString1 Contains a multibyte character string.

MbString2 Contains a multibyte character string.

Number Specifies a maximum number of characters.

Related Information

The “mbscat, mbscmp, or mbscpy Subroutine” on page 781, “mbscat, mbscmp, or mbscpy Subroutine” on

page 781, “mbscat, mbscmp, or mbscpy Subroutine” on page 781, wcsncat subroutine, wcsncmp

subroutine, wcsncpy subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

mbspbrk Subroutine

Purpose

Locates the first occurrence of multibyte characters or code points in a string.

Note: The mbspbrk subroutine is specific to the manufacturer. It is not defined in the POSIX, ANSI, or

X/Open standards. Use of this subroutine may affect portability.

Library

Standard C Library (libc.a)

786 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <mbstr.h>

char *mbspbrk(MbString1, MbString2)

char *MbString1, *MbString2;

Description

The mbspbrk subroutine locates the first occurrence in the string pointed to by the MbString1 parameter,

of any character of the string pointed to by the MbString2 parameter.

Parameters

 MbString1 Points to the string being searched.

MbString2 Pointer to a set of characters in a string.

Return Values

The mbspbrk subroutine returns a pointer to the character. Otherwise, it returns a null character if no

character from the string pointed to by the MbString2 parameter occurs in the string pointed to by the

MbString1 parameter.

Related Information

The “mbschr Subroutine” on page 782, “mbsrchr Subroutine,” “mbstomb Subroutine” on page 789,

wcspbrk subroutine, wcswcs subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

mbsrchr Subroutine

Purpose

Locates a character or code point in a multibyte character string.

Library

Standard C Library (libc.a)

Syntax

#include <mbstr.h>

char *mbsrchr(MbString, MbCharacter)

char *MbString;

int MbCharacter;

Description

The mbschr subroutine locates the last occurrence of the MbCharacter parameter in the string pointed to

by the MbString parameter. The MbCharacter parameter is a multibyte character represented as an

integer. The terminating null character is considered to be part of the string.

Base Operating System (BOS) Runtime Services (A-P) 787

Parameters

 MbString Points to a multibyte character string.

MbCharacter Specifies a multibyte character represented as an integer.

Return Values

The mbsrchr subroutine returns a pointer to the MbCharacter parameter within the multibyte character

string. It returns a null pointer if MbCharacter does not occur in the string.

Related Information

The “mbschr Subroutine” on page 782, “mbspbrk Subroutine” on page 786, “mbstomb Subroutine” on page

789, wcsrchr subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference

mbsrtowcs Subroutine

Purpose

Convert a character string to a wide-character string (restartable).

Library

Standard Library (libc.a)

Syntax

#include <wchar.h>

size_t mbsrtowcs ((wchar_t * dst, const char ** src, size_t len, mbstate_t * ps) ;

Description

The mbsrtowcs function converts a sequence of characters, beginning in the conversion state described

by the object pointed to by ps, from the array indirectly pointed to by src into a sequence of corresponding

wide-characters. If dst is not a null pointer, the converted characters are stored into the array pointed to by

dst. Conversion continues up to and including a terminating null character, which is also stored.

Conversion stops early in either of the following cases:

v When a sequence of bytes is encountered that does not form a valid character.

v When len codes have been stored into the array pointed to by dst (and dst is not a null pointer).

Each conversion takes place as if by a call to the mbrtowc function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if

conversion stopped due to reaching a terminating null character) or the address just past the last character

converted (if any). If conversion stopped due to reaching a terminating null character, and if dst is not a

null pointer, the resulting state described is the initial conversion state.

If ps is a null pointer, the mbsrtowcs function uses its own internal mbstate_t object, which is initialised at

program startup to the initial conversion state. Otherwise, the mbstate_t object pointed to by ps is used to

completely describe the current conversion state of the associated character sequence. The

implementation will behave as if no function defined in this specification calls mbsrtowcs.

788 Technical Reference, Volume 1: Base Operating System and Extensions

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values

If the input conversion encounters a sequence of bytes that do not form a valid character, an encoding

error occurs. In this case, the mbsrtowcs function stores the value of the macro EILSEQ in errno and

returns (size_t)-1); the conversion state is undefined. Otherwise, it returns the number of characters

successfully converted, not including the terminating null (if any).

Error Codes

The mbsrtowcs function may fail if:

 EINVAL ps points to an object that contains an invalid conversion state.

EILSEQ Invalid character sequence is detected.

Related Information

The “mbsinit Subroutine” on page 783, “mbrtowc Subroutine” on page 779.

mbstomb Subroutine

Purpose

Extracts a multibyte character from a multibyte character string.

Note: The mbstomb subroutine is specific to the manufacturer. It is not defined in the POSIX, ANSI, or

X/Open standards. Use of this subroutine may affect portability.

Library

Standard C Library (libc.a)

Syntax

#include <mbstr.h>

mbchar_t mbstomb (MbString)

const char *MbString;

Description

The mbstomb subroutine extracts the multibyte character pointed to by the MbString parameter from the

multibyte character string. The LC_CTYPE category affects the behavior of the mbstomb subroutine.

Parameters

 MbString Contains a multibyte character string.

Return Values

The mbstomb subroutine returns the code point of the multibyte character as a mbchar_t data type. If an

unusable multibyte character is encountered, a value of 0 is returned.

Related Information

The “mbschr Subroutine” on page 782, “mbspbrk Subroutine” on page 786, “mbsrchr Subroutine” on page

787.

Base Operating System (BOS) Runtime Services (A-P) 789

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

mbstowcs Subroutine

Purpose

Converts a multibyte character string to a wide character string.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

size_t mbstowcs(WcString, String, Number)

wchar_t *WcString;

const char *String;

size_t Number;

Description

The mbstowcs subroutine converts the sequence of multibyte characters pointed to by the String

parameter to wide characters and places the results in the buffer pointed to by the WcString parameter.

The multibyte characters are converted until a null character is reached or until the number of wide

characters specified by the Number parameter have been processed.

Parameters

 WcString Points to the area where the result of the conversion is stored.

String Points to a multibyte character string.

Number Specifies the maximum number of wide characters to be converted.

Return Values

The mbstowcs subroutine returns the number of wide characters converted, not including a null

terminator, if any. If an invalid multibyte character is encountered, a value of -1 is returned. The WcString

parameter does not include a null terminator if the value Number is returned.

If WcString is a null wide character pointer, the mbstowcs subroutine returns the number of elements

required to store the wide character codes in an array.

Error Codes

The mbstowcs subroutine fails if the following occurs:

 EILSEQ Invalid byte sequence is detected.

Related Information

The “mblen Subroutine” on page 777, “mbslen Subroutine” on page 784, “mbtowc Subroutine” on page

791, wcstombs subroutine, wctomb subroutine.

790 Technical Reference, Volume 1: Base Operating System and Extensions

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overview for Programming and Multibyte Code and Wide Character Code

Conversion Subroutines in AIX 5L Version 5.3 National Language Support Guide and Reference.

mbswidth Subroutine

Purpose

Determines the number of multibyte character string display columns.

Note: The mbswidth subroutine is specific to this manufacturer. It is not defined in the POSIX, ANSI, or

X/Open standards. Use of this subroutine may affect portability.

Library

Standard C Library (libc.a)

Syntax

#include <mbstr.h>

int mbswidth (MbString, Number)

const char *MbString;

size_t Number;

Description

The mbswidth subroutine determines the number of display columns required for a multibyte character

string.

Parameters

 MbString Contains a multibyte character string.

Number Specifies the number of bytes to read from the s parameter.

Return Values

The mbswidth subroutine returns the number of display columns that will be occupied by the MbString

parameter if the number of bytes (specified by the Number parameter) read from the MbString parameter

form valid multibyte characters. If the MbString parameter points to a null character, a value of 0 is

returned. If the MbString parameter does not point to valid multibyte characters, -1 is returned. If the

MbString parameter is a null pointer, the behavior of the mbswidth subroutine is unspecified.

Related Information

The wcswidth subroutine, wcwidth subroutine.

National Language Support Overview in AIX 5L Version 5.3 National Language Support Guide and

Reference.

mbtowc Subroutine

Purpose

Converts a multibyte character to a wide character.

Base Operating System (BOS) Runtime Services (A-P) 791

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

int mbtowc (WideCharacter, String, Number)

wchar_t *WideCharacter;

const char *String;

size_t Number;

Description

The mbtowc subroutine converts a multibyte character to a wide character and returns the number of

bytes of the multibyte character.

The mbtowc subroutine determines the number of bytes that comprise the multibyte character pointed to

by the String parameter. It then converts the multibyte character to a corresponding wide character and, if

the WideCharacter parameter is not a null pointer, places it in the location pointed to by the WideCharacter

parameter. If the WideCharacter parameter is a null pointer, the mbtowc subroutine returns the number of

converted bytes but does not change the WideCharacter parameter value. If the WideCharacter parameter

returns a null value, the multibyte character is not converted.

Parameters

 WideCharacter Specifies the location where a wide character is to be placed.

String Specifies a multibyte character.

Number Specifies the maximum number of bytes of a multibyte character.

Return Values

The mbtowc subroutine returns a value of 0 if the String parameter is a null pointer. The subroutine

returns a value of -1 if the bytes pointed to by the String parameter do not form a valid multibyte character

before the number of bytes specified by the Number parameter (or fewer) have been processed. It then

sets the errno global variable to indicate the error. Otherwise, the number of bytes comprising the

multibyte character is returned.

Error Codes

The mbtowc subroutine fails if the following occurs:

 EILSEQ Invalid byte sequence is detected.

Related Information

The “mblen Subroutine” on page 777, “mbslen Subroutine” on page 784, “mbstowcs Subroutine” on page

790, wcstombs subroutine, wctomb subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overview and Multibyte Code and Wide Character Code Conversion

Subroutines in AIX 5L Version 5.3 National Language Support Guide and Reference.

792 Technical Reference, Volume 1: Base Operating System and Extensions

memccpy, memchr, memcmp, memcpy, memset or memmove

Subroutine

Purpose

Performs memory operations.

Library

Standard C Library (libc.a)

Syntax

#include <memory.h>

void *memccpy (Target, Source, C, N)

void *Target;

const void *Source;

int C;

size_t N;

void *memchr (S, C, N)

const void *S;

int C;

size_t N;

int memcmp (Target, Source, N)

const void *Target, *Source;

size_t N;

void *memcpy (Target, Source, N)

void *Target;

const void *Source;

size_t N;

void *memset (S, C, N)

void *S;

int C;

size_t N;

void *memmove (Target, Source, N)

void *Source;

const void *Target;

size_t N;

Description

The memory subroutines operate on memory areas. A memory area is an array of characters bounded by

a count. The memory subroutines do not check for the overflow of any receiving memory area. All of the

memory subroutines are declared in the memory.h file.

The memccpy subroutine copies characters from the memory area specified by the Source parameter into

the memory area specified by the Target parameter. The memccpy subroutine stops after the first

character specified by the C parameter (converted to the unsigned char data type) is copied, or after N

characters are copied, whichever comes first. If copying takes place between objects that overlap, the

behavior is undefined.

The memcmp subroutine compares the first N characters as the unsigned char data type in the memory

area specified by the Target parameter to the first N characters as the unsigned char data type in the

memory area specified by the Source parameter.

The memcpy subroutine copies N characters from the memory area specified by the Source parameter to

the area specified by the Target parameter and then returns the value of the Target parameter.

Base Operating System (BOS) Runtime Services (A-P) 793

The memset subroutine sets the first N characters in the memory area specified by the S parameter to the

value of character C and then returns the value of the S parameter.

Like the memcpy subroutine, the memmove subroutine copies N characters from the memory area

specified by the Source parameter to the area specified by the Target parameter. However, if the areas of

the Source and Target parameters overlap, the move is performed nondestructively, proceeding from right

to left.

The memccpy subroutine is not in the ANSI C library.

Parameters

 Target Points to the start of a memory area.

Source Points to the start of a memory area.

C Specifies a character to search.

N Specifies the number of characters to search.

S Points to the start of a memory area.

Return Values

The memccpy subroutine returns a pointer to character C after it is copied into the area specified by the

Target parameter, or a null pointer if the C character is not found in the first N characters of the area

specified by the Source parameter.

The memchr subroutine returns a pointer to the first occurrence of the C character in the first N

characters of the memory area specified by the S parameter, or a null pointer if the C character is not

found.

The memcmp subroutine returns the following values:

 Less than 0 If the value of the Target parameter is less than the values of the Source parameter.

Equal to 0 If the value of the Target parameter equals the value of the Source parameter.

Greater than 0 If the value of the Target parameter is greater than the value of the Source parameter.

Related Information

The swab subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

mincore Subroutine

Purpose

Determines residency of memory pages.

Library

Standard C Library (libc.a).

794 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

int mincore (addr, len, * vec)

caddr_t addr;

size_t len;

char *vec;

Description

The mincore subroutine returns the primary-memory residency status for regions created from calls made

to the mmap (“mmap or mmap64 Subroutine” on page 803) subroutine. The status is returned as a

character for each memory page in the range specified by the addr and len parameters. The least

significant bit of each character returned is set to 1 if the referenced page is in primary memory.

Otherwise, the bit is set to 0. The settings of the other bits in each character are undefined.

Parameters

 addr Specifies the starting address of the memory pages whose residency is to be determined. Must be a multiple

of the page size returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name

parameter.

len Specifies the length, in bytes, of the memory region whose residency is to be determined. If the len value is

not a multiple of the page size as returned by the sysconf subroutine using the _SC_PAGE_SIZE value for

the Name parameter, the length of the region is rounded up to the next multiple of the page size.

vec Specifies the character array where the residency status is returned. The system assumes that the character

array specified by the vec parameter is large enough to encompass a returned character for each page

specified.

Return Values

When successful, the mincore subroutine returns 0. Otherwise, it returns -1 and sets the errno global

variable to indicate the error.

Error Codes

If the mincore subroutine is unsuccessful, the errno global variable is set to one of the following values:

 EFAULT A part of the buffer pointed to by the vec parameter is out of range or otherwise inaccessible.

EINVAL The addr parameter is not a multiple of the page size as returned by the sysconf subroutine using the

_SC_PAGE_SIZE value for the Name parameter.

ENOMEM Addresses in the (addr, addr + len) range are invalid for the address space of the process, or specify one

or more pages that are not mapped.

Related Information

The mmap (“mmap or mmap64 Subroutine” on page 803) subroutine, sysconf subroutine.

List of Memory Manipulation Services in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

mkdir Subroutine

Purpose

Creates a directory.

Library

Standard C Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 795

Syntax

#include <sys/stat.h>

int mkdir (Path, Mode)

const char *Path;

mode_t Mode;

Description

The mkdir subroutine creates a new directory.

The new directory has the following:

v The owner ID is set to the process-effective user ID.

v If the parent directory has the SetFileGroupID (S_ISGID) attribute set, the new directory inherits the

group ID of the parent directory. Otherwise, the group ID of the new directory is set to the effective

group ID of the calling process.

v Permission and attribute bits are set according to the value of the Mode parameter, with the following

modifications:

– All bits set in the process-file mode-creation mask are cleared.

– The SetFileUserID and Sticky (S_ISVTX) attributes are cleared.

v If the Path variable names a symbolic link, the link is followed. The new directory is created where the

variable pointed.

Parameters

 Path Specifies the name of the new directory. If Network File System (NFS) is installed on your

system, this path can cross into another node. In this case, the new directory is created at that

node.

To execute the mkdir subroutine, a process must have search permission to get to the parent

directory of the Path parameter as well as write permission in the parent directory itself.

Mode Specifies the mask for the read, write, and execute flags for owner, group, and others. The

Mode parameter specifies directory permissions and attributes. This parameter is constructed

by logically ORing values described in the sys/mode.h file.

Return Values

Upon successful completion, the mkdir subroutine returns a value of 0. Otherwise, a value of -1 is

returned, and the errno global variable is set to indicate the error.

Error Codes

The mkdir subroutine is unsuccessful and the directory is not created if one or more of the following are

true:

 EACCES Creating the requested directory requires writing in a directory with a

mode that denies write permission.

EEXIST The named file already exists.

EROFS The named file resides on a read-only file system.

ENOSPC The file system does not contain enough space to hold the contents of

the new directory or to extend the parent directory of the new directory.

EMLINK The link count of the parent directory exceeds the maximum

(LINK_MAX) number. (LINK_MAX) is defined in limits.h file.

ENAMETOOLONG The Path parameter or a path component is too long and cannot be

truncated.

796 Technical Reference, Volume 1: Base Operating System and Extensions

ENOENT A component of the path prefix does not exist or the Path parameter

points to an empty string.

ENOTDIR A component of the path prefix is not a directory.

EDQUOT The directory in which the entry for the new directory is being placed

cannot be extended, or an i-node or disk blocks could not be allocated

for the new directory because the user’s or group’s quota of disk blocks

or i-nodes on the file system containing the directory is exhausted.

The mkdir subroutine can be unsuccessful for other reasons. See ″Appendix A. Base Operating System

Error Codes for Services That Require Path-Name Resolution″ for a list of additional errors.

If NFS is installed on the system, the mkdir subroutine is also unsuccessful if the following is true:

 ETIMEDOUT The connection timed out.

Related Information

The chmod (“chmod or fchmod Subroutine” on page 146) subroutine, mknod (“mknod or mkfifo

Subroutine”) subroutine, rmdir subroutine, umask subroutine.

The chmod command, mkdir command, mknod command.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

mknod or mkfifo Subroutine

Purpose

Creates an ordinary file, first-in-first-out (FIFO), or special file.

Library

Standard C Library (libc.a)

Syntax

#include <sys/stat.h>

int mknod (const char * Path, mode_t Mode, dev_t Device)

char *Path;

int Mode;

dev_t Device;

int mkfifo (const char *Path, mode_t Mode)

const char *Path;

int Mode;

Description

The mknod subroutine creates a new regular file, special file, or FIFO file. Using the mknod subroutine to

create file types (other than FIFO or special files) requires root user authority.

For the mknod subroutine to complete successfully, a process must have both search and write

permission in the parent directory of the Path parameter.

The mkfifo subroutine is an interface to the mknod subroutine, where the new file to be created is a FIFO

or special file. No special system privileges are required.

Base Operating System (BOS) Runtime Services (A-P) 797

The new file has the following characteristics:

v File type is specified by the Mode parameter.

v Owner ID is set to the effective user ID of the process.

v Group ID of the file is set to the group ID of the parent directory if the SetGroupID attribute (S_ISGID)

of the parent directory is set. Otherwise, the group ID of the file is set to the effective group ID of the

calling process.

v Permission and attribute bits are set according to the value of the Mode parameter. All bits set in the

file-mode creation mask of the process are cleared.

Upon successful completion, the mkfifo subroutine marks for update the st_atime, st_ctime, and

st_mtime fields of the file. It also marks for update the st_ctime and st_mtime fields of the directory that

contains the new entry.

If the new file is a character special file having the S_IMPX attribute (multiplexed character special file),

when the file is used, additional path-name components can appear after the path name as if it were a

directory. The additional part of the path name is available to the device driver of the file for interpretation.

This feature provides a multiplexed interface to the device driver.

Parameters

 Path Names the new file. If Network File System (NFS) is installed on your system, this path can cross into

another node.

Mode Specifies the file type, attributes, and access permissions. This parameter is constructed by logically

ORing values described in the sys/mode.h file.

Device Specifies the ID of the device, which corresponds to the st_rdev member of the structure returned by the

statx subroutine. This parameter is configuration-dependent and used only if the Mode parameter

specifies a block or character special file. If the file you specify is a remote file, the value of the Device

parameter must be meaningful on the node where the file resides.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno

global variable is set to indicate the error.

Error Codes

The mknod subroutine fails and the new file is not created if one or more of the following are true:

 EEXIST The named file exists.

EDQUOT The directory in which the entry for the new file is being placed cannot be extended, or an

i-node could not be allocated for the file because the user’s or group’s quota of disk blocks

or i-nodes on the file system is exhausted.

EISDIR The Mode parameter specifies a directory. Use the mkdir subroutine instead.

ENOSPC The directory that would contain the new file cannot be extended, or the file system is out of

file-allocation resources.

EPERM The Mode parameter specifies a file type other than S_IFIFO, and the calling process does

not have root user authority.

EROFS The directory in which the file is to be created is located on a read-only file system.

The mknod and mkfifo subroutine can be unsuccessful for other reasons. See ″Appendix. A Base

Operating System Error Codes for Services That Require Path-Name Resolution″ (Appendix A, “Base

Operating System Error Codes for Services That Require Path-Name Resolution,” on page 1251) for a list

of additional errors.

798 Technical Reference, Volume 1: Base Operating System and Extensions

If NFS is installed on the system, the mknod subroutine can also fail if the following is true:

 ETIMEDOUT The connection timed out.

Related Information

The chmod (“chmod or fchmod Subroutine” on page 146) subroutine, mkdir (“mkdir Subroutine” on page

795) subroutine, open, openx, or creat (“open, openx, open64, creat, or creat64 Subroutine” on page

894) subroutine, statx subroutine, umask subroutine.

The chmod command, mkdir command, mknod command.

The mode.h file, types.h file.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

mktemp or mkstemp Subroutine

Purpose

Constructs a unique file name.

Libraries

Standard C Library (libc.a)

Berkeley Compatibility Library (libbsd.a)

Syntax

#include <stdlib.h>

char *mktemp (Template)

char *Template;

int mkstemp (Template)

char *Template;

Description

The mktemp subroutine replaces the contents of the string pointed to by the Template parameter with a

unique file name.

Note: The mktemp subroutine creates a filename and checks to see if the file exist. It that file does not

exist, the name is returned. If the user calls mktemp twice without creating a file using the name

returned by the first call to mktemp, then the second mktemp call may return the same name as

the first mktemp call since the name does not exist.

To avoid this, either create the file after calling mktemp or use the mkstemp subroutine. The mkstemp

subroutine creates the file for you.

To get the BSD version of this subroutine, compile with Berkeley Compatibility Library (libbsd.a).

The mkstemp subroutine performs the same substitution to the template name and also opens the file for

reading and writing.

Base Operating System (BOS) Runtime Services (A-P) 799

In BSD systems, the mkstemp subroutine was intended to avoid a race condition between generating a

temporary name and creating the file. Because the name generation in the operating system is more

random, this race condition is less likely. BSD returns a file name of / (slash).

Former implementations created a unique name by replacing X’s with the process ID and a unique letter.

Parameters

 Template Points to a string to be replaced with a unique file name. The string in the Template parameter is a

file name with up to six trailing X’s. Since the system randomly generates a six-character string to

replace the X’s, it is recommended that six trailing X’s be used.

Return Values

Upon successful completion, the mktemp subroutine returns the address of the string pointed to by the

Template parameter.

If the string pointed to by the Template parameter contains no X’s, and if it is an existing file name, the

Template parameter is set to a null character, and a null pointer is returned; if the string does not match

any existing file name, the exact string is returned.

Upon successful completion, the mkstemp subroutine returns an open file descriptor. If the mkstemp

subroutine fails, it returns a value of -1.

Related Information

The getpid (“getpid, getpgrp, or getppid Subroutine” on page 398) subroutine, tmpfile subroutine,

tmpnam or tempnam subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

mlock and munlock Subroutine

Purpose

Locks or unlocks a range of process address space.

Library

Standard C Library (libc.a)

Syntax

#include <sys/mman.h>

int mlock (addr, len)

const void *addr;

size_t len;

int munlock (addr, len)

const void *addr;

size_t len;

Description

The mlock subroutine causes those whole pages containing any part of the address space of the process

starting at address addr and continuing for len bytes to be memory-resident until unlocked or until the

800 Technical Reference, Volume 1: Base Operating System and Extensions

process exits or executes another process image. If the starting address addr is not a multiple of

PAGESIZE, it is rounded down to the lowest page boundary. The len is rounded up to a multiple of

PAGESIZE.

The munlock subroutine unlocks those whole pages containing any part of the address space of the

process starting at address addr and continuing for len bytes, regardless of how many times mlock has

been called by the process for any of the pages in the specified range.

If any of the pages in the range specified in a call to the munlock subroutine are also mapped into the

address spaces of other processes, any locks established on those pages by another process are

unaffected by the call of this process to the munlock subroutine. If any of the pages in the range specified

by a call to the munlock subroutine are also mapped into other portions of the address space of the

calling process outside the range specified, any locks established on those pages through other mappings

are also unaffected by this call.

Upon successful return from mlock, pages in the specified range are locked and memory-resident. Upon

successful return from munlock, pages in the specified range are unlocked with respect to the address

space of the process.

The calling process must have the root user authority to use this subroutine.

Parameters

 addr Specifies the address space of the process to be locked or unlocked.

len Specifies the length in bytes of the address space.

Return Values

Upon successful completion, the mlock and munlock subroutines return zero. Otherwise, no change is

made to any locks in the address space of the process, the surbroutines return -1 and set errno to

indicate the error.

Error Codes

The mlock and munlock subroutines fail if:

 ENOMEM Some or all of the address range specified by the addr and len parameters does not correspond to

valid mapped pages in the address space of the process.

EINVAL The process has already some plocked memory or the len parameter is negative.

EPERM The calling process does not have the appropriate privilege to perform the requested operation.

The mlock subroutine might fail if:

 ENOMEM Locking the pages mapped by the specified range would

exceed the limit on the amount of memory the process

may lock.

Related Information

“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232, “exit, atexit,

unatexit, _exit, or _Exit Subroutine” on page 239, “fork, f_fork, or vfork Subroutine” on page 284, “mlockall

and munlockall Subroutine” on page 802, and “munmap Subroutine” on page 853.

Base Operating System (BOS) Runtime Services (A-P) 801

mlockall and munlockall Subroutine

Purpose

Locks or unlocks the address space of a process.

Library

Standard C Library (libc.a)

Syntax

#include <sys/mman.h>

int mlockall (flags)

int flags;

int munlockall (void);

Description

The mlockall subroutine causes all of the pages mapped by the address space of a process to be

memory-resident until unlocked or until the process exits or executes another process image. The flags

parameter determines whether the pages to be locked are those currently mapped by the address space

of the process, those that are mapped in the future, or both. The flags parameter is constructed from the

bitwise-inclusive OR of one or more of the following symbolic constants, defined in the sys/mman.h

header file:

MCL_CURRENT

Lock all of the pages currently mapped into the address space of the process.

MCL_FUTURE

Lock all of the pages that become mapped into the address space of the process in the future,

when those mappings are established.

When MCL_FUTURE is specified, the future mapping functions might fail if the system is not able to lock

this amount of memory because of lack of resources, for example.

The munlockall subroutine unlocks all currently mapped pages of the address space of the process. Any

pages that become mapped into the address space of the process after a call to the munlockall

subroutine are not locked, unless there is an intervening call to the mlockall subroutine specifying

MCL_FUTURE or a subsequent call to the mlockall subroutine specifying MCL_CURRENT. If pages

mapped into the address space of the process are also mapped into the address spaces of other

processes and are locked by those processes, the locks established by the other processes are unaffected

by a call to the munlockall subroutine.

Regarding libraries that are pinned, a distinction has been made internally between a user referencing

memory to perform a task related to the application and the system referencing memory on behalf of the

application. The former is pinned, and the latter is not. The user-addressable loader data that remains

unlocked includes:

v loader entries

v user loader entries

v page-descriptor segment

v usla heap segment

v usla text segment

v all the global segments related to the 64-bit shared library loadlist (shlib heap segment, shlib le

segment, shlib text and data heap segments).

802 Technical Reference, Volume 1: Base Operating System and Extensions

This limit affects implementation only, and it does not cause the API to fail.

Upon successful return from a mlockall subroutine that specifies MCL_CURRENT, all currently mapped

pages of the process’ address space are memory-resident and locked. Upon return from the munlockall

subroutine, all currently mapped pages of the process’ address space are unlocked with respect to the

process’ address space.

The calling process must have the root user authority to use this subroutine.

Parameters

 flags Determines whether the pages to be locked are those currently mapped by the address space of the

process, those that are mapped in the future, or both.

Return Values

Upon successful completion, the mlockall subroutine returns 0. Otherwise, no additional memory is

locked, and the subroutine returns -1 and sets errno to indicate the error.

Upon successful completion, the munlockall subroutine returns 0. Otherwise, no additional memory is

unlocked, and the subroutine returns -1 and sets errno to indicate the error.

Error Codes

The mlockall subroutine fails if:

 EINVAL The flags parameter is 0, or includes unimplemented flags

or the process has already some plocked memory.

ENOMEM Locking all of the pages currently mapped into the

address space of the process would exceed the limit on

the amount of memory that the process may lock.

EPERM The calling process does not have the appropriate

authority to perform the requested operation.

The munlockall subroutine fails if:

 EINVAL The process has already some plocked memory

EPERM The calling process does not have the appropriate privilege to perform the requested

operation

Related Information

“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232, “exit, atexit,

unatexit, _exit, or _Exit Subroutine” on page 239, “fork, f_fork, or vfork Subroutine” on page 284, “mlock

and munlock Subroutine” on page 800, and “munmap Subroutine” on page 853.

mmap or mmap64 Subroutine

Purpose

Maps a file-system object into virtual memory.

Library

Standard C library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 803

Syntax

#include <sys/types.h>

#include <sys/mman.h>

void *mmap (addr, len, prot, flags, fildes, off)

void * addr;

size_t len;

int prot, flags, fildes;

off_t off;

void *mmap64 (addr, len, prot, flags, fildes, off)

void * addr;

size_t len;

int prot, flags, fildes;

off64_t off;

Description

Attention: A file-system object should not be simultaneously mapped using both the mmap and shmat

subroutines. Unexpected results may occur when references are made beyond the end of the object.

The mmap subroutine creates a new mapped file or anonymous memory region by establishing a

mapping between a process-address space and a file-system object. Care needs to be taken when using

the mmap subroutine if the program attempts to map itself. If the page containing executing instructions is

currently referenced as data through an mmap mapping, the program will hang. Use the -H4096 binder

option, and that will put the executable text on page boundaries. Then reset the file that contains the

executable material, and view via an mmap mapping.

A region created by the mmap subroutine cannot be used as the buffer for read or write operations that

involve a device. Similarly, an mmap region cannot be used as the buffer for operations that require either

a pin or xmattach operation on the buffer.

Modifications to a file-system object are seen consistently, whether accessed from a mapped file region or

from the read or write subroutine.

Child processes inherit all mapped regions from the parent process when the fork subroutine is called.

The child process also inherits the same sharing and protection attributes for these mapped regions. A

successful call to any exec subroutine will unmap all mapped regions created with the mmap subroutine.

The mmap64 subroutine is identical to the mmap subroutine except that the starting offset for the file

mapping is specified as a 64-bit value. This permits file mappings which start beyond OFF_MAX.

In the large file enabled programming environment, mmap is redefined to be mmap64.

If the application has requested SPEC1170 compliant behavior then the st_atime field of the mapped file

is marked for update upon successful completion of the mmap call.

If the application has requested SPEC1170 compliant behavior then the st_ctime and st_mtime fields of a

file that is mapped with MAP_SHARED and PROT_WRITE are marked for update at the next call to

msync subroutine or munmap subroutine if the file has been modified.

804 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 addr Specifies the starting address of the memory region to be mapped. When the MAP_FIXED flag is

specified, this address must be a multiple of the page size returned by the sysconf subroutine using

the _SC_PAGE_SIZE value for the Name parameter. A region is never placed at address zero, or at an

address where it would overlap an existing region.

len Specifies the length, in bytes, of the memory region to be mapped. The system performs mapping

operations over whole pages only. If the len parameter is not a multiple of the page size, the system will

include in any mapping operation the address range between the end of the region and the end of the

page containing the end of the region.

prot Specifies the access permissions for the mapped region. The sys/mman.h file defines the following

access options:

PROT_READ

Region can be read.

PROT_WRITE

Region can be written.

PROT_EXEC

Region can be executed.

PROT_NONE

Region cannot be accessed.

The prot parameter can be the PROT_NONE flag, or any combination of the PROT_READ flag,

PROT_WRITE flag, and PROT_EXEC flag logically ORed together. If the PROT_NONE flag is not

specified, access permissions may be granted to the region in addition to those explicitly requested.

However, write access will not be granted unless the PROT_WRITE flag is specified.

Note: The operating system generates a SIGSEGV signal if a program attempts an access that

exceeds the access permission given to a memory region. For example, if the PROT_WRITE flag is not

specified and a program attempts a write access, a SIGSEGV signal results.

If the region is a mapped file that was mapped with the MAP_SHARED flag, the mmap subroutine

grants read or execute access permission only if the file descriptor used to map the file was opened for

reading. It grants write access permission only if the file descriptor was opened for writing.

If the region is a mapped file that was mapped with the MAP_PRIVATE flag, the mmap subroutine

grants read, write, or execute access permission only if the file descriptor used to map the file was

opened for reading. If the region is an anonymous memory region, the mmap subroutine grants all

requested access permissions.

fildes Specifies the file descriptor of the file-system object or of the shared memory object to be mapped. If

the MAP_ANONYMOUS flag is set, the fildes parameter must be -1. After the successful completion of

the mmap subroutine, the file or the shared memory object specified by the fildes parameter can be

closed without affecting the mapped region or the contents of the mapped file. Each mapped region

creates a file reference, similar to an open file descriptor, which prevents the file data from being

deallocated.

Note: The mmap subroutine supports the mapping of shared memory object and regular files only. An

mmap call that specifies a file descriptor for a special file fails, returning the ENODEV error code. An

example of a file descriptor for a special file is one that might be used for mapping either I/O or device

memory.

off Specifies the file byte offset at which the mapping starts. This offset must be a multiple of the page size

returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter.

Base Operating System (BOS) Runtime Services (A-P) 805

flags Specifies attributes of the mapped region. Values for the flags parameter are constructed by a

bitwise-inclusive ORing of values from the following list of symbolic names defined in the sys/mman.h

file:

MAP_FILE

Specifies the creation of a new mapped file region by mapping the file associated with the

fildes file descriptor. The mapped region can extend beyond the end of the file, both at the time

when the mmap subroutine is called and while the mapping persists. This situation could occur

if a file with no contents was created just before the call to the mmap subroutine, or if a file

was later truncated. However, references to whole pages following the end of the file result in

the delivery of a SIGBUS signal. Only one of the MAP_FILE and MAP_ANONYMOUS flags

must be specified with the mmap subroutine.

MAP_ANONYMOUS

Specifies the creation of a new, anonymous memory region that is initialized to all zeros. This

memory region can be shared only with the descendants of the current process. When using

this flag, the fildes parameter must be -1. Only one of the MAP_FILE and MAP_ANONYMOUS

flags must be specified with the mmap subroutine.

MAP_ VARIABLE

Specifies that the system select an address for the new memory region if the new memory

region cannot be mapped at the address specified by the addr parameter, or if the addr

parameter is null. Only one of the MAP_VARIABLE and MAP_FIXED flags must be specified

with the mmap subroutine.

MAP_FIXED

Specifies that the mapped region be placed exactly at the address specified by the addr

parameter. If the application has requested SPEC1170 complaint behavior and the mmap

request is successful, the mapping replaces any previous mappings for the process’ pages in

the specified range. If the application has not requested SPEC1170 compliant behavior and a

previous mapping exists in the range then the request fails. Only one of the MAP_VARIABLE

and MAP_FIXED flags must be specified with the mmap subroutine.

MAP_SHARED

When the MAP_SHARED flag is set, modifications to the mapped memory region will be

visible to other processes that have mapped the same region using this flag. If the region is a

mapped file region, modifications to the region will be written to the file.

 You can specify only one of the MAP_SHARED or MAP_PRIVATE flags with the mmap

subroutine. MAP_PRIVATE is the default setting when neither flag is specified unless you

request SPEC1170 compliant behavior. In this case, you must choose either MAP_SHARED or

MAP_PRIVATE.

MAP_PRIVATE

When the MAP_PRIVATE flag is specified, modifications to the mapped region by the calling

process are not visible to other processes that have mapped the same region. If the region is a

mapped file region, modifications to the region are not written to the file.

 If this flag is specified, the initial write reference to an object page creates a private copy of

that page and redirects the mapping to the copy. Until then, modifications to the page by

processes that have mapped the same region with the MAP_SHARED flag are visible.

 You can specify only one of the MAP_SHARED or MAP_PRIVATE flags with the mmap

subroutine. MAP_PRIVATE is the default setting when neither flag is specified unless you

request SPEC1170 compliant behavior. In this case, you must choose either MAP_SHARED or

MAP_PRIVATE.

Return Values

If successful, the mmap subroutine returns the address at which the mapping was placed. Otherwise, it

returns -1 and sets the errno global variable to indicate the error.

806 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

Under the following conditions, the mmap subroutine fails and sets the errno global variable to:

 EACCES The file referred to by the fildes parameter is not open for read access, or the file is not open for

write access and the PROT_WRITE flag was specified for a MAP_SHARED mapping operation.

Or, the file to be mapped has enforced locking enabled and the file is currently locked.

EAGAIN The fildes parameter refers to a device that has already been mapped.

EBADF The fildes parameter is not a valid file descriptor, or the MAP_ANONYMOUS flag was set and the

fildes parameter is not -1.

EFBIG The mapping requested extends beyond the maximum file size associated with fildes.

EINVAL The flags or prot parameter is invalid, or the addr parameter or off parameter is not a multiple of

the page size returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name

parameter.

EINVAL The application has requested SPEC1170 compliant behavior and the value of flags is invalid

(neither MAP_PRIVATE nor MAP_SHARED is set).

EMFILE The application has requested SPEC1170 compliant behavior and the number of mapped regions

would excedd and implementation-dependent limit (per process or per system).

ENODEV The fildes parameter refers to an object that cannot be mapped, such as a terminal.

ENOMEM There is not enough address space to map len bytes, or the application has not requested Single

UNIX Specification, Version 2 compliant behavior and the MAP_FIXED flag was set and part of the

address-space range (addr, addr+len) is already allocated.

ENXIO The addresses specified by the range (off, off+len) are invalid for the fildes parameter.

EOVERFLOW The mapping requested extends beyond the offset maximum for the file description associated with

fildes.

Related Information

The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

subroutine, fork (“fork, f_fork, or vfork Subroutine” on page 284) subroutine, munmap (“munmap

Subroutine” on page 853) subroutine, read subroutine, shm_open subroutine, shm_unlink subroutine,

shmat subroutine, sysconf subroutine, write subroutine.

The pin kernel service, xmattach kernel service.

List of Memory Manipulation Services, List of Memory Mapping Services, Understanding Memory Mapping

in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

mntctl Subroutine

Purpose

Returns information about the mount status of the system.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <sys/mntctl.h>

#include <sys/vmount.h>

int mntctl (Command, Size, Buffer)

int Command;

int Size;

char *Buffer;

Base Operating System (BOS) Runtime Services (A-P) 807

Description

The mntctl subroutine is used to query the status of virtual file systems (also known as mounted file

systems).

Each virtual file system (VFS) is described by a vmount structure. This structure is supplied when the

VFS is created by the vmount subroutine. The vmount structure is defined in the sys/vmount.h file.

Parameters

 Command Specifies the operation to be performed. Valid commands are defined in the sys/vmount.h file. At

present, the only command is:

MCTL_QUERY

Query mount information.

Buffer Points to a data area that will contain an array of vmount structures. This data area holds the

information returned by the query command. Since the vmount structure is variable-length, it is

necessary to reference the vmt_length field of each structure to determine where in the Buffer area the

next structure begins.

Size Specifies the length, in bytes, of the buffer pointed to by the Buffer parameter.

Return Values

If the mntctl subroutine is successful, the number of vmount structures copied into the Buffer parameter

is returned. If the Size parameter indicates the supplied buffer is too small to hold the vmount structures

for all the current VFSs, the mntctl subroutine sets the first word of the Buffer parameter to the required

size (in bytes) and returns the value 0. If the mntctl subroutine otherwise fails, a value of -1 is returned,

and the errno global variable is set to indicate the error.

Error Codes

The mntctl subroutine fails and the requested operation is not performed if one or both of the following

are true:

 EINVAL The Command parameter is not MCTL_QUERY, or the Size parameter is not a positive value.

EFAULT The Buffer parameter points to a location outside of the allocated address space of the process.

Related Information

The uvmount or umount subroutine, vmount or mount subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

modf, modff, or modfl Subroutine

Purpose

Decomposes a floating-point number.

Syntax

#include <math.h>

float modff (x, iptr)

float x;

float *iptr;

double modf (x, iptr)

808 Technical Reference, Volume 1: Base Operating System and Extensions

double x, *iptr;

long double modfl (x, iptr)

long double x, *iptr;

Description

The modff, modf, and modfl subroutines break the x parameter into integral and fractional parts, each of

which has the same sign as the argument. It stores the integral part as a floating-point value in the object

pointed to by iptr.

Parameters

 x Specifies the value to be computed.

iptr Points to the object where the integral part is stored.

Return Values

Upon successful completion, themodff, modf, and mofl subroutines return the signed fractional part of x.

If x is NaN, a NaN is returned, and *iptr is set to a NaN.

If x is ±Inf, ±0 is returned, and *iptr is set to ±Inf.

Related Information

“class, _class, finite, isnan, or unordered Subroutines” on page 165 and “ldexp, ldexpf, or ldexpl

Subroutine” on page 689

math.h in AIX 5L Version 5.3 Files Reference.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

128-Bit long Double Floating-Point Format in AIX 5L Version 5.3 General Programming Concepts: Writing

and Debugging Programs.

moncontrol Subroutine

Purpose

Starts and stops execution profiling after initialization by the monitor subroutine.

Library

Standard C Library (libc.a)

Syntax

#include <mon.h>

int moncontrol (Mode)

int Mode;

Description

The moncontrol subroutine starts and stops profiling after profiling has been initialized by the monitor

subroutine. It may be used with either -p or -pg profiling. When moncontrol stops profiling, no output data

Base Operating System (BOS) Runtime Services (A-P) 809

file is produced. When profiling has been started by the monitor subroutine and the exit subroutine is

called, or when the monitor subroutine is called with a value of 0, then profiling is stopped, and an output

file is produced, regardless of the state of profiling as set by the moncontrol subroutine.

The moncontrol subroutine examines global and parameter data in the following order:

1. When the _mondata.prof_type global variable is neither -1 (-p profiling defined) nor +1 (-pg profiling

defined), no action is performed, 0 is returned, and the function is considered complete.

The global variable is set to -1 in the mcrt0.o file and to +1 in the gcrt0.o file and defaults to 0 when

the crt0.o file is used.

2. When the Mode parameter is 0, profiling is stopped. For any other value, profiling is started.

The following global variables are used in a call to the profil (“profil Subroutine” on page 1086)

subroutine:

 _mondata.ProfBuf Buffer address

_mondata.ProfBufSiz Buffer size/multirange flag

_mondata.ProfLoPC PC offset for hist buffer - I/O limit

_mondata.ProfScale PC scale/compute scale flag.

These variables are initialized by the monitor subroutine each time it is called to start profiling.

Parameters

 Mode Specifies whether to start (resume) or stop profiling.

Return Values

The moncontrol subroutine returns the previous state of profiling. When the previous state was

STOPPED, a 0 is returned. When the previous state was STARTED, a 1 is returned.

Error Codes

When the moncontrol subroutine detects an error from the call to the profil subroutine, a -1 is returned.

Related Information

The monitor (“monitor Subroutine”) subroutine, monstartup (“monstartup Subroutine” on page 816)

subroutine, profil (“profil Subroutine” on page 1086) subroutine.

List of Memory Manipulation Services in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

monitor Subroutine

Purpose

Starts and stops execution profiling using data areas defined in the function parameters.

Library

Standard C Library (libc.a)

810 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

 #include <mon.h>

int monitor (LowProgramCounter, HighProgramCounter, Buffer, BufferSize, NFunction)

OR

int monitor (NotZeroA, DoNotCareA, Buffer,-1, NFunction)

OR

int monitor((caddr_t)0)

caddr_t LowProgramCounter, HighProgramCounter;

HISTCOUNTER *Buffer;

int BufferSize, NFunction;

caddr_t NotZeroA, DoNotCareA;

Description

The monitor subroutine initializes the buffer area and starts profiling, or else stops profiling and writes out

the accumulated profiling data. Profiling, when started, causes periodic sampling and recording of the

program location within the program address ranges specified. Profiling also accumulates function call

count data compiled with the -p or -pg option.

Executable programs created with the cc -p or cc -pg command automatically include calls to the monitor

subroutine (through the monstartup and exit subroutines) to profile the complete user program, including

system libraries. In this case, you do not need to call the monitor subroutine.

The monitor subroutine is called by the monstartup subroutine to begin profiling and by the exit

subroutine to end profiling. The monitor subroutine requires a global data variable to define which kind of

profiling, -p or -pg, is in effect. The monitor subroutine initializes four global variables that are used as

parameters to the profil subroutine by the moncontrol subroutine:

v The monitor subroutine calls the moncontrol subroutine to start the profiling data gathering.

v The moncontrol subroutine calls the profil subroutine to start the system timer-driven program address

sampling.

v The prof command processes the data file produced by -p profiling.

v The gprof command processes the data file produced by -pg profiling.

The monitor subroutine examines the global data and parameter data in this order:

1. When the _mondata.prof_type global variable is neither -1 (-p profiling defined) nor +1 (-pg profiling

defined), an error is returned, and the function is considered complete.

The global variable is set to -1 in the mcrt0.o file and to +1 in the gcrt0.o file, and defaults to 0 when

the crt0.o file is used.

2. When the first parameter to the monitor subroutine is 0, profiling is stopped and the data file is written

out.

If -p profiling was in effect, then the file is named mon.out. If -pg profiling was in effect, the file is

named gmon.out. The function is complete.

3. When the first parameter to the monitor subroutine is not , the monitor parameters and the profiling

global variable, _mondata.prof_type, are examined to determine how to start profiling.

4. When the BufferSize parameter is not -1, a single program address range is defined for profiling, and

the first monitor definition in the syntax is used to define the single program range.

Base Operating System (BOS) Runtime Services (A-P) 811

5. When the BufferSize parameter is -1, multiple program address ranges are defined for profiling, and

the second monitor definition in the syntax is used to define the multiple ranges. In this case, the

ProfileBuffer value is the address of an array of prof structures. The size of the prof array is denoted

by a zero value for theHighProgramCounter (p_high) field of the last element of the array. Each

element in the array, except the last, defines a single programming address range to be profiled.

Programming ranges must be in ascending order of the program addresses with ascending order of

the prof array index. Program ranges may not overlap.

The buffer space defined by the p_buff and p_bufsize fields of all of the prof entries must define a

single contiguous buffer area. Space for the function-count data is included in the first range buffer. Its

size is defined by the NFunction parameter. The p_scale entry in the prof structure is ignored. The

prof structure is defined in themon.h file. It contains the following fields:

caddr_t p_low; /* low sampling address */

caddr_t p_high; /* high sampling address */

HISTCOUNTER *p_buff; /* address of sampling buffer */

int p_bufsize; /* buffer size- monitor/HISTCOUNTERs,\

 profil/bytes */

uint p_scale; /* scale factor */

Parameters

 LowProgramCounter

(prof name: p_low)

Defines the lowest execution-time program address in the

range to be profiled. The value of the LowProgramCounter

parameter cannot be 0 when using themonitor subroutine

to begin profiling.

HighProgramCounter

(prof name: p_high)

Defines the next address after the highest-execution time

program address in the range to be profiled.

The program address parameters may be defined by

function names or address expressions. If defined by a

function name, then a function name expression must be

used to dereference the function pointer to get the

address of the first instruction in the function. This is

required because the function reference in this context

produces the address of the function descriptor. The first

field of the descriptor is the address of the function code.

See the examples for typical expressions to use.

Buffer (prof name: p_buff) Defines the beginning address of an array of BufferSize

HISTCOUNTERs to be used for data collection. This buffer

includes the space for the program address-sampling

counters and the function-count data areas. In the case of

a multiple range specification, the space for the

function-count data area is included at the beginning of

the first range in the BufferSize specification.

BufferSize

(prof name: p_bufsize)

Defines the size of the buffer in number of HISTCOUNTERs.

Each counter is of type HISTCOUNTER (defined as short in

the mon.h file). When the buffer includes space for the

function-count data area (single range specification and

first range of a multi-range specification) the NFunction

parameter defines the space to be used for the function

count data, and the remainder is used for

program-address sampling counters for the range defined.

The scale for the profil call is calculated from the number

of counters available for program address-sample

counting and the address range defined by the

LowProgramCounter and HighProgramCounter

parameters. See themon.h file.

812 Technical Reference, Volume 1: Base Operating System and Extensions

NFunction Defines the size of the space to be used for the

function-count data area. The space is included as part of

the first (or only) range buffer.

When -p profiling is defined, the NFunction parameter

defines the maximum number of functions to be counted.

The space required for each function is defined to be:

sizeof(struct poutcnt)

The poutcnt structure is defined in the mon.h file. The

total function-count space required is:

NFunction * sizeof(struct poutcnt)

When -pg profiling is defined, the NFunction parameter

defines the size of the space (in bytes) available for the

function-count data structures, as follows:

range = HighProgramCounter - LowProgramCounter;

tonum = TO_NUM_ELEMENTS(range);

if (tonum < MINARCS) tonum = MINARCS;

if (tonum > TO_MAX-1) tonum = TO_MAX-1;

tosize = tonum * sizeof(struct tostruct);

fromsize = FROM_STG_SIZE(range);

rangesize = tosize + fromsize + sizeof(struct

gfctl);

This is computed and summed for all defined ranges. In

this expression, the functions and variables in capital

letters as well as the structures are defined in the mon.h

file.

NotZeroA Specifies a value of parameter 1, which is any value

except 0. Ignored when it is not zero.

DoNotCareA Specifies a value of parameter 2, of any value, which is

ignored.

Return Values

The monitor subroutine returns 0 upon successful completion.

Error Codes

If an error is found, the monitor subroutine sends an error message to stderr and returns -1.

Examples

1. This example shows how to profile the main load module of a program with -p profiling:

#include <sys/types.h>

#include <mon.h>

main()

{

extern caddr_t etext; /*system end of main module text symbol*/

extern int start(); /*first function in main program*/

extern struct monglobal _mondata; /*profiling global variables*/

struct desc { /*function descriptor fields*/

 caddr_t begin; /*initial code address*/

 caddr_t toc; /*table of contents address*/

 caddr_t env; /*environment pointer*/

} ; /*function descriptor structure*/

struct desc *fd; /*pointer to function descriptor*/

int rc; /*monitor return code*/

Base Operating System (BOS) Runtime Services (A-P) 813

int range; /*program address range for profiling*/

int numfunc; /*number of functions*/

HISTCOUNTER *buffer; /*buffer address*/

int numtics; /*number of program address sample counters*/

int BufferSize; /*total buffer size in numbers of HISTCOUNTERs*/

fd = (struct desc*)start; /*init descriptor pointer to start\

 function*/

numfunc = 300; /*arbitrary number for example*/

range = etext - fd->begin; /*compute program address range*/

numtics =NUM_HIST_COUNTERS(range); /*one counter for each 4 byte\

 inst*/

BufferSize = numtics + (numfunc*sizeof (struct poutcnt) \

 HIST_COUNTER_SIZE); /*allocate buffer space*/

buffer = (HISTCOUNTER *) malloc (BufferSize * HIST_COUNTER_SIZE);

if (buffer == NULL) /*didn’t get space, do error recovery\

 here*/

 return(-1);

_mondata.prof_type = _PROF_TYPE_IS_P; /*define -p profiling*/

rc = monitor(fd->begin, (caddr_t)etext, buffer, BufferSize, \

 numfunc);

/*start*/

if (rc != 0) /*profiling did not start, do error recovery\

 here*/

 return(-1);

/*other code for analysis*/

rc = monitor((caddr_t)0); /*stop profiling and write data file\

 mon.out*/

if (rc != 0) /*did not stop correctly, do error recovery here*/

 return (-1);

}

2. This example profiles the main program and the libc.a shared library with -p profiling. The range of

addresses for the shared libc.a is assumed to be:

low = d0300000

high = d0312244

These two values can be determined from the loadquery subroutine at execution time, or by using a

debugger to view the loaded programs’ execution addresses and the loader map.

#include <sys/types.h>

#include <mon.h>

main()

{

extern caddr_t etext; /*system end of text symbol*/

extern int start(); /*first function in main program*/

extern struct monglobal _mondata; /*profiling global variables*/

struct prof pb[3]; /*prof array of 3 to define 2 ranges*/

int rc; /*monitor return code*/

int range; /*program address range for profiling*/

int numfunc; /*number of functions to count (max)*/

int numtics; /*number of sample counters*/

int num4fcnt; /*number of HISTCOUNTERs used for fun cnt space*/

int BufferSize1; /*first range BufferSize*/

int BufferSize2; /*second range BufferSize*/

caddr_t liblo=0xd0300000; /*lib low address (example only)*/

caddr_t libhi=0xd0312244; /*lib high address (example only)*/

numfunc = 400; /*arbitrary number for example*/

/*compute first range buffer size*/

range = etext - *(uint *) start; /*init range*/

numtics = NUM_HIST_COUNTERS(range);

/*one counter for each 4 byte inst*/

num4fcnt = numfunc*sizeof(struct poutcnt)/HIST_COUNTER_SIZE;

BufferSize1 = numtics + num4fcnt;

/*compute second range buffer size*/

range = libhi-liblo;

BufferSize2 = range / 12; /*counter for every 12 inst bytes for\

 a change*/

/*allocate buffer space - note: must be single contiguous\

814 Technical Reference, Volume 1: Base Operating System and Extensions

buffer*/

pb[0].p_buff = (HISTCOUNTER *)malloc((BufferSize1 +BufferSize2)\

 *HIST_COUNTER_SIZE);

if (pb[0].p_buff == NULL) /*didn’t get space - do error\

 recovery here* ;/

 return(-1);

/*set up the first range values*/

pb[0].p_low = *(uint*)start; /*start of main module*/

pb[0].p_high = (caddr_t)etext; /*end of main module*/

pb[0].p_BufferSize = BufferSize1; /*prog addr cnt space + \

func cnt space*/

/*set up last element marker*/

pb[2].p_high = (caddr_t)0;

_mondata.prof_type = _PROF_TYPE_IS_P; /*define -p\

profiling*/

rc = monitor((caddr_t)1, (caddr_t)1, pb, -1, numfunc); \

 /*start*/

if (rc != 0) /*profiling did not start - do error recovery\

 here*/

 return (-1);

/*other code for analysis ...*/

rc = monitor((caddr_t)0); /*stop profiling and write data \

file mon.out*/

if (rc != 0) /*did not stop correctly - do error recovery\

 here*/

 return (-1);

3. This example shows how to profile contiguously loaded functions beginning at zit up to but not

including zot with -pg profiling:

#include <sys/types.h>

#include <mon.h>

main()

{

extern zit(); /*first function to profile*/

extern zot(); /*upper bound function*/

extern struct monglobal _mondata; /*profiling global variables*/

int rc; /*monstartup return code*/

_mondata.prof_type = _PROF_TYPE_IS_PG; /*define -pg profiling*/

/*Note cast used to obtain function code addresses*/

rc = monstartup(*(uint *)zit,*(uint *)zot); /*start*/

if (rc != 0) /*profiling did not start, do error recovery\

 here*/

 return(-1);

/*other code for analysis ...*/

exit(0); /*stop profiling and write data file gmon.out*/

}

Files

 mon.out Data file for -p profiling.

gmon.out Data file for -pg profiling.

/usr/include/mon.h Defines the _mondata.prof_type global variable in the monglobal data structure,

the prof structure, and the functions referred to in the previous examples.

Related Information

The moncontrol (“moncontrol Subroutine” on page 809) subroutine, monstartup (“monstartup Subroutine”

on page 816) subroutine, profil (“profil Subroutine” on page 1086) subroutine.

The gprof command, prof command.

The _end,_etext, or _edata (“_end, _etext, or _edata Identifier” on page 220) Identifier.

Base Operating System (BOS) Runtime Services (A-P) 815

List of Memory Manipulation Services in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

monstartup Subroutine

Purpose

Starts and stops execution profiling using default-sized data areas.

Library

Standard C Library (libc.a)

Syntax

#include <mon.h>

int monstartup (LowProgramCounter, HighProgramCounter)

OR

int monstartup((caddr_t)-1), (caddr_t) FragBuffer)

OR

int monstartup((caddr_t)-1, (caddr_t)0)

caddr_t LowProgramCounter;

caddr_t HighProgramCounter;

Description

The monstartup subroutine allocates data areas of default size and starts profiling. Profiling causes

periodic sampling and recording of the program location within the program address ranges specified, and

accumulation of function-call count data for functions that have been compiled with the -p or -pg option.

Executable programs created with the cc -p or cc -pg command automatically include a call to the

monstartup subroutine to profile the complete user program, including system libraries. In this case, you

do not need to call the monstartup subroutine.

The monstartup subroutine is called by the mcrt0.o (-p) file or the gcrt0.o (-pg) file to begin profiling.

The monstartup subroutine requires a global data variable to define whether -p or -pg profiling is to be in

effect. The monstartup subroutine calls the monitor subroutine to initialize the data areas and start

profiling.

The prof command is used to process the data file produced by -p profiling. The gprof command is used

to process the data file produced by -pg profiling.

The monstartup subroutine examines the global and parameter data in the following order:

1. When the _mondata.prof_type global variable is neither -1 (-p profiling defined) nor +1 (-pg profiling

defined), an error is returned and the function is considered complete.

The global variable is set to -1 in the mcrt0.o file and to +1 in the gcrt0.o file, and defaults to 0 when

crt0.o is used.

2. When the LowProgramCounter value is not -1:

v A single program address range is defined for profiling

AND

v The first monstartup definition in the syntax is used to define the program range.

816 Technical Reference, Volume 1: Base Operating System and Extensions

3. When the LowProgramCounter value is -1 and the HighProgramCounter value is not 0:

v Multiple program address ranges are defined for profiling

AND

v The second monstartup definition in the syntax is used to define multiple ranges. The

HighProgramCounter parameter, in this case, is the address of a frag structure array. The frag

array size is denoted by a zero value for the HighProgramCounter (p_high) field of the last element

of the array. Each array element except the last defines one programming address range to be

profiled. Programming ranges must be in ascending order of the program addresses with ascending

order of the prof array index. Program ranges may not overlap.

4. When the LowProgramCounter value is -1 and the HighProgramCounter value is 0:

v The whole program is defined for profiling

AND

v The third monstartup definition in the syntax is used. The program ranges are determined by

monstartup and may be single range or multirange.

Parameters

 LowProgramCounter (frag name: p_low) Defines the lowest execution-time program address in the

range to be profiled.

HighProgramCounter(frag name: p_high) Defines the next address after the highest execution-time

program address in the range to be profiled.

The program address parameters may be defined by

function names or address expressions. If defined by a

function name, then a function name expression must be

used to dereference the function pointer to get the

address of the first instruction in the function. This is

required because the function reference in this context

produces the address of the function descriptor. The first

field of the descriptor is the address of the function code.

See the examples for typical expressions to use.

FragBuffer Specifies the address of a frag structure array.

Examples

1. This example shows how to profile the main load module of a program with -p profiling:

#include <sys/types.h>

#include <mon.h>

main()

{

extern caddr_t etext; /*system end of text

symbol*/

extern int start(); /*first function in main\

 program*/

extern struct monglobal _mondata; /*profiling global variables*/

struct desc { /*function

descriptor fields*/

 caddr_t begin; /*initial code

address*/

 caddr_t toc; /*table of contents

address*/

 caddr_t env; /*environment

pointer*/

 }

; /*function

descriptor structure*/

struct desc *fd; /*pointer to function\

 descriptor*/

Base Operating System (BOS) Runtime Services (A-P) 817

int rc; /*monstartup

return code*/

fd = (struct desc *)start; /*init descriptor pointer to\

 start

function*/

_mondata.prof_type = _PROF_TYPE_IS_P; /*define -p profiling*/

rc = monstartup(fd->begin, (caddr_t) &etext); /*start*/

if (rc != 0) /*profiling did

not start - do\

 error

recovery here*/ return(-1);

 /*other code

for analysis ...*/

return(0); /*stop profiling and

write data\

 file

mon.out*/

}

2. This example shows how to profile the complete program with -p profiling:

#include <sys/types.h>

#include <mon.h>

main()

{

extern struct monglobal _mondata; /*profiling global\

 variables*/

int rc; /*monstartup

return code*/

_mondata.prof_type = _PROF_TYPE_IS_P; /*define -p profiling*/

rc = monstartup((caddr_t)-1, (caddr_t)0); /*start*/

if (rc != 0) /*profiling did

not start -\

 do error recovery here*/

 return (-1);

 /*other code

for analysis ...*/

return(0); /*stop profiling and

write data\

 file

mon.out*/

}

3. This example shows how to profile contiguously loaded functions beginning at zit up to but not

including zot with -pg profiling:

#include <sys/types.h>

#include <mon.h>

main()

{

extern zit(); /*first function

to profile*/

extern zot(); /*upper bound

function*/

extern struct monglobal _mondata; /*profiling global variables*/

int rc; /*monstartup

return code*/

_mondata.prof_type = _PROF_TYPE_IS_PG; /*define -pg profiling*/

/*Note cast used to obtain function code addresses*/

rc = monstartup(*(uint *)zit,*(uint *)zot); /*start*/

if (rc != 0) /*profiling did

not start - do\

 error

recovery here*/

 return(-1);

818 Technical Reference, Volume 1: Base Operating System and Extensions

/*other code

for analysis ...*/

exit(0); /*stop profiling and write data file gmon.out*/

}

Return Values

The monstartup subroutine returns 0 upon successful completion.

Error Codes

If an error is found, the monstartup subroutine outputs an error message to stderr and returns -1.

Files

 mon.out Data file for -p profiling.

gmon.out Data file for -pg profiling.

mon.h Defines the _mondata.prof_type variable in the monglobal data structure, the prof structure, and

the functions referred to in the examples.

Related Information

The moncontrol (“moncontrol Subroutine” on page 809)subroutine, monitor (“monitor Subroutine” on

page 810) subroutine, profil (“profil Subroutine” on page 1086) subroutine.

The gprof command, prof command.

The _end, _etext, or _edata (“_end, _etext, or _edata Identifier” on page 220) Identifier.

List of Memory Manipulation Services in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

mprotect Subroutine

Purpose

Modifies access protections for memory mapping.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <sys/mman.h>

int mprotect (addr, len, prot)

void *addr;

size_t len;

int prot;

Description

The mprotect subroutine modifies the access protection of a mapped file or shared memory region or

anonymous memory region created by the mmap subroutine. The behavior of this function is unspecified if

the mapping was not established by a call to the mmap subroutine.

Base Operating System (BOS) Runtime Services (A-P) 819

Parameters

addr Specifies the address of the region to be modified. Must be a multiple of the page size returned by

the sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter.

len Specifies the length, in bytes, of the region to be modified. If the len parameter is not a multiple of

the page size returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name

parameter, the length of the region will be rounded off to the next multiple of the page size.

prot Specifies the new access permissions for the mapped region. Legitimate values for the prot

parameter are the same as those permitted for the mmap (“mmap or mmap64 Subroutine” on

page 803) subroutine, as follows:

PROT_READ

Region can be read.

PROT_WRITE

Region can be written.

PROT_EXEC

Region can be executed.

PROT_NONE

Region cannot be accessed.

Return Values

When successful, the mprotect subroutine returns 0. Otherwise, it returns -1 and sets the errno global

variable to indicate the error.

Note: The return value for mprotect is 0 if it fails because the region given was not created by mmap

unless XPG 1170 behavior is requested by setting the environment variable XPG_SUS_ENV to ON.

Error Codes

Attention: If the mprotect subroutine is unsuccessful because of a condition other than that specified by

the EINVAL error code, the access protection for some pages in the (addr, addr + len) range may have

been changed.

If the mprotect subroutine is unsuccessful, the errno global variable may be set to one of the following

values:

 EACCES The prot parameter specifies a protection that conflicts with the access permission set for the

underlying file.

EINVAL The prot parameter is not valid, or the addr parameter is not a multiple of the page size as returned

by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter.

ENOMEM The application has requested Single UNIX Specification, Version 2 compliant behavior and

addresses in the range are invalid for the address space of the process or specify one or more

pages which are not mapped.

mq_close Subroutine

Purpose

Closes a message queue.

Library

Standard C Library (libc.a)

820 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <mqueue.h>

int mq_close (mqdes)

mqd_t mqdes;

Description

The mq_close subroutine removes the association between the message queue descriptor, mqdes, and

its message queue. The results of using this message queue descriptor after successful return from the

mq_close subroutine, and until the return of this message queue descriptor from a subsequent mq_open

call, are undefined.

If the process has successfully attached a notification request to the message queue through the mqdes

parameter, this attachment is removed, and the message queue is available for another process to attach

for notification.

Parameters

 mqdes Specifies the message queue descriptor.

Return Values

Upon successful completion, the mq_close subroutine returns a zero. Otherwise, the subroutine returns a

-1 and sets errno to indicate the error.

Error Codes

The mq_close subroutine fails if:

 EBADF The mqdes parameter is not a valid message queue descriptor.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.

Related Information

“mq_open Subroutine” on page 824 and “mq_unlink Subroutine” on page 833.

mq_getattr Subroutine

Purpose

Gets message queue attributes.

Library

Standard C Library (libc.a)

Syntax

#include <mqueue.h>

int mq_getattr (mqdes, mqstat)

mqd_t mqdes;

struct mq_attr *mqstat;

Base Operating System (BOS) Runtime Services (A-P) 821

Description

The mq_getattr subroutine obtains status information and attributes of the message queue and the open

message queue description associated with the message queue descriptor.

The results are returned in the mq_attr structure referenced by the mqstat parameter.

Upon return, the following members have the values associated with the open message queue description

as set when the message queue was opened and as modified by subsequent calls to the mq_setattr

subroutine:

v mq_flags

The following attributes of the message queue are returned as set at message queue creation:

v mq_maxmsg

v mq_msgsize

Upon return, the following member within the mq_attr structure referenced by the mqstat parameter is set

to the current state of the message queue:

 mq_curmsgs The number of messages currently on the queue.

Parameters

 mqdes Specifies a message queue descriptor.

mqstat Points to the mq_attr structure.

Return Values

Upon successful completion, the mq_getattr subroutine returns zero. Otherwise, the subroutine returns -1

and sets errno to indicate the error.

Error Codes

The mq_getattr subroutine fails if:

 EBADF The mqdes parameter is not a valid message queue descriptor.

EFAULT Invalid user address.

EINVAL The mqstat parameter value is not valid.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.

Related Information

“mq_open Subroutine” on page 824 and “mq_setattr Subroutine” on page 828.

mq_notify Subroutine

Purpose

Notifies a process that a message is available.

Library

Standard C Library (libc.a)

822 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <mqueue.h>

int mq_notify (mqdes, notification)

mqd_t mqdes;

const struct sigevent *notification;

Description

If the notification parameter is not NULL, the mq_notify subroutine registers the calling process to be

notified of message arrival at an empty message queue associated with the specified message queue

descriptor, mqdes. The notification specified by the notification parameter is sent to the process when the

message queue transitions from empty to non-empty. At any time only one process may be registered for

notification by a message queue. If the calling process or any other process has already registered for

notification of message arrival at the specified message queue, subsequent attempts to register for that

message queue fails.

If notification is NULL and the process is currently registered for notification by the specified message

queue, the existing registration is removed.

When the notification is sent to the registered process, its registration is removed. The message queue is

then available for registration.

If a process has registered for notification of message arrival at a message queue and a thread is blocked

in the mq_receive subroutine waiting to receive a message, the arriving message satisfies the appropriate

mq_receive. The resulting behavior is as if the message queue remains empty, and no notification is sent.

Parameters

 mqdes Specifies a message queue descriptor.

notification Points to the sigevent structure.

Return Values

Upon successful completion, the mq_notify subroutine returns a zero. Otherwise, it returns a value of -1

and sets errno to indicate the error.

Error Codes

The mq_notify subroutine fails if:

 EBADF The mqdes parameter is not a valid message queue descriptor.

EBUSY A process is already registered for notification by the message queue.

EFAULT Invalid used address.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.

EINVAL The current process is not registered for notification for the specified message queue and registration

removal was requested.

Related Information

“mq_open Subroutine” on page 824.

Base Operating System (BOS) Runtime Services (A-P) 823

mq_open Subroutine

Purpose

Opens a message queue.

Library

Standard C Library (libc.a)

Syntax

#include <mqueue.h>

mqd_t mq_open (name, oflag [mode, attr])

const char *name;

int oflag;

mode_t mode;

mq_attr *attr;

Description

The mq_open subroutine establishes a connection between a process and a message queue with a

message queue descriptor. It creates an open message queue description that refers to the message

queue, and a message queue descriptor that refers to that open message queue description. The

message queue descriptor is used by other subroutines to refer to that message queue.

The name parameter points to a string naming a message queue, and has no representation in the file

system. The name parameter conforms to the construction rules for a pathname. It may or may not begin

with a slash character, but contains at least one character. Processes calling the mq_open subroutine with

the same value of name refer to the same message queue object, as long as that name has not been

removed. If the name parameter is not the name of an existing message queue and creation is not

requested, the mq_open subroutine will fail and return an error.

The oflag parameter requests the desired receive and send access to the message queue. The requested

access permission to receive messages or send messages is granted if the calling process would be

granted read or write access, respectively, to an equivalently protected file.

The value of the oflag parameter is the bitwise-inclusive OR of values from the following list. Applications

specify exactly one of the first three values (access modes) below in the value of the oflag parameter:

O_RDONLY

Open the message queue for receiving messages. The process can use the returned message

queue descriptor with the mq_receive subroutine, but not the mq_send subroutine. A message

queue may be open multiple times in the same or different processes for receiving messages.

O_WRONLY

Open the queue for sending messages. The process can use the returned message queue

descriptor with the mq_send subroutine but not the mq_receive subroutine. A message queue

may be open multiple times in the same or different processes for sending messages.

O_RDWR

Open the queue for both receiving and sending messages. The process can use any of the

functions allowed for the O_RDONLY and O_WRONLY flags. A message queue may be open

multiple times in the same or different processes for sending messages.

Any combination of the remaining flags may be specified in the value of the oflag parameter:

O_CREAT

Create a message queue. It requires two additional arguments: mode, which is of mode_t type,

824 Technical Reference, Volume 1: Base Operating System and Extensions

and attr, which is a pointer to an mq_attr structure. If the pathname name has already been used

to create a message queue that still exists, this flag has no effect, except as noted under the

O_EXCL flag. Otherwise, a message queue is created without any messages in it. The user ID of

the message queue is set to the effective user ID of the process, and the group ID of the message

queue is set to the effective group ID of the process. The file permission bits are set to the value

of mode. When bits in the mode parameter other than file permission bits are set, they have no

effect. If attr is NULL, the message queue is created with default message queue attributes.

Default values are 128 for mq_maxmsg and 1024 for mq_msgsize. If attr is non-NULL, the

message queue mq_maxmsg and mq_msgsize attributes are set to the values of the

corresponding members in the mq_attr structure referred to by attr.

O_EXCL

If the O_EXCL and O_CREAT flags are set, the mq_open subroutine fails if the message queue

name exists. The check for the existence of the message queue and the creation of the message

queue if it does not exist is atomic with respect to other threads executing mq_open naming the

same name with the O_EXCL and O_CREAT flags set. If the O_EXCL flag is set and the

O_CREAT flag is not set, the O_EXCL flag is ignored.

O_NONBLOCK

Determines whether the mq_send or mq_receive subroutine waits for resources or messages

that are not currently available, or fails with errno set to EAGAIN; see “mq_send Subroutine” on

page 827 and “mq_receive Subroutine” on page 826 for details.

The mq_open subroutine does not add or remove messages from the queue.

Parameters

 name Points to a string naming a message queue.

oflag Requests the desired receive and send access to the message queue.

mode Specifies the value of the file permission bits. Used with O_CREAT to create a message queue.

attr Points to an mq_attr structure. Used with O_CREAT to create a message queue.

Return Values

Upon successful completion, the mq_open subroutine returns a message queue descriptor. Otherwise, it

returns (mqd_t)-1 and sets errno to indicate the error.

Error Codes

The mq_open subroutine fails if:

 EACCES The message queue exists and the permissions specified by the oflag parameter are

denied.

EEXIST The O_CREAT and O_EXCL flags are set and the named message queue already exists.

EFAULT Invalid used address.

EINVAL The mq_open subroutine is not supported for the given name.

EINVAL The O_CREAT flag was specified in the oflag parameter, the value of attr is not NULL, and

either mq_maxmsg or mq_msgsize was less than or equal to zero.

EINVAL The oflag parameter value is not valid.

EMFILE Too many message queue descriptors are currently in use by this process.

ENAMETOOLONG The length of the name parameter exceeds PATH_MAX or a pathname component is longer

than NAME_MAX.

ENFILE Too many message queues are currently open in the system.

ENOENT The O_CREAT flag is not set and the named message queue does not exist.

ENOMEM Insufficient memory for the required operation.

ENOSPC There is insufficient space for the creation of the new message queue.

ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.

Base Operating System (BOS) Runtime Services (A-P) 825

Related Information

“mq_close Subroutine” on page 820, “mq_getattr Subroutine” on page 821, “mq_receive Subroutine,”

“mq_send Subroutine” on page 827, “mq_setattr Subroutine” on page 828, “mq_unlink Subroutine” on

page 833, “msgctl Subroutine” on page 838, “msgget Subroutine” on page 841, “msgrcv Subroutine” on

page 842, and “msgsnd Subroutine” on page 845.

mq_receive Subroutine

Purpose

Receives a message from a message queue.

Library

Standard C Library (libc.a)

Syntax

#include <mqueue.h>

ssize_t mq_receive (mqdes, msg_ptr, msg_len, msg_prio)

mqd_t mqdes;

char *msg_ptr;

size_t msg_len;

unsigned *msg_prio;

Description

The mq_receive subroutine receives the oldest of the highest priority messages from the message queue

specified by the mqdes parameter. If the size of the buffer in bytes, specified by the msg_len parameter, is

less than the mq_msgsize attribute of the message queue, the subroutine fails and returns an error.

Otherwise, the selected message is removed from the queue and copied to the buffer pointed to by the

msg_ptr parameter.

If the msg_prio parameter is not NULL, the priority of the selected message is stored in the location

referenced by msg_prio.

If the specified message queue is empty and the O_NONBLOCK flag is not set in the message queue

description associated with the mqdes parameter, the mq_receive subroutine blocks until a message is

enqueued on the message queue or until mq_receive is interrupted by a signal. If more than one thread is

waiting to receive a message when a message arrives at an empty queue and the Priority Scheduling

option is supported, the thread of highest priority that has been waiting the longest is selected to receive

the message. If the specified message queue is empty and the O_NONBLOCK flag is set in the message

queue description associated with the mqdes parameter, no message is removed from the queue, and the

mq_receive subroutine returns an error.

Parameters

 mqdes Specifies the message queue descriptor.

msg_ptr Points to the buffer where the message is copied.

msg_len Specifies the length of the message, in bytes.

msg_prio Stores the priority of the selected message.

826 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, the mq_receive subroutine returns the length of the selected message in

bytes and the message is removed from the queue. Otherwise, no message is removed from the queue,

and the subroutine returns -1 and sets errno to indicate the error.

Error Codes

The mq_receive subroutine fails if:

 EAGAIN The O_NONBLOCK flag was set in the message description associated with the mqdes

parameter, and the specified message queue is empty.

EBADF The mqdes parameter is not a valid message queue descriptor open for reading.

EFAULT Invalid used address.

EIDRM The specified message queue was removed during the required operation.

EINTR The mq_receive subroutine was interrupted by a signal.

EINVAL The msg_ptr parameter is null.

EMSGSIZE The specified message buffer size, msg_len, is less than the message size attribute of the

message queue.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.

Related Information

“mq_open Subroutine” on page 824 and “mq_send Subroutine.”

mq_send Subroutine

Purpose

Sends a message to a message queue.

Library

Standard C Library (libc.a)

Syntax

#include <mqueue.h>

int mq_send (mqdes, msg_ptr, msg_len, msg_prio)

mqd_t mqdes;

const char *msg_ptr;

size_t msg_len;

unsigned *msg_prio;

Description

The mq_send subroutine adds the message pointed to by the msg_ptr parameter to the message queue

specified by the mqdes parameter. The msg_len parameter specifies the length of the message, in bytes,

pointed to by msg_ptr. The value of msg_len is less than or equal to the mq_msgsize attribute of the

message queue, or the mq_send subroutine will fail.

If the specified message queue is not full, the mq_send subroutine behaves as if the message is inserted

into the message queue at the position indicated by the msg_prio parameter. A message with a larger

numeric value of msg_prio will be inserted before messages with lower values of msg_prio. A message will

be inserted after other messages in the queue with equal msg_prio. The value of msg_prio will be less

than MQ_PRIO_MAX.

Base Operating System (BOS) Runtime Services (A-P) 827

If the specified message queue is full and O_NONBLOCK is not set in the message queue description

associated with mqdes, the mq_send subroutine will block until space becomes available to enqueue the

message, or until mq_send is interrupted by a signal. If more than one thread is waiting to send when

space becomes available in the message queue and the Priority Scheduling option is supported, the

thread of the highest priority that has been waiting the longest is unblocked to send its message.

Otherwise, it is unspecified which waiting thread is unblocked. If the specified message queue is full and

O_NONBLOCK is set in the message queue description associated with mqdes, the message is not

queued and the mq_send subroutine returns an error.

Parameters

 mqdes Specifies the message queue descriptor.

msg_ptr Points to the message to be added.

msg_len Specifies the length of the message, in bytes.

msg_prio Specifies the position of the message in the message queue.

Return Values

Upon successful completion, the mq_send subroutine returns a zero. Otherwise, no message is

enqueued, the subroutine returns -1, and errno is set to indicate the error.

Error Codes

The mq_send subroutine fails if:

 EAGAIN The O_NONBLOCK flag is set in the message queue description associated with the mqdes

parameter, and the specified message queue is full (maximum number of messages in the

queue or maximum number of bytes in the queue is reached).

EBADF The mqdes parameter is not a valid message queue descriptor open for writing.

EFAULT Invalid used address.

EIDRM The specified message queue was removed during the required operation.

EINTR A signal interrupted the call to the mq_send subroutine.

EINVAL The value of the msg_prio parameter was outside the valid range.

EINVAL The msg_ptr parameter is null.

EMSGSIZE The specified message length, msg_len, exceeds the message size attribute of the message

queue.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.

Related Information

“mq_open Subroutine” on page 824 and “mq_receive Subroutine” on page 826.

mq_setattr Subroutine

Purpose

Sets message queue attributes.

Library

Standard C Library (libc.a)

828 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <mqueue.h>

int mq_setattr (mqdes, mqstat, omqstat)

mqd_t mqdes;

const struct mq_attr *mqstat;

struct mq_attr *omqstat;

Description

The mq_setattr subroutine sets attributes associated with the open message queue description

referenced by the message queue descriptor specified by mqdes.

The message queue attributes corresponding to the following members defined in the mq_attr structure

are set to the specified values upon successful completion of the mq_setattr subroutine.

The value of the mq_flags member is either zero or O_NONBLOCK.

The values of the mq_maxmsg, mq_msgsize, and mq_curmsgs members of the mq_attr structure are

ignored by the mq_setattr subroutine.

If the omqstat parameter is non-NULL, the mq_setattr subroutine stores, in the location referenced by

omqstat, the previous message queue attributes and the current queue status. These values are the same

as would be returned by a call to the mq_getattr subroutine at that point.

Parameters

 mqdes Specifies the message queue descriptor.

mqstat Specifies the status of the message queue.

omqstat Specifies the status of the previous message queue.

Return Values

Upon successful completion, the mq_setattr subroutine returns a zero and the attributes of the message

queue are changed as specified.

Otherwise, the message queue attributes are unchanged, and the subroutine returns a -1 and sets errno

to indicate the error.

Error Codes

The mq_setattr subroutine fails if:

 EBADF The mqdes parameter is not a valid message queue descriptor.

EFAULT Invalid user address.

EINVAL The mqstat parameter value is not valid.

ENOMEM Insufficient memory for the required operation.

ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.

Related Information

“mq_open Subroutine” on page 824 and “mq_getattr Subroutine” on page 821.

Base Operating System (BOS) Runtime Services (A-P) 829

mq_receive, mq_timedreceive Subroutine

Purpose

Receives a message from a message queue (REALTIME).

Syntax

#include <mqueue.h>

ssize_t mq_receive(mqd_t mqdes, char *msg_ptr,

 size_t msg_len, unsigned *msg_prio,

#include <mqueue.h>

#include <time.h>

ssize_t mq_timedreceive(mqd_t mqdes, char *restrict msg_ptr,

 size_t msg_len, unsigned *restrict msg_prio,

 const struct timespec *restrict abs_timeout);

Description

The mq_receive() function receives the oldest of the highest priority messages from the message queue

specified by mqdes. If the size of the buffer, in bytes, specified by the msg_len argument is less than the

mq_msgsize attribute of the message queue, the function fails and returns an error. Otherwise, the

selected message is removed from the queue and copied to the buffer pointed to by the msg_ptr

argument.

If the value of msg_len is greater than {SSIZE_MAX}, the result is implementation-defined.

If the msg_prio argument is not NULL, the priority of the selected message is stored in the location

referenced by msg_prio.

If the specified message queue is empty and O_NONBLOCK is not set in the message queue description

associated with mqdes, mq_receive() blocks until a message is enqueued on the message queue or until

mq_receive() is interrupted by a signal. If more than one thread is waiting to receive a message when a

message arrives at an empty queue and the Priority Scheduling option is supported, then the thread of

highest priority that has been waiting the longest is selected to receive the message. Otherwise, it is

unspecified which waiting thread receives the message. If the specified message queue is empty and

O_NONBLOCK is set in the message queue description associated with mqdes, no message is removed

from the queue, and mq_receive() returns an error.

The mq_timedreceive() function receives the oldest of the highest priority messages from the message

queue specified by mqdes as described for the mq_receive() function. However, if O_NONBLOCK was

not specified when the message queue was opened by the mq_open() function, and no message exists

on the queue to satisfy the receive, the wait for such a message is terminated when the specified timeout

expires. If O_NONBLOCK is set, this function matches mq_receive().

The timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock

on which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout), or

when the absolute time specified by abs_timeout has already been passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers

option is not supported, the timeout is based on the system clock as returned by the time() function.

The resolution of the timeout matches the resolution of the clock on which it is based. The timespec

argument is defined in the <time.h> header.

830 Technical Reference, Volume 1: Base Operating System and Extensions

The operation never fails with a timeout if a message can be removed from the message queue

immediately. The validity of the abs_timeout parameter does not need to be checked if a message can be

removed from the message queue immediately.

Return Values

Upon successful completion, the mq_receive() and mq_timedreceive() functions return the length of the

selected message in bytes and the message is removed from the queue. Otherwise, no message shall be

removed from the queue, the functions return a value of -1, and errno is set to indicate the error.

Error Codes

The mq_receive() and mq_timedreceive() functions fail if:

 [EAGAIN] O_NONBLOCK was set in the message description associated with mqdes, and the

specified message queue is empty.

[EBADF] The mqdes argument is not a valid message queue descriptor open for reading.

[EFAULT] abs_timeout references invalid memory.

[EIDRM] Specified message queue was removed during required operation.

[EINTR] The mq_receive() or mq_timedreceive() operation was interrupted by a signal.

[EINVAL] The process or thread would have blocked, and the abs_timeout parameter specified

a nanoseconds field value less than 0 or greater than or equal to 1000 million.

[EINVAL] msg_ptr value was null.

[EMSGSIZE] The specified message buffer size, msg_len, is less than the message size attribute of

the message queue.

[ENOTSUP] Function is not supported with checkpoint-restart’ed processes.

[ETIMEDOUT] The O_NONBLOCK flag was not set when the message queue was opened, but no

message arrived on the queue before the specified timeout expired.

The mq_receive() and mq_timedreceive() functions might fail if:

 [EBADMSG] The implementation has detected a data corruption problem with the message.

Related Information

“mq_send, mq_timedsend Subroutine,” “msgctl Subroutine” on page 838, “msgget Subroutine” on page

841, “msgrcv Subroutine” on page 842, “msgsnd Subroutine” on page 845, “posix_trace_getnext_event,

posix_trace_timedgetnext_event, posix_trace_trygetnext_event Subroutine” on page 1074,

“pthread_mutex_timedlock Subroutine” on page 1181, “pthread_rwlock_timedrdlock Subroutine” on page

1196, “pthread_rwlock_timedwrlock Subroutine” on page 1198.

The sem_timedwait and time subroutines in AIX 5L Version 5.3 Technical Reference: Base Operating

System and Extensions Volume 2.

The mqueue.h and time.h file.

mq_send, mq_timedsend Subroutine

Purpose

Sends a message to a message queue (REALTIME).

Syntax

#include <mqueue.h>

int mq_send(mqd_t mqdes, const char *msg_ptr,

Base Operating System (BOS) Runtime Services (A-P) 831

size_t msg_len, unsigned *msg_prio,

#include <mqueue.h>

#include <time.h>

int mq_timedsend(mqd_t mqdes, const char *msg_ptr,

 size_t msg_len, unsigned msg_prio,

 const struct timespec *abs_timeout);

Description

The mq_send() function adds the message pointed to by the argument msg_ptr to the message queue

specified by mqdes. The msg_len argument specifies the length of the message, in bytes, pointed to by

msg_ptr. The value of msg_len is less than or equal to the mq_msgsize attribute of the message queue,

or mq_send() fails.

If the specified message queue is not full, mq_send() behaves as if the message is inserted into the

message queue at the position indicated by the msg_prio argument. A message with a larger numeric

value of msg_prio is inserted before messages with lower values of msg_prio. A message is inserted after

other messages in the queue, if any, with equal msg_prio values. The value of msg_prio is less than

{MQ_PRIO_MAX}.

If the specified message queue is full and O_NONBLOCK is not set in the message queue description

associated with mqdes, mq_send() blocks until space becomes available to enqueue the message, or

until mq_send() is interrupted by a signal. If more than one thread is waiting to send when space

becomes available in the message queue and the Priority Scheduling option is supported, then the

thread of the highest priority that has been waiting the longest is unblocked to send its message.

Otherwise, it is unspecified which waiting thread is unblocked. If the specified message queue is full and

O_NONBLOCK is set in the message queue description associated with mqdes, the message is not

queued and mq_send() returns an error.

The mq_timedsend() function adds a message to the message queue specified by mqdes in the manner

defined for the mq_send() function. However, if the specified message queue is full and O_NONBLOCK is

not set in the message queue description associated with mqdes, the wait for sufficient room in the queue

is terminated when the specified timeout expires. If O_NONBLOCK is set in the message queue

description, this function matches mq_send().

The timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock

on which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout)—or

when the absolute time specified by abs_timeout has already been passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers

option is not supported, the timeout is based on the system clock as returned by the time() function.

The operation never fails with a timeout if there is sufficient room in the queue to add the message

immediately. The validity of the abs_timeout parameter does not need to be checked when there is

sufficient room in the queue.

Application Usage

The value of the symbol {MQ_PRIO_MAX} limits the number of priority levels supported by the application.

Message priorities range from 0 to {MQ_PRIO_MAX}-1.

Return Values

Upon successful completion, the mq_send() and mq_timedsend() functions return a value of 0.

Otherwise, no message is enqueued, the functions return -1, and errno is set to indicate the error.

832 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The mq_send() and mq_timedsend() functions fail if:

 [EAGAIN] The O_NONBLOCK flag is set in the message queue description associated with

mqdes, and the specified message queue is full.

[EBADF] The mqdes argument is not a valid message queue descriptor open for writing.

[EFAULT] abs_timeout references invalid memory.

[EIDRM] Specified message queue was removed during required operation.

[EINTR] A signal interrupted the call to mq_send() or mq_timedsend().

[EINVAL] The value of msg_prio was outside the valid range.

[EINVAL] msg_ptr value was null.

[EINVAL] The process or thread would have blocked, and the abs_timeout parameter specified

a nanoseconds field value less than 0 or greater than or equal to 1000 million.

[EMSGSIZE] The specified message length, msg_len, exceeds the message size attribute of the

message queue.

[ENOTSUP] Function is not supported with checkpoint-restart’ed processes.

[ETIMEDOUT] The O_NONBLOCK flag was not set when the message queue was opened, but the

timeout expired before the message could be added to the queue.

The mq_send() and mq_timedsend() functions might fail if:

 [EBADMSG] The implementation has detected a data corruption problem with the message.

Related Information

“mq_receive, mq_timedreceive Subroutine” on page 830, “msgctl Subroutine” on page 838, “msgget

Subroutine” on page 841, “msgrcv Subroutine” on page 842, “msgsnd Subroutine” on page 845,

“posix_trace_getnext_event, posix_trace_timedgetnext_event, posix_trace_trygetnext_event Subroutine” on

page 1074, “pthread_mutex_timedlock Subroutine” on page 1181, “pthread_rwlock_timedrdlock

Subroutine” on page 1196, “pthread_rwlock_timedwrlock Subroutine” on page 1198.

The sem_timedwait and time subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating

System and Extensions Volume 2.

The mqueue.h and time.h file.

mq_unlink Subroutine

Purpose

Removes a message queue.

Library

Standard C Library (libc.a)

Syntax

#include <mqueue.h>

int mq_unlink (name)

const char *name;

Description

The mq_unlink subroutine removes the message queue named by the pathname name. After a

successful call to the mq_unlink subroutine with the name parameter, a call to the mq_open subroutine

Base Operating System (BOS) Runtime Services (A-P) 833

with the name parameter and the O_CREAT flag will create a new message queue. If one or more

processes have the message queue open when the mq_unlink subroutine is called, destruction of the

message queue is postponed until all references to the message queue have been closed.

After a successful completion of the mq_unlink subroutine, calls to the mq_open subroutine to recreate a

message queue with the same name will succeed. The mq_unlink subroutine never blocks even if all

references to the message queue have not been closed.

Parameters

 name Specifies the message queue to be removed.

Return Values

Upon successful completion, the mq_unlink subroutine returns a zero. Otherwise, the named message

queue is unchanged, and the mq_unlink subroutine returns a -1 and sets errno to indicate the error.

Error Codes

The mq_unlink subroutine fails if:

 EACCES Permission is denied to unlink the named message queue.

EFAULT Invalid used address.

EINVAL The name parameter value is not valid

ENAMETOOLONG The length of the name parameter exceeds PATH_MAX or a pathname component is

longer than NAME_MAX.

ENOENT The named message queue does not exist.

ENOTSUP This function is not supported with processes that have been checkpoint-restart’ed.

Related Information

“mq_open Subroutine” on page 824 and “mq_close Subroutine” on page 820.

msem_init Subroutine

Purpose

Initializes a semaphore in a mapped file or shared memory region.

Library

Standard C Library (libc.a)

Syntax

#include <sys/mman.h>

msemaphore *msem_init (Sem, InitialValue)

msemaphore *Sem;

int InitialValue;

Description

The msem_init subroutine allocates a new binary semaphore and initializes the state of the new

semaphore.

834 Technical Reference, Volume 1: Base Operating System and Extensions

If the value of the InitialValue parameter is MSEM_LOCKED, the new semaphore is initialized in the

locked state. If the value of the InitialValue parameter is MSEM_UNLOCKED, the new semaphore is

initialized in the unlocked state.

The msemaphore structure is located within a mapped file or shared memory region created by a

successful call to the mmap subroutine and having both read and write access.

Whether a semaphore is created in a mapped file or in an anonymous shared memory region, any

reference by a process that has mapped the same file or shared region, using an msemaphore structure

pointer that resolved to the same file or start of region offset, is taken as a reference to the same

semaphore.

Any previous semaphore state stored in the msemaphore structure is ignored and overwritten.

Parameters

 Sem Points to an msemaphore structure in which the state of the semaphore is stored.

Initial Value Determines whether the semaphore is locked or unlocked at allocation.

Return Values

When successful, the msem_init subroutine returns a pointer to the initialized msemaphore structure.

Otherwise, it returns a null value and sets the errno global variable to indicate the error.

Error Codes

If the msem_init subroutine is unsuccessful, the errno global variable is set to one of the following values:

 EINVAL Indicates the InitialValue parameter is not valid.

ENOMEM Indicates a new semaphore could not be created.

Related Information

The mmap (“mmap or mmap64 Subroutine” on page 803) subroutine, msem_lock (“msem_lock

Subroutine”) subroutine, msem_remove (“msem_remove Subroutine” on page 836) subroutine,

msem_unlock (“msem_unlock Subroutine” on page 837) subroutine.

List of Memory Mapping Services and Understanding Memory Mapping in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

msem_lock Subroutine

Purpose

Locks a semaphore.

Library

Standard C Library (libc.a)

Syntax

#include <sys/mman.h>

int msem_lock (Sem, Condition)

msemaphore *Sem;

int Condition;

Base Operating System (BOS) Runtime Services (A-P) 835

Description

The msem_lock subroutine attempts to lock a binary semaphore.

If the semaphore is not currently locked, it is locked and the msem_lock subroutine completes

successfully.

If the semaphore is currently locked, and the value of the Condition parameter is MSEM_IF_NOWAIT, the

msem_lock subroutine returns with an error. If the semaphore is currently locked, and the value of the

Condition parameter is 0, the msem_lock subroutine does not return until either the calling process is able

to successfully lock the semaphore or an error condition occurs.

All calls to the msem_lock and msem_unlock subroutines by multiple processes sharing a common

msemaphore structure behave as if the call were serialized.

If the msemaphore structure contains any value not resulting from a call to the msem_init subroutine,

followed by a (possibly empty) sequence of calls to the msem_lock and msem_unlock subroutines, the

results are undefined. The address of an msemaphore structure is significant. If the msemaphore

structure contains any value copied from an msemaphore structure at a different address, the result is

undefined.

Parameters

 Sem Points to an msemaphore structure that specifies the semaphore to be locked.

Condition Determines whether the msem_lock subroutine waits for a currently locked semaphore to unlock.

Return Values

When successful, the msem_lock subroutine returns a value of 0. Otherwise, it returns a value of -1 and

sets the errno global variable to indicate the error.

Error Codes

If the msem_lock subroutine is unsuccessful, the errno global variable is set to one of the following

values:

 EAGAIN Indicates a value of MSEM_IF_NOWAIT is specified for the Condition parameter and the semaphore is

already locked.

EINVAL Indicates the Sem parameter points to an msemaphore structure specifying a semaphore that has been

removed, or the Condition parameter is invalid.

EINTR Indicates the msem_lock subroutine was interrupted by a signal that was caught.

Related Information

The msem_init (“msem_init Subroutine” on page 834) subroutine, msem_remove (“msem_remove

Subroutine”) subroutine, msem_unlock (“msem_unlock Subroutine” on page 837) subroutine.

List of Memory Mapping Services and Understanding Memory Mapping in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

msem_remove Subroutine

Purpose

Removes a semaphore.

836 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Standard C Library (libc.a)

Syntax

#include <sys/mman.h>

int msem_remove (Sem)

msemaphore *Sem;

Description

The msem_remove subroutine removes a binary semaphore. Any subsequent use of the msemaphore

structure before it is again initialized by calling the msem_init subroutine will have undefined results.

The msem_remove subroutine also causes any process waiting in the msem_lock subroutine on the

removed semaphore to return with an error.

If the msemaphore structure contains any value not resulting from a call to the msem_init subroutine,

followed by a (possibly empty) sequence of calls to the msem_lock and msem_unlock subroutines, the

result is undefined. The address of an msemaphore structure is significant. If the msemaphore structure

contains any value copied from an msemaphore structure at a different address, the result is undefined.

Parameters

 Sem Points to an msemaphore structure that specifies the semaphore to be removed.

Return Values

When successful, the msem_remove subroutine returns a value of 0. Otherwise, it returns a -1 and sets

the errno global variable to indicate the error.

Error Codes

If the msem_remove subroutine is unsuccessful, the errno global variable is set to the following value:

 EINVAL Indicates the Sem parameter points to an msemaphore structure that specifies a semaphore that has

been removed.

Related Information

The msem_init (“msem_init Subroutine” on page 834) subroutine, msem_lock (“msem_lock Subroutine”

on page 835) subroutine, msem_unlock (“msem_unlock Subroutine”) subroutine.

List of Memory Mapping Services and Understanding Memory Mapping in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

msem_unlock Subroutine

Purpose

Unlocks a semaphore.

Library

Standard C Library (libc.a)

Base Operating System (BOS) Runtime Services (A-P) 837

Syntax

#include <sys/mman.h>

int msem_unlock (Sem, Condition)

msemaphore *Sem;

int Condition;

Description

The msem_unlock subroutine attempts to unlock a binary semaphore.

If the semaphore is currently locked, it is unlocked and the msem_unlock subroutine completes

successfully.

If the Condition parameter is 0, the semaphore is unlocked, regardless of whether or not any other

processes are currently attempting to lock it. If the Condition parameter is set to the MSEM_IF_WAITERS

value, and another process is waiting to lock the semaphore or it cannot be reliably determined whether

some process is waiting to lock the semaphore, the semaphore is unlocked by the calling process. If the

Condition parameter is set to the MSEM_IF_WAITERS value and no process is waiting to lock the

semaphore, the semaphore will not be unlocked and an error will be returned.

Parameters

 Sem Points to an msemaphore structure that specifies the semaphore to be unlocked.

Condition Determines whether the msem_unlock subroutine unlocks the semaphore if no other processes

are waiting to lock it.

Return Values

When successful, the msem_unlock subroutine returns a value of 0. Otherwise, it returns a value of -1

and sets the errno global variable to indicate the error.

Error Codes

If the msem_unlock subroutine is unsuccessful, the errno global variable is set to one of the following

values:

 EAGAIN Indicates a Condition value of MSEM_IF_WAITERS was specified and there were no waiters.

EINVAL Indicates the Sem parameter points to an msemaphore structure specifying a semaphore that has been

removed, or the Condition parameter is not valid.

Related Information

The msem_init (“msem_init Subroutine” on page 834) subroutine, msem_lock (“msem_lock Subroutine”

on page 835) subroutine, msem_remove (“msem_remove Subroutine” on page 836) subroutine.

List of Memory Mapping Services and Understanding Memory Mapping in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

msgctl Subroutine

Purpose

Provides message control operations.

838 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Standard C Library (libc.a)

Syntax

#include <sys/msg.h>

int msgctl (MessageQueueID,Command,Buffer)

int MessageQueueID, Command;

struct msqid_ds * Buffer;

Description

The msgctl subroutine provides a variety of message control operations as specified by the Command

parameter and stored in the structure pointed to by the Buffer parameter. The msqid_ds structure is

defined in the sys/msg.h file.

The following limits apply to the message queue:

v Maximum message size is 65,535 bytes for releases prior to AIX 4.1.5 and is 4 Megabytes for release

AIX 4.1.5 and later releases.

v Maximum number of messages per queue is 8192.

v Maximum number of message queue IDs is 4096 for releases before AIX 4.3.2 and 131072 for AIX

4.3.2 and following.

v Maximum number of bytes in a queue is 4 65,535 for releases prior to AIX 4.1.5 and is 4 Megabytes for

release 4.1.5 and later releases.

Parameters

 MessageQueueID Specifies the message queue identifier.

Base Operating System (BOS) Runtime Services (A-P) 839

Command The following values for the Command parameter are available:

IPC_STAT

Stores the current value of the above fields of the data structure associated with

the MessageQueueID parameter into the msqid_ds structure pointed to by the

Buffer parameter.

 The current process must have read permission in order to perform this

operation.

IPC_SET

Sets the value of the following fields of the data structure associated with the

MessageQueueID parameter to the corresponding values found in the structure

pointed to by the Buffer parameter:

 msg_perm.uid

msg_perm.gid

msg_perm.mode/*Only the low-order

nine bits*/

msg_qbytes

The effective user ID of the current process must have root user authority or

must equal the value of the msg_perm.uid or msg_perm.cuid field in the data

structure associated with the MessageQueueID parameter in order to perform

this operation. To raise the value of the msg_qbytes field, the effective user ID of

the current process must have root user authority.

IPC_RMID

Removes the message queue identifier specified by the MessageQueueID

parameter from the system and destroys the message queue and data structure

associated with it. The effective user ID of the current process must have root

user authority or be equal to the value of the msg_perm.uid or msg_perm.cuid

field in the data structure associated with the MessageQueueID parameter to

perform this operation.

Buffer Points to a msqid_ds structure.

Return Values

Upon successful completion, the msgctl subroutine returns a value of 0. Otherwise, a value of -1 is

returned and the errno global variable is set to indicate the error.

Error Codes

The msgctl subroutine is unsuccessful if any of the following conditions is true:

 EINVAL The Command or MessageQueueID parameter is not valid.

EACCES The Command parameter is equal to the IPC_STAT value, and the calling process was denied read

permission.

EPERM The Command parameter is equal to the IPC_RMID value and the effective user ID of the calling process

does not have root user authority. Or, the Command parameter is equal to the IPC_SET value, and the

effective user ID of the calling process is not equal to the value of the msg_perm.uid field or the

msg_perm.cuid field in the data structure associated with the MessageQueueID parameter.

EPERM The Command parameter is equal to the IPC_SET value, an attempt was made to increase the value of

the msg_qbytes field, and the effective user ID of the calling process does not have root user authority.

EFAULT The Buffer parameter points outside of the process address space.

Related Information

The msgget (“msgget Subroutine” on page 841) subroutine, msgrcv (“msgrcv Subroutine” on page 842)

subroutine, msgsnd (“msgsnd Subroutine” on page 845) subroutine, msgxrcv (“msgxrcv Subroutine” on

page 847) subroutine.

840 Technical Reference, Volume 1: Base Operating System and Extensions

msgget Subroutine

Purpose

Gets a message queue identifier.

Library

Standard C Library (libc.a)

Syntax

#include <sys/msg.h>

int msgget (Key, MessageFlag)

key_t Key;

int MessageFlag;

Description

The msgget subroutine returns the message queue identifier associated with the specified Key parameter.

A message queue identifier, associated message queue, and data structure are created for the value of

the Key parameter if one of the following conditions is true:

v The Key parameter is equal to the IPC_PRIVATE value.

v The Key parameter does not already have a message queue identifier associated with it, and the

IPC_CREAT value is set.

Upon creation, the data structure associated with the new message queue identifier is initialized as

follows:

v The msg_perm.cuid, msg_perm.uid, msg_perm.cgid, and msg_perm.gid fields are set equal to the effective

user ID and effective group ID, respectively, of the calling process.

v The low-order 9 bits of the msg_perm.mode field are set equal to the low-order 9 bits of the MessageFlag

parameter.

v The msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime fields are set equal to 0.

v The msg_ctime field is set equal to the current time.

v The msg_qbytes field is set equal to the system limit.

The msgget subroutine performs the following actions:

v The msgget subroutine either finds or creates (depending on the value of the MessageFlag parameter)

a queue with the Key parameter.

v The msgget subroutine returns the ID of the queue header to its caller.

Limits on message size and number of messages in the queue can be found in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

Parameters

 Key Specifies either the value IPC_PRIVATE or an Interprocess Communication (IPC) key

constructed by the ftok (“ftok Subroutine” on page 315) subroutine (or by a similar algorithm).

Base Operating System (BOS) Runtime Services (A-P) 841

MessageFlag Constructed by logically ORing one or more of the following values:

IPC_CREAT

Creates the data structure if it does not already exist.

IPC_EXCL

Causes the msgget subroutine to fail if the IPC_CREAT value is also set and the data

structure already exists.

S_IRUSR

Permits the process that owns the data structure to read it.

S_IWUSR

Permits the process that owns the data structure to modify it.

S_IRGRP

Permits the group associated with the data structure to read it.

S_IWGRP

Permits the group associated with the data structure to modify it.

S_IROTH

Permits others to read the data structure.

S_IWOTH

Permits others to modify the data structure.

Values that begin with S_I are defined in the sys/mode.h file and are a subset of the access

permissions that apply to files.

Return Values

Upon successful completion, the msgget subroutine returns a message queue identifier. Otherwise, a

value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes

The msgget subroutine is unsuccessful if any of the following conditions is true:

 EACCES A message queue identifier exists for the Key parameter, but operation permission as specified by the

low-order 9 bits of the MessageFlag parameter is not granted.

ENOENT A message queue identifier does not exist for the Key parameter and the IPC_CREAT value is not set.

ENOSPC A message queue identifier is to be created, but the system-imposed limit on the maximum number of

allowed message queue identifiers system-wide would be exceeded.

EEXIST A message queue identifier exists for the Key parameter, and both IPC_CREAT and IPC_EXCL values

are set.

Related Information

The ftok (“ftok Subroutine” on page 315) subroutine, msgctl (“msgctl Subroutine” on page 838)

subroutine, msgrcv (“msgrcv Subroutine”) subroutine, msgsnd (“msgsnd Subroutine” on page 845)

subroutine, msgxrcv (“msgxrcv Subroutine” on page 847) subroutine.

The mode.h file.

msgrcv Subroutine

Purpose

Reads a message from a queue.

842 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Standard C Library (libc.a)

Syntax

#include <sys/msg.h>

int msgrcv (MessageQueueID, MessagePointer,MessageSize,MessageType, MessageFlag)

int MessageQueueID, MessageFlag;

void * MessagePointer;

size_t MessageSize;

long int MessageType;

Description

The msgrcv subroutine reads a message from the queue specified by the MessageQueueID parameter

and stores it into the structure pointed to by the MessagePointer parameter. The current process must

have read permission in order to perform this operation.

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is passed in case

of 64-bit application calling 32-bit kernel interface.

Limits on message size and number of messages in the queue can be found in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

Note: For a 64-bit process, the mtype field is 64 bits long. However, for compatibility with 32-bit

processes, the mtype field must be a 32-bit signed value that is sign-extended to 64 bits. The most

significant 32 bits are not put on the message queue. For a 64-bit process, the mtype field is again

sign-extended to 64 bits.

Parameters

 MessageQueueID Specifies the message queue identifier.

MessagePointer Points to a msgbuf structure containing the message. The msgbuf structure is defined in the

sys/msg.h file and contains the following fields:

mtyp_t mtype; /* Message type */

char mtext[1]; /* Beginning of message text */

The mtype field contains the type of the received message as specified by the sending process.

The mtext field is the text of the message.

MessageSize Specifies the size of the mtext field in bytes. The received message is truncated to the size

specified by the MessageSize parameter if it is longer than the size specified by the

MessageSize parameter and if the MSG_NOERROR value is set in the MessageFlag

parameter. The truncated part of the message is lost and no indication of the truncation is given

to the calling process.

MessageType Specifies the type of message requested as follows:

v If equal to the value of 0, the first message on the queue is received.

v If greater than 0, the first message of the type specified by the MessageType parameter is

received.

v If less than 0, the first message of the lowest type that is less than or equal to the absolute

value of the MessageType parameter is received.

Base Operating System (BOS) Runtime Services (A-P) 843

MessageFlag Specifies either a value of 0 or is constructed by logically ORing one or more of the following

values:

MSG_NOERROR

Truncates the message if it is longer than the MessageSize parameter.

IPC_NOWAIT

Specifies the action to take if a message of the desired type is not on the queue:

v If the IPC_NOWAIT value is set, the calling process returns a value of -1 and sets

the errno global variable to the ENOMSG error code.

v If the IPC_NOWAIT value is not set, the calling process suspends execution until

one of the following occurs:

– A message of the desired type is placed on the queue.

– The message queue identifier specified by the MessageQueueID parameter is

removed from the system. When this occurs, the errno global variable is set to

the EIDRM error code, and a value of -1 is returned.

– The calling process receives a signal that is to be caught. In this case, a

message is not received and the calling process resumes in the manner

described in the sigaction subroutine.

Return Values

Upon successful completion, the msgrcv subroutine returns a value equal to the number of bytes actually

stored into the mtext field and the following actions are taken with respect to fields of the data structure

associated with the MessageQueueID parameter:

v The msg_qnum field is decremented by 1.

v The msg_lrpid field is set equal to the process ID of the calling process.

v The msg_rtime field is set equal to the current time.

If the msgrcv subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set to

indicate the error.

Error Codes

The msgrcv subroutine is unsuccessful if any of the following conditions is true:

 EINVAL The MessageQueueID parameter is not a valid message queue identifier.

EACCES The calling process is denied permission for the specified operation.

E2BIG The mtext field is greater than the MessageSize parameter, and the MSG_NOERROR value is not set.

ENOMSG The queue does not contain a message of the desired type and the IPC_NOWAIT value is set.

EFAULT The MessagePointer parameter points outside of the allocated address space of the process.

EINTR The msgrcv subroutine is interrupted by a signal.

EIDRM The message queue identifier specified by the MessageQueueID parameter has been removed from

the system.

Related Information

The msgctl (“msgctl Subroutine” on page 838) subroutine, msgget (“msgget Subroutine” on page 841)

subroutine, msgsnd (“msgsnd Subroutine” on page 845) subroutine, msgxrcv (“msgxrcv Subroutine” on

page 847) subroutine, sigaction subroutine.

844 Technical Reference, Volume 1: Base Operating System and Extensions

msgsnd Subroutine

Purpose

Sends a message.

Library

Standard C Library (libc.a)

Syntax

#include <sys/msg.h>

int msgsnd (MessageQueueID, MessagePointer,MessageSize, MessageFlag)

int MessageQueueID, MessageFlag;

const void * MessagePointer;

size_t MessageSize;

Description

The msgsnd subroutine sends a message to the queue specified by the MessageQueueID parameter.

The current process must have write permission to perform this operation. The MessagePointer parameter

points to an msgbuf structure containing the message. The sys/msg.h file defines the msgbuf structure.

The structure contains the following fields:

mtyp_t mtype; /* Message type */

char mtext[1]; /* Beginning of message text */

The mtype field specifies a positive integer used by the receiving process for message selection. The

mtext field can be any text of the length in bytes specified by the MessageSize parameter. The

MessageSize parameter can range from 0 to the maximum limit imposed by the system.

The following example shows a typical user-defined msgbuf structure that includes sufficient space for the

largest message:

struct my_msgbuf

mtyp_t mtype;

char mtext[MSGSIZ]; /* MSGSIZ is the size of the largest message */

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is passed in case

of 64-bit application calling 32-bit kernel interface.

The following system limits apply to the message queue:

v Maximum message size is 65,535 bytes for releases prior to AIX 4.1.5 and is 4 Megabytes for AIX 4.1.5

and later releases.

v Maximum number of messages per queue is 8192.

v Maximum number of message queue IDs is 4096 for releases before AIX 4.3.2 and 131072 for AIX

4.3.2 and following.

v Maximum number of bytes in a queue is 4 65,535 bytes for releases prior to AIX 4.1.5 is 4 Megabytes

for AIX 4.1.5 and later releases.

Note: For a 64-bit process, the mtype field is 64 bits long. However, for compatibility with 32-bit

processes, the mtype field must be a 32-bit signed value that is sign-extended to 64 bits. The most

significant 32 bits are not put on the message queue. For a 64-bit process, the mtype field is again

sign-extended to 64 bits.

Base Operating System (BOS) Runtime Services (A-P) 845

The MessageFlag parameter specifies the action to be taken if the message cannot be sent for one of the

following reasons:

v The number of bytes already on the queue is equal to the number of bytes defined by themsg_qbytes

structure.

v The total number of messages on the queue is equal to a system-imposed limit.

These actions are as follows:

v If the MessageFlag parameter is set to the IPC_NOWAIT value, the message is not sent, and the

msgsnd subroutine returns a value of -1 and sets the errno global variable to the EAGAIN error code.

v If the MessageFlag parameter is set to 0, the calling process suspends execution until one of the

following occurs:

– The condition responsible for the suspension no longer exists, in which case the message is sent.

– The MessageQueueID parameter is removed from the system. (For information on how to remove

the MessageQueueID parameter, see the msgctl (“msgctl Subroutine” on page 838) subroutine.)

When this occurs, the errno global variable is set equal to the EIDRM error code, and a value of -1

is returned.

– The calling process receives a signal that is to be caught. In this case the message is not sent and

the calling process resumes execution in the manner prescribed in the sigaction subroutine.

Parameters

 MessageQueueID Specifies the queue to which the message is sent.

MessagePointer Points to a msgbuf structure containing the message.

MessageSize Specifies the length, in bytes, of the message text.

MessageFlag Specifies the action to be taken if the message cannot be sent.

Return Values

Upon successful completion, a value of 0 is returned and the following actions are taken with respect to

the data structure associated with the MessageQueueID parameter:

v The msg_qnum field is incremented by 1.

v The msg_lspid field is set equal to the process ID of the calling process.

v The msg_stime field is set equal to the current time.

If the msgsnd subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set to

indicate the error.

Error Codes

The msgsnd subroutine is unsuccessful and no message is sent if one or more of the following conditions

is true:

 EACCES The calling process is denied permission for the specified operation.

EAGAIN The message cannot be sent for one of the reasons stated previously, and the MessageFlag parameter

is set to the IPC_NOWAIT value or the system has temporarily ran out of memory resource.

EFAULT The MessagePointer parameter points outside of the address space of the process.

EIDRM The message queue identifier specified by the MessageQueueID parameter has been removed from the

system.

EINTR The msgsnd subroutine received a signal.

EINVAL The MessageQueueID parameter is not a valid message queue identifier.

EINVAL The mtype field is less than 1.

EINVAL The MessageSize parameter is less than 0 or greater than the system-imposed limit.

EINVAL The upper 32-bits of the 64-bit mtype field for a 64-bit process is not 0.

ENOMEM The message could not be sent because not enough storage space was available.

846 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The msgctl (“msgctl Subroutine” on page 838) subroutine, msgget (“msgget Subroutine” on page 841)

subroutine, msgrcv (“msgrcv Subroutine” on page 842) subroutine, msgxrcv (“msgxrcv Subroutine”)

subroutine, sigaction subroutine.

msgxrcv Subroutine

Purpose

Receives an extended message.

Library

Standard C Library (libc.a)

Syntax

For releases prior to AIX 4.3:

#include <sys/msg.h>

int msgxrcv (MessageQueueID, MessagePointer, MessageSize, MessageType, MessageFlag)

int MessageQueueID, MessageFlag, MessageSize;

struct msgxbuf * MessagePointer;

long MessageType;

For AIX 4.3 and later releases:

#include <sys/msg.h>

int msgxrcv (MessageQueueID, MessagePointer, MessageSize, MessageType, MessageFlag)

int MessageQueueID, MessageFlag;

size_t MessageSize;

struct msgxbuf * MessagePointer;

long MessageType;

Description

The msgxrcv subroutine reads a message from the queue specified by the MessageQueueID parameter

and stores it into the extended message receive buffer pointed to by the MessagePointer parameter. The

current process must have read permission in order to perform this operation. The msgxbuf structure is

defined in the sys/msg.h file.

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is passed in case

of 64-bit application calling 32-bit kernel interface.

The following limits apply to the message queue:

v Maximum message size is 65,535 bytes for releases prior to AIX 4.1.5 and is 4 Megabytes for AIX 4.1.5

and later releases.

v Maximum number of messages per queue is 8192.

v Maximum number of message queue IDs is 4096 for releases before AIX 4.3.2 and 131072 for AIX

4.3.2 and following.

v Maximum number of bytes in a queue is 4 65,535 for releases prior to AIX 4.1.5 and is 4 Megabytes for

AIX 4.1.5 later releases.

Base Operating System (BOS) Runtime Services (A-P) 847

Note: For a 64-bit process, the mtype field is 64 bits long. However, for compatibility with 32-bit

processes, the mtype field must be a 32-bit signed value that is sign-extended to 64 bits. The most

significant 32 bits are not put on the message queue. For a 64-bit process, the mtype field is again

sign-extended to 64 bits.

Parameters

 MessageQueueID Specifies the message queue identifier.

MessagePointer Specifies a pointer to an extended message receive buffer where a message is stored.

MessageSize Specifies the size of the mtext field in bytes. The receive message is truncated to the

size specified by the MessageSize parameter if it is larger than the MessageSize

parameter and the MSG_NOERROR value is true. The truncated part of the message is

lost and no indication of the truncation is given to the calling process. If the message is

longer than the number of bytes specified by the MessageSize parameter and the

MSG_NOERROR value is not set, the msgxrcv subroutine is unsuccessful and sets the

errno global variable to the E2BIG error code.

MessageType Specifies the type of message requested as follows:

v If the MessageType parameter is equal to 0, the first message on the queue is

received.

v If the MessageType parameter is greater than 0, the first message of the type specified

by the MessageType parameter is received.

v If the MessageType parameter is less than 0, the first message of the lowest type that

is less than or equal to the absolute value of the MessageType parameter is received.

MessageFlag Specifies a value of 0 or a value constructed by logically ORing one or more of the

following values:

MSG_NOERROR

Truncates the message if it is longer than the number of bytes specified by the

MessageSize parameter.

IPC_NOWAIT

Specifies the action to take if a message of the desired type is not on the queue:

v If the IPC_NOWAIT value is set, the calling process returns a value of -1 and

sets the errno global variable to the ENOMSG error code.

v If the IPC_NOWAIT value is not set, the calling process suspends execution

until one of the following occurs:

– A message of the desired type is placed on the queue.

– The message queue identifier specified by the MessageQueueID

parameter is removed from the system. When this occurs, the errno global

variable is set to the EIDRM error code, and a value of -1 is returned.

– The calling process receives a signal that is to be caught. In this case, a

message is not received and the calling process resumes in the manner

prescribed in the sigaction subroutine.

Return Values

Upon successful completion, the msgxrcv subroutine returns a value equal to the number of bytes

actually stored into the mtext field, and the following actions are taken with respect to the data structure

associated with the MessageQueueID parameter:

v The msg_qnum field is decremented by 1.

v The msg_lrpid field is set equal to the process ID of the calling process.

v The msg_rtime field is set equal to the current time.

If the msgxrcv subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set to

indicate the error.

848 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The msgxrcv subroutine is unsuccessful if any of the following conditions is true:

 EINVAL The MessageQueueID parameter is not a valid message queue identifier.

EACCES The calling process is denied permission for the specified operation.

EINVAL The MessageSize parameter is less than 0.

E2BIG The mtext field is greater than the MessageSize parameter, and the MSG_NOERROR value is not set.

ENOMSG The queue does not contain a message of the desired type and the IPC_NOWAIT value is set.

EFAULT The MessagePointer parameter points outside of the process address space.

EINTR The msgxrcv subroutine was interrupted by a signal.

EIDRM The message queue identifier specified by the MessageQueueID parameter is removed from the system.

Related Information

The msgctl (“msgctl Subroutine” on page 838) subroutine, msgget (“msgget Subroutine” on page 841)

subroutine, msgrcv (“msgrcv Subroutine” on page 842) subroutine, msgsnd (“msgsnd Subroutine” on

page 845) subroutine, sigaction subroutine.

msleep Subroutine

Purpose

Puts a process to sleep when a semaphore is busy.

Library

Standard C Library (libc.a)

Syntax

#include <sys/mman.h>

int msleep (Sem)

msemaphore * Sem;

Description

The msleep subroutine puts a calling process to sleep when a semaphore is busy. The semaphore should

be located in a shared memory region. Use the mmap subroutine to create the shared memory section.

All of the values in the msemaphore structure must result from a msem_init subroutine call. This call may

or may not be followed by a sequence of calls to the msem_lock subroutine or the msem_unlock

subroutine. If the msemaphore structure value originates in another manner, the results of the msleep

subroutine are undefined.

The address of the msemaphore structure is significant. You should be careful not to modify the

structure’s address. If the structure contains values copied from a msemaphore structure at another

address, the results of the msleep subroutine are undefined.

Parameters

 Sem Points to the msemaphore structure that specifies the semaphore.

Base Operating System (BOS) Runtime Services (A-P) 849

Error Codes

If the msleep subroutine is unsuccessful, the errno global variable is set to one of the following values:

 EFAULT Indicates that the Sem parameter points to an invalid address or the address does not contain a valid

msemaphore structure.

EINTR Indicates that the process calling the msleep subroutine was interrupted by a signal while sleeping.

Related Information

The mmap (“mmap or mmap64 Subroutine” on page 803) subroutine, msem_init (“msem_init Subroutine”

on page 834) subroutine, msem_lock (“msem_lock Subroutine” on page 835) subroutine, msem_unlock

(“msem_unlock Subroutine” on page 837) subroutine, mwakeup (“mwakeup Subroutine” on page 854)

subroutine.

Understanding Memory Mapping in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

msync Subroutine

Purpose

Synchronize memory with physical storage.

Library

Standard C Library (libc.a).

Syntax

#include <sys/types.h>

#include <sys/mman.h>

int msync (addr, len, flags)

void *addr;

size_t len;

int flags;

Description

The msync subroutine controls the caching operations of a mapped file or shared memory region. Use the

msync subroutine to transfer modified pages in the region to the underlying file storage device.

If the application has requested Single UNIX Specification, Version 2 compliant behavior then the st_ctime

and st_mtime fields of the mapped file are marked for update upon successful completion of the msync

subroutine call if the file has been modified.

Parameters

 addr Specifies the address of the region to be synchronized. Must be a multiple of the page size returned by the

sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter.

len Specifies the length, in bytes, of the region to be synchronized. If the len parameter is not a multiple of the

page size returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter,

the length of the region is rounded up to the next multiple of the page size.

850 Technical Reference, Volume 1: Base Operating System and Extensions

flags Specifies one or more of the following symbolic constants that determine the way caching operations are

performed:

MS_SYNC

Specifies synchronous cache flush. The msync subroutine does not return until the system

completes all I/O operations.

 This flag is invalid when the MAP_PRIVATE flag is used with the mmap subroutine.

MAP_PRIVATE is the default privacy setting. When the MS_SYNC and MAP_PRIVATE flags both

are used, the msync subroutine returns an errno value of EINVAL.

MS_ASYNC

Specifies an asynchronous cache flush. The msync subroutine returns after the system schedules

all I/O operations.

 This flag is invalid when the MAP_PRIVATE flag is used with the mmap subroutine.

MAP_PRIVATE is the default privacy setting. When the MS_SYNC and MAP_PRIVATE flags both

are used, the msync subroutine returns an errno value of EINVAL.

MS_INVALIDATE

Specifies that the msync subroutine invalidates all cached copies of the pages. New copies of the

pages must then be obtained from the file system the next time they are referenced.

Return Values

When successful, the msync subroutine returns 0. Otherwise, it returns -1 and sets the errno global

variable to indicate the error.

Error Codes

If the msync subroutine is unsuccessful, the errno global variable is set to one of the following values:

 EIO An I/O error occurred while reading from or writing to the file system.

ENOMEM The range specified by (addr, addr + len) is invalid for a process’ address space, or the range specifies

one or more unmapped pages.

EINVAL The addr argument is not a multiple of the page size as returned by the sysconf subroutine using the

_SC_PAGE_SIZE value for the Name parameter, or the flags parameter is invalid. The address of the

region is within the process’ inheritable address space.

mt__trce Subroutine

Purpose

Dumps traceback information into a lightweight core file.

Library

PTools Library (libptools_ptr.a)

Syntax

void mt__trce (int FileDescriptor, int Signal, struct sigcontext *Context, int Node);

Description

The mt__trce subroutine dumps traceback information of the calling thread and all other threads allocated

in the process space into the file specified by the FileDescriptor parameter. The format of the output from

this subroutine complies with the Parallel Tools Consortium Lightweight CoreFile Format. Threads, except

the calling thread, will be suspended after the calling thread enters this subroutine and while the traceback

information is being obtained. Threads execution resumes when this subroutine returns.

Base Operating System (BOS) Runtime Services (A-P) 851

When using the mt__trce subroutine in a signal handler, it is recommended that the application be started

with the environment variable AIXTHREAD_SCOPE set to S (As in export AIXTHREAD_SCOPE=S). If this

variable is not set, the application may hang.

Parameters

 Context Points to the sigcontext structure containing the context of the thread when the signal

happens. The context is used to generate the traceback information for the calling thread. This

is used only if the Signal parameter is nonzero. If the mt__trce subroutine is called with the

Signal parameter set to zero, the Context parameter is ignored and the traceback information

is generated based on the current context of the calling thread. Refer to the sigaction

subroutine for further description about signal handlers and how the sigcontext structure is

passed to a signal handler.

File Descriptor The file descriptor of the lightweight core file. It specifies the target file into which the

traceback information is written.

Node Specifies the number of the tasks or nodes where this subroutine is executing and is used only

for a parallel application consisting of multiple tasks. The Node parameter will be used in

section headers of the traceback information to identify the task or node from which the

information is generated.

Signal The number of the signal that causes the signal handler to be executed. This is used only if

the mt__trce subroutine is called from a signal handler. A Fault-Info section defined by the

Parallel Tools Consortium Lightweight Core File Format will be written into the output

lightweight core file based on this signal number. If the mt__trce subroutine is not called from

a signal handler, the Signal parameter must be set to 0 and a Fault-Info section will not be

generated.

Notes:

1. To obtain source line information in the traceback, the programs must have been compiled with the -g

option to include the necessary line number information in the executable files. Otherwise, address

offset from the beginning of the function is provided.

2. Line number information is not provided for shared objects even if they were compiled with the -g

option.

3. Function names are not provided if a program or a library is compiled with optimization. To obtain

function name information in the traceback and still have the object code optimized, compiler option

-qtbtable=full must be specified.

4. In rare cases, the traceback of a thread may seem to skip one level of procedure calls. This is

because the traceback is obtained at the moment the thread entered a procedure and has not yet

allocated a stack frame.

Return Values

Upon successful completion, the mt__trce subroutine returns a value of 0. Otherwise, an error number is

returned to indicate the error.

Error Codes

If an error occurs, the subroutine returns -1 and the errno global variable is set to indicate the error, as

follows:

 EBADF The FileDescriptor parameter does not specify a valid file descriptor open for writing.

ENOSPC No free space is left in the file system containing the file.

EDQUOT New disk blocks cannot be allocated for the file because the user or group quota of blocks has

been exhausted on the file system.

EINVAL The value of the Signal parameter is invalid or the Context parameter points to an invalid

context.

ENOMEM Insufficient memory exists to perform the operation.

852 Technical Reference, Volume 1: Base Operating System and Extensions

Examples

1. The following example calls the mt__trce subroutine to generate traceback information in a signal

handler.

void

my_handler(int signal,

 int code,

 struct sigcontext *sigcontext_data)

{

 int lcf_fd;

 lcf_fd = open(file_name, O_WRONLY|O_CREAT|O_APPEND, 0666);

 rc = mt__trce(lcf_fd, signal, sigcontext_data, 0);

 close(lcf_fd);

}

2. The following is an example of the lightweight core file generated by the mt__trce subroutine. Notice

the thread ID in the information is the unique sequence number of a thread for the life time of the

process containing the thread.

+++PARALLEL TOOLS CONSORTIUM LIGHTWEIGHT COREFILE FORMAT version 1.0

+++LCB 1.0 Thu Jun 30 16:02:35 1999 Generated by AIX

+++ID Node 0 Process 21084 Thread 1

***FAULT "SIGABRT - Abort"

+++STACK

func2 : 123 # in file

func1 : 272 # in file

main : 49 # in file

---STACK

---ID Node 0 Process 21084 Thread 1

+++ID Node 0 Process 21084 Thread 2

+++STACK

nsleep : 0x0000001c

sleep : 0x00000030

f_mt_exec : 21 # in file

_pthread_body : 0x00000114

---STACK

---ID Node 0 Process 21084 Thread 2

+++ID Node 0 Process 21084 Thread 3

+++STACK

nsleep : 0x0000001c

sleep : 0x00000030

f_mt_exec : 21 # in file

_pthread_body : 0x00000114

---STACK

---ID Node 0 Process 21084 Thread 3

---LCB

Related Information

The install_lwcf_handler and sigaction subroutines.

munmap Subroutine

Purpose

Unmaps pages of memory.

Base Operating System (BOS) Runtime Services (A-P) 853

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <sys/mman.h>

int munmap (addr, len)

void *addr;

size_t len;

Description

The munmap subroutine unmaps a mapped file or shared memory region or anonymous memory region.

The munmap subroutine unmaps regions created from calls to the mmap subroutine only.

If an address lies in a region that is unmapped by the munmap subroutine and that region is not

subsequently mapped again, any reference to that address will result in the delivery of a SIGSEGV signal

to the process.

Parameters

 addr Specifies the address of the region to be unmapped. Must be a multiple of the page size returned by the

sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter.

len Specifies the length, in bytes, of the region to be unmapped. If the len parameter is not a multiple of the

page size returned by the sysconf subroutine using the _SC_PAGE_SIZE value for the Name parameter,

the length of the region is rounded up to the next multiple of the page size.

Return Values

When successful, the munmap subroutine returns 0. Otherwise, it returns -1 and sets the errno global

variable to indicate the error.

Error Codes

If the munmap subroutine is unsuccessful, the errno global variable is set to the following value:

 EINVAL The addr parameter is not a multiple of the page size as returned by the sysconf subroutine using the

_SC_PAGE_SIZE value for the Name parameter.

EINVAL The application has requested Single UNIX Specification, Version 2 compliant behavior and the len

arguement is 0.

mwakeup Subroutine

Purpose

Wakes up a process that is waiting on a semaphore.

Library

Standard C Library (libc.a)

854 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <sys/mman.h>

int mwakeup (Sem)

msemaphore * Sem;

Description

The mwakeup subroutine wakes up a process that is sleeping and waiting for an idle semaphore. The

semaphore should be located in a shared memory region. Use the mmap subroutine to create the shared

memory section.

All of the values in the msemaphore structure must result from a msem_init subroutine call. This call may

or may not be followed by a sequence of calls to the msem_lock subroutine or the msem_unlock

subroutine. If the msemaphore structure value originates in another manner, the results of the mwakeup

subroutine are undefined.

The address of the msemaphore structure is significant. You should be careful not to modify the

structure’s address. If the structure contains values copied from a msemaphore structure at another

address, the results of the mwakeup subroutine are undefined.

Parameters

 Sem Points to the msemaphore structure that specifies the semaphore.

Return Values

When successful, the mwakeup subroutine returns a value of 0. Otherwise, this routine returns a value of

-1 and sets the errno global variable to EFAULT.

Error Codes

A value of EFAULT indicates that the Sem parameter points to an invalid address or that the address does

not contain a valid msemaphore structure.

Related Information

The mmap (“mmap or mmap64 Subroutine” on page 803) subroutine, msem_init (“msem_init Subroutine”

on page 834) subroutine, msem_lock (“msem_lock Subroutine” on page 835) subroutine, msem_unlock

(“msem_unlock Subroutine” on page 837) subroutine, and the msleep (“msleep Subroutine” on page 849)

subroutine.

Understanding Memory Mapping in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

nan, nanf, or nanl Subroutine

Purpose

Returns quiet NaN.

Syntax

#include <math.h>

double nan (tagp)

const char *tagp;

float nanf (tagp)

Base Operating System (BOS) Runtime Services (A-P) 855

const char *tagp;

long double nanl (tagp)

const char *tagp;

Description

The function call nan(″n-char-sequence″) is equivalent to:

strtod("NAN(n-char-sequence)", (char **) NULL);

The function call nan(″ ″) is equivalent to:

strtod("NAN()", (char **) NULL)

If tagp does not point to an n-char sequence or an empty string, the function call is equivalent to:

strtod("NAN", (char **) NULL)

Function calls to nanf and nanl are equivalent to the corresponding function calls to strtof and strtold.

Parameters

 tagp Indicates the content of the quiet NaN.

Return Values

The nan, nanf, and nanl subroutines return a quiet NaN with content indicated through tagp.

Related Information

The “atof atoff Subroutine” on page 94.

math.h in AIX 5L Version 5.3 Files Reference.

nanosleep Subroutine

Purpose

Causes the current thread to be suspended from execution.

Library

Standard C Library (libc.a)

Syntax

#include <time.h>

int nanosleep (rqtp, rmtp)

const struct timespec *rqtp;

struct timespec *rmtp;

Description

The nanosleep subroutine causes the current thread to be suspended from execution until either the time

interval specified by the rqtp parameter has elapsed or a signal is delivered to the calling thread and its

action is to invoke a signal-catching function or to terminate the process. The suspension time may be

longer than requested because the argument value is rounded up to an integer multiple of the sleep

resolution. This can also occur because of the scheduling of other activity by the system. Unless it is

interrupted by a signal, the suspension time will not be less than the time specified by the rqtp parameter,

as measured by the system clock CLOCK_REALTIME.

856 Technical Reference, Volume 1: Base Operating System and Extensions

The use of the nanosleep subroutine has no effect on the action or blockage of any signal.

Parameters

 rqtp Specifies the time interval that the thread is suspended.

rmtp Points to the timespec structure.

Return Values

If the nanosleep subroutine returns because the requested time has elapsed, its return value is zero.

If the nanosleep subroutine returns because it has been interrupted by a signal, it returns -1 and sets

errno to indicate the interruption. If the rmtp parameter is non-NULL, the timespec structure is updated to

contain the amount of time remaining in the interval (the requested time minus the time actually slept). If

the rmtp parameter is NULL, the remaining time is not returned.

If the nanosleep subroutine fails, it returns -1 and sets errno to indicate the error.

Error Codes

The nanosleep subroutine fails if:

 EINTR The nanosleep subroutine was interrupted by a signal.

EINVAL The rqtp parameter specified a nanosecond value less than zero or greater than or equal to 1000

million.

Related Information

The sleep subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions

Volume 2.

nearbyint, nearbyintf, or nearbyintl Subroutine

Purpose

Rounds numbers to an integer value in floating-point format.

Syntax

#include <math.h>

double nearbyint (x)

double x;

float nearbyintf (x)

float x;

long double nearbyintl (x)

long double x;

Description

The nearbyint, nearbyintf, and nearbyintl subroutines round the x parameter to an integer value in

floating-point format, using the current rounding direction and without raising the inexact floating-point

exception.

Base Operating System (BOS) Runtime Services (A-P) 857

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value to be computed.

Return Values

Upon successful completion, the nearbyint, nearbyintf, and nearbyintl subroutines return the rounded

integer value.

If x is NaN, a NaN is returned.

If x is ±0, ±0 is returned.

If x is ±Inf, x is returned.

If the correct value would cause overflow, a range error occurs and the nearbyint, nearbyintf, and

nearbyintl subroutines return the value of the macro ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL

(with the same sign as x), respectively.

Related Information

“feclearexcept Subroutine” on page 259 and “fetestexcept Subroutine” on page 267.

math.h in AIX 5L Version 5.3 Files Reference.

nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, or nexttowardl

Subroutine

Purpose

Computes the next representable floating-point number.

Syntax

#include <math.h>

float nextafterf (x, y)

float x;

float y;

long double nextafterl (x, y)

long double x;

long double y;

double nextafter (x, y)

double x, y;

double nexttoward (x, y)

double x;

long double y;

float nexttowardf (x, y)

float x;

long double y;

858 Technical Reference, Volume 1: Base Operating System and Extensions

long double nexttowardl (x, y)

long double x;

long double y;

Description

The nextafterf, nextafterl, and nextafter subroutines compute the next representable floating-point value

following x in the direction of y. Thus, if y is less than x, the nextafter subroutine returns the largest

representable floating-point number less than x.

The nextafter, nextafterf, and nextafterl subroutines return y if x equals y.

The nexttoward, nexttowardf, and nexttowardl subroutines are equivalent to the corresponding

nextafter subroutine, except that the second parameter has type long double and the subroutines return

y converted to the type of the subroutine if x equals y.

An application wishing to check for error situations should set the errno global variable to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the starting value. The next representable floating-point number is found from x in the

direction specified by y.

y Specifies the direction.

Return Values

Upon successful completion, the nextafterf, nextafterl, nextafter, nexttoward, nexttowardf, and

nexttowardl subroutines return the next representable floating-point value following x in the direction of y.

If x==y, y (of the type x) is returned.

If x is finite and the correct function value would overflow, a range error occurs and ±HUGE_VAL,

±HUGE_VALF, and ±HUGE_VALL (with the same sign as x) is returned as appropriate for the return type

of the function.

If x or y is NaN, a NaN is returned.

If x!=y and the correct subroutine value is subnormal, zero, or underflows, a range error occurs, and either

the correct function value (if representable) or 0.0 is returned.

Error Codes

For the nextafter subroutine, if the x parameter is finite and the correct function value would overflow,

HUGE_VAL is returned and errno is set to ERANGE.

Related Information

“feclearexcept Subroutine” on page 259 and “fetestexcept Subroutine” on page 267.

math.h in AIX 5L Version 5.3 Files Reference.

Base Operating System (BOS) Runtime Services (A-P) 859

newpass Subroutine

Purpose

Generates a new password for a user.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

#include <userpw.h>

char *newpass(Password)

struct userpw *Password;

Description

Note: This subroutine has been depreciated and its use is not recommended. The “chpass Subroutine” on

page 152 should be used in its place.

The newpass subroutine generates a new password for the user specified by the Password parameter.

This subroutine displays a dialogue to enter and confirm the user’s new password.

Passwords can contain almost any legal value for a character but cannot contain (National Language

Support (NLS) code points. Passwords cannot have more than the value specified by MAX_PASS.

If a password is successfully generated, a pointer to a buffer containing the new password is returned and

the last update time is reset.

Note: The newpass subroutine is not safe in a multithreaded environment. To use newpass in a

threaded application, the application must keep the integrity of each thread.

860 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 Password Specifies a user password structure. This structure is defined in the userpw.h file and contains the

following members:

upw_name

A pointer to a character buffer containing the user name.

upw_passwd

A pointer to a character buffer containing the current password.

upw_lastupdate

The time the password was last changed, in seconds since the epoch.

upw_flags

A bit mask containing 0 or more of the following values:

PW_ADMIN

This bit indicates that password information for this user may only be changed by

the root user.

PW_ADMCHG

This bit indicates that the password is being changed by root and the password will

have to be changed upon the next successful running of the login or su

commands to this account.

Security

 Policy: Authentication To change a password, the invoker must be properly authenticated.

Note: Programs that invoke the newpass subroutine should be written to conform to the authentication

rules enforced by newpass. The PW_ADMCHG flag should always be explicitly cleared unless the

invoker of the command is an administrator.

Return Values

If a new password is successfully generated, a pointer to the new encrypted password is returned. If an

error occurs, a null pointer is returned and the errno global variable is set to indicate the error.

Error Codes

The newpass subroutine fails if one or more of the following are true:

 EINVAL The structure passed to the newpass subroutine is invalid.

ESAD Security authentication is denied for the invoker.

EPERM The user is unable to change the password of a user with the PW_ADMCHG bit set, and the real user ID

of the process is not the root user.

ENOENT The user is not properly defined in the database.

Implementation Specifics

This subroutine is part of Base Operating System (BOS) Runtime.

Related Information

The “chpass Subroutine” on page 152, getpass (“getpass Subroutine” on page 393) subroutine,

getuserpw (“getuserpw, putuserpw, or putuserpwhist Subroutine” on page 459) subroutine.

The pwdadm command.

Base Operating System (BOS) Runtime Services (A-P) 861

newpassx Subroutine

Purpose

Generates a new password for a user (without a name length limit).

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

#include <userpw.h>

char *newpassx (Password)

struct userpwx *Password;

Description

Note: The newpassx subroutine has been obsoleted by the more current chpassx subroutine. Use the

chpassx subroutine instead.

The newpassx subroutine generates a new password for the user specified by the Password parameter.

The new password is then checked to ensure that it meets the password rules on the system unless the

user is exempted from these restrictions. Users must have root user authority to invoke this subroutine.

The password rules are defined in the /etc/security/user file or the administrative domain for the user and

are described in both the user file and the passwd command.

Passwords can contain almost any legal value for a character but cannot contain National Language

Support (NLS) code points. Passwords cannot have more characters than the value specified by

PASS_MAX.

The newpassx subroutine authenticates the user prior to returning the new password. If the

PW_ADMCHG flag is set in the upw_flags member of the Password parameter, the supplied password is

checked against the calling user’s password. This is done to authenticate the user corresponding to the

real user ID of the process instead of the user specified by the upw_name member of the Password

parameter structure.

If a password is successfully generated, a pointer to a buffer containing the new password is returned and

the last update time is set to the current system time. The password value in the /etc/security/passwd file

or user’s administrative domain is not modified.

Note: The newpassx subroutine is not safe in a multithreaded environment. To use newpassx in a

threaded application, the application must keep the integrity of each thread.

Parameters

 Password Specifies a user password structure.

The fields in a userpwx structure are defined in the userpw.h file, and they include the following

members:

 upw_name Specifies the user’s name.

upw_passwd Specifies the user’s encrypted password.

862 Technical Reference, Volume 1: Base Operating System and Extensions

upw_lastupdate Specifies the time, in seconds, since the epoch (that is, 00:00:00 GMT, 1 January

1970), when the password was last updated.

upw_flags Specifies attributes of the password. This member is a bit mask of one or more of

the following values, defined in the userpw.h file:

PW_NOCHECK

Specifies that new passwords need not meet password restrictions in

effect for the system.

PW_ADMCHG

Specifies that the password was last set by an administrator and must

be changed at the next successful use of the login or su command.

PW_ADMIN

Specifies that password information for this user can only be changed by

the root user.

upw_authdb Specifies the administrative domain containing the authentication data.

Security

 Policy: Authentication To change a password, the invoker must be properly authenticated.

Note: Programs that invoke the newpassx subroutine should be written to conform to the authentication

rules enforced by newpassx. The PW_ADMCHG flag should always be explicitly cleared unless

the invoker of the command is an administrator.

Return Values

If a new password is successfully generated, a pointer to the new encrypted password is returned. If an

error occurs, a null pointer is returned and the errno global variable is set to indicate the error.

Error Codes

The newpassx subroutine fails if one or more of the following is true:

 EINVAL The structure passed to the newpassx subroutine is invalid.

ENOENT The user is not properly defined in the database.

EPERM The user is unable to change the password of a user with the PW_ADMCHG bit set,

and the real user ID of the process is not the root user.

ESAD Security authentication is denied for the invoker.

Related Information

The “getpass Subroutine” on page 393, “getuserpwx Subroutine” on page 461.

The login Command, passwd Command, pwdadm Command.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

nftw or nftw64 Subroutine

Purpose

Walks a file tree.

Base Operating System (BOS) Runtime Services (A-P) 863

Library

Standard C Library (libc.a)

Syntax

#include <ftw.h>

int nftw (Path, Function, Depth, Flags)

const char *Path;

int *(*Function) ();

int Depth;

int Flags;

int nftw64(Path,Function,Depth)

const char *Path;

int *(*Function) ();

int Depth;

int Flags;

Description

The nftw and nftw64 subroutines recursively descend the directory hierarchy rooted in the Path

parameter. The nftw and nftw64 subroutines have a similar effect to ftw and ftw64 except that they take an

additional argument flags, which is a bitwise inclusive-OR of zero or more of the following flags:

 FTW_CHDIR If set, the current working directory will change to each directory as files are reported. If clear, the

current working directory will not change.

FTW_DEPTH If set, all files in a directory will be reported before the directory itself. If clear, the directory will be

reported before any files.

FTW_MOUNT If set, symbolic links will not be followed. If clear the links will be followed.

FTW_PHYS If set, symbolic links will not be followed. If clear the links will be followed, and will not report the

same file more than once.

For each file in the hierarchy, the nftw and nftw64 subroutines call the function specified by the Function

parameter. The nftw subroutine passes a pointer to a null-terminated character string containing the name

of the file, a pointer to a stat structure containing information about the file, an integer and a pointer to an

FTW structure. The nftw64 subroutine passes a pointer to a null-terminated character string containing the

name of the file, a pointer to a stat64 structure containing information about the file, an integer and a

pointer to an FTW structure.

The nftw subroutine uses the stat system call which will fail on files of size larger than 2 Gigabytes. The

nftw64 subroutine must be used if there is a possibility of files of size larger than 2 Gigabytes.

The integer passed to the Function parameter identifies the file type with one of the following values:

 FTW_F Regular file

FTW_D Directory

FTW_DNR Directory that cannot be read

FTW_DP The Object is a directory and subdirectories have been visited. (This condition will only occur if

FTW_DEPTH is included in flags).

FTW_SL Symbolic Link

FTW_SLN Symbolic Link that does not name an existin file. (This condition will only occur if the FTW_PHYS flag

is not included in flags).

FTW_NS File for which the stat structure could not be executed successfully

If the integer is FTW_DNR, the files and subdirectories contained in that directory are not processed.

864 Technical Reference, Volume 1: Base Operating System and Extensions

If the integer is FTW_NS, the stat structure contents are meaningless. An example of a file that causes

FTW_NS to be passed to the Function parameter is a file in a directory for which you have read

permission but not execute (search) permission.

The FTW structure pointer passed to the Function parameter contains base which is the offset of the

object’s filename in the pathname passed as the first argument to Function. The value of level indicates

depth relative to the root of the walk.

The nftw and nftw64 subroutines use one file descriptor for each level in the tree. The Depth parameter

specifies the maximum number of file descriptors to be used. In general, the nftw and nftw64 run faster of

the value of the Depth parameter is at least as large as the number of levels in the tree. However, the

value of the Depth parameter must not be greater than the number of file descriptors currently available for

use. If the value of the Depth parameter is 0 or a negative number, the effect is the same as if it were 1.

Because the nftw and nftw64 subroutines are recursive, it is possible for it to terminate with a memory

fault due to stack overflow when applied to very deep file structures.

The nftw and nftw64 subroutines use the malloc subroutine to allocate dynamic storage during its

operation. If the nftw subroutine is terminated prior to its completion, such as by the longjmp subroutine

being executed by the function specified by the Function parameter or by an interrupt routine, the nftw

subroutine cannot free that storage. The storage remains allocated. A safe way to handle interrupts is to

store the fact that an interrupt has occurred, and arrange to have the function specified by the Function

parameter return a nonzero value the next time it is called.

Parameters

 Path Specifies the directory hierarchy to be searched.

Function User supplied function that is called for each file encountered.

Depth Specifies the maximum number of file descriptors to be used. Depth cannot be greater than

OPEN_MAX which is described in the sys/limits.h header file.

Return Values

If the tree is exhausted, the nftw and nftw64 subroutine returns a value of 0. If the subroutine pointed to

by fn returns a nonzero value, nftw and nftw64 stops its tree traversal and returns whatever value was

returned by the subroutine pointed to by fn. If the nftw and nftw64 subroutine detects an error, it returns a

-1 and sets the errno global variable to indicate the error.

Error Codes

If the nftw or nftw64 subroutines detect an error, a value of -1 is returned and the errno global variable is

set to indicate the error.

The nftw and nftw64 subroutine are unsuccessful if:

 EACCES Search permission is denied for any component of the Path parameter or read permission is

denied for Path.

ENAMETOOLONG The length of the path exceeds PATH_MAX while _POSIX_NO_TRUNC is in effect.

ENOENT The Path parameter points to the name of a file that does not exist or points to an empty

string.

ENOTDIR A component of the Path parameter is not a directory.

The nftw subroutine is unsuccessful if:

 EOVERFLOW A file in Path is of a size larger than 2 Gigabytes.

Base Operating System (BOS) Runtime Services (A-P) 865

Related Information

The stat or malloc (“malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or

posix_memalign Subroutine” on page 764) subroutine.

The ftw (“ftw or ftw64 Subroutine” on page 317) subroutine.

nl_langinfo Subroutine

Purpose

Returns information on the language or cultural area in a program’s locale.

Library

Standard C Library (libc.a)

Syntax

#include <nl_types.h>

#include <langinfo.h>

char *nl_langinfo (Item)

nl_item Item;

Description

The nl_langinfo subroutine returns a pointer to a string containing information relevant to the particular

language or cultural area defined in the program’s locale and corresponding to the Item parameter. The

active language or cultural area is determined by the default value of the environment variables or by the

most recent call to the setlocale subroutine. If the setlocale subroutine has not been called in the

program, then the default C locale values will be returned from nl_langinfo.

Values for the Item parameter are defined in the langinfo.h file.

The following table summarizes the categories for which nl_langinfo() returns information, the values the

Item parameter can take, and descriptions of the returned strings. In the table, radix character refers to the

character that separates whole and fractional numeric or monetary quantities. For example, a period (.) is

used as the radix character in the U.S., and a comma (,) is used as the radix character in France.

 Category Value of item Returned Result

LC_MONETARY CRNCYSTR Currency symbol and its position.

LC_NUMERIC RADIXCHAR Radix character.

LC_NUMERIC THOUSEP Separator for the thousands.

LC_MESSAGES YESSTR Affirmative response for yes/no

queries.

LC_MESSAGES NOSTR Negative response for yes/no queries.

LC_TIME D_T_FMT String for formatting date and time.

LC_TIME D_FMT String for formatting date.

LC_TIME T_FMT String for formatting time.

LC_TIME AM_STR Antemeridian affix.

LC_TIME PM_STR Postmeridian affix.

LC_TIME DAY_1 through DAY_7 Name of the first day of the week to

the seventh day of the week.

866 Technical Reference, Volume 1: Base Operating System and Extensions

Category Value of item Returned Result

LC_TIME ABDAY_1 through ABDAY-7 Abbreviated name of the first day of

the week to the seventh day of the

week.

LC_TIME MON_1 through MON_12 Name of the first month of the year to

the twelfth month of the year.

LC_TIME ABMON_1 through ABMON_12 Abbreviated name of the first month

of the year to the twelfth month.

LC_CTYPE CODESET Code set currently in use in the

program.

Note: The information returned by the nl_langinfo subroutine is located in a static buffer. The contents of

this buffer are overwritten in subsequent calls to the nl_langinfo subroutine. Therefore, you should

save the returned information.

Parameter

 Item Information needed from locale.

Return Values

In a locale where language information data is not defined, the nl_langinfo subroutine returns a pointer to

the corresponding string in the C locale. In all locales, the nl_langinfo subroutine returns a pointer to an

empty string if the Item parameter contains an invalid setting.

The nl_langinfo subroutine returns a pointer to a static area. Subsequent calls to the nl_langinfo

subroutine overwrite the results of a previous call.

Related Information

The localeconv (“localeconv Subroutine” on page 724) subroutine, rpmatch subroutine, setlocale

subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overview and Setting the Locale in AIX 5L Version 5.3 National Language

Support Guide and Reference.

nlist, nlist64 Subroutine

Purpose

Gets entries from a name list.

Library

Standard C Library (libc.a)

Berkeley Compatibility Library [libbsd.a] for the nlist subroutine, 32-bit programs, and POWER-based

platforms

Base Operating System (BOS) Runtime Services (A-P) 867

Syntax

#include <nlist.h>

int nlist (FileName, NL)

const char *FileName;

struct nlist *NL;

int nlist64 (FileName, NL64)

const char *FileName;

struct nlist64 *NL64;

Description

The nlist and nlist64 subroutines examine the name list in the object file named by the FileName

parameter. The subroutine selectively reads a list of values and stores them into an array of nlist or

nlist64 structures pointed to by the NL or NL64 parameter, respectively.

The name list specified by the NL or NL64 parameter consists of an array of nlist or nlist64 structures

containing symbol names and other information. The list is terminated with an element that has a null

pointer or a pointer to a null string in the n_name structure member. Each symbol name is looked up in

the name list of the file. If the name is found, the value of the symbol is stored in the structure, and the

other fields are filled in. If the program was not compiled with the -g flag, the n_type field may be 0.

If multiple instances of a symbol are found, the information about the last instance is stored. If a symbol is

not found, all structure fields except the n_name field are set to 0. Only global symbols will be found.

The nlist and nlist64 subroutines run in both 32-bit and 64-bit programs that read the name list of both

32-bit and 64-bit object files, with one exception: in 32-bit programs, nlist will return -1 if the specified file

is a 64-bit object file.

The nlist and nlist64 subroutines are used to read the name list from XCOFF object files.

The nlist64 subroutine can be used to examine the system name list kept in the kernel, by specifying

/unix as the FileName parameter. The knlist subroutine can also be used to look up symbols in the

current kernel namespace.

Note: The nlist.h header file has a #define field for n_name. If a source file includes both nlist.h and

netdb.h, there will be a conflict with the use of n_name. If netdb.h is included after nlist.h,

n_name will be undefined. To correct this problem, _n._n_name should be used instead. If netdb.h

is included before nlist.h, and you need to refer to the n_name field of struct netent, you should

undefine n_name by entering:

#undef n_name

The nlist subroutine in libbsd.a is supported only in 32-bit mode.

Parameters

 FileName Specifies the name of the file containing a name list.

NL Points to the array of nlist structures.

NL64 Points to the array of nlist64 structures.

868 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, a 0 is returned, even if some symbols could not be found. In the libbsd.a

version of nlist, the number of symbols not found in the object file’s name list is returned. If the file cannot

be found or if it is not a valid name list, a value of -1 is returned.

Compatibility Interfaces

To obtain the BSD-compatible version of the subroutine 32-bit applications, compile with the libbsd.a

library by using the -lbsd flag.

Related Information

The knlist subroutine.

The a.out file in XCOFF format.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

ns_addr Subroutine

Purpose

Address conversion routines.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <netns/ns.h>

struct ns_addr(char *cp)

Description

The ns_addr subroutine interprets character strings representing addresses, returning binary information

suitable for use in system calls.

The ns_addr subroutine separates an address into one to three fields using a single delimiter and

examines each field for byte separators (colon or period). The delimiters are:

 . period

: colon

pound sign.

If byte separators are found, each subfield separated is taken to be a small hexadecimal number, and the

entirety is taken as a network-byte-ordered quantity to be zero extended in the high-networked-order

bytes. Next, the field is inspected for hyphens, which would indicate the field is a number in decimal

notation with hyphens separating the millenia. The field is assumed to be a number, interpreted as

hexadecimal, if a leading 0x (as in C), a trailing H, (as in Mesa), or any super-octal digits are present. The

field is interpreted as octal if a leading 0 is present and there are no super-octal digits. Otherwise, the field

is converted as a decimal number.

Base Operating System (BOS) Runtime Services (A-P) 869

Parameter

 cp Returns a pointer to the address of a ns_addr structure.

ns_ntoa Subroutine

Purpose

Address conversion routines.

Library

Standard C Library (libc.a)

Syntax

#include <sys/types.h>

#include <netns/ns.h>

char *ns_ntoa (

struct ns_addr ns)

Description

The ns_ntoa subroutine takes addresses and returns ASCII strings representing the address in a notation

in common use in the Xerox Development Environment:

<network number> <host number> <port number>

Trailing zero fields are suppressed, and each number is printed in hexadecimal, in a format suitable for

input to the ns_addr subroutine. Any fields lacking super-decimal digits will have a trailing H appended.

Note: The string returned by ns_ntoa resides in static memory.

Parameter

 ns Returns a pointer to a string.

odm_add_obj Subroutine

Purpose

Adds a new object into an object class.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_add_obj (ClassSymbol, DataStructure)

CLASS_SYMBOL ClassSymbol;

struct ClassName *DataStructure;

870 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The odm_add_obj subroutine takes as input the class symbol that identifies both the object class to add

and a pointer to the data structure containing the object to be added.

The odm_add_obj subroutine opens and closes the object class around the subroutine if the object class

was not previously opened. If the object class was previously opened, the subroutine leaves the object

class open when it returns.

Parameters

 ClassSymbol Specifies a class symbol identifier returned from an odm_open_class

subroutine. If the odm_open_class subroutine has not been called, then this

identifier is the ClassName_CLASS structure that was created by the

odmcreate command.

DataStructure Specifies a pointer to an instance of the C language structure corresponding to

the object class referenced by the ClassSymbol parameter. The structure is

declared in the .h file created by the odmcreate command and has the same

name as the object class.

Return Values

Upon successful completion, an identifier for the object that was added is returned. If the odm_add_obj

subroutine is unsuccessful, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes

Failure of the odm_add_obj subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_OPEN_ERR

v ODMI_PARAMS

v ODMI_READ_ONLY

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_create_class (“odm_create_class Subroutine” on page 874) subroutine, odm_open_class

(“odm_open_class or odm_open_class_rdonly Subroutine” on page 885) subroutine, odm_rm_obj

(“odm_rm_obj Subroutine” on page 888) subroutine.

The odmcreate command.

See ODM Example Code and Output in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 871

odm_change_obj Subroutine

Purpose

Changes an object in the object class.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_change_obj (ClassSymbol, DataStructure)

CLASS_SYMBOL ClassSymbol;

struct ClassName *DataStructure;

Description

The odm_change_obj subroutine takes as input the class symbol that identifies both the object class to

change and a pointer to the data structure containing the object to be changed. The application program

must first retrieve the object with an odm_get_obj subroutine call, change the data values in the returned

structure, and then pass that structure to the odm_change_obj subroutine.

The odm_change_obj subroutine opens and closes the object class around the change if the object class

was not previously opened. If the object class was previously opened, then the subroutine leaves the

object class open when it returns.

Parameters

 ClassSymbol Specifies a class symbol identifier returned from an odm_open_class subroutine. If the

odm_open_class subroutine has not been called, then this identifier is the

ClassName_CLASS structure that is created by the odmcreate command.

DataStructure Specifies a pointer to an instance of the C language structure corresponding to the object

class referenced by the ClassSymbol parameter. The structure is declared in the .h file

created by the odmcreate command and has the same name as the object class.

Return Values

Upon successful completion, a value of 0 is returned. If the odm_change_obj subroutine fails, a value of

-1 is returned and the odmerrno variable is set to an error code.

Error Codes

Failure of the odm_change_obj subroutine sets the odmerrno variable to one of the following error

codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_NO_OBJECT

v ODMI_OPEN_ERR

v ODMI_PARAMS

872 Technical Reference, Volume 1: Base Operating System and Extensions

v ODMI_READ_ONLY

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_get_obj (“odm_get_obj, odm_get_first, or odm_get_next Subroutine” on page 880) subroutine.

The odmchange command, odmcreate command.

See ODM Example Code and Output in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

odm_close_class Subroutine

Purpose

Closes an ODM object class.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_close_class (ClassSymbol)

CLASS_SYMBOL ClassSymbol;

Description

The odm_close_class subroutine closes the specified object class.

Parameters

 ClassSymbol Specifies a class symbol identifier returned from an odm_open_class subroutine. If the

odm_open_class subroutine has not been called, then this identifier is the

ClassName_CLASS structure that was created by the odmcreate command.

Return Values

Upon successful completion, a value of 0 is returned. If the odm_close_class subroutine is unsuccessful,

a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes

Failure of the odm_close_class subroutine sets the odmerrno variable to one of the following error

codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

Base Operating System (BOS) Runtime Services (A-P) 873

v ODMI_MAGICNO_ERR

v ODMI_OPEN_ERR

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_open_class (“odm_open_class or odm_open_class_rdonly Subroutine” on page 885)

subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

odm_create_class Subroutine

Purpose

Creates an object class.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_create_class (ClassSymbol)

CLASS_SYMBOL ClassSymbol;

Description

The odm_create_class subroutine creates an object class. However, the .c and .h files generated by the

odmcreate command are required to be part of the application.

Parameters

 ClassSymbol Specifies a class symbol of the form ClassName_CLASS, which is declared in the .h file

created by the odmcreate command.

Return Values

Upon successful completion, a value of 0 is returned. If the odm_create_class subroutine is unsuccessful,

a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes

Failure of the odm_create_class subroutine sets the odmerrno variable to one of the following error

codes:

v ODMI_CLASS_EXISTS

v ODMI_CLASS_PERMS

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_OPEN_ERR

874 Technical Reference, Volume 1: Base Operating System and Extensions

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_mount_class (“odm_mount_class Subroutine” on page 884) subroutine.

The odmcreate command.

See ODM Example Code and Output in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

odm_err_msg Subroutine

Purpose

Returns an error message string.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_err_msg (ODMErrno, MessageString)

long ODMErrno;

char **MessageString;

Description

The odm_err_msg subroutine takes as input an ODMErrno parameter and an address in which to put the

string pointer of the message string that corresponds to the input ODM error number. If no corresponding

message is found for the input error number, a null string is returned and the subroutine is unsuccessful.

Parameters

 ODMErrno Specifies the error code for which the message string is retrieved.

MessageString Specifies the address of a string pointer that will point to the returned error message string.

Return Values

Upon successful completion, a value of 0 is returned. If the odm_err_msg subroutine is unsuccessful, a

value of -1 is returned, and the MessageString value returned is a null string.

Examples

The following example shows the use of the odm_err_msg subroutine:

#include <odmi.h>

char *error_message;

...

/*--*/

/*ODMErrno was returned from a previous ODM subroutine call.*/

/*--*/

returnstatus = odm_err_msg (odmerrno, &error_message);

Base Operating System (BOS) Runtime Services (A-P) 875

if (returnstatus < 0)

 printf ("Retrieval of error message failed\n");

else

 printf (error_message);

Related Information

Appendix B, “ODM Error Codes,” on page 1253 in AIX 5L Version 5.3 Technical Reference: Base

Operating System and Extensions Volume 1 describes error codes.

See Appendix B, Appendix B, “ODM Error Codes,” on page 1253 for explanations of the ODM error codes.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

odm_free_list Subroutine

Purpose

Frees memory previously allocated for an odm_get_list subroutine.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_free_list (ReturnData, DataInfo)

struct ClassName *ReturnData;

struct listinfo *DataInfo;

Description

The odm_free_list subroutine recursively frees up a tree of memory object lists that were allocated for an

odm_get_list subroutine.

Parameters

 ReturnData Points to the array of ClassName structures returned from the odm_get_list subroutine.

DataInfo Points to the listinfo structure that was returned from the odm_get_list subroutine. The listinfo

structure has the following form:

struct listinfo {

char ClassName[16]; /* class name for query */

char criteria[256]; /* query criteria */

int num; /* number of matches found */

int valid; /* for ODM use */

CLASS_SYMBOL class; /* symbol for queried class */

};

Return Values

Upon successful completion, a value of 0 is returned. If the odm_free_list subroutine is unsuccessful, a

value of -1 is returned and the odmerrno variable is set to an error code.

876 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

Failure of the odm_free_list subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_MAGICNO_ERR

v ODMI_PARAMS

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_get_list (“odm_get_list Subroutine” on page 878) subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

odm_get_by_id Subroutine

Purpose

Retrieves an object from an ODM object class by its ID.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

struct ClassName *odm_get_by_id(ClassSymbol, ObjectID, ReturnData)

CLASS_SYMBOL ClassSymbol;

int ObjectID;

struct ClassName *ReturnData;

Description

The odm_get_by_id subroutine retrieves an object from an object class. The object to be retrieved is

specified by passing its ObjectID parameter from its corresponding ClassName structure.

Parameters

 ClassSymbol Specifies a class symbol identifier of the form ClassName_CLASS, which is declared in the .h

file created by the odmcreate command.

ObjectID Specifies an identifier retrieved from the corresponding ClassName structure of the object

class.

ReturnData Specifies a pointer to an instance of the C language structure corresponding to the object class

referenced by the ClassSymbol parameter. The structure is declared in the .h file created by

the odmcreate command and has the same name as the object class.

Return Values

Upon successful completion, a pointer to the ClassName structure containing the object is returned. If the

odm_get_by_id subroutine is unsuccessful, a value of -1 is returned and the odmerrno variable is set to

an error code.

Base Operating System (BOS) Runtime Services (A-P) 877

Error Codes

Failure of the odm_get_by_id subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_MALLOC_ERR

v ODMI_NO_OBJECT

v ODMI_OPEN_ERR

v ODMI_PARAMS

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_get_obj (“odm_get_obj, odm_get_first, or odm_get_next Subroutine” on page 880),

odm_get_first (“odm_get_obj, odm_get_first, or odm_get_next Subroutine” on page 880), or

odm_get_next (“odm_get_obj, odm_get_first, or odm_get_next Subroutine” on page 880) subroutine.

The odmcreate command.

See ODM Example Code and Output in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

odm_get_list Subroutine

Purpose

Retrieves all objects in an object class that match the specified criteria.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

struct ClassName *odm_get_list (ClassSymbol, Criteria, ListInfo, MaxReturn, LinkDepth)

struct ClassName_CLASS ClassSymbol;

char * Criteria;

struct listinfo * ListInfo;

int MaxReturn, LinkDepth;

Description

The odm_get_list subroutine takes an object class and criteria as input, and returns a list of objects that

satisfy the input criteria. The subroutine opens and closes the object class around the subroutine if the

object class was not previously opened. If the object class was previously opened, the subroutine leaves

the object class open when it returns.

878 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 ClassSymbol Specifies a class symbol identifier returned from an odm_open_class subroutine. If the

odm_open_class subroutine has not been called, then this is the ClassName_CLASS

structure created by the odmcreate command.

Criteria Specifies a string that contains the qualifying criteria for selecting the objects to remove.

ListInfo Specifies a structure containing information about the retrieval of the objects. The listinfo

structure has the following form:

struct listinfo {

char ClassName[16]; /* class name used for query */

char criteria[256]; /* query criteria */

int num; /* number of matches found */

int valid; /* for ODM use */

CLASS_SYMBOL class; /* symbol for queried class */

};

MaxReturn Specifies the expected number of objects to be returned. This is used to control the increments

in which storage for structures is allocated, to reduce the realloc subroutine copy overhead.

LinkDepth Specifies the number of levels to recurse for objects with ODM_LINK descriptors. A setting of 1

indicates only the top level is retrieved; 2 indicates ODM_LINKs will be followed from the

top/first level only: 3 indicates ODM_LINKs will be followed at the first and second level, and so

on.

Return Values

Upon successful completion, a pointer to an array of C language structures containing the objects is

returned. This structure matches that described in the .h file that is returned from the odmcreate

command. If no match is found, null is returned. If the odm_get_list subroutine fails, a value of -1 is

returned and the odmerrno variable is set to an error code.

Error Codes

Failure of the odm_get_list subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_BAD_CRIT

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INTERNAL_ERR

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_LINK_NOT_FOUND

v ODMI_MAGICNO_ERR

v ODMI_MALLOC_ERR

v ODMI_OPEN_ERR

v ODMI_PARAMS

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_get_by_id (“odm_get_by_id Subroutine” on page 877) subroutine, odm_get_obj (“odm_get_obj,

odm_get_first, or odm_get_next Subroutine” on page 880) subroutine, odm_open_class

(“odm_open_class or odm_open_class_rdonly Subroutine” on page 885) subroutine, or odm_free_list

(“odm_free_list Subroutine” on page 876) subroutine.

The odmcreate command, odmget command.

Base Operating System (BOS) Runtime Services (A-P) 879

For information on qualifying criteria, see ″Understanding ODM Object Searches″ in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

See ODM Example Code and Output in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

odm_get_obj, odm_get_first, or odm_get_next Subroutine

Purpose

Retrieves objects, one object at a time, from an ODM object class.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

struct ClassName *odm_get_obj (ClassSymbol, Criteria, ReturnData, FIRST_NEXT)

struct ClassName *odm_get_first (ClassSymbol, Criteria, ReturnData)

struct ClassName *odm_get_next (ClassSymbol, ReturnData)

CLASS_SYMBOL ClassSymbol;

char *Criteria;

struct ClassName *ReturnData;

int FIRST_NEXT;

Description

The odm_get_obj, odm_get_first, and odm_get_next subroutines retrieve objects from ODM object

classes and return the objects into C language structures defined by the .h file produced by the

odmcreate command.

The odm_get_obj, odm_get_first, and odm_get_next subroutines open and close the specified object

class if the object class was not previously opened. If the object class was previously opened, the

subroutines leave the object class open upon return.

Parameters

 ClassSymbol Specifies a class symbol identifier returned from an odm_open_class subroutine. If the

odm_open_class subroutine has not been called, then this identifier is the

ClassName_CLASS structure that was created by the odmcreate command.

Criteria Specifies the string that contains the qualifying criteria for retrieval of the objects.

ReturnData Specifies the pointer to the data structure in the .h file created by the odmcreate command.

The name of the structure in the .h file is ClassName. If the ReturnData parameter is null

(ReturnData == null), space is allocated for the parameter and the calling application is

responsible for freeing this space at a later time.

If variable length character strings (vchar) are returned, they are referenced by pointers in the

ReturnData structure. Calling applications must free each vchar between each call to the

odm_get subroutines; otherwise storage will be lost.

880 Technical Reference, Volume 1: Base Operating System and Extensions

FIRST_NEXT Specifies whether to get the first object that matches the criteria or the next object. Valid values

are:

ODM_FIRST

Retrieve the first object that matches the search criteria.

ODM_NEXT

Retrieve the next object that matches the search criteria. The Criteria parameter is

ignored if the FIRST_NEXT parameter is set to ODM_NEXT.

Return Values

Upon successful completion, a pointer to the retrieved object is returned. If no match is found, null is

returned. If an odm_get_obj, odm_get_first, or odm_get_next subroutine is unsuccessful, a value of -1

is returned and the odmerrno variable is set to an error code.

Error Codes

Failure of the odm_get_obj, odm_get_first or odm_get_next subroutine sets the odmerrno variable to

one of the following error codes:

v ODMI_BAD_CRIT

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INTERNAL_ERR

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_MALLOC_ERR

v ODMI_OPEN_ERR

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_get_list (“odm_get_list Subroutine” on page 878) subroutine, odm_open_class

(“odm_open_class or odm_open_class_rdonly Subroutine” on page 885) subroutine, odm_rm_by_id

(“odm_rm_by_id Subroutine” on page 886) subroutine, odm_rm_obj (“odm_rm_obj Subroutine” on page

888) subroutine.

The odmcreate command, odmget command.

For more information about qualifying criteria, see ″Understanding ODM Object Searches″ in AIX 5L

Version 5.3 General Programming Concepts: Writing and Debugging Programs.

See ODM Example Code and Output in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 881

odm_initialize Subroutine

Purpose

Prepares ODM for use by an application.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_initialize()

Description

The odm_initialize subroutine starts ODM for use with an application program.

Return Values

Upon successful completion, a value of 0 is returned. If the odm_initialize subroutine is unsuccessful, a

value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes

Failure of the odm_initialize subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_INVALID_PATH

v ODMI_MALLOC_ERR

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_terminate (“odm_terminate Subroutine” on page 892) subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

odm_lock Subroutine

Purpose

Puts an exclusive lock on the requested path name.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_lock (LockPath, TimeOut)

char *LockPath;

int TimeOut;

882 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The odm_lock subroutine is used by an application to prevent other applications or methods from

accessing an object class or group of object classes. A lock on a directory path name does not prevent

another application from acquiring a lock on a subdirectory or object class within that directory.

Note: Coordination of locking is the responsibility of the application accessing the object classes.

The odm_lock subroutine returns a lock identifier that is used to call the odm_unlock subroutine.

Parameters

 LockPath Specifies a string containing the path name in the file system in which to locate object classes or the

path name to an object class to lock.

TimeOut Specifies the amount of time, in seconds, to wait if another application or method holds a lock on the

requested object class or classes. The possible values for the TimeOut parameter are:

TimeOut = ODM_NOWAIT

The odm_lock subroutine is unsuccessful if the lock cannot be granted immediately.

TimeOut = Integer

The odm_lock subroutine waits the specified amount of seconds to retry an unsuccessful

lock request.

TimeOut = ODM_WAIT

The odm_lock subroutine waits until the locked path name is freed from its current lock and

then locks it.

Return Values

Upon successful completion, a lock identifier is returned. If the odm_lock subroutine is unsuccessful, a

value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes

Failure of the odm_lock subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_BAD_LOCK

v ODMI_BAD_TIMEOUT

v ODMI_BAD_TOKEN

v ODMI_LOCK_BLOCKED

v ODMI_LOCK_ENV

v ODMI_MALLOC_ERR

v ODMI_UNLOCK

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_unlock (“odm_unlock Subroutine” on page 893) subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 883

odm_mount_class Subroutine

Purpose

Retrieves the class symbol structure for the specified object class name.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

CLASS_SYMBOL odm_mount_class (ClassName)

char *ClassName;

Description

The odm_mount_class subroutine retrieves the class symbol structure for a specified object class. The

subroutine can be called by applications (for example, the ODM commands) that have no previous

knowledge of the structure of an object class before trying to access that class. The odm_mount_class

subroutine determines the class description from the object class header information and creates a

CLASS_SYMBOL object class that is returned to the caller.

The object class is not opened by the odm_mount_class subroutine. Calling the subroutine subsequent

times for an object class that is already open or mounted returns the same CLASS_SYMBOL object class.

Mounting a class that links to another object class recursively mounts to the linked class. However, if the

recursive mount is unsuccessful, the original odm_mount_class subroutine does not fail; the

CLASS_SYMBOL object class is set up with a null link.

Parameters

 ClassName Specifies the name of an object class from which to retrieve the class description.

Return Values

Upon successful completion, a CLASS_SYMBOL is returned. If the odm_mount_class subroutine is

unsuccessful, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes

Failure of the odm_mount_class subroutine sets the odmerrno variable to one of the following error

codes:

v ODMI_BAD_CLASSNAME

v ODMI_BAD_CLXNNAME

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_CLXNMAGICNO_ERR

v ODMI_INVALID_CLASS

v ODMI_INVALID_CLXN

v ODMI_MAGICNO_ERR

v ODMI_MALLOC_ERR

v ODMI_OPEN_ERR

884 Technical Reference, Volume 1: Base Operating System and Extensions

v ODMI_PARAMS

v ODMI_TOOMANYCLASSES

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_create_class (“odm_create_class Subroutine” on page 874) subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

odm_open_class or odm_open_class_rdonly Subroutine

Purpose

Opens an ODM object class.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

CLASS_SYMBOL odm_open_class (ClassSymbol)

CLASS_SYMBOL ClassSymbol;

CLASS_SYMBOL odm_open_class_rdonly (ClassSymbol)

CLASS_SYMBOL ClassSymbol;

Description

The odm_open_class subroutine can be called to open an object class. Most subroutines implicitly open

a class if the class is not already open. However, an application may find it useful to perform an explicit

open if, for example, several operations must be done on one object class before closing the class. The

odm_open_class_rdonly subroutine opens an odm database in read-only mode.

Parameter

 ClassSymbol Specifies a class symbol of the form ClassName_CLASS that is declared in the .h file created

by the odmcreate command.

Return Values

Upon successful completion, a ClassSymbol parameter for the object class is returned. If the

odm_open_class or odm_open_class_rdonly subroutine is unsuccessful, a value of -1 is returned and

the odmerrno variable is set to an error code.

Error Codes

Failure of the odm_open_class or odm_open_class_rdonly subroutine sets the odmerrno variable to

one of the following error codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

Base Operating System (BOS) Runtime Services (A-P) 885

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_OPEN_ERR

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_close_class (“odm_close_class Subroutine” on page 873) subroutine.

The odmcreate command.

See ODM Example Code and Output in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs for an example of a .h file.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

odm_rm_by_id Subroutine

Purpose

Removes objects specified by their IDs from an ODM object class.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_rm_by_id(ClassSymbol, ObjectID)

CLASS_SYMBOL ClassSymbol;

int ObjectID;

Description

The odm_rm_by_id subroutine is called to delete an object from an object class. The object to be deleted

is specified by passing its object ID from its corresponding ClassName structure.

Parameters

 ClassSymbol Identifies a class symbol returned from an odm_open_class subroutine. If the

odm_open_class subroutine has not been called, this is the ClassName_CLASS structure that

was created by the odmcreate command.

ObjectID Identifies the object. This information is retrieved from the corresponding ClassName structure

of the object class.

Return Values

Upon successful completion, a value of 0 is returned. If the odm_rm_by_id subroutine is unsuccessful, a

value of -1 is returned and the odmerrno variable is set to an error code.

886 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

Failure of the odm_rm_by_id subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_FORK

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_MALLOC_ERR

v ODMI_NO_OBJECT

v ODMI_OPEN_ERR

v ODMI_OPEN_PIPE

v ODMI_PARAMS

v ODMI_READ_ONLY

v ODMI_READ_PIPE

v ODMI_TOOMANYCLASSES

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_get_obj (“odm_get_obj, odm_get_first, or odm_get_next Subroutine” on page 880) subroutine,

odm_open_class (“odm_open_class or odm_open_class_rdonly Subroutine” on page 885) subroutine.

The odmdelete command.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

odm_rm_class Subroutine

Purpose

Removes an object class from the file system.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_rm_class (ClassSymbol)

CLASS_SYMBOL ClassSymbol;

Description

The odm_rm_class subroutine removes an object class from the file system. All objects in the specified

class are deleted.

Base Operating System (BOS) Runtime Services (A-P) 887

Parameter

 ClassSymbol Identifies a class symbol returned from the odm_open_class subroutine. If the

odm_open_class subroutine has not been called, this is the ClassName_CLASS structure

created by the odmcreate command.

Return Values

Upon successful completion, a value of 0 is returned. If the odm_rm_class subroutine is unsuccessful, a

value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes

Failure of the odm_rm_class subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_OPEN_ERR

v ODMI_TOOMANYCLASSES

v ODMI_UNLINKCLASS_ERR

v ODMI_UNLINKCLXN_ERR

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_open_class (“odm_open_class or odm_open_class_rdonly Subroutine” on page 885)

subroutine.

The odmcreate command, odmdrop command.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

odm_rm_obj Subroutine

Purpose

Removes objects from an ODM object class.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_rm_obj (ClassSymbol, Criteria)

CLASS_SYMBOL ClassSymbol;

char *Criteria;

888 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The odm_rm_obj subroutine deletes objects from an object class.

Parameters

 ClassSymbol Identifies a class symbol returned from an odm_open_class subroutine. If the

odm_open_class subroutine has not been called, this is the ClassName_CLASS structure that

was created by the odmcreate command.

Criteria Contains as a string the qualifying criteria for selecting the objects to remove.

Return Values

Upon successful completion, the number of objects deleted is returned. If the odm_rm_obj subroutine is

unsuccessful, a value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes

Failure of the odm_rm_obj subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_BAD_CRIT

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_FORK

v ODMI_INTERNAL_ERR

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_MAGICNO_ERR

v ODMI_MALLOC_ERR

v ODMI_OPEN_ERR

v ODMI_OPEN_PIPE

v ODMI_PARAMS

v ODMI_READ_ONLY

v ODMI_READ_PIPE

v ODMI_TOOMANYCLASSES

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_add_obj (“odm_add_obj Subroutine” on page 870) subroutine, odm_open_class

(“odm_open_class or odm_open_class_rdonly Subroutine” on page 885) subroutine.

The odmcreate command, odmdelete command.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

For information on qualifying criteria, see ″Understanding ODM Object Searches″ in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 889

odm_run_method Subroutine

Purpose

Runs a specified method.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_run_method(MethodName, MethodParameters, NewStdOut, NewStdError)

char * MethodName, * MethodParameters;

char ** NewStdOut, ** NewStdError;

Description

The odm_run_method subroutine takes as input the name of the method to run, any parameters for the

method, and addresses of locations for the odm_run_method subroutine to store pointers to the stdout

(standard output) and stderr (standard error output) buffers. The application uses the pointers to access

the stdout and stderr information generated by the method.

Parameters

 MethodName Indicates the method to execute. The method can already be known by the

applications, or can be retrieved as part of an odm_get_obj subroutine call.

MethodParameters Specifies a list of parameters for the specified method.

NewStdOut Specifies the address of a pointer to the memory where the standard output of the

method is stored. If the NewStdOut parameter points to a null value (*NewStdOut ==

NULL), standard output is not captured.

NewStdError Specifies the address of a pointer to the memory where the standard error output of

the method will be stored. If the NewStdError parameter points to a null value

(*NewStdError == NULL), standard error output is not captured.

Return Values

If successful, the odm_run_method subroutine returns the exit status and out_ptr and err_ptr should

contain the relevant information. If unsuccessful, the odm_run_method subroutine will return -1 and set

the odmerrno variable to an error code.

Note: AIX methods usually return the exit code defined in the cf.h file if the methods exit on error.

Error Codes

Failure of the odm_run_method subroutine sets the odmerrno variable to one of the following error

codes:

v ODMI_FORK

v ODMI_MALLOC_ERR

v ODMI_OPEN_PIPE

v ODMI_PARAMS

v ODMI_READ_PIPE

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

890 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The odm_get_obj (“odm_get_obj, odm_get_first, or odm_get_next Subroutine” on page 880) subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

odm_set_path Subroutine

Purpose

Sets the default path for locating object classes.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

char *odm_set_path (NewPath)

char *NewPath;

Description

The odm_set_path subroutine is used to set the default path for locating object classes. The subroutine

allocates memory, sets the default path, and returns the pointer to memory. Once the operation is

complete, the calling application should free the pointer using the free (“malloc, free, realloc, calloc,

mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign Subroutine” on page 764) subroutine.

Parameters

 NewPath Contains, as a string, the path name in the file system in which to locate object classes.

Return Values

Upon successful completion, a string pointing to the previous default path is returned. If the

odm_set_path subroutine is unsuccessful, a value of -1 is returned and the odmerrno variable is set to

an error code.

Error Codes

Failure of the odm_set_path subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_INVALID_PATH

v ODMI_MALLOC_ERR

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The free (“malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign

Subroutine” on page 764) subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

Base Operating System (BOS) Runtime Services (A-P) 891

odm_set_perms Subroutine

Purpose

Sets the default permissions for an ODM object class at creation time.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_set_perms (NewPermissions)

int NewPermissions;

Description

The odm_set_perms subroutine defines the default permissions to assign to object classes at creation.

Parameters

 NewPermissions Specifies the new default permissions parameter as an integer.

Return Values

Upon successful completion, the current default permissions are returned. If the odm_set_perms

subroutine is unsuccessful, a value of -1 is returned.

Related Information

See Appendix B, “ODM Error Codes,” on page 1253 for explanations of the ODM error codes.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

odm_terminate Subroutine

Purpose

Terminates an ODM session.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_terminate ()

Description

The odm_terminate subroutine performs the cleanup necessary to terminate an ODM session. After

running an odm_terminate subroutine, an application must issue an odm_initialize subroutine to resume

ODM operations.

892 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, a value of 0 is returned. If the odm_terminate subroutine is unsuccessful, a

value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes

Failure of the odm_terminate subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_CLASS_DNE

v ODMI_CLASS_PERMS

v ODMI_INVALID_CLXN

v ODMI_INVALID_PATH

v ODMI_LOCK_ID

v ODMI_MAGICNO_ERR

v ODMI_OPEN_ERR

v ODMI_TOOMANYCLASSES

v ODMI_UNLOCK

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_initialize (“odm_initialize Subroutine” on page 882) subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

odm_unlock Subroutine

Purpose

Releases a lock put on a path name.

Library

Object Data Manager Library (libodm.a)

Syntax

#include <odmi.h>

int odm_unlock (LockID)

int LockID;

Description

The odm_unlock subroutine releases a previously granted lock on a path name. This path name can be a

directory containing subdirectories and object classes.

Parameters

 LockID Identifies the lock returned from the odm_lock subroutine.

Base Operating System (BOS) Runtime Services (A-P) 893

Return Values

Upon successful completion a value of 0 is returned. If the odm_unlock subroutine is unsuccessful, a

value of -1 is returned and the odmerrno variable is set to an error code.

Error Codes

Failure of the odm_unlock subroutine sets the odmerrno variable to one of the following error codes:

v ODMI_LOCK_ID

v ODMI_UNLOCK

See Appendix B, ″ODM Error Codes″ for explanations of the ODM error codes.

Related Information

The odm_lock (“odm_lock Subroutine” on page 882) subroutine.

Object Data Manager (ODM) Overview for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

open, openx, open64, creat, or creat64 Subroutine

Purpose

Opens a file for reading or writing.

Syntax

#include <fcntl.h>

int open (Path, OFlag [, Mode])

const char *Path;

int OFlag;

mode_t Mode;

int openx (Path, OFlag, Mode, Extension)

const char *Path;

int OFlag;

mode_t Mode;

int Extension;

int creat (Path, Mode)

const char *Path;

mode_t Mode;

Note: The open64 and creat64 subroutines apply to AIX 4.2 and later releases.

int open64 (Path, OFlag [, Mode])

const char *Path;

int OFlag;

mode_t Mode;

int creat64 (Path, Mode)

const char *Path;

mode_t Mode;

Description

Note: The open64 and creat64 subroutines apply to AIX 4.2 and later releases.

894 Technical Reference, Volume 1: Base Operating System and Extensions

The open, openx, and creat subroutines establish a connection between the file named by the Path

parameter and a file descriptor. The opened file descriptor is used by subsequent I/O subroutines, such as

read and write, to access that file.

The openx subroutine is the same as the open subroutine, with the addition of an Extension parameter,

which is provided for device driver use. The creat subroutine is equivalent to the open subroutine with the

O_WRONLY, O_CREAT, and O_TRUNC flags set.

The returned file descriptor is the lowest file descriptor not previously open for that process. No process

can have more than OPEN_MAX file descriptors open simultaneously.

The file offset, marking the current position within the file, is set to the beginning of the file. The new file

descriptor is set to remain open across exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect

Subroutine” on page 232) subroutines.

The open64 and creat64 subroutines are equivalent to the open and creat subroutines except that the

O_LARGEFILE flag is set in the open file description associated with the returned file descriptor. This flag

allows files larger than OFF_MAX to be accessed. If the caller attempts to open a file larger than

OFF_MAX and O_LARGEFILE is not set, the open will fail and errno will be set to EOVERFLOW.

In the large file enabled programming environment, open is redefined to be open64 and creat is redefined

to be creat64.

Parameters

 Path Specifies the file to be opened.

Base Operating System (BOS) Runtime Services (A-P) 895

Mode Specifies the read, write, and execute permissions of the file to be created (requested by the

O_CREAT flag). If the file already exists, this parameter is ignored. The Mode parameter is

constructed by logically ORing one or more of the following values, which are defined in the

sys/mode.h file:

S_ISUID

Enables the setuid attribute for an executable file. A process executing this program

acquires the access rights of the owner of the file.

S_ISGID

Enables the setgid attribute for an executable file. A process executing this program

acquires the access rights of the group of the file. Also, enables the group-inheritance

attribute for a directory. Files created in this directory have a group equal to the group of

the directory.

The following attributes apply only to files that are directly executable. They have no meaning when

applied to executable text files such as shell scripts and awk scripts.

S_ISVTX

Enables the link/unlink attribute for a directory. Files cannot be linked to in this directory.

Files can only be unlinked if the requesting process has write permission for the directory

and is either the owner of the file or the directory.

S_ISVTX

Enables the save text attribute for an executable file. The program is not unmapped after

usage.

S_ENFMT

Enables enforcement-mode record locking for a regular file. File locks requested with the

lockf subroutine are enforced.

S_IRUSR

Permits the file’s owner to read it.

S_IWUSR

Permits the file’s owner to write to it.

S_IXUSR

Permits the file’s owner to execute it (or to search the directory).

S_IRGRP

Permits the file’s group to read it.

S_IWGRP

Permits the file’s group to write to it.

S_IXGRP

Permits the file’s group to execute it (or to search the directory).

S_IROTH

Permits others to read the file.

S_IWOTH

Permits others to write to the file.

S_IXOTH

Permits others to execute the file (or to search the directory).

 Other mode values exist that can be set with the mknod subroutine but not with the

chmod subroutine.

Extension Provides communication with character device drivers that require additional information or return

additional status. Each driver interprets the Extension parameter in a device-dependent way, either

as a value or as a pointer to a communication area. Drivers must apply reasonable defaults when

the Extension parameter value is 0.

OFlag Specifies the type of access, special open processing, the type of update, and the initial state of

the open file. The parameter value is constructed by logically ORing special open processing flags.

These flags are defined in the fcntl.h file and are described in the following flags.

896 Technical Reference, Volume 1: Base Operating System and Extensions

Flags That Specify Access Type

The following OFlag parameter flag values specify type of access:

 O_RDONLY The file is opened for reading only.

O_WRONLY The file is opened for writing only.

O_RDWR The file is opened for both reading and writing.

Note: One of the file access values must be specified. Do not use O_RDONLY, O_WRONLY, or

O_RDWR together. If none is set, none is used, and the results are unpredictable.

Flags That Specify Special Open Processing

The following OFlag parameter flag values specify special open processing:

 O_CREAT If the file exists, this flag has no effect, except as noted under the O_EXCL flag. If the file does not

exist, a regular file is created with the following characteristics:

v The owner ID of the file is set to the effective user ID of the process.

v The group ID of the file is set to the group ID of the parent directory if the parent directory has the

SetGroupID attribute (S_ISGID bit) set. Otherwise, the group ID of the file is set to the effective

group ID of the calling process.

v The file permission and attribute bits are set to the value of the Mode parameter, modified as

follows:

– All bits set in the process file mode creation mask are cleared. (The file creation mask is

described in the umask subroutine.)

– The S_ISVTX attribute bit is cleared.

O_EXCL If the O_EXCL and O_CREAT flags are set, the open is unsuccessful if the file exists.

Note: The O_EXCL flag is not fully supported for Network File Systems (NFS). The NFS protocol

does not guarantee the designed function of the O_EXCL flag.

O_NSHARE Assures that no process has this file open and precludes subsequent opens. If the file is on a

physical file system and is already open, this open is unsuccessful and returns immediately unless

the OFlag parameter also specifies the O_DELAY flag. This flag is effective only with physical file

systems.

Note: This flag is not supported by NFS.

O_RSHARE Assures that no process has this file open for writing and precludes subsequent opens for writing.

The calling process can request write access. If the file is on a physical file system and is open for

writing or open with the O_NSHARE flag, this open fails and returns immediately unless the OFlag

parameter also specifies the O_DELAY flag.

Note: This flag is not supported by NFS.

O_DEFER The file is opened for deferred update. Changes to the file are not reflected on permanent storage

until an fsync (“fsync or fsync_range Subroutine” on page 314) subroutine operation is performed. If

no fsync subroutine operation is performed, the changes are discarded when the file is closed.

Note: This flag is not supported by NFS or JFS2, and the flag will be quietly ignored.

Note: This flag causes modified pages to be backed by paging space. Before using this flag make

sure there is sufficient paging space.

O_NOCTTY This flag specifies that the controlling terminal should not be assigned during this open.

O_TRUNC If the file does not exist, this flag has no effect. If the file exists, is a regular file, and is successfully

opened with the O_RDWR flag or the O_WRONLY flag, all of the following apply:

v The length of the file is truncated to 0.

v The owner and group of the file are unchanged.

v The SetUserID attribute of the file mode is cleared.

v The SetUserID attribute of the file is cleared.

O_DIRECT This flag specifies that direct i/o will be used for this file while it is opened.

Base Operating System (BOS) Runtime Services (A-P) 897

O_CIO This flag specifies that concurrent i/o (CIO) will be used for the file while it is opened. Because

implementing concurrent readers and writers utilizes the direct I/O path (with more specific

requirements to improve performance for running database on file system), this flag will override the

O_DIRECT flag if the two options are specified at the same time. Currently, only JFS2 and namefs,

which includes a selected subset of JFS2 files/directories, support CIO. The length of data to be

read/written and the file offset must be page-aligned to be transferred as direct i/o with concurrent

readers and writers.

The O_CIO flag is exclusive. If the file is opened in any other way (for example, using theO_DIO flag

or opening the file normally), the open will fail. If the file is opened using the O_CIO and another

process attempts to open the file another way, the open will fail. The O_CIO flag also prevents the

mmap subroutine and the shmat subroutine access to the file. The mmap subroutine and the shmat

subroutine return EINVAL if they are used on a file that was opened using the O_CIO flag.

O_SNAPSHOT The file being opened contains a JFS2 snapshot. Subsequent read calls using this file descriptor will

read the cooked snapshot rather than the raw snapshot blocks. A snapshot can only have one active

open file descriptor for it.

The open subroutine is unsuccessful if any of the following conditions are true:

v The file supports enforced record locks and another process has locked a portion of the file.

v The file is on a physical file system and is already open with the O_RSHARE flag or the O_NSHARE

flag.

v The file does not allow write access.

v The file is already opened for deferred update.

Flag That Specifies Type of Update

A program can request some control on when updates should be made permanent for a regular file

opened for write access. The following OFlag parameter values specify the type of update performed:

 O_SYNC: If set, updates to regular files and writes to block devices are synchronous updates. File update is

performed by the following subroutines:

v fclear

v ftruncate

v open with O_TRUNC

v write

On return from a subroutine that performs a synchronous update (any of the preceding subroutines,

when the O_SYNC flag is set), the program is assured that all data for the file has been written to

permanent storage, even if the file is also open for deferred update.

Note: The O_DSYNC flag applies to AIX 4.2.1 and later releases.

 O_DSYNC: If set, the file data as well as all file system meta-data

required to retrieve the file data are written to their

permanent storage locations. File attributes such as

access or modification times are not required to retrieve

file data, and as such, they are not guaranteed to be

written to their permanent storage locations before the

preceding subroutines return. (Subroutines listed in the

O_SYNC description.)

O_SYNC | O_DSYNC: If both flags are set, the file’s data and all of the file’s

meta-data (including access time) are written to their

permanent storage locations.

898 Technical Reference, Volume 1: Base Operating System and Extensions

Note: The O_RSYNC flag applies to AIX 4.3 and later releases.

 O_RSYNC: This flag is used in combination with O_SYNC or D_SYNC, and it extends

their write operation behaviors to read operations. For example, when

O_SYNC and R_SYNC are both set, a read operation will not return until the

file’s data and all of the file’s meta-data (including access time) are written to

their permanent storage locations.

Flags That Define the Open File Initial State

The following OFlag parameter flag values define the initial state of the open file:

 O_APPEND The file pointer is set to the end of the file prior to each write operation.

O_DELAY Specifies that if the open subroutine could not succeed due to an inability to grant the access on

a physical file system required by the O_RSHARE flag or the O_NSHARE flag, the process

blocks instead of returning the ETXTBSY error code.

O_NDELAY Opens with no delay.

O_NONBLOCK Specifies that the open subroutine should not block.

The O_NDELAY flag and the O_NONBLOCK flag are identical except for the value returned by the read

and write subroutines. These flags mean the process does not block on the state of an object, but does

block on input or output to a regular file or block device.

The O_DELAY flag is relevant only when used with the O_NSHARE or O_RSHARE flags. It is unrelated

to the O_NDELAY and O_NONBLOCK flags.

General Notes on OFlag Parameter Flags

The effect of the O_CREAT flag is immediate, even if the file is opened with the O_DEFER flag.

When opening a file on a physical file system with the O_NSHARE flag or the O_RSHARE flag, if the file

is already open with conflicting access the following can occur:

v If the O_DELAY flag is clear (the default), the open subroutine is unsuccessful.

v If the O_DELAY flag is set, the open subroutine blocks until there is no conflicting open. There is no

deadlock detection for processes using the O_DELAY flag.

When opening a file on a physical file system that has already been opened with the O_NSHARE flag, the

following can occur:

v If the O_DELAY flag is clear (the default), the open is unsuccessful immediately.

v If the O_DELAY flag is set, the open blocks until there is no conflicting open.

When opening a file with the O_RDWR, O_WRONLY, or O_TRUNC flag, and the file is already open with

the O_RSHARE flag:

v If the O_DELAY flag is clear (the default), the open is unsuccessful immediately.

v If the O_DELAY flag is set, the open blocks until there is no conflicting open.

When opening a first-in-first-out (FIFO) with the O_RDONLY flag, the following can occur:

v If the O_NDELAY and O_NONBLOCK flags are clear, the open blocks until a process opens the file for

writing. If the file is already open for writing (even by the calling process), the open subroutine returns

without delay.

v If the O_NDELAY flag or the O_NONBLOCK flag is set, the open succeeds immediately even if no

process has the FIFO open for writing.

When opening a FIFO with the O_WRONLY flag, the following can occur:

Base Operating System (BOS) Runtime Services (A-P) 899

v If the O_NDELAY and O_NONBLOCK flags are clear (the default), the open blocks until a process

opens the file for reading. If the file is already open for writing (even by the calling process), the open

subroutine returns without delay.

v If the O_NDELAY flag or the O_NONBLOCK flag is set, the open subroutine returns an error if no

process currently has the file open for reading.

When opening a block special or character special file that supports nonblocking opens, such as a

terminal device, the following can occur:

v If the O_NDELAY and O_NONBLOCK flags are clear (the default), the open blocks until the device is

ready or available.

v If the O_NDELAY flag or the O_NONBLOCK flag is set, the open subroutine returns without waiting for

the device to be ready or available. Subsequent behavior of the device is device-specific.

Any additional information on the effect, if any, of the O_NDELAY, O_RSHARE, O_NSHARE, and

O_DELAY flags on a specific device is documented in the description of the special file related to the

device type.

If path refers to a STREAMS file, oflag may be constructed from O_NONBLOCK OR-ed with either

O_RDONLY, O_WRONLY or O_RDWR. Other flag values are not applicable to STREAMS devices and

have no effect on them. The value O_NONBLOCK affects the operation of STREAMS drivers and certain

functions applied to file descriptors associated with STREAMS files. For STREAMS drivers, the

implementation of O_NONBLOCK is device-specific.

If path names the master side of a pseudo-terminal device, then it is unspecified whether open locks the

slave side so that it cannot be opened. Portable applications must call unlockpt before opening the slave

side.

The largest value that can be represented correctly in an object of type off_t will be established as the

offset maximum in the open file description.

Return Values

Upon successful completion, the file descriptor, a nonnegative integer, is returned. Otherwise, a value of -1

is returned, no files are created or modified, and the errno global variable is set to indicate the error.

Error Codes

The open, openx, and creat subroutines are unsuccessful and the named file is not opened if one or

more of the following are true:

 EACCES One of the following is true:

v The file exists and the type of access specified by the OFlag parameter is denied.

v Search permission is denied on a component of the path prefix specified by the Path

parameter. Access could be denied due to a secure mount.

v The file does not exist and write permission is denied for the parent directory of the file to

be created.

v The O_TRUNC flag is specified and write permission is denied.

EAGAIN The O_TRUNC flag is set and the named file contains a record lock owned by another

process.

EDQUOT The directory in which the entry for the new link is being placed cannot be extended, or an

i-node could not be allocated for the file, because the user or group quota of disk blocks or

i-nodes in the file system containing the directory has been exhausted.

EEXIST The O_CREAT and O_EXCL flags are set and the named file exists.

900 Technical Reference, Volume 1: Base Operating System and Extensions

EFBIG An attempt was made to write a file that exceeds the process’ file limit or the maximum file

size. If the user has set the environment variable XPG_SUS_ENV=ON prior to execution of

the process, then the SIGXFSZ signal is posted to the process when exceeding the process’

file size limit.

EINTR A signal was caught during the open subroutine.

EIO The path parameter names a STREAMS file and a hangup or error occurred.

EISDIR Named file is a directory and write access is required (the O_WRONLY or O_RDWR flag is

set in the OFlag parameter).

EMFILE The system limit for open file descriptors per process has already been reached

(OPEN_MAX).

ENAMETOOLONG The length of the Path parameter exceeds the system limit (PATH_MAX); or a path-name

component is longer than NAME_MAX and _POSIX_NO_TRUNC is in effect.

ENFILE The system file table is full.

ENOENT The O_CREAT flag is not set and the named file does not exist; or the O_CREAT flag is not

set and either the path prefix does not exist or the Path parameter points to an empty string.

ENOMEM The Path parameter names a STREAMS file and the system is unable to allocate resources.

ENOSPC The directory or file system that would contain the new file cannot be extended.

ENOSR The Path argument names a STREAMS-based file and the system is unable to allocate a

STREAM.

ENOTDIR A component of the path prefix specified by the Path component is not a directory.

ENXIO One of the following is true:

v Named file is a character special or block special file, and the device associated with this

special file does not exist.

v Named file is a multiplexed special file and either the channel number is outside of the

valid range or no more channels are available.

v The O_DELAY flag or the O_NONBLOCK flag is set, the named file is a FIFO, the

O_WRONLY flag is set, and no process has the file open for reading.

EOVERFLOW A file greater than one terabyte was opened on the 32-bit kernel in JFS2. The exact max size

is specified in MAX_FILESIZE and may be obtained using the pathconf system call. Any file

larger than that cannot be opened on the 32-bit kernel, but can be created and opened on

the 64-bit kernel.

EROFS Named file resides on a read-only file system and write access is required (either the

O_WRONLY, O_RDWR, O_CREAT (if the file does not exist), or O_TRUNC flag is set in the

OFlag parameter).

ETXTBSY File is on a physical file system and is already open in a manner (with the O_RSHARE or

O_NSHARE flag) that precludes this open; or the O_NSHARE or O_RSHARE flag was

requested with the O_NDELAY flag set, and there is a conflicting open on a physical file

system.

Note: The EOVERFLOW error code applies to AIX 4.2 and later releases.

 EOVERFLOW A call was made to open and creat and the file already existed and its size was larger than

OFF_MAX and the O_LARGEFILE flag was not set.

The open, openx, and creat subroutines are unsuccessful if one of the following are true:

 EFAULT The Path parameter points outside of the allocated address space of the process.

EINVAL The value of the OFlag parameter is not valid.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ETXTBSY The file specified by the Path parameter is a pure procedure (shared text) file that is currently

executing, and the O_WRONLY or O_RDWR flag is set in the OFlag parameter.

Base Operating System (BOS) Runtime Services (A-P) 901

Related Information

The chmod (“chmod or fchmod Subroutine” on page 146) subroutine, close (“close Subroutine” on page

173) subroutine, exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page

232) subroutine, fcntl, dup, or dup2 (“fcntl, dup, or dup2 Subroutine” on page 251) subroutine, fsync

(“fsync or fsync_range Subroutine” on page 314) subroutine, ioctl (“ioctl, ioctlx, ioctl32, or ioctl32x

Subroutine” on page 552) subroutine, lockfx (“lockfx, lockf, flock, or lockf64 Subroutine” on page 728)

subroutine, lseek (“lseek, llseek or lseek64 Subroutine” on page 751) subroutine, read subroutine, stat

subroutine, umask subroutine, write subroutine.

The Input and Output Handling in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

opendir, readdir, telldir, seekdir, rewinddir, closedir, opendir64,

readdir64, telldir64, seekdir64, rewinddir64, or closedir64 Subroutine

Purpose

Performs operations on directories.

Library

Standard C Library (libc.a)

Syntax

#include <dirent.h>

DIR *opendir (DirectoryName)

const char *DirectoryName;

struct dirent *readdir (DirectoryPointer)

DIR *DirectoryPointer;

long int telldir(DirectoryPointer)

DIR *DirectoryPointer;

void seekdir(DirectoryPointer,Location)

DIR *DirectoryPointer;

long Location;

void rewinddir (DirectoryPointer)

DIR *DirectoryPointer;

int closedir (DirectoryPointer)

DIR *DirectoryPointer;

DIR *opendir64 (DirectoryName)

const char *DirectoryName;

struct dirent64 *readdir64 (DirectoryPointer)

DIR64 *DirectoryPointer;

offset_t telldir64(DirectoryPointer)

DIR64 *DirectoryPointer;

void seekdir64(DirectoryPointer,Location)

DIR64 *DirectoryPointer;

offset_t Location;

void rewinddir64 (DirectoryPointer)

DIR64 *DirectoryPointer;

int closedir64 (DirectoryPointer)

DIR64 *DirectoryPointer;

902 Technical Reference, Volume 1: Base Operating System and Extensions

Description

Attention: Do not use the readdir subroutine in a multithreaded environment. See the multithread

alternative in the readdir_r subroutine article.

The opendir subroutine opens the directory designated by the DirectoryName parameter and associates a

directory stream with it.

Note: An open directory must always be closed with the closedir subroutine to ensure that the next

attempt to open that directory is successful.

The opendir subroutine also returns a pointer to identify the directory stream in subsequent operations.

The null pointer is returned when the directory named by the DirectoryName parameter cannot be

accessed or when not enough memory is available to hold the entire stream. A successful call to any of

the exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

functions closes any directory streams opened in the calling process.

The readdir subroutine returns a pointer to the next directory entry. The readdir subroutine returns entries

for . (dot) and .. (dot dot), if present, but never returns an invalid entry (with d_ino set to 0). When it

reaches the end of the directory, or when it detects an invalid seekdir operation, the readdir subroutine

returns the null value. The returned pointer designates data that may be overwritten by another call to the

readdir subroutine on the same directory stream. A call to the readdir subroutine on a different directory

stream does not overwrite this data. The readdir subroutine marks the st_atime field of the directory for

update each time the directory is actually read.

The telldir subroutine returns the current location associated with the specified directory stream.

The seekdir subroutine sets the position of the next readdir subroutine operation on the directory stream.

An attempt to seek an invalid location causes the readdir subroutine to return the null value the next time

it is called. The position should be that returned by a previous telldir subroutine call.

The rewinddir subroutine resets the position of the specified directory stream to the beginning of the

directory.

The closedir subroutine closes a directory stream and frees the structure associated with the

DirectoryPointer parameter. If the closedir subroutine is called for a directory that is already closed, the

behavior is undefined. To prevent this, always initialize the DirectoryPointer parameter to null after closure.

If you use the fork (“fork, f_fork, or vfork Subroutine” on page 284) subroutine to create a new process

from an existing one, either the parent or the child (but not both) may continue processing the directory

stream using the readdir, rewinddir, or seekdir subroutine.

The opendir64 subroutine is similar to the opendir subroutine except that it returns a pointer to an object

of type DIR64.

Note: An open directory by opendir64 subroutine must always be closed with the closedir64 subroutine

to ensure that the next attempt to open that directory is successful. In addition, it must be operated

using the 64-bit interfaces (readdir64, telldir64, seekdir64, rewinddir64, and closedir64) to obtain

the correct directory information.

The readdir64 subroutine is similar to the readdir subroutine except that it returns a pointer to an object

of type struct dirent64.

The telldir64 subroutine is similar to the telldir subroutine except that it returns the current directory

location in an offset_t format.

Base Operating System (BOS) Runtime Services (A-P) 903

The seekdir64 subroutine is similar to the seekdir subroutine except that the Location parameter is set in

the format of offset_t.

The rewinddir64 subroutine resets the position of the specified directory stream (obtained by the

opendir64 subroutine) to the beginning of the directory.

Parameters

 DirectoryName Names the directory.

DirectoryPointer Points to the DIR or DIR64 structure of an open directory.

Location Specifies the offset of an entry relative to the start of the directory.

Return Values

On successful completion, the opendir subroutine returns a pointer to an object of type DIR, and the

opendir64 subroutine returns a pointer to an object of type DIR64. Otherwise, a null value is returned and

the errno global variable is set to indicate the error.

On successful completion, the readdir subroutine returns a pointer to an object of type struct dirent, and

the readdir64 subroutine returns a pointer to an object of type struct dirent64. Otherwise, a null value is

returned and the errno global variable is set to indicate the error. When the end of the directory is

encountered, a null value is returned and the errno global variable is not changed by this function call.

On successful completion, the telldir or telldir64 subroutine returns the current location associated with

the specified directory stream. Otherwise, a null value is returned.

On successful completion, the closedir or closedir64 subroutine returns a value of 0. Otherwise, a value

of -1 is returned and the errno global variable is set to indicate the error.

Error Codes

If the opendir subroutine is unsuccessful, it returns a null value and sets the errno global variable to one

of the following values:

 EACCES Indicates that search permission is denied for any component of the DirectoryName

parameter, or read permission is denied for the DirectoryName parameter.

ENAMETOOLONG Indicates that the length of the DirectoryName parameter argument exceeds the PATH_MAX

value, or a path-name component is longer than the NAME_MAX value while the

POSIX_NO_TRUNC value is in effect.

ENOENT Indicates that the named directory does not exist.

ENOTDIR Indicates that a component of the DirectoryName parameter is not a directory.

EMFILE Indicates that too many file descriptors are currently open for the process.

ENFILE Indicates that too many file descriptors are currently open in the system.

If the readdir or readdir64 subroutine is unsuccessful, it returns a null value and sets the errno global

variable to the following value:

 EBADF Indicates that the DirectoryPointer parameter argument does not refer to an open directory stream.

If the closedir or closedir64 subroutine is unsuccessful, it returns a value of -1 and sets the errno global

variable to the following value:

 EBADF Indicates that the DirectoryPointer parameter argument does not refer to an open directory stream.

904 Technical Reference, Volume 1: Base Operating System and Extensions

Examples

To search a directory for the entry name:

len = strlen(name);

DirectoryPointer = opendir(".");

for (dp = readdir(DirectoryPointer); dp != NULL; dp =

 readdir(DirectoryPointer))

 if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {

 closedir(DirectoryPointer);

 DirectoryPointer=NULL //To prevent multiple closure

 return FOUND;

 }

closedir(DirectoryPointer);

 DirectoryPointer=NULL //To prevent multiple closure

Related Information

The close (“close Subroutine” on page 173) subroutine, exec (“exec: execl, execle, execlp, execv, execve,

execvp, or exect Subroutine” on page 232) subroutines, fork (“fork, f_fork, or vfork Subroutine” on page

284) subroutine, lseek (“lseek, llseek or lseek64 Subroutine” on page 751) subroutine, openx, open, or

creat (“open, openx, open64, creat, or creat64 Subroutine” on page 894) subroutine, read, readv, readx,

or readvx subroutine, scandir or alphasort subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

pam_acct_mgmt Subroutine

Purpose

Validates the user’s account.

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

int pam_acct_mgmt (PAMHandle, Flags)

pam_handle_t *PAMHandle;

int Flags;

Description

The pam_acct_mgmt subroutine performs various checks on the user’s account to determine if it is valid.

These checks can include account and password expiration, and access restrictions. This subroutine is

generally used subsequent to a successful pam_authenticate() call in order to verify whether the

authenticated user should be granted access.

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

Base Operating System (BOS) Runtime Services (A-P) 905

Flags The Flags argument can be a logically OR’d combination of the following:

v PAM_SILENT

– No messages should be displayed

v PAM_DISALLOW_NULL_AUTHTOK

– Do not authenticate a user with a NULL authentication token.

Return Values

Upon successful completion, pam_acct_mgmt returns PAM_SUCCESS. If the routine fails, a different

error will be returned, depending on the actual error.

Error Codes

 PAM_ACCT_EXPIRED The user’s account has expired.

PAM_NEW_AUTHTOK_REQD The user’s password needs changed. This is usually due to

password aging or because it was last set by an

administrator. At this stage most user’s can still change their

passwords; applications should call pam_chauthtok() and

have the user promptly change their password.

PAM_AUTHTOK_EXPIRED The user’s password has expired. Unlike

PAM_NEW_AUTHTOK_REQD, the password cannot be

changed by the user.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could not be

loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

Related Information

“pam_authenticate Subroutine,” “pam_open_session Subroutine” on page 916, “pam_setcred Subroutine”

on page 920, “pam_sm_acct_mgmt Subroutine” on page 922, “pam_start Subroutine” on page 929

pam_authenticate Subroutine

Purpose

Attempts to authenticate a user through PAM.

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

int pam_authenticate (PAMHandle, Flags)

pam_handle_t *PAMHandle;

int Flags;

906 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The pam_authenticate subroutine authenticates a user through PAM. The authentication method used is

determined by the authentication modules configured in the /etc/pam.conf stack. Most authentication

requires a password or other user input but is dependent on the modules in use.

Before attempting authentication through pam_authenticate, ensure that all of the applicable PAM

information has been set through the initial call to pam_start() and subsequent calls to pam_set_item(). If

any necessary information is not set, PAM modules can prompt the user for information through the

routine defined in PAM_CONV. If required information is not provided and PAM_CONV is not set, the

authentication fails.

On failure, it is the responsibility of the calling application to maintain a count of authentication attempts

and to reinvoke the subroutine if the count has not exceeded a defined limit. Some authentication modules

maintain an internal count and return PAM_MAXTRIES if the limit is reached. After the stack of

authentication modules has finished with either success or failure, PAM_AUTHTOK is cleared in the

handle.

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

Flags The Flags argument can be a logically OR’d combination of the following:

v PAM_SILENT

– No messages should be displayed

v PAM_DISALLOW_NULL_AUTHTOK

– Do not authenticate a user with a NULL authentication token.

Return Values

Upon successful completion, pam_authenticate returns PAM_SUCCESS. If the routine fails, a different

error will be returned, depending on the actual error.

Error Codes

 PAM_AUTH_ERR An error occurred in authentication, usually because of an

invalid authentication token.

PAM_CRED_INSUFFICIENT The user has insufficient credentials to access the authentication

data.

PAM_AUTHINFO_UNAVAIL The authentication information cannot be retrieved.

PAM_USER_UNKNOWN The user is not known.

PAM_MAXTRIES The maximum number of authentication retries has been

reached.

PAM_OPEN_ERR One of the PAM authentication modules could not be loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

Base Operating System (BOS) Runtime Services (A-P) 907

Related Information

“pam_acct_mgmt Subroutine” on page 905, “pam_get_user Subroutine” on page 913, “pam_open_session

Subroutine” on page 916, “pam_set_item Subroutine” on page 919, “pam_setcred Subroutine” on page

920, “pam_sm_authenticate Subroutine” on page 923, “pam_start Subroutine” on page 929

pam_chauthtok Subroutine

Purpose

Changes the user’s authentication token (typically passwords).

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

int pam_chauthtok (PAMHandle, Flags)

pam_handle_t *PAMHandle;

int Flags;

Description

The pam_chauthtok subroutine changes a user’s authentication token through the PAM framework. Prior

to changing the password, the subroutine performs preliminary tests to ensure that necessary hosts and

information, depending on the password service, are there. If any of these tests fail, PAM_TRY_AGAIN is

returned. To request information from the user, pam_chauthtok can use the conversation function that is

defined in the PAM handle, PAMHandle. After the subroutine is finished, the values of PAM_AUTHTOK

and PAM_OLDAUTHTOK are cleared in the handle for added security.

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

Flags The Flags argument can be a logically OR’d combination of the following:

v PAM_SILENT

– No messages should be displayed

v PAM_CHANGE_EXPIRED_AUTHTOK

– Only expired passwords should be changed. If this flag is not included, all users using

the related password service are forced to update their passwords. This is typically

used by a login application after determining password expiration. It should not

generally be used by applications dedicated to changing passwords.

Return Values

Upon successful completion, pam_chauthtok returns PAM_SUCCESS and the authentication token of the

user, as defined for a given password service, is changed. If the routine fails, a different error is returned,

depending on the actual error.

Error Codes

 PAM_AUTHTOK_ERR A failure occurred while updating the authentication

token.

908 Technical Reference, Volume 1: Base Operating System and Extensions

PAM_TRY_AGAIN Preliminary checks for changing the password have

failed. Try again later.

PAM_AUTHTOK_RECOVERY_ERR An error occurred while trying to recover the

authentication information.

PAM_AUTHTOK_LOCK_BUSY Cannot get the authentication token lock. Try again

later.

PAM_AUTHTOK_DISABLE_AGING Authentication token aging checks are disabled and

were not performed.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could not

be loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

Related Information

“pam_acct_mgmt Subroutine” on page 905, “pam_authenticate Subroutine” on page 906,

“pam_open_session Subroutine” on page 916, “pam_setcred Subroutine” on page 920,

“pam_sm_chauthtok Subroutine” on page 924, “pam_start Subroutine” on page 929

pam_close_session Subroutine

Purpose

Ends a currently open PAM user session.

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

int pam_close_session (PAMHandle, Flags)

pam_handle_t *PAMHandle;

int Flags;

Description

The pam_close_session subroutine ends a PAM user session started by pam_open_session().

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

Flags The following flag may be set:

v PAM_SILENT

– No messages should be displayed

Base Operating System (BOS) Runtime Services (A-P) 909

Return Values

Upon successful completion, pam_close_session returns PAM_SUCCESS. If the routine fails, a different

error is returned, depending on the actual error.

Error Codes

 PAM_SESSION_ERR An error occurred while creating/removing an entry for the new

session.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could not be loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

Related Information

“pam_open_session Subroutine” on page 916, “pam_sm_close_session Subroutine” on page 926,

“pam_start Subroutine” on page 929

pam_end Subroutine

Purpose

Ends an existing PAM authentication session.

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

int pam_end (PAMHandle, Status)

pam_handle_t *PAMHandle;

int Status;

Description

The pam_end subroutine finishes and cleans up the authentication session represented by the PAM

handle PAMHandle. Status denotes the current state of the PAMHandle and is passed through to a

cleanup() function so that the memory used during that session can be properly unallocated. The

cleanup() function can be set in the PAMHandle by PAM modules through the pam_set_data() routine.

Upon completion of the subroutine, the PAM handle and associated memory is no longer valid.

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

Status The state of the last PAM call. Some modules need to be cleaned according to error codes.

910 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, pam_end returns PAM_SUCCESS. If the routine fails, a different error is

returned, depending on the actual error.

Error Codes

 PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

Related Information

“pam_start Subroutine” on page 929

pam_get_data Subroutine

Purpose

Retrieves information for a specific PAM module for this PAM session.

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

int pam_get_data (PAMHandle, ModuleDataName, Data)

pam_handle_t *PAMHandle;

const char *ModuleDataName;

void **Data;

Description

The pam_get_data subroutine is used to retrieve module-specific data from the PAM handle. This

subroutine is used by modules and should not be called by applications. If the ModuleDataName identifier

exists, the reference for its data is returned in Data. If the identifier does not exist, a NULL reference is

returned in Data. The caller should not modify or free the memory returned in Data. Instead, a cleanup

function should be specified through a call to pam_set_data(). The cleanup function will be called when

pam_end() is invoked in order to free any memory allocated.

Parameters

 PAMHandle (in) The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

ModuleDataName A unique identifier for Data.

Data Returned reference to the data denoted by ModuleDataName.

Return Values

Upon successful completion, pam_get_data returns PAM_SUCCESS. If ModuleDataName exists and

pam_get_data completes successfully, Data will be a valid reference. Otherwise, Data will be NULL. If the

routine fails, either PAM_SYSTEM_ERR, PAM_BUF_ERR, or PAM_NO_MODULE_DATA is returned,

depending on the actual error.

Base Operating System (BOS) Runtime Services (A-P) 911

Error Codes

 PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_NO_MODULE_DATA No module-specific data was found.

Related Information

“pam_get_item Subroutine,” “pam_getenv Subroutine” on page 914, “pam_getenvlist Subroutine” on page

915, “pam_set_data Subroutine” on page 918

pam_get_item Subroutine

Purpose

Retrieves an item or information for this PAM session.

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

int pam_get_item (PAMHandle, ItemType, Item)

pam_handle_t *PAMHandle;

int ItemType;

void **Item;

Description

The pam_get_item subroutine returns the item requested by the ItemType. Any items returned by

pam_get_item should not be modified or freed. They can be later used by PAM and will be cleaned-up by

pam_end(). If a requested ItemType is not found, a NULL reference will be returned in Item.

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

912 Technical Reference, Volume 1: Base Operating System and Extensions

ItemType The type of item that is being requested. The following values are valid item types:

v PAM_SERVICE

– The service name requesting this PAM session.

v PAM_USER

– The user name of the user being authenticated.

v PAM_AUTHTOK

– The user’s current authentication token (password).

v PAM_OLDAUTHOK

– The user’s old authentication token (old password).

v PAM_TTY

– The terminal name.

v PAM_RHOST

– The name of the remote host.

v PAM_RUSER

– The name of the remote user.

v PAM_CONV

– The pam_conv structure for conversing with the user.

v PAM_USER_PROMPT

– The default prompt for the user (used by pam_get_user()).

For security, PAM_AUTHTOK and PAM_OLDAUTHTOK are only available to PAM

modules.

Item The return value, holding a reference to a pointer of the requested ItemType.

Return Values

Upon successful completion, pam_get_item returns PAM_SUCCESS. Also, the address of a reference to

the requested object is returned in Item. If the requested item was not found, a NULL reference is

returned. If the routine fails, either PAM_SYSTEM_ERR or PAM_BUF_ERR is returned and Item is set to

a NULL pointer.

Error Codes

 PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_SYMBOL_ERR Symbol not found.

Related Information

“pam_get_data Subroutine” on page 911, “pam_getenv Subroutine” on page 914, “pam_get_user

Subroutine,” “pam_getenvlist Subroutine” on page 915, “pam_set_item Subroutine” on page 919

pam_get_user Subroutine

Purpose

Gets the user’s name from the PAM handle or through prompting for input.

Library

PAM Library (libpam.a)

Base Operating System (BOS) Runtime Services (A-P) 913

Syntax

#include <security/pam_appl.h>

int pam_get_user (PAMHandle, User, PromptMsg)

pam_handle_t *PAMHandle;

int User;

void **PromptMsg;

Description

The pam_get_user subroutine returns the user name currently stored in the PAM handle, PAMHandle. If

the user name has not already been set through pam_start() or pam_set_item(), the subroutine displays

the string specified by PromptMsg, to prompt for the user name through the conversation function. If

PromptMsg is NULL, the value of PAM_USER_PROMPT set through a call to pam_set_item() is used. If

both PromptMsg and PAM_USER_PROMPT are NULL, PAM defaults to use the following string:

Please enter user name:

After the user name has been retrieved, it is set in the PAM handle and is also returned to the caller in the

User argument. The caller should not change or free User, as cleanup will be handled by pam_end().

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

User The user name retrieved from the PAM handle or provided by the user.

PromptMsg The prompt to be displayed if a user name is required and has not been already set.

Return Values

Upon successful completion, pam_get_user returns PAM_SUCCESS. Also, a reference to the user name

is returned in User. If the routine fails, either PAM_SYSTEM_ERR, PAM_BUF_ERR, or PAM_CONV_ERR

is returned, depending on what the actual error was, and a NULL reference in User is returned.

Error Codes

 PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error or failure.

Related Information

“pam_end Subroutine” on page 910, “pam_get_item Subroutine” on page 912, “pam_set_item Subroutine”

on page 919

pam_getenv Subroutine

Purpose

Returns the value of a defined PAM environment variable.

Library

PAM Library (libpam.a)

914 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <security/pam_appl.h>

char *pam_getenv (PAMHandle, VarName)

pam_handle_t *PAMHandle;

char *VarName;

Description

The pam_getenv subroutine retrieves the value of the PAM environment variable VarName stored in the

PAM handle PAMHandle. Environment variables can be defined through the pam_putenv() call. If

VarName is defined, its value is returned in memory allocated by the library; it is the caller’s responsibility

to free this memory. Otherwise, a NULL pointer is returned.

Parameters

 PAMHandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

VarName The name of the PAM environment variable to get the value for.

Return Values

Upon successful completion, pam_getenv returns the value of the VarName PAM environment variable. If

the routine fails or VarName is not defined, NULL is returned.

Related Information

“pam_getenvlist Subroutine,” “pam_putenv Subroutine” on page 917

pam_getenvlist Subroutine

Purpose

Returns a list of all of the defined PAM environment variables and their values.

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

char **pam_getenvlist (PAMHandle)

pam_handle_t *PAMHandle;

Description

The pam_getenvlist subroutine returns a pointer to a list of the currently defined environment variables in

the PAM handle, PAMHandle. Environment variables can be set through calls to the pam_putenv()

subroutine. The library returns the environment in an allocated array in which the last entry of the array is

NULL. The caller is responsible for freeing the memory of the returned list.

Parameters

 PAMHandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

Base Operating System (BOS) Runtime Services (A-P) 915

Return Values

Upon successful completion, pam_getenvlist returns a pointer to a list of strings, one for each currently

defined PAM environment variable. Each string is of the form VARIABLE=VALUE, where VARIABLE is the

name of the variable and VALUE is its value. This list is terminated with a NULL entry. If the routine fails or

there are no PAM environment variables defined, a NULL reference is returned. The caller is responsible

for freeing the memory of the returned value.

Related Information

“pam_getenv Subroutine” on page 914, “pam_putenv Subroutine” on page 917

pam_open_session Subroutine

Purpose

Opens a new PAM user session.

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

int pam_open_session (PAMHandle, Flags)

pam_handle_t *PAMHandle;

int Flags;

Description

The pam_open_session subroutine opens a new user session for an authenticated PAM user. A call to

pam_authenticate() is typically made prior to invoking this subroutine. Applications that open a user

session should subsequently close the session with pam_close_session() when the session has ended.

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

Flags The flags are used to set pam_acct_mgmt options. The recognized flags are:

v PAM_SILENT

– No messages should be displayed

Return Values

Upon successful completion, pam_open_session returns PAM_SUCCESS. If the routine fails, a different

error is returned, depending on the actual error.

Error Codes

 PAM_SESSION_ERR An error occurred while creating/removing an entry for the new

session.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could not be loaded.

916 Technical Reference, Volume 1: Base Operating System and Extensions

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

Related Information

“pam_authenticate Subroutine” on page 906, “pam_close_session Subroutine” on page 909,

“pam_sm_open_session Subroutine” on page 927, “pam_start Subroutine” on page 929

pam_putenv Subroutine

Purpose

Defines a PAM environment variable.

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

int pam_putenv (PAMHandle, NameValue)

pam_handle_t *PAMHandle;

const char *NameValue;

Description

The pam_putenv subroutine sets and deletes environment variables in the PAM handle, PAMHandle.

Applications can retrieve the defined variables by calling pam_getenv() or pam_getenvlist() and add

them to the user’s session. If a variable with the same name is already defined, the old value is replaced

by the new value.

Parameters

 PAMHandle The PAM authentication handle, obtained from a previous call to pam_start().

NameValue A string of the form name=value to be stored in the environment section of the PAM

handle. The following behavior is exhibited with regards to the format of the passed-in

string:

NAME=VALUE

Creates or overwrites the value for the variable in the environment.

NAME=

Sets the variable to the empty string.

NAME Deletes the variable from the environment, if it is currently defined.

Return Values

Upon successful completion, pam_putenv returns PAM_SUCCESS. If the routine fails, either

PAM_SYSTEM_ERR or PAM_BUF_ERR is returned, depending on the actual error.

Base Operating System (BOS) Runtime Services (A-P) 917

Error Codes

 PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

Related Information

“pam_getenv Subroutine” on page 914, “pam_getenvlist Subroutine” on page 915, “pam_start Subroutine”

on page 929

pam_set_data Subroutine

Purpose

Sets information for a specific PAM module for the active PAM session.

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

int pam_set_data (PAMHandle, ModuleDataName, Data, *(cleanup)(pam_handle_t *pamh, void *data,

 int pam_end_status))

pam_handle_t *PAMHandle;

const char *ModuleDataName;

void *Data;

void *(cleanup)(pam_handle_t *pamh, void *data, int pam_end_status);

Description

The pam_set_data subroutine allows for the setting and updating of module-specific data within the PAM

handle, PAMHandle. The ModuleDataName argument serves to uniquely identify the data, Data. Stored

information can be retrieved by specifying ModuleDataName and passing it, along with the appropriate

PAM handle, to pam_get_data(). The cleanup argument is a pointer to a function that is called to free

allocated memory used by the Data when pam_end() is invoked. If data is already associated with

ModuleDataName, PAM does a cleanup of the old data, overwrites it with Data, and replaces the old

cleanup function. If the information being set is of a known PAM item type, use the pam_putenv

subroutine instead.

Parameters

 PAMHandle The PAM handle representing the current user

authentication session. This handle is obtained by a call to

pam_start().

ModuleDataName A unique identifier for Data.

Data A reference to the data denoted by ModuleDataName.

cleanup A function pointer that is called by pam_end() to clean up

all allocated memory used by Data.

Return Values

Upon successful completion, pam_set_data_ returns PAM_SUCCESS. If the routine fails, either

PAM_SYSTEM_ERR or PAM_BUF_ERR is returned, depending on the actual error.

918 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

 PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

Related Information

“pam_end Subroutine” on page 910, “pam_get_data Subroutine” on page 911, “pam_get_item Subroutine”

on page 912, “pam_set_item Subroutine”

pam_set_item Subroutine

Purpose

Sets the value of an item for this PAM session.

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

int pam_set_item (PAMHandle, ItemType, Item)

pam_handle_t *PAMHandle;

int ItemType;

void **Item;

Description

The pam_set_item subroutine allows for the setting and updating of a set of known PAM items. The item

value is stored within the PAM handle, PAMHandle. If a previous value exists for the item type, ItemType,

then the old value is overwritten with the new value, Item.

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

Base Operating System (BOS) Runtime Services (A-P) 919

ItemType The type of item that is being requested. The following values are valid item types:

v PAM_SERVICE

– The service name requesting this PAM session.

v PAM_USER

– The user name of the user being authenticated.

v PAM_AUTHTOK

– The user’s current authentication token. Interpreted as the new authentication token

by password modules.

v PAM_OLDAUTHOK

– The user’s old authentication token. Interpreted as the current authentication token by

password modules.

v PAM_TTY

– The terminal name.

v PAM_RHOST

– The name of the remote host.

v PAM_RUSER

– The name of the remote user.

v PAM_CONV

– The pam_conv structure for conversing with the user.

v PAM_USER_PROMPT

– The default prompt for the user (used by pam_get_user()).

For security, PAM_AUTHTOK and PAM_OLDAUTHTOK are only available to PAM

modules.

Item The value that the ItemType is set to.

Return Values

Upon successful completion, pam_set_item returns PAM_SUCCESS. If the routine fails, either

PAM_SYSTEM_ERR or PAM_BUF_ERR is returned, depending on what the actual error was.

Error Codes

 PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_SYMBOL_ERR Symbol not found.

Related Information

“pam_get_item Subroutine” on page 912, “pam_get_user Subroutine” on page 913

pam_setcred Subroutine

Purpose

Establishes, changes, or removes user credentials for authentication.

Library

PAM Library (libpam.a)

920 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <security/pam_appl.h>

int pam_setcred (PAMHandle, Flags)

pam_handle_t *PAMHandle;

int Flags;

Description

The pam_setcred subroutine allows for the credentials of the PAM user for the current PAM session to be

modified. Functions such as establishing, deleting, renewing, and refreshing credentials are defined.

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

Flags The flags are used to set pam_setcred options. The recognized flags are:

v PAM_SILENT

– No messages should be displayed.

v PAM_ESTABLISH_CRED*

– Sets the user’s credentials. This is the default.

v PAM_DELETE_CRED*

– Removes the user credentials.

v PAM_REINITIALIZE_CRED*

– Renews the user credentials.

v PAM_REFRESH_CRED*

– Refresh the user credentials, extending their lifetime.

*Mutually exclusive but may be logically OR’d with PAM_SILENT. If one of them is not set,

PAM_ESTABLISH_CRED is assumed.

Return Values

Upon successful completion, pam_setcred returns PAM_SUCCESS. If the routine fails, a different error is

returned, depending on the actual error.

Error Codes

 PAM_CRED_UNAVAIL The user credentials cannot be found.

PAM_CRED_EXPIRED The user’s credentials have expired.

PAM_CRED_ERR A failure occurred while setting user credentials.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could not be loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

Base Operating System (BOS) Runtime Services (A-P) 921

Related Information

“pam_acct_mgmt Subroutine” on page 905, “pam_authenticate Subroutine” on page 906,

“pam_open_session Subroutine” on page 916, “pam_sm_setcred Subroutine” on page 928, “pam_start

Subroutine” on page 929

pam_sm_acct_mgmt Subroutine

Purpose

PAM module implementation for pam_acct_mgmt().

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

#include <security/pam_modules.h>

int pam_sm_acct_mgmt (PAMHandle, Flags, Argc, Argv)

pam_handle_t *PAMHandle;

int Flags;

int Argc;

const char **Argv;

Description

The pam_sm_acct_mgmt subroutine is invoked by the PAM library in response to a call to

pam_acct_mgmt. The pam_sm_acct_mgmt subroutine performs the account and password validation for

a user and is associated with the ″account″ service in the PAM configuration file. It is up to the module

writers to implement their own service-dependent version of pam_sm_acct_mgmt, if the module requires

this feature. Actual checks performed are at the discretion of the module writer but typically include checks

such as password expiration and login time validation.

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

Flags The Flags argument can be a logically OR’d combination of the following:

v PAM_SILENT

– No messages should be displayed.

v PAM_DISALLOW_NULL_AUTHTOK

– Do not authenticate a user with a NULL authentication token.

Argc The number of module options specified in the PAM configuration file.

Argv The module options specified in the PAM configuration file. These options are

module-dependent. Any modules receiving invalid options should ignore them.

Return Values

Upon successful completion, pam_sm_acct_mgmt returns PAM_SUCCESS. If the routine fails, a different

error is returned, depending on the actual error.

Error Codes

 PAM_ACCT_EXPIRED The user’s account has expired.

922 Technical Reference, Volume 1: Base Operating System and Extensions

PAM_NEW_AUTHTOKEN_REQD The user’s password needs to be changed. This is usually

due to password aging or because it was last set by the

system administrator. At this stage, most users can still

change their passwords. Applications should call

pam_chauthtok() and have the users change their

password.

PAM_AUTHTOK_EXPIRED The user’s password has expired. Unlike

PAM_NEW_AUTHTOKEN_REQD, the password cannot

be changed by the user.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could not be

loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

Related Information

“pam_acct_mgmt Subroutine” on page 905, “pam_authenticate Subroutine” on page 906, “pam_start

Subroutine” on page 929

pam_sm_authenticate Subroutine

Purpose

PAM module-specific implementation of pam_authenticate().

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

#include <security/pam_modules.h>

int pam_sm_authenticate (PAMHandle, Flags, Argc, Argv)

pam_handle_t *PAMHandle;

int Flags;

int Argc;

const char **Argv;

Description

When an application invokes pam_authenticate(), the PAM Framework calls pam_sm_authenticate for

each module in the authentication module stack. This allows all the PAM module authors to implement

their own authenticate routine. pam_authenticate and pam_sm_authenticate provide an authentication

service to verify that the user is allowed access.

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

Base Operating System (BOS) Runtime Services (A-P) 923

Flags The flags are used to set pam_acct_mgmt options. The recognized flags are:

v PAM_SILENT

– No messages should be displayed.

v PAM_DISALLOW_NULL_AUTHTOK

– Do not authenticate a user with a NULL authentication token.

Argc The number of module options defined.

Argv The module options. These options are module-dependent. Any modules receiving invalid

options should ignore them.

Return Values

Upon successful completion, pam_sm_authenticate returns PAM_SUCCESS. If the routine fails, a

different error is returned, depending on the actual error.

Error Codes

 PAM_AUTH_ERR An error occurred in authentication, usually because of an

invalid authentication token.

PAM_CRED_INSUFFICIENT The user has insufficient credentials to access the

authentication data.

PAM_AUTHINFO_UNAVAIL The authentication information cannot be retrieved.

PAM_USER_UNKNOWN The user is not known.

PAM_MAXTRIES The maximum number of authentication retries has been

reached.

PAM_OPEN_ERR One of the PAM authentication modules could not be

loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

Related Information

“pam_authenticate Subroutine” on page 906

pam_sm_chauthtok Subroutine

Purpose

PAM module-specific implementation of pam_chauthtok().

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

#include <security/pam_modules.h>

int pam_sm_chauthtok (PAMHandle, Flags, Argc, Argv)

pam_handle_t *PAMHandle;

924 Technical Reference, Volume 1: Base Operating System and Extensions

int Flags;

int Argc;

const char **Argv;

Description

When an application invokes pam_chauthtok(), the PAM Framework calls pam_sm_chauthtok for each

module in the password module stack. The pam_sm_chauthtok module interface is intended to change

the user’s password or authentication token. Before any password is changed, pam_sm_chauthtok

performs preliminary tests to ensure necessary hosts and information, depending on the password service,

are there. If PAM_PRELIM_CHECK is specified, only these preliminary checks are done. If successful, the

authentication token is ready to be changed. If the PAM_UPDATE_AUTHTOK flag is passed in,

pam_sm_chauthtok should take the next step and change the user’s authentication token. If the

PAM_CHANGE_EXPIRED_AUTHTOK flag is set, the module should check the authentication token for

aging and expiration. If the user’s authentication token is aged or expired, the module should store that

information by passing it to pam_set_data(). Otherwise, the module should exit and return PAM_IGNORE.

Required information is obtained through the PAM handle or by prompting the user by way of

PAM_CONV.

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

Flags The flags are used to set pam_acct_mgmt options. The recognized flags are:

v PAM_SILENT

– No messages should be displayed.

v PAM_CHANGE_EXPIRED_AUTHTOK

– Only expired passwords should be changed. If this flag is not included, all users using

the related password service are forced to update their passwords.

v PAM_PRELIM_CHECK*

– Only perform preliminary checks to see if the password can be changed, but do not

change it.

v PAM_UPDATE_AUTHTOK*

– Perform all necessary checks, and if possible, change the user’s

password/authentication token.

* PAM_PRELIM_CHECK and PAM_UPDATE_AUTHTOK are mutually exclusive.

Argc The number of module options defined.

Argv The module options. These options are module-dependent. Any modules receiving invalid

options should ignore them.

Return Values

Upon successful completion, pam_sm_chauthtok returns PAM_SUCCESS. If the routine fails, a different

error is returned, depending on the actual error.

Error Codes

 PAM_AUTHTOK_ERR A failure occurred while updating the authentication

token.

PAM_TRY_AGAIN Preliminary checks for changing the password have

failed. Try again later.

PAM_AUTHTOK_RECOVERY_ERR An error occurred while trying to recover the

authentication information.

Base Operating System (BOS) Runtime Services (A-P) 925

PAM_AUTHTOK_LOCK_BUSY Cannot get the authentication token lock. Try again

later

PAM_AUTHTOK_DISABLE_AGING Authentication token aging checks are disabled and

were not performed.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could not be

loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

Related Information

“pam_chauthtok Subroutine” on page 908

pam_sm_close_session Subroutine

Purpose

PAM module-specific implementation to close a session previously opened by pam_sm_open_session().

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

#include <security/pam_modules.h>

int pam_sm_close_session (PAMHandle, Flags, Argc, Argv)

pam_handle_t *PAMHandle;

int Flags;

int Argc;

const char **Argv;

Description

When an application invokes pam_close_session(), the PAM Framework calls pam_sm_close_session

for each module in the session module stack. The pam_sm_close_session module interface is intended

to clean up and terminate any user session started by pam_sm_open_session().

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

Flags The flags are used to set pam_acct_mgmt options. The recognized flag is:

v PAM_SILENT

– No messages should be displayed.

Argc The number of module options defined.

Argv The module options. These options are module-dependent. Any modules receiving invalid

options should ignore them.

926 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, pam_sm_close_session returns PAM_SUCCESS. If the routine fails, a

different error is returned, depending on the actual error.

Error Codes

 PAM_SESSION_ERR An error occurred while creating or removing an entry

for the new session.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could not be

loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

Related Information

“pam_close_session Subroutine” on page 909, “pam_sm_open_session Subroutine”

pam_sm_open_session Subroutine

Purpose

PAM module-specific implementation of pam_open_session.

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

#include <security/pam_modules.h>

int pam_sm_open_session (PAMHandle, Flags, Argc, Argv)

pam_handle_t *PAMHandle;

int Flags;

int Argc;

const char **Argv;

Description

When an application invokes pam_open_session(), the PAM Framework calls pam_sm_open_session

for each module in the session module stack. The pam_sm_open_session module interface starts a new

user session for an authenticated PAM user. All session-specific information and memory used by opening

a session should be cleaned up by pam_sm_close_session().

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

Base Operating System (BOS) Runtime Services (A-P) 927

Flags The flags are used to set pam_acct_mgmt options. The recognized flag is:

v PAM_SILENT

– No messages should be displayed.

Argc The number of module options defined.

Argv The module options. These options are module-dependent. Any modules receiving invalid

options should ignore them.

Return Values

Upon successful completion, pam_sm_open_session returns PAM_SUCCESS. If the routine fails, a

different error is returned, depending on the actual error.

Error Codes

 PAM_SESSION_ERR An error occurred while creating or removing an entry

for the new session.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could not be

loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

Related Information

“pam_open_session Subroutine” on page 916, “pam_sm_close_session Subroutine” on page 926

pam_sm_setcred Subroutine

Purpose

PAM module-specific implementation of pam_setcred.

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

#include <security/pam_modules.h>

int pam_sm_setcred (PAMHandle, Flags, Argc, Argv)

pam_handle_t *PAMHandle;

int Flags;

int Argc;

const char **Argv;

Description

When an application invokes pam_setcred(), the PAM Framework calls pam_sm_setcred for each

module in the authentication module stack. The pam_sm_setcred module interface allows for the setting

of module-specific credentials in the PAM handle. The user’s credentials should be set based upon the

user’s authentication state. This information can usually be retrieved with a call to pam_get_data().

928 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

Flags The flags are used to set pam_setcred options. The recognized flags are:

v PAM_SILENT

– No messages should be displayed.

v PAM_ESTABLISH_CRED*

– Sets the user’s credentials. This is the default.

v PAM_DELETE_CRED*

– Removes the user credentials.

v PAM_REINITIALIZE_CRED*

– Renews the user credentials.

v PAM_REFRESH_CRED*

– Refreshes the user credentials, extending their lifetime.

*Mutually exclusive. If one of them is not set, PAM_ESTABLISH_CRED is assumed.

Argc The number of module options defined.

Argv The module options. These options are module-dependent. Any modules receiving invalid

options should ignore them.

Return Values

Upon successful completion, pam_sm_setcred returns PAM_SUCCESS. If the routine fails, a different

error is returned, depending on the actual error.

Error Codes

 PAM_CRED_UNAVAIL The user credentials cannot be found.

PAM_CRED_EXPIRED The user’s credentials have expired.

PAM_CRED_ERR A failure occurred while setting user credentials.

PAM_USER_UNKNOWN The user is not known.

PAM_OPEN_ERR One of the PAM authentication modules could not be

loaded.

PAM_SYMBOL_ERR A necessary item is not available to a PAM module.

PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

PAM_CONV_ERR A conversation error occurred.

PAM_PERM_DENIED Access permission was denied to the user.

Related Information

“pam_setcred Subroutine” on page 920

pam_start Subroutine

Purpose

Initiates a new PAM user authentication session.

Library

PAM Library (libpam.a)

Base Operating System (BOS) Runtime Services (A-P) 929

Syntax

#include <security/pam_appl.h>

int pam_start (Service, User, Conversation, PAMHandle)

const char *Service;

const char *User;

const struct pam_conv *Conversation;

pam_handle_t **PAMHandle;

Description

The pam_start subroutine begins a new PAM session for authentication within one of the four realms of

the PAM environment [authentication, account, session, password]. This routine is called only at the start

of the session, not at the start of each module comprising the session. The PAM handle, PAMHandle,

returned by this subroutine is subsequently used by other PAM routines. The handle must be cleaned up

at the end of use, which can easily be done by passing it as an argument to pam_end.

Parameters

 Service The name of the service initiating this PAM session.

User The user who is being authenticated.

930 Technical Reference, Volume 1: Base Operating System and Extensions

Conversation The PAM conversation struct enabling communication with the user. This structure,

pam_conv, consists of a pointer to a conversation function, as well as a pointer to

application data.

struct pam_conv {

 int (**conv)();

 void (**appdata_ptr);

}

The argument conv is defined as:

int conv(int num_msg, const struct pam_message **msg,

 const struct pam_response **resp, void *appdata);

The conversation function, conv, allows PAM to send messages to, and get input from, a

user. The arguments to the function have the following definition and behavior:

num_msg

The number of lines of messages to be displayed (all messages are returned in

one-line fragments, each no longer than PAM_MAX_MSG_SIZE characters and

with no more lines than PAM_MAX_NUM_MSG)

msg Contains the message text and its style.

struct pam_message {

 int style; /* Message style */

 char *msg; /* The message */

}

The message style, can be one of:

PAM_PROMPT_ECHO_OFF

Prompts users with message and does not echo their responses; it is

typically for use with requesting passwords and other sensitive

information.

PAM_PROMPT_ECHO_ON

Prompts users with message and echoes their responses back to them.

PAM_ERROR_MSG

Displays message as an error message.

PAM_TEXT_INFO

Displays general information, such as authentication failures.

resp Holds the user’s response and a response code.

struct pam_response {

 char **resp; /* Reference to the response */

 int resp_retcode; /* Not used, should be 0 */

}

appdata, appdata_ptr

Pointers to the application data that can be passed by the calling application to the

PAM modules. Use these to allow PAM to send data back to the application.

PAMHandle The PAM handle representing the current user authentication session is returned upon

successful completion.

Return Values

Upon successful completion, pam_start returns PAM_SUCCESS, and a reference to the pointer of a valid

PAM handle is returned through PAMHandle. If the routine fails, a value different from PAM_SUCCESS is

returned, and the PAMHandle reference is NULL.

Base Operating System (BOS) Runtime Services (A-P) 931

Error Codes

 PAM_SERVICE_ERR An error occurred in a PAM module.

PAM_SYSTEM_ERR A system error occurred.

PAM_BUF_ERR A memory error occurred.

Related Information

“pam_end Subroutine” on page 910, “pam_set_data Subroutine” on page 918, “pam_set_item Subroutine”

on page 919

pam_strerror Subroutine

Purpose

Translates a PAM error code to a string message.

Library

PAM Library (libpam.a)

Syntax

#include <security/pam_appl.h>

const char *pam_strerror (PAMHandle, ErrorCode)

pam_handle_t *PAMHandle;

int ErrorCode;

Description

The pam_strerror subroutine uses the error number returned by the PAM routines and returns the PAM

error message that is associated with that error number. If the error number is not known to pam_strerror,

or there is no translation error message, then NULL is returned. The caller should not free or modify the

returned string.

Parameters

 PAMhandle The PAM handle representing the current user authentication session. This handle is

obtained by a call to pam_start().

ErrorCode The PAM error code for which the PAM error message is to be retrieved.

Return Values

Upon successful completion, pam_strerror returns the PAM error message corresponding to the PAM

error code, ErrorCode. A NULL pointer is returned if the routine fails, the error code is not known, or no

error message exists for that error code.

passwdexpired Subroutine

Purpose

Checks the user’s password to determine if it has expired.

932 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

passwdexpired (UserName, Message)

char *UserName;

char **Message;

Description

The passwdexpired subroutine checks a user’s password to determine if it has expired. The subroutine

checks the registry variable in the /etc/security/user file to ascertain where the user is administered. If

the registry variable is not defined, the passwdexpired subroutine checks the local, NIS, and DCE

databases for the user definition and expiration time.

The passwdexpired subroutine may pass back informational messages, such as how many days remain

until password expiration.

Parameters

 UserName Specifies the user’s name whose password is to be checked.

Message Points to a pointer that the passwdexpired subroutine allocates memory for and fills in. This string is

suitable for printing and issues messages, such as in how many days the password will expire.

Return Values

Upon successful completion, the passwdexpired subroutine returns a value of 0. If this subroutine fails, it

returns one of the following values:

 1 Indicates that the password is expired, and the user must change it.

2 Indicates that the password is expired, and only a system administrator may change it.

-1 Indicates that an internal error has occurred, such as a memory allocation (malloc) failure or database

corruption.

Error Codes

The passwdexpired subroutine fails if one or more of the following values is true:

 ENOENT Indicates that the user could not be found.

EACCES Indicates that the user did not have permission to check password expiration.

ENOMEM Indicates that memory allocation (malloc) failed.

EINVAL Indicates that the parameters are not valid.

Related Information

The authenticate (“authenticate Subroutine” on page 111) subroutine.

The login command.

passwdexpiredx Subroutine

Purpose

Checks the user’s password to determine if it has expired, in multiple methods.

Base Operating System (BOS) Runtime Services (A-P) 933

Syntax

passwdexpiredx (UserName, Message, State)

char *UserName;

char **Message;

char **State;

Description

The passwdexpiredx subroutine checks a user’s password to determine if it has expired. The subroutine

uses the user’s SYSTEM attribute to ascertain which administrative domains are used for password

authentication.

The passwdexpiredx subroutine can pass back informational messages, such as how many days remain

until password expiration.

The State parameter can contain information about the results of the authentication process. The State

parameter from an earlier call to the authenticatex subroutine can be used to control how password

expiration checking is performed. Authentication mechanisms that were not used to authenticate a user are

not examined for expired passwords. The State parameter must be initialized to reference a null pointer if

the State parameter from an earlier call to the authenticatex subroutine is not used.

Parameters

 UserName Specifies the user’s name whose password is to be checked.

Message Points to a pointer that the passwdexpiredx subroutine allocates memory for and fills in.

This string is suitable for printing, and it issues messages, such as an alert that indicates

how many days are left before the password expires.

State Points to a pointer that the passwdexpiredx subroutine allocates memory for and fills in.

The State parameter can also be the result of an earlier call to the authenticatex subroutine.

The State parameter contains information about the results of the password expiration

examination process for each term in the user’s SYSTEM attribute. The calling application is

responsible for freeing this memory when it is no longer needed for a subsequent call to the

chpassx subroutine.

Return Values

Upon successful completion, the passwdexpiredx subroutine returns a value of 0. If this subroutine fails,

it returns one of the following values:

 -1 Indicates that an internal error has occurred, such as a memory allocation (malloc) failure or database

corruption.

1 Indicates that one or more passwords are expired, and the user must change it. None of the expired

passwords require system administrator intervention to be changed.

2 Indicates that one or more passwords are expired, at least one of which must be changed by the user

and at least one of which requires system administrator intervention to be changed.

3 Indicates that all expired passwords require system administrator intervention to be changed.

Error Codes

The passwdexpiredx subroutine fails if one or more of the following values is true:

 EACCESS The user did not have permission to access the password attributes required to check

password expiration.

EINVAL The parameters are not valid.

ENOENT The user could not be found.

ENOMEM Memory allocation (malloc) failed.

934 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The “authenticatex Subroutine” on page 113.

The login Command.

passwdpolicy Subroutine

Purpose

Supports password strength policies on a per-user or per-named-policy basis.

Syntax

#include <pwdpolicy.h>

int passwdpolicy (const char *name, int type, const char *old_password,

 const char *new_password, time64_t last_update);

Description

The passwdpolicy subroutine supports application use of password strength policies on a per-user or

per-named-policy basis. The policies that are supported include password dictionaries, history list length,

history list expiration, maximum lifetime of a password, minimum period of time between permitted

password changes, maximum period after which an expired password can be changed, maximum number

of repeated characters in a password, minimum number of alphabetic characters in a password, minimum

number of nonalphabetic characters in a password, minimum length of a password, and a list of loadable

modules that can be used to determine additional password strength rules.

The type parameter allows an application to select where the policy values are located. Privileged process

can use either PWP_USERNAME or PWP_SYSTEMPOLICY. Unprivileged processes are limited to using

PWP_LOCALPOLICY.

The following named attributes are used for each test:

 dictionlist A SEC_LIST value that gives a list of dictionaries to be checked. If new_password is

found in any of the named dictionaries, this test fails. If this test fails, the return

value contains the PWP_IN_DICTIONARY bit.

histsize A SEC_INT value giving the permissible size of the named user’s password history.

The named user’s password history is obtained by calling getuserattr with the

S_HISTLIST attribute. If this attribute does not exist, password history checks are

disabled. A value of 0 disables password history tests. If this test fails, the return

value contains the PWP_REUSED_PW bit.

histexpire A SEC_INT value that gives the number of weeks that must elapse before a

password in the named user’s password history list can be reused. If this test fails

the return value contains the PWP_REUSED_TOO_SOON bit.

maxage A SEC_INT value that gives the number of weeks a password can be considered

valid. A password that has not been modified more recently than maxage weeks is

considered to have expired and is subject to the maxexpired test. A value less than

or equal to 0 disables this test. This attribute is used to determine if maxexpired

must be tested, and it does not generate a return value.

minage A SEC_INT value that gives the number of weeks before a password can be

changed. A password that has been modified more recently than minage weeks fails

this test. A value less than or equal to 0 disables this test. If this test fails, the return

value contains the PWP_TOO_SOON bit.

maxexpired A SEC_INT value that gives the number of weeks after which an expired password

cannot be changed. A value of 0 indicates that an expired password cannot be

changed. A value of -1 indicates that an expired password can be changed after any

length of time. If this test fails, the return value contains the PWP_EXPIRED bit.

Base Operating System (BOS) Runtime Services (A-P) 935

maxrepeats A SEC_INT value that gives the maximum number of times any single character can

appear in the new password. A value less than or equal to 0 disables this test. If this

test fails, the return value contains the PWP_TOO_MANY_REPEATS bit.

mindiff A SEC_INT value that gives the maximum number of characters in the new

password that must not be present in the old password. A value less than or equal

to 0 disables this test. If this test fails, the return value contains the

PWP_TOO_MANY_SAME bit.

minalpha A SEC_INT value that gives the minimum number of alphabetic characters that must

be present in the password. A value less than or equal to 0 disables this test. If this

test fails, the return value contains the PWP_TOO_FEW_ALPHA bit.

minother A SEC_INT value that gives the minimum number of nonalphabetic characters that

must be present in the password. A value less than or equal to 0 disables this test. If

this test fails, the return value contains the bit PWP_TOO_FEW_OTHER bit.

minlen A SEC_INT value that gives the minimum required length of a password. There is no

maximum value for this attribute. A value less than or equal to 0 disables this test. If

this test fails, the return value contains the PWP_TOO_SHORT bit.

pwdchecks A SEC_LIST value that gives a list of named loadable modules that must be

executed to validate the password. If this test fails, the return value contains the

PWP_FAILED_OTHER bit.

Parameters

 name The name of either a specific user or named policy. User names have policy information

determined by invoking the getuserattr subroutine. Policy names have policy information

determined by invoking the getconfattr subroutine.

type One of three values:

PWP_USERNAME

Policy values for PWP_USERNAME are stored in /etc/security/user. Password

tests PWP_REUSED_PW and PWP_REUSED_TOO_SOON are only enabled

for this value.

PWP_SYSTEMPOLICY

Policy values for PWP_SYSTEMPOLICY are stored in

/etc/security/passwd_policy.

PWP_LOCALPOLICY

Policy values for PWP_LOCALPOLICY are stored in

/usr/lib/security/passwd_policy.

old_password The current value of the password. This function does not verify that old_password is the

correct current password. Invoking passwdpolicy with a NULL pointer for this parameter

disables PWP_TOO_MANY_SAME tests.

new_password The value of the new password. Invoking passwdpolicy with a NULL pointer for this

parameter disables all tests except password age tests.

last_update The time the password was last changed, as a time64_t value, expressed in seconds

since the UNIX epoch. A 0 value for this parameter disables password age tests

regardless of the value of any other parameter.

Return Values

The return value is a bit-mapped representation of the tests that failed. A return value of 0 indicates that all

password rules passed. A value of -1 indicates that some other error, other than a failed password test,

has occurred. The errno variable indicates the cause of that error. Applications must compare a non-zero

return value against -1 before checking any specific bits in the return value.

Files

The /usr/include/pwdpolicy.h header file.

936 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

“passwdexpired Subroutine” on page 932, “passwdstrength Subroutine”

passwdstrength Subroutine

Purpose

Performs basic password age and construction tests.

Syntax

#include <pwdpolicy.h>

int passwdstrength (const char *old_password, const char *new_password,

 time64_t last_update, passwd_policy_t *policy, int checks);

Description

The passwdstrength subroutine performs basic password age and construction tests. Password history,

reuse, and dictionary tests are not performed. The values contained in the policy parameter are used to

validate the value of new_password.

The following fields are used by the passwdstrength subroutine.

 pwp_version Specifies the version of the passwd_policy_t structure. The current structure

version number is PWP_VERSION_1.

pwp_minage The number of seconds, as a time32_t, between the time a password is modified

and the time the password can again be modified. This field is referenced if

PWP_TOO_SOON is set in checks.

pwp_maxage The number of seconds, as a time32_t, after which a password that has been

modified is considered to be expired. This field is referenced if PWP_EXPIRED is

set in checks.

pwp_maxexpired The number of seconds, as a time32_t, since a password has expired after which it

can no longer be modified. A value of 0 indicates that an expired password cannot

be changed. A value of -1 indicates that an expired password can be changed after

any length of time. This field is referenced if PWP_EXPIRED is set in checks.

pwp_minalpha The minimum number of characters in the password that must be alphabetic

characters, as determined by invoking the isalpha() macro. A value less than or

equal to 0 disables this test. This field is referenced if PWP_TOO_FEW_ALPHA is

set in checks.

pwp_minother The minimum number of characters in the password that cannot be alphabetic

characters, as determined by invoking the isalpha() macro. A value less than or

equal to 0 disables this test. This field is referenced if PWP_TOO_FEW_OTHER is

set in checks.

pwp_minlen The minimum total number of characters in the password. A value less than or equal

to 0 disables this test. This field is referenced if PWP_TOO_SHORT is set in checks.

pwp_maxrepeats The maximum number of times an individual character can appear in the password.

A value less than or equal to 0 disables this test. This field is referenced if

PWP_TOO_MANY_REPEATS is set in checks.

pwp_mindiff The minimum number of characters that must be changed between the old

password and the new password. A value less than or equal to 0 disables this test. If

this test fails, the return value contains the bit PWP_TOO_MANY_SAME. This field

is referenced if PWP_TOO_MANY_SAME is set in checks.

Parameters

 old_password The value of the current password. This parameter must be non-NULL if

PWP_TOO_MANY_SAME is set in checks or the results are undefined.

Base Operating System (BOS) Runtime Services (A-P) 937

new_password The value of the new password. This parameter must be non-NULL if any of

PWP_TOO_SHORT, PWP_TOO_FEW_ALPHA, PWP_TOO_FEW_OTHER,

PWP_TOO_MANY_SAME, or PWP_TOO_MANY_REPEATS are set in checks or the

results are undefined.

last_update The time the password was last changed, as a time64_t value, expressed in seconds

since the UNIX epoch. A 0 value for this parameter indicates that the password has

never been set. This might cause PWP_EXPIRED to be set in the return value if it is set

in checks.

policy A pointer to a passwd_policy_t containing the values for the password policy attributes.

checks A bitmask value that indicates the set of password tests to be performed. The return

value contains only those bits that are defined in checks.

Return Values

The return value is a bit-mapped representation of the tests that failed. A return value of 0 indicates that all

password rules requested in the checks parameter passed. A value of -1 indicates that some other error,

other than a password test, has occurred. The errno variable indicates the cause of that error. Applications

must compare a non-zero return value against -1 before checking any specific bits in the return value.

Files

The /usr/include/pwdpolicy.h header file.

Related Information

“passwdexpired Subroutine” on page 932, “passwdpolicy Subroutine” on page 935

pathconf or fpathconf Subroutine

Purpose

Retrieves file-implementation characteristics.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

long pathconf (Path, Name)

const char *Path;

int Name;

long fpathconf(FileDescriptor, Name)

int FileDescriptor, Name;

Description

The pathconf subroutine allows an application to determine the characteristics of operations supported by

the file system contained by the file named by the Path parameter. Read, write, or execute permission of

the named file is not required, but all directories in the path leading to the file must be searchable.

The fpathconf subroutine allows an application to retrieve the same information for an open file.

938 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 Path Specifies the path name.

FileDescriptor Specifies an open file descriptor.

Name Specifies the configuration attribute to be queried. If this attribute is not applicable to the file

specified by the Path or FileDescriptor parameter, the pathconf subroutine returns an error.

Symbolic values for the Name parameter are defined in the unistd.h file:

_PC_LINK_MAX

Specifies the maximum number of links to the file.

_PC_MAX_CANON

Specifies the maximum number of bytes in a canonical input line. This value is applicable

only to terminal devices.

_PC_MAX_INPUT

Specifies the maximum number of bytes allowed in an input queue. This value is

applicable only to terminal devices.

_PC_NAME_MAX

Specifies the maximum number of bytes in a file name, not including a terminating null

character. This number can range from 14 through 255. This value is applicable only to a

directory file.

_PC_PATH_MAX

Specifies the maximum number of bytes in a path name, including a terminating null

character.

_PC_PIPE_BUF

Specifies the maximum number of bytes guaranteed to be written atomically. This value is

applicable only to a first-in-first-out (FIFO).

_PC_CHOWN_RESTRICTED

Returns 0 if the use of the chown subroutine is restricted to a process with appropriate

privileges, and if the chown subroutine is restricted to changing the group ID of a file only

to the effective group ID of the process or to one of its supplementary group IDs.

_PC_NO_TRUNC

Returns 0 if long component names are truncated. This value is applicable only to a

directory file.

_PC_VDISABLE

This is always 0. No disabling character is defined. This value is applicable only to a

terminal device.

_PC_AIX_DISK_PARTITION

Determines the physical partition size of the disk.

Note: The _PC_AIX_DISK_PARTITION variable is available only to the root user.

_PC_AIX_DISK_SIZE

Determines the disk size in megabytes.

Note: The _PC_AIX_DISK_SIZE variable is available only to the root user.

Note: The _PC_FILESIZEBITS and PC_SYNC_IO flags apply to AIX 4.3 and later releases.

_PC_FILESIZEBITS

Returns the minimum number of bits required to hold the file system’s maximum file size

as a signed integer. The smallest value returned is 32.

_PC_SYNC_IO

Returns -1 if the file system does not support the Synchronized Input and Output

option. Any value other than -1 is returned if the file system supports the option.

Base Operating System (BOS) Runtime Services (A-P) 939

Notes:

1. If the Name parameter has a value of _PC_LINK_MAX, and if the Path or FileDescriptor parameter

refers to a directory, the value returned applies to the directory itself.

2. If the Name parameter has a value of _PC_NAME_MAX or _PC_NO_TRUNC, and if the Path or

FileDescriptor parameter refers to a directory, the value returned applies to filenames within the

directory.

3. If the Name parameter has a value if _PC_PATH_MAX, and if the Path or FileDescriptor parameter

refers to a directory that is the working directory, the value returned is the maximum length of a relative

pathname.

4. If the Name parameter has a value of _PC_PIPE_BUF, and if the Path parameter refers to a FIFO

special file or the FileDescriptor parameter refers to a pipe or a FIFO special file, the value returned

applies to the referenced object. If the Path or FileDescriptor parameter refers to a directory, the value

returned applies to any FIFO special file that exists or can be created within the directory.

5. If the Name parameter has a value of _PC_CHOWN_RESTRICTED, and if the Path or FileDescriptor

parameter refers to a directory, the value returned applies to any files, other than directories, that exist

or can be created within the directory.

Return Values

If the pathconf or fpathconf subroutine is successful, the specified parameter is returned. Otherwise, a

value of -1 is returned and the errno global variable is set to indicate the error. If the variable

corresponding to the Name parameter has no limit for the Path parameter or the FileDescriptor parameter,

both the pathconf and fpathconf subroutines return a value of -1 without changing the errno global

variable.

Error Codes

The pathconf or fpathconf subroutine fails if the following error occurs:

 EINVAL The name parameter specifies an unknown or inapplicable characteristic.

The pathconf subroutine can also fail if any of the following errors occur:

 EACCES Search permission is denied for a component of the path prefix.

EINVAL The implementation does not support an association of the Name parameter with the

specified file.

ENAMETOOLONG The length of the Path parameter string exceeds the PATH_MAX value.

ENAMETOOLONG Pathname resolution of a symbolic link produced an intermediate result whose length

exceeds PATH_MAX.

ENOENT The named file does not exist or the Path parameter points to an empty string.

ENOTDIR A component of the path prefix is not a directory.

ELOOP Too many symbolic links were encountered in resolving path.

The fpathconf subroutine can fail if either of the following errors occur:

 EBADF The File Descriptor parameter is not valid.

EINVAL The implementation does not support an association of the Name parameter with the specified file.

Related Information

The “chown, fchown, lchown, chownx, or fchownx Subroutine” on page 149, “confstr Subroutine” on page

179, sysconf subroutine.

Files, Directories, and File Systems for Programmers, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

940 Technical Reference, Volume 1: Base Operating System and Extensions

pause Subroutine

Purpose

Suspends a process until a signal is received.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

int pause (void)

Description

The pause subroutine suspends the calling process until it receives a signal. The signal must not be one

that is ignored by the calling process. The pause subroutine does not affect the action taken upon the

receipt of a signal.

Return Values

If the signal received causes the calling process to end, the pause subroutine does not return.

If the signal is caught by the calling process and control is returned from the signal-catching function, the

calling process resumes execution from the point of suspension. The pause subroutine returns a value of

-1 and sets the errno global variable to EINTR.

Related Information

The incinterval, alarm, or settimer (“getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm,

getitimer or setitimer Subroutine” on page 378)subroutine, kill or killpg (“kill or killpg Subroutine” on page

570) subroutine, sigaction, sigvec, or signal subroutine, wait, waitpid, or wait3 subroutine.

pcap_close Subroutine

Purpose

Closes the open files related to the packet capture descriptor and frees the memory used by the packet

capture descriptor.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

void pcap_close(pcap_t * p);

Description

The pcap_close subroutine closes the files associated with the packet capture descriptor and deallocates

resources. If the pcap_open_offline subroutine was previously called, the pcap_close subroutine closes

the savefile, a previously saved packet capture data file. Or the pcap_close subroutine closes the packet

capture device if the pcap_open_live subroutine was previously called.

Base Operating System (BOS) Runtime Services (A-P) 941

Parameters

 p Points to a packet capture descriptor as returned by the

pcap_open_live or the pcap_open_offline subroutine.

Related Information

The pcap_open_live (“pcap_open_live Subroutine” on page 954) subroutine, pcap_open_offline

(“pcap_open_offline Subroutine” on page 955) subroutine.

pcap_compile Subroutine

Purpose

Compiles a filter expression into a filter program.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

int pcap_compile(pcap_t * p, struct bpf_ program *fp, char * str,

int optimize, bpf_u_int32 netmask);

Description

The pcap_compile subroutine is used to compile the string str into a filter program. This filter program will

then be used to filter, or select, the desired packets.

Parameters

 netmask Specifies the netmask of the network device. The netmask

can be obtained from the pcap_lookupnet subroutine.

optimize Controls whether optimization on the resulting code is

performed.

p Points to a packet capture descriptor returned from the

pcap_open_offline or the pcap_open_live subroutine.

program Points to a bpf_program struct which will be filled in by

the pcap_compile subroutine if the subroutine is

successful.

str Contains the filter expression.

Return Values

Upon successful completion, the pcap_compile subroutine returns 0, and the program parameter will hold

the filter program. If pcap_compile subroutine is unsuccessful, -1 is returned.

Related Information

The pcap_geterr (“pcap_geterr Subroutine” on page 948) subroutine, pcap_lookupnet (“pcap_lookupnet

Subroutine” on page 950) subroutine, pcap_open_live (“pcap_open_live Subroutine” on page 954)

subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 955) subroutine, pcap_perror

(“pcap_perror Subroutine” on page 956) subroutine, pcap_setfilter (“pcap_setfilter Subroutine” on page

957) subroutine.

942 Technical Reference, Volume 1: Base Operating System and Extensions

pcap_datalink Subroutine

Purpose

Obtains the link layer type for the packet capture device.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

int pcap_datalink(pcap_t * p);

Description

The pcap_datalink subroutine returns the link layer type of the packet capture device, for example,

IFT_ETHER. This is useful in determining the size of the datalink header at the beginning of each packet

that is read.

Parameters

 p Points to the packet capture descriptor as returned by the

pcap_open_live or the pcap_open_offline subroutine.

Return Values

The pcap_datalink subroutine returns the link layer type.

Note: Only call this subroutine after successful calls to either the pcap_open_live or the

pcap_open_offline subroutine. Never call the pcap_datalink subroutine after a call to pcap_close

as unpredictable results will occur.

Related Information

The pcap_close (“pcap_close Subroutine” on page 941) subroutine, pcap_open_live (“pcap_open_live

Subroutine” on page 954) subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 955)

subroutine.

pcap_dispatch Subroutine

Purpose

Collects and processes packets.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

int pcap_dispatch(pcap_t * p, int cnt, pcap_handler callback,

 u_char * user);

Base Operating System (BOS) Runtime Services (A-P) 943

Description

The pcap_dispatch subroutine reads and processes packets. This subroutine can be called to read and

process packets that are stored in a previously saved packet capture data file, known as the savefile. The

subroutine can also read and process packets that are being captured live.

Notice that the third parameter, callback, is of the type pcap_handler. This is a pointer to a user-provided

subroutine with three parameters. Define this user-provided subroutine as follows:

 void user_routine(u_char *user, struct pcap_pkthdr *phdr, u_char *pdata)

The parameter, user, is the user parameter that is passed into the pcap_dispatch subroutine. The

parameter, phdr, is a pointer to the pcap_pkthdr structure which precedes each packet in the savefile.

The parameter, pdata, points to the packet data. This allows users to define their own handling of packet

capture data.

Parameters

 callback Points to a user-provided routine that will be called for each packet read. The user is

responsible for providing a valid pointer, and that unpredictable results can occur if an

invalid pointer is supplied.

Note: The pcap_dump subroutine can also be specified as the callback parameter. If

this is done, the pcap_dump_open subroutine should be called first. The pointer to the

pcap_dumper_t struct returned from the pcap_dump_open subroutine should be used

as the user parameter to the pcap_dispatch subroutine. The following program

fragment illustrates this use:

pcap_dumper_t *pd

pcap_t * p;

int rc = 0;

pd = pcap_dump_open(p, "/tmp/savefile");

rc = pcap_dispatch(p, 0 , pcap_dump, (u_char *) pd);

cnt Specifies the maximum number of packets to process before returning. A cnt of -1

processes all the packets received in one buffer. A cnt of 0 processes all packets until

an error occurs, EOF is reached, or the read times out (when doing live reads and a

non-zero read timeout is specified).

p Points to a packet capture descriptor returned from the pcap_open_offline or the

pcap_open_live subroutine. This will be used to store packet data that is read in.

user Specifies the first argument to pass into the callback routine.

Return Values

Upon successful completion, the pcap_dispatch subroutine returns the number of packets read. If EOF is

reached in a savefile, zero is returned. If the pcap_dispatch subroutine is unsuccessful, -1 is returned. In

this case, the pcap_geterr or pcap_perror subroutine can be used to get the error text.

Related Information

The pcap_dump (“pcap_dump Subroutine” on page 945) subroutine, pcap_dump_close

(“pcap_dump_close Subroutine” on page 945) subroutine, pcap_dump_open (“pcap_dump_open

Subroutine” on page 946) subroutine, pcap_geterr (“pcap_geterr Subroutine” on page 948) subroutine,

pcap_open_live (“pcap_open_live Subroutine” on page 954) subroutine, pcap_open_offline

(“pcap_open_offline Subroutine” on page 955) subroutine, pcap_perror (“pcap_perror Subroutine” on page

956) subroutine.

944 Technical Reference, Volume 1: Base Operating System and Extensions

pcap_dump Subroutine

Purpose

Writes packet capture data to a binary file.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

void pcap_dump(u_char * user, struct pcap_pkthdr * h, u_char * sp);

Description

The pcap_dump subroutine writes the packet capture data to a binary file. The packet header data,

contained in h, will be written to the the file pointed to by the user file pointer, followed by the packet data

from sp. Up to h->caplen bytes of sp will be written.

The file that user points to (where the pcap_dump subroutine writes to) must be open. To open the file

and retrieve its pointer, use the pcap_dump_open subroutine.

The calling arguments for the pcap_dump subroutine are suitable for use with pcap_dispatch subroutine

and the pcap_loop subroutine. To retrieve this data, the pcap_open_offline subroutine can be invoked

with the name of the file that user points to as its first parameter.

Parameters

 h Contains the packet header data that will be written to the

packet capture date file, known as the savefile. This data

will be written ahead of the rest of the packet data.

sp Points to the packet data that is to be written to the

savefile.

user Specifies the savefile file pointer which is returned from

the pcap_dump_open subroutine. It should be cast to a

u_char * when passed in.

Related Information

The pcap_dispatch (“pcap_dispatch Subroutine” on page 943) subroutine, pcap_dump_close

(“pcap_dump_close Subroutine”) subroutine, pcap_dump_open (“pcap_dump_open Subroutine” on page

946) subroutine, pcap_loop (“pcap_loop Subroutine” on page 951) subroutine, pcap_open_live

(“pcap_open_live Subroutine” on page 954) subroutine, pcap_open_offline (“pcap_open_offline

Subroutine” on page 955) subroutine.

pcap_dump_close Subroutine

Purpose

Closes a packet capture data file, know as a savefile.

Library

pcap Library (libpcap.a)

Base Operating System (BOS) Runtime Services (A-P) 945

Syntax

#include <pcap.h>

void pcap_dump_close(pcap_dumper_t * p);

Description

The pcap_dump_close subroutine closes a packet capture data file, known as the savefile, that was

opened using the pcap_dump_open subroutine.

Parameters

 p Points to a pcap_dumper_t, which is synonymous with a

FILE *, the file pointer of a savefile.

Related Information

The pcap_dump_open (“pcap_dump_open Subroutine”) subroutine.

pcap_dump_open Subroutine

Purpose

Opens or creates a file for writing packet capture data.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

pcap_dumper_t *pcap_dump_open(pcap_t * p, char * fname);

Description

The pcap_dump_open subroutine opens or creates the packet capture data file, known as the savefile.

This action is specified through the fname parameter. The subroutine then writes the required packet

capture file header to the file. The pcap_dump subroutine can then be called to write the packet capture

data associated with the packet capture descriptor, p, into this file. The pcap_dump_open subroutine

must be called before calling the pcap_dump subroutine.

Parameters

 fname Specifies the name of the file to open. A ″-″ indicates that

standard output should be used instead of a file.

p Specifies a packet capture descriptor returned by the

pcap_open_offline or the pcap_open_live subroutine.

Return Values

Upon successful completion, the pcap_dump_open subroutine returns a pointer to a the file that was

opened or created. This pointer is a pointer to a pcap_dumper_t, which is synonymous with FILE *. See

the pcap_dump (“pcap_dump Subroutine” on page 945), pcap_dispatch (“pcap_dispatch Subroutine” on

page 943), or the pcap_loop (“pcap_loop Subroutine” on page 951) subroutine for an example of how to

946 Technical Reference, Volume 1: Base Operating System and Extensions

use pcap_dumper_t. If the pcap_dump_open subroutine is unsuccessful, Null is returned. Use the

pcap_geterr subroutine to obtain the specific error text.

Related Information

The pcap_dispatch (“pcap_dispatch Subroutine” on page 943) subroutine, pcap_dump (“pcap_dump

Subroutine” on page 945) subroutine, pcap_dump_close (“pcap_dump_close Subroutine” on page 945)

subroutine, pcap_geterr (“pcap_geterr Subroutine” on page 948) subroutine, pcap_loop (“pcap_loop

Subroutine” on page 951) subroutine, pcap_open_live (“pcap_open_live Subroutine” on page 954)

subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 955) subroutine.

pcap_file Subroutine

Purpose

Obtains the file pointer to the savefile, a previously saved packed capture data file.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

FILE *pcap_file(pcap_t * p);

Description

The pcap_file subroutine returns the file pointer to the savefile. If there is no open savefile, 0 is returned.

This subroutine should be called after a successful call to the pcap_open_offline subroutine and before

any calls to the pcap_close subroutine.

Parameters

 p Points to a packet capture descriptor as returned by the

pcap_open_offline subroutine.

Return Values

The pcap_file subroutine returns the file pointer to the savefile.

Related Information

The pcap_close (“pcap_close Subroutine” on page 941) subroutine, pcap_open_offline

(“pcap_open_offline Subroutine” on page 955) subroutine.

pcap_fileno Subroutine

Purpose

Obtains the descriptor for the packet capture device.

Library

pcap Library (libpcap.a)

Base Operating System (BOS) Runtime Services (A-P) 947

Syntax

#include <pcap.h>

int pcap_fileno(pcap_t * p);

Description

The pcap_fileno subroutine returns the descriptor for the packet capture device. This subroutine should

be called only after a successful call to the pcap_open_live subroutine and before any calls to the

pcap_close subroutine.

Parameters

 p Points to a packet capture descriptor as returned by the

pcap_open_live subroutine.

Return Values

The pcap_fileno subroutine returns the descriptor for the packet capture device.

Related Information

The pcap_close (“pcap_close Subroutine” on page 941) subroutine, pcap_open_live (“pcap_open_live

Subroutine” on page 954) subroutine.

pcap_geterr Subroutine

Purpose

Obtains the most recent pcap error message.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

char *pcap_geterr(pcap_t * p);

Description

The pcap_geterr subroutine returns the error text pertaining to the last pcap library error. This subroutine

is useful in obtaining error text from those subroutines that do not return an error string. Since the pointer

returned points to a memory space that will be reused by the pcap library subroutines, it is important to

copy this message into a new buffer if the error text needs to be saved.

Parameters

 p Points to a packet capture descriptor as returned by the

pcap_open_live or the pcap_open_offline subroutine.

Return Values

The pcap_geterr subroutine returns a pointer to the most recent error message from a pcap library

subroutine. If there were no previous error messages, a string with 0 as the first byte is returned.

948 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The pcap_open_live (“pcap_open_live Subroutine” on page 954) subroutine, pcap_open_offline

(“pcap_open_offline Subroutine” on page 955) subroutine, pcap_perror (“pcap_perror Subroutine” on page

956) subroutine, pcap_strerror (“pcap_strerror Subroutine” on page 959) subroutine.

pcap_is_swapped Subroutine

Purpose

Reports if the byte order of the previously saved packet capture data file, known as the savefile was

swapped.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

int pcap_is_swapped(pcap_t * p);

Description

The pcap_is_swapped subroutine returns 1 (True) if the current savefile uses a different byte order than

the current system. This subroutine should be called after a successful call to the pcap_open_offline

subroutine and before any calls to the pcap_close subroutine.

Parameters

 p Points to a packet capture descriptor as returned from the

pcap_open_offline subroutine.

Return Values

 1 If the byte order of the savefile is different from that of the

current system.

0 If the byte order of the savefile is the same as that of the

current system.

Related Information

The pcap_close (“pcap_close Subroutine” on page 941) subroutine, pcap_open_offline

(“pcap_open_offline Subroutine” on page 955) subroutine.

pcap_lookupdev Subroutine

Purpose

Obtains the name of a network device on the system.

Library

pcap Library (libpcap.a)

Base Operating System (BOS) Runtime Services (A-P) 949

Syntax

#include <pcap.h>

char *pcap_lookupdev(char * errbuf);

Description

The pcap_lookupdev subroutine gets a network device suitable for use with the pcap_open_live and the

pcap_lookupnet subroutines. If no interface can be found, or none are configured to be up, Null is

returned. In the case of multiple network devices attached to the system, the pcap_lookupdev subroutine

returns the first one it finds to be up, other than the loopback interface. (Loopback is always ignored.)

Parameters

 errbuf Returns error text and is only set when the

pcap_lookupdev subroutine fails.

Return Values

Upon successful completion, the pcap_lookupdev subroutine returns a pointer to the name of a network

device attached to the system. If pcap_lookupdev subroutine is unsuccessful, Null is returned, and text

indicating the specific error is written to errbuf.

Related Information

The pcap_geterr (“pcap_geterr Subroutine” on page 948) subroutine, pcap_lookupnet (“pcap_lookupnet

Subroutine”) subroutine, pcap_open_live (“pcap_open_live Subroutine” on page 954) subroutine,

pcap_perror (“pcap_perror Subroutine” on page 956) subroutine.

pcap_lookupnet Subroutine

Purpose

Returns the network address and subnet mask for a network device.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

int pcap_lookupnet(char * device, bpf_u_int32 * netp, bpf_u_int32 * maskp,

char * errbuf);

Description

Use the pcap_lookupnet subroutine to determine the network address and subnet mask for the network

device, device.

Parameters

 device Specifies the name of the network device to use for the

network lookup, for example, en0.

errbuf Returns error text and is only set when the

pcap_lookupnet subroutine fails.

950 Technical Reference, Volume 1: Base Operating System and Extensions

maskp Holds the subnet mask associated with device.

netp Holds the network address for the device.

Return Values

Upon successful completion, the pcap_lookupnet subroutine returns 0. If the pcap_lookupnet subroutine

is unsuccessful, -1 is returned, and errbuf is filled in with an appropriate error message.

Related Information

The pcap_compile (“pcap_compile Subroutine” on page 942) subroutine, pcap_geterr (“pcap_geterr

Subroutine” on page 948) subroutine, pcap_lookupdev (“pcap_lookupdev Subroutine” on page 949)

subroutine, pcap_perror (“pcap_perror Subroutine” on page 956) subroutine.

pcap_loop Subroutine

Purpose

Collects and processes packets.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

int pcap_loop(pcap_t * p, int cnt, pcap_handler callback,

 u_char * user);

Description

The pcap_loop subroutine reads and processes packets. This subroutine can be called to read and

process packets that are stored in a previously saved packet capture data file, known as the savefile. The

subroutine can also read and process packets that are being captured live.

This subroutine is similar to pcap_dispatch subroutine except it continues to read packets until cnt

packets have been processed, EOF is reached (in the case of offline reading), or an error occurs. It does

not return when live read timeouts occur. That is, specifying a non-zero read timeout to the

pcap_open_live subroutine and then calling the pcap_loop subroutine allows the reception and

processing of any packets that arrive when the timeout occurs.

Notice that the third parameter, callback, is of the type pcap_handler. This is a pointer to a user-provided

subroutine with three parameters. Define this user-provided subroutine as follows:

void user_routine(u_char *user, struct pcap_pkthdr *phrd, u_char *pdata)

The parameter, user, will be the user parameter that was passed into the pcap_dispatch subroutine. The

parameter, phdr, is a pointer to the pcap_pkthdr structure, which precedes each packet in the savefile.

The parameter, pdata, points to the packet data. This allows users to define their own handling of their

filtered packets.

Base Operating System (BOS) Runtime Services (A-P) 951

Parameters

 callback Points to a user-provided routine that will be called for each packet read. The user is

responsible for providing a valid pointer, and that unpredictable results can occur if an

invalid pointer is supplied.

Note: The pcap_dump subroutine can also be specified as the callback parameter. If

this is done, call the pcap_dump_open subroutine first. Then use the pointer to the

pcap_dumper_t struct returned from the pcap_dump_open subroutine as the user

parameter to the pcap_dispatch subroutine. The following program fragment illustrates

this use:

pcap_dumper_t *pd

pcap_t * p;

int rc = 0;

pd = pcap_dump_open(p, "/tmp/savefile");

rc = pcap_dispatch(p, 0 , pcap_dump, (u_char *) pd);

cnt Specifies the maximum number of packets to process before returning. A negative

value causes the pcap_loop subroutine to loop forever, or until EOF is reached or an

error occurs. A cnt of 0 processes all packets until an error occurs or EOF is reached.

p Points to a packet capture descriptor returned from the pcap_open_offline or the

pcap_open_live subroutine. This will be used to store packet data that is read in.

user Specifies the first argument to pass into the callback routine.

Return Values

Upon successful completion, the pcap_loop subroutine returns 0. 0 is also returned if EOF has been

reached in a savefile. If the pcap_loop subroutine is unsuccessful, -1 is returned. In this case, the

pcap_geterr subroutine or the pcap_perror subroutine can be used to get the error text.

Related Information

The pcap_dispatch (“pcap_dispatch Subroutine” on page 943) subroutine, pcap_dump (“pcap_dump

Subroutine” on page 945) subroutine, pcap_dump_close (“pcap_dump_close Subroutine” on page 945)

subroutine, pcap_dump_open (“pcap_dump_open Subroutine” on page 946) subroutine, pcap_geterr

(“pcap_geterr Subroutine” on page 948) subroutine, pcap_open_live (“pcap_open_live Subroutine” on

page 954) subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 955) subroutine,

pcap_perror (“pcap_perror Subroutine” on page 956) subroutine.

pcap_major_version Subroutine

Purpose

Obtains the major version number of the packet capture format used to write the savefile, a previously

saved packet capture data file.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

int pcap_major_version(pcap_t * p);

952 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The pcap_major_version subroutine returns the major version number of the packet capture format used

to write the savefile. If there is no open savefile, 0 is returned.

Note: This subroutine should be called only after a successful call to pcap_open_offline subroutine and

before any calls to the pcap_close subroutine.

Parameters

 p Points to a packet capture descriptor as returned from

pcap_open_offline subroutine.

Return Values

The major version number of the packet capture format used to write the savefile.

Related Information

The pcap_close (“pcap_close Subroutine” on page 941) subroutine, pcap_open_offline

(“pcap_open_offline Subroutine” on page 955) subroutine.

pcap_minor_version Subroutine

Purpose

Obtains the minor version number of the packet capture format used to write the savefile.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

int pcap_minor_version(pcap_t * p);

Description

The pcap_minor_version subroutine returns the minor version number of the packet capture format used

to write the savefile. This subroutine should only be called after a successful call to the

pcap_open_offline subroutine and before any calls to the pcap_close subroutine.

Parameters

 p Points to a packet capture descriptor as returned from the

pcap_open_offline subroutine.

Return Values

The minor version number of the packet capture format used to write the savefile.

Related Information

The pcap_close (“pcap_close Subroutine” on page 941) subroutine, pcap_open_offline

(“pcap_open_offline Subroutine” on page 955) subroutine.

Base Operating System (BOS) Runtime Services (A-P) 953

pcap_next Subroutine

Purpose

Obtains the next packet from the packet capture device.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

u_char *pcap_next(pcap_t * p, struct pcap_pkthdr * h);

Description

The pcap_next subroutine returns a u_char pointer to the next packet from the packet capture device.

The packet capture device can be a network device or a savefile that contains packet capture data. The

data has the same format as used by tcpdump.

Parameters

 h Points to the packet header of the packet that is returned.

This is filled in upon return by this routine.

p Points to the packet capture descriptor to use as returned

by the pcap_open_live or the pcap_open_offline

subroutine.

Return Values

Upon successful completion, the pcap_next subroutine returns a pointer to a buffer containing the next

packet and fills in the h, which points to the packet header of the returned packet. If the pcap_next

subroutine is unsuccessful, Null is returned.

Related Information

The pcap_dispatch (“pcap_dispatch Subroutine” on page 943) subroutine, pcap_dump (“pcap_dump

Subroutine” on page 945) subroutine, pcap_dump_close (“pcap_dump_close Subroutine” on page 945)

subroutine, pcap_dump_open (“pcap_dump_open Subroutine” on page 946) subroutine, pcap_loop

(“pcap_loop Subroutine” on page 951) subroutine, pcap_open_live (“pcap_open_live Subroutine”)

subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 955) subroutine.

The tcpdump command.

pcap_open_live Subroutine

Purpose

Opens a network device for packet capture.

Library

pcap Library (libpcap.a)

954 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <pcap.h>

pcap_t *pcap_open_live(char * device, int snaplen,

 int promisc, int to_ms, char * ebuf);

Description

The pcap_open_live subroutine opens the specified network device for packet capture. The term ″live″ is

to indicate that a network device is being opened, as opposed to a file that contains packet capture data.

This subroutine must be called before any packet capturing can occur. All other routines dealing with

packet capture require the packet capture descriptor that is created and initialized with this routine. See

the pcap_open_offline (“pcap_open_offline Subroutine”) subroutine for more details on opening a

previously saved file that contains packet capture data.

Parameters

 device Specifies a string that contains the name of the network

device to open for packet capture, for example, en0.

ebuf Returns error text and is only set when the

pcap_open_live subroutine fails.

promisc Specifies that the device is to be put into promiscuous

mode. A value of 1 (True) turns promiscuous mode on. If

this parameter is 0 (False), the device will remain

unchanged. In this case, if it has already been set to

promiscuous mode (for some other reason), it will remain

in this mode.

snaplen Specifies the maximum number of bytes to capture per

packet.

to_ms Specifies the read timeout in milliseconds.

Return Values

Upon successful completion, the pcap_open_live subroutine will return a pointer to the packet capture

descriptor that was created. If the pcap_open_live subroutine is unsuccessful, Null is returned, and text

indicating the specific error is written into the ebuf buffer.

Related Information

The pcap_close (“pcap_close Subroutine” on page 941) subroutine, pcap_compile (“pcap_compile

Subroutine” on page 942) subroutine, pcap_datalink (“pcap_datalink Subroutine” on page 943)

subroutine, pcap_dispatch (“pcap_dispatch Subroutine” on page 943) subroutine, pcap_dump

(“pcap_dump Subroutine” on page 945) subroutine, pcap_dump_open (“pcap_dump_open Subroutine” on

page 946) subroutine, pcap_geterr (“pcap_geterr Subroutine” on page 948) subroutine, pcap_loop

(“pcap_loop Subroutine” on page 951) subroutine, pcap_open_offline (“pcap_open_offline Subroutine”)

subroutine, pcap_perror (“pcap_perror Subroutine” on page 956) subroutine, pcap_setfilter

(“pcap_setfilter Subroutine” on page 957) subroutine, pcap_snapshot (“pcap_setfilter Subroutine” on page

957) subroutine, pcap_stats (“pcap_stats Subroutine” on page 958) subroutine.

pcap_open_offline Subroutine

Purpose

Opens a previously saved file containing packet capture data.

Base Operating System (BOS) Runtime Services (A-P) 955

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

pcap_t *pcap_open_offline(char * fname, char * ebuf);

Description

The pcap_open_offline subroutine opens a previously saved packet capture data file, known as the

savefile. This subroutine creates and initializes a packet capture (pcap) descriptor and opens the specified

savefile containing the packet capture data for reading.

This subroutine should be called before any other related routines that require a packet capture descriptor

for offline packet processing. See the pcap_open_live (“pcap_open_live Subroutine” on page 954)

subroutine for more details on live packet capture.

Note: The format of the savefile is expected to be the same as the format used by the tcpdump

command.

Parameters

 ebuf Returns error text and is only set when the

pcap_open_offline subroutine fails.

fname Specifies the name of the file to open. A hyphen (-)

passed as the fname parameter indicates that stdin should

be used as the file to open.

Return Values

Upon successful completion, the pcap_open_offline subroutine will return a pointer to the newly created

packet capture descriptor. If the pcap_open_offline subroutine is unsuccessful, Null is returned, and text

indicating the specific error is written into the ebuf buffer.

Related Information

The pcap_close (“pcap_close Subroutine” on page 941) subroutine, pcap_dispatch (“pcap_dispatch

Subroutine” on page 943) subroutine, pcap_file (“pcap_file Subroutine” on page 947) subroutine,

pcap_fileno (“pcap_fileno Subroutine” on page 947) subroutine, pcap_geterr (“pcap_geterr Subroutine”

on page 948) subroutine, pcap_is_swapped (“pcap_is_swapped Subroutine” on page 949) subroutine,

pcap_loop (“pcap_loop Subroutine” on page 951) subroutine, pcap_major_version (“pcap_major_version

Subroutine” on page 952) subroutine, pcap_minor_version (“pcap_minor_version Subroutine” on page

953) subroutine, pcap_next (“pcap_next Subroutine” on page 954) subroutine, pcap_open_live

(“pcap_open_live Subroutine” on page 954) subroutine.

The tcpdump command.

pcap_perror Subroutine

Purpose

Prints the passed-in prefix, followed by the most recent error text.

956 Technical Reference, Volume 1: Base Operating System and Extensions

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

void pcap_perror(pcap_t * p, char * prefix);

Description

The pcap_perror subroutine prints the text of the last pcap library error to stderr, prefixed by prefix. If

there were no previous errors, only prefix is printed.

Parameters

 p Points to a packet capture descriptor as returned by the

pcap_open_live subroutine or the pcap_open_offline

subroutine.

prefix Specifies the string that is to be printed before the stored

error message.

Related Information

The pcap_geterr (“pcap_geterr Subroutine” on page 948) subroutine, pcap_open_live (“pcap_open_live

Subroutine” on page 954) subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 955)

subroutine, pcap_strerror (“pcap_strerror Subroutine” on page 959) subroutine.

pcap_setfilter Subroutine

Purpose

Loads a filter program into a packet capture device.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

int pcap_setfilter(pcap_t * p, struct bpf_program * fp);

Description

The pcap_setfilter subroutine is used to load a filter program into the packet capture device. This causes

the capture of the packets defined by the filter to begin.

Parameters

 fp Points to a filter program as returned from the

pcap_compile subroutine.

p Points to a packet capture descriptor returned from the

pcap_open_offline or the pcap_open_live subroutine.

Base Operating System (BOS) Runtime Services (A-P) 957

Return Values

Upon successful completion, the pcap_setfilter subroutine returns 0. If the pcap_setfilter subroutine is

unsuccessful, -1 is returned. In this case, the pcap_geterr subroutine can be used to get the error text,

and the pcap_perror subroutine can be used to display the text.

Related Information

The pcap_compile (“pcap_compile Subroutine” on page 942) subroutine, pcap_geterr (“pcap_geterr

Subroutine” on page 948) subroutine, pcap_open_live (“pcap_open_live Subroutine” on page 954)

subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 955) subroutine, pcap_perror

(“pcap_perror Subroutine” on page 956) subroutine.

pcap_snapshot Subroutine

Purpose

Obtains the number of bytes that will be saved for each packet captured.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

int pcap_snapshot(pcap_t * p);

Description

The pcap_snapshot subroutine returns the snapshot length, which is the number of bytes to save for

each packet captured.

Note: This subroutine should only be called after successful calls to either the pcap_open_live

subroutine or pcap_open_offline subroutine. It should not be called after a call to the pcap_close

subroutine.

Parameters

 p Points to the packet capture descriptor as returned by the

pcap_open_live or the pcap_open_offline subroutine.

Return Values

The pcap_snapshot subroutine returns the snapshot length.

Related Information

The pcap_close (“pcap_close Subroutine” on page 941) subroutine, pcap_open_live (“pcap_open_live

Subroutine” on page 954) subroutine, pcap_open_offline (“pcap_open_offline Subroutine” on page 955)

subroutine.

pcap_stats Subroutine

Purpose

Obtains packet capture statistics.

958 Technical Reference, Volume 1: Base Operating System and Extensions

Library

pcap Library (libpcap.a)

Syntax

 #include <pcap.h>

int pcap_stats (pcap_t *p, struct pcap_stat *ps);

Description

The pcap_stats subroutine fills in a pcap_stat struct. The values represent packet statistics from the start

of the run to the time of the call. Statistics for both packets that are received by the filter and packets that

are dropped are stored inside a pcap_stat struct. This subroutine is for use when a packet capture device

is opened using the pcap_open_live subroutine.

Parameters

 p Points to a packet capture descriptor as returned by the

pcap_open_live subroutine.

ps Points to the pcap_stat struct that will be filled in with the

packet capture statistics.

Return Values

On successful completion, the pcap_stats subroutine fills in ps and returns 0. If the pcap_stats

subroutine is unsuccessful, -1 is returned. In this case, the error text can be obtained with the

pcap_perror subroutine or the pcap_geterr subroutine.

Related Information

The pcap_geterr (“pcap_geterr Subroutine” on page 948) subroutine, pcap_open_live (“pcap_open_live

Subroutine” on page 954) subroutine, pcap_perror (“pcap_perror Subroutine” on page 956) subroutine.

pcap_strerror Subroutine

Purpose

Obtains the error message indexed by error.

Library

pcap Library (libpcap.a)

Syntax

#include <pcap.h>

char *pcap_strerror(int error);

Description

Lookup the error message indexed by error. The possible values of error correspond to the values of the

errno global variable. This function is equivalent to the strerror subroutine.

Base Operating System (BOS) Runtime Services (A-P) 959

Parameters

 error Specifies the key to use in obtaining the corresponding

error message. The error message is taken from the

system’s sys_errlist.

Return Values

The pcap_strerror subroutine returns the appropriate error message from the system error list.

Related Information

The pcap_geterr (“pcap_geterr Subroutine” on page 948) subroutine, pcap_perror (“pcap_perror

Subroutine” on page 956) subroutine, strerror subroutine.

pclose Subroutine

Purpose

Closes a pipe to a process.

Library

Standard C Library (libc.a)

Syntax

#include <stdio.h>

int pclose (Stream)

FILE *Stream;

Description

The pclose subroutine closes a pipe between the calling program and a shell command to be executed.

Use the pclose subroutine to close any stream you opened with the popen subroutine. The pclose

subroutine waits for the associated process to end, and then returns the exit status of the command.

 Attention: If the original processes and the popen process are reading or writing a common file, neither

the popen subroutine nor the pclose subroutine should use buffered I/O. If they do, the results are

unpredictable.

Avoid problems with an output filter by flushing the buffer with the fflush subroutine.

Parameter

 Stream Specifies the FILE pointer of an opened pipe.

Return Values

The pclose subroutine returns a value of -1 if the Stream parameter is not associated with a popen

command or if the status of the child process could not be obtained. Otherwise, the value of the

termination status of the command language interpreter is returned; this will be 127 if the command

language interpreter cannot be executed.

960 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

If the application has:

v Called the wait subroutine,

v Called the waitpid subroutine with a process ID less than or equal to zero or equal to the process ID of

the command line interpreter,

v Masked the SIGCHILD signal, or

v Called any other function that could perform one of the steps above, and

one of these calls caused the termination status to be unavailable to the pclose subroutine, a value of -1

is returned and the errno global variable is set to ECHILD.

Related Information

The fclose or fflush (“fclose or fflush Subroutine” on page 249) subroutine, fopen, freopen, or fdopen

(“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 281) subroutine, pipe (“pipe

Subroutine” on page 981) subroutine, popen (“popen Subroutine” on page 1055) subroutine, wait,

waitpid, or wait3 subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

perfstat_cpu Subroutine

Purpose

Retrieves individual logical CPU usage statistics.

Library

perfstat library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_cpu (name, userbuff, sizeof_struct, desired_number)

perfstat_id_t * name;

perfstat_cpu_t * userbuff;

size_t sizeof_struct;

int desired_number;

Description

The perfstat_cpu subroutine retrieves one or more individual CPU usage statistics. The same function

can be used to retrieve the number of available sets of logical CPU statistics.

To get one or more sets of CPU usage metrics, set the name parameter to the name of the first CPU for

which statistics are desired, and set the desired_number parameter. To start from the first CPU, set the

name parameter to ″″. The userbuff parameter must always point to a memory area big enough to contain

the desired number of perfstat_cpu_t structures that will be copied by this function. Upon return, the

name parameter will be set to either the name of the next CPU, or to ″″ after all structures have been

copied.

To retrieve the number of available sets of CPU usage metrics, set the name and userbuff parameters to

NULL, and the desired_number parameter to 0. The returned value will be the number of available sets.

Base Operating System (BOS) Runtime Services (A-P) 961

This number represents the number of logical processors for which statistics are available. In a dynamic

LPAR environment, this number is the highest logical index of an online processor since the last reboot.

See the Perfstat API article in Performance Tools and APIs Technical Reference for more information on

the perfstat_cpu subroutine and DLPAR.

Parameters

 name Contains either ″″, FIRST_CPU, or a name identifying the first logical CPU for which statistics are

desired. Logical processor names are:

cpu0, cpu1,...

To provide binary compatibility with previous versions of the library, names like proc0, proc1, ...

will still be accepted. These names will be treated as if their corresponding cpuN name was used,

but the names returned in the structures will always be names starting with cpu.

userbuff Points to the memory area that is to be filled with one or more perfstat_cpu_t structures.

sizeof_struct Specifies the size of the perfstat_cpu_t structure: sizeof(perfstat_cpu_t).

desired_number Specifies the number of perfstat_cpu_t structures to copy to userbuff.

Return Values

Unless the perfstat_cpu subroutine is used to retrieve the number of available structures, the number of

structures filled is returned upon successful completion. If unsuccessful, a value of -1 is returned and the

errno global variable is set.

Error Codes

The perfstat_cpu subroutine is unsuccessful if the following is true:

 EINVAL One of the parameters is not valid.

Files

The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information

“perfstat_netbuffer Subroutine” on page 970, “perfstat_cpu_total Subroutine,” “perfstat_disk Subroutine” on

page 964, “perfstat_diskadapter Subroutine” on page 965, “perfstat_diskpath Subroutine” on page 966,

“perfstat_disk_total Subroutine” on page 968, “perfstat_memory_total Subroutine” on page 969,

“perfstat_netinterface Subroutine” on page 971, “perfstat_netinterface_total Subroutine” on page 973,

“perfstat_pagingspace Subroutine” on page 974, “perfstat_partial_reset Subroutine” on page 975,

“perfstat_protocol Subroutine” on page 978, and “perfstat_reset Subroutine” on page 980.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_cpu_total Subroutine

Purpose

Retrieves global CPU usage statistics.

Library

Perfstat Library (libperfstat.a)

962 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <libperfstat.h>

int perfstat_cpu_total (name, userbuff, sizeof_struct, desired_number)

perfstat_id_t *name;

perfstat_cpu_total_t *userbuff;

size_t sizeof_struct;

int desired_number;

Description

The perfstat_cpu_total subroutine returns global CPU usage statistics in a perfstat_cpu_total_t

structure.

To get statistics that are global to the whole system, the name parameter must be set to NULL, the

userbuff parameter must be allocated, and the desired_number parameter must be set to 1.

The perfstat_cpu_total subroutine retrieves information from the ODM database. This information is

automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset

subroutine must be called to flush the dictionary whenever the machine configuration has changed.

Parameters

 name Must be set to NULL.

userbuff Points to the memory area that is to be filled with the perfstat_cpu_total_t structure.

sizeof_struct Specifies the size of the perfstat_cpu_total_t structure: sizeof(perfstat_cpu_total_t).

desired_number Must be set to 1.

Return Values

Upon successful completion, the number of structures filled is returned. If unsuccessful, a value of -1 is

returned and the errno global variable is set.

Error Codes

The perfstat_cpu_total subroutine is unsuccessful if one of the following is true:

 EINVAL One of the parameters is not valid.

EFAULT Insufficient memory.

ENOMEM The string default length is too short.

Files

The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information

“perfstat_netbuffer Subroutine” on page 970, “perfstat_cpu Subroutine” on page 961, “perfstat_disk

Subroutine” on page 964, “perfstat_diskadapter Subroutine” on page 965, “perfstat_diskpath Subroutine”

on page 966, “perfstat_disk_total Subroutine” on page 968, “perfstat_memory_total Subroutine” on page

969, “perfstat_netinterface Subroutine” on page 971, “perfstat_netinterface_total Subroutine” on page 973,

“perfstat_pagingspace Subroutine” on page 974, “perfstat_partial_reset Subroutine” on page 975, and

“perfstat_protocol Subroutine” on page 978.

Perfstat API in Performance Tools and APIs Technical Reference.

Base Operating System (BOS) Runtime Services (A-P) 963

perfstat_disk Subroutine

Purpose

Retrieves individual disk usage statistics.

Library

Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_disk (name, userbuff, sizeof_struct, desired_number)

perfstat_id_t *name;

perfstat_disk_t *userbuff;

size_t sizeof_struct;

int desired_number;

Description

The perfstat_disk subroutine retrieves one or more individual disk usage statistics. The same function can

also be used to retrieve the number of available sets of disk statistics.

To get one or more sets of disk usage metrics, set the name parameter to the name of the first disk for

which statistics are desired, and set the desired_number parameter. To start from the first disk, specify ″″

or FIRST_DISK as the name. The userbuff parameter must always point to a memory area big enough to

contain the desired number of perfstat_disk_t structures that will be copied by this function. Upon return,

the name parameter will be set to either the name of the next disk, or to ″″ after all structures have been

copied.

To retrieve the number of available sets of disk usage metrics, set the name and userbuff parameters to

NULL, and the desired_number parameter to 0. The returned value will be the number of available sets.

The perfstat_disk subroutine retrieves information from the ODM database. This information is

automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset

subroutine must be called to flush the dictionary whenever the machine configuration has changed.

Parameters

 name Contains either ″″, FIRST_DISK, or a name identifying the first disk for which statistics are

desired. For example:

hdisk0, hdisk1, ...

userbuff Points to the memory area to be filled with one or more perfstat_disk_t structures.

sizeof_struct Specifies the size of the perfstat_disk_t structure: sizeof(perfstat_disk_t)

desired_number Specifies the number of perfstat_disk_t structures to copy to userbuff.

Return Values

Unless the function is used to retrieve the number of available structures, the number of structures filled is

returned upon successful completion. If unsuccessful, a value of -1 is returned and the errno global

variable is set.

Error Codes

The perfstat_disk subroutine is unsuccessful if one of the following is true:

964 Technical Reference, Volume 1: Base Operating System and Extensions

EINVAL One of the parameters is not valid.

EFAULT Insufficient memory.

ENOMEM The string default length is too short.

ENOMSG Cannot access the dictionary.

Files

The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information

“perfstat_netbuffer Subroutine” on page 970, “perfstat_cpu Subroutine” on page 961, “perfstat_cpu_total

Subroutine” on page 962, “perfstat_diskadapter Subroutine,” “perfstat_diskpath Subroutine” on page 966,

“perfstat_disk_total Subroutine” on page 968, “perfstat_memory_total Subroutine” on page 969,

“perfstat_netinterface Subroutine” on page 971, “perfstat_netinterface_total Subroutine” on page 973,

“perfstat_pagingspace Subroutine” on page 974, “perfstat_partial_reset Subroutine” on page 975,

“perfstat_protocol Subroutine” on page 978, and “perfstat_reset Subroutine” on page 980.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_diskadapter Subroutine

Purpose

Retrieves individual disk adapter usage statistics.

Library

Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_diskadapter (name, userbuff, sizeof_struct, desired_number)

perfstat_id_t *name;

 perfstat_diskadapter_t *userbuff;

size_t sizeof_struct;

int desired_number;

Description

The perfstat_diskadapter subroutine retrieves one or more individual disk adapter usage statistics. The

same function can be used to retrieve the number of available sets of adapter statistics.

To get one or more sets of disk adapter usage metrics, set the name parameter to the name of the first

disk adapter for which statistics are desired, and set the desired_number parameter. To start from the first

disk adapter, set the name parameter to ″″ or FIRST_DISKADAPTER. The userbuff parameter must point

to a memory area big enough to contain the desired number of perfstat_diskadapter_t structures which

will be copied by this function. Upon return, the name parameter will be set to either the name of the next

disk adapter, or to ″″ if all structures have been copied.

To retrieve the number of available sets of disk adapter usage metrics, set the name and userbuff

parameters to NULL, and the desired_number parameter to 0. The returned value will be the number of

available sets.

Base Operating System (BOS) Runtime Services (A-P) 965

The perfstat_diskadapter subroutine retrieves information from the ODM database. This information is

automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset

subroutine must be called to flush the dictionary whenever the machine configuration has changed.

Parameters

 name Contains either ″″, FIRST_DISKADAPTER, or a name identifying the first disk adapter for

which statistics are desired. For example:

scsi0, scsi1, ...

userbuff Points to the memory area to be filled with one or more perfstat_diskadapter_t

structures.

sizeof_struct Specifies the size of the perfstat_diskadapter_t structure:

sizeof(perfstat_diskadapter_t)

desired_number Specifies the number of perfstat_diskadapter_t structures to copy to userbuff.

Return Values

Unless the function is used to retrieve the number of available structures, the number of structures filled is

returned upon successful completion. If unsuccessful, a value of -1 is returned and the errno global

variable is set.

Error Codes

The perfstat_diskadapter subroutine is unsuccessful if one of the following is true:

 EINVAL One of the parameters is not valid.

EFAULT Insufficient memory.

ENOMEM The string default length is too short.

ENOMSG Cannot access the dictionary.

Files

The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information

“perfstat_netbuffer Subroutine” on page 970, “perfstat_cpu Subroutine” on page 961, “perfstat_cpu_total

Subroutine” on page 962, “perfstat_disk Subroutine” on page 964, “perfstat_diskpath Subroutine,”

“perfstat_disk_total Subroutine” on page 968, “perfstat_memory_total Subroutine” on page 969,

“perfstat_netinterface Subroutine” on page 971, “perfstat_netinterface_total Subroutine” on page 973,

“perfstat_pagingspace Subroutine” on page 974, “perfstat_partial_reset Subroutine” on page 975,

“perfstat_protocol Subroutine” on page 978, and “perfstat_reset Subroutine” on page 980.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_diskpath Subroutine

Purpose

Retrieves individual disk path usage statistics.

Library

Perfstat Library (libperfstat.a)

966 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <libperfstat.h>

int perfstat_diskpath (name, userbuff, sizeof_struct, desired_number)

perfstat_id_t *name;

perfstat_diskpath_t *userbuff

size_t sizeof_struct;

int desired_number;

Description

The perfstat_diskpath subroutine retrieves one or more individual disk path usage statistics. The same

function can also be used to retrieve the number of available sets of disk path statistics.

To get one or more sets of disk path usage metrics, set the name parameter to the name of the first disk

path for which statistics are desired, and set the desired_number parameter. To start from the first disk

path, specify ″″ or FIRST_DISKPATH as the name parameter. To start from the first path of a specific disk,

set the name parameter to the diskname. The userbuff parameter must always point to a memory area big

enough to contain the desired number of perfstat_diskpath_t structures that will be copied by this

function. Upon return, the name parameter will be set to either the name of the next disk path, or to ″″

after all structures have been copied.

To retrieve the number of available sets of disk path usage metrics, set the name and userbuff parameters

to NULL, and the desired_number parameter to 0. The number of available sets is returned.

The perfstat_diskpath subroutine retrieves information from the ODM database. This information is

automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset

subroutine must be called to flush the dictionary whenever the machine configuration has changed.

Parameters

 name Contains either ″″, FIRST_DISKPATH, a name identifying the first disk path for which statistics

are desired, or a name identifying a disk for which path statistics are desired. For example:

hdisk0_Path2, hdisk1_Path0, ... or hdisk5 (equivalent to hdisk5_Pathfirstpath)

userbuff Points to the memory area to be filled with one or more perfstat_diskpath_t structures.

sizeof_struct Specifies the size of the perfstat_diskpath_t structure: sizeof(perfstat_diskpath_t)

desired_number Specifies the number of perfstat_diskpath_t structures to copy to userbuff.

Return Values

Unless the function is used to retrieve the number of available structures, the number of structures filled is

returned upon successful completion. If unsuccessful, a value of -1 is returned and the errno global

variable is set.

Error Codes

The perfstat_diskpath subroutine is unsuccessful if one of the following is true:

 EINVAL One of the parameters is not valid.

EFAULT Insufficient memory.

ENOMEM The string default length is too short.

ENOMSG Cannot access the dictionary.

Files

The libperfstat.h file defines standard macros, data types, and subroutines.

Base Operating System (BOS) Runtime Services (A-P) 967

Related Information

“perfstat_netbuffer Subroutine” on page 970, “perfstat_cpu Subroutine” on page 961, “perfstat_cpu_total

Subroutine” on page 962, “perfstat_disk Subroutine” on page 964, “perfstat_diskadapter Subroutine” on

page 965, “perfstat_diskpath Subroutine” on page 966, “perfstat_disk_total Subroutine,”

“perfstat_memory_total Subroutine” on page 969, “perfstat_netinterface Subroutine” on page 971,

“perfstat_netinterface_total Subroutine” on page 973, “perfstat_pagingspace Subroutine” on page 974,

“perfstat_partial_reset Subroutine” on page 975, “perfstat_protocol Subroutine” on page 978, and

“perfstat_reset Subroutine” on page 980.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_disk_total Subroutine

Purpose

Retrieves global disk usage statistics.

Library

Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_disk_total (name, userbuff, sizeof_struct, desired_number)

perfstat_id_t *name;

perfstat_disk_total_t *userbuff;

size_t sizeof_struct;

int desired_number;

Description

The perfstat_disk_total subroutine returns global disk usage statistics in a perfstat_disk_total_t

structure.

To get statistics that are global to the whole system, the name parameter must be set to NULL, the

userbuff parameter must be allocated, and the desired_number parameter must be set to 1.

The perfstat_disk_total subroutine retrieves information from the ODM database. This information is

automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset

subroutine must be called to flush the dictionary whenever the machine configuration has changed.

Parameters

 name Must be set to NULL.

userbuff Points to the memory area that is to be filled with one or more perfstat_disk_total_t

structures.

sizeof_struct Specifies the size of the perfstat_disk_total_t structure: sizeof(perfstat_disk_total_t)

desired_number Must be set to 1.

Return Values

Upon successful completion, the number of structures that could be filled is returned. This will always be

1. If unsuccessful, a value of -1 is returned and the errno global variable is set.

968 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The perfstat_disk_total subroutine is unsuccessful if one of the following is true:

 EINVAL One of the parameters is not valid.

EFAULT Insufficient memory.

ENOMEM The string default length is too short.

Files

The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information

“perfstat_netbuffer Subroutine” on page 970, “perfstat_cpu Subroutine” on page 961, “perfstat_cpu_total

Subroutine” on page 962, “perfstat_disk Subroutine” on page 964, “perfstat_diskadapter Subroutine” on

page 965, “perfstat_diskpath Subroutine” on page 966, “perfstat_memory_total Subroutine,”

“perfstat_netinterface Subroutine” on page 971, “perfstat_netinterface_total Subroutine” on page 973,

“perfstat_pagingspace Subroutine” on page 974, “perfstat_partial_reset Subroutine” on page 975,

“perfstat_protocol Subroutine” on page 978, and “perfstat_reset Subroutine” on page 980.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_memory_total Subroutine

Purpose

Retrieves global memory usage statistics.

Library

Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_memory_total (name, userbuff, sizeof_struct, desired_number)

perfstat_id_t *name;

perfstat_memory_total_t *userbuff;

size_t sizeof_struct;

int desired_number;

Description

The perfstat_memory_total subroutine returns global memory usage statistics in a

perfstat_memory_total_t structure.

To get statistics that are global to the whole system, the name parameter must be set to NULL, the

userbuff parameter must be allocated, and the desired_number parameter must be set to 1.

Parameters

 name Must be set to NULL.

userbuff Points to the memory area that is to be filled with the perfstat_memory_total_t structure.

sizeof_struct Specifies the size of the perfstat_memory_total_t structure:

sizeof(perfstat_memory_total_t).

desired_number Must be set to 1.

Base Operating System (BOS) Runtime Services (A-P) 969

Return Values

Upon successful completion, the number of structures filled is returned. This will always be 1. If

unsuccessful, a value of -1 is returned and the errno global variable is set.

Error Codes

The perfstat_memory_total subroutine is unsuccessful if the following is true:

 EINVAL One of the parameters is not valid.

Files

The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information

“perfstat_netbuffer Subroutine,” “perfstat_cpu Subroutine” on page 961, “perfstat_cpu_total Subroutine” on

page 962, “perfstat_disk Subroutine” on page 964, “perfstat_diskadapter Subroutine” on page 965,

“perfstat_diskpath Subroutine” on page 966, “perfstat_disk_total Subroutine” on page 968,

“perfstat_netinterface Subroutine” on page 971, “perfstat_netinterface_total Subroutine” on page 973,

“perfstat_pagingspace Subroutine” on page 974, “perfstat_partial_reset Subroutine” on page 975, and

“perfstat_protocol Subroutine” on page 978.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_netbuffer Subroutine

Purpose

Retrieves network buffer allocation usage statistics.

Library

Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_netbuffer (name, userbuff, sizeof_struct, desired_number)

perfstat_id_t *name;

perfstat_netbuffer_t *userbuff;

size_t sizeof_struct;

int desired_number;

Description

The perfstat_netbuffer subroutine retrieves statistics about network buffer allocations for each possible

buffer size. Returned counts are the sum of allocation statistics for all processors (kernel statistics are kept

per size per processor) corresponding to a buffer size.

To get one or more sets of network buffer allocation usage metrics, set the name parameter to the network

buffer size for which statistics are desired, and set the desired_number parameter. To start from the first

network buffer size, specify ″″ or FIRST_NETBUFFER in the name parameter. The userbuff parameter

must point to a memory area big enough to contain the desired number of perfstat_netbuffer_t structures

which will be copied by this function.

970 Technical Reference, Volume 1: Base Operating System and Extensions

Upon return, the name parameter will be set to either the ASCII size of the next buffer type, or to ″″ if all

structures have been copied. Only the statistics for network buffer sizes that have been used are returned.

Consequently, there can be holes in the returned array of statistics, and the structure corresponding to

allocations of size 4096 may directly follow the structure for size 256 (in case 512, 1024 and 2048 have

not been used yet). The structure corresponding to a buffer size not used yet is returned (with all fields set

to 0) when it is directly asked for by name.

To retrieve the number of available sets of network buffer usage metrics, set the name and userbuff

parameters to NULL, and the desired_number parameter to 0. The returned value will be the number of

available sets.

Parameters

 name Contains either ″″, FIRST_NETBUFFER, or the size of the network buffer in ASCII. It is a

power of 2. For example:

32, 64, 128, ..., 16384

userbuff Points to the memory area to be filled with one or more perfstat_netbuffer_t structures.

sizeof_struct Specifies the size of the perfstat_netbuffer_t structure: sizeof(perfstat_netbuffer_t)

desired_number Specifies the number of perfstat_netbuffer_t structures to copy to userbuff.

Return Values

Upon successful completion, the number of structures which could be filled is returned. If unsuccessful, a

value of -1 is returned and the errno global variable is set.

Error Codes

The perfstat_netbuffer subroutine is unsuccessful if the following is true:

 EINVAL One of the parameters is not valid.

Files

The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information

“perfstat_cpu Subroutine” on page 961, “perfstat_cpu_total Subroutine” on page 962,

“perfstat_memory_total Subroutine” on page 969, “perfstat_disk Subroutine” on page 964,

“perfstat_diskpath Subroutine” on page 966, “perfstat_disk_total Subroutine” on page 968,

“perfstat_netinterface_total Subroutine” on page 973, “perfstat_diskadapter Subroutine” on page 965,

“perfstat_partial_reset Subroutine” on page 975, “perfstat_protocol Subroutine” on page 978, and

“perfstat_pagingspace Subroutine” on page 974.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_netinterface Subroutine

Purpose

Retrieves individual network interface usage statistics.

Library

Perfstat Library (libperfstat.a)

Base Operating System (BOS) Runtime Services (A-P) 971

Syntax

#include <libperfstat.h>

int perfstat_netinterface (name, userbuff, sizeof_struct, desired_number)

perfstat_id_t *name;

perfstat_netinterface_t *userbuff;

size_t sizeof_struct;

int desired_number;

Description

The perfstat_netinterface subroutine retrieves one or more individual network interface usage statistics.

The same function can also be used to retrieve the number of available sets of network interface statistics.

To get one or more sets of network interface usage metrics, set the name parameter to the name of the

first network interface for which statistics are desired, and set the desired_number parameter. To start from

the first network interface, set the name parameter to ″″ or FIRST_NETINTERFACE. The userbuff

parameter must always point to a memory area big enough to contain the desired number of

perfstat_netinterface_t structures that will be copied by this function. Upon return, the name parameter

will be set to either the name of the next network interface, or to ″″ after all structures have been copied.

To retrieve the number of available sets of network interface usage metrics, set the name and userbuff

parameters to NULL, and the desired_number parameter to 0. The returned value will be the number of

available sets.

The perfstat_netinterface subroutine retrieves information from the ODM database. This information is

automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset

subroutine must be called to flush the dictionary whenever the machine configuration has changed.

Parameters

 name Contains either ″″, FIRST_NETINTERFACE, or a name identifying the first network interface for

which statistics are desired. For example;

en0, tr10, ...

userbuff Points to the memory area that is to be filled with one or more perfstat_netinterface_t

structures.

sizeof_struct Specifies the size of the perfstat_netinterface_t structure: sizeof(perfstat_netinterface_t)

desired_number Specifies the number of perfstat_netinterface_t structures to copy to userbuff.

Return Values

Upon successful completion unless the function is used to retrieve the number of available structures, the

number of structures filled is returned. If unsuccessful, a value of -1 is returned and the errno global

variable is set.

Error Codes

The perfstat_netinterface subroutine is unsuccessful if one of the following is true:

 EINVAL One of the parameters is not valid.

EFAULT Insufficient memory.

ENOMEM The string default length is too short.

ENOMSG Cannot access the dictionary.

972 Technical Reference, Volume 1: Base Operating System and Extensions

Files

The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information

“perfstat_netbuffer Subroutine” on page 970, “perfstat_cpu Subroutine” on page 961, “perfstat_cpu_total

Subroutine” on page 962, “perfstat_disk Subroutine” on page 964, “perfstat_diskadapter Subroutine” on

page 965, “perfstat_diskpath Subroutine” on page 966, “perfstat_disk_total Subroutine” on page 968,

“perfstat_memory_total Subroutine” on page 969, “perfstat_netinterface_total Subroutine,”

“perfstat_pagingspace Subroutine” on page 974, “perfstat_partial_reset Subroutine” on page 975,

“perfstat_protocol Subroutine” on page 978, and “perfstat_reset Subroutine” on page 980.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_netinterface_total Subroutine

Purpose

Retrieves global network interface usage statistics.

Library

Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_netinterface_total (name, userbuff, sizeof_struct, desired_number)

perfstat_id_t *name;

perfstat_netinterface_total_t *userbuff;

size_t sizeof_struct;

int desired_number;

Description

The perfstat_netinterface_total subroutine returns global network interface usage statistics in a

perfstat_netinterface_total_t structure.

To get statistics that are global to the whole system, the name parameter must be set to NULL, the

userbuff parameter must be allocated, and the desired_number parameter must be set to 1.

The perfstat_netinterface_total subroutine retrieves information from the ODM database. This information

is automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset

subroutine must be called to flush the dictionary whenever the machine configuration has changed.

Parameters

 name Must be set to NULL.

userbuff Points to the memory area that is to be filled with the perfstat_netinterface_total_t structure.

sizeof_struct Specifies the size of the perfstat_netinterface_total_t structure:

sizeof(perfstat_netinterface_total_t).

desired_number Must be set to 1.

Base Operating System (BOS) Runtime Services (A-P) 973

Return Values

Upon successful completion, the number of structures filled is returned. This will always be 1. If

unsuccessful, a value of -1 is returned and the errno variable is set.

Error Codes

The perfstat_netinterface_total subroutine is unsuccessful if one of the following is true:

 EINVAL One of the parameters is not valid.

EFAULT Insufficient memory.

Files

The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information

“perfstat_netbuffer Subroutine” on page 970, “perfstat_cpu Subroutine” on page 961, “perfstat_cpu_total

Subroutine” on page 962, “perfstat_disk Subroutine” on page 964, “perfstat_diskadapter Subroutine” on

page 965, “perfstat_diskpath Subroutine” on page 966, “perfstat_disk_total Subroutine” on page 968,

“perfstat_memory_total Subroutine” on page 969, “perfstat_netinterface Subroutine” on page 971,

“perfstat_pagingspace Subroutine,” “perfstat_partial_reset Subroutine” on page 975, “perfstat_protocol

Subroutine” on page 978, and “perfstat_reset Subroutine” on page 980.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_pagingspace Subroutine

Purpose

Retrieves individual paging space usage statistics.

Library

Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>

int perfstat_pagingspace (name, userbuff, sizeof_struct, desired_number)

perfstat_id_t *name;

perfstat_pagingspace_t *userbuff;

size_t sizeof_struct;

int desired_number;

Description

This function retrieves one or more individual pagingspace usage statistics. The same functions can also

be used to retrieve the number of available sets of paging space statistics.

To get one or more sets of paging space usage metrics, set the name parameter to the name of the first

paging space for which statistics are desired, and set the desired_number parameter. To start from the first

paging space, set the name parameter to ″″ or FIRST_PAGINGSPACE. In either case, userbuff must point

to a memory area big enough to contain the desired number of perfstat_pagingspace_t structures which

will be copied by this function. Upon return, the name parameter will be set to either the name of the next

paging space, or to ″″ if all structures have been copied.

974 Technical Reference, Volume 1: Base Operating System and Extensions

To retrieve the number of available sets of paging space usage metrics, set the name and userbuff

parameters to NULL, and the desired_number parameter to 0. The number of available sets will be

returned.

The perfstat_pagingspace subroutine retrieves information from the ODM database. This information is

automatically cached into a dictionary which is assumed to be frozen once loaded. The perfstat_reset

subroutine must be called to flush the dictionary whenever the machine configuration has changed.

Parameters

 name Contains either ″″, FIRST_PAGINGSPACE, or a name identifying the first paging space for

which statistics are desired. For example:

paging00, hd6, ...

userbuff Points to the memory area to be filled with one or more perfstat_pagingspace_t structures.

sizeof_struct Specifies the size of the perfstat_pagingspace_t structure:

sizeof(perfstat_pagingspace_t)

desired_number Specifies the number of perfstat_pagingspace_t structures to copy to userbuff.

Return Values

Unless the perfstat_pagingspacesubroutine is used to retrieve the number of available structures, the

number of structures which could be filled is returned upon successful completion. If unsuccessful, a value

of -1 is returned and the errno global variable is set.

Error Codes

The perfstat_pagingspace subroutine is unsuccessful if one of the following are true:

 EINVAL One of the parameters is not valid.

Files

The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information

“perfstat_netbuffer Subroutine” on page 970, “perfstat_cpu Subroutine” on page 961, “perfstat_cpu_total

Subroutine” on page 962, “perfstat_disk Subroutine” on page 964, “perfstat_diskadapter Subroutine” on

page 965, “perfstat_diskpath Subroutine” on page 966, “perfstat_disk_total Subroutine” on page 968,

“perfstat_memory_total Subroutine” on page 969, “perfstat_netinterface Subroutine” on page 971,

“perfstat_netinterface_total Subroutine” on page 973, “perfstat_partial_reset Subroutine,” “perfstat_protocol

Subroutine” on page 978, and “perfstat_reset Subroutine” on page 980.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_partial_reset Subroutine

Purpose

Empties part of the libperfstat configuration information cache or resets system minimum and maximum

counters for disks.

Library

perfstat library (libperfstat.a)

Base Operating System (BOS) Runtime Services (A-P) 975

Syntax

#include <libperfstat.h>

int perfstat_partial_reset (name, resetmask)

char * name;

u_longlong_t resetmask;

Description

The perfstat_cpu_total, perfstat_disk, perfstat_diskadapter, perfstat_netinterface, and

perfstat_pagingspace subroutines return configuration information that is retrieved from the ODM

database and automatically cached by the library. Other metrics provided by the LVM library and the

swapqry subroutine are also cached for performance purpose.

The perfstat_partial_reset subroutine flushes some of this information cache and should be called

whenever an identified part of the machine configuration has changed.

It can be used to either reset a particular component (such as hdisk0 or en1) when the name parameter

is not NULL and the resetmask parameter contains one and only one bit. It can also be used to remove a

whole category (such as disks or disk paths) from the cached information.

When the name parameter is NULL, the resetmask can contain a combination of bits, such as

FLUSH_DISK|RESET_DISK_MINMAX|FLUSH_CPUTOTAL. For more information on the perfstat_partial_reset

subroutine, see Perfstat API Programming.

Several bit masks are available for the resetmask parameter. The behavior of the function is as follows:

resetmask value Action when name is NULL

Action when name is not NULL and a

single resetmask is set

FLUSH_CPUTOTAL Flush speed and description in the

perfstat_cputotal_t structure

An error is returned, and errno is set to

EINVAL.

FLUSH_DISK Flush description, adapter, size, free, and

vgname in every perfstat_disk_t

structure. Flush the list of disk adapters.

Flush size, free, and description in every

perfstat_diskadapter_t structure.

Flush description, adapter, size, free, and

vgname in the specified perfstat_disk_t

structure. Flush adapter in every

perfstat_diskpath_t that matches the

disk name followed by _Path. Flush size,

free, and description of each

perfstat_diskadapter_t that is linked to a

path leading to this disk or to the disk

itself.

RESET_DISK_MINMAX Reset system resident min_rserv,

max_rserv, min_wserv, max_wserv,

wq_min_time and wq_max_time in every

perfstat_disk_t structure.

An error is returned, and errno is set to

ENOTSUP.

FLUSH_DISKADAPTER Flush the list of disk adapters. Flush size,

free, and description in every

perfstat_diskadapter_t structure. Flush

adapter in every perfstat_diskpath_t

structure. Flush description and adapter in

every perfstat_disk_t structure.

Flush the list of disk adapters. Flush size,

free, and description in the specified

perfstat_diskadapter_t structure.

FLUSH_DISKPATH Flush adapter in every

perfstat_diskpath_t structure.

Flush adapter in the specified

perfstat_diskpath_t structure.

976 Technical Reference, Volume 1: Base Operating System and Extensions

resetmask value Action when name is NULL

Action when name is not NULL and a

single resetmask is set

FLUSH_PAGINGSPACE Flush the list of paging spaces. Flush

automatic, type, lpsize, mbsize,

hostname, filename, and vgname in every

perfstat_pagingspace_t structure.

Flush the list of paging spaces. Flush

automatic, type, lpsize, mbsize,

hostname, filename, and vgname in the

specified perfstat_pagingspace_t

structure.

FLUSH_NETINTERFACE Flush description in every

perfstat_netinterface_t structure.

Flush description in the specified

perfstat_netinterface_t structure.

Parameters

 name Contains a name identifying the component that metrics should be reset from the libperfstat

cache. If this parameter is NULL, matches every component.

resetmask The category of the component if name is not NULL. The available values are listed in the

preceding table. In case the name parameter is NULL, resetmask can be a combination of

bits.

Return Values

The perfstat_partial_reset subroutine returns 0 upon successful completion. If unsuccessful, a value of -1

is returned, and the errno global variable is set to the appropriate code.

Error Codes

 EINVAL One of the parameters is not valid.

Files

The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information

The “perfstat_cpu Subroutine” on page 961, “perfstat_cpu_total Subroutine” on page 962, “perfstat_disk

Subroutine” on page 964, “perfstat_diskadapter Subroutine” on page 965, “perfstat_diskpath Subroutine”

on page 966, “perfstat_disk_total Subroutine” on page 968, “perfstat_memory_total Subroutine” on page

969, “perfstat_netbuffer Subroutine” on page 970, “perfstat_netinterface Subroutine” on page 971,

“perfstat_netinterface_total Subroutine” on page 973, “perfstat_pagingspace Subroutine” on page 974,

“perfstat_partition_total Subroutine,” “perfstat_protocol Subroutine” on page 978, and “perfstat_reset

Subroutine” on page 980.

Perfstat API Programming.

perfstat_partition_total Subroutine

Purpose

Retrieves global Micro-Partitioning usage statistics.

Library

perfstat library (libperfstat.a)

Base Operating System (BOS) Runtime Services (A-P) 977

Syntax

#include <libperfstat.h>

 int perfstat_partition_total(name, userbuff, sizeof_struct, desired_number)

 perfstat_id_t *name;

 perfstat_partition_total_t *userbuff;

 size_t sizeof_struct;

 int desired_number;

Description

The perfstat_partition_total subroutine returns global Micro-Partitioning usage statistics in a

perfstat_partition_total_t structure. To retrieve statistics that are global to the whole system, the name

parameter must be set to NULL, the userbuff parameter must be allocated, and the desired_number

parameter must be set to 1.

Parameters

 name Must be set to NULL.

userbuff Points to the memory area to be filled with the perfstat_partition_total_t structures.

sizeof_struct Specifies the size of the perfstat_partition_total_t structure:

sizeof(perfstat_partition_total_t).

desired_number Must be set to 1.

Return Values

Upon successful completion, the number of structures filled is returned. If unsuccessful, a value of -1 is

returned and the errno global variable is set.

Error Codes

 EINVAL One of the parameters is not valid.

EFAULT Insufficient memory.

Files

The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information

“perfstat_cpu Subroutine” on page 961, “perfstat_cpu_total Subroutine” on page 962, “perfstat_disk

Subroutine” on page 964, “perfstat_diskadapter Subroutine” on page 965, “perfstat_disk_total Subroutine”

on page 968, “perfstat_memory_total Subroutine” on page 969, “perfstat_netbuffer Subroutine” on page

970, “perfstat_netinterface Subroutine” on page 971, “perfstat_netinterface_total Subroutine” on page 973,

“perfstat_pagingspace Subroutine” on page 974, “perfstat_protocol Subroutine,” and “perfstat_reset

Subroutine” on page 980.

Perfstat API in Performance Tools and APIs Technical Reference.

perfstat_protocol Subroutine

Purpose

Retrieves protocol usage statistics.

Library

Perfstat Library (libperfstat.a)

978 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <libperfstat.h>

int perfstat_protocol (name, userbuff, sizeof_struct, desired_number)

perfstat_id_t *name;

perfstat_protocol_t *userbuff;

size_t sizeof_struct;

int desired_number;

Description

The perfstat_protocol subroutine retrieves protocol usage statistics such as ICMP, ICMPv6, IP, IPv6,

TCP, UDP, RPC, NFS, NFSv2, NFSv3. To get one or more sets of protocol usage metrics, set the name

parameter to the name of the first protocol for which statistics are desired, and set the desired_number

parameter.

To start from the first protocol, set the name parameter to ″″ or FIRST_PROTOCOL. The userbuff

parameter must point to a memory area big enough to contain the desired number of perfstat_protocol_t

structures which will be copied by this function. Upon return, the name parameter will be set to either the

name of the next protocol, or to ″″ if all structures have been copied.

To retrieve the number of available sets of protocol usage metrics, set the name and userbuff parameters

to NULL, and the desired_number parameter to 0. The returned value will be the number of available sets.

Parameters

 name Contains either ″ip″, ″ipv6″, ″icmp″, ″icmpv6″, ″tcp″, ″udp″, ″rpc″, ″nfs″, ″nfsv2″, ″nfsv3″, ″″, or

FIRST_PROTOCOL.

userbuff Points to the memory area to be filled with one or more perfstat_protocol_t structures.

sizeof_struct Specifies the size of the perfstat_protocol_t structure: sizeof(perfstat_protocol_t)

desired_number Specifies the number of perfstat_protocol_t structures to copy to userbuff.

Return Values

Upon successful completion, the number of structures which could be filled is returned. If unsuccessful, a

value of -1 is returned and the errno global variable is set.

Error Codes

The perfstat_protocol subroutine is unsuccessful if the following is true:

 EINVAL One of the parameters is not valid.

Files

The libperfstat.h file defines standard macros, data types, and subroutines.

Related Information

“perfstat_netbuffer Subroutine” on page 970, “perfstat_cpu Subroutine” on page 961, “perfstat_cpu_total

Subroutine” on page 962, “perfstat_disk Subroutine” on page 964, “perfstat_diskadapter Subroutine” on

page 965, “perfstat_diskpath Subroutine” on page 966, “perfstat_disk_total Subroutine” on page 968,

“perfstat_memory_total Subroutine” on page 969, “perfstat_netinterface Subroutine” on page 971,

“perfstat_netinterface_total Subroutine” on page 973, “perfstat_pagingspace Subroutine” on page 974, and

“perfstat_partial_reset Subroutine” on page 975.

Perfstat API in Performance Tools and APIs Technical Reference.

Base Operating System (BOS) Runtime Services (A-P) 979

perfstat_reset Subroutine

Purpose

Empties libperfstat configuration information cache.

Library

Perfstat Library (libperfstat.a)

Syntax

#include <libperfstat.h>

void perfstat_reset (void)

Description

The perfstat_cpu_total, perfstat_disk, perfstat_diskadapter, perfstat_netinterface, and

perfstat_pagingspace subroutines return configuration information retrieved from the ODM database and

automatically cached by the library.

The perfstat_reset subroutine flushes this information cache and should be called whenever the machine

configuration has changed.

Files

The libperfstat.h defines standard macros, data types and subroutines.

Related Information

“perfstat_cpu_total Subroutine” on page 962, “perfstat_disk Subroutine” on page 964, “perfstat_diskadapter

Subroutine” on page 965, “perfstat_diskpath Subroutine” on page 966, “perfstat_netinterface Subroutine”

on page 971, “perfstat_pagingspace Subroutine” on page 974, and “perfstat_partial_reset Subroutine” on

page 975.

Perfstat API in Performance Tools and APIs Technical Reference.

perror Subroutine

Purpose

Writes a message explaining a subroutine error.

Library

Standard C Library (libc.a)

Syntax

#include <errno.h>

#include <stdio.h>

void perror (String)

const char *String;

extern int errno;

extern char *sys_errlist[];

extern int sys_nerr;

980 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The perror subroutine writes a message on the standard error output that describes the last error

encountered by a system call or library subroutine. The error message includes the String parameter string

followed by a : (colon), a space character, the message, and a new-line character. The String parameter

string should include the name of the program that caused the error. The error number is taken from the

errno global variable, which is set when an error occurs but is not cleared when a successful call to the

perror subroutine is made.

To simplify various message formats, an array of message strings is provided in the sys_errlist structure

or use the errno global variable as an index into the sys_errlist structure to get the message string

without the new-line character. The largest message number provided in the table is sys_nerr. Be sure to

check the sys_nerr structure because new error codes can be added to the system before they are added

to the table.

The perror subroutine retrieves an error message based on the language of the current locale.

After successfully completing, and before a call to the exit or abort subroutine or the completion of the

fflush or fclose subroutine on the standard error stream, the perror subroutine marks for update the

st_ctime and st_mtime fields of the file associated with the standard error stream.

Parameter

 String Specifies a parameter string that contains the name of the program that caused the error. The ensuing

printed message contains this string, a : (colon), and an explanation of the error.

Related Information

The abort subroutine, exit subroutine, fflush or fclose subroutine, printf, fprintf, sprintf, wsprintf,

vprintf, vfprintf, vsprintf, or vwsprintf subroutine, strerror subroutine.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pipe Subroutine

Purpose

Creates an interprocess channel.

Library

Standard C Library (libc.a)

Syntax

#include <unistd.h>

int pipe (FileDescriptor)

int FileDescriptor[2];

Description

The pipe subroutine creates an interprocess channel called a pipe and returns two file descriptors,

FileDescriptor[0] and FileDescriptor[1]. FileDescriptor[0] is opened for reading and FileDescriptor[1] is

opened for writing.

Base Operating System (BOS) Runtime Services (A-P) 981

A read operation on the FileDescriptor[0] parameter accesses the data written to the FileDescriptor[1]

parameter on a first-in, first-out (FIFO) basis.

Write requests of PIPE_BUF bytes or fewer will not be interleaved (mixed) with data from other processes

doing writes on the same pipe. PIPE_BUF is a system variable described in the pathconf (“pathconf or

fpathconf Subroutine” on page 938) subroutine. Writes of greater than PIPE_BUF bytes may have data

interleaved, on arbitrary boundaries, with other writes.

If O_NONBLOCK or O_NDELAY are set, writes requests of PIPE_BUF bytes or fewer will either succeed

completely or fail and return -1 with the errno global variable set to EAGAIN. A write request for more

than PIPE_BUF bytes will either transfer what it can and return the number of bytes actually written, or

transfer no data and return -1 with the errno global variable set to EAGAIN.

Parameters

 FileDescriptor Specifies the address of an array of two integers into which the new file descriptors are

placed.

Return Values

Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned, and the errno

global variable is set to identify the error.

Error Codes

The pipe subroutine is unsuccessful if one or more the following are true:

 EFAULT The FileDescriptor parameter points to a location outside of the allocated address space of the process.

EMFILE The number of open of file descriptors exceeds the OPEN_MAX value.

ENFILE The system file table is full, or the device containing pipes has no free i-nodes.

Related Information

The read subroutine, select subroutine, write subroutine.

The ksh command, sh command.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

plock Subroutine

Purpose

Locks the process, text, or data in memory.

Library

Standard C Library (libc.a)

Syntax

#include <sys/lock.h>

int plock (Operation)

int Operation;

982 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The plock subroutine allows the calling process to lock or unlock its text region (text lock), its data region

(data lock), or both its text and data regions (process lock) into memory. The plock subroutine does not

lock the shared text segment or any shared data segments. Locked segments are pinned in memory and

are immune to all routine paging. Memory locked by a parent process is not inherited by the children after

a fork subroutine call. Likewise, locked memory is unlocked if a process executes one of the exec

subroutines. The calling process must have the root user authority to use this subroutine.

A real-time process can use this subroutine to ensure that its code, data, and stack are always resident in

memory.

Note: Before calling the plock subroutine, the user application must lower the maximum stack limit value

using the ulimit subroutine.

Parameters

 Operation Specifies one of the following:

PROCLOCK

Locks text and data into memory (process lock).

TXTLOCK

Locks text into memory (text lock).

DATLOCK

Locks data into memory (data lock).

UNLOCK

Removes locks.

Return Values

Upon successful completion, a value of 0 is returned to the calling process. Otherwise, a value of -1 is

returned and the errno global variable is set to indicate the error.

Error Codes

The plock subroutine is unsuccessful if one or more of the following is true:

 EPERM The effective user ID of the calling process does not have the root user authority.

EINVAL The Operation parameter has a value other than PROCLOCK, TXTLOCK, DATLOCK, or UNLOCK.

EINVAL The Operation parameter is equal to PROCLOCK, and a process lock, text lock, or data lock already

exists on the calling process.

EINVAL The Operation parameter is equal to TXTLOCK, and a text lock or process lock already exists on the

calling process.

EINVAL The Operation parameter is equal to DATLOCK, and a data lock or process lock already exists on the

calling process.

EINVAL The Operation parameter is equal to UNLOCK, and no type of lock exists on the calling process.

Related Information

The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

subroutines, _exit, exit, or atexit (“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page

239)subroutine, fork (“fork, f_fork, or vfork Subroutine” on page 284) subroutine, ulimit subroutine.

Base Operating System (BOS) Runtime Services (A-P) 983

pm_cycles Subroutine

Purpose

Measures processor speed in cycles per second.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

double pm_cycles (void)

Description

The pm_cycles subroutine uses the Performance Monitor cycle counter and the processor real-time clock

to measure the actual processor clock speed. The speed is returned in cycles per second.

Return Values

 0 An error occurred.

Processor speed in cycles per second No errors occurred.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_delete_program Subroutine

Purpose

Deletes previously established systemwide Performance Monitor settings.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_delete_program ()

Description

The pm_delete_program subroutine deletes previously established systemwide Performance Monitor

settings.

984 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

pm_init (“pm_init Subroutine” on page 1012), pm_error (“pm_error Subroutine” on page 991),

pm_set_program (“pm_set_program Subroutine” on page 1024), pm_get_program (“pm_get_program

Subroutine” on page 1002), pm_get_data (“pm_get_data, pm_get_tdata, pm_get_data_cpu, and

pm_get_tdata_cpu Subroutine” on page 992), pm_start (“pm_start Subroutine” on page 1035), pm_stop

(“pm_stop Subroutine” on page 1042), pm_reset_data (“pm_reset_data Subroutine” on page 1016)

subroutines.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_delete_program_group Subroutine

Purpose

Deletes previously established Performance Monitor settings for the counting group to which a target

thread belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_delete_program_group (pid, tid)

pid_t pid;

tid_t tid;

Description

This subroutine supports only the 1:1 threading model. It has been superseded by the

pm_delete_program_pgroup subroutine, which supports both the 1:1 and the M:N threading models. A

call to this subroutine is equivalent to a call to the pm_delete_program_pgroup subroutine with a ptid

parameter equal to 0.

The pm_delete_program_group subroutine deletes previously established Performance Monitor settings

for a target kernel thread. The thread must be stopped and must be part of a debuggee process under the

control of the calling process. The settings for the group to which the target thread belongs and from all

the other threads in the same group are also deleted.

Base Operating System (BOS) Runtime Services (A-P) 985

Parameters

 pid Process identifier of target thread. The target process

must be a debuggee under the control of the calling

process.

tid Thread identifier of a target thread.

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_group (“pm_set_program_group Subroutine” on page 1025) subroutine,

pm_get_program_group (“pm_get_program_group Subroutine” on page 1004) subroutine,

pm_get_data_group (“pm_get_data_group and pm_get_tdata_group Subroutine” on page 994) subroutine,

pm_start_group (“pm_start_group Subroutine” on page 1035) subroutine, pm_stop_group (“pm_stop_group

Subroutine” on page 1043) subroutine, pm_reset_data_group (“pm_reset_data_group Subroutine” on page

1017) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_delete_program_mygroup Subroutine

Purpose

Deletes previously established Performance Monitor settings for the counting group to which the calling

thread belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_delete_program_mygroup ()

Description

The pm_delete_program_mygroup subroutine deletes previously established Performance Monitor

settings for the calling kernel thread, the counting group to which it belongs, and for all the threads that

are members of the same group.

986 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

pm_init (“pm_init Subroutine” on page 1012), pm_error (“pm_error Subroutine” on page 991),

pm_set_program_mygroup (“pm_set_program_mygroup Subroutine” on page 1027),

pm_get_program_mygroup (“pm_get_program_mygroup Subroutine” on page 1005),

pm_get_data_mygroup (“pm_get_data_mygroup or pm_get_tdata_mygroup Subroutine” on page 995),

pm_start_mygroup (“pm_start_mygroup Subroutine” on page 1037), pm_stop_mygroup

(“pm_stop_mygroup Subroutine” on page 1044), pm_reset_data_mygroup (“pm_reset_data_mygroup

Subroutine” on page 1018) subroutines.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_delete_program_mythread Subroutine

Purpose

Deletes the previously established Performance Monitor settings for the calling thread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_delete_program_mythread ()

Description

The pm_delete_program_mythread subroutine deletes the previously established Performance Monitor

settings for the calling kernel thread.

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Base Operating System (BOS) Runtime Services (A-P) 987

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

pm_init (“pm_init Subroutine” on page 1012), pm_error (“pm_error Subroutine” on page 991),

pm_set_program_mythread (“pm_set_program_mythread Subroutine” on page 1028),

pm_get_program_mythread (“pm_get_program_mythread Subroutine” on page 1007),

pm_get_data_mythread (“pm_get_data_mythread or pm_get_tdata_mythread Subroutine” on page 997),

pm_start_mythread (“pm_start_mythread Subroutine” on page 1038), pm_stop_mythread

(“pm_stop_mythread Subroutine” on page 1045), pm_reset_data_mythread (“pm_reset_data_mythread

Subroutine” on page 1019) subroutines.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_delete_program_pgroup Subroutine

Purpose

Deletes previously established Performance Monitor settings for the counting group to which a target

pthread belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_delete_program_pgroup (pid, tid, ptid)

pid_t pid;

tid_t tid;

ptid_t ptid;

Description

The pm_delete_program_pgroup subroutine deletes previously established Performance Monitor settings

for a target pthread. The pthread must be stopped and must be part of a debuggee process under the

control of the calling process. The settings for the group to which the target pthread belongs and from all

the other pthreads in the same group are also deleted.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in

m:n mode, only the ptid parameter must be specified. If both ptid and tid are specified, they must be

referring to a single pthread with the ptid specified and currently running on a kernel thread with specified

tid.

Parameters

 pid Process ID of target thread. The target process must be a

debuggee under the control of the calling process.

tid Thread ID of target pthread. To ignore this parameter, set

it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,

set it to 0.

988 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The “pm_delete_program_pgroup Subroutine” on page 988, “pm_error Subroutine” on page 991

“pm_get_data_pgroup and pm_get_tdata_pgroup Subroutine” on page 998, “pm_set_program_pgroup

Subroutine” on page 1030, “pm_initialize Subroutine” on page 1014, “pm_reset_data_pgroup Subroutine”

on page 1020, “pm_start_pgroup Subroutine” on page 1038, “pm_stop_pgroup Subroutine” on page 1046.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_delete_program_pthread Subroutine

Purpose

Deletes the previously established Performance Monitor settings for a target pthread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_delete_program_pthread (pid, tid, ptid)

pid_t pid;

tid_t tid;

ptid_t ptid;

Description

The pm_delete_program_pthread subroutine deletes the previously established Performance Monitor

settings for a target pthread. The pthread must be stopped and must be part of a debuggee process under

the control of the calling process.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in

m:n mode, only the ptid parameter must be specified. If both ptid and tid are specified, they must be

referring to a single pthread with the ptid specified and currently running on a kernel thread with specified

tid.

Base Operating System (BOS) Runtime Services (A-P) 989

Parameters

 pid Process ID of target pthread. Target process must be a

debuggee under the control of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set

it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,

set it to 0.

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The “pm_delete_program_pthread Subroutine” on page 989, “pm_error Subroutine” on page 991,

“pm_get_data_pthread or pm_get_tdata_pthread Subroutine” on page 999, “pm_get_program_pthread

Subroutine” on page 1009, “pm_initialize Subroutine” on page 1014, “pm_reset_data_pthread Subroutine”

on page 1021, “pm_set_program_pthread Subroutine” on page 1031, “pm_start_pthread Subroutine” on

page 1040, “pm_stop_pthread Subroutine” on page 1047.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_delete_program_thread Subroutine

Purpose

Deletes the previously established Performance Monitor settings for a target thread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_delete_program_thread (pid, tid)

pid_t pid;

tid_t tid;

990 Technical Reference, Volume 1: Base Operating System and Extensions

Description

This subroutine supports only the 1:1 threading model. It has been superseded by the

pm_delete_program_pthread subroutine, which supports both the 1:1 and the M:N threading models. A

call to this subroutine is equivalent to a call to the pm_delete_program_pthread subroutine with a ptid

parameter equal to 0.

The pm_delete_program_thread subroutine deletes the previously established Performance Monitor

settings for a target kernel thread. The thread must be stopped and must be part of a debuggee process

under the control of the calling process.

Parameters

 pid Process identifier of target thread. Target process must be

a debuggee under the control of the calling process.

tid Thread identifier of the target thread.

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine”) subroutine to decode the error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine”) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

pm_init (“pm_init Subroutine” on page 1012), pm_error (“pm_error Subroutine”), pm_set_program_thread

(“pm_set_program_thread Subroutine” on page 1033), pm_get_program_thread (“pm_get_program_thread

Subroutine” on page 1011), pm_get_data_thread (“pm_get_data_thread or pm_get_tdata_thread

Subroutine” on page 1001), pm_start_thread (“pm_start_thread Subroutine” on page 1041),

pm_stop_thread (“pm_stop_thread Subroutine” on page 1048), pm_reset_data_thread

(“pm_reset_data_thread Subroutine” on page 1023) subroutines.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_error Subroutine

Purpose

Decodes Performance Monitor APIs error codes.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

Base Operating System (BOS) Runtime Services (A-P) 991

void pm_error (*Where, errorcode)

char *Where;

int errorcode;

Description

The pm_error subroutine writes a message on the standard error output that describes the parameter

errorcode encountered by a Performance Monitor API library subroutine. The error message includes the

Where parameter string followed by a : (colon), a space character, the message, and a new-line character.

The Where parameter string includes the name of the program that caused the error.

Parameters

 *Where Specifies where the error was encountered.

errorcode Specifies the error code as returned by one of the Performance Monitor APIs library

subroutines.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init subroutine, pm_set_program subroutine, pm_get_program subroutine,

pm_delete_program subroutine, pm_get_data subroutine, pm_start subroutine, pm_stop subroutine,

pm_reset_data subroutine.

The pm_set_program_mythread subroutine, pm_get_program_mythread subroutine,

pm_delete_program_mythread subroutine, pm_get_data_mythread subroutine, pm_start_mythread

subroutine, pm_stop_mythread subroutine, pm_reset_data_mythread subroutine.

The pm_set_program_mygroup subroutine, pm_get_program_mygroup subroutine,

pm_delete_program_mygroup subroutine, pm_get_data_mygroup subroutine, pm_start_mygroup

subroutine, pm_stop_mygroup subroutine, pm_reset_data_mygroup subroutine.

The pm_set_program_thread subroutine, pm_get_program_thread subroutine,

pm_delete_program_thread subroutine, pm_get_data_thread subroutine, pm_start_thread subroutine,

pm_stop_thread subroutine, pm_reset_data_thread subroutine.

The pm_set_program_group subroutine, pm_get_program_group subroutine,

pm_delete_program_group subroutine, pm_get_data_group subroutine, pm_start_group subroutine,

pm_stop_group subroutine, pm_reset_data_group subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_get_data, pm_get_tdata, pm_get_data_cpu, and pm_get_tdata_cpu

Subroutine

Purpose

Returns systemwide Performance Monitor data.

992 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_data (*pmdata)

pm_data_t *pmdata;

int pm_get_tdata (pmdata, * time)

pm_data_t *pmdata;

timebasestruct_t *time;

int pm_get_data_cpu (cpuid, *pmdata)

int cpuid;

pm_data_t *pmdata;

int pm_get_tdata_cpu (cpuid, *pmdata, *time)

int cpuid;

pm_data_t *pmdata;

timebasestruct_t *time;

Description

The pm_get_data subroutine retrieves the current systemwide Performance Monitor data.

The pm_get_tdata subroutine retrieves the current systemwide Performance Monitor data, and a

timestamp indicating the last time the hardware counters were read.

The pm_get_data_cpu subroutine retrieves the current Performance Monitor data for the specified

processor.

The pm_get_tdata_cpu subroutine retrieves the current Performance Monitor data for the specified

processor, and a timestamp indicating the last time the hardware counters were read.

The Performance Monitor data is always a set (one per hardware counter on the machines used) of 64-bit

values.

Parameters

 *pmdata Pointer to a structure that contains the returned systemwide Performance

Monitor data.

*time Pointer to a structure containing the timebase value the last time the

hardware Performance Monitoring counters were read. This can be converted

to time using the time_base_to_time subroutine.

cpuid Logical processor identifier.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program (“pm_set_program Subroutine” on page 1024) subroutine,

pm_get_program (“pm_get_program Subroutine” on page 1002) subroutine, pm_delete_program

(“pm_delete_program Subroutine” on page 984) subroutine, pm_start (“pm_start Subroutine” on page 1035

Base Operating System (BOS) Runtime Services (A-P) 993

1035) subroutine, pm_stop (“pm_stop Subroutine” on page 1042) subroutine, pm_reset_data

(“pm_reset_data Subroutine” on page 1016) subroutine.

read_real_time or time_base_to_time Subroutine in AIX 5L Version 5.3 Technical Reference: Base

Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_get_data_group and pm_get_tdata_group Subroutine

Purpose

Returns Performance Monitor data for the counting group to which a target thread belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_data_group (pid, tid, *pmdata)

pid_t pid;

tid_t tid;

pm_data_t *pmdata;

int pm_get_tdata_group (pid, tid, *pmdata, *time)

pm_data_t *pmdata;

pid_t pid;

tid_t tid;

timebasestruct_t *time;

Description

These subroutines support only the 1:1 threading model. They have been superseded by the

pm_get_data_pgroup and pm_get_tdata_pgroup subroutines, which support both the 1:1 and the M:N

threading models. Calls to these subroutines are equivalent to calls to the pm_get_data_pgroup and

pm_get_tdata_pgroup subroutines with a ptid parameter equal to 0.

The pm_get_data_group subroutine retrieves the current Performance Monitor data for the counting

group to which a target kernel thread belongs. The thread must be stopped and must be part of a

debuggee process under the control of the calling process.

The pm_get_tdata_group subroutine retrieves the current Performance Monitor data for the counting

group to which a target thread belongs, and a timestamp indicating the last time the hardware counters

were read.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit

values. The information returned also includes the characteristics of the group, such as the number of its

members, if it is a process level group, and if its counters are consistent with the sum of the counters for

all of the threads in the group.

Parameters

 pid Process identifier of a target thread. The target process

must be an argument of a debug process.

tid Thread identifier of a target thread.

994 Technical Reference, Volume 1: Base Operating System and Extensions

*pmdata Pointer to a structure to return the Performance Monitor

data for the group to which the target thread belongs.

*time Pointer to a structure containing the timebase value the

last time the hardware Performance Monitoring counters

were read. This can be converted to time using the

time_base_to_time subroutine.

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_group (“pm_set_program_group Subroutine” on page 1025) subroutine,

pm_get_program_group (“pm_get_program_group Subroutine” on page 1004) subroutine,

pm_get_data_group (“pm_get_data_group and pm_get_tdata_group Subroutine” on page 994) subroutine,

pm_start_group (“pm_start_group Subroutine” on page 1035) subroutine, pm_stop_group (“pm_stop_group

Subroutine” on page 1043) subroutine, pm_reset_data_group (“pm_reset_data_group Subroutine” on page

1017) subroutine.

read_real_time or time_base_to_time Subroutine in AIX 5L Version 5.3 Technical Reference: Base

Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_get_data_mygroup or pm_get_tdata_mygroup Subroutine

Purpose

Returns Performance Monitor data for the counting group to which the calling thread belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_data_mygroup (*pmdata)

pm_data_t *pmdata;

Base Operating System (BOS) Runtime Services (A-P) 995

int pm_get_tdata_mygroup (*pmdata, *time)

pm_data_t *pmdata;

timebasestruct_t *time;

Description

The pm_get_data_mygroup subroutine retrieves the current Performance Monitor data for the group to

which the calling kernel thread belongs.

The pm_get_tdata_mygroup subroutine retrieves the current Performance Monitor data for the group to

which the calling thread belongs, and a timestamp indicating the last time the hardware counters were

read.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit

values. The information returned also includes the characteristics of the group, such as the number of its

members, if it is a process level group, and if its counters are consistent with the sum of the counters for

all of the threads in the group.

Parameters

 *pmdata Pointer to a structure to return the Performance Monitor

data for the group to which the calling thread belongs.

*time Pointer to a structure containing the timebase value the

last time the hardware Performance Monitoring counters

were read. This can be converted to time using the

time_base_to_time subroutine.

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_mygroup (“pm_set_program_mygroup Subroutine” on page 1027)

subroutine, pm_get_program_mygroup (“pm_get_program_mygroup Subroutine” on page 1005)

subroutine, pm_get_data_mygroup (“pm_get_data_mygroup or pm_get_tdata_mygroup Subroutine” on

page 995) subroutine, pm_start_mygroup (“pm_start_mygroup Subroutine” on page 1037) subroutine,

pm_stop_mygroup (“pm_stop_mygroup Subroutine” on page 1044) subroutine, pm_reset_data_mygroup

(“pm_reset_data_mygroup Subroutine” on page 1018) subroutine.

read_real_time or time_base_to_time Subroutine in AIX 5L Version 5.3 Technical Reference: Base

Operating System and Extensions Volume 2.

996 Technical Reference, Volume 1: Base Operating System and Extensions

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_get_data_mythread or pm_get_tdata_mythread Subroutine

Purpose

Returns Performance Monitor data for the calling thread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_data_mythread (*pmdata)

pm_data_t *pmdata;

int pm_get_tdata_mythread (*pmdata, *time)

pm_data_t *pmdata;

timebasestruct_t *time;

Description

The pm_get_data_mythread subroutine retrieves the current Performance Monitor data for the calling

kernel thread.

The pm_get_tdata_mythread subroutine retrieves the current Performance Monitor data for the calling

kernel thread, and a timestamp indicating the last time the hardware counters were read.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit

values.

Parameters

 *pmdata Pointer to a structure to contain the returned Performance

Monitor data for the calling kernel thread.

*time Pointer to a structure containing the timebase value the

last time the hardware Performance Monitoring counters

were read. This can be converted to time using the

time_base_to_time subroutine.

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Base Operating System (BOS) Runtime Services (A-P) 997

Related Information

pm_init (“pm_init Subroutine” on page 1012), pm_error (“pm_error Subroutine” on page 991),

pm_set_program_mythread (“pm_set_program_mythread Subroutine” on page 1028),

pm_get_program_mythread (“pm_get_program_mythread Subroutine” on page 1007),

pm_get_data_mythread (“pm_get_data_mythread or pm_get_tdata_mythread Subroutine” on page 997),

pm_start_mythread (“pm_start_mythread Subroutine” on page 1038), pm_stop_mythread

(“pm_stop_mythread Subroutine” on page 1045), pm_reset_data_mythread (“pm_reset_data_mythread

Subroutine” on page 1019) subroutines.

read_real_time or time_base_to_time Subroutine in AIX 5L Version 5.3 Technical Reference: Base

Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_get_data_pgroup and pm_get_tdata_pgroup Subroutine

Purpose

Returns Performance Monitor data for the counting group to which a target pthread belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_data_pgroup (pid, tid, ptid, *pmdata)

pid_t pid;

tid_t tid;

ptid_t ptid;

pm_data_t *pmdata;

int pm_get_tdata_pgroup (pid, tid, *pmdata, *time)

pm_data_t *pmdata;

pid_t pid;

tid_t tid;

ptid_t ptid;

timebasestruct_t *time;

Description

The pm_get_data_pgroup subroutine retrieves the current Performance Monitor data for the counting

group to which a target pthread belongs. The pthread must be stopped and must be part of a debuggee

process under the control of the calling process.

The pm_get_tdata_pgroup subroutine retrieves the current Performance Monitor data for the counting

group to which a target pthread belongs, and a timestamp indicating the last time the hardware counters

were read.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in

m:n mode, only the ptid parameter must be specified. If both ptid and tid are specified, they must be

referring to a single pthread with the ptid specified and currently running on a kernel thread with specified

tid.

998 Technical Reference, Volume 1: Base Operating System and Extensions

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit

values. The information returned also includes the characteristics of the group, such as the number of its

members, if it is a process level group, and if its counters are consistent with the sum of the counters for

all of the pthreads in the group.

Parameters

 pid Process identifier of a target thread. The target process

must be an argument of a debug process.

tid Thread ID of target pthread. To ignore this parameter, set

it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,

set it to 0.

*pmdata Pointer to a structure to return the Performance Monitor

data for the group to which the target pthread belongs.

*time Pointer to a structure containing the timebase value the

last time the hardware Performance Monitoring counters

were read. This can be converted to time using the

time_base_to_time subroutine.

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The “pm_delete_program_pthread Subroutine” on page 989, “pm_error Subroutine” on page 991,

“pm_get_data_pgroup and pm_get_tdata_pgroup Subroutine” on page 998, “pm_get_program_pgroup

Subroutine” on page 1008, “pm_initialize Subroutine” on page 1014, “pm_reset_data_pgroup Subroutine”

on page 1020, “pm_set_program_pgroup Subroutine” on page 1030, “pm_start_pgroup Subroutine” on

page 1038, “pm_stop_pgroup Subroutine” on page 1046.

read_real_time or time_base_to_time Subroutine in AIX 5L Version 5.3 Technical Reference: Base

Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_get_data_pthread or pm_get_tdata_pthread Subroutine

Purpose

Returns Performance Monitor data for a target pthread.

Base Operating System (BOS) Runtime Services (A-P) 999

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_data_pthread (pid, tid, ptid, *pmdata)

pid_t pid;

tid_t tid;

ptid_t ptid;

pm_data_t *pmdata;

int pm_get_tdata_pthread (pid, tid, ptid, *pmdata, *time)

pid_t pid;

tid_t tid;

ptid_t ptid;

pm_data_t *pmdata;

timebasestruct_t *time;

Description

The pm_get_data_pthread subroutine retrieves the current Performance Monitor data for a target

pthread. The pthread must be stopped and must be part of a debuggee process under the control of a

calling process.

The pm_get_tdata_pthread subroutine retrieves the current Performance Monitor data for a target

pthread, and a timestamp indicating the last time the hardware counters were read.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in

m:n mode, only the ptid parameter must be specified. If both ptid and tid are specified, they must be

referring to a single pthread with the ptid specified and currently running on a kernel thread with specified

tid.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit

values.

Parameters

 pid Process ID of target pthread. Target process must be a

debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set

it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,

set it to 0.

*pmdata Pointer to a structure to return the Performance Monitor

data for the target pthread.

*time Pointer to a structure containing the timebase value the

last time the hardware Performance Monitoring counters

were read. This can be converted to time using the

time_base_to_time subroutine.

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

1000 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The “pm_delete_program_pthread Subroutine” on page 989, “pm_error Subroutine” on page 991,

“pm_get_data_pthread or pm_get_tdata_pthread Subroutine” on page 999, “pm_get_program_pthread

Subroutine” on page 1009, “pm_initialize Subroutine” on page 1014, “pm_reset_data_pthread Subroutine”

on page 1021, “pm_set_program_pthread Subroutine” on page 1031, “pm_start_pthread Subroutine” on

page 1040, “pm_stop_pthread Subroutine” on page 1047.

read_real_time or time_base_to_time Subroutine in AIX 5L Version 5.3 Technical Reference: Base

Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_get_data_thread or pm_get_tdata_thread Subroutine

Purpose

Returns Performance Monitor data for a target thread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_data_thread (pid, tid, *pmdata)

pid_t pid;

tid_t tid;

pm_data_t *pmdata;

int pm_get_tdata_thread (pid, tid, *pmdata, *time)

pid_t pid;

tid_t tid;

pm_data_t *pmdata;

timebasestruct_t *time;

Description

These subroutines support only the 1:1 threading model. They have been superseded by the

pm_get_data_pthread and pm_get_tdata_pthread subroutines, which support both the 1:1 and the M:N

threading models. Calls to these subroutines are equivalent to calls to the pm_get_data_pthread and

pm_get_tdata_pthread subroutines with a ptid parameter equal to 0.

The pm_get_data_thread subroutine retrieves the current Performance Monitor data for a target kernel

thread. The thread must be stopped and must be part of a debuggee process under the control of a calling

process.

Base Operating System (BOS) Runtime Services (A-P) 1001

The pm_get_tdata_thread subroutine retrieves the current Performance Monitor data for a target thread,

and a timestamp indicating the last time the hardware counters were read.

The Performance Monitor data is always a set (one per hardware counter on the machine used) of 64-bit

values.

Parameters

 pid Process identifier of a target thread. The target process

must be a debuggee of the caller process.

tid Thread identifier of a target thread.

*pmdata Pointer to a structure to return the Performance Monitor

data for the target kernel thread.

*time Pointer to a structure containing the timebase value the

last time the hardware Performance Monitoring counters

were read. This can be converted to time using the

time_base_to_time subroutine.

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

pm_init (“pm_init Subroutine” on page 1012), pm_error (“pm_error Subroutine” on page 991),

pm_set_program_thread (“pm_set_program_thread Subroutine” on page 1033), pm_get_program_thread

(“pm_get_program_thread Subroutine” on page 1011), pm_get_data_thread (“pm_get_data_thread or

pm_get_tdata_thread Subroutine” on page 1001), pm_start_thread (“pm_start_thread Subroutine” on page

1041), pm_stop_thread (“pm_stop_thread Subroutine” on page 1048), pm_reset_data_thread

(“pm_reset_data_thread Subroutine” on page 1023) subroutines.

read_real_time or time_base_to_time Subroutine in AIX 5L Version 5.3 Technical Reference: Base

Operating System and Extensions Volume 2.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_get_program Subroutine

Purpose

Retrieves systemwide Performance Monitor settings.

1002 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_program (*prog)

pm_prog_t *prog;

Description

The pm_get_program subroutine retrieves the current systemwide Performance Monitor settings. This

includes mode information and the events being counted, which are in a list of event identifiers. The

identifiers come from the lists returned by the pm_init subroutine.

The counting mode includes user mode, the kernel mode, the current counting state, and the process tree

mode. If the process tree mode is on, the counting applies only to the calling process and its decendants.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a

threshold value is also returned.

If the events are represented by a group ID, then the is_group bit is set in the mode, and the first element

of the events array contains the group ID. The other elements of the events array are not meaningful.

Parameters

 prog Returns which Performance Monitor events and modes

are set. Supported modes are:

PM_USER

Counting processes running in user mode

PM_KERNEL

Counting processes running in kernel mode

PM_COUNT

Counting is on

PM_PROCTREE

Counting applies only to the calling process and

its descendants

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Base Operating System (BOS) Runtime Services (A-P) 1003

Related Information

pm_init (“pm_init Subroutine” on page 1012), pm_error (“pm_error Subroutine” on page 991),

pm_set_program (“pm_set_program Subroutine” on page 1024), pm_delete_program (“pm_delete_program

Subroutine” on page 984), pm_get_data (“pm_get_data, pm_get_tdata, pm_get_data_cpu, and

pm_get_tdata_cpu Subroutine” on page 992), pm_start (“pm_start Subroutine” on page 1035), pm_stop

(“pm_stop Subroutine” on page 1042), pm_reset_data (“pm_reset_data Subroutine” on page 1016)

subroutines.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_get_program_group Subroutine

Purpose

Retrieves the Performance Monitor settings for the counting group to which a target thread belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_program_group (pid, tid, *prog)

pid_t pid;

tid_t tid;

pm_prog_t *prog;

Description

This subroutine supports only the 1:1 threading model. It has been superseded by the

pm_get_program_pgroup subroutine, which supports both the 1:1 and the M:N threading models. A call

to this subroutine is equivalent to a call to the pm_get_program_pgroup subroutine with a ptid parameter

equal to 0.

The pm_get_program_group subroutine retrieves the Performance Monitor settings for the counting

group to which a target kernel thread belongs. The thread must be stopped and must be part of a

debuggee process under the control of the calling process. This includes mode information and the events

being counted, which are in a list of event identifiers. The identifiers come from the lists returned by the

pm_init subroutine.

The counting mode includes the user mode and kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a

threshold value is also returned.

Parameters

 pid Process identifier of target thread. The target process

must be an argument of a debug process.

tid Thread identifier of the target thread.

1004 Technical Reference, Volume 1: Base Operating System and Extensions

*prog Returns which Performance Monitor events and modes

are set. Supported modes are:

PM_USER

Counting process running in user mode

PM_KERNEL

Counting process running kernel mode

PM_COUNT

Counting is on

PM_PROCESS

Process level counting group

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_group (“pm_set_program_group Subroutine” on page 1025) subroutine,

pm_delete_program_group (“pm_delete_program_group Subroutine” on page 985) subroutine,

pm_get_data_group (“pm_get_data_group and pm_get_tdata_group Subroutine” on page 994) subroutine,

pm_start_group (“pm_start_group Subroutine” on page 1035) subroutine, pm_stop_group (“pm_stop_group

Subroutine” on page 1043) subroutine, pm_reset_data_group (“pm_reset_data_group Subroutine” on page

1017) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_get_program_mygroup Subroutine

Purpose

Retrieves the Performance Monitor settings for the counting group to which the calling thread belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_program_mygroup (*prog)

pm_prog_t *prog;

Base Operating System (BOS) Runtime Services (A-P) 1005

Description

The pm_get_program_mygroup subroutine retrieves the Performance Monitor settings for the counting

group to which the calling kernel thread belongs. This includes mode information and the events being

counted, which are in a list of event identifiers. The identifiers come from the lists returned by the pm_init

subroutine.

The counting mode includes user mode and kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a

threshold value is also returned.

Parameters

 *prog Returns which Performance Monitor events and modes

are set. Supported modes are:

PM_USER

Counting processes running in user mode

PM_KERNEL

Counting processes running in kernel mode

PM_COUNT

Counting is on

PM_PROCESS

Process level counting group

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_mygroup (“pm_set_program_mygroup Subroutine” on page 1027)

subroutine, pm_delete_program_mygroup (“pm_delete_program_mygroup Subroutine” on page 986)

subroutine, pm_get_data_mygroup (“pm_get_data_mygroup or pm_get_tdata_mygroup Subroutine” on

page 995) subroutine, pm_start_mygroup (“pm_start_mygroup Subroutine” on page 1037) subroutine,

pm_stop_mygroup (“pm_stop_mygroup Subroutine” on page 1044) subroutine, pm_reset_data_mygroup

(“pm_reset_data_mygroup Subroutine” on page 1018) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

1006 Technical Reference, Volume 1: Base Operating System and Extensions

pm_get_program_mythread Subroutine

Purpose

Retrieves the Performance Monitor settings for the calling thread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_program_mythread (*prog)

pm_prog_t *prog;

Description

The pm_get_program_mythread subroutine retrieves the Performance Monitor settings for the calling

kernel thread. This includes mode information and the events being counted, which are in a list of event

identifiers. The identifiers come from the lists returned by the pm_init subroutine.

The counting mode includes user mode and kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a

threshold value is also returned.

Parameters

 *prog Returns which Performance Monitor events and modes

are set. Supported modes are:

PM_USER

Counting processes running in user mode

PM_KERNEL

Counting processes running in kernel mode

PM_COUNT

Counting is on

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Base Operating System (BOS) Runtime Services (A-P) 1007

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_mythread (“pm_set_program_mythread Subroutine” on page 1028)

subroutine, pm_delete_program_mythread (“pm_delete_program_mythread Subroutine” on page 987)

subroutine, pm_get_data_mythread (“pm_get_data_mythread or pm_get_tdata_mythread Subroutine” on

page 997) subroutine, pm_start_mythread (“pm_start_mythread Subroutine” on page 1038) subroutine,

pm_stop_mythread (“pm_stop_mythread Subroutine” on page 1045) subroutine, pm_reset_data_mythread

(“pm_reset_data_mythread Subroutine” on page 1019) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_get_program_pgroup Subroutine

Purpose

Retrieves Performance Monitor settings for the counting group to which a target pthread belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_program_pgroup (pid, tid, ptid, *prog)

pid_t pid;

tid_t tid;

ptid_t ptid;

pm_prog_t *prog;

Description

The pm_get_program_pgroup subroutine retrieves the Performance Monitor settings for the counting

group to which a target pthread belongs. The pthread must be stopped and must be part of a debuggee

process, under the control of the calling process. This includes mode information and the events being

counted, which are in a list of event identifiers. The identifiers come from the lists returned by the

pm_inititialize subroutine.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in

m:n mode, only the ptid parameter must be specified. If both ptid and tid are specified, they must be

referring to a single pthread with the ptid specified and currently running on a kernel thread with specified

tid.

The counting mode includes the user mode and kernel mode, and the current counting state.

If the list includes an event that can be used with a threshold (as indicated by the pm_initialize

subroutine), a threshold value is also returned.

Parameters

 pid Process ID of target pthread. The target process must be

an argument of a debug process.

tid Thread ID of target pthread. To ignore this parameter, set

it to 0.

1008 Technical Reference, Volume 1: Base Operating System and Extensions

ptid Pthread ID of the target pthread. To ignore this parameter,

set it to 0.

*prog Returns which Performance Monitor events and modes

are set. The following modes are supported:

PM_USER

Counts process running in user mode

PM_KERNEL

Counts process running kernel mode

PM_COUNT

Counting is on

PM_PROCESS

Process-level counting group

Return Values

 0 No errors occurred.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The “pm_delete_program_pgroup Subroutine” on page 988, “pm_error Subroutine” on page 991,

“pm_get_data_pgroup and pm_get_tdata_pgroup Subroutine” on page 998, “pm_set_program_pgroup

Subroutine” on page 1030, “pm_initialize Subroutine” on page 1014, “pm_reset_data_pgroup Subroutine”

on page 1020, “pm_start_pgroup Subroutine” on page 1038, “pm_stop_pgroup Subroutine” on page 1046.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_get_program_pthread Subroutine

Purpose

Retrieves the Performance Monitor settings for a target pthread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_set_program_pthread (pid, tid, ptid, *prog)

pid_t pid;

Base Operating System (BOS) Runtime Services (A-P) 1009

tid_t tid;

ptid_t ptid;

pm_prog_t *prog;

Description

The pm_get_program_pthread subroutine retrieves the Performance Monitor settings for a target

pthread. The pthread must be stopped and must be part of a debuggee process, under the control of the

calling process. This includes mode information and the events being counted, which are in a list of event

identifiers. The identifiers must be selected from the lists returned by the pm_inititialize subroutine.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in

m:n mode, only the ptid parameter must be specified. If both ptid and tid are specified, they must be

referring to a single pthread with the ptid specified and currently running on a kernel thread with specified

tid.

The counting mode includes user mode and kernel mode, and the current counting state.

If the list includes an event that can be used with a threshold (as indicated by the pm_initialize

subroutine), a threshold value is also returned.

Parameters

 pid Process ID of target pthread. Target process must be an

argument of a debug process.

tid Thread ID of target pthread. To ignore this parameter, set

it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,

set it to 0.

*prog Returns which Performance Monitor events and modes

are set. The following modes are supported:

PM_USER

Counts processes running in User Mode

PM_KERNEL

Counts processes running in Kernel Mode

PM_COUNT

Counting is On

Return Values

 0 No errors occurred.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

1010 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The “pm_delete_program_pthread Subroutine” on page 989, “pm_error Subroutine” on page 991,

“pm_get_data_pthread or pm_get_tdata_pthread Subroutine” on page 999, “pm_set_program_pthread

Subroutine” on page 1031, “pm_initialize Subroutine” on page 1014, “pm_reset_data_pthread Subroutine”

on page 1021, “pm_start_pthread Subroutine” on page 1040, “pm_stop_pthread Subroutine” on page

1047.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_get_program_thread Subroutine

Purpose

Retrieves the Performance Monitor settings for a target thread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_get_program_thread (pid, tid, *prog)

pid_t pid;

tid_t tid;

pm_prog_t *prog;

Description

This subroutine supports only the 1:1 threading model. It has been superseded by the

pm_get_program_pthread subroutine, which supports both the 1:1 and the M:N threading models. A call

to this subroutine is equivalent to a call to the pm_get_program_pthread subroutine with a ptid parameter

equal to 0.

The pm_get_program_thread subroutine retrieves the Performance Monitor settings for a target kernel

thread. The thread must be stopped and must be part of a debuggee process under the control of the

calling process. This includes mode information and the events being counted, which are in a list of event

identifiers. The identifiers come from the lists returned by the pm_init subroutine.

The counting mode includes user mode and kernel mode, and the current counting state.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a

threshold value is also returned.

Parameters

 pid Process identifier of the target thread. The target process

must be an argument of a debug process.

tid Thread identifier of the target thread.

Base Operating System (BOS) Runtime Services (A-P) 1011

*prog Returns which Performance Monitor events and modes

are set. Supported modes are:

PM_USER

Counting processes running in User mode

PM_KERNEL

Counting processes running in Kernel mode

PM_COUNT

Counting is On

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

pm_init (“pm_init Subroutine”), pm_error (“pm_error Subroutine” on page 991), pm_set_program_thread

(“pm_set_program_thread Subroutine” on page 1033), pm_delete_program_thread

(“pm_delete_program_thread Subroutine” on page 990), pm_get_data_thread (“pm_get_data_thread or

pm_get_tdata_thread Subroutine” on page 1001), pm_start_thread (“pm_start_thread Subroutine” on page

1041), pm_stop_thread (“pm_stop_thread Subroutine” on page 1048), pm_reset_data_thread

(“pm_reset_data_thread Subroutine” on page 1023) subroutines.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_init Subroutine

Purpose

Initializes the Performance Monitor APIs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_init (filter, *pminfo, *pm_groups_info)

int filter;

pm_info_t *pminfo;

pm_groups_info_t *pm_groups_info;

1012 Technical Reference, Volume 1: Base Operating System and Extensions

Description

Note: The pm_init subroutine cannot be used on processors newer than POWER4™. With such

processors, the pm_initialize subroutine must be used.

The pm_init subroutine initializes the Performance Monitor API library. It returns, after taking into account

a filter on the status of the events, the number of counters available on this processor, and one table per

counter with the list of events available. For each event, an event identifier, a status, a flag indicating if the

event can be used with a threshold, two names, and a description are provided.

The event identifier is used with all the pm_set_program interfaces and is also returned by all of the

pm_get_program interfaces. Only event identifiers present in the table returned can be used. In other

words, the filter is effective for all API calls.

The status describes whether the event has been verified, is still unverified, or works with some caveat, as

explained in the description. This field is necessary because the filter can be any combination of the three

available status bits. The flag points to events that can be used with a threshold.

Only events categorized as verified have gone through full verification. Events categorized as caveat have

been verified only within the limitations documented in the event description. Events categorized as

unverified have undefined accuracy. Use caution with unverified events; the Performance Monitor software

is essentially providing a service to read hardware registers which may or may not have any meaningful

content. Users may experiment with unverified event counters and determine for themselves what, if any,

use they may have for specific tuning situations.

The short mnemonic name is provided for easy keyword-based search in the event table (see the sample

program /usr/samples/pmapi/sysapit2.c for code using mnemonic names). The complete name of the

event is also available and a full description for each event is returned.

The structure returned also has the threshold multiplier for this processor and the processor name

On some platforms, it is possible to specify event groups instead of individual events. Event groups are

predefined sets of events. Rather than specify each event individually, a single group ID is specified. On

some platforms, such as POWER4, use of the event groups is required, and attempts to specify individual

events return an error.

The interface to pm_init has been enhanced to return the list of supported event groups in an optional

third parameter. For binary compatibilty, the third parameter must be explicitly requested by OR-ing the

bitflag, PM_GET_GROUPS, into the filter parameter.

If the pm_groups_info parameter returned by pm_init is NULL, there are no supported event groups for

the platform. Otherwise an array of pm_groups_t structures are returned in the event_groups field. The

length of the array is given by the max_groups field.

The pm_groups_t structure contains a group identifier, two names and a description that are similar to

those of the individual events. In addition, there is an array of integers that specify the events contained in

the group.

Base Operating System (BOS) Runtime Services (A-P) 1013

Parameters

 filter Specifies which event types to return.

PM_VERIFIED

Events which have been verified

PM_UNVERIFIED

Events which have not been verified

PM_CAVEAT

Events which are usable but with caveats as

described in the long description

*pminfo Returned structure with processor name, threshold

multiplier, and a filtered list of events with their current

status.

*pm_groups_info Returned structure with list of supported groups. This

parameter is only meaningful if PM_GET_GROUPS is

OR-ed into the filter parameter.

Return Values

 0 No errors occurred.

Positive error code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

“pm_initialize Subroutine.”

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_initialize Subroutine

Purpose

Initializes the Performance Monitor APIs and returns information about a processor.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_initialize (filter, *pminfo, *pmgroups, proctype)

1014 Technical Reference, Volume 1: Base Operating System and Extensions

int filter;

pm_info2_t *pminfo;

pm_groups_info_t *pmgroups;

int proctype;

Description

The pm_initialize subroutine initializes the Performance Monitor API library and retrieves information

about a type of processor (if the specified proctype is not PM_CURRENT). It takes into account a filter on

the events status, then it returns the number of counters available on this processor and one table per

counter containing the list of available events. For each event, it provides an event identifier, a status, two

names, and a description. The status contains a set of flags indicating: the event status, if the event can

be used with a threshold, if the event is a shared event, and if the event is a grouped-only event.

The event identifier is used with all pm_set_program interfaces and is also returned by all of the

pm_get_program interfaces. Only event identifiers present in the returned table can be used. In other

words, the filter is effective for all API calls.

The status describes whether the event has been verified, is still unverified, or works with some caveat, as

explained in the description. This field is necessary because the filter can be any combination of the three

available status bits. The flag points to events that can be used with a threshold.

Only events categorized as verified have been fully verified. Events categorized as caveat have been

verified only with the limitations documented in the event description. Events categorized as unverified

have an undefined accuracy. Use unverified events cautiously; the Performance Monitor software provides

essentially a service to read hardware registers, which might or might not have meaningful content. Users

might experiment for themselves with unverified event counters to determine if they can be used for

specific tuning situations.

The short mnemonic name is provided for an easy keyword-based search in the event table (see the

sample program /usr/samples/pmapi/cpi.c for code using mnemonic names). The complete name of the

event is also available, and a full description for each event is returned.

The returned structure also contains the threshold multipliers for this processor, the processor name, and

its characteristics. On some platforms, up to three threshold multipliers are available.

On some platforms, it is possible to specify event groups instead of individual events. Event groups are

predefined sets of events. Rather than specify each event individually, a single group ID is specified. On

some platforms, such as POWER4, using event groups is mandatory, and specifying individual events

returns an error.

The interface to pm_initialize returns the list of supported event groups in its third parameter. If the

pmgroups parameter returned by pm_initialize is NULL, there are no supported event groups for the

platform. Otherwise an array of pm_groups_t structures is returned in the event_groups field. The length

of the array is given by the max_groups field.

The pm_groups_t structure contains a group identifier, two names, and a description that are all similar to

those of the individual events. In addition, an array of integers specifies the events contained in the group.

If the proctype parameter is not set to PM_CURRENT, the Performance Monitor APIs library is not

initialized, and the subroutine only returns information about the specified processor and those events and

groups available in its parameters (pminfo and pmgroups) taking into account the filter. If the proctype

parameter is set to PM_CURRENT, in addition to returning the information described, the Performance

Monitor APIs library is initialized and ready to accept other calls.

Base Operating System (BOS) Runtime Services (A-P) 1015

Parameters

 filter Specifies which event types to return.

PM_VERIFIED

Events that have been verified.

PM_UNVERIFIED

Events that have not been verified.

PM_CAVEAT

Events that are usable but with caveats, as explained in the long description.

pmgroups Returned structure containing the list of supported groups.

pminfo Returned structure containing the processor name, the threshold multiplier and a filtered list

of events with their current status.

proctype Initializes the Performance Monitor API and retrieves information about a specific processor

type:

PM_CURRENT

Retrieves information about the current processor and initializes the Performance

Monitor API library.

other Retrieves information about a specific processor.

Return Values

 0 No errors occurred.

Positive error code Refer to the “pm_error Subroutine” on page 991 to decode the error code.

Error Codes

Refer to the “pm_error Subroutine” on page 991.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_initialize subroutine replaces pm_init subroutine. It is mandatory to initialize the Performance

Monitor API library for processors newer than Power4.

“pm_error Subroutine” on page 991.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_reset_data Subroutine

Purpose

Resets system wide Performance Monitor data.

Library

Performance Monitor APIs Library (libpmapi.a)

1016 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <pmapi.h>

int pm_reset_data ()

Description

The pm_reset_data subroutine resets the current system wide Performance Monitor data. The data is a

set (one per hardware counter on the machine used) of 64-bit values. All values are reset to 0.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

See the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program (“pm_set_program Subroutine” on page 1024) subroutine,

pm_get_program (“pm_get_program Subroutine” on page 1002) subroutine, pm_delete program

(“pm_delete_program Subroutine” on page 984) subroutine, pm_get_data (“pm_get_data, pm_get_tdata,

pm_get_data_cpu, and pm_get_tdata_cpu Subroutine” on page 992) subroutine, pm_start (“pm_start

Subroutine” on page 1035) subroutine, pm_stop (“pm_stop Subroutine” on page 1042) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_reset_data_group Subroutine

Purpose

Resets Performance Monitor data for a target thread and the counting group to which it belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_reset_data_group (pid, tid)

pid_t pid;

tid_t tid;

Base Operating System (BOS) Runtime Services (A-P) 1017

Description

This subroutine supports only the 1:1 threading model. It has been superseded by the

pm_reset_data_pgroup subroutine, which supports both the 1:1 and the M:N threading models. A call to

this subroutine is equivalent to a call to the pm_reset_data_pgroup subroutine with a ptid parameter

equal to 0.

The pm_reset_data_group subroutine resets the current Performance Monitor data for a target kernel

thread and the counting group to which it belongs. The thread must be stopped and must be part of a

debugee process, under control of the calling process. The data is a set (one per hardware counter on the

machine used) of 64-bit values. All values are reset to 0. Because the data for all the other threads in the

group is not affected, the group is marked as inconsistent unless it has only one member.

Parameters

 pid Process ID of target thread. Target process must be a

debuggee of the caller process.

tid Thread ID of target thread.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_group (“pm_set_program_group Subroutine” on page 1025)

subroutine, pm_get_program_group (“pm_get_program_group Subroutine” on page 1004) subroutine,

pm_delete_program_group (“pm_delete_program_group Subroutine” on page 985) subroutine,

pm_start_group (“pm_start_group Subroutine” on page 1035) subroutine, pm_stop_group

(“pm_stop_group Subroutine” on page 1043) subroutine, pm_get_data_group (“pm_get_data_group and

pm_get_tdata_group Subroutine” on page 994) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_reset_data_mygroup Subroutine

Purpose

Resets Performance Monitor data for the calling thread and the counting group to which it belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

1018 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <pmapi.h>

int pm_reset_data_mygroup()

Description

The pm_reset_data_mygroup subroutine resets the current Performance Monitor data for the calling

kernel thread and the counting group to which it belongs. The data is a set (one per hardware counter on

the machine used) of 64-bit values. All values are reset to 0. Because the data for all the other threads in

the group is not affected, the group is marked as inconsistent unless it has only one member.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_mygroup (“pm_set_program_mygroup Subroutine” on page 1027)

subroutine, pm_get_program_mygroup (“pm_get_program_mygroup Subroutine” on page 1005)

subroutine, pm_delete_program_mygroup (“pm_delete_program_mygroup Subroutine” on page 986)

subroutine, pm_start_mygroup (“pm_start_mygroup Subroutine” on page 1037) subroutine,

pm_stop_mygroup (“pm_stop_mygroup Subroutine” on page 1044) subroutine, pm_get_data_mygroup

(“pm_get_data_mygroup or pm_get_tdata_mygroup Subroutine” on page 995) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_reset_data_mythread Subroutine

Purpose

Resets Performance Monitor data for the calling thread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_reset_data_mythread()

Base Operating System (BOS) Runtime Services (A-P) 1019

Description

The pm_reset_data_mythread subroutine resets the current Performance Monitor data for the calling

kernel thread. The data is a set (one per hardware counter on the machine) of 64-bit values. All values are

reset to 0.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_mythread (“pm_set_program_mythread Subroutine” on page 1028)

subroutine, pm_get_program_mythread (“pm_get_program_mythread Subroutine” on page 1007)

subroutine, pm_delete_program_mythread (“pm_delete_program_mythread Subroutine” on page 987)

subroutine, pm_start_mythread (“pm_start_mythread Subroutine” on page 1038) subroutine,

pm_stop_mythread (“pm_stop_mythread Subroutine” on page 1045) subroutine, pm_get_data_mythread

(“pm_get_data_mythread or pm_get_tdata_mythread Subroutine” on page 997) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_reset_data_pgroup Subroutine

Purpose

Resets Performance Monitor data for a target pthread and the counting group to which it belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_reset_data_pgroup (pid, tid, ptid)

pid_t pid;

tid_t tid;

ptid_t ptid;

Description

The pm_reset_data_pgroup subroutine resets the current Performance Monitor data for a target pthread

and the counting group to which it belongs. The pthread must be stopped and must be part of a debugee

process, under control of the calling process. The data is a set (one per hardware counter on the machine

1020 Technical Reference, Volume 1: Base Operating System and Extensions

used) of 64-bit values. All values are reset to 0. Because the data for all the other pthreads in the group is

not affected, the group is marked as inconsistent unless it has only one member.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in

m:n mode, only the ptid parameter must be specified. If both ptid and tid are specified, they must be

referring to a single pthread with the ptid specified and currently running on a kernel thread with specified

tid.

Parameters

 pid Process ID of target pthread. Target process must be a

debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set

it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,

set it to 0.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The “pm_delete_program_pgroup Subroutine” on page 988, “pm_error Subroutine” on page 991,

“pm_get_data_pgroup and pm_get_tdata_pgroup Subroutine” on page 998, “pm_get_program_pgroup

Subroutine” on page 1008, “pm_initialize Subroutine” on page 1014, “pm_reset_data_pgroup Subroutine”

on page 1020, “pm_set_program_pgroup Subroutine” on page 1030, “pm_start_pgroup Subroutine” on

page 1038, “pm_stop_pgroup Subroutine” on page 1046.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_reset_data_pthread Subroutine

Purpose

Resets Performance Monitor data for a target pthread.

Library

Performance Monitor APIs Library (libpmapi.a)

Base Operating System (BOS) Runtime Services (A-P) 1021

Syntax

#include <pmapi.h>

int pm_reset_data_pthread (pid, tid, ptid)

pid_t pid;

tid_t tid;

ptid_t ptid;

Description

The pm_reset_data_pthread subroutine resets the current Performance Monitor data for a target pthread.

The pthread must be stopped and must be part of a debuggee process. The data is a set (one per

hardware counter on the machine used) of 64-bit values. All values are reset to 0.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in

m:n mode, only the ptid parameter must be specified. If both ptid and tid are specified, they must be

referring to a single pthread with the ptid specified and currently running on a kernel thread with specified

tid.

Parameters

 pid Process ID of target pthread. Target process must be a

debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set

it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,

set it to 0.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, datatypes, and subroutines.

Related Information

The “pm_delete_program_pthread Subroutine” on page 989, “pm_error Subroutine” on page 991,

“pm_get_data_pthread or pm_get_tdata_pthread Subroutine” on page 999, “pm_get_program_pthread

Subroutine” on page 1009, “pm_initialize Subroutine” on page 1014, “pm_reset_data_pthread Subroutine”

on page 1021, “pm_set_program_pthread Subroutine” on page 1031, “pm_start_pthread Subroutine” on

page 1040, “pm_stop_pthread Subroutine” on page 1047.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

1022 Technical Reference, Volume 1: Base Operating System and Extensions

pm_reset_data_thread Subroutine

Purpose

Resets Performance Monitor data for a target thread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_reset_data_thread (pid, tid)

pid_t pid;

tid_t tid;

Description

This subroutine supports only the 1:1 threading model. It has been superseded by the

pm_reset_data_pthread subroutine, which supports both the 1:1 and the M:N threading models. A call to

this subroutine is equivalent to a call to the pm_reset_data_pthread subroutine with a ptid parameter

equal to 0.

The pm_reset_data_thread subroutine resets the current Performance Monitor data for a target kernel

thread. The thread must be stopped and must be part of a debuggee process. The data is a set (one per

hardware counter on the machine used) of 64-bit values. All values are reset to 0.

Parameters

 pid Process id of target thread. Target process must be a

debuggee of the caller process.

tid Thread id of target thread.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, datatypes, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_thread (“pm_set_program_thread Subroutine” on page 1033)

subroutine, pm_get_program_thread (“pm_get_program_thread Subroutine” on page 1011) subroutine,

pm_delete_program_thread (“pm_delete_program_thread Subroutine” on page 990) subroutine,

pm_start_thread (“pm_start_thread Subroutine” on page 1041) subroutine, pm_stop_thread

Base Operating System (BOS) Runtime Services (A-P) 1023

(“pm_stop_thread Subroutine” on page 1048) subroutine, pm_get_data_thread (“pm_get_data_thread or

pm_get_tdata_thread Subroutine” on page 1001) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_set_program Subroutine

Purpose

Sets system wide Performance Monitor programmation.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_set_program (*prog)

pm_prog_t *prog;

Description

The pm_set_program subroutine sets system wide Performance Monitor programmation. The setting

includes the events to be counted, and a mode in which to count. The events to count are in a list of event

identifiers. The identifiers must be selected from the lists returned by the pm_init subroutine.

The counting mode includes User Mode and/or Kernel Mode, the Initial Counting State, and the Process

Tree Mode. The Process Tree Mode sets counting to On only for the calling process and its descendants.

The defaults are set to Off for User Mode and Kernel Mode. The initial default state is set to delay

counting until the pm_start subroutine is called, and to count the activity of all the processes running in

the system.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a

threshold value can also be specified.

On some platforms, event groups can be specified instead of individual events. This is done by setting the

bitfield is_group in the mode, and placing the group ID into the first element of the events array. (The

group ID was obtained by pm_init).

1024 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 *prog Specifies the events and modes to use in Performance

Monitor setup. The following modes are supported:

PM_USER

Counts processes running in User Mode (default

is set to Off)

PM_KERNEL

Counts processes running in Kernel Mode

(default is set to Off)

PM_COUNT

Starts counting immediately (default is set to Not

to Start Counting)

PM_PROCTREE

Sets counting to On only for the calling process

and its descendants (default is set to Off)

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_get_program (“pm_get_program Subroutine” on page 1002) subroutine,

pm_delete_program (“pm_delete_program Subroutine” on page 984) subroutine, pm_get_data

(“pm_get_data, pm_get_tdata, pm_get_data_cpu, and pm_get_tdata_cpu Subroutine” on page 992)

subroutine, pm_start (“pm_start Subroutine” on page 1035) subroutine, pm_stop (“pm_stop Subroutine”

on page 1042) subroutine, pm_reset_data (“pm_reset_data Subroutine” on page 1016) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_set_program_group Subroutine

Purpose

Sets Performance Monitor programmation for a target thread and creates a counting group.

Library

Performance Monitor APIs Library (libpmapi.a)

Base Operating System (BOS) Runtime Services (A-P) 1025

Syntax

#include <pmapi.h>

int pm_set_program_group (pid, tid, *prog)

pid_t pid;

tid_t tid;

pm_prog_t *prog;

Description

This subroutine supports only the 1:1 threading model. It has been superseded by the

pm_set_program_pgroup subroutine, which supports both the 1:1 and the M:N threading models. A call

to this subroutine is equivalent to a call to the pm_set_program_pgroup subroutine with a ptid parameter

equal to 0.

The pm_set_program_group subroutine sets the Performance Monitor programmation for a target kernel

thread. The thread must be stopped and must be part of a debuggee process, under the control of the

calling process. The setting includes the events to be counted and a mode in which to count. The events

to count are in a list of event identifiers. The identifiers must be selected from the lists returned by the

pm_init subroutine.

This call also creates a counting group, which includes the target thread and any thread which it, or any of

its descendants, will create in the future. Optionally, the group can be defined as also containing all the

existing and future threads belonging to the target process.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults

are set to Off for User Mode and Kernel Mode, and the initial default state is set to delay counting until the

pm_start_group subroutine is called.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a

threshold value can also be specified.

Parameters

 pid Process ID of target thread. Target process must be a

debuggee of a calling process.

tid Thread ID of target thread.

*prog

PM_USER

Counts processes running in User Mode (default

is set to Off)

PM_KERNEL

Counts processes running in Kernel Mode

(default is set to Off)

PM_COUNT

Starts counting immediately (default is set to Not

to Start Counting)

PM_PROCESS

Creates a process-level counting group

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

1026 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_get_program_group (“pm_get_program_group Subroutine” on page 1004)

subroutine, pm_delete_program_group (“pm_delete_program_group Subroutine” on page 985)

subroutine, pm_get_data_group (“pm_get_data_group and pm_get_tdata_group Subroutine” on page

994) subroutine, pm_start_group (“pm_start_group Subroutine” on page 1035) subroutine,

pm_stop_group (“pm_stop_group Subroutine” on page 1043) subroutine, pm_reset_data_group

(“pm_reset_data_group Subroutine” on page 1017) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_set_program_mygroup Subroutine

Purpose

Sets Performance Monitor programmation for the calling thread and creates a counting group.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_set_program_mygroup (*prog)

pm_prog_t *prog;

Description

The pm_set_program_mygroup subroutine sets the Performance Monitor programmation for the calling

kernel thread. The setting includes the events to be counted and a mode in which to count. The events to

count are in a list of event identifiers. The identifiers must be selected from the lists returned by the

pm_init subroutine.

This call also creates a counting group, which includes the calling thread and any thread which it, or any

of its descendants, will create in the future. Optionally, the group can be defined as also containing all the

existing and future threads belonging to the calling process.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults

are set to Off for User Mode and Kernel Mode, and the inital default state is set to delay counting until the

pm_start_mygroup subroutine is called.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a

threshold value can also be specified.

Base Operating System (BOS) Runtime Services (A-P) 1027

Parameters

 *prog Specifies the events and mode to use in Performance

Monitor setup. The following modes are supported:

PM_USER

Counts processes running in User Mode (default

is set to Off)

PM_KERNEL

Counts processes running in Kernel Mode

(default is set to Off)

PM_COUNT

Starts counting immediately (default is set to Not

to Start Counting)

PM_PROCESS

Creates a process-level counting group

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_get_program_mygroup (“pm_get_program_mygroup Subroutine” on page 1005)

subroutine, pm_delete_program_mygroup (“pm_delete_program_mygroup Subroutine” on page 986)

subroutine, pm_get_data_mygroup (“pm_get_data_mygroup or pm_get_tdata_mygroup Subroutine” on

page 995) subroutine, pm_start_mygroup (“pm_start_mygroup Subroutine” on page 1037) subroutine,

pm_stop_mygroup (“pm_stop_mygroup Subroutine” on page 1044) subroutine,

pm_reset_data_mygroup (“pm_reset_data_mygroup Subroutine” on page 1018) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_set_program_mythread Subroutine

Purpose

Sets Performance Monitor programmation for the calling thread.

Library

Performance Monitor APIs Library (libpmapi.a)

1028 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <pmapi.h>

int pm_set_program_mythread (*prog)

pm_prog_t *prog;

Description

The pm_set_program_mythread subroutine sets the Performance Monitor programmation for the calling

kernel thread. The setting includes the events to be counted, and a mode in which to count. The events to

count are in a list of event identifiers. The identifiers must be selected from the lists returned by the

pm_init subroutine.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults

are set to Off for User Mode and Kernel Mode, and the initial default state is set to delay counting until the

pm_start_mythread subroutine is called.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a

threshold value can also be specified.

Parameters

 *prog Specifies the event modes to use in Performance Monitor

setup. The following modes are supported:

PM_USER

Counts processes running in User Mode (default

is set to Off)

PM_KERNEL

Counts processes running in Kernel Mode

(default is set to Off)

PM_COUNT

Starts counting immediately (default is set to Not

to Start Counting)

PM_PROCESS

Creates a process-level counting group

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Base Operating System (BOS) Runtime Services (A-P) 1029

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_get_program_mythread (“pm_get_program_mythread Subroutine” on page 1007)

subroutine, pm_delete_program_mythread (“pm_delete_program_mythread Subroutine” on page 987)

subroutine, pm_get_data_mythread (“pm_get_data_mythread or pm_get_tdata_mythread Subroutine” on

page 997) subroutine, pm_start_mythread (“pm_start_mythread Subroutine” on page 1038) subroutine,

pm_stop_mythread (“pm_stop_mythread Subroutine” on page 1045) subroutine,

pm_reset_data_mythread (“pm_reset_data_mythread Subroutine” on page 1019) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_set_program_pgroup Subroutine

Purpose

Sets Performance Monitor programmation for a target pthread and creates a counting group.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_set_program_pgroup (pid, tid, ptid, *prog)

pid_t pid;

tid_t tid;

ptid_t ptid;

pm_prog_t *prog;

Description

The pm_set_program_pgroup subroutine sets the Performance Monitor programmation for a target

pthread. The pthread must be stopped and must be part of a debuggee process, under the control of the

calling process. The setting includes the events to be counted and a mode in which to count. The events

to count are in a list of event identifiers. The identifiers must be selected from the lists returned by the

pm_inititialize subroutine.

This call also creates a counting group, which includes the target pthread and any pthread that it, or any of

its descendants, will create in the future. Optionally, the group can be defined as also containing all the

existing and future pthreads belonging to the target process.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in

m:n mode, only the ptid parameter must be specified. If both ptid and tid are specified, they must be

referring to a single pthread with the ptid specified and currently running on a kernel thread with specified

tid.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults

are set to Off for User Mode and Kernel Mode, and the initial default state is set to delay counting until the

pm_start_pgroup subroutine is called.

If the list includes an event that can be used with a threshold (as indicated by the pm_initialize

subroutine), a threshold value can also be specified.

1030 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 pid Process ID of target pthread. Target process must be a

debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set

it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,

set it to 0.

*prog Specifies the event modes to use in Performance Monitor

setup. The following modes are supported:

PM_USER

Counts processes running in User Mode (default

is set to Off)

PM_KERNEL

Counts processes running in Kernel Mode

(default is set to Off)

PM_COUNT

Starts counting immediately (default is set to Not

to Start Counting)

PM_PROCESS

Creates a process-level counting group

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The “pm_delete_program_pgroup Subroutine” on page 988, “pm_error Subroutine” on page 991,

“pm_get_data_pgroup and pm_get_tdata_pgroup Subroutine” on page 998, “pm_get_program_pgroup

Subroutine” on page 1008, “pm_initialize Subroutine” on page 1014, “pm_reset_data_pgroup Subroutine”

on page 1020, “pm_start_pgroup Subroutine” on page 1038, “pm_stop_pgroup Subroutine” on page 1046.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_set_program_pthread Subroutine

Purpose

Sets Performance Monitor programmation for a target pthread.

Base Operating System (BOS) Runtime Services (A-P) 1031

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_set_program_pthread (pid, tid, ptid, *prog)

pid_t pid;

tid_t tid;

ptid_t ptid;

pm_prog_t *prog;

Description

The pm_set_program_pthread subroutine sets the Performance Monitor programmation for a target

pthread. The pthread must be stopped and must be part of a debuggee process, under the control of the

calling process. The setting includes the events to be counted and a mode in which to count. The events

to count are in a list of event identifiers. The identifiers must be selected from the lists returned by the

pm_inititialize subroutine.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in

m:n mode, only the ptid parameter must be specified. If both ptid and tid are specified, they must be

referring to a single pthread with the ptid specified and currently running on a kernel thread with specified

tid.

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults

are set to Off for User Mode and Kernel Mode, and the Initial Default State is set to delay counting until

the pm_start_pthread subroutine is called.

If the list includes an event which can be used with a threshold (as indicated by the pm_initialize

subroutine), a threshold value can also be specified.

Parameters

 pid Process ID of target pthread. Target process must be a

debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set

it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,

set it to 0.

*prog Specifies the event modes to use in Performance Monitor

setup. The following modes are supported:

PM_USER

Counts processes running in User Mode (default

is set to Off)

PM_KERNEL

Counts processes running in Kernel Mode

(default is set to Off)

PM_COUNT

Starts counting immediately (default is set to Not

to Start Counting)

1032 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The “pm_delete_program_pthread Subroutine” on page 989, “pm_error Subroutine” on page 991,

“pm_get_data_pthread or pm_get_tdata_pthread Subroutine” on page 999, “pm_get_program_pthread

Subroutine” on page 1009, “pm_initialize Subroutine” on page 1014, “pm_reset_data_pthread Subroutine”

on page 1021, “pm_start_pthread Subroutine” on page 1040, “pm_stop_pthread Subroutine” on page

1047.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_set_program_thread Subroutine

Purpose

Sets Performance Monitor programmation for a target thread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_set_program_thread (pid, tid, *prog)

pid_t pid;

tid_t tid;

pm_prog_t *prog;

Description

This subroutine supports only the 1:1 threading model. It has been superseded by the

pm_set_program_pthread subroutine, which supports both the 1:1 and the M:N threading models. A call

to this subroutine is equivalent to a call to the pm_set_program_pthread subroutine with a ptid parameter

equal to 0.

The pm_set_program_thread subroutine sets the Performance Monitor programmation for a target kernel

thread. The thread must be stopped and must be part of a debuggee process, under the control of the

calling process. The setting includes the events to be counted and a mode in which to count. The events

to count are in a list of event identifiers. The identifiers must be selected from the lists returned by the

pm_init subroutine.

Base Operating System (BOS) Runtime Services (A-P) 1033

The counting mode includes User Mode and/or Kernel Mode, and the Initial Counting State. The defaults

are set to Off for User Mode and Kernel Mode, and the Initial Default State is set to delay counting until

the pm_start_thread subroutine is called.

If the list includes an event which can be used with a threshold (as indicated by the pm_init subroutine), a

threshold value can also be specified.

Parameters

 pid Process ID of target thread. Target process must be a

debuggee of the caller process.

tid Thread ID of target thread.

*prog Specifies the event modes to use in Performance Monitor

setup. The following modes are supported:

PM_USER

Counts processes running in User Mode (default

is set to Off)

PM_KERNEL

Counts processes running in Kernel Mode

(default is set to Off)

PM_COUNT

Starts counting immediately (default is set to Not

to Start Counting)

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_get_program_thread (“pm_get_program_thread Subroutine” on page 1011)

subroutine, pm_delete_program_thread (“pm_delete_program_thread Subroutine” on page 990)

subroutine, pm_get_data_thread (“pm_get_data_thread or pm_get_tdata_thread Subroutine” on page

1001) subroutine, pm_start_thread (“pm_start_thread Subroutine” on page 1041) subroutine,

pm_stop_thread (“pm_stop_thread Subroutine” on page 1048) subroutine, pm_reset_data_thread

(“pm_reset_data_thread Subroutine” on page 1023) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

1034 Technical Reference, Volume 1: Base Operating System and Extensions

pm_start Subroutine

Purpose

Starts system wide Performance Monitor counting.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_start()

Description

The pm_start subroutine starts system wide Performance Monitor counting.

Return Values

 0 Operation completed successfully.

Positive Error Code. Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program (“pm_set_program Subroutine” on page 1024) subroutine,

pm_get_program (“pm_get_program Subroutine” on page 1002) subroutine, pm_delete_program

(“pm_delete_program Subroutine” on page 984) subroutine, pm_get_data (“pm_get_data, pm_get_tdata,

pm_get_data_cpu, and pm_get_tdata_cpu Subroutine” on page 992) subroutine, pm_stop (“pm_stop

Subroutine” on page 1042) subroutine, pm_reset_data (“pm_reset_data Subroutine” on page 1016)

subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_start_group Subroutine

Purpose

Starts Performance Monitor counting for the counting group to which a target thread belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Base Operating System (BOS) Runtime Services (A-P) 1035

Syntax

#include <pmapi.h>

int pm_start_group (pid, tid)

pid_t pid;

tid_t tid;

Description

This subroutine supports only the 1:1 threading model. It has been superseded by the pm_start_pgroup

subroutine, which supports both the 1:1 and the M:N threading models. A call to this subroutine is

equivalent to a call to the pm_start_pgroup subroutine with a ptid parameter equal to 0.

The pm_start_group subroutine starts the Performance Monitor counting for a target kernel thread and

the counting group to which it belongs. This counting is effective immediately for the target thread. For all

the other thread members of the counting group, the counting will start after their next redispatch, but only

if their current counting state is already set to On. The counting state of a thread in a group is obtained by

ANDing the thread counting state with the group state. If their counting state is currently set to Off, no

counting starts until they call either the pm_start_mythread subroutine or the pm_start_mygroup

themselves, or until a debugger process calls the pm_start_thread subroutine or the pm_start_group

subroutine on their behalf.

Parameters

 pid Process ID of target thread. Target process must be a

debuggee of the caller process.

tid Thread ID of target thread.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_group (“pm_set_program_group Subroutine” on page 1025)

subroutine, pm_get_program_group (“pm_get_program_group Subroutine” on page 1004) subroutine,

pm_delete_program_group (“pm_delete_program_group Subroutine” on page 985) subroutine,

pm_get_data_group (“pm_get_data_group and pm_get_tdata_group Subroutine” on page 994)

subroutine, pm_stop_group (“pm_stop_group Subroutine” on page 1043) subroutine,

pm_reset_data_group (“pm_reset_data_group Subroutine” on page 1017) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

1036 Technical Reference, Volume 1: Base Operating System and Extensions

pm_start_mygroup Subroutine

Purpose

Starts Performance Monitor counting for the group to which the calling thread belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int_pm_start_mygroup()

Description

The pm_start_mygroup subroutine starts the Performance Monitor counting for the calling kernel thread

and the counting group to which it belongs. Counting is effective immediately for the calling thread. For all

the other threads members of the counting group, the counting starts after their next redispatch, but only if

their current counting state is already set to On. The counting state of a thread in a group is obtained by

ANDing the thread counting state with the group state. If their counting state is currently set to Off, no

counting starts until they call either the pm_start_mythread subroutine or the pm_start_mygroup

subroutine themselves, or until a debugger process calls the pm_start_thread subroutine or the

pm_start_group subroutine on their behalf.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_mygroup (“pm_set_program_mygroup Subroutine” on page 1027)

subroutine, pm_get_program_mygroup (“pm_get_program_mygroup Subroutine” on page 1005)

subroutine, pm_delete_program_mygroup (“pm_delete_program_mygroup Subroutine” on page 986)

subroutine, pm_get_data_mygroup (“pm_get_data_mygroup or pm_get_tdata_mygroup Subroutine” on

page 995) subroutine, pm_stop_mygroup (“pm_stop_mygroup Subroutine” on page 1044) subroutine,

pm_reset_data_mygroup (“pm_reset_data_mygroup Subroutine” on page 1018) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

Base Operating System (BOS) Runtime Services (A-P) 1037

pm_start_mythread Subroutine

Purpose

Starts Performance Monitor counting for the calling thread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_start_mythread()

Description

The pm_start_mythread subroutine starts Performance Monitor counting for the calling kernel thread.

Counting is effective immediately unless the thread is in a group, and that group’s counting is not currently

set to On. The counting state of a thread in a group is obtained by ANDing the thread counting state with

the group state.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_mythread (“pm_set_program_mythread Subroutine” on page 1028)

subroutine, pm_get_program_mythread (“pm_get_program_mythread Subroutine” on page 1007)

subroutine, pm_delete_program_mythread (“pm_delete_program_mythread Subroutine” on page 987)

subroutine, pm_get_data_mythread (“pm_get_data_mythread or pm_get_tdata_mythread Subroutine” on

page 997) subroutine, pm_stop_mythread (“pm_stop_mythread Subroutine” on page 1045) subroutine,

pm_reset_data_mythread (“pm_reset_data_mythread Subroutine” on page 1019) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_start_pgroup Subroutine

Purpose

Starts Performance Monitor counting for the counting group to which a target pthread belongs.

1038 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_start_pgroup (pid, tid, ptid)

pid_t pid;

tid_t tid;

ptid_t ptid;

Description

The pm_start_pgroup subroutine starts the Performance Monitor counting for a target pthread and the

counting group to which it belongs. This counting is effective immediately for the target pthread. For all the

other thread members of the counting group, the counting will start after their next redispatch, but only if

their current counting state is already set to On. The counting state of a pthread in a group is obtained by

ANDing the pthread counting state with the group state. If their counting state is currently set to Off, no

counting starts until they call either the pm_start_mythread subroutine or the pm_start_mygroup

themselves, or until a debugger process calls the pm_start_pthread subroutine or the pm_start_pgroup

subroutine on their behalf.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in

m:n mode, only the ptid parameter must be specified. If both ptid and tid are specified, they must be

referring to a single pthread with the ptid specified and currently running on a kernel thread with specified

tid.

Parameters

 pid Process ID of target pthread. Target process must be a

debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set

it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,

set it to 0.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The “pm_delete_program_pgroup Subroutine” on page 988, “pm_error Subroutine” on page 991,

“pm_get_data_pgroup and pm_get_tdata_pgroup Subroutine” on page 998, “pm_get_program_pgroup

Base Operating System (BOS) Runtime Services (A-P) 1039

Subroutine” on page 1008, “pm_initialize Subroutine” on page 1014, “pm_reset_data_pgroup Subroutine”

on page 1020, “pm_set_program_pgroup Subroutine” on page 1030, “pm_stop_pgroup Subroutine” on

page 1046.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_start_pthread Subroutine

Purpose

Starts Performance Monitor counting for a target pthread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_start_pthread (pid, tid, ptid)

pid_t pid;

tid_t tid;

ptid_t ptid;

Description

The pm_start_pthread subroutine starts Performance Monitor counting for a target pthread. The pthread

must be stopped and must be part of a debuggee process, under the control of the calling process.

Counting is effective immediately unless the thread is in a group and the group counting is not currently

set to On. The counting state of a thread in a group is obtained by ANDing the thread counting state with

the group state.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in

m:n mode, only the ptid parameter must be specified. If both ptid and tid are specified, they must be

referring to a single pthread with the ptid specified and currently running on a kernel thread with specified

tid.

Parameters

 pid Process ID of target pthread. Target process must be a

debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set

it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,

set it to 0.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

1040 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The “pm_delete_program_pthread Subroutine” on page 989, “pm_error Subroutine” on page 991,

“pm_get_data_pthread or pm_get_tdata_pthread Subroutine” on page 999, “pm_get_program_pthread

Subroutine” on page 1009, “pm_initialize Subroutine” on page 1014, “pm_reset_data_pthread Subroutine”

on page 1021, “pm_set_program_pthread Subroutine” on page 1031, “pm_stop_pthread Subroutine” on

page 1047.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_start_thread Subroutine

Purpose

Starts Performance Monitor counting for a target thread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_start_thread (pid, tid)

pid_t pid;

tid_t tid;

Description

This subroutine supports only the 1:1 threading model. It has been superseded by the pm_start_pthread

subroutine, which supports both the 1:1 and the M:N threading models. A call to this subroutine is

equivalent to a call to the pm_start_pthread subroutine with a ptid parameter equal to 0.

The pm_start_thread subroutine starts Performance Monitor counting for a target kernel thread. The

thread must be stopped and must be part of a debuggee process, under the control of the calling process.

Counting is effective immediately unless the thread is in a group and the group counting is not currently

set to On. The counting state of a thread in a group is obtained by ANDing the thread counting state with

the group state.

Parameters

 pid Process ID of target thread. Target process must be a

debuggee of the caller process.

tid Thread ID of target thread.

Base Operating System (BOS) Runtime Services (A-P) 1041

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_thread (“pm_set_program_thread Subroutine” on page 1033)

subroutine, pm_get_program_thread (“pm_get_program_thread Subroutine” on page 1011) subroutine,

pm_delete_program_thread (“pm_delete_program_thread Subroutine” on page 990) subroutine,

pm_get_data_thread (“pm_get_data_thread or pm_get_tdata_thread Subroutine” on page 1001)

subroutine, pm_stop_thread (“pm_stop_thread Subroutine” on page 1048) subroutine,

pm_reset_data_thread (“pm_reset_data_thread Subroutine” on page 1023) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_stop Subroutine

Purpose

Stops system wide Performance Monitor counting.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_stop ()

Description

The pm_stop subroutine stops system wide Performance Monitoring counting.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

1042 Technical Reference, Volume 1: Base Operating System and Extensions

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program (“pm_set_program Subroutine” on page 1024) subroutine,

pm_get_program (“pm_get_program Subroutine” on page 1002) subroutine, pm_delete_program

(“pm_delete_program Subroutine” on page 984) subroutine, pm_get_data (“pm_get_data, pm_get_tdata,

pm_get_data_cpu, and pm_get_tdata_cpu Subroutine” on page 992) subroutine, pm_start (“pm_start

Subroutine” on page 1035) subroutine, pm_reset_data (“pm_reset_data Subroutine” on page 1016)

subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_stop_group Subroutine

Purpose

Stops Performance Monitor counting for the group to which a target thread belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_stop_group (pid, tid)

pid_t pid;

tid_t tid;

Description

This subroutine supports only the 1:1 threading model. It has been superseded by the pm_stop_pgroup

subroutine, which supports both the 1:1 and the M:N threading models. A call to this subroutine is

equivalent to a call to the pm_stop_pgroup subroutine with a ptid parameter equal to 0.

The pm_stop subroutine stops Performance Monitor counting for a target kernel thread, the counting

group to which it belongs, and all the other thread members of the same group. Counting stops

immediately for all the threads in the counting group. The target thread must be stopped and must be part

of a debuggee process, under control of the calling process.

Parameters

 pid Process ID of target thread. Target process must be a

debuggee of the caller process.

tid Thread ID of target thread.

Return Values

 0 Operation completed successfully.

Base Operating System (BOS) Runtime Services (A-P) 1043

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_group (“pm_set_program_group Subroutine” on page 1025)

subroutine, pm_get_program_group (“pm_get_program_group Subroutine” on page 1004) subroutine,

pm_delete_program_group (“pm_delete_program_group Subroutine” on page 985) subroutine,

pm_get_data_group (“pm_get_data_group and pm_get_tdata_group Subroutine” on page 994)

subroutine, pm_start_group (“Syntax” on page 1036) subroutine, pm_reset_data_group

(“pm_reset_data_group Subroutine” on page 1017) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_stop_mygroup Subroutine

Purpose

Stops Performance Monitor counting for the group to which the calling thread belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_stop_mygroup ()

Description

The pm_stop_mygroup subroutine stops Performance Monitor counting for the group to which the calling

kernel thread belongs. This is effective immediately for all the threads in the counting group.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

1044 Technical Reference, Volume 1: Base Operating System and Extensions

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_mygroup (“pm_set_program_mygroup Subroutine” on page 1027)

subroutine, pm_get_program_mygroup (“pm_get_program_mygroup Subroutine” on page 1005)

subroutine, pm_delete_program_mygroup (“pm_delete_program_mygroup Subroutine” on page 986)

subroutine, pm_get_data_mygroup (“pm_get_data_mygroup or pm_get_tdata_mygroup Subroutine” on

page 995) subroutine, pm_start_mygroup (“Description” on page 1037) subroutine,

pm_reset_data_mygroup (“pm_reset_data_mygroup Subroutine” on page 1018) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_stop_mythread Subroutine

Purpose

Stops Performance Monitor counting for the calling thread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_stop_mythread ()

Description

The pm_stop_mythread subroutine stops Performance Monitor counting for the calling kernel thread.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_mythread (“pm_set_program_mythread Subroutine” on page 1028)

subroutine, pm_get_program_mythread (“pm_get_program_mythread Subroutine” on page 1007)

Base Operating System (BOS) Runtime Services (A-P) 1045

subroutine, pm_delete_program_mythread (“pm_delete_program_mythread Subroutine” on page 987)

subroutine, pm_get_data_mythread (“pm_get_data_mythread or pm_get_tdata_mythread Subroutine” on

page 997) subroutine, pm_start_mythread (“pm_start_mythread Subroutine” on page 1038) subroutine,

pm_reset_data_mythread (“pm_reset_data_mythread Subroutine” on page 1019) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_stop_pgroup Subroutine

Purpose

Stops Performance Monitor counting for the group to which a target pthread belongs.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_stop_pgroup (pid, tid, ptid)

pid_t pid;

tid_t tid;

ptid_t ptid;

Description

The pm_stop_pgroup subroutine stops Performance Monitor counting for a target pthread, the counting

group to which it belongs, and all the other pthread members of the same group. Counting stops

immediately for all the pthreads in the counting group. The target pthread must be stopped and must be

part of a debuggee process, under control of the calling process.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in

m:n mode, only the ptid parameter must be specified. If both ptid and tid are specified, they must be

referring to a single pthread with the ptid specified and currently running on a kernel thread with specified

tid.

Parameters

 pid Process ID of target pthread. Target process must be a

debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set

it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,

set it to 0.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

1046 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The “pm_delete_program_pgroup Subroutine” on page 988, “pm_error Subroutine” on page 991,

“pm_get_data_pgroup and pm_get_tdata_pgroup Subroutine” on page 998, “pm_get_program_pgroup

Subroutine” on page 1008, “pm_initialize Subroutine” on page 1014, “pm_reset_data_pgroup Subroutine”

on page 1020, “pm_set_program_pgroup Subroutine” on page 1030, “pm_start_pgroup Subroutine” on

page 1038.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_stop_pthread Subroutine

Purpose

Stops Performance Monitor counting for a target pthread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_stop_pthread (pid, tid, ptid)

pid_t pid;

tid_t tid;

ptid_t ptid;

Description

The pm_stop_pthread subroutine stops Performance Monitor counting for a target pthread. The pthread

must be stopped and must be part of a debuggee process, under the control of the calling process.

If the pthread is running in 1:1 mode, only the tid parameter must be specified. If the pthread is running in

m:n mode, only the ptid parameter must be specified. If both ptid and tid are specified, they must be

referring to a single pthread with the ptid specified and currently running on a kernel thread with specified

tid.

Parameters

 pid Process ID of target pthread. Target process must be a

debuggee of the caller process.

tid Thread ID of target pthread. To ignore this parameter, set

it to 0.

ptid Pthread ID of the target pthread. To ignore this parameter,

set it to 0.

Base Operating System (BOS) Runtime Services (A-P) 1047

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The “pm_delete_program_pthread Subroutine” on page 989, “pm_error Subroutine” on page 991,

“pm_get_data_pthread or pm_get_tdata_pthread Subroutine” on page 999, “pm_get_program_pthread

Subroutine” on page 1009, “pm_initialize Subroutine” on page 1014, “pm_reset_data_pthread Subroutine”

on page 1021, “pm_set_program_pthread Subroutine” on page 1031, “pm_start_pthread Subroutine” on

page 1040.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

pm_stop_thread Subroutine

Purpose

Stops Performance Monitor counting for a target thread.

Library

Performance Monitor APIs Library (libpmapi.a)

Syntax

#include <pmapi.h>

int pm_stop_thread (pid, tid)

pid_t pid;

tid_t tid;

Description

This subroutine supports only the 1:1 threading model. It has been superseded by the pm_stop_pthread

subroutine, which supports both the 1:1 and the M:N threading models. A call to this subroutine is

equivalent to a call to the pm_stop_pthread subroutine with a ptid parameter equal to 0.

The pm_stop_thread subroutine stops Performance Monitor counting for a target kernel thread. The

thread must be stopped and must be part of a debuggee process, under the control of the calling process.

Parameters

 pid Process ID of target thread. Target process must be a

debuggee of the caller process.

1048 Technical Reference, Volume 1: Base Operating System and Extensions

tid Thread ID of target thread.

Return Values

 0 Operation completed successfully.

Positive Error Code Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine to decode the

error code.

Error Codes

Refer to the pm_error (“pm_error Subroutine” on page 991) subroutine.

Files

 /usr/include/pmapi.h Defines standard macros, data types, and subroutines.

Related Information

The pm_init (“pm_init Subroutine” on page 1012) subroutine, pm_error (“pm_error Subroutine” on page

991) subroutine, pm_set_program_thread (“pm_set_program_thread Subroutine” on page 1033)

subroutine, pm_get_program_thread (“pm_get_program_thread Subroutine” on page 1011) subroutine,

pm_delete_program_thread (“pm_delete_program_thread Subroutine” on page 990) subroutine,

pm_get_data_thread (“pm_get_data_thread or pm_get_tdata_thread Subroutine” on page 1001)

subroutine, pm_start_thread (“pm_start_thread Subroutine” on page 1041) subroutine,

pm_reset_data_thread (“pm_reset_data_thread Subroutine” on page 1023) subroutine.

Performance Monitor API Programming Concepts in AIX 5L Version 5.3 Performance Tools Guide and

Reference.

poll Subroutine

Purpose

Checks the I/O status of multiple file descriptors and message queues.

Library

Standard C Library (libc.a)

Syntax

#include <sys/poll.h>

#include <sys/select.h>

#include <sys/types.h>

int poll(ListPointer, Nfdsmsgs, Timeout)

void *ListPointer;

unsigned long Nfdsmsgs;

long Timeout;

Description

The poll subroutine checks the specified file descriptors and message queues to see if they are ready for

reading (receiving) or writing (sending), or to see if they have an exceptional condition pending. Even

though there are OPEN_MAX number of file descriptors available, only FD_SETSIZE number of file

descriptors are accessible with this subroutine.

Base Operating System (BOS) Runtime Services (A-P) 1049

Note: The poll subroutine applies only to character devices, pipes, message queues, and sockets. Not all

character device drivers support it. See the descriptions of individual character devices for

information about whether and how specific device drivers support the poll and select subroutines.

For compatibility with previous releases of this operating system and with BSD systems, the select

subroutine is also supported.

Parameters

 ListPointer Specifies a pointer to an array of pollfd structures, pollmsg structures, or to apollist structure.

Each structure specifies a file descriptor or message queue ID and the events of interest for

this file or message queue. The pollfd, pollmsg, and pollist structures are defined in the

/usr/include/sys/poll.h file. If a pollist structure is to be used, a structure similar to the

following should be defined in a user program. The pollfd structure must precede the pollmsg

structure.

struct pollist {

 struct pollfd fds[3];

 struct pollmsg msgs[2];

 } list;

The structure can then be initialized as follows:

list.fds[0].fd = file_descriptorA;

list.fds[0].events = requested_events;

list.msgs[0].msgid = message_id;

list.msgs[0].events = requested_events;

The rest of the elements in thefdsandmsgsarrays can be initialized the same way. The poll

subroutine can then be called, as follows:

nfds = 3; /* number of pollfd structs */

nmsgs = 2; /* number of pollmsg structs */

timeout = 1000 /* number of milliseconds to timeout */

poll(&list, (nmsgs<<16)|(nfds), 1000);

The exact number of elements in the fds and msgs arrays must be used in the calculation of

the Nfdsmsgs parameter.

Nfdsmsgs Specifies the number of file descriptors and the exact number of message queues to check.

The low-order 16 bits give the number of elements in the array of pollfd structures, while the

high-order 16 bits give the exact number of elements in the array of pollmsg structures. If

either half of theNfdsmsgs parameter is equal to a value of 0, the corresponding array is

assumed not to be present.

Timeout Specifies the maximum length of time (in milliseconds) to wait for at least one of the specified

events to occur. If the Timeout parameter value is -1, the poll subroutine does not return until

at least one of the specified events has occurred. If the value of the Timeout parameter is 0,

the poll subroutine does not wait for an event to occur but returns immediately, even if none of

the specified events have occurred.

poll Subroutine STREAMS Extensions

In addition to the functions described above, the poll subroutine multiplexes input/output over a set of file

descriptors that reference open streams. The poll subroutine identifies those streams on which you can

send or receive messages, or on which certain events occurred.

You can receive messages using the read subroutine or the getmsg system call. You can send messages

using the write subroutine or the putmsg system call. Certain streamio operations, such as I_RECVFD

and I_SENDFD can also be used to send and receive messages. See the streamio operations.

1050 Technical Reference, Volume 1: Base Operating System and Extensions

The ListPointer parameter specifies the file descriptors to be examined and the events of interest for each

file descriptor. It points to an array having one element for each open file descriptor of interest. The

array’s elements are pollfd structures. In addition to the pollfd structure in the /usr/include/sys/poll.h file,

STREAMS supports the following members:

int fd; /* file descriptor */

short events; /* requested events */

short revents; /* returned events */

The fd field specifies an open file descriptor and the events and revents fields are bit-masks constructed

by ORing any combination of the following event flags:

 POLLIN A nonpriority or file descriptor-passing message is present on the stream-head read

queue. This flag is set even if the message is of 0 length. In the revents field this flag is

mutually exclusive with the POLLPRI flag. See the I_RECVFD command.

POLLRDNORM A nonpriority message is present on the stream-head read queue.

POLLRDBAND A priority message (band > 0) is present on the stream-head read queue.

POLLPRI A high-priority message is present on the stream-head read queue. This flag is set even if

the message is of 0 length. In the revents field, this flag is mutually exclusive with the

POLLIN flag.

POLLOUT The first downstream write queue in the stream is not full. Normal priority messages can

be sent at any time. See the putmsg system call.

POLLWRNORM The same as POLLOUT.

POLLWRBAND A priority band greater than 0 exists downstream and priority messages can be sent at

anytime.

POLLMSG A message containing the SIGPOLL signal has reached the front of the stream-head read

queue.

Return Values

On successful completion, the poll subroutine returns a value that indicates the total number of file

descriptors and message queues that satisfy the selection criteria. The return value is similar to the

Nfdsmsgs parameter in that the low-order 16 bits give the number of file descriptors, and the high-order 16

bits give the number of message queue identifiers that had nonzero revents values. The NFDS and

NMSGS macros, found in the sys/select.h file, can be used to separate these two values from the return

value. The NFDS macro returns NFDS#, where the number returned indicates the number of files

reporting some event or error, and the NMSGS macro returns NMSGS#, where the number returned

indicates the number of message queues reporting some event or error.

A value of 0 indicates that the poll subroutine timed out and that none of the specified files or message

queues indicated the presence of an event (all revents fields were values of 0).

If unsuccessful, a value of -1 is returned and the global variable errno is set to indicate the error.

Error Codes

The poll subroutine does not run successfully if one or more of the following are true:

 EAGAIN Allocation of internal data structures was unsuccessful.

EINTR A signal was caught during the poll system call and the signal handler was installed with an indication

that subroutines are not to be restarted.

EINVAL The number of pollfd structures specified by the Nfdsmsgs parameter is greater than FD_SETSIZE. This

error is also returned if the number of pollmsg structures specified by the Nfdsmsgs parameter is greater

than the maximum number of allowable message queues.

EFAULT The ListPointer parameter in conjunction with the Nfdsmsgs parameter addresses a location outside of

the allocated address space of the process.

Base Operating System (BOS) Runtime Services (A-P) 1051

Related Information

The read subroutine, select subroutine, write subroutine.

The getmsg system call, putmsg system call.

The streamio operations.

The STREAMS Overview and the Input and Output Handling Programmer’s Overview in AIX 5L Version

5.3 General Programming Concepts: Writing and Debugging Programs.

pollset_create, pollset_ctl, pollset_destroy, pollset_poll, and

pollset_query Subroutines

Purpose

Check I/O status of multiple file descriptors.

Library

Standard C Library (libc.a)

Syntax

#include <sys/poll.h>

#include <sys/pollset.h>

#include <sys/fcntl.h>

pollset_t ps = pollset_create(int maxfd)

int rc = pollset_destroy(pollset_t ps)

int rc = pollset_ctl(pollset_t ps, struct poll_ctl *pollctl_array,

 int array_length)

int rc = pollset_query(pollset_t ps, struct pollfd *pollfd_query)

int nfound = pollset_poll(pollset_t ps,

 struct pollfd *polldata_array,

 int array_length, int timeout)

Description

The pollset application programming interface (API) efficiently poll a large file descriptor set. This interface

is best used when the file descriptor set is not frequently updated. The pollset subroutine can provide a

significant performance enhancement over traditional select and poll APIs. Improvements are most visible

when the number of events returned per poll operation is small in relation to the number of file descriptors

polled.

The pollset API uses system calls to accomplish polling. A file descriptor set (or pollset) is established with

a successful call to pollset_create. File descriptors and poll events are added, removed, or updated using

the pollset_ctl subroutine. The pollset_poll subroutine is called to perform the poll operation. A

pollset_query subroutine is called to query if a file descriptor is contained in the current poll set.

A pollset is established with a successful call to pollset_create. The pollset is initially empty following this

system call. Each call to pollset_create creates a new and independent pollset. This can be useful to

applications that monitor distinct sets of file descriptors. The maximum number of file descriptors that can

belong to the pollset is specified by maxfd. If maxfd has a value of -1, the maximum number of file

descriptors that can belong to the pollset is bound by OPEN_MAX as defined in <sys/limits.h> (the AIX

limit of open file descriptors per process). AIX imposes a system-wide limit of 245025 active pollsets at

one time. Upon failure, this system call returns -1 with errno set appropriately. Upon success, a pollset ID

of type pollset_t is returned:

 typedef int pollset_t

1052 Technical Reference, Volume 1: Base Operating System and Extensions

The pollset ID must not be altered by the application. The pollset API verifies that the ID is not -1. In

addition, the process ID of the application must match the process ID stored at pollset creation time.

A pollset is destroyed with a successful call to pollset_destroy. Upon success, this system call returns 0.

Upon failure, the pollset_destroy subroutine returns -1 with errno set to the appropriate code. An errno

of EINVAL indicates an invalid pollset ID.

File descriptors must be added to the pollset with the pollset_ctl subroutine before they can be monitored.

An array of poll_ctl structures is passed to pollset_ctl through pollctl_array:

 struct poll_ctl {

 short cmd;

 short events;

 int fd;

 }

Each poll_ctl structure contains an fd, events, and cmd field. The fd field defines the file descriptor to

operate on. The events field contains events of interest. When cmd is PS_ADD, the pollset_ctl call adds

a valid open file descriptor to the pollset. If a file descriptor is already in the pollset, PS_ADD causes

pollset_ctl to return an error. When cmd is PS_MOD and the file descriptor is already in the pollset, bits in

the events field are added (ORed) to the monitored events. If the file descriptor is not already in the

pollset, PS_MOD adds a valid open file descriptor to the pollset.

Although poll events can be added by specifying an existing file descriptor, the file descriptor must be

removed and then added again to remove an event. When cmd is PS_DELETE and the file descriptor is

already in the pollset, pollset_ctl removes the file descriptor from the pollset. If the file descriptor is not

already in the pollset, then PS_DELETE causes pollset_ctl to return an error.

The pollset_query interface can be used to determine information about a file descriptor with respect to

the pollset. If the file descriptor is in the pollset, pollset_query returns 1 and events is set to the currently

monitored events.

The pollset_poll subroutine determines which file descriptors in the pollset that have events pending. The

polldata_array parameter contains a buffer address where pollfd structures are returned for file descriptors

that have pending events. The number of events returned by a poll is limited by array_length. The timeout

parameter specifies the amount of time to wait if no events are pending. Setting timeout to 0 guarantees

that the pollset_poll subroutine returns immediately. Setting timeout to -1 specifies an infinite timeout.

Other nonzero positive values specify the time to wait in milliseconds.

When events are returned from a pollset_poll operation, each pollfd structure contains an fd member

with the file descriptor set, an events member with the requested events, and an revents member with the

events that have occurred.

A single pollset can be accessed by multiple threads in a multithreaded process. When multiple threads

are polling one pollset and an event occurs for a file descriptor, only one thread can be prompted to

receive the event. After a file descriptor is returned to a thread, new events will not be generated until the

next pollset_poll call. This behavior prevents all threads from being prompted on each event. Multiple

threads can perform pollset_poll operations at one time, but modifications to the pollset require exclusive

access. A thread that tries to modify the pollset is blocked until all threads currently in poll operations have

exited pollset_poll. In addition, a thread calling pollset_destroy is blocked until all threads have left the

other system calls (pollset_ctl, pollset_query, and pollset_poll).

A process can call fork after calling pollset_create. The child process will already have a pollset ID per

pollset, but pollset_destroy, pollset_ctl, pollset_query, and pollset_poll operations will fail with an

errno value of EACCES.

Base Operating System (BOS) Runtime Services (A-P) 1053

After a file descriptor is added to a pollset, the file descriptor will not be removed until a pollset_ctl call

with the cmd of PS_DELETE is executed. The file descriptor remains in the pollset even if the file

descriptor is closed. A pollset_poll operation on a pollset containing a closed file descriptor returns a

POLLNVAL event for that file descriptor. If the file descriptor is later allocated to a new object, the new

object will be polled on future pollset_poll calls.

Parameters

 array_length Specifies the length of the array parameters.

maxfd Specifies the maximum number of file descriptors that can belong to the pollset.

pollctl_array The pointer to an array of poll_ctl structures that describes the file descriptors (through

the pollfd structure) and the unique operation to perform on each file descriptor (add,

remove, or modify).

polldata_array Returns the requested events that have occurred on the pollset.

pollfd_query Points to a file descriptor that might or might not belong to the pollset. If it belongs to the

pollset, then the requested events field of this parameter is updated to reflect what is

currently being monitored for this file descriptor.

ps Specifies the pollset ID.

timeout Specifies the amount of time in milliseconds to wait for any monitored events to occur. A

value of -1 blocks until some monitored event occurs.

Return Values

Upon success, the pollset_destroy returns 0. Upon failure, the pollset_destroy subroutine returns -1 with

errno set to the appropriate code.

Upon success, the pollset_create subroutine returns a pollset ID of type pollset_t. Upon failure, this

system call returns -1 with errno set appropriately.

Upon success, pollset_ctl returns 0. Upon failure, pollset_ctl returns the 0-based problem element

number of the pollctl_array (for example, 2 is returned for element 3). If the first element is the problem

element, or some other error occurs prior to processing the array of elements, -1 is returned and errno is

set to the appropriate code. The calling application must acknowledge that elements in the array prior to

the problem element were successfully processed and should attempt to call pollset_ctl again with the

elements of pollctl_array beyond the problematic element.

If a file descriptor is not a member of the pollset, pollset_query returns 0. If the file descriptor is in the

pollset, pollset_query returns 1 and events is set to the currently monitored events. If an error occurs

after there is an attempt to determine if the file descriptor is a member of the pollset, then pollset_query

returns -1 with errno set to the appropriate return code.

The pollset_poll subroutine returns the number of file descriptors on which requested events occurred.

When no requested events occurred on any of the file descriptors, 0 is returned. A value of -1 is returned

when an error occurs and errno is set to the appropriate code.

Error Codes

 EACCES Process does not have permission to access a pollset.

EAGAIN System resource temporarily not available.

EFAULT Address supplied was not valid.

EINTR A signal was received during the system call.

EINVAL Invalid parameter.

ENOMEM Insufficient system memory available.

ENOSPC Maximum number of pollsets in use.

EPERM Process does not have permission to create a pollset.

1054 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The “poll Subroutine” on page 1049.

popen Subroutine

Purpose

Initiates a pipe to a process.

Library

Standard C Library (libc.a)

Syntax

#include <stdio.h>

FILE *popen (Command, Type)

const char *Command, *Type;

Description

The popen subroutine creates a pipe between the calling program and a shell command to be executed.

Note: The popen subroutine runs only sh shell commands. The results are unpredictable if the Command

parameter is not a valid sh shell command. If the terminal is in a trusted state, the tsh shell

commands are run.

If streams opened by previous calls to the popen subroutine remain open in the parent process, the

popen subroutine closes them in the child process.

The popen subroutine returns a pointer to a FILE structure for the stream.

 Attention: If the original processes and the process started with the popen subroutine concurrently read

or write a common file, neither should use buffered I/O. If they do, the results are unpredictable.

Some problems with an output filter can be prevented by flushing the buffer with the fflush subroutine.

Parameters

 Command Points to a null-terminated string containing a shell command line.

Type Points to a null-terminated string containing an I/O mode. If the Type parameter is the value r, you can

read from the standard output of the command by reading from the file Stream. If the Type parameter

is the value w, you can write to the standard input of the command by writing to the file Stream.

Because open files are shared, a type r command can be used as an input filter and a type w

command as an output filter.

Return Values

The popen subroutine returns a null pointer if files or processes cannot be created, or if the shell cannot

be accessed.

Error Codes

The popen subroutine may set the EINVAL variable if the Type parameter is not valid. The popen

subroutine may also set errno global variables as described by the fork or pipe subroutines.

Base Operating System (BOS) Runtime Services (A-P) 1055

Related Information

The fclose or fflush (“fclose or fflush Subroutine” on page 249) subroutine, fopen, freopen, or fdopen

(“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 281) subroutine, fork or vfork (“fork,

f_fork, or vfork Subroutine” on page 284) subroutine, pclose (“pclose Subroutine” on page 960)

subroutine, pipe (“pipe Subroutine” on page 981) subroutine, wait, waitpid, or wait3 subroutine.

Input and Output Handling.

File Systems and Directories in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

posix_fadvise Subroutine

Purpose

Provides advisory information to the system regarding future behavior of the application with respect to a

given file.

Syntax

 #include <fcntl.h>

int posix_fadvise (int fd, off_t offset, size_t len, int advice);

Description

This function advises the system on the expected future behavior of the application with regards to a given

file. The system can take this advice into account when performing operations on file data specified by this

function. The advice is given over the range covered by the offset parameter and continuing for the

number of bytes specified by the len parameter. If the value of the len parameter is 0, then all data

following the offset parameter is covered.

The advice parameter must be one of the following:

v POSIX_FADV_NORMAL

v POSIX_FADV_SEQUENTIAL

v POSIX_FADV_RANDOM

v POSIX_FADV_WILLNEED

v POSIX_FADV_DONTNEED

v POSIX_FADV_NOREUSE

Parameters

 fd File descriptor of the file to be advised

offset Represents the beginning of the address range

len Determines the length of the address range

advice Defines the advice to be given

Return Values

Upon successful completion, the posix_fadvise subroutine returns 0. Otherwise, one of the following error

codes will be returned.

Error Codes

 EBADF The fd parameter is not a valid file descriptor

1056 Technical Reference, Volume 1: Base Operating System and Extensions

EINVAL The value of the advice parameter is invalid

ESPIPE The fd parameter is associated with a pipe of FIFO

Related Information

“posix_fallocate Subroutine,” “posix_madvise Subroutine” on page 1058, “posix_memalign” on page 770.

posix_fallocate Subroutine

Purpose

Reserve storage space for a given file descriptor.

Syntax

 #include <fcntl.h>

int posix_fallocate (int fd, off_t offset, size_t len);

Description

This function reserves adequate space on the file system for the file data range beginning at the value

specified by the offset parameter and continuing for the number of bytes specified by the len parameter.

Upon successful return, subsequent writes to this file data range will not fail due to lack of free space on

the file system media. Space allocated by the posix_fallocate subroutine can be freed by a successful

call to the creat subroutine or open subroutine, or by the ftruncate subroutine, which truncates the file

size to a size smaller than the sum of the offset parameter and the len parameter.

Parameters

 fd File descriptor of the file toreserve

offset Represents the beginning of the address range

len Determines the length of the address range

Return Values

Upon successful completion, the posix_fallocate subroutine returns 0. Otherwise, one of the following

error codes will be returned.

Error Codes

 EBADF The fd parameter is not a valid file descriptor

EBADF The fd parameter references a file that was opened

without write permission.

EFBIG The value of the offset parameter plus the len parameter

is greater than the maximum file size

EINTR A signal was caught during execution

EIO An I/O error occurred while reading from or writing to a

file system

ENODEV The fd parameter does not refer to a regular file.

EINVAL The value of the advice parameter is invalid

ENOSPC There is insufficient free space remaining on the file

system storage media

ESPIPE The fd parameter is associated with a pipe of FIFO

Base Operating System (BOS) Runtime Services (A-P) 1057

Related Information

“posix_fadvise Subroutine” on page 1056, “posix_madvise Subroutine,” “posix_memalign” on page 770.

posix_madvise Subroutine

Purpose

Provides advisory information to the system regarding future behavior of the application with respect to a

given range of memory.

Syntax

 #include <sys/mman.h>

 int posix_madvise (void *addr, size_t len, int advice);

Description

This function advises the system on the expected future behavior of the application with regard to a given

range of memory. The system can take this advice into account when performing operations on the data in

memory specified by this function. The advice is given over the range covered by the offset parameter and

continuing for the number of bytes specified by the addr parameter and continuing for the number of bytes

specified by the len parameter.

The advice parameter must be one of the following:

v POSIX_MADV_NORMAL

v POSIX_MADV_SEQUENTIAL

v POSIX_MADV_RANDOM

v POSIX_MADV_WILLNEED

v POSIX_MADV_DONTNEED

Parameters

 addr Defines the beginning of the range of memory to be advised

len Determines the length of the address range

advice Defines the advice to be given

Return Values

Upon successful completion, the posix_fadvise subroutine returns 0. Otherwise, one of the following error

codes will be returned.

Error Codes

 EINVAL The value of the advice parameter is invalid

ENOMEM Addresses in the range specified by the addr parameter

and the len parameter are partially or completely outside

the range of the process’s address space.

1058 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

“posix_fallocate Subroutine” on page 1057, “posix_fadvise Subroutine” on page 1056, “posix_memalign” on

page 770.

posix_openpt Subroutine

Purpose

Opens a pseudo-terminal device.

Library

Standard C library (libc.a)

Syntax

#include <stdlib.h<

#include <fcntl.h>

 int posix_openpt (oflag

)

int oflag;

Description

The posix_openpt subroutine establishes a connection between a master device for a pseudo terminal

and a file descriptor. The file descriptor is used by other I/O functions that refer to that pseudo terminal.

The file status flags and file access modes of the open file description are set according to the value of the

oflag parameter.

Parameters

 oflag Values for the oflag parameter are constructed by a bitwise-inclusive OR of flags from

the following list, defined in the <fcntl.h> file:

O_RDWR

Open for reading and writing.

O_NOCTTY

If set, the posix_openpt subroutine does not cause the terminal device to

become the controlling terminal for the process.

The behavior of other values for the oflag parameter is unspecified.

Return Values

Upon successful completion, the posix_openpt subroutine opens a master pseudo-terminal device and

returns a non-negative integer representing the lowest numbered unused file descriptor. Otherwise, -1 is

returned and the errno global variable is set to indicate the error.

Error Codes

The posix_openpt subroutine will fail if:

 EMFILE OPEN_MAX file descriptors are currently open in the calling process.

ENFILE The maximum allowable number of files is currently open in the system.

Base Operating System (BOS) Runtime Services (A-P) 1059

The posix_openpt subroutine may fail if:

 EINVAL The value of the oflag parameter is not valid.

EAGAIN Out of pseudo-terminal resources.

ENOSR Out of STREAMS resources.

Examples

The following example describes how to open a pseudo-terminal and return the name of the slave device

and file descriptor

#include <fcntl.h>

#include <stdio.h>

int masterfd, slavefd;

char *slavedevice;

masterfd = posix_openpt(O_RDWR|O_NOCTTY);

if (masterfd == -1

 || grantpt (masterfd) == -1

 || unlockpt (masterfd) == -1

 || (slavedevice = ptsname (masterfd)) == NULL)

 return -1;

printf("slave device is: %s\n", slavedevice);

slavefd = open(slave, O_RDWR|O_NOCTTY);

if (slavefd < 0)

 return -1;

Related Information

“grantpt Subroutine” on page 476, “open, openx, open64, creat, or creat64 Subroutine” on page 894,

“ptsname Subroutine” on page 1226.

unlockpt Subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and Extensions

Volume 2.

<fcntl.h> file in AIX 5L Version 5.3 Files Reference.

posix_spawn or posix_spawnp Subroutine

Purpose

Spawns a process.

Syntax

int posix_spawn(pid_t *restrict pid, const char *restrict path,

 const posix_spawn_file_actions_t *file_actions,

 const posix_spawnattr_t *restrict attrp,

 char *const argv[restrict], char *const envp[restrict]);

int posix_spawnp(pid_t *restrict pid, const char *restrict file,

 const posix_spawn_file_actions_t *file_actions,

 const posix_spawnattr_t *restrict attrp,

 char *const argv[restrict], char * const envp[restrict]);

1060 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The posix_spawn and posix_spawnp subroutines create a new process (child process) from the

specified process image. The new process image is constructed from a regular executable file called the

new process image file.

When a C program is executed as the result of this call, the program is entered as a C-language function

call as follows:

int main(int argc, char *argv[]);

where argc is the argument count and argv is an array of character pointers to the arguments themselves.

In addition, the following variable:

extern char **environ;

is initialized as a pointer to an array of character pointers to the environment strings.

The argv parameter is an array of character pointers to null-terminated strings. The last member of this

array is a null pointer and is not counted in argc. These strings constitute the argument list available to the

new process image. The value in argv[0] should point to a file name that is associated with the process

image being started by the posix_spawn or posix_spawnp function.

The argument envp is an array of character pointers to null-terminated strings. These strings constitute the

environment for the new process image. The environment array is terminated by a null pointer.

The number of bytes available for the child process’ combined argument and environment lists is

{ARG_MAX}. The implementation specifies in the system documentation whether any list overhead, such

as length words, null terminators, pointers, or alignment bytes, is included in this total.

The path argument to posix_spawn is a path name that identifies the new process image file to execute.

The file parameter to posix_spawnp is used to construct a path name that identifies the new process

image file. If the file parameter contains a slash character (/), the file parameter is used as the path name

for the new process image file. Otherwise, the path prefix for this file is obtained by a search of the

directories passed as the environment variable PATH. If this environment variable is not defined, the

results of the search are implementation-defined.

If file_actions is a null pointer, file descriptors that are open in the calling process remain open in the child

process, except for those whose FD_CLOEXEC flag is set (see “fcntl, dup, or dup2 Subroutine” on page

251). For those file descriptors that remain open, all attributes of the corresponding open file descriptions,

including file locks, remain unchanged.

If file_actions is not a null pointer, the file descriptors open in the child process are those open in the

calling process as modified by the spawn file actions object pointed to by file_actions and the

FD_CLOEXEC flag of each remaining open file descriptor after the spawn file actions have been

processed. The effective order of processing the spawn file actions is as follows:

1. The set of open file descriptors for the child process is initially the same set as is open for the calling

process. All attributes of the corresponding open file descriptions, including file locks (see “fcntl, dup, or

dup2 Subroutine” on page 251), remain unchanged.

2. The signal mask, signal default actions, and the effective user and group IDs for the child process are

changed as specified in the attributes object referenced by attrp.

3. The file actions specified by the spawn file actions object are performed in the order in which they

were added to the spawn file actions object.

4. Any file descriptor that has its FD_CLOEXEC flag set is closed.

The posix_spawnattr_t spawn attributes object type is defined in the spawn.h header file. Its attributes

are defined as follows:

Base Operating System (BOS) Runtime Services (A-P) 1061

v If the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the object referenced by

attrp, and the spawn-pgroup attribute of the same object is non-zero, the child’s process group is as

specified in the spawn-pgroup attribute of the object referenced by attrp.

v As a special case, if the POSIX_SPAWN_SETPGROUP flag is set in the spawn-flags attribute of the

object referenced by attrp, and the spawn-pgroup attribute of the same object is set to 0, then the child

is in a new process group with a process group ID equal to its process ID.

v If the POSIX_SPAWN_SETPGROUP flag is not set in the spawn-flags attribute of the object

referenced by attrp, the new child process inherits the parent’s process group.

v If the POSIX_SPAWN_SETSCHEDPARAM flag is set in the spawn-flags attribute of the object

referenced by attrp, but POSIX_SPAWN_SETSCHEDULER is not set, the new process image initially

has the scheduling policy of the calling process with the scheduling parameters specified in the

spawn-schedparam attribute of the object referenced by attrp.

v If the POSIX_SPAWN_SETSCHEDULER flag is set in the spawn-flags attribute of the object

referenced by attrp (regardless of the setting of the POSIX_SPAWN_SETSCHEDPARAM flag), the new

process image initially has the scheduling policy specified in the spawn-schedpolicy attribute of the

object referenced by attrp and the scheduling parameters specified in the spawn-schedparam attribute

of the same object.

v The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp

governs the effective user ID of the child process. If this flag is not set, the child process inherits the

parent process’ effective user ID. If this flag is set, the child process’ effective user ID is reset to the

parent’s real user ID. In either case, if the set-user-ID mode bit of the new process image file is set, the

effective user ID of the child process becomes that file’s owner ID before the new process image begins

execution.

v The POSIX_SPAWN_RESETIDS flag in the spawn-flags attribute of the object referenced by attrp also

governs the effective group ID of the child process. If this flag is not set, the child process inherits the

parent process’ effective group ID. If this flag is set, the child process’ effective group ID is reset to the

parent’s real group ID. In either case, if the set-group-ID mode bit of the new process image file is set,

the effective group ID of the child process becomes that file’s group ID before the new process image

begins execution.

v If the POSIX_SPAWN_SETSIGMASK flag is set in the spawn-flags attribute of the object referenced

by attrp, the child process initially has the signal mask specified in the spawn-sigmask attribute of the

object referenced by attrp.

v If the POSIX_SPAWN_SETSIGDEF flag is set in the spawn-flags attribute of the object referenced by

attrp, the signals specified in the spawn-sigdefault attribute of the same object is set to their default

actions in the child process. Signals set to the default action in the parent process are set to the default

action in the child process. Signals set to be caught by the calling process are set to the default action

in the child process.

v Except for SIGCHLD, signals set to be ignored by the calling process image are set to be ignored by

the child process, unless otherwise specified by the POSIX_SPAWN_SETSIGDEF flag being set in the

spawn-flags attribute of the object referenced by attrp and the signals being indicated in the

spawn-sigdefault attribute of the object referenced by attrp.

v If the SIGCHLD signal is set to be ignored by the calling process, it is unspecified whether the

SIGCHLD signal is set to be ignored or set to the default action in the child process. This is true unless

otherwise specified by the POSIX_SPAWN_SETSIGDEF flag being set in the spawn_flags attribute of

the object referenced by attrp and the SIGCHLD signal being indicated in the spawn_sigdefault

attribute of the object referenced by attrp.

v If the value of the attrp pointer is NULL, then the default values are used.

All process attributes, other than those influenced by the attributes set in the object referenced by attrp in

the preceding list or by the file descriptor manipulations specified in file_actions, are displayed in the new

process image as though fork had been called to create a child process and then a member of the exec

family of functions had been called by the child process to execute the new process image.

1062 Technical Reference, Volume 1: Base Operating System and Extensions

By default, fork handlers are not run in posix_spawn or posix_spawnp routines. To enable fork handlers,

set the POSIX_SPAWN_FORK_HANDLERS flag in the attribute.

Return Values

Upon successful completion, posix_spawn and posix_spawnp return the process ID of the child process

to the parent process, in the variable pointed to by a non-NULL pid argument, and return 0 as the function

return value. Otherwise, no child process is created, the value stored into the variable pointed to by a

non-NULL pid is unspecified, and an error number is returned as the function return value to indicate the

error. If the pid argument is a null pointer, the process ID of the child is not returned to the caller.

Error Codes

The posix_spawn and posix_spawnp subroutines will fail if the following is true:

 EINVAL The value specified by file_actions or attrp is invalid.

The error codes for the posix_spawn and posix_spawnp subroutines are affected by the following

conditions:

v If this error occurs after the calling process successfully returns from the posix_spawn or

posix_spawnp function, the child process might exit with exit status 127.

v If posix_spawn or posix_spawnp fail for any of the reasons that would cause fork or one of the exec

family of functions to fail, an error value is returned as described by fork and exec, respectively (or, if

the error occurs after the calling process successfully returns, the child process exits with exit status

127).

v If POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute of the object referenced by attrp,

and posix_spawn or posix_spawnp fails while changing the child’s process group, an error value is

returned as described by setpgid (or, if the error occurs after the calling process successfully returns,

the child process shall exit with exit status 127).

v If POSIX_SPAWN_SETSCHEDPARAM is set and POSIX_SPAWN_SETSCHEDULER is not set in the

spawn-flags attribute of the object referenced by attrp, then if posix_spawn or posix_spawnp fails for

any of the reasons that would cause sched_setparam to fail, an error value is returned as described by

sched_setparam (or, if the error occurs after the calling process successfully returns, the child process

sexit with exit status 127).

v If POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute of the object referenced by

attrp, and if posix_spawn or posix_spawnp fails for any of the reasons that would cause

sched_setscheduler to fail, an error value is returned as described by sched_setscheduler (or, if the

error occurs after the calling process successfully returns, the child process exits with exit status 127).

v If the file_actions argument is not NULL and specifies any close, dup2, or open actions to be

performed, and if posix_spawn or posix_spawnp fails for any of the reasons that would cause close,

dup2, or open to fail, an error value is returned as described by close, dup2, and open, respectively

(or, if the error occurs after the calling process successfully returns, the child process exits with exit

status 127). An open file action might, by itself, result in any of the errors described by close or dup2, in

addition to those described by open.

Related Information

The “getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer or setitimer Subroutine” on

page 378, “chmod or fchmod Subroutine” on page 146, “close Subroutine” on page 173, “fcntl, dup, or

dup2 Subroutine” on page 251, “exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine”

on page 232, “exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239, “fork, f_fork, or vfork

Subroutine” on page 284, “kill or killpg Subroutine” on page 570, “open, openx, open64, creat, or creat64

Subroutine” on page 894, “posix_spawn_file_actions_addclose or posix_spawn_file_actions_addopen

Subroutine” on page 1064, “posix_spawn_file_actions_adddup2 Subroutine” on page 1065,

“posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine” on page 1066,

Base Operating System (BOS) Runtime Services (A-P) 1063

“posix_spawnattr_destroy or posix_spawnattr_init Subroutine” on page 1067,

“posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine” on page 1072,

“posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine” on page 1068,

“posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine” on page 1069,

“posix_spawnattr_getschedparam or posix_spawnattr_setschedparam Subroutine” on page 1070,

“posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine” on page 1071,

“posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine” on page 1073.

posix_spawn_file_actions_addclose or

posix_spawn_file_actions_addopen Subroutine

Purpose

Adds close or open action to the spawn file actions object.

Syntax

#include <spawn.h>

int posix_spawn_file_actions_addclose(posix_spawn_file_actions_t *

 file_actions, int fildes);

int posix_spawn_file_actions_addopen(posix_spawn_file_actions_t *

 restrict file_actions, int fildes,

 const char *restrict path, int oflag, mode_t mode);

Description

The posix_spawn_file_actions_addclose and posix_spawn_file_actions_addopen subroutines close

or open action to a spawn file actions object.

A spawn file actions object is of type posix_spawn_file_actions_t (defined in the spawn.h header file)

and is used to specify a series of actions to be performed by a posix_spawn or posix_spawnp operation

in order to arrive at the set of open file descriptors for the child process given the set of open file

descriptors of the parent. Comparison or assignment operators for the type posix_spawn_file_actions_t

are not defined.

A spawn file actions object, when passed to posix_spawn or posix_spawnp, specifies how the set of

open file descriptors in the calling process is transformed into a set of potentially open file descriptors for

the spawned process. This transformation is as if the specified sequence of actions was performed exactly

once, in the context of the spawned process (prior to running the new process image), in the order in

which the actions were added to the object. Additionally, when the new process image is run, any file

descriptor (from this new set) that has its FD_CLOEXEC flag set is closed (see “posix_spawn or

posix_spawnp Subroutine” on page 1060).

The posix_spawn_file_actions_addclose function adds a close action to the object referenced by

file_actions that causes the file descriptor fildes to be closed (as if close(fildes) had been called) when a

new process is spawned using this file actions object.

The posix_spawn_file_actions_addopen function adds an open action to the object referenced by

file_actions that causes the file named by path to be opened, as if open(path, oflag, mode) had been

called, and the returned file descriptor, if not fildes, had been changed to fildes) when a new process is

spawned using this file actions object. If fildes was already an open file descriptor, it closes before the

new file is opened.

The string described by path is copied by the posix_spawn_file_actions_addopen function.

1064 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, the posix_spawn_file_actions_addclose and

posix_spawn_file_actions_addopen subroutines return 0; otherwise, an error number is returned to

indicate the error.

Error Codes

The posix_spawn_file_actions_addclose and posix_spawn_file_actions_addopen subroutines fail if

the following is true:

 EBADF The value specified by fildes is negative, or greater than or equal to {OPEN_MAX}.

The posix_spawn_file_actions_addclose and posix_spawn_file_actions_addopen subroutines might

fail if the following are true:

 EINVAL The value specified by file_actions is invalid.

ENOMEM Insufficient memory exists to add to the spawn file actions object.

It is not an error for the fildes argument passed to these functions to specify a file descriptor for which the

specified operation could not be performed at the time of the call. Any such error will be detected when the

associated file actions object is used later during a posix_spawn or posix_spawnp operation.

Related Information

The “close Subroutine” on page 173, “fcntl, dup, or dup2 Subroutine” on page 251, “open, openx, open64,

creat, or creat64 Subroutine” on page 894, “posix_spawn or posix_spawnp Subroutine” on page 1060,

“posix_spawn_file_actions_adddup2 Subroutine,” “posix_spawn_file_actions_destroy or

posix_spawn_file_actions_init Subroutine” on page 1066.

posix_spawn_file_actions_adddup2 Subroutine

Purpose

Adds dup2 action to the spawn file actions object.

Syntax

#include <spawn.h>

int posix_spawn_file_actions_adddup2(posix_spawn_file_actions_t *

 file_actions, int fildes, int newfildes);

Description

The posix_spawn_file_actions_adddup2 subroutine adds a dup2 action to the object referenced by

file_actions that causes the file descriptor fildes to be duplicated as newfildes when a new process is

spawned using this file actions object. This functions as if dup2(fildes, newfildes) had been called.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose.

Return Values

Upon successful completion, the posix_spawn_file_actions_adddup2 subroutine returns 0; otherwise, an

error number is returned to indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 1065

Error Codes

The posix_spawn_file_actions_adddup2 subroutine will fail if the following are true:

 EBADF The value specified by fildes or newfildes is negative, or greater than or equal to {OPEN_MAX}.

ENOMEM Insufficient memory exists to add to the spawn file actions object.

The posix_spawn_file_actions_adddup2 subroutine might fail if the following is true:

 EINVAL The value specified by file_actions is invalid.

It is not an error for the fildes argument passed to this subroutine to specify a file descriptor for which the

specified operation could not be performed at the time of the call. Any such error will be detected when the

associated file actions object is used later during a posix_spawn or posix_spawnp operation.

Related Information

The “fcntl, dup, or dup2 Subroutine” on page 251, “posix_spawn or posix_spawnp Subroutine” on page

1060, “posix_spawn_file_actions_addclose or posix_spawn_file_actions_addopen Subroutine” on page

1064, “posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine.”

posix_spawn_file_actions_destroy or posix_spawn_file_actions_init

Subroutine

Purpose

Destroys and initializes a spawn file actions object.

Syntax

#include <spawn.h>

int posix_spawn_file_actions_destroy(posix_spawn_file_actions_t *

 file_actions);

int posix_spawn_file_actions_init(posix_spawn_file_actions_t *

 file_actions);

Description

The posix_spawn_file_actions_destroy subroutine destroys the object referenced by file_actions; the

object becomes, in effect, uninitialized. An implementation can cause posix_spawn_file_actions_destroy

to set the object referenced by file_actions to an invalid value. A destroyed spawn file actions object can

be reinitialized using posix_spawn_file_actions_init; the results of otherwise referencing the object after

it has been destroyed are undefined.

The posix_spawn_file_actions_init function initializes the object referenced by file_actions to contain no

file actions for posix_spawn or posix_spawnp to perform.

A spawn file actions object is as defined in posix_spawn_file_actions_addclose. The effect of initializing

a previously initialized spawn file actions object is undefined.

Return Values

Upon successful completion, the posix_spawn_file_actions_destroy and

posix_spawn_file_actions_init subroutines return 0; otherwise, an error number is returned to indicate

the error.

1066 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The posix_spawn_file_actions_init subroutine will fail if the following is true:

 ENOMEM Insufficient memory exists to initialize the spawn file actions object.

The posix_spawn_file_actions_destroy subroutine might fail if the following is true:

 EINVAL The value specified by file_actions is invalid.

Related Information

The “posix_spawn or posix_spawnp Subroutine” on page 1060.

posix_spawnattr_destroy or posix_spawnattr_init Subroutine

Purpose

Destroys and initializes a spawn attributes object.

Syntax

#include <spawn.h>

int posix_spawnattr_destroy(posix_spawnattr_t *attr);

int posix_spawnattr_init(posix_spawnattr_t *attr);

Description

The posix_spawnattr_destroy subroutine destroys a spawn attributes object. A destroyed attr attributes

object can be reinitialized using posix_spawnattr_init; the results of otherwise referencing the object after

it has been destroyed are undefined. An implementation can cause posix_spawnattr_destroy to set the

object referenced by attr to an invalid value.

The posix_spawnattr_init subroutine initializes a spawn attributes object attr with the default value for all

of the individual attributes used by the implementation. Results are undefined if posix_spawnattr_init is

called specifying an attr attributes object that is already initialized.

A spawn attributes object is of type posix_spawnattr_t (defined in the spawn.h header file) and is used

to specify the inheritance of process attributes across a spawn operation. Comparison or assignment

operators for the type posix_spawnattr_t are not defined.

Each implementation documents the individual attributes it uses and their default values unless these

values are defined by IEEE Std 1003.1-2001. Attributes not defined by IEEE Std 1003.1-2001, their default

values, and the names of the associated functions to get and set those attribute values are

implementation-defined.

The resulting spawn attributes object (possibly modified by setting individual attribute values), is used to

modify the behavior of posix_spawn or posix_spawnp. After a spawn attributes object has been used to

spawn a process by a call to a posix_spawn or posix_spawnp, any function affecting the attributes

object (including destruction) will not affect any process that has been spawned in this way.

Return Values

Upon successful completion, the posix_spawnattr_destroy and posix_spawnattr_init subroutines return

0; otherwise, an error number is returned to indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 1067

Error Codes

The posix_spawnattr_destroy subroutine might fail if the following is true:

 EINVAL The value specified by attr is invalid.

Related Information

The “posix_spawn or posix_spawnp Subroutine” on page 1060, “posix_spawnattr_getsigdefault or

posix_spawnattr_setsigdefault Subroutine” on page 1072, “posix_spawnattr_getflags or

posix_spawnattr_setflags Subroutine,” “posix_spawnattr_getpgroup or posix_spawnattr_setpgroup

Subroutine” on page 1069, “posix_spawnattr_getschedparam or posix_spawnattr_setschedparam

Subroutine” on page 1070, “posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy

Subroutine” on page 1071, “posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine” on

page 1073.

posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine

Purpose

Gets and sets the spawn-flags attribute of a spawn attributes object.

Syntax

#include <spawn.h>

int posix_spawnattr_getflags(const posix_spawnattr_t *restrict attr,

 short *restrict flags);

int posix_spawnattr_setflags(posix_spawnattr_t *attr, short flags);

Description

The posix_spawnattr_getflags subroutine obtains the value of the spawn-flags attribute from the

attributes object referenced by attr. The posix_spawnattr_setflags subroutine sets the spawn-flags

attribute in an initialized attributes object referenced by attr. The spawn-flags attribute is used to indicate

which process attributes are to be changed in the new process image when invoking posix_spawn or

posix_spawnp. It is the bitwise-inclusive OR of 0 or more of the following flags:

v POSIX_SPAWN_RESETIDS

v POSIX_SPAWN_SETPGROUP

v POSIX_SPAWN_SETSIGDEF

v POSIX_SPAWN_SETSIGMASK

v POSIX_SPAWN_SETSCHEDPARAM

v POSIX_SPAWN_SETSCHEDULER

These flags are defined in the spawn.h header file. The default value of this attribute is as if no flags were

set.

Return Values

Upon successful completion, the posix_spawnattr_getflags subroutine returns 0 and stores the value of

the spawn-flags attribute of attr into the object referenced by the flags parameter; otherwise, an error

number is returned to indicate the error.

Upon successful completion, the posix_spawnattr_setflags subroutine returns 0; otherwise, an error

number is returned to indicate the error.

1068 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The posix_spawnattr_getflags and posix_spawnattr_setflags subroutines will fail if the following is true:

 EINVAL The value specified by attr is invalid.

The posix_spawnattr_setflags subroutine might fail if the following is true:

 EINVAL The value of the attribute being set is not valid.

Related Information

The “posix_spawn or posix_spawnp Subroutine” on page 1060, “posix_spawn_file_actions_addclose or

posix_spawn_file_actions_addopen Subroutine” on page 1064, “posix_spawn_file_actions_adddup2

Subroutine” on page 1065, “posix_spawn_file_actions_destroy or posix_spawn_file_actions_init

Subroutine” on page 1066, “posix_spawnattr_destroy or posix_spawnattr_init Subroutine” on page 1067,

“posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine” on page 1072,

“posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine,” “posix_spawnattr_getschedparam

or posix_spawnattr_setschedparam Subroutine” on page 1070, “posix_spawnattr_getschedpolicy or

posix_spawnattr_setschedpolicy Subroutine” on page 1071, “posix_spawnattr_getsigmask or

posix_spawnattr_setsigmask Subroutine” on page 1073

posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine

Purpose

Gets and sets the spawn-pgroup attribute of a spawn attributes object.

Syntax

#include <spawn.h>

int posix_spawnattr_getpgroup(const posix_spawnattr_t *restrict attr,

 pid_t *restrict pgroup);

int posix_spawnattr_setpgroup(posix_spawnattr_t *attr, pid_t pgroup);

Description

The posix_spawnattr_getpgroup subroutine gets the value of the spawn-pgroup attribute from the

attributes object referenced by attr.

The posix_spawnattr_setpgroup subroutine sets the spawn-pgroup attribute in an initialized attributes

object referenced by attr.

The spawn-pgroup attribute represents the process group to be joined by the new process image in a

spawn operation (if POSIX_SPAWN_SETPGROUP is set in the spawn-flags attribute). The default value

of this attribute is 0.

Return Values

Upon successful completion, the posix_spawnattr_getpgroup subroutine returns 0 and stores the value

of the spawn-pgroup attribute of attr into the object referenced by the pgroup parameter; otherwise, an

error number is returned to indicate the error.

Upon successful completion, the posix_spawnattr_setpgroup subroutine returns 0; otherwise, an error

number is returned to indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 1069

Error Codes

The posix_spawnattr_getpgroup and posix_spawnattr_setpgroup subroutines might fail if the following

is true:

 EINVAL The value specified by attr is invalid.

The posix_spawnattr_setpgroup subroutine might fail if the following is true:

 EINVAL The value of the attribute being set is not valid.

Related Information

The “posix_spawn or posix_spawnp Subroutine” on page 1060, “posix_spawn_file_actions_addclose or

posix_spawn_file_actions_addopen Subroutine” on page 1064, “posix_spawn_file_actions_adddup2

Subroutine” on page 1065, “posix_spawn_file_actions_destroy or posix_spawn_file_actions_init

Subroutine” on page 1066, “posix_spawnattr_destroy or posix_spawnattr_init Subroutine” on page 1067,

“posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine” on page 1072,

“posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine” on page 1068,

“posix_spawnattr_getschedparam or posix_spawnattr_setschedparam Subroutine,”

“posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine” on page 1071,

“posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine” on page 1073

posix_spawnattr_getschedparam or posix_spawnattr_setschedparam

Subroutine

Purpose

Gets and sets the spawn-schedparam attribute of a spawn attributes object.

Syntax

#include <spawn.h>

#include <sched.h>

int posix_spawnattr_getschedparam(const posix_spawnattr_t *

 restrict attr, struct sched_param *restrict schedparam);

int posix_spawnattr_setschedparam(posix_spawnattr_t *restrict attr,

 const struct sched_param *restrict schedparam);

Description

The posix_spawnattr_getschedparam subroutine gets the value of the spawn-schedparam attribute

from the attributes object referenced by attr.

The posix_spawnattr_setschedparam subroutine sets the spawn-schedparam attribute in an initialized

attributes object referenced by attr.

The spawn-schedparam attribute represents the scheduling parameters to be assigned to the new

process image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER or

POSIX_SPAWN_SETSCHEDPARAM is set in the spawn-flags attribute). The default value of this

attribute is unspecified.

Return Values

Upon successful completion, the posix_spawnattr_getschedparam subroutine returns 0 and stores the

value of the spawn-schedparam attribute of attr into the object referenced by the schedparam parameter;

otherwise, an error number is returned to indicate the error.

1070 Technical Reference, Volume 1: Base Operating System and Extensions

Upon successful completion, the posix_spawnattr_setschedparam subroutine returns 0; otherwise, an

error number is returned to indicate the error.

Error Codes

The posix_spawnattr_getschedparam and posix_spawnattr_setschedparam subroutines might fail if

the following is true:

 EINVAL The value specified by attr is invalid.

The posix_spawnattr_setschedparam subroutine might fail if the following is true:

 EINVAL The value of the attribute being set is not valid.

Related Information

The “posix_spawn or posix_spawnp Subroutine” on page 1060, “posix_spawn_file_actions_addclose or

posix_spawn_file_actions_addopen Subroutine” on page 1064, “posix_spawn_file_actions_adddup2

Subroutine” on page 1065, “posix_spawn_file_actions_destroy or posix_spawn_file_actions_init

Subroutine” on page 1066, “posix_spawnattr_destroy or posix_spawnattr_init Subroutine” on page 1067,

“posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine” on page 1072,

“posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine” on page 1068,

“posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine” on page 1069,

“posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine,”

“posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine” on page 1073

posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy

Subroutine

Purpose

Gets and sets the spawn-schedpolicy attribute of a spawn attributes object.

Syntax

#include <spawn.h>

#include <sched.h>

int posix_spawnattr_getschedpolicy(const posix_spawnattr_t *

 restrict attr, int *restrict schedpolicy);

int posix_spawnattr_setschedpolicy(posix_spawnattr_t *attr,

 int schedpolicy);

Description

The posix_spawnattr_getschedpolicy subroutine gets the value of the spawn-schedpolicy attribute

from the attributes object referenced by attr.

The posix_spawnattr_setschedpolicy subroutine sets the spawn-schedpolicy attribute in an initialized

attributes object referenced by attr.

The spawn-schedpolicy attribute represents the scheduling policy to be assigned to the new process

image in a spawn operation (if POSIX_SPAWN_SETSCHEDULER is set in the spawn-flags attribute). The

default value of this attribute is unspecified.

Base Operating System (BOS) Runtime Services (A-P) 1071

Return Values

Upon successful completion, the posix_spawnattr_getschedpolicy subroutine returns 0 and stores the

value of the spawn-schedpolicy attribute of attr into the object referenced by the schedpolicy parameter;

otherwise, an error number is returned to indicate the error.

Upon successful completion, posix_spawnattr_setschedpolicy returns 0; otherwise, an error number is

returned to indicate the error.

Error Codes

The following posix_spawnattr_getschedpolicy and posix_spawnattr_setschedpolicy subroutines

might fail if the following is true:

 EINVAL The value specified by attr is invalid.

The posix_spawnattr_setschedpolicy subroutine might fail if the following is true:

 EINVAL The value of the attribute being set is not valid.

Related Information

The “posix_spawn or posix_spawnp Subroutine” on page 1060, “posix_spawn_file_actions_addclose or

posix_spawn_file_actions_addopen Subroutine” on page 1064, “posix_spawn_file_actions_adddup2

Subroutine” on page 1065, “posix_spawn_file_actions_destroy or posix_spawn_file_actions_init

Subroutine” on page 1066, “posix_spawnattr_destroy or posix_spawnattr_init Subroutine” on page 1067,

“posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine,” “posix_spawnattr_getflags or

posix_spawnattr_setflags Subroutine” on page 1068, “posix_spawnattr_getpgroup or

posix_spawnattr_setpgroup Subroutine” on page 1069, “posix_spawnattr_getschedparam or

posix_spawnattr_setschedparam Subroutine” on page 1070, “posix_spawnattr_getsigmask or

posix_spawnattr_setsigmask Subroutine” on page 1073.

posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault

Subroutine

Purpose

Gets and sets the spawn-sigdefault attribute of a spawn attributes object.

Syntax

#include <signal.h>

#include <spawn.h>

int posix_spawnattr_getsigdefault(const posix_spawnattr_t *

 restrict attr, sigset_t *restrict sigdefault);

int posix_spawnattr_setsigdefault(posix_spawnattr_t *restrict attr,

 const sigset_t *restrict sigdefault);

Description

The posix_spawnattr_getsigdefault subroutine gets the value of the spawn-sigdefault attribute from the

attributes object referenced by attr.

The posix_spawnattr_setsigdefault subroutine sets the spawn-pgroup attribute in an initialized

attributes object referenced by attr.

1072 Technical Reference, Volume 1: Base Operating System and Extensions

The spawn-sigdefault attribute represents the set of signals to be forced to default signal handling in the

new process image by a spawn operation (if POSIX_SPAWN_SETSIGDEF is set in the spawn-flags

attribute). The default value of this attribute is an empty signal set.

Return Values

Upon successful completion, the posix_spawnattr_getsigdefault subroutine returns 0 and stores the

value of the spawn-sigdefault attribute of attr into the object referenced by the sigdefault parameter;

otherwise, an error number is returned to indicate the error.

Upon successful completion, the posix_spawnattr_setsigdefault subroutine returns 0; otherwise, an error

number is returned to indicate the error.

Error Codes

The posix_spawnattr_getsigdefault and posix_spawnattr_setsigdefault subroutines might fail if the

following is true:

 EINVAL The value specified by attr is invalid.

The posix_spawnattr_setsigdefault subroutine might fail if the following is true:

 EINVAL The value of the attribute being set is not valid.

Related Information

The “posix_spawn or posix_spawnp Subroutine” on page 1060, “posix_spawn_file_actions_addclose or

posix_spawn_file_actions_addopen Subroutine” on page 1064, “posix_spawn_file_actions_adddup2

Subroutine” on page 1065, “posix_spawn_file_actions_destroy or posix_spawn_file_actions_init

Subroutine” on page 1066, “posix_spawnattr_destroy or posix_spawnattr_init Subroutine” on page 1067,

“posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine” on page 1068,

“posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine” on page 1069,

“posix_spawnattr_getschedparam or posix_spawnattr_setschedparam Subroutine” on page 1070,

“posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine” on page 1071,

“posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine.”

posix_spawnattr_getsigmask or posix_spawnattr_setsigmask

Subroutine

Purpose

Gets and sets the spawn-sigmask attribute of a spawn attributes object.

Syntax

#include <signal.h>

#include <spawn.h>

int posix_spawnattr_getsigmask(const posix_spawnattr_t *restrict attr,

 sigset_t *restrict sigmask);

int posix_spawnattr_setsigmask(posix_spawnattr_t *restrict attr,

 const sigset_t *restrict sigmask);

Description

The posix_spawnattr_getsigmask subroutine gets the value of the spawn-sigmask attribute from the

attributes object referenced by attr.

Base Operating System (BOS) Runtime Services (A-P) 1073

The posix_spawnattr_setsigmask subroutine sets the spawn-sigmask attribute in an initialized attributes

object referenced by attr.

The spawn-sigmask attribute represents the signal mask in effect in the new process image of a spawn

operation (if POSIX_SPAWN_SETSIGMASK is set in the spawn-flags attribute). The default value of this

attribute is unspecified.

Return Values

Upon successful completion, the posix_spawnattr_getsigmask subroutine returns 0 and stores the value

of the spawn-sigmask attribute of attr into the object referenced by the sigmask parameter; otherwise, an

error number is returned to indicate the error.

Upon successful completion, the posix_spawnattr_setsigmask subroutine returns 0; otherwise, an error

number is returned to indicate the error.

Error Codes

The posix_spawnattr_getsigmask and posix_spawnattr_setsigmask subroutines might fail if the

following is true:

 EINVAL The value specified by attr is invalid.

The posix_spawnattr_setsigmask subroutine might fail if the following is true:

 EINVAL The value of the attribute being set is not valid.

Related Information

The “posix_spawn or posix_spawnp Subroutine” on page 1060, “posix_spawn_file_actions_addclose or

posix_spawn_file_actions_addopen Subroutine” on page 1064, “posix_spawn_file_actions_adddup2

Subroutine” on page 1065, “posix_spawn_file_actions_destroy or posix_spawn_file_actions_init

Subroutine” on page 1066, “posix_spawnattr_destroy or posix_spawnattr_init Subroutine” on page 1067,

“posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine” on page 1072,

“posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine” on page 1068,

“posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine” on page 1069,

“posix_spawnattr_getschedparam or posix_spawnattr_setschedparam Subroutine” on page 1070,

“posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine” on page 1071.

posix_trace_getnext_event, posix_trace_timedgetnext_event,

posix_trace_trygetnext_event Subroutine

Purpose

Retrieves a trace event (TRACING).

Syntax

#include <sys/types.h>

#include <trace.h>

int posix_trace_getnext_event(trace_id_t trid,

 struct posix_trace_event_info *restrict event,

 void *restrict data, size_t num_bytes,

 size_t *restrict data_len, int *restrict unavailable);

int posix_trace_timedgetnext_event(trace_id_t trid,

 struct posix_trace_event_info *restrict event,

1074 Technical Reference, Volume 1: Base Operating System and Extensions

void *restrict data, size_t num_bytes,

 size_t *restrict data_len, int *restrict unavailable,

 const struct timespec *restrict abs_timeout);

int posix_trace_trygetnext_event(trace_id_t trid,

 struct posix_trace_event_info *restrict event,

 void *restrict data, size_t num_bytes,

 size_t *restrict data_len, int *restrict unavailable);

Description

The posix_trace_getnext_event() function reports a recorded trace event either from an active trace

stream without log or a prerecorded trace stream identified by the trid argument. The

posix_trace_trygetnext_event() function reports a recorded trace event from an active trace stream

without log identified by the trid argument.

The trace event information associated with the recorded trace event is copied by the function into the

structure pointed to by the event argument, and the data associated with the trace event is copied into the

buffer pointed to by the data argument.

The posix_trace_getnext_event() function blocks if the trid argument identifies an active trace stream and

there is currently no trace event ready to be retrieved. When returning, if a recorded trace event was

reported, the variable pointed to by the unavailable argument is set to 0. Otherwise, the variable pointed to

by the unavailable argument is set to a value different from 0.

The posix_trace_timedgetnext_event() function attempts to get another trace event from an active trace

stream without log, as in the posix_trace_getnext_event() function. However, if no trace event is

available from the trace stream, the implied wait terminates when the timeout specified by the argument

abs_timeout expires, and the function returns the error [ETIMEDOUT].

The timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock

upon which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout)—or

when the absolute time specified by abs_timeout has already passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers

option is not supported, the timeout is based on the system clock as returned by the time() function. The

resolution of the timeout matches the resolution of the clock on which it is based. The timespec data type

is defined in the <time.h> header.

The function never fails with a timeout if a trace event is immediately available from the trace stream. The

validity of the abs_timeout argument does not need to be checked if a trace event is immediately available

from the trace stream.

The behavior of this function for a prerecorded trace stream is unspecified.

The posix_trace_trygetnext_event() function does not block. This function returns an error if the trid

argument identifies a prerecorded trace stream. If a recorded trace event was reported, the variable

pointed to by the unavailable argument is set to 0. Otherwise, if no trace event was reported, the variable

pointed to by the unavailable argument is set to a value different from 0.

The num_bytes argument equals the size of the buffer pointed to by the data argument. The data_len

argument reports to the application the length, in bytes, of the data record just transferred. If num_bytes is

greater than or equal to the size of the data associated with the trace event pointed to by the event

argument, all the recorded data is transferred. In this case, the truncation-status member of the trace

event structure is either POSIX_TRACE_NOT_TRUNCATED (if the trace event data was recorded without

truncation while tracing) or POSIX_TRACE_TRUNCATED_RECORD (if the trace event data was truncated

when it was recorded). If the num_bytes argument is less than the length of recorded trace event data, the

data transferred is truncated to a length of num_bytes, the value stored in the variable pointed to by

Base Operating System (BOS) Runtime Services (A-P) 1075

data_len equals num_bytes, and the truncation-status member of the event structure argument is set to

POSIX_TRACE_TRUNCATED_READ (see the posix_trace_event_info structure defined in <trace.h>).

The report of a trace event is sequential starting from the oldest recorded trace event. Trace events are

reported in the order in which they were generated, up to an implementation-defined time resolution that

causes the ordering of trace events occurring very close to each other to be unknown. After it is reported,

a trace event cannot be reported again from an active trace stream. After a trace event is reported from an

active trace stream without log, the trace stream makes the resources associated with that trace event

available to record future generated trace events.

Return Values

Upon successful completion, these functions return a value of 0. Otherwise, they return the corresponding

error number.

If successful, these functions store:

v The recorded trace event in the object pointed to by event

v The trace event information associated with the recorded trace event in the object pointed to by data

v The length of this trace event information in the object pointed to by data_len

v The value of 0 in the object pointed to by unavailable

Error Codes

These functions fail if:

 EINVAL The trace stream identifier argument trid is invalid.

The posix_trace_getnext_event() and posix_trace_timedgetnext_event() functions fail if:

 EINTR The operation was interrupted by a signal, and so the call had no effect.

The posix_trace_trygetnext_event() function fails if:

 EINVAL The trace stream identifier argument trid does not correspond to an active trace

stream.

The posix_trace_timedgetnext_event() function fails if:

 EINVAL There is no trace event immediately available from the trace stream, and the timeout

argument is invalid.

ETIMEDOUT No trace event was available from the trace stream before the specified timeout

expired.

Related Information

“mq_receive, mq_timedreceive Subroutine” on page 830, “mq_send, mq_timedsend Subroutine” on page

831, “pthread_mutex_timedlock Subroutine” on page 1181, “pthread_rwlock_timedrdlock Subroutine” on

page 1196, “pthread_rwlock_timedwrlock Subroutine” on page 1198.

The sem_timedwait subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and

Extensions Volume 2.

The pthread.h and time.h files in AIX 5L Version 5.3 Files Reference.

1076 Technical Reference, Volume 1: Base Operating System and Extensions

powf, powl, or pow Subroutine

Purpose

Computes power.

Syntax

#include <math.h>

float powf (x, y)

float x;

float y;

long double powl (x, y)

long double x, y;

double pow (x, y)

double x, y;

Description

The powf, powl, and pow subroutines compute the value of x raised to the power y, x

y. If x is negative,

the application ensures that y is an integer value.

An application wishing to check for error situations should set errno to zero and call

feclearexcept(FE_ALL_EXCEPT) before calling these subroutines. Upon return, if errno is nonzero or

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is nonzero, an error

has occurred.

Parameters

 x Specifies the value of the base.

y Specifies the value of the exponent.

Return Values

Upon successful completion, the pow, powf and powl subroutines return the value of x raised to the

power y.

For finite values of x < 0, and finite non-integer values of y, a domain error occurs and a NaN is returned.

If the correct value would cause overflow, a range error occurs and the pow, powf, and powl subroutines

return HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

If the correct value would cause underflow, and is not representable, a range error may occur, and 0.0 is

returned.

If x or y is a NaN, a NaN is returned (unless specified elsewhere in this description).

For any value of y (including NaN), if x is +1, 1.0 is returned.

For any value of x (including NaN), if y is ±0, 1.0 is returned.

For any odd integer value of y>0, if x is ±0, ±0 is returned.

For y > 0 and not an odd integer, if x is ±0, +0 is returned.

Base Operating System (BOS) Runtime Services (A-P) 1077

If x is -1, and y is ±Inf, 1.0 is returned.

For |x<1, if y is −Inf, +Inf is returned.

For |x>1, if y is −Inf, +0 is returned.

For |x<1, if y is +Inf, +0 is returned.

For |x>1, if y is +Inf, +Inf is returned.

For y an odd integer < 0, if x is -Inf, -0 is returned.

For y < 0 and not an odd integer, if x is -Inf, +0 is returned.

For y an odd integer > 0, if x is −Inf, −Inf is returned.

For y > 0 and not an odd integer, if x is -Inf, +Inf is returned.

For y <0, if x is +Inf, +0 is returned.

For y >0, if x is +Inf, +Inf is returned.

For y an odd integer < 0, if x is ±0, a pole error occurs and ±HUGE_VAL, ±HUGE_VALF, and

±HUGE_VALL is returned for pow, powf, and powl, respectively.

For y < 0 and not an odd integer, if x is ±0, a pole error occurs and HUGE_VAL, HUGE_VALF and

HUGE_VALL is returned for pow, powf, and powl, respectively.

If the correct value would cause underflow, and is representable, a range error may occur and the correct

value is returned.

Error Codes

When using the libm.a library:

 pow If the correct value overflows, the powsubroutine returns a HUGE_VAL value and sets errno to

ERANGE. If the x parameter is negative and the y parameter is not an integer, the pow subroutine

returns a NaNQ value and sets errno to EDOM. If x=0 and the y parameter is negative, the pow

subroutine returns a HUGE_VAL value but does not modify errno.

powl If the correct value overflows, the powlsubroutine returns a HUGE_VAL value and sets errno to

ERANGE. If the x parameter is negative and the y parameter is not an integer, the powl subroutine

returns a NaNQ value and sets errno to EDOM. If x=0 and the y parameter is negative, the powl

subroutine returns a HUGE_VAL value but does not modify errno.

1078 Technical Reference, Volume 1: Base Operating System and Extensions

When using libmsaa.a(-lmsaa):

 pow If x=0 and the y parameter is not positive, or if the x parameter is negative and the y parameter is

not an integer, the pow subroutine returns 0 and sets errno to EDOM. In these cases a message

indicating DOMAIN error is output to standard error. When the correct value for the pow subroutine

would overflow or underflow, the pow subroutine returns:

+HUGE_VAL

 OR

 -HUGE_VAL

 OR

 0

When using either the libm.a library or the libsaa.a library:

powl If the correct value overflows, powl returns HUGE_VAL and errno to ERANGE. If x is negative and

y is not an integer, powl returns NaNQ and sets errno to EDOM. If x = zero and y is negative, powl

returns a HUGE_VAL value but does not modify errno.

Related Information

“exp, expf, or expl Subroutine” on page 241, “feclearexcept Subroutine” on page 259, “fetestexcept

Subroutine” on page 267, and “class, _class, finite, isnan, or unordered Subroutines” on page 165.

math.h in AIX 5L Version 5.3 Files Reference.

printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or

vwsprintf Subroutine

Purpose

Prints formatted output.

Library

Standard C Library (libc.a) or the Standard C Library with 128-Bit long doubles (libc128.a)

Syntax

#include <stdio.h>

int printf (Format, [Value, ...])

const char *Format;

int fprintf (Stream, Format, [Value, ...])

FILE *Stream;

const char *Format;

int sprintf (String, Format, [Value, ...])

char *String;

const char *Format;

int snprintf (String, Number, Format, [Value, . . .])

char *String;

int Number;

const char *Format;

#include <stdarg.h>

int vprintf (Format, Value)

Base Operating System (BOS) Runtime Services (A-P) 1079

const char *Format;

va_list Value;

int vfprintf (Stream, Format, Value)

FILE *Stream;

const char *Format;

va_list Value;

int vsprintf (String, Format, Value)

char *String;

const char *Format;

va_list Value;

#include <wchar.h>

int vwsprintf (String, Format, Value)

wchar_t *String;

const char *Format;

va_list Value;

int wsprintf (String, Format, [Value, ...])

wchar_t *String;

const char *Format;

Description

The printf subroutine converts, formats, and writes the Value parameter values, under control of the

Format parameter, to the standard output stream. The printf subroutine provides conversion types to

handle code points and wchar_t wide character codes.

The fprintf subroutine converts, formats, and writes the Value parameter values, under control of the

Format parameter, to the output stream specified by the Stream parameter. This subroutine provides

conversion types to handle code points and wchar_t wide character codes.

The sprintf subroutine converts, formats, and stores the Value parameter values, under control of the

Format parameter, into consecutive bytes, starting at the address specified by the String parameter. The

sprintf subroutine places a null character (\0) at the end. You must ensure that enough storage space is

available to contain the formatted string. This subroutine provides conversion types to handle code points

and wchar_t wide character codes.

The snprintf subroutine converts, formats, and stores the Value parameter values, under control of the

Format parameter, into consecutive bytes, starting at the address specified by the String parameter. The

snprintf subroutine places a null character (\0) at the end. You must ensure that enough storage space is

available to contain the formatted string. This subroutine provides conversion types to handle code points

and wchar_t wide character codes. The snprintf subroutine is identical to the sprintf subroutine with the

addition of the Number parameter, which states the size of the buffer referred to by the String parameter.

The wsprintf subroutine converts, formats, and stores the Value parameter values, under control of the

Format parameter, into consecutive wchar_t characters starting at the address specified by the String

parameter. The wsprintf subroutine places a null character (\0) at the end. The calling process should

ensure that enough storage space is available to contain the formatted string. The field width unit is

specified as the number of wchar_t characters. The wsprintf subroutine is the same as the printf

subroutine, except that the String parameter for the wsprintf subroutine uses a string of wchar_t

wide-character codes.

All of the above subroutines work by calling the _doprnt subroutine, using variable-length argument

facilities of the varargs macros.

The vprintf, vfprintf, vsprintf, and vwsprintf subroutines format and write varargs macros parameter

lists. These subroutines are the same as the printf, fprintf, sprintf, snprintf, and wsprintf subroutines,

1080 Technical Reference, Volume 1: Base Operating System and Extensions

respectively, except that they are not called with a variable number of parameters. Instead, they are called

with a parameter-list pointer as defined by the varargs macros.

Parameters

Number

Specifies the number of bytes in a string to be copied or transformed.

Value Specifies 0 or more arguments that map directly to the objects in the Format parameter.

Stream

Specifies the output stream.

String Specifies the starting address.

Format

A character string that contains two types of objects:

v Plain characters, which are copied to the output stream.

v Conversion specifications, each of which causes 0 or more items to be retrieved from the Value

parameter list. In the case of the vprintf, vfprintf, vsprintf, and vwsprintf subroutines, each

conversion specification causes 0 or more items to be retrieved from the varargs macros

parameter lists.

If the Value parameter list does not contain enough items for the Format parameter, the results

are unpredictable. If more parameters remain after the entire Format parameter has been

processed, the subroutine ignores them.

Each conversion specification in the Format parameter has the following elements:

v A % (percent sign).

v 0 or more options, which modify the meaning of the conversion specification. The option

characters and their meanings are:

’ Formats the integer portions resulting from i, d, u, f, g and G decimal conversions with

thousands_sep grouping characters. For other conversions the behavior is undefined.

This option uses the nonmonetary grouping character.

- Left-justifies the result of the conversion within the field.

+ Begins the result of a signed conversion with a + (plus sign) or - (minus sign).

space character

Prefixes a space character to the result if the first character of a signed conversion is

not a sign. If both the space-character and + option characters appear, the

space-character option is ignored.

Converts the value to an alternate form. For c, d, s, and u conversions, the option has

no effect. For o conversion, it increases the precision to force the first digit of the result

to be a 0. For x and X conversions, a nonzero result has a 0x or 0X prefix. For e, E, f,

g, and G conversions, the result always contains a decimal point, even if no digits

follow it. For g and G conversions, trailing 0’s are not removed from the result.

0 Pads to the field width with leading 0’s (following any indication of sign or base) for d, i,

o, u, x, X, e, E, f, g, and G conversions; the field is not space-padded. If the 0 and -

options both appear, the 0 option is ignored. For d, i, o u, x, and X conversions, if a

precision is specified, the 0 option is also ignored. If the 0 and ’ options both appear,

grouping characters are inserted before the field is padded. For other conversions, the

results are unreliable.

B Specifies a no-op character.

N Specifies a no-op character.

J Specifies a no-op character.

Base Operating System (BOS) Runtime Services (A-P) 1081

v An optional decimal digit string that specifies the minimum field width. If the converted value has

fewer characters than the field width, the field is padded on the left to the length specified by

the field width. If the - (left-justify) option is specified, the field is padded on the right.

v An optional precision. The precision is a . (dot) followed by a decimal digit string. If no precision

is specified, the default value is 0. The precision specifies the following limits:

– Minimum number of digits to appear for the d, i, o, u, x, or X conversions.

– Number of digits to appear after the decimal point for the e, E, and f conversions.

– Maximum number of significant digits for g and G conversions.

– Maximum number of bytes to be printed from a string in s and S conversions.

– Maximum number of bytes, converted from the wchar_t array, to be printed from the S

conversions. Only complete characters are printed.

v An optional l (lowercase L), ll (lowercase LL), h, or L specifier indicates one of the following:

– An optional h specifying that a subsequent d, i, u, o, x, or X conversion specifier applies to

a short int or unsigned short int Value parameter (the parameter will have been promoted

according to the integral promotions, and its value will be converted to a short int or

unsigned short int before printing).

– An optional h specifying that a subsequent n conversion specifier applies to a pointer to a

short int parameter.

– An optional l (lowercase L) specifying that a subsequent d, i, u, o, x, or X conversion

specifier applies to a long int or unsigned long int parameter .

– An optional l (lowercase L) specifying that a subsequent n conversion specifier applies to a

pointer to a long int parameter.

– An optional ll (lowercase LL) specifying that a subsequent d, i, u, o, x, or X conversion

specifier applies to a long long int or unsigned long long int parameter.

– An optional ll (lowercase LL) specifying that a subsequent n conversion specifier applies to a

pointer to a long long int parameter.

– An optional L specifying that a following e, E, f, g, or G conversion specifier applies to a

long double parameter. If linked with libc.a, long double is the same as double (64bits). If

linked with libc128.a and libc.a, long double is 128 bits.

v An optional vl, lv, vh, hv or v specifier indicates one of the following vector data type

conversions:

– An optional v specifying that a following e, E, f, g, G, a, or A conversion specifier applies to

a vector float parameter. It consumes one argument and interprets the data as a series of

four 4-byte floating point components.

– An optional v specifying that a following c, d, i, u, o, x, or X conversion specifier applies to a

vector signed char, vector unsigned char, or vector bool char parameter. It consumes

one argument and interprets the data as a series of sixteen 1-byte components.

– An optional vl or lv specifying that a following d, i, u, o, x, or X conversion specifier applies

to a vector signed int, vector unsigned int, or vector bool parameter. It consumes one

argument and interprets the data as a series of four 4-byte integer components.

– An optional vh or hv specifying that a following d, i, u, o, x, or X conversion specifier applies

to a vector signed short or vector unsigned short parameter. It consumes one argument

and interprets the data as a series of eight 2-byte integer components.

– For any of the preceding specifiers, an optional separator character can be specified

immediately preceding the vector size specifier. If no separator is specified, the default

separator is a space unless the conversion is c, in which case the default separator is null.

The set of supported optional separators are , (comma), ; (semicolon), : (colon), and _

(underscore).

v The following characters indicate the type of conversion to be applied:

% Performs no conversion. Prints (%).

1082 Technical Reference, Volume 1: Base Operating System and Extensions

d or i Accepts a Value parameter specifying an integer and converts it to signed decimal

notation. The precision specifies the minimum number of digits to appear. If the value

being converted can be represented in fewer digits, it is expanded with leading 0’s. The

default precision is 1. The result of converting a value of 0 with a precision of 0 is a null

string. Specifying a field width with a 0 as a leading character causes the field-width

value to be padded with leading 0’s.

u Accepts a Value parameter specifying an unsigned integer and converts it to unsigned

decimal notation. The precision specifies the minimum number of digits to appear. If the

value being converted can be represented in fewer digits, it is expanded with leading

0’s. The default precision is 1. The result of converting a value of 0 with a precision of 0

is a null string. Specifying a field width with a 0 as a leading character causes the

field-width value to be padded with leading 0’s.

o Accepts a Value parameter specifying an unsigned integer and converts it to unsigned

octal notation. The precision specifies the minimum number of digits to appear. If the

value being converted can be represented in fewer digits, it is expanded with leading

0’s. The default precision is 1. The result of converting a value of 0 with a precision of 0

is a null string. Specifying a field-width with a 0 as a leading character causes the field

width value to be padded with leading 0’s. An octal value for field width is not implied.

x or X Accepts a Value parameter specifying an unsigned integer and converts it to unsigned

hexadecimal notation. The letters abcdef are used for the x conversion and the letters

ABCDEF are used for the X conversion. The precision specifies the minimum number

of digits to appear. If the value being converted can be represented in fewer digits, it is

expanded with leading 0’s. The default precision is 1. The result of converting a value of

0 with a precision of 0 is a null string. Specifying a field width with a 0 as a leading

character causes the field-width value to be padded with leading 0’s.

f Accepts a Value parameter specifying a double and converts it to decimal notation in

the format [-]ddd.ddd. The number of digits after the decimal point is equal to the

precision specification. If no precision is specified, six digits are output. If the precision

is 0, no decimal point appears.

e or E Accepts a Value parameter specifying a double and converts it to the exponential form

[-]d.ddde+/-dd. One digit exists before the decimal point, and the number of digits after

the decimal point is equal to the precision specification. The precision specification can

be in the range of 0-17 digits. If no precision is specified, six digits are output. If the

precision is 0, no decimal point appears. The E conversion character produces a

number with E instead of e before the exponent. The exponent always contains at least

two digits.

g or G

Accepts a Value parameter specifying a double and converts it in the style of the e, E,

or f conversion characters, with the precision specifying the number of significant digits.

Trailing 0’s are removed from the result. A decimal point appears only if it is followed by

a digit. The style used depends on the value converted. Style e (E, if G is the flag used)

results only if the exponent resulting from the conversion is less than -4, or if it is

greater or equal to the precision. If an explicit precision is 0, it is taken as 1.

c Accepts and prints a Value parameter specifying an integer converted to an unsigned

char data type.

C Accepts and prints a Value parameter specifying a wchar_t wide character code. The

wchar_t wide character code specified by the Value parameter is converted to an array

of bytes representing a character and that character is written; the Value parameter is

written without conversion when using the wsprintf subroutine.

s Accepts a Value parameter as a string (character pointer), and characters from the

string are printed until a null character (\0) is encountered or the number of bytes

Base Operating System (BOS) Runtime Services (A-P) 1083

indicated by the precision is reached. If no precision is specified, all bytes up to the first

null character are printed. If the string pointer specified by the Value parameter has a

null value, the results are unreliable.

S Accepts a corresponding Value parameter as a pointer to a wchar_t string. Characters

from the string are printed (without conversion) until a null character (\0) is encountered

or the number of wide characters indicated by the precision is reached. If no precision

is specified, all characters up to the first null character are printed. If the string pointer

specified by the Value parameter has a value of null, the results are unreliable.

p Accepts a pointer to void. The value of the pointer is converted to a sequence of

printable characters, the same as an unsigned hexadecimal (x).

n Accepts a pointer to an integer into which is written the number of characters

(wide-character codes in the case of the wsprintf subroutine) written to the output

stream by this call. No argument is converted.

 A field width or precision can be indicated by an * (asterisk) instead of a digit string. In this case, an

integer Value parameter supplies the field width or precision. The Value parameter converted for output is

not retrieved until the conversion letter is reached, so the parameters specifying field width or precision

must appear before the value (if any) to be converted.

If the result of a conversion is wider than the field width, the field is expanded to contain the converted

result and no truncation occurs. However, a small field width or precision can cause truncation on the right.

The printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf subroutine allows

the insertion of a language-dependent radix character in the output string. The radix character is defined

by language-specific data in the LC_NUMERIC category of the program’s locale. In the C locale, or in a

locale where the radix character is not defined, the radix character defaults to a . (dot).

After any of these subroutines runs successfully, and before the next successful completion of a call to the

fclose (“fclose or fflush Subroutine” on page 249) or fflush subroutine on the same stream or to the exit

(“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239) or abort (“abort Subroutine” on page 2)

subroutine, the st_ctime and st_mtime fields of the file are marked for update.

The e, E, f, g, and G conversion specifiers represent the special floating-point values as follows:

 Quiet NaN +NaNQ or -NaNQ

Signaling NaN +NaNS or -NaNS

+/-INF +INF or -INF

+/-0 +0 or -0

The representation of the + (plus sign) depends on whether the + or space-character formatting option is

specified.

These subroutines can handle a format string that enables the system to process elements of the

parameter list in variable order. In such a case, the normal conversion character % (percent sign) is

replaced by %digit$, where digit is a decimal number in the range from 1 to the NL_ARGMAX value.

Conversion is then applied to the specified argument, rather than to the next unused argument. This

feature provides for the definition of format strings in an order appropriate to specific languages. When

variable ordering is used the * (asterisk) specification for field width in precision is replaced by %digit$. If

you use the variable-ordering feature, you must specify it for all conversions.

The following criteria apply:

1084 Technical Reference, Volume 1: Base Operating System and Extensions

v The format passed to the NLS extensions can contain either the format of the conversion or the explicit

or implicit argument number. However, these forms cannot be mixed within a single format string,

except for %% (double percent sign).

v The n value must have no leading zeros.

v If %n$ is used, %1$ to %n - 1$ inclusive must be used.

v The n in %n$ is in the range from 1 to the NL_ARGMAX value, inclusive. See the limits.h file for more

information about the NL_ARGMAX value.

v Numbered arguments in the argument list can be referenced as many times as required.

v The * (asterisk) specification for field width or precision is not permitted with the variable order %n$

format; instead, the *m$ format is used.

Return Values

Upon successful completion, the printf, fprintf, vprintf, and vfprintf subroutines return the number of

bytes transmitted (not including the null character [\0] in the case of the sprintf, and vsprintf subroutines).

If an error was encountered, a negative value is output.

Upon successful completion, the snprintf subroutine returns the number of bytes written to the String

parameter (excluding the terminating null byte). If output characters are discarded because the output

exceeded the Number parameter in length, then the snprintf subroutine returns the number of bytes that

would have been written to the String parameter if the Number parameter had been large enough

(excluding the terminating null byte).

Upon successful completion, the wsprintf and vwsprintf subroutines return the number of wide characters

transmitted (not including the wide character null character [\0]). If an error was encountered, a negative

value is output.

Error Codes

The printf, fprintf, sprintf, snprintf, or wsprintf subroutine is unsuccessful if the file specified by the

Stream parameter is unbuffered or the buffer needs to be flushed and one or more of the following are

true:

 EAGAIN The O_NONBLOCK or O_NDELAY flag is set for the file descriptor underlying the file specified by the

Stream or String parameter and the process would be delayed in the write operation.

EBADF The file descriptor underlying the file specified by the Stream or String parameter is not a valid file

descriptor open for writing.

EFBIG An attempt was made to write to a file that exceeds the file size limit of this process or the maximum file

size. For more information, refer to the ulimit subroutine.

EINTR The write operation terminated due to receipt of a signal, and either no data was transferred or a partial

transfer was not reported.

Note: Depending upon which library routine the application binds to, this subroutine may return EINTR.

Refer to the signal subroutine regarding sa_restart.

 EIO The process is a member of a background process group attempting to perform a write to its controlling

terminal, the TOSTOP flag is set, the process is neither ignoring nor blocking the SIGTTOU signal, and

the process group of the process has no parent process.

ENOSPC No free space remains on the device that contains the file.

EPIPE An attempt was made to write to a pipe or first-in-first-out (FIFO) that is not open for reading by any

process. A SIGPIPE signal is sent to the process.

The printf, fprintf, sprintf, snprintf, or wsprintf subroutine may be unsuccessful if one or more of the

following are true:

Base Operating System (BOS) Runtime Services (A-P) 1085

EILSEQ An invalid character sequence was detected.

EINVAL The Format parameter received insufficient arguments.

ENOMEM Insufficient storage space is available.

ENXIO A request was made of a nonexistent device, or the request was outside the capabilities of the device.

Examples

The following example demonstrates how the vfprintf subroutine can be used to write an error routine:

#include <stdio.h>

#include <stdarg.h>

/* The error routine should be called with the

 syntax: */

/* error(routine_name, Format

 [, value, . . .]); */

/*VARARGS0*/

void error(char *fmt, . . .);

/* ** Note that the function name and

 Format arguments cannot be **

 separately declared because of the **

 definition of varargs. */ {

 va_list args;

 va_start(args, fmt);

 /*

 ** Display the name of the function

 that called the error routine */

 fprintf(stderr, "ERROR in %s: ",

 va_arg(args, char *)); /*

 ** Display the remainder of the message

 */

 fmt = va_arg(args, char *);

 vfprintf(fmt, args);

 va_end(args);

 abort(); }

Related Information

The abort (“abort Subroutine” on page 2) subroutine, conv (“conv Subroutines” on page 181) subroutine,

ecvt, fcvt, or gcvt (“ecvt, fcvt, or gcvt Subroutine” on page 221) subroutine, exit (“exit, atexit, unatexit,

_exit, or _Exit Subroutine” on page 239) subroutine, fclose or fflush (“fclose or fflush Subroutine” on page

249) subroutine, putc, putchar, fputc, or putw (“putc, putchar, fputc, or putw Subroutine” on page 1227)

subroutine, putwc, putwchar, or fputwc (“putwc, putwchar, or fputwc Subroutine” on page 1244)

subroutine, scanf, fscanf, sscanf, or wsscanf subroutine, setlocale subroutine.

Input and Output Handling and 128-Bit Long Double Floating-Point Data Type in AIX 5L Version 5.3

General Programming Concepts: Writing and Debugging Programs.

profil Subroutine

Purpose

Starts and stops program address sampling for execution profiling.

Library

Standard C Library (libc.a)

Syntax

#include <mon.h>

1086 Technical Reference, Volume 1: Base Operating System and Extensions

void profil (ShortBuffer, BufferSize, Offset, Scale)

OR

void profil (ProfBuffer, -1, 0, 0)

unsigned short *ShortBuffer;

struct prof *ProfBuffer;

unsigned int Buffersize, Scale;

unsigned long Offset;

Description

The profil subroutine arranges to record a histogram of periodically sampled values of the calling process

program counter. If BufferSize is not -1:

v The parameters to the profil subroutine are interpreted as shown in the first syntax definition.

v After this call, the program counter (pc) of the process is examined each clock tick if the process is the

currently active process. The value of the Offset parameter is subtracted from the pc. The result is

multiplied by the value of the Scale parameter, shifted right 16 bits, and rounded up to the next

half-word aligned value. If the resulting number is less than the BufferSize value divided

by sizeof(short), the corresponding short inside the ShortBuffer parameter is incremented. If the result

of this increment would overflow an unsigned short, it remains USHRT_MAX.

v The least significant 16 bits of the Scale parameter are interpreted as an unsigned, fixed-point fraction

with a binary point at the left. The most significant 16 bits of the Scale parameter are ignored. For

example:

 Octal Hex Meaning

0177777 0xFFFF Maps approximately each pair of bytes in the instruction space

to a unique short in the ShortBuffer parameter.

077777 0x7FFF Maps approximately every four bytes to a short in the

ShortBuffer parameter.

02 0x0002 Maps all instructions to the same location, producing a

noninterrupting core clock.

01 0x0001 Turns profiling off.

00 0x0000 Turns profiling off.

Note: Mapping each byte of the instruction space to an individualshort in the ShortBuffer parameter is

not possible.

v Profiling, using the first syntax definition, is rendered ineffective by giving a value of 0 for the BufferSize

parameter.

If the value of the BufferSize parameter is -1:

v The parameters to the profil subroutine are interpreted as shown in the second syntax definition. In this

case, the Offset and Scale parameters are ignored, and the ProfBuffer parameter points to an array of

prof structures. The prof structure is defined in the mon.h file, and it contains the following members:

caddr_t p_low;

caddr_t p_high;

HISTCOUNTER *p_buff;

int p_bufsize;

uint p_scale;

If the p_scale member has the value of -1, a value for it is computed based on p_low, p_high, and

p_bufsize; otherwise p_scale is interpreted like the scale argument in the first synopsis. The p_high

members in successive structures must be in ascending sequence. The array of structures is ended with a

structure containing a p_high member set to 0; all other fields in this last structure are ignored.

Base Operating System (BOS) Runtime Services (A-P) 1087

The p_buff buffer pointers in the array of prof structures must point into a single contiguous buffer space.

v Profiling, using the second syntax definition, is turned off by giving a ProfBuffer argument such that the

p_high element of the first structure is equal to 0.

In every case:

v Profiling remains on in both the child process and the parent process after a fork subroutine.

v Profiling is turned off when an exec subroutine is run.

v A call to the profil subroutine is ineffective if profiling has been previously turned on using one syntax

definition, and an attempt is made to turn profiling off using the other syntax definition.

v A call to the profil subroutine is ineffective if the call is attempting to turn on profiling when profiling is

already turned on, or if the call is attempting to turn off profiling when profiling is already turned off.

Parameters

 ShortBuffer Points to an area of memory in the user address space. Its length (in bytes) is given by the

BufferSize parameter.

BufferSize Specifies the length (in bytes) of the buffer.

Offset Specifies the delta of program counter start and buffer; for example, a 0 Offset implies that text

begins at 0. If the user wants to use the entry point of a routine for the Offset parameter, the

syntax of the parameter is as follows:

*(long *)RoutineName

Scale Specifies the mapping factor between the program counter and ShortBuffer.

ProfBuffer Points to an array of prof structures.

Return Values

The profil subroutine always returns a value of 0. Otherwise, the errno global variable is set to indicate

the error.

Error Codes

The profil subroutine is unsuccessful if one or both of the following are true:

 EFAULT The address specified by the ShortBuffer or ProfBuffer parameters is not valid, or the address specified

by a p_buff field is not valid. EFAULT can also occur if there are not sufficient resources to pin the

profiling buffer in real storage.

EINVAL The p_high fields in the prof structure specified by the ProfBuffer parameter are not in ascending order.

Related Information

The exec (“exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232)

subroutines, fork (“fork, f_fork, or vfork Subroutine” on page 284) subroutine, moncontrol (“moncontrol

Subroutine” on page 809) subroutine, monitor (“monitor Subroutine” on page 810) subroutine,

monstartup (“monstartup Subroutine” on page 816) subroutine.

The prof command.

proj_execve Subroutine

Purpose

Executes an application with the specified project assignment.

1088 Technical Reference, Volume 1: Base Operating System and Extensions

Library

The libaacct.a library.

Syntax

<sys/aacct.h>

int proj_execve(char * path char *const arg[], char *const env[], projid_t projid, int force);

Description

The proj_execve system call assigns the requested project ID to the calling process and runs the given

program. This subroutine checks whether the caller is allowed to assign the requested project ID to the

application, using the available project assignment rules for the caller’s user ID, group ID, and application

name. If the requested project assignment is not allowed, an error code is returned. However, the user

with root authority or advanced accounting administrator capabilities can force the project assignment by

setting the force parameter to 1.

Parameters

 path Path for the application or program to be run.

arg List of arguments for the new process.

env Environment for the new process.

projid Project ID to be assigned to the new process.

force Option to override the allowed project list for the application, user, or group.

Return Values

 0 Upon success, does not return to the calling process.

-1 The subroutine failed.

Error Codes

 EPERM Permission denied. A user without privileges attempted the

call.

Related Information

The “addproj Subroutine” on page 31, “chprojattr Subroutine” on page 156, “getproj Subroutine” on page

409, rmproj Subroutine.

Understanding the Advanced Accounting Subsystem.

projdballoc Subroutine

Purpose

Allocates a project database handle.

Library

The libaacct.a library.

Base Operating System (BOS) Runtime Services (A-P) 1089

Syntax

<sys/aacct.h>

projdballoc(void **handle)

Description

The projdballoc subroutine allocates a handle to operate on the project database. By default, this handle

is initialized to operate on the system project database; however, it can be reset with the projdbfinit

subroutine to reference another project database.

Parameters

 handle Pointer to a void pointer

Security

Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT

capability to a user.

Return Values

 0 Success

-1 Failure

Error Codes

 EINVAL The passed pointer is NULL

ENOMEM No space left on memory

Related Information

The “addprojdb Subroutine” on page 32, “chprojattrdb Subroutine” on page 157, “getfirstprojdb Subroutine”

on page 360, “getnextprojdb Subroutine” on page 387, “getprojdb Subroutine” on page 410, “projdbfinit

Subroutine,” “projdbfree Subroutine” on page 1091, rmprojdb Subroutine.

projdbfinit Subroutine

Purpose

Sets the handle to use a local project database as specified in the dbfile pointer and opens the file with

the specified mode.

Library

The libaacct.a library.

Syntax

<sys/aacct.h>

projdbfinit(void *handle, char *file, int mode)

1090 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The projdbfinit subroutine sets the specified handle to use the specified project definition file. The file is

opened in the specified mode. Subsequently, the project database, as represented by the handle

parameter, will be referenced through file system primitives.

The project database must be initialized before calling this subroutine. The routines projdballoc and

projdbfinit are provided for this purpose. The specified file is opened in the specified mode. File system

calls are used to operate on these types of files. The struct projdb is filled as follows:

projdb.type = PROJ_LOCAL

projdb.fdes = value returned from open() call.

If the file parameter is NULL, then the system project database is opened.

Parameters

 handle Pointer to handle

file Indicate the project definition file name

mode Indicates the mode in which the file is opened

Security

Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT

capability to a user.

Return Values

 0 Success

-1 Failure

Error Codes

 EINVAL Passed handle or file is invalid

Related Information

The “addprojdb Subroutine” on page 32, “chprojattrdb Subroutine” on page 157, “getfirstprojdb Subroutine”

on page 360, “getnextprojdb Subroutine” on page 387, “getproj Subroutine” on page 409, “getprojdb

Subroutine” on page 410, “projdballoc Subroutine” on page 1089, “projdbfinit Subroutine” on page 1090,

“projdbfree Subroutine,” rmprojdb Subroutine.

projdbfree Subroutine

Purpose

Frees an allocated project database handle.

Library

The libaacct.a library.

Base Operating System (BOS) Runtime Services (A-P) 1091

Syntax

<sys/aacct.h>

projdbfree(void *handle)

Description

The projdbfree subroutine releases the memory allocated to a project database handle. The closure

operation is based on the type of project database. If a project database is local, then it is closed using

system primitives. The project database must be initialized before calling this subroutine. The routines

projdballoc and projdbfinit are provided for this purpose.

Parameters

 handle Pointer to a void pointer

Security

Only for privileged users. Privilege can be extended to nonroot users by granting the CAP_AACCT

capability to a user.

Return Values

 0 Success

-1 Failure

Error Codes

 EINVAL Passed pointer is NULL

Related Information

The “addprojdb Subroutine” on page 32, “chprojattrdb Subroutine” on page 157, “getfirstprojdb Subroutine”

on page 360, “getnextprojdb Subroutine” on page 387, “getproj Subroutine” on page 409, “getprojdb

Subroutine” on page 410, “projdballoc Subroutine” on page 1089, “projdbfinit Subroutine” on page 1090,

rmprojdb Subroutine.

psdanger Subroutine

Purpose

Defines the amount of free paging space available.

Syntax

#include <signal.h>

#include <sys/vminfo.h>

blkcnt_t psdanger (Signal)

int Signal;

Description

The psdanger subroutine returns the difference between the current number of free paging-space blocks

and the paging-space thresholds of the system.

1092 Technical Reference, Volume 1: Base Operating System and Extensions

Parameters

 Signal Defines the signal.

Return Values

If the value of the Signal parameter is 0, the return value is the total number of paging-space blocks

defined in the system.

If the value of the Signal parameter is -1, the return value is the number of free paging-space blocks

available in the system.

If the value of the Signal parameter is SIGDANGER, the return value is the difference between the current

number of free paging-space blocks and the paging-space warning threshold. If the number of free

paging-space blocks is less than the paging-space warning threshold, the return value is negative.

If the value of the Signal parameter is SIGKILL, the return value is the difference between the current

number of free paging-space blocks and the paging-space kill threshold. If the number of free

paging-space blocks is less than the paging-space kill threshold, the return value is negative.

Related Information

The swapoff subroutine, swapon subroutine, swapqry subroutine.

The chps command, lsps command, mkps command, rmps command, swapoff command, swapon

command.

Paging Space Overview in AIX 5L Version 5.3 System Management Concepts: Operating System and

Devices.

Subroutines Overview and Understanding Paging Space Programming Requirements in AIX 5L Version

5.3 General Programming Concepts: Writing and Debugging Programs.

psignal Subroutine or sys_siglist Vector

Purpose

Prints system signal messages.

Library

Standard C Library (libc.a)

Syntax

psignal (Signal, String)

unsigned Signal;

char *String;

char *sys_siglist[];

Description

The psignal subroutine produces a short message on the standard error file describing the indicated

signal. First the String parameter is printed, then the name of the signal and a new-line character.

To simplify variant formatting of signal names, the sys_siglist vector of message strings is provided. The

signal number can be used as an index in this table to get the signal name without the new-line character.

Base Operating System (BOS) Runtime Services (A-P) 1093

The NSIG defined in the signal.h file is the number of messages provided for in the table. It should be

checked because new signals may be added to the system before they are added to the table.

Parameters

 Signal Specifies a signal. The signal number should be among those found in the signal.h file.

String Specifies a string that is printed. Most usefully, the String parameter is the name of the program that

incurred the signal.

Related Information

The perror (“perror Subroutine” on page 980) subroutine, sigvec subroutine.

pthdb_attr, pthdb_cond, pthdb_condattr, pthdb_key, pthdb_mutex,

pthdb_mutexattr, pthdb_pthread, pthdb_pthread_key, pthdb_rwlock, or

pthdb_rwlockattr Subroutine

Purpose

Reports the pthread library objects.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_pthread (pthdb_session_t session,

 pthdb_pthread_t * pthreadp,

 int cmd)

int pthdb_pthread_key(pthdb_session_t session,

 pthread_key_t * keyp,

 int cmd)

int pthdb_attr(pthdb_session_t session,

 pthdb_attr_t * attrp,

 int cmd)

int pthdb_cond (pthdb_session_t session,

 pthdb_cond_t * condp,

 int cmd)

int pthdb_condattr (pthdb_session_t session,

 pthdb_condattr_t * condattrp,

 int cmd)

int pthdb_key(pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthread_key_t * keyp,

 int cmd)

int pthdb_mutex (pthdb_session_t session,

 pthdb_mutex_t * mutexp,

 int cmd)

int pthdb_mutexattr (pthdb_session_t session,

 pthdb_mutexattr_t * mutexattrp,

 int cmd)

int pthdb_rwlock (pthdb_session_t session,

 pthdb_rwlock_t * rwlockp,

1094 Technical Reference, Volume 1: Base Operating System and Extensions

int cmd)

int pthdb_rwlockattr (pthdb_session_t session,

 pthdb_rwlockattr_t * rwlockattrp,

 int cmd)

Description

The pthread library maintains internal lists of objects: pthreads, mutexes, mutex attributes, condition

variables, condition variable attributes, read/write locks, read/write lock attributes, attributes, pthread

specific keys, and active keys. The pthread debug library provides access to these lists one element at a

time via the functions listed above.

Each one of those functions acquire the next element in the list of objects. For example, the pthdb_attr

function gets the next attribute on the list of attributes.

A report of PTHDB_INVALID_OBJECT represents the empty list or the end of a list, where OBJECT is

equal to PTHREAD, ATTR, MUTEX, MUTEXATTR, COND, CONDATTR, RWLOCK, RWLOCKATTR,

KEY, or TID as appropriate.

Each list is reset to the top of the list when the pthdb_session_update function is called, or when the list

function reports a PTHDB_INVALID_* value. For example, when pthdb_attr reports an attribute of

PTHDB_INVALID_ATTR the list is reset to the beginning such that the next call reports the first attribute in

the list, if any.

When PTHDB_LIST_FIRST is passed for the cmd parameter, the first item in the list is retrieved.

Parameters

 session Session handle.

attrp Attribute object.

cmd Reset to the beginning of the list.

condp Pointer to Condition variable object.

condattrp Pointer to Condition variable attribute object.

keyp Pointer to Key object.

mutexattrp Pointer to Mutex attribute object.

mutexp Pointer to Mutex object.

pthread pthread object.

pthreadp Pointer to pthread object.

rwlockp Pointer to Read/Write lock object.

rwlockattrp Pointer to Read/Write lock attribute object.

Return Values

If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

 PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_PTHREAD Invalid pthread handle.

PTHDB_BAD_CMD Invalid command.

PTHDB_BAD_POINTER Invalid buffer pointer.

PTHDB_INTERNAL Error in library.

PTHDB_MEMORY Not enough memory

Base Operating System (BOS) Runtime Services (A-P) 1095

Related Information

The pthdebug.h file.

The pthread.h file.

pthdb_attr_detachstate,pthdb_attr_addr,

pthdb_attr_guardsize,pthdb_attr_inheritsched,

pthdb_attr_schedparam,pthdb_attr_schedpolicy,

pthdb_attr_schedpriority,pthdb_attr_scope,

pthdb_attr_stackaddr,pthdb_attr_stacksize, or pthdb_attr_suspendstate

Subroutine

Purpose

Query the various fields of a pthread attribute and return the results in the specified buffer.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_attr_detachstate (pthdb_session_t session,

 pthdb_attr_t attr,

 pthdb_detachstate_t * detachstatep);

int pthdb_attr_addr (pthdb_session_t session,

 pthdb_attr_t attr,

 pthdb_addr_t * addrp);

int pthdb_attr_guardsize (pthdb_session_t session,

 pthdb_attr_t attr,

 pthdb_size_t * guardsizep);

int pthdb_attr_inheritsched (pthdb_session_t session,

 pthdb_attr_t attr,

 pthdb_inheritsched_t * inheritschedp);

int pthdb_attr_schedparam (pthdb_session_t session,

 pthdb_attr_t attr,

 struct sched_param * schedparamp);

int pthdb_attr_schedpolicy (pthdb_session_t session,

 pthdb_attr_t attr,

 pthdb_policy_t * schedpolicyp)

int pthdb_attr_schedpriority (pthdb_session_t session,

 pthdb_attr_t attr,

 int * schedpriorityp)

int pthdb_attr_scope (pthdb_session_t session,

 pthdb_attr_t attr,

 pthdb_scope_t * scopep)

int pthdb_attr_stackaddr (pthdb_session_t session,

 pthdb_attr_t attr,

 pthdb_size_t * stackaddrp);

int pthdb_attr_stacksize (pthdb_session_t session,

 pthdb_attr_t attr,

 pthdb_size_t * stacksizep);

int pthdb_attr_suspendstate (pthdb_session_t session,

 pthdb_attr_t attr,

 pthdb_suspendstate_t * suspendstatep)

1096 Technical Reference, Volume 1: Base Operating System and Extensions

Description

Each pthread is created using either the default pthread attribute or a user-specified pthread attribute.

These functions query the various fields of a pthread attribute and, if successful, return the result in the

buffer specified. In all cases, the values returned reflect the expected fields of a pthread created with the

attribute specified.

pthdb_attr_detachstate reports if the created pthread is detachable (PDS_DETACHED) or joinable

(PDS_JOINABLE). PDS_NOTSUP is reserved for unexpected results.

pthdb_attr_addr reports the address of the pthread_attr_t.

pthdb_attr_guardsize reports the guard size for the attribute.

pthdb_attr_inheritsched reports whether the created pthread will run with scheduling policy and

scheduling parameters from the created pthread (PIS_INHERIT), or from the attribute (PIS_EXPLICIT).

PIS_NOTSUP is reserved for unexpected results.

pthdb_attr_schedparam reports the scheduling parameters associated with the pthread attribute. See

pthdb_attr_inheritsched for additional information.

pthdb_attr_schedpolicy reports whether the scheduling policy associated with the pthread attribute is

other (SP_OTHER), first in first out (SP_FIFO), or round robin (SP_RR). SP_NOTSUP is reserved for

unexpected results.

pthdb_attr_schedpriority reports the scheduling priority associated with the pthread attribute. See

pthdb_attr_inheritsched for additional information.

pthdb_attr_scope reports whether the created pthread will have process scope (PS_PROCESS) or

system scope (PS_SYSTEM). PS_NOTSUP is reserved for unexpected results.

pthdb_attr_stackaddr reports the address of the stack.

pthdb_attr_stacksize reports the size of the stack.

pthdb_attr_suspendstate reports whether the created pthread will be suspended (PSS_SUSPENDED) or

not (PSS_UNSUSPENDED). PSS_NOTSUP is reserved for unexpected results.

Parameters

 addr Attributes address.

attr Attributes handle.

detachstatep Detach state buffer.

guardsizep Attribute guard size.

inheritschedp Inherit scheduling buffer.

schedparamp Scheduling parameters buffer.

schedpolicyp Scheduling policy buffer.

schedpriorityp Scheduling priority buffer.

scopep Contention scope buffer.

session Session handle.

stackaddrp Attributes stack address.

stacksizep Attributes stack size.

suspendstatep Suspend state buffer.

Base Operating System (BOS) Runtime Services (A-P) 1097

Return Values

If successful these functions return PTHDB_SUCCESS. Otherwise, and error code is returned.

Error Codes

 PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_ATTR Invalid attribute handle.

PTHDB_BAD_POINTER Invalid buffer pointer.

PTHDB_CALLBACK Debugger call back error.

PTHDB_NOTSUP Not supported.

PTHDB_INTERNAL Internal library error.

Related Information

The pthdebug.h file.

The pthread.h file.

pthdb_condattr_pshared, or pthdb_condattr_addr Subroutine

Purpose

Gets the condition variable attribute pshared value.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_condattr_pshared (pthdb_session_t session,

 pthdb_condattr_t condattr,

 pthdb_pshared_t * psharedp)

int pthdb_condattr_addr (pthdb_session_t session,

 pthdb_condattr_t condattr,

 pthdb_addr_t * addrp)

Description

The pthdb_condattr_pshared function is used to get the condition variable attribute process shared

value. The pshared value can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

The pthdb_condattr_addr function reports the address of the pthread_condattr_t.

Parameters

 addrp Pointer to the address of the pthread_condattr_t.

condattr Condition variable attribute handle

psharedp Pointer to the pshared value.

session Session handle.

1098 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

If successful this function returns PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

 PTHDB_BAD_CONDATTR Invalid condition variable attribute handle.

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Error in library.

PTHDB_POINTER Invalid pointer

Related Information

The pthdebug.h file.

The pthread.h file.

pthdb_cond_addr, pthdb_cond_mutex or pthdb_cond_pshared

Subroutine

Purpose

Gets the condition variable’s mutex handle and pshared value.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_cond_addr (pthdb_session_t session,

 pthdb_cond_t cond,

 pthdb_addr_t * addrp)

int pthdb_cond_mutex (pthdb_session_t session,

 pthdb_cond_t cond,

 pthdb_mutex_t * mutexp)

int pthdb_cond_pshared (pthdb_session_t session,

 pthdb_cond_t cond,

 pthdb_pshared_t * psharedp)

Description

The pthdb_cond_addr function reports the address of the pthdb_cond_t.

The pthdb_cond_mutex function is used to get the mutex handle associated with the particular condition

variable, if the mutex does not exist then PTHDB_INVALID_MUTEX is returned from the mutex.

The pthdb_cond_pshared function is used to get the condition variable process shared value. The

pshared value can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

Base Operating System (BOS) Runtime Services (A-P) 1099

Parameters

 addr Condition variable address

cond Condition variable handle

mutexp Pointer to mutex

psharedp Pointer to pshared value

session Session handle.

Return Values

If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

 PTHDB_BAD_COND Invalid cond handle.

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INVALID_MUTEX Invalid mutex.

PTHDB_INTERNAL Error in library.

PTHDB_POINTER Invalid pointer

Related Information

The pthdebug.h file.

The pthread.h file.

pthdb_mutexattr_addr, pthdb_mutexattr_prioceiling,

pthdb_mutexattr_protocol, pthdb_mutexattr_pshared or

pthdb_mutexattr_type Subroutine

Purpose

Gets the mutex attribute pshared, priority ceiling, protocol, and type values.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_mutexattr_addr (pthdb_session_t session,

 pthdb_mutexattr_t mutexattr,

 pthdb_addr_t * addrp)

int pthdb_mutexattr_protocol (pthdb_session_t session,

 pthdb_mutexattr_t mutexattr,

 pthdb_protocol_t * protocolp)

int pthdb_mutexattr_pshared (pthdb_session_t session,

 pthdb_mutexattr_t mutexattr,

 pthdb_pshared_t * psharedp)

1100 Technical Reference, Volume 1: Base Operating System and Extensions

int pthdb_mutexattr_type (pthdb_session_t session,

 pthdb_mutexattr_t mutexattr,

 pthdb_mutex_type_t * typep)

Description

The pthdb_mutexattr_addr function reports the address of the pthread_mutexatt_t.

The pthdb_mutexattr_prioceiling function is used to get the mutex attribute priority ceiling value.

The pthdb_mutexattr_protocol function is used to get the mutex attribute protocol value. The protocol

value can be MP_INHERIT, MP_PROTECT, MP_NONE, or MP_NOTSUP.

The pthdb_mutexattr_pshared function is used to get the mutex attribute process shared value. The

pshared value can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

The pthdb_mutexattr_type is used to get the value of the mutex attribute type. The values for the mutex

type can be MK_NONRECURSIVE_NP, MK_RECURSIVE_NP, MK_FAST_NP, MK_ERRORCHECK,

MK_RECURSIVE, MK_NORMAL, or MK_NOTSUP.

Parameters

 addr Mutex attribute address.

mutexattr Condition variable attribute handle

prioceiling Pointer to priority ceiling value.

protocolp Pointer to protocol value.

psharedp Pointer to pshared value.

session Session handle.

typep Pointer to type value.

Return Values

If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

 PTHDB_BAD_MUTEXATTR Invalid mutex attribute handle.

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Error in library.

PTHDB_NOSYS Not implemented

PTHDB_POINTER Invalid pointer

Related Information

The pthdebug.h file.

The pthread.h file.

Base Operating System (BOS) Runtime Services (A-P) 1101

pthdb_mutex_addr, pthdb_mutex_lock_count, pthdb_mutex_owner,

pthdb_mutex_pshared, pthdb_mutex_prioceiling,

pthdb_mutex_protocol, pthdb_mutex_state or pthdb_mutex_type

Subroutine

Purpose

Gets the owner’s pthread, mutex’s pshared value, priority ceiling, protocol, lock state, and type.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_mutex_addr (pthdb_session_t session,

 pthdb_mutex_t mutex,

 pthdb_addr_t * addrp)

int pthdb_mutex_owner (pthdb_session_t session,

 pthdb_mutex_t mutex,

 pthdb_pthread_t * ownerp)

int pthdb_mutex_lock_count (pthdb_session_t session,

 pthdb_mutex_t mutex,

 int * countp);

int pthdb_mutex_pshared (pthdb_session_t session,

 pthdb_mutex_t mutex,

 pthdb_pshared_t * psharedp)

int pthdb_mutex_prioceiling (pthdb_session_t session,

 pthdb_mutex_t mutex,

 pthdb_pshared_t * prioceilingp)

int pthdb_mutex_protocol (pthdb_session_t session,

 pthdb_mutex_t mutex,

 pthdb_pshared_t * protocolp)

int pthdb_mutex_state (pthdb_session_t session,

 pthdb_mutex_t mutex,

 pthdb_mutex_state_t * statep)

int pthdb_mutex_type (pthdb_session_t session,

 pthdb_mutex_t mutex,

 pthdb_mutex_type_t * typep)

Description

pthdb_mutex_addr reports the address of the prhread_mutex_t.

pthdb_mutex_lock_count reports the lock count of the mutex.

pthdb_mutex_owner is used to get the pthread that owns the mutex.

1102 Technical Reference, Volume 1: Base Operating System and Extensions

The pthdb_mutex_pshared function is used to get the mutex process shared value. The pshared value

can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

pthdb_mutex_prioceiling function is used to get the mutex priority ceiling value.

pthdb_mutex_protocol function is used to get the mutex protocol value. The protocol value can be

MP_INHERIT, MP_PROTECT, MP_NONE, or MP_NOTSUP.

pthdb_mutex_state is used to get the value of the mutex lock state. The state can be MS_LOCKED,

MS_UNLOCKED or MS_NOTSUP.

pthdb_mutex_type is used to get the value of the mutex type. The values for the mutex type can be

MK_NONRECURSIVE_NP, MK_RECURSIVE_NP, MK_FAST_NP, MK_ERRORCHECK,

MK_RECURSIVE, MK_NORMAL, or MK_NOTSUP.

Parameters

 addr Mutex address

countp Mutex lock count

mutex Mutex handle

ownerp Pointer to mutex owner

psharedp Pointer to pshared value

prioceilingp Pointer to priority ceiling value

protocolp Pointer to protocol value

session Session handle.

statep Pointer to mutex state

typep Pointer to mutex type

Return Values

If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

 PTHDB_BAD_MUTEX Invalid mutex handle.

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Call failed.

PTHDB_NOSYS Not implemented

PTHDB_POINTER Invalid pointer

Related Information

The pthdebug.h file and the pthread.h file.

The pthread.h file.

pthdb_mutex_waiter, pthdb_cond_waiter, pthdb_rwlock_read_waiter or

pthdb_rwlock_write_waiter Subroutine

Purpose

Gets the next waiter in the list of an object’s waiters.

Base Operating System (BOS) Runtime Services (A-P) 1103

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_mutex_waiter (pthdb_session_t session,

 pthdb_mutex_t mutex,

 pthdb_pthread_t * waiter,

 int cmd);

int pthdb_cond_waiter (pthdb_session_t session,

 pthdb_cond_t cond,

 pthdb_pthread_t * waiter,

 int cmd)

int *pthdb_rwlock_read_waiter (pthdb_session_t session,

 pthdb_rwlock_t rwlock,

 pthdb_pthread_t * waiter,

 int cmd)

int *pthdb_rwlock_write_waiter (pthdb_session_t session,

 pthdb_rwlock_t rwlock,

 pthdb_pthread_t * waiter,

 int cmd)

Description

The pthdb_mutex_waiter functions get the next waiter in the list of an object’s waiters.

Each list is reset to the top of the list when the pthdb_session_update function is called, or when the list

function reports a PTHDB_INVALID_* value. For example, when pthdb_attr reports an attribute of

PTHDB_INVALID_ATTR the list is reset to the beginning such that the next call reports the first attribute in

the list, if any.

A report of PTHDB_INVALID_OBJECT represents the empty list or the end of a list, where OBJECT is

one of these values: PTHREAD, ATTR, MUTEX, MUTEXATTR, COND, CONDATTR, RWLOCK,

RWLOCKATTR, KEY, or TID as appropriate.

When PTHDB_LIST_FIRST is passed for the cmd parameter, the first item in the list is retrieved.

Parameters

 session Session handle.

mutex Mutex object.

cond Condition variable object.

cmd Reset to the beginning of the list.

rwlock Read/Write lock object.

waiter Pointer to waiter.

Return Values

If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

 PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_CMD Invalid command.

1104 Technical Reference, Volume 1: Base Operating System and Extensions

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Error in library.

PTHDB_MEMORY Not enough memory

PTHDB_POINTER Invalid pointer

Related Information

The pthdebug.h file.

The pthread.h file.

pthdb_pthread_arg Subroutine

Purpose

Reports the information associated with a pthread.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_pthread_arg (pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthdb_addr_t * argp)

int pthdb_pthread_addr (pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthdb_addr_t *addrp)

int pthdb_pthread_cancelpend (pthdb_session_t session,

 pthdb_pthread_t pthread,

 int * cancelpendp)

int pthdb_pthread_cancelstate (pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthdb_cancelstate_t * cancelstatep)

int pthdb_pthread_canceltype (pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthdb_canceltype_t * canceltypep)

int pthdb_pthread_detachstate (pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthdb_detachstate_t * detachstatep)

int pthdb_pthread_exit (pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthdb_addr_t * exitp)

int pthdb_pthread_func (pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthdb_addr_t * funcp)

Base Operating System (BOS) Runtime Services (A-P) 1105

int pthdb_pthread_ptid (pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthread_t * ptidp)

int pthdb_pthread_schedparam (pthdb_session_t session,

 pthdb_pthread_t pthread,

 struct sched_param * schedparamp);

int pthdb_pthread_schedpolicy (pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthdb_schedpolicy_t * schedpolicyp)

int pthdb_pthread_schedpriority (pthdb_session_t session,

 pthdb_pthread_t pthread,

 int * schedpriorityp)

int pthdb_pthread_scope (pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthdb_scope_t * scopep)

int pthdb_pthread_state (pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthdb_state_t * statep)

int pthdb_pthread_suspendstate (pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthdb_suspendstate_t * suspendstatep)

int pthdb_ptid_pthread (pthdb_session_t session,

 pthread_t ptid,

 pthdb_pthread_t * pthreadp)

Description

pthdb_pthread_arg reports the initial argument passed to the pthread’s start function.

pthdb_pthread_addr reports the address of the pthread_t.

pthdb_pthread_cancelpend reports non-zero if cancellation is pending on the pthread; if not, it reports

zero.

pthdb_pthread_cancelstate reports whether cancellation is enabled (PCS_ENABLE) or disabled

(PCS_DISABLE). PCS_NOTSUP is reserved for unexpected results.

pthdb_pthread_canceltype reports whether cancellation is deferred (PCT_DEFERRED) or asynchronous

(PCT_ASYNCHRONOUS). PCT_NOTSUP is reserved for unexpected results.

pthdb_pthread_detachstate reports whether the pthread is detached (PDS_DETACHED) or joinable

(PDS_JOINABLE). PDS_NOTSUP is reserved for unexpected results.

pthdb_pthread_exit reports the exit status returned by the pthread via pthread_exit. This is only valid if

the pthread has exited (PST_TERM).

pthdb_pthread_func reports the address of the pthread’s start function.

pthdb_pthread_ptid reports the pthread identifier (pthread_t) associated with the pthread.

1106 Technical Reference, Volume 1: Base Operating System and Extensions

pthdb_pthread_schedparam reports the pthread’s scheduling parameters. This currently includes policy

and priority.

pthdb_pthread_schedpolicy reports whether the pthread’s scheduling policy is other (SP_OTHER), first

in first out (SP_FIFO), or round robin (SP_RR). SP_NOTSUP is reserved for unexpected results.

pthdb_pthread_schedpriority reports the pthread’s scheduling priority.

pthdb_pthread_scope reports whether the pthread has process scope (PS_PROCESS) or system scope

(PS_SYSTEM). PS_NOTSUP is reserved for unexpected results.

pthdb_pthread_state reports whether the pthread is being created (PST_IDLE), currently running

(PST_RUN), waiting on an event (PST_SLEEP), waiting on a cpu (PST_READY), or waiting on a join or

detach (PST_TERM). PST_NOTSUP is reserved for unexpected results.

pthdb_pthread_suspendstate reports whether the pthread is suspended (PSS_SUSPENDED) or not

(PSS_UNSUSPENDED). PSS_NOTSUP is reserved for unexpected results.

pthdb_ptid_pthread reports the pthread for the ptid.

Parameters

 addr pthread address

argp Initial argument buffer.

cancelpendp Cancel pending buffer.

cancelstatep Cancel state buffer.

canceltypep Cancel type buffer.

detachstatep Detach state buffer.

exitp Exit value buffer.

funcp Start function buffer.

pthread pthread handle.

pthreadp Pointer to pthread handle.

ptid pthread identifier

ptidp pthread identifier buffer.

schedparamp Scheduling parameters buffer.

schedpolicyp Scheduling policy buffer.

schedpriorityp Scheduling priority buffer.

scopep Contention scope buffer.

session Session handle.

statep State buffer.

suspendstatep Suspend state buffer.

Return Values

If successful, these functions return PTHDB_SUCCESS, else an error code is returned.

Error Codes

 PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_PTHREAD Invalid pthread handle.

PTHDB_BAD_POINTER Invalid buffer pointer.

PTHDB_BAD_PTID Invalid ptid.

PTHDB_CALLBACK Debugger call back error.

PTHDB_NOTSUP Not supported.

PTHDB_INTERNAL Error in library.

Base Operating System (BOS) Runtime Services (A-P) 1107

Related Information

The pthdebug.h file.

The pthread.h file.

pthdb_pthread_context or pthdb_pthread_setcontext Subroutine

Purpose

Provides access to the pthread context via the struct context64 structure.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_pthread_context (pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthdb_context_t * context)

int pthdb_pthread_setcontext (pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthdb_context_t * context)

Description

The pthread debug library provides access to the pthread context via the struct context64 structure,

whether the process is 32-bit or 64-bit. The debugger should be able to convert from 32-bit to 64-bit and

from 64-bit for 32-bit processes. The extent to which this structure is filled in depends on the presence of

the PTHDB_FLAG_GPRS, PTHDB_FLAG_SPRSl and PTHDB_FLAG_FPRS session flags. It is

necessary to use the pthread debug library to access the context of a pthread without a kernel thread. The

pthread debug library can also be used to access the context of a pthread with a kernel thread, but this

results in a call back to the debugger, meaning that the debugger is capable of obtaining this information

by itself. The debugger determines if the kernel thread is running in user mode or kernel mode and then

fills in the struct context64 appropriately. The pthread debug library does not use this information itself and

is thus not sensitive to the correct implementation of the read_regs and write_regs call back functions.

pthdb_pthread_context reports the context of the pthread based on the settings of the session flags.

Uses the read_regs call back if the pthread has a kernel thread. If read_regs is not defined, then it

returns PTHDB_NOTSUP.

pthdb_pthread_setcontext sets the context of the pthread based on the settings of the session flags.

Uses the write_data call back if the pthread does not have a kernel thread. Use the write_regs call back

if the pthread has a kernel thread.

If the debugger does not define the read_regs and write_regs call backs and if the pthread does not

have a kernel thread, then the pthdb_pthread_context and pthdb_pthread_setcontext functions

succeed. But if a pthread does not have a kernel thread, then these functions fail and return

PTHDB_CONTEXT.

Parameters

 session Session handle.

1108 Technical Reference, Volume 1: Base Operating System and Extensions

pthread pthread handle.

context Context buffer pointer.

Return Values

If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

 PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_PTHREAD Invalid pthread handle.

PTHDB_BAD_POINTER Invalid buffer pointer.

PTHDB_CALLBACK Callback function failed.

PTHDB_CONTEXT Could not determine pthread context.

PTHDB_MEMORY Not enough memory

PTHDB_NOTSUP pthdb_pthread_(set)context returns PTHDB_NOTSUP if

the read_regs, write_data or write_regs call backs are

set to NULL.

PTHDB_INTERNAL Error in library.

Related Information

The pthdebug.h file.

The pthread.h file.

pthdb_pthread_hold, pthdb_pthread_holdstate or

pthdb_pthread_unhold Subroutine

Purpose

Reports and changes the hold state of the specified pthread.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_pthread_holdstate (pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthdb_holdstate_t * holdstatep)

int pthdb_pthread_hold (pthdb_session_t session,

 pthdb_pthread_t pthread)

int pthdb_pthread_unhold (pthdb_session_t session,

 pthdb_pthread_t pthread)

Description

pthdb_pthread_holdstate reports if a pthread is held. The possible hold states are PHS_HELD,

PHS_NOTHELD, or PHS_NOTSUP.

pthdb_pthread_hold prevents the specified pthread from running.

Base Operating System (BOS) Runtime Services (A-P) 1109

pthdb_pthread_unhold unholds the specified pthread. The pthread held earlier can be unheld by calling

this function.

Notes:

1. You must always use the pthdb_pthread_hold and pthdb_pthread_unhold functions, regardless of

whether or not a pthread has a kernel thread.

2. These functions are only supposted when the PTHDB_FLAG_HOLD is set.

Parameters

 session Session handle.

pthread pthread handle. The specified pthread should have an attached kernel thread

id.

holdstatep Pointer to the hold state

Return Values

If successful, pthdb_pthread_hold returns PTHDB_SUCCESS. Otherwise, it returns an error code.

Error Codes

 PTHDB_BAD_PTHREAD Invalid pthread handle.

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_HELD pthread is held.

PTHDB_INTERNAL Error in library.

Related Information

The pthdb_session_setflags subroutine.

The pthdebug.h file.

The pthread.h file.

pthdb_pthread_sigmask, pthdb_pthread_sigpend or

pthdb_pthread_sigwait Subroutine

Purpose

Returns the pthread signals pending, the signals blocked, the signals received, and awaited signals.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_pthread_sigmask (pthdb_session_t session,

 pthdb_pthread_t pthread,

 sigset_t * sigsetp)

int pthdb_pthread_sigpend (pthdb_session_t session,

 pthdb_pthread_t pthread,

 sigset_t * sigsetp)

int pthdb_pthread_sigwait (pthdb_session_t session,

1110 Technical Reference, Volume 1: Base Operating System and Extensions

pthdb_pthread_t pthread,

 sigset_t * sigsetp)

Description

pthdb_pthread_sigmask reports the signals that the pthread has blocked.

pthdb_pthread_sigpend reports the signals that the pthread has pending.

pthdb_pthread_sigwait reports the signals that the pthread is waiting on.

Parameters

 session Session handle.

pthread Pthread handle

sigsetp Signal set buffer.

Return Values

If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Code

 PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_PTHREAD Invalid pthread handle.

PTHDB_BAD_POINTER Invalid buffer pointer.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Error in library.

Related Information

The pthdebug.h file.

The pthread.h file.

pthdb_pthread_specific Subroutine

Purpose

Reports the value associated with a pthreads specific data key.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

void *pthdb_pthread_specific(pthdb_session_t session,

 pthdb_pthread_t pthread,

 pthdb_key_t key,

 pthdb_addr_t * specificp)

Base Operating System (BOS) Runtime Services (A-P) 1111

Description

Each process has active pthread specific data keys. Each active pthread specific data key is in use by one

or more pthreads. Each pthread can have its own value associated with each pthread specific data key.

The pthdb_pthread_specific function provide access to those values.

pthdb_pthread_specific reports the specific data value for the pthread and key combination.

Parameters

 session The session handle.

pthread The pthread handle.

key The key.

specificp Specific data value buffer.a

Return Values

If successful, pthdb_pthread_specific returns PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

 PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_PTHREAD Invalid pthread handle.

PTHDB_BAD_KEY Invalid key.

PTHDB_BAD_POINTER Invalid buffer pointer.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Error in library.

Related information

The pthdebug.h file.

The pthread.h file.

pthdb_pthread_tid or pthdb_tid_pthread Subroutine

Purpose

Gets the kernel thread associated with the pthread and the pthread associated with the kernel thread.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_pthread_tid (pthdb_session_t session,

 pthdb_pthread_t pthread,

 tid_t * tidp)

int pthdb_tid_pthread (pthdb_session_t session,

 tid_t tid,

 pthdb_pthread_t * pthreadp)

1112 Technical Reference, Volume 1: Base Operating System and Extensions

Description

pthdb_pthread_tid gets the kernel thread id associated with the pthread.

pthdb_tid_pthread is used to get the pthread associated with the kernel thread.

Parameters

 session Session handle.

pthread Pthread handle

pthreadp Pointer to pthread handle

tid Kernel thread id

tidp Pointer to kernel thread id

Return Values

If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

 PTHDB_BAD_PTHREAD Invalid pthread handle.

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_TID Invalid tid.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Error in library.

PTHDB_INVALID_TID Empty list or the end of a list.

Related Information

The pthdebug.h file.

The pthread.h file.

pthdb_rwlockattr_addr, or pthdb_rwlockattr_pshared Subroutine

Purpose

Gets the rwlock attribute pshared values.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_rwlockattr_addr (pthdb_session_t session,

 pthdb_rwlockattr_t rwlockattr,

 pthdb_addr_t * addrp)

int pthdb_rwlockattr_pshared (pthdb_session_t session,

 pthdb_rwlockattr_t rwlockattr,

 pthdb_pshared_t * psharedp)

Base Operating System (BOS) Runtime Services (A-P) 1113

Description

pthdb_rwlockattr_addr reports the address of the pthread_rwlockattr_t.

pthdb_rwlockattr_pshared is used to get the rwlock attribute process shared value. The pshared value

can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

Parameters

 addr Read/Write lock attribute address.

psharedp Pointer to the pshared value.

rwlockattr Read/Write lock attribute handle

session Session handle.

Return Values

If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

 PTHDB_BAD_RWLOCKATTR Invalid rwlock attribute handle.

PTHDB_BAD_SESSION Invalid session handle.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Error in library.

PTHDB_POINTER Invalid pointer

Related Information

The pthdebug.h file.

The pthread.h file.

pthdb_rwlock_addr, pthdb_rwlock_lock_count, pthdb_rwlock_owner,

pthdb_rwlock_pshared or pthdb_rwlock_state Subroutine

Purpose

Gets the owner, the pshared value, or the state of the read/write lock.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_rwlock_addr (pthdb_session_t session,

 pthdb_rwlock_t rwlock,

 pthdb_addr_t * addrp)

int pthdb_rwlock_lock_count (pthdb_session_t session,

 pthdb_rwlock_t rwlock,

 int * countp);

1114 Technical Reference, Volume 1: Base Operating System and Extensions

int pthdb_rwlock_owner (pthdb_session_t session,

 pthdb_rwlock_t rwlock,

 pthdb_pthread_t * ownerp

 int cmd)

int pthdb_rwlock_pshared (pthdb_session_t session,

 pthdb_rwlock_t rwlock,

 pthdb_pshared_t * psharedp)

int pthdb_rwlock_state (pthdb_session_t session,

 pthdb_rwlock_t rwlock,

 pthdb_rwlock_state_t * statep)

Description

The pthdb_rwlock_addr function reports the address of the pthdb_rwlock_t.

The pthdb_rwlock_lock_count function reports the lock count for the rwlock.

The pthdb_rwlock_owner function is used to get the read/write lock owner’s pthread handle.

The pthdb_rwlock_pshared function is used to get the rwlock attribute process shared value. The

pshared value can be PSH_SHARED, PSH_PRIVATE, or PSH_NOTSUP.

The pthdb_rwlock_state is used to get the read/write locks state. The state can be RWLS_NOTSUP,

RWLS_WRITE, RWLS_FREE, and RWLS_READ.

Parameters

 addrp Read write lock address.

countp Read write lock lock count.

cmd cmd can be PTHDB_LIST_FIRST to get the first owner in

the list of owners or PTHDB_LIST_NEXT to get the next

owner in the list of owners. The list is empty or ended by

*owner == PTHDB_INVALID_PTHREAD.

ownerp Pointer to pthread which owns the rwlock

psharedp Pointer to pshared value

rwlock Read write lock handle

session Session handle.

statep Pointer to state value

Return Values

If successful, these functions return PTHDB_SUCCESS. Otherwise, an error code is returned.

Error Codes

 PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_CMD Invalid command passed.

PTHDB_CALLBACK Debugger call back error.

PTHDB_INTERNAL Error in library.

PTHDB_POINTER Invalid pointer

Base Operating System (BOS) Runtime Services (A-P) 1115

Related Information

The pthdebug.h file.

The pthread.h file.

pthdb_session_committed Subroutines

Purpose

Facilitates examining and modifying multi-threaded application’s pthread library object data.

Library

pthread debug library (libpthdebug.a)

Syntax

#include <sys/pthdebug.h>

int pthdb_session_committed (pthdb_session_t session,

 char ** name);

int pthdb_session_concurrency (pthdb_session_t session,

 int * concurrencyp);

int pthdb_session_destroy (pthdb_session_t session)

int pthdb_session_flags (pthdb_session_t session,

 unsigned long long * flagsp)

int pthdb_session_init (pthdb_user_t user,

 pthdb_exec_mode_t exec_mode,

 unsigned long long flags,

 pthdb_callbacks_t * callbacks,

 pthdb_session_t * sessionp)

int pthdb_session_pthreaded (pthdb_user_t user,

 unsigned long long flags

 pthdb_callbacks_t * callbacks,

 char ** name)

int pthdb_session_continue_tid (pthdb_session_t session,

 tid_t * tidp,

 int cmd);

int pthdb_session_stop_tid (pthdb_session_t session,

 tid_t tid);

int pthdb_session_commit_tid (pthdb_session_t session,

 tid_t * tidp,

 int cmd);

int pthdb_session_setflags (pthdb_session_t session,

 unsigned long long flags)

int pthdb_session_update (pthdb_session_t session)

Description

To facilitate debugging multiple processes, the pthread debug library supports multiple sessions, one per

process. Functions are provided to initialize, destroy, and customize the behavior of these sessions. In

addition, functions are provided to query global fields of the pthread library. All functions in the library

require a session handle associated with an initialized session except pthdb_session_init, which

initializes sessions, and pthdb_session_pthreaded, which can be called before the session has been

initialized.

1116 Technical Reference, Volume 1: Base Operating System and Extensions

pthdb_session_committed reports the symbol name of a function called after the hold/unhold commit

operation has completed. This symbol name can be used to set a breakpoint to notify the debugger when

the hold/unhold commit has completed. The actual symbol name reported may change at any time. The

function name returned is implemented in assembly with the following code:

 ori 0,0, 0 # no-op

 blr # return to caller

This allows the debugger to overwrite the no-op with a trap instruction and leave it there by stepping over

it. This function is only supported when the PTHDB_FLAG_HOLD flag is set.

pthdb_session_concurrency reports the concurrency level of the pthread library. The concurrency level

is the M:N ratio, where N is always 1.

pthdb_session_destroy notifies the pthread debug library that the debugger or application is finished with

the session. This deallocates any memory associated with the session and allows the session handle to

be reused.

pthdb_session_setflags changes the flags for a session. With these flags, a debugger can customize the

session. Flags consist of the following values or-ed together:

 PTHDB_FLAG_GPRS The general purpose registers should be included in any context read or write,

whether internal to the library or via call backs to the debugger.

PTHDB_FLAG_SPRS The special purpose registers should be included in any context read or write

whether internal to the library or via call backs to the debugger.

PTHDB_FLAG_FPRS The floating point registers should be included in any context read or write

whether internal to the library or via call backs to the debugger.

PTHDB_FLAG_REGS All registers should be included in any context read or write whether internal to

the library or via call backs to the debugger. This is equivalent to

PTHDB_FLAG_GPRS|PTHDB_FLAG_GPRS|PTHDB_FLAG_GPRS.

PTHDB_FLAG_HOLD The debugger will be using the pthread debug library hold/unhold facilities to

prevent the execution of pthreads. This flag cannot be used with

PTHDB_FLAG_SUSPEND. This flag should be used by debuggers, only.

PTHDB_FLAG_SUSPEND Applications will be using the pthread library suspend/continue facilities to

prevent the execution of pthreads. This flag cannot be used with

PTHDB_FLAG_HOLD. This flag is for introspective mode and should be used

by applications, only.

Note: PTHDB_FLAG_HOLD and PTHDB_FLAG_SUSPEND can only be

passed to the pthdb_session_init function. Neither PTHDB_FLAG_HOLD nor

PTHDB_FLAG_SUSPEND should be passed to pthdb_session_init when

debugging a core file.

The pthdb_session_flags function gets the current flags for the session.

The pthdb_session_init function tells the pthread debug library to initialize a session associated with the

unique given user handle. pthdb_session_init will assign a unique session handle and return it to the

debugger. If the application’s execution mode is 32 bit, then the debugger should initialize the exec_mode

to PEM_32BIT. If the application’s execution mode is 64 bit, then the debugger should initialize mode to

PEM_64BIT. The flags are documented above with the pthdb_session_setflags function. The callback

parameter is a list of call back functions. (Also see the pthdebug.h header file.) The pthdb_session_init

function calls the symbol_addrs function to get the starting addresses of the symbols and initializes these

symbols’ starting addresses within the pthread debug library.

pthdb_session_pthreaded reports the symbol name of a function called after the pthread library has

been initialized. This symbol name can be used to set a breakpoint to notify the debugger when to

initialize a pthread debug library session and begin using the pthread debug library to examine pthread

library state. The actual symbol name reported may change at any time. This function, is the only pthread

Base Operating System (BOS) Runtime Services (A-P) 1117

debug library function that can be called before the pthread library is initialized. The function name

returned is implemented in assembly with the following code:

 ori 0,0,0 # no-op

 blr # return to caller

This is conveniently allows the debugger to overwrite the no-op with a trap instruction and leave it there by

stepping over it.

The pthdb_session_continue_tid function allows the debugger to obtain the list of threads that must be

continued before it proceeds with single stepping a single pthread or continuing a group of pthreads. This

function reports one tid at a time. If the list is empty or the end of the list has been reached,

PTHDB_INVALID_TID is reported. The debugger will need to continue any pthreads with kernel threads

that it wants. The debugger is responsible for parking the stop thread and continuing the stop thread. The

cmd parameter can be either PTHDB_LIST_NEXT or PTHDB_LIST_FIRST; if PTHDB_LIST_FIRST is

passed, then the internal counter will be reset and the first tid in the list will be reported.

Note: This function is only supported when the PTHDB_FLAG_HOLD flag is set.

The pthdb_session_stop_tid function informs the pthread debug library, which informs the pthread library

the tid of the thread that stopped the debugger.

Note: This function is only supported when the PTHDB_FLAG_HOLD flag is set.

pthdb_session_commit_tid reports subsequent kernel thread identifiers which must be continued to

commit the hold and unhold changes. This function reports one tid at a time. If the list is empty or the end

of the list has been reached, PTHDB_INVALID_TID is reported. The cmd parameter can be either

PTHDB_LIST_NEXT or PTHDB_LIST_FIRST, if PTHDB_LIST_FIRST is passed then the internal counter

will be reset and first tid in the list will be reported.

Note: This function is only supported when the PTHDB_FLAG_HOLD flag is set.

pthdb_session_update tells the pthread debug library to update it’s internal information concerning the

state of the pthread library. This should be called each time the process stops before any other pthread

debug library functions to ensure their results are reliable.

Each list is reset to the top of the list when the pthdb_session_update function is called, or when the list

function reports a PTHDB_INVALID_* value. For example, when pthdb_attr reports an attribute of

PTHDB_INVALID_ATTR the list is reset to the beginning such that the next call reports the first attribute in

the list, if any.

A report of PTHDB_INVALID_OBJECT represents the empty list or the end of a list, where OBJECT is

one of these values: PTHREAD, ATTR, MUTEX, MUTEXATTR, COND, CONDATTR, RWLOCK,

RWLOCKATTR, KEY, or TID as appropriate.

Parameters

 session Session handle.

user Debugger user handle.

sessionp Pointer to session handle.

name Symbol name buffer.

cmd Reset to the beginning of the list.

concurrencyp Library concurrency buffer.

flags Session flags.

flagsp Pointer to session flags.

exec_mode Debuggee execution mode:

PEM_32BIT for 32-bit processes or PEM_64BIT for 64-bit processes.

1118 Technical Reference, Volume 1: Base Operating System and Extensions

callbacks Call backs structure.

tid Kernel thread id.

tidp Kernel thread id buffer..

Return Values

If successful, these functions return PTHDB_SUCCESS. Otherwise, they return an error value.

Error Codes

 PTHDB_BAD_SESSION Invalid session handle.

PTHDB_BAD_VERSION Invalid pthread debug library or pthread library version.

PTHDB_BAD_MODE Invalid execution mode.

PTHDB_BAD_FLAGS Invalid session flags.

PTHDB_BAD_CALLBACK Insufficient call back functions.

PTHDB_BAD_CMD Invalid command.

PTHDB_BAD_POINTER Invalid buffer pointer.

PTHDB_BAD_USER Invalid user handle.

PTHDB_CALLBACK Debugger call back error.

PTHDB_MEMORY Not enough memory.

PTHDB_NOSYS Function not implemented.

PTHDB_NOT_PTHREADED pthread library not initialized.

PTHDB_SYMBOL pthread library symbol not found.

PTHDB_INTERNAL Error in library.

Related Information

The pthdebug.h file.

The pthread.h file.

pthread_atfork Subroutine

Purpose

Registers fork handlers.

Library

Threads Library (libpthreads.a)

Syntax

#include <sys/types.h>

#include <unistd.h>

int pthread_atfork (prepare, parent, child)

void (*prepare)(void);

void (*parent)(void);

void (*child)(void);

Description

The pthread_atfork subroutine registers fork cleanup handlers. The prepare handler is called before the

processing of the fork subroutine commences. The parent handler is called after the processing of the

fork subroutine completes in the parent process. The child handler is called after the processing of the

fork subroutine completes in the child process.

Base Operating System (BOS) Runtime Services (A-P) 1119

When the fork subroutine is called, only the calling thread is duplicated in the child process, but all

synchronization variables are duplicated. The pthread_atfork subroutine provides a way to prevent state

inconsistencies and resulting deadlocks. The expected usage is that the prepare handler acquires all

mutexes, and the two other handlers release them in the parent and child processes.

The prepare handlers are called in LIFO (Last In First Out) order; whereas the parent and child handlers

are called in FIFO (first-in first-out) order. Thereafter, the order of calls to the pthread_atfork subroutine is

significant.

Note: The pthread.h header file must be the first included file of each source file using the threads

library.

Parameters

 prepare Points to the pre-fork cleanup handler. If no pre-fork handling is desired, the value of this pointer should

be set to NULL.

parent Points to the parent post-fork cleanup handler. If no parent post-fork handling is desired, the value of

this pointer should be set to NULL.

child Points to the child post-fork cleanup handler. If no child post-fork handling is desired, the value of this

pointer should be set to NULL.

Return Values

Upon successful completion, the pthread_atfork subroutine returns a value of zero. Otherwise, an error

number is returned to indicate the error.

Error Codes

The pthread_atfork subroutine will fail if:

 ENOMEM Insufficient table space exists to record the fork handler addresses.

The pthread_atfork subroutine will not return an error code of EINTR.

Related Information

The fork (“fork, f_fork, or vfork Subroutine” on page 284) subroutine, atexit (“exit, atexit, unatexit, _exit, or

_Exit Subroutine” on page 239) subroutine.

The “posix_spawn or posix_spawnp Subroutine” on page 1060.

Process Duplication and Termination in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

pthread_attr_destroy Subroutine

Purpose

Deletes a thread attributes object.

Library

Threads Library (libpthreads.a)

1120 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <pthread.h>

int pthread_attr_destroy (attr)

pthread_attr_t *attr;

Description

The pthread_attr_destroy subroutine destroys the thread attributes object attr, reclaiming its storage

space. It has no effect on the threads previously created with that object.

Parameters

 attr Specifies the thread attributes object to delete.

Return Values

Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes

The pthread_attr_destroy subroutine is unsuccessful if the following is true:

 EINVAL The attr parameter is not valid.

This function will not return an error code of [EINTR].

Related Information

The pthread_attr_init (“pthread_attr_init Subroutine” on page 1128) subroutine, pthread_create

(“pthread_create Subroutine” on page 1153) subroutine, the pthread.h file.

Creating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_attr_getguardsize or pthread_attr_setguardsize Subroutines

Purpose

Gets or sets the thread guardsize attribute.

Library

Threads Library (libthreads.a)

Syntax

#include <pthread.h>

int pthread_attr_getguardsize (attr, guardsize)

const pthread_attr_t *attr;

size_t *guardsize;

int pthread_attr_setguardsize (attr, guardsize)

pthread_attr_t *attr;

size_t guardsize;

Base Operating System (BOS) Runtime Services (A-P) 1121

Description

The guardsize attribute controls the size of the guard area for the created thread’s stack. The guardsize

attribute provides protection against overflow of the stack pointer. If a thread’s stack is created with guard

protection, the implementation allocates extra memory at the overflow end of the stack as a buffer against

stack overflow of the stack pointer. If an application overflows into this buffer an error results (possibly in a

SIGSEGV signal being delivered to the thread).

The guardsize attribute is provided to the application for two reasons:

v Overflow protection can potentially result in wasted system resources. An application that creates a

large number of threads, and which knows its threads will never overflow their stack, can save system

resources by turning off guard areas.

v When threads allocate large data structures on the stack, large guard areas may be needed to detect

stack overflow.

The pthread_attr_getguardsize function gets the guardsize attribute in the attr object. This attribute is

returned in the guardsize parameter.

The pthread_attr_setguardsize function sets the guardsize attribute in the attr object. The new value of

this attribute is obtained from the guardsize parameter. If guardsize is zero, a guard area will not be

provided for threads created with attr. If guardsize is greater than zero, a guard area of at least size

guardsize bytes is provided for each thread created with attr.

A conforming implementation is permitted to round up the value contained in guardsize to a multiple of the

configurable system variable PAGESIZE (see sys/mman.h). If an implementation rounds up the value of

guardsize to a multiple of PAGESIZE, a call to pthread_attr_getguardsize specifying attr will store in the

guardsize parameter the guard size specified by the previous pthread_attr_setguardsize function call.

The default value of the guardsize attribute is PAGESIZE bytes. The actual value of PAGESIZE is

implementation-dependent and may not be the same on all implementations.

If the stackaddr attribute has been set (that is, the caller is allocating and managing its own thread stacks),

the guardsize attribute is ignored and no protection will be provided by the implementation. It is the

responsibility of the application to manage stack overflow along with stack allocation and management in

this case.

Parameters

 attr Specifies the thread attributes object.

guardsize Controls the size of the guard area for the created thread’s stack, and protects against

overflow of the stack pointer.

Return Values

If successful, the pthread_attr_getguardsize and pthread_attr_setguardsize functions return zero.

Otherwise, an error number is returned to indicate the error.

Error Codes

The pthread_attr_getguardsize and pthread_attr_setguardsize functions will fail if:

 EINVAL The attribute attr is invalid.

EINVAL The guardsize parameter is invalid.

EINVAL The guardsize parameter contains an invalid value.

1122 Technical Reference, Volume 1: Base Operating System and Extensions

pthread_attr_getinheritsched, pthread_attr_setinheritsched Subroutine

Purpose

Gets and sets the inheritsched attribute (REALTIME THREADS).

Syntax

#include <pthread.h>

#include <time.h>

int pthread_attr_getinheritsched(const pthread_attr_t *restrict attr,

 int *restrict inheritsched);

int pthread_attr_setinheritsched(pthread_attr_t *attr,

 int inheritsched);

Description

The pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions, respectively, get and

set the inheritsched attribute in the attr argument.

When the attributes objects are used by pthread_create(), the inheritsched attribute determines how the

other scheduling attributes of the created thread are set.

 PTHREAD_INHERIT_SCHED Specifies that the thread scheduling attributes is inherited from

the creating thread, and the scheduling attributes in this attr

argument are ignored.

PTHREAD_EXPLICIT_SCHED Specifies that the thread scheduling attributes are set to the

corresponding values from this attributes object.

The PTHREAD_INHERIT_SCHED and PTHREAD_EXPLICIT_SCHED symbols are defined in the

<pthread.h> header.

The following thread scheduling attributes defined by IEEE Std 1003.1-2001 are affected by the

inheritsched attribute: scheduling policy (schedpolicy), scheduling parameters (schedparam), and

scheduling contention scope (contentionscope).

Application Usage

After these attributes have been set, a thread can be created with the specified attributes using

pthread_create(). Using these routines does not affect the current running thread.

Return Values

If successful, the pthread_attr_getinheritsched() and pthread_attr_setinheritsched() functions return 0;

otherwise, an error number is returned to indicate the error.

Error Codes

The pthread_attr_setschedpolicy() function might fail if:

 EINVAL The value of inheritsched is not valid.

ENOTSUP An attempt was made to set the attribute to an unsupported value.

These functions do not return an error code of EINTR.

Base Operating System (BOS) Runtime Services (A-P) 1123

Related Information

“pthread_attr_destroy Subroutine” on page 1120, “pthread_attr_getscope and pthread_attr_setscope

Subroutines” on page 1130, “pthread_attr_getschedparam Subroutine,” “pthread_attr_getschedpolicy,

pthread_attr_setschedpolicy Subroutine” on page 1125, “pthread_create Subroutine” on page 1153.

The pthread.h and sched.h files in AIX 5L Version 5.3 Files Reference.

pthread_attr_getschedparam Subroutine

Purpose

Returns the value of the schedparam attribute of a thread attributes object.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

#include <sys/sched.h>

int pthread_attr_getschedparam (attr, schedparam)

const pthread_attr_t *attr;

struct sched_param *schedparam;

Description

The pthread_attr_getschedparam subroutine returns the value of the schedparam attribute of the thread

attributes object attr. The schedparam attribute specifies the scheduling parameters of a thread created

with this attributes object. The sched_priority field of the sched_param structure contains the priority of

the thread. It is an integer value.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Parameters

 attr Specifies the thread attributes object.

schedparam Points to where the schedparam attribute value will be stored.

Return Values

Upon successful completion, the value of the schedparam attribute is returned via the schedparam

parameter, and 0 is returned. Otherwise, an error code is returned.

Error Codes

The pthread_attr_getschedparam subroutine is unsuccessful if the following is true:

 EINVAL The attr parameter is not valid.

This function does not return EINTR.

1124 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The pthread_attr_setschedparam (“pthread_attr_setschedparam Subroutine” on page 1132) subroutine,

pthread_attr_init (“pthread_attr_init Subroutine” on page 1128) subroutine, pthread_getschedparam

(“pthread_getschedparam Subroutine” on page 1165) subroutine, the pthread.h file.

Threads Scheduling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_attr_getschedpolicy, pthread_attr_setschedpolicy Subroutine

Purpose

Gets and sets the schedpolicy attribute (REALTIME THREADS).

Syntax

#include <pthread.h>

#include <time.h>

int pthread_attr_getschedpolicy(const pthread_attr_t *restrict attr,

 int *restrict policy);

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

Description

The pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions, respectively, get and

set the schedpolicy attribute in the attr argument.

The supported values of policy include SCHED_FIFO, SCHED_RR, and SCHED_OTHER, which are

defined in the <sched.h> header. When threads executing with the scheduling policy SCHED_FIFO,

SCHED_RR, or SCHED_SPORADIC are waiting on a mutex, they acquire the mutex in priority order when

the mutex is unlocked.

Application Usage

After these attributes have been set, a thread can be created with the specified attributes using

pthread_create(). Using these routines does not affect the current running thread.

Return Values

If successful, the pthread_attr_getschedpolicy() and pthread_attr_setschedpolicy() functions return 0;

otherwise, an error number is returned to indicate the error.

Error Codes

The pthread_attr_setschedpolicy() function might fail if:

 EINVAL The value of policy is not valid.

ENOTSUP An attempt was made to set the attribute to an unsupported value.

These functions do not return an error code of EINTR.

Base Operating System (BOS) Runtime Services (A-P) 1125

Related Information

“pthread_attr_destroy Subroutine” on page 1120, “pthread_attr_getscope and pthread_attr_setscope

Subroutines” on page 1130, “pthread_attr_getinheritsched, pthread_attr_setinheritsched Subroutine” on

page 1123, “pthread_attr_getschedparam Subroutine” on page 1124, “pthread_create Subroutine” on page

1153.

The pthread.h and time.h files in AIX 5L Version 5.3 Files Reference.

pthread_attr_getstackaddr Subroutine

Purpose

Returns the value of the stackaddr attribute of a thread attributes object.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_attr_getstackaddr (attr, stackaddr)

const pthread_attr_t *attr;

void **stackaddr;

Description

The pthread_attr_getstackaddr subroutine returns the value of the stackaddr attribute of the thread

attributes object attr. This attribute specifies the stack address of the thread created with this attributes

object.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Parameters

 attr Specifies the thread attributes object.

stackaddr Points to where the stackaddr attribute value will be stored.

Return Values

Upon successful completion, the value of the stackaddr attribute is returned via the stackaddr parameter,

and 0 is returned. Otherwise, an error code is returned.

Error Codes

The pthread_attr_getstackaddr subroutine is unsuccessful if the following is true:

 EINVAL The attr parameter is not valid.

This function will not return EINTR.

1126 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The pthread_attr_setstackaddr (“pthread_attr_setstackaddr Subroutine” on page 1133) subroutine,

pthread_attr_init (“pthread_attr_init Subroutine” on page 1128) subroutine, the pthread.h file.

Advanced Attributes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_attr_getstacksize Subroutine

Purpose

Returns the value of the stacksize attribute of a thread attributes object.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_attr_getstacksize (attr, stacksize)

const pthread_attr_t *attr;

size_t *stacksize;

Description

The pthread_attr_getstacksize subroutine returns the value of the stacksize attribute of the thread

attributes object attr. This attribute specifies the minimum stacksize of a thread created with this attributes

object. The value is given in bytes. For 32-bit compiled applications, the default stacksize is 96 KB

(defined in the pthread.h file). For 64-bit compiled applications, the default stacksize is 192 KB (defined in

the pthread.h file).

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Parameters

 attr Specifies the thread attributes object.

stacksize Points to where the stacksize attribute value will be stored.

Return Values

Upon successful completion, the value of the stacksize attribute is returned via the stacksize parameter,

and 0 is returned. Otherwise, an error code is returned.

Error Codes

The pthread_attr_getstacksize subroutine is unsuccessful if the following is true:

 EINVAL The attr or stacksize parameters are not valid.

This function will not return an error code of [EINTR].

Base Operating System (BOS) Runtime Services (A-P) 1127

Related Information

The pthread_attr_setstacksize (“pthread_attr_setstacksize Subroutine” on page 1134) subroutine,

pthread_attr_init (“pthread_attr_init Subroutine”) subroutine, the pthread.h file.

Advanced Attributes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_attr_init Subroutine

Purpose

Creates a thread attributes object and initializes it with default values.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_attr_init (attr)

pthread_attr_t *attr;

Description

The pthread_attr_init subroutine creates a new thread attributes object attr. The new thread attributes

object is initialized with the following default values:

 Always initialized

Attribute Default value

Detachstate PTHREAD_CREATE_JOINABLE

Contention-scope PTHREAD_SCOPE_PROCESS the default ensures compatibility with implementations that do

not support this POSIX option.

Inheritsched PTHREAD_INHERITSCHED

Schedparam A sched_param structure which sched_prio field is set to 1, the least favored priority.

Schedpolicy SCHED_OTHER

Stacksize PTHREAD_STACK_MIN

Guardsize PAGESIZE

The resulting attribute object (possibly modified by setting individual attribute values), when used by

pthread_create, defines the attributes of the thread created. A single attributes object can be used in

multiple simultaneous calls to pthread_create.

Parameters

 attr Specifies the thread attributes object to be created.

1128 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, the new thread attributes object is filled with default values and returned via

the attr parameter, and 0 is returned. Otherwise, an error code is returned.

Error Codes

The pthread_attr_init subroutine is unsuccessful if the following is true:

 EINVAL The attr parameter is not valid.

ENOMEM There is not sufficient memory to create the thread attribute object.

This function will not return an error code of [EINTR].

Related Information

The pthread_attr_setdetachstate (“pthread_attr_getdetachstate or pthread_attr_setdetachstate

Subroutines”) subroutine, pthread_attr_setstackaddr (“pthread_attr_setstackaddr Subroutine” on page

1133) subroutine, pthread_attr_setstacksize (“pthread_attr_setstacksize Subroutine” on page 1134)

subroutine, pthread_create (“pthread_create Subroutine” on page 1153) subroutine,

pthread_attr_destroy (“pthread_attr_destroy Subroutine” on page 1120) subroutine,

pthread_attr_setguardsize (“pthread_attr_getguardsize or pthread_attr_setguardsize Subroutines” on

page 1121) subroutine.

The pthread.h file.

Creating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_attr_getdetachstate or pthread_attr_setdetachstate

Subroutines

Purpose

Sets and returns the value of the detachstate attribute of a thread attributes object.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_attr_setdetachstate (attr, detachstate)

pthread_attr_t *attr;

int detachstate;

int pthread_attr_getdetachstate (attr, detachstate)

const pthread_attr_t *attr;

int *detachstate;

Base Operating System (BOS) Runtime Services (A-P) 1129

Description

The detachstate attribute controls whether the thread is created in a detached state. If the thread is

created detached, then use of the ID of the newly created thread by the pthread_detach or pthread_join

function is an error.

The pthread_attr_setdetachstate and pthread_attr_getdetachstate, respectively, set and get the

detachstate attribute in the attr object.

The detachstate attribute can be set to either PTHREAD_CREATE_DETACHED or

PTHREAD_CREATE_JOINABLE. A value of PTHREAD_CREATE_DETACHED causes all threads created

with attr to be in the detached state, whereas using a value of PTHREAD_CREATE_JOINABLE causes all

threads created with attr to be in the joinable state. The default value of the detachstate attribute is

PTHREAD_CREATE_JOINABLE.

Parameters

 attr Specifies the thread attributes object.

detachstate Points to where the detachstate attribute value will be stored.

Return Values

Upon successful completion, pthread_attr_setdetachstate and pthread_attr_getdetachstate return a

value of 0. Otherwise, an error number is returned to indicate the error.

The pthread_attr_getdetachstate function stores the value of the detachstate attribute in the detachstate

parameter if successful.

Error Codes

The pthread_attr_setdetachstate function will fail if:

 EINVAL The value of detachstate was not valid.

The pthread_attr_getdetachstate and pthread_attr_setdetachstate functions will fail if:

 EINVAL The attribute parameter is invalid.

These functions will not return an error code of EINTR.

Related Information

The “pthread_attr_setstackaddr Subroutine” on page 1133, “pthread_attr_setstacksize Subroutine” on page

1134, “pthread_create Subroutine” on page 1153, and “pthread_attr_init Subroutine” on page 1128.

The pthread.h file in AIX 5L Version 5.3 Files Reference

Creating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_attr_getscope and pthread_attr_setscope Subroutines

Purpose

Gets and sets the scope attribute in the attr object.

1130 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_attr_setscope (attr, contentionscope)

pthread_attr_t *attr;

int contentionscope;

int pthread_attr_getscope (attr, contentionscope)

const pthread_attr_t *attr;

int *contentionscope;

Description

The scope attribute controls whether a thread is created in system or process scope.

The pthread_attr_getscope and pthread_attr_setscope subroutines get and set the scope attribute in

the attr object.

The scope can be set to PTHREAD_SCOPE_SYSTEM or PTHREAD_SCOPE_PROCESS. A value of

PTHREAD_SCOPE_SYSTEM causes all threads created with the attr parameter to be in system scope,

whereas a value of PTHREAD_SCOPE_PROCESS causes all threads created with the attr parameter to

be in process scope.

The default value of the contentionscope parameter is PTHREAD_SCOPE_PROCESS.

Parameters

 attr Specifies the thread attributes object.

contentionscope Points to where the scope attribute value will be stored.

Return Values

Upon successful completion, the pthread_attr_getscope and pthread_attr_setscope subroutines return

a value of 0. Otherwise, an error number is returned to indicate the error.

Error Codes

 EINVAL The value of the attribute being set/read is not valid.

ENOTSUP An attempt was made to set the attribute to an unsupported value.

Related Information

The “pthread_create Subroutine” on page 1153, and “pthread_attr_init Subroutine” on page 1128.

The pthread.h file in AIX 5L Version 5.3 Files Reference

Creating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Base Operating System (BOS) Runtime Services (A-P) 1131

pthread_attr_setschedparam Subroutine

Purpose

Sets the value of the schedparam attribute of a thread attributes object.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

#include <sys/sched.h>

int pthread_attr_setschedparam (attr, schedparam)

pthread_attr_t *attr;

const struct sched_param *schedparam;

Description

The pthread_attr_setschedparam subroutine sets the value of the schedparam attribute of the thread

attributes object attr. The schedparam attribute specifies the scheduling parameters of a thread created

with this attributes object. The sched_priority field of the sched_param structure contains the priority of

the thread.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Parameters

 attr Specifies the thread attributes object.

schedparam Points to where the scheduling parameters to set are stored. The sched_priority field must be in

the range from 1 to 127, where 1 is the least favored priority, and 127 the most favored.

Return Values

Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes

The pthread_attr_setschedparam subroutine is unsuccessful if the following is true:

 EINVAL The attr parameter is not valid.

ENOSYS The priority scheduling POSIX option is not implemented.

ENOTSUP The value of the schedparam attribute is not supported.

Related Information

The pthread_attr_getschedparam (“pthread_attr_getschedparam Subroutine” on page 1124) subroutine,

pthread_attr_init (“pthread_attr_init Subroutine” on page 1128) subroutine, pthread_create

(“pthread_create Subroutine” on page 1153) subroutine, the pthread.h file.

Threads Scheduling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

1132 Technical Reference, Volume 1: Base Operating System and Extensions

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_attr_setstackaddr Subroutine

Purpose

Sets the value of the stackaddr attribute of a thread attributes object.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_attr_setstackaddr (attr, stackaddr)

pthread_attr_t *attr;

void *stackaddr;

Description

The pthread_attr_setstackaddr subroutine sets the value of the stackaddr attribute of the thread

attributes object attr. This attribute specifies the stack address of a thread created with this attributes

object.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

A Provision has been made in libpthreadsto create guardpages for the user stack internally. This is used

for debugging purposes only. By default, it is turned off and can be invoked by exporting the following

environment variable:

AIXTHREAD_GUARDPAGES_FOR_USER_STACK=n (Where n is the decimal number of guard pages.)

Note: Even if it is exported, guard pages will only be constructed if both the stackaddr and stacksize

attributes have been set by the caller for the thread. Also, the guard pages and alignment pages

will be created out of the user’s stack (which will reduce the stack size). If the new stack size after

creating guard pages is less than the minimum stack size (PTHREAD_STACK_MIN), then the

guard pages will not be constructed.

Parameters

 attr Specifies the thread attributes object.

stackaddr Specifies the stack address to set. It is a void pointer. The address that needs to be passed is not

the beginning of the malloc generated address but the beginning of the stack. For example:

 stackaddr = malloc(stacksize);

 pthread_attr_setstackaddr(&thread, stackaddr + stacksize);

Return Values

Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Base Operating System (BOS) Runtime Services (A-P) 1133

Error Codes

The pthread_attr_setstackaddr subroutine is unsuccessful if the following is true:

 EINVAL The attr parameter is not valid.

ENOSYS The stack address POSIX option is not implemented.

Related Information

The “pthread_attr_getstackaddr Subroutine” on page 1126, “pthread_attr_init Subroutine” on page 1128,

pthread.h file.

Advanced Attributes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_attr_setstacksize Subroutine

Purpose

Sets the value of the stacksize attribute of a thread attributes object.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_attr_setstacksize (attr, stacksize)

pthread_attr_t *attr;

size_t stacksize;

Description

The pthread_attr_setstacksize subroutine sets the value of the stacksize attribute of the thread attributes

object attr. This attribute specifies the minimum stack size, in bytes, of a thread created with this attributes

object.

The allocated stack size is always a multiple of 8K bytes, greater or equal to the required minimum stack

size of 56K bytes (PTHREAD_STACK_MIN). The following formula is used to calculate the allocated stack

size: if the required stack size is lower than 56K bytes, the allocated stack size is 56K bytes; otherwise, if

the required stack size belongs to the range from (56 + (n - 1) * 16) K bytes to (56 + n * 16) K

bytes, the allocated stack size is (56 + n * 16) K bytes.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Parameters

 attr Specifies the thread attributes object.

stacksize Specifies the minimum stack size, in bytes, to set. The default stack size is

PTHREAD_STACK_MIN. The minimum stack size should be greater or equal than this value.

1134 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes

The pthread_attr_setstacksize subroutine is unsuccessful if the following is true:

 EINVAL The attr parameter is not valid, or the value of the stacksize parameter exceeds a system imposed limit.

ENOSYS The stack size POSIX option is not implemented.

Related Information

The pthread_attr_getstacksize (“pthread_attr_getstacksize Subroutine” on page 1127) subroutine,

pthread_attr_init (“pthread_attr_init Subroutine” on page 1128) subroutine, pthread_create

(“pthread_create Subroutine” on page 1153) subroutine, the pthread.h file.

Advanced Attributes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_attr_setsuspendstate_np and

pthread_attr_getsuspendstate_np Subroutine

Purpose

Controls whether a thread is created in a suspended state.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_attr_setsuspendstate_np (attr, suspendstate)

pthread_attr_t *attr;

int suspendstate;

int pthread_attr_getsuspendstate_np (attr, suspendstate)

pthread_attr_t *attr;

int *suspendstate;

Description

The suspendstate attribute controls whether the thread is created in a suspended state. If the thread is

created suspended, the thread start routine will not execute until pthread_continue_np is run on the

thread. The pthread_attr_setsuspendstate_np and pthread_attr_getsuspendstate_np routines,

respectively, set and get the suspendstate attribute in the attr object.

The suspendstate attribute can be set to either PTHREAD_CREATE_SUSPENDED_NP or

PTHREAD_CREATE_UNSUSPENDED_NP. A value of PTHREAD_CREATE_SUSPENDED_NP causes all

threads created with attr to be in the suspended state, whereas using a value of

PTHREAD_CREATE_UNSUSPENDED_NP causes all threads created with attr to be in the unsuspended

state. The default value of the suspendstate attribute is PTHREAD_CREATE_UNSUSPENDED_NP.

Base Operating System (BOS) Runtime Services (A-P) 1135

Parameters

 attr Specifies the thread attributes object.

suspendstate Points to where the suspendstate attribute value will be stored.

Return Values

Upon successful completion, pthread_attr_setsuspendstate_np and pthread_attr_getsuspendstate_np

return a value of 0. Otherwise, an error number is returned to indicate the error.

The pthread_attr_getsuspendstate_np function stores the value of the suspendstate attribute in

suspendstate if successful.

Error Codes

The pthread_attr_setsuspendstate_np function will fail if:

 EINVAL The value of suspendstate is not valid.

pthread_barrier_destroy or pthread_barrier_init Subroutine

Purpose

Destroys or initializes a barrier object.

Syntax

#include <pthread.h>

int pthread_barrier_destroy(pthread_barrier_t *barrier);

int pthread_barrier_init(pthread_barrier_t *restrict barrier,

 const pthread_barrierattr_t *restrict attr, unsigned count);

Description

The pthread_barrier_destroy subroutine destroys the barrier referenced by the barrier parameter and

releases any resources used by the barrier. The effect of subsequent use of the barrier is undefined until

the barrier is reinitialized by another call to the pthread_barrier_init subroutine. An implementation can

use this subroutine to set the barrier parameter to an invalid value. The results are undefined if the

pthread_barrier_destroy subroutine is called when any thread is blocked on the barrier, or if this function

is called with an uninitialized barrier.

The pthread_barrier_init subroutine allocates any resources required to use the barrier referenced by the

barrier parameter and initializes the barrier with attributes referenced by the attr parameter. If the attr

parameter is NULL, the default barrier attributes are used; the effect is the same as passing the address

of a default barrier attributes object. The results are undefined if pthread_barrier_init subroutine is called

when any thread is blocked on the barrier (that is, has not returned from the pthread_barrier_wait call).

The results are undefined if a barrier is used without first being initialized. The results are undefined if the

pthread_barrier_init subroutine is called specifying an already initialized barrier.

The count argument specifies the number of threads that must call the pthread_barrier_wait subroutine

before any of them successfully return from the call. The value specified by the count parameter must be

greater than zero.

If the pthread_barrier_init subroutine fails, the barrier is not initialized and the contents of barrier are

undefined.

1136 Technical Reference, Volume 1: Base Operating System and Extensions

Only the object referenced by the barrier parameter can be used for performing synchronization. The result

of referring to copies of that object in calls to the pthread_barrier_destroy or pthread_barrier_wait

subroutine is undefined.

Return Values

Upon successful completion, these functions shall return zero; otherwise, an error number shall be

returned to indicate the error.

Error Codes

The pthread_barrier_destroy subroutine can fail if:

 EBUSY The implementation has detected an attempt to destroy a barrier while it is in use (for example,

while being used in a pthread_barrier_wait call) by another thread.

EINVAL The value specified by barrier is invalid.

The pthread_barrier_init() function will fail if:

 EAGAIN The system lacks the necessary resources to initialize another barrier.

EINVAL The value specified by the count parameter is equal to zero.

ENOMEM Insufficient memory exists to initialize the barrier.

The pthread_barrier_init subroutine can fail if:

 EBUSY The implementation has detected an attempt to reinitialize a barrier while it is in use (for

example, while being used in a pthread_barrier_wait call) by another thread.

EINVAL The value specified by the attr parameter is invalid.

Related Information

The “pthread_barrier_wait Subroutine,” “pthread_barrierattr_destroy or pthread_barrierattr_init Subroutine”

on page 1138, “pthread_barrierattr_getpshared or pthread_barrierattr_setpshared Subroutine” on page

1139.

The pthread.h file.

pthread_barrier_wait Subroutine

Purpose

Synchronizes threads at a barrier.

Syntax

#include <pthread.h>

int pthread_barrier_wait(pthread_barrier_t *barrier);

Description

The pthread_barrier_wait subroutine synchronizes participating threads at the barrier referenced by

barrier. The calling thread blocks until the required number of threads have called

pthread_barrier_waitspecifying the barrier.

Base Operating System (BOS) Runtime Services (A-P) 1137

When the required number of threads have called pthread_barrier_waitspecifying the barrier, the constant

PTHREAD_BARRIER_SERIAL_THREAD is returned to one unspecified thread and 0 is returned to the

remaining threads. At this point, the barrier resets to the state it had as a result of the most recent

pthread_barrier_init function that referenced it.

The constant PTHREAD_BARRIER_SERIAL_THREAD is defined in <pthread.h>, and its value is distinct

from any other value returned by pthread_barrier_wait.

The results are undefined if this function is called with an uninitialized barrier.

If a signal is delivered to a thread blocked on a barrier, upon return from the signal handler, the thread

resumes waiting at the barrier if the barrier wait has not completed (that is, if the required number of

threads have not arrived at the barrier during the execution of the signal handler); otherwise, the thread

continues as normal from the completed barrier wait. Until the thread in the signal handler returns from it,

other threads might proceed past the barrier after they have all reached it.

Note: In AIX 5.3, when the required number of threads has called pthread_barrier_wait, the

PTHREAD_BARRIER_SERIAL_THREAD constant is returned by the last pthread that called

pthread_barrier_wait. Furthermore, if a thread is in a signal handler while waiting and all the

required threads have reached the barrier, the other threads can proceed past the barrier.

A thread that has blocked on a barrier does not prevent any unblocked thread that is eligible to use the

same processing resources from eventually making forward progress in its execution. Eligibility for

processing resources is determined by the scheduling policy.

Parameters

 barrier Points to the barrier where participating threads wait.

Return Values

Upon successful completion, pthread_barrier_wait returns PTHREAD_BARRIER_SERIAL_THREAD for

a single (arbitrary) thread synchronized at the barrier and 0 for the other threads. Otherwise, an error

number is returned to indicate the error.

Error Codes

The pthread_barrier_destroy subroutine can fail if:

 EINVAL The value specified by barrier does not refer to an initialized barrier object.

This function does not return an error code of EINTR.

Related Information

The “pthread_barrier_destroy or pthread_barrier_init Subroutine” on page 1136,

“pthread_barrierattr_destroy or pthread_barrierattr_init Subroutine,” “pthread_barrierattr_getpshared or

pthread_barrierattr_setpshared Subroutine” on page 1139.

The pthread.h file.

pthread_barrierattr_destroy or pthread_barrierattr_init Subroutine

Purpose

Destroys or initializes the barrier attributes object.

1138 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <pthread.h>

int pthread_barrierattr_destroy(pthread_barrierattr_t *attr);

int pthread_barrierattr_init(pthread_barrierattr_t *attr);

Description

The pthread_barrierattr_destroy subroutine destroys a barrier attributes object. A destroyed attr attributes

object can be reinitialized using the pthread_barrierattr_init subroutine; the results of otherwise

referencing the object after it has been destroyed are undefined. An implementation can cause the

pthread_barrierattr_destroy subroutine to set the object referenced by the attr parameter to an invalid

value.

The pthread_barrierattr_init subroutine initializes a barrier attributes object attr with the default value for

all of the attributes defined by the implementation.

Results are undefined if the pthread_barrierattr_init subroutine is called specifying an already initialized

attr attributes object.

After a barrier attributes object has been used to initialize one or more barriers, any function affecting the

attributes object (including destruction) do not affect any previously initialized barrier.

Return Values

If successful, the pthread_barrierattr_destroy and pthread_barrierattr_init subroutines return zero;

otherwise, an error number shall be returned to indicate the error.

Error Codes

The pthread_barrierattr_destroy subroutine can fail if:

 EINVAL The value specified by the attr parameter is invalid.

The pthread_barrierattr_init subroutine will fail if:

 ENOMEM Insufficient memory exists to initialize the barrier attributes object.

Related Information

The “pthread_barrier_destroy or pthread_barrier_init Subroutine” on page 1136, “pthread_barrier_wait

Subroutine” on page 1137, “pthread_barrierattr_getpshared or pthread_barrierattr_setpshared Subroutine.”

pthread_barrierattr_getpshared or pthread_barrierattr_setpshared

Subroutine

Purpose

Gets and sets the process-shared attribute of the barrier attributes object.

Syntax

#include <pthread.h>

int pthread_barrierattr_getpshared(const pthread_barrierattr_t *

 restrict attr, int *restrict pshared);

int pthread_barrierattr_setpshared(pthread_barrierattr_t *attr,

 int pshared);

Base Operating System (BOS) Runtime Services (A-P) 1139

Description

The pthread_barrierattr_getpshared subroutine obtains the value of the process-shared attribute from

the attributes object referenced by the attr parameter. The pthread_barrierattr_setpshared subroutine

sets the process-shared attribute in an initialized attributes object referenced by the attr parameter.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a barrier to be operated

upon by any thread that has access to the memory where the barrier is allocated. If the process-shared

attribute is PTHREAD_PROCESS_PRIVATE, the barrier is only operated upon by threads created within

the same process as the thread that initialized the barrier; if threads of different processes attempt to

operate on such a barrier, the behavior is undefined. The default value of the attribute is

PTHREAD_PROCESS_PRIVATE. Both constants PTHREAD_PROCESS_SHARED and

PTHREAD_PROCESS_PRIVATE are defined in the pthread.h file.

Additional attributes, their default values, and the names of the associated functions to get and set those

attribute values are implementation-defined.

Return Values

If successful, the pthread_barrierattr_getpshared subroutine will return zero and store the value of the

process-shared attribute of attr into the object referenced by the pshared parameter. Otherwise, an error

number shall be returned to indicate the error.

If successful, the pthread_barrierattr_setpshared subroutine will return zero; otherwise, an error number

shall be returned to indicate the error.

Error Codes

These functions may fail if:

 EINVAL The value specified by attr is invalid.

The pthread_barrierattr_setpshared subroutine will fail if:

 EINVAL The new value specified for the process-shared attribute is not one of the legal values

PTHREAD_PROCESS_SHARED or PTHREAD_PROCESS_PRIVATE.

Related Information

The “pthread_barrier_destroy or pthread_barrier_init Subroutine” on page 1136, “pthread_barrier_wait

Subroutine” on page 1137, “pthread_barrierattr_destroy or pthread_barrierattr_init Subroutine” on page

1138.

pthread_cancel Subroutine

Purpose

Requests the cancellation of a thread.

Library

Threads Library (libpthreads.a)

1140 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <pthread.h>

int pthread_cancel (thread)

pthread_t thread;

Description

The pthread_cancel subroutine requests the cancellation of the thread thread. The action depends on the

cancelability of the target thread:

v If its cancelability is disabled, the cancellation request is set pending.

v If its cancelability is deferred, the cancellation request is set pending till the thread reaches a

cancellation point.

v If its cancelability is asynchronous, the cancellation request is acted upon immediately; in some cases, it

may result in unexpected behavior.

The cancellation of a thread terminates it safely, using the same termination procedure as the

pthread_exit (“pthread_exit Subroutine” on page 1158) subroutine.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Parameters

 thread Specifies the thread to be canceled.

Return Values

If successful, the pthread_cancel function returns zero. Otherwise, an error number is returned to indicate

the error.

Error Codes

The ptread_cancel function may fail if:

 ESRCH No thread could be found corresponding to that specified by the given thread ID.

The pthread_cancel function will not return an error code of EINTR.

Related Information

The pthread_kill (“pthread_kill Subroutine” on page 1174) subroutine, pthread_exit (“pthread_exit

Subroutine” on page 1158) subroutine, pthread_join (“pthread_join or pthread_detach Subroutine” on

page 1171) subroutine, pthread_cond_wait (“pthread_cond_wait or pthread_cond_timedwait Subroutine”

on page 1146), and pthread_cond_timedwait (“pthread_cond_wait or pthread_cond_timedwait

Subroutine” on page 1146) subroutines.

The pthread.h file.

Terminating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Base Operating System (BOS) Runtime Services (A-P) 1141

pthread_cleanup_pop or pthread_cleanup_push Subroutine

Purpose

Activates and deactivates thread cancellation handlers.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

void pthread_cleanup_pop (execute)

int execute;

void pthread_cleanup_push (routine, arg)

void (*routine)(void *);

void *arg;

Description

The pthread_cleanup_push subroutine pushes the specified cancellation cleanup handler routine onto

the calling thread’s cancellation cleanup stack. The cancellation cleanup handler is popped from the

cancellation cleanup stack and invoked with the argument arg when: (a) the thread exits (that is, calls

pthread_exit, (b) the thread acts upon a cancellation request, or (c) the thread calls

pthread_cleanup_pop with a nonzero execute argument.

The pthread_cleanup_pop subroutine removes the subroutine at the top of the calling thread’s

cancellation cleanup stack and optionally invokes it (if execute is nonzero).

These subroutines may be implemented as macros and will appear as statements and in pairs within the

same lexical scope (that is, the pthread_cleanup_push macro may be thought to expand to a token list

whose first token is ’{’ with pthread_cleanup_pop expanding to a token list whose last token is the

corresponding ’}’).

The effect of calling longjmp or siglongjmp is undefined if there have been any calls to

pthread_cleanup_push or pthread_cleanup_pop made without the matching call since the jump buffer

was filled. The effect of calling longjmp or siglongjmp from inside a cancellation cleanup handler is also

undefined unless the jump buffer was also filled in the cancellation cleanup handler.

Parameters

 execute Specifies if the popped subroutine will be executed.

routine Specifies the address of the cancellation subroutine.

arg Specifies the argument passed to the cancellation subroutine.

Related Information

The pthread_cancel (“pthread_cancel Subroutine” on page 1140), pthread_setcancelstate

(“pthread_setcancelstate, pthread_setcanceltype, or pthread_testcancel Subroutines” on page 1205)

subroutines, the pthread.h file.

Terminating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

1142 Technical Reference, Volume 1: Base Operating System and Extensions

pthread_cond_destroy or pthread_cond_init Subroutine

Purpose

Initialize and destroys condition variables.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_cond_init (cond, attr)

pthread_cond_t *cond;

const pthread_condattr_t *attr;

int pthread_cond_destroy (cond)

pthread_cond_t *cond;

pthread_cond_t cond = PTHREAD_COND_INTITIALIZER;

Description

The function pthread_cond_init initializes the condition variable referenced by cond with attributes

referenced by attr. If attr is NULL, the default condition variable attributes are used; the effect is the same

as passing the address of a default condition variable attributes object. Upon successful initialization, the

state of the condition variable becomes initialized.

Attempting to initialize an already initialized condition variable results in undefined behavior.

The function pthread_cond_destroy destroys the given condition variable specified by cond; the object

becomes, in effect, uninitialized. An implementation may cause pthread_cond_destroy to set the object

referenced by cond to an invalid value. A destroyed condition variable object can be re-initialized using

pthread_cond_init; the results of otherwise referencing the object after it has been destroyed are

undefined.

It is safe to destroy an initialized condition variable upon which no threads are currently blocked.

Attempting to destroy a condition variable upon which other threads are currently blocked results in

undefined behavior.

In cases where default condition variable attributes are appropriate, the macro

PTHREAD_COND_INITIALIZER can be used to initialize condition variables that are statically allocated.

The effect is equivalent to dynamic initialization by a call to pthread_cond_init with parameter attr

specified as NULL, except that no error checks are performed.

Parameters

 cond Pointer to the condition variable.

attr Specifies the attributes of the condition.

Return Values

If successful, the pthread_cond_init and pthread_cond_destroy functions return zero. Otherwise, an

error number is returned to indicate the error. The EBUSY and EINVAL error checks, if implemented, act

as if they were performed immediately at the beginning of processing for the function and caused an error

return prior to modifying the state of the condition variable specified by cond.

Base Operating System (BOS) Runtime Services (A-P) 1143

Error Codes

The pthread_cond_init function will fail if:

 EAGAIN The system lacked the necessary resources (other than memory) to initialize another condition variable.

ENOMEM Insufficient memory exists to initialize the condition variable.

The pthread_cond_init function may fail if:

 EINVAL The value specified by attr is invalid.

The pthread_cond_destroy function may fail if:

 EBUSY The implementation has detected an attempt to destroy the object referenced by cond while it is

referenced (for example, while being used in a pthread_cond_wait or pthread_cond_timedwait by

another thread.

EINVAL The value specified by cond is invalid.

These functions will not return an error code of EINTR.

Related Information

The pthread_cond_signal or pthread_cond_broadcast (“pthread_cond_signal or

pthread_cond_broadcast Subroutine” on page 1145) subroutine and the pthread_cond_wait or

pthread_cond_timewait (“pthread_cond_wait or pthread_cond_timedwait Subroutine” on page 1146)

subroutine.

The pthread.h file.

Using Condition Variables in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

PTHREAD_COND_INITIALIZER Macro

Purpose

Initializes a static condition variable with default attributes.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

static pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Description

The PTHREAD_COND_INITIALIZER macro initializes the static condition variable cond, setting its

attributes to default values. This macro should only be used for static condition variables, since no error

checking is performed.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

1144 Technical Reference, Volume 1: Base Operating System and Extensions

Related Information

The pthread_cond_init (“pthread_cond_destroy or pthread_cond_init Subroutine” on page 1143)

subroutine.

Using Condition Variables in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_cond_signal or pthread_cond_broadcast Subroutine

Purpose

Unblocks one or more threads blocked on a condition.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_cond_signal (condition)

pthread_cond_t *condition;

int pthread_cond_broadcast (condition)

pthread_cond_t *condition;

Description

These subroutines unblock one or more threads blocked on the condition specified by condition. The

pthread_cond_signal subroutine unblocks at least one blocked thread, while the

pthread_cond_broadcast subroutine unblocks all the blocked threads.

If more than one thread is blocked on a condition variable, the scheduling policy determines the order in

which threads are unblocked. When each thread unblocked as a result of a pthread_cond_signal or

pthread_cond_broadcast returns from its call to pthread_cond_wait or pthread_cond_timedwait, the

thread owns the mutex with which it called pthread_cond_waitor pthread_cond_timedwait. The

thread(s) that are unblocked contend for the mutex according to the scheduling policy (if applicable), and

as if each had called pthread_mutex_lock.

The pthread_cond_signal or pthread_cond_broadcast functions may be called by a thread whether or

not it currently owns the mutex that threads calling pthread_cond_wait or pthread_cond_timedwait have

associated with the condition variable during their waits; however, if predictable scheduling behavior is

required, then that mutex is locked by the thread calling pthread_cond_signal or

pthread_cond_broadcast.

If no thread is blocked on the condition, the subroutine succeeds, but the signalling of the condition is not

held. The next thread calling pthread_cond_wait will be blocked.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Parameters

 condition Specifies the condition to signal.

Base Operating System (BOS) Runtime Services (A-P) 1145

Return Values

Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Code

The pthread_cond_signal and pthread_cond_broadcast subroutines are unsuccessful if the following is

true:

 EINVAL The condition parameter is not valid.

Related Information

The pthread_cond_wait or pthread_cond_timedwait (“pthread_cond_wait or pthread_cond_timedwait

Subroutine”) subroutine.

Using Condition Variables in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_cond_wait or pthread_cond_timedwait Subroutine

Purpose

Blocks the calling thread on a condition.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_cond_wait (cond, mutex)

pthread_cond_t *cond;

pthread_mutex_t *mutex;

int pthread_cond_timedwait (cond, mutex, timeout)

pthread_cond_t *cond;

pthread_mutex_t *mutex;

const struct timespec *timeout;

Description

The pthread_cond_wait and pthread_cond_timedwait functions are used to block on a condition

variable. They are called with mutex locked by the calling thread or undefined behavior will result.

These functions atomically release mutex and cause the calling thread to block on the condition variable

cond; atomically here means atomically with respect to access by another thread to the mutex and then

the condition variable. That is, if another thread is able to acquire the mutex after the about-to-block thread

has released it, then a subsequent call to pthread_cond_signal or pthread_cond_broadcast in that

thread behaves as if it were issued after the about-to-block thread has blocked.

Upon successful return, the mutex is locked and owned by the calling thread.

When using condition variables there is always a boolean predicate involving shared variables associated

with each condition wait that is true if the thread should proceed. Spurious wakeups from the

pthread_cond_wait or pthread_cond_timedwait functions may occur. Since the return from

pthread_cond_wait or pthread_cond_timedwait does not imply anything about the value of this

predicate, the predicate should be reevaluated upon such return.

1146 Technical Reference, Volume 1: Base Operating System and Extensions

The effect of using more than one mutex for concurrent pthread_cond_wait or pthread_cond_timedwait

operations on the same condition variable is undefined; that is, a condition variable becomes bound to a

unique mutex when a thread waits on the condition variable, and this (dynamic) binding ends when the

wait returns.

A condition wait (whether timed or not) is a cancellation point. When the cancelability enable state of a

thread is set to PTHREAD_CANCEL_DEFERRED, a side effect of acting upon a cancellation request

while in a condition wait is that the mutex is (in effect) reacquired before calling the first cancellation

cleanup handler. The effect is as if the thread were unblocked, allowed to execute up to the point of

returning from the call to pthread_cond_wait or pthread_cond_timedwait, but at that point notices the

cancellation request and instead of returning to the caller of pthread_cond_wait or

pthread_cond_timedwait, starts the thread cancellation activities, which includes calling cancellation

cleanup handlers.

A thread that has been unblocked because it has been canceled while blocked in a call to

pthread_cond_wait or pthread_cond_timedwait does not consume any condition signal that may be

directed concurrently at the condition variable if there are other threads blocked on the condition variable.

The pthread_cond_timedwait function is the same as pthread_cond_wait except that an error is

returned if the absolute time specified by timeout passes (that is, system time equals or exceeds timeout)

before the condition cond is signaled or broadcast, or if the absolute time specified by timeout has already

been passed at the time of the call. When such time-outs occur, pthread_cond_timedwait will

nonetheless release and reacquire the mutex referenced by mutex. The function

pthread_cond_timedwait is also a cancellation point. The absolute time specified by timeout can be

either based on the system realtime clock or the system monotonic clock. The reference clock for the

condition variable is set by calling pthread_condattr_setclock before its initialization with the

corresponding condition attributes object.

If a signal is delivered to a thread waiting for a condition variable, upon return from the signal handler the

thread resumes waiting for the condition variable as if it was not interrupted, or it returns zero due to

spurious wakeup.

Parameters

 cond Specifies the condition variable to wait on.

mutex Specifies the mutex used to protect the condition variable. The mutex must be locked when the

subroutine is called.

timeout Points to the absolute time structure specifying the blocked state timeout.

Return Values

Except in the case of ETIMEDOUT, all these error checks act as if they were performed immediately at the

beginning of processing for the function and cause an error return, in effect, prior to modifying the state of

the mutex specified by mutex or the condition variable specified by cond.

Upon successful completion, a value of zero is returned. Otherwise, an error number is returned to

indicate the error.

Error Codes

The pthread_cond_timedwait function will fail if:

 ETIMEDOUT The time specified by timeout to pthread_cond_timedwait has passed.

Base Operating System (BOS) Runtime Services (A-P) 1147

The pthread_cond_wait and pthread_cond_timedwait functions may fail if:

 EINVAL The value specified by cond, mutex, or timeout is invalid.

EINVAL Different mutexes were supplied for concurrent pthread_cond_wait or pthread_cond_timedwait

operations on the same condition variable.

EINVAL The mutex was not owned by the current thread at the time of the call.

EPERM The mutex was not owned by the current thread at the time of the call, XPG_SUS_ENV is set to ON, and

XPG_UNIX98 is not set.

These functions will not return an error code of EINTR.

Related Information

The pthread_cond_signal orpthread_cond_broadcast (“pthread_cond_signal or

pthread_cond_broadcast Subroutine” on page 1145) subroutine, “pthread_condattr_getclock,

pthread_condattr_setclock Subroutine” on page 1149, the pthread.h file.

Using Condition Variables in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_condattr_destroy or pthread_condattr_init Subroutine

Purpose

Initializes and destroys condition variable.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_condattr_destroy (attr)

pthread_condattr_t *attr;

int pthread_condattr_init (attr)

pthread_condattr_t *attr;

Description

The function pthread_condattr_init initializes a condition variable attributes object attr with the default

value for all of the attributes defined by the implementation. Attempting to initialize an already initialized

condition variable attributes object results in undefined behavior.

After a condition variable attributes object has been used to initialize one or more condition variables, any

function affecting the attributes object (including destruction) does not affect any previously initialized

condition variables.

The pthread_condattr_destroy function destroys a condition variable attributes object; the object

becomes, in effect, uninitialized. The pthread_condattr_destroy subroutine may set the object referenced

by attr to an invalid value. A destroyed condition variable attributes object can be re-initialized using

pthread_condattr_init; the results of otherwise referencing the object after it has been destroyed are

undefined.

1148 Technical Reference, Volume 1: Base Operating System and Extensions

Parameter

 attr Specifies the condition attributes object to delete.

Return Values

If successful, the pthread_condattr_init and pthread_condattr_destroy functions return zero. Otherwise,

an error number is returned to indicate the error.

Error Code

The pthread_condattr_init function will fail if:

 ENOMEM Insufficient memory exists to initialize the condition variable attributes object.

The pthread_condattr_destroy function may fail if:

 EINVAL The value specified by attr is invalid.

These functions will not return an error code of EINTR.

Related Information

The pthread_cond_init (“pthread_cond_destroy or pthread_cond_init Subroutine” on page 1143)

subroutine, pthread_condattr_getpshared (“pthread_condattr_getpshared Subroutine” on page 1150)

subroutine, pthread_create (“pthread_create Subroutine” on page 1153) subroutine, pthread_mutex_init

(“pthread_mutex_init or pthread_mutex_destroy Subroutine” on page 1176) subroutine.

The pthread.h file.

Using Condition Variables in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_condattr_getclock, pthread_condattr_setclock Subroutine

Purpose

Gets and sets the clock selection condition variable attribute.

Syntax

 int pthread_condattr_getclock(const pthread_condattr_t *restrict attr,

 clockid_t *restrict clock_id);

int pthread_condattr_setclock(pthread_condattr_t *attr,

 clockid_t clock_id);

Description

The pthread_condattr_getclock subroutine obtains the value of the clock attribute from the attributes

object referenced by the attr argument. The pthread_condattr_setclock subroutine sets the clock

attribute in an initialized attributes object referenced by the attr argument. If pthread_condattr_setclock is

called with a clock_id argument that refers to a CPU-time clock, the call will fail.

The clock attribute is the clock ID of the clock that shall be used to measure the timeout service of the

pthread_cond_timedwait subroutine. The default value of the clock attribute refers to the system clock.

Base Operating System (BOS) Runtime Services (A-P) 1149

Parameters

 attr Specifies the condition attributes object.

clock_id For pthread_condattr_getclock(), points to where the clock attribute value will be stored.
For pthread_condattr_setclock(), specifies the clock to set. Valid values are:

CLOCK_REALTIME

The system realtime clock.

CLOCK_MONOTONIC

The system monotonic clock. The value of this clock represents the amount of time since

an unspecified point in the past. The value of this clock always grows: it cannot be set by

clock_settime() and cannot have backward clock jumps.

Return Values

If successful, the pthread_condattr_getclock subroutine returns 0 and stores the value of the clock

attribute of attr in the object referenced by the clock_id argument. Otherwise, an error code is returned to

indicate the error.

If successful, the pthread_condattr_setclock subroutine returns 0; otherwise, an error code is returned to

indicate the error.

Error Codes

 EINVAL The value specified by attr is invalid.

EINVAL The pthread_condattr_setclock subroutine returns this error if the value specified by the clock_id

does not refer to a known clock, or is a CPU-time clock.

ENOTSUP The function is not supported with checkpoint-restart processes.

Related Information

“pthread_cond_destroy or pthread_cond_init Subroutine” on page 1143, “pthread_cond_wait or

pthread_cond_timedwait Subroutine” on page 1146, “pthread_condattr_getpshared Subroutine,”

“pthread_condattr_destroy or pthread_condattr_init Subroutine” on page 1148,

“pthread_condattr_setpshared Subroutine” on page 1152, “pthread_create Subroutine” on page 1153,

“pthread_mutex_init or pthread_mutex_destroy Subroutine” on page 1176.

The pthread.h file.

The Base Definitions volume of IEEE Std 1003.1-2001.

pthread_condattr_getpshared Subroutine

Purpose

Returns the value of the pshared attribute of a condition attributes object.

Library

Threads Library (libpthreads.a)

1150 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <pthread.h>

int pthread_condattr_getpshared (attr, pshared)

const pthread_condattr_t *attr;

int *pshared;

Description

The pthread_condattr_getpshared subroutine returns the value of the pshared attribute of the condition

attribute object attr. This attribute specifies the process sharing of the condition variable created with this

attributes object. It may have one of the following values:

 PTHREAD_PROCESS_SHARED Specifies that the condition variable can be used by any thread that has

access to the memory where it is allocated, even if these threads

belong to different processes.

PTHREAD_PROCESS_PRIVATE Specifies that the condition variable shall only be used by threads within

the same process as the thread that created it. This is the default value.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Parameters

 attr Specifies the condition attributes object.

pshared Points to where the pshared attribute value will be stored.

Return Values

Upon successful completion, the value of the pshared attribute is returned via the pshared parameter, and

0 is returned. Otherwise, an error code is returned.

Error Codes

The pthread_condattr_getpshared subroutine is unsuccessful if the following is true:

 EINVAL The attr parameter is not valid.

ENOSYS The process sharing POSIX option is not implemented.

Related Information

The pthread_condattr_setpshared (“pthread_condattr_setpshared Subroutine” on page 1152) subroutine,

pthread_condattr_init (“pthread_condattr_destroy or pthread_condattr_init Subroutine” on page 1148)

subroutine.

Advanced Attributes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Base Operating System (BOS) Runtime Services (A-P) 1151

pthread_condattr_setpshared Subroutine

Purpose

Sets the value of the pshared attribute of a condition attributes object.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_condattr_setpshared (attr, pshared)

pthread_condattr_t *attr;

int pshared;

Description

The pthread_condattr_setpshared subroutine sets the value of the pshared attribute of the condition

attributes object attr. This attribute specifies the process sharing of the condition variable created with this

attributes object.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Parameters

 attr Specifies the condition attributes object.

pshared Specifies the process sharing to set. It must have one of the following values:

PTHREAD_PROCESS_SHARED

Specifies that the condition variable can be used by any thread that has access to the

memory where it is allocated, even if these threads belong to different processes.

PTHREAD_PROCESS_PRIVATE

Specifies that the condition variable shall only be used by threads within the same process as

the thread that created it. This is the default value.

Return Values

Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes

The pthread_condattr_setpshared subroutine is unsuccessful if the following is true:

 EINVAL The attr or pshared parameters are not valid.

Related Information

The pthread_condattr_getpshared (“pthread_condattr_getpshared Subroutine” on page 1150) subroutine,

pthread_condattr_init or pthread_cond_init (“pthread_condattr_destroy or pthread_condattr_init

Subroutine” on page 1148) subroutine.

Advanced Attributes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

1152 Technical Reference, Volume 1: Base Operating System and Extensions

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_create Subroutine

Purpose

Creates a new thread, initializes its attributes, and makes it runnable.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_create (thread, attr, start_routine (void), arg)

pthread_t *thread;

const pthread_attr_t *attr;

void **start_routine (void);

void *arg;

Description

The pthread_create subroutine creates a new thread and initializes its attributes using the thread

attributes object specified by the attr parameter. The new thread inherits its creating thread’s signal mask;

but any pending signal of the creating thread will be cleared for the new thread.

The new thread is made runnable, and will start executing the start_routine routine, with the parameter

specified by the arg parameter. The arg parameter is a void pointer; it can reference any kind of data. It is

not recommended to cast this pointer into a scalar data type (int for example), because the casts may not

be portable.

After thread creation, the thread attributes object can be reused to create another thread, or deleted.

The thread terminates in the following cases:

v The thread returned from its starting routine (the main routine for the initial thread)

v The thread called the pthread_exit (“pthread_exit Subroutine” on page 1158) subroutine

v The thread was canceled

v The thread received a signal that terminated it

v The entire process is terminated due to a call to either the exec (“exec: execl, execle, execlp, execv,

execve, execvp, or exect Subroutine” on page 232) or exit (“exit, atexit, unatexit, _exit, or _Exit

Subroutine” on page 239) subroutines.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

When multiple threads are created in a process, the FULL_CORE flag is set for all signals. This means

that if a core file is produced, it will be much bigger than a single_threaded application. This is necessary

to debug multiple-threaded processes.

When a process uses the pthread_create function, and thus becomes multi-threaded, the FULL_CORE

flag is enabled for all signals. If a signal is received whose action is to terminate the process with a core

dump, a full dump (usually much larger than a regular dump) will be produced. This is necessary so that

multi-threaded programs can be debugged with the dbx command.

Base Operating System (BOS) Runtime Services (A-P) 1153

The following piece of pseudocode is an example of how to avoid getting a full core. Please note that in

this case, debug will not be possible. It may be easier to limit the size of the core with the ulimit

command.

struct sigaction siga;

siga.sa_handler = SIG_DFL;

siga.sa_flags = SA_RESTART;

SIGINITSET(siga.as_mask);

sigaction(<SIGNAL_NUMBER>, &siga, NULL);

The alternate stack is not inherited.

Parameters

 thread Points to where the thread ID will be stored.

attr Specifies the thread attributes object to use in creating the thread. If the value is NULL, the

default attributes values will be used.

start_routine Points to the routine to be executed by the thread.

arg Points to the single argument to be passed to the start_routine routine.

Return Values

If successful, the pthread_create function returns zero. Otherwise, an error number is returned to indicate

the error.

Error Codes

The pthread_create function will fail if:

 EAGAIN If WLM is running, the limit on the number of threads in the class may have been met.

EINVAL The value specified by attr is invalid.

EPERM The caller does not have appropriate permission to set the required scheduling parameters or

scheduling policy.

The pthread_create function will not return an error code of EINTR.

Related Information

The core file format.

The dbx and ulimit commands.

The pthread_attr_init (“pthread_attr_init Subroutine” on page 1128) subroutine, pthread_attr_destroy

(“pthread_attr_destroy Subroutine” on page 1120) subroutine, pthread_exit (“pthread_exit Subroutine” on

page 1158) subroutine, pthread_cancel (“pthread_cancel Subroutine” on page 1140) subroutine,

pthread_kill (“pthread_kill Subroutine” on page 1174) subroutine, pthread_self (“pthread_self Subroutine”

on page 1204) subroutine, pthread_once (“pthread_once Subroutine” on page 1192) subroutine,

pthread_join (“pthread_join or pthread_detach Subroutine” on page 1171) subroutine, fork (“fork, f_fork,

or vfork Subroutine” on page 284) subroutine, and the pthread.h file.

Creating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

1154 Technical Reference, Volume 1: Base Operating System and Extensions

pthread_create_withcred_np Subroutine

Purpose

Creates a new thread with a new set of credentials, initializes its attributes, and makes it runnable.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

#include <sys/cred.h>

int pthread_create_withcred_np(pthread_t *thread, const pthread_attr_t *attr,

void *(*start_routine)(void),

void *arg, struct __pthrdscreds *credp)

Description

The pthread_create_withcred_np subroutine is exactly equivalent to the pthread_create routine except

that it allows the new thread to be created and start running with the credentials specified by the credp

parameter. Only a process that has the credentials capability or is running with an effective user ID as the

root user is allowed to modify its credentials using this routine.

The following credentials can be modified:

v Effective, real and saved user IDs

v Effective, real and saved group IDs

v Supplementary group IDs

Note: The administrator can set the lowest user ID value to which a process with credentials capability is

allowed to switch its user IDs. A value of 0 can be specified for any of the preceding credentials to

indicate that the thread should inherit that specific credential from its caller. The administrator can

also set the lowest group ID to which a process with credentials capability is allowed to switch its

group IDs.

The __pc_flags flag field in the credp parameter provides options to inherit credentials from the parent

thread.

The newly created thread runs with per-thread credentials, and system calls like getuid or getgid returns

the thread’s credentials. Similarly, when a file is opened or a message is received, the thread’s credentials

will be used to determine whether the thread has privilege to execute the operation.

Parameters

 thread Points to where the thread ID will be stored.

attr Specifies the thread attributes object to use in creating the thread. If the value is NULL,

the default attributes values will be used.

start_routine Points to the routine to be executed by the thread.

arg Points to the single argument to be passed to the start_routine routine.

Base Operating System (BOS) Runtime Services (A-P) 1155

credp Points to a structure of type __pthrdscreds, which contains the credentials structure and

the inheritance flags. If set to NULL, the pthread_create_withcred_np subroutine is the

same as the pthread_create routine.

The __pc_cred field indicates the credentials to be assigned to the new pthread.
The __pc_flags field indicates which credentials, if any, are to be inherited from the parent

thread. This field is constructed by logically OR’ing one or more of the following values:

PTHRDSCREDS_INHERIT_UIDS

Inherit user IDs from parent thread.

PTHRDSCREDS_INHERIT_GIDS

Inherit group IDs from parent thread.

PTHRDSCREDS_INHERIT_GSETS

Inherit the group sets from parent thread.

PTHRDSCREDS_INHERIT_PRIVILEGES

Inherit privileges from the parent thread.

Security

Only a process that has the credentials capability or is running with an effective user ID (such as the root

user) is allowed to modify its credentials using this routine.

Return Values

If successful, the pthread_create_withcred_np subroutine returns 0. Otherwise, an error number is

returned to indicate the error.

Error Codes

 EAGAIN If WLM is running, the limit on the number of threads in the class might have been met.

EFAULT The credp parameter points to a location outside of the allocated address space of the

process.

EINVAL The credentials specified in the credp parameter are not valid.

EPERM The caller does not have appropriate permission to set the credentials.

The pthread_create_withcred_np subroutine will not return an error code of EINTR.

Related Information

“pthread_create Subroutine” on page 1153

pthread_delay_np Subroutine

Purpose

Causes a thread to wait for a specified period.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_delay_np (interval)

struct timespec *interval;

1156 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The pthread_delay_np subroutine causes the calling thread to delay execution for a specified period of

elapsed wall clock time. The period of time the thread waits is at least as long as the number of seconds

and nanoseconds specified in the interval parameter.

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.

Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this

case, the flag is automatically set.

2. The pthread_delay_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should

not be used when writing new applications.

Parameters

 interval Points to the time structure specifying the wait period.

Return Values

Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes

The pthread_delay_np subroutine is unsuccessful if the following is true:

 EINVAL The interval parameter is not valid.

Related Information

The sleep, nsleep, or usleep subroutine.

pthread_equal Subroutine

Purpose

Compares two thread IDs.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_equal (thread1, thread2)

pthread_t thread1;

pthread_t thread2;

Description

The pthread_equal subroutine compares the thread IDs thread1 and thread2. Since the thread IDs are

opaque objects, it should not be assumed that they can be compared using the equality operator (==).

Base Operating System (BOS) Runtime Services (A-P) 1157

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Parameters

 thread1 Specifies the first ID to be compared.

thread2 Specifies the second ID to be compared.

Return Values

The pthread_equal function returns a nonzero value if thread1 and thread2 are equal; otherwise, zero is

returned.

If either thread1 or thread2 are not valid thread IDs, the behavior is undefined.

Related Information

The pthread_self (“pthread_self Subroutine” on page 1204) subroutine, the pthread_create

(“pthread_create Subroutine” on page 1153) subroutine, the pthread.h file.

Creating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_exit Subroutine

Purpose

Terminates the calling thread.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

void pthread_exit (status)

void *status;

Description

The pthread_exit subroutine terminates the calling thread safely, and stores a termination status for any

thread that may join the calling thread. The termination status is always a void pointer; it can reference

any kind of data. It is not recommended to cast this pointer into a scalar data type (int for example),

because the casts may not be portable. This subroutine never returns.

Unlike the exit subroutine, the pthread_exit subroutine does not close files. Thus any file opened and

used only by the calling thread must be closed before calling this subroutine. It is also important to note

that the pthread_exit subroutine frees any thread-specific data, including the thread’s stack. Any data

allocated on the stack becomes invalid, since the stack is freed and the corresponding memory may be

reused by another thread. Therefore, thread synchronization objects (mutexes and condition variables)

allocated on a thread’s stack must be destroyed before the thread calls the pthread_exit subroutine.

Returning from the initial routine of a thread implicitly calls the pthread_exit subroutine, using the return

value as parameter.

1158 Technical Reference, Volume 1: Base Operating System and Extensions

If the thread is not detached, its resources, including the thread ID, the termination status, the

thread-specific data, and its storage, are all maintained until the thread is detached or the process

terminates.

If another thread joins the calling thread, that thread wakes up immediately, and the calling thread is

automatically detached.

If the thread is detached, the cleanup routines are popped from their stack and executed. Then the

destructor routines from the thread-specific data are executed. Finally, the storage of the thread is

reclaimed and its ID is freed for reuse.

Terminating the initial thread by calling this subroutine does not terminate the process, it just terminates

the initial thread. However, if all the threads in the process are terminated, the process is terminated by

implicitly calling the exit subroutine with a return code of 0 if the last thread is detached, or 1 otherwise.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Parameters

 status Points to an optional termination status, used by joining threads. If no termination status is desired, its

value should be NULL.

Return Values

The pthread_exit function cannot return to its caller.

Errors

No errors are defined.

The pthread_exit function will not return an error code of EINTR.

Related Information

The pthread_cleanup_push (“pthread_cleanup_pop or pthread_cleanup_push Subroutine” on page 1142)

subroutine, pthread_cleanup_pop (“pthread_cleanup_pop or pthread_cleanup_push Subroutine” on page

1142) subroutine, pthread_key_create (“pthread_key_create Subroutine” on page 1172) subroutine,

pthread_create (“pthread_create Subroutine” on page 1153) subroutine, pthread_join (“pthread_join or

pthread_detach Subroutine” on page 1171) subroutine, pthread_cancel (“pthread_cancel Subroutine” on

page 1140) subroutine, exit (“exit, atexit, unatexit, _exit, or _Exit Subroutine” on page 239) subroutine, the

pthread.h file.

Terminating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_get_expiration_np Subroutine

Purpose

Obtains a value representing a desired expiration time.

Library

Threads Library (libpthreads.a)

Base Operating System (BOS) Runtime Services (A-P) 1159

Syntax

#include <pthread.h>

int pthread_get_expiration_np (delta, abstime)

struct timespec *delta;

struct timespec *abstime;

Description

The pthread_get_expiration_np subroutine adds the interval delta to the current absolute system time

and returns a new absolute time. This new absolute time can be used as the expiration time in a call to

the pthread_cond_timedwait subroutine.

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.

Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this

case, the flag is automatically set.

2. The pthread_get_expiration_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should

not be used when writing new applications.

Parameters

 delta Points to the time structure specifying the interval.

abstime Points to where the new absolute time will be stored.

Return Values

Upon successful completion, the new absolute time is returned via the abstime parameter, and 0 is

returned. Otherwise, an error code is returned.

Error Codes

The pthread_get_expiration_np subroutine is unsuccessful if the following is true:

 EINVAL The delta or abstime parameters are not valid.

Related Information

The pthread_cond_timedwait (“pthread_cond_wait or pthread_cond_timedwait Subroutine” on page

1146) subroutine.

pthread_getconcurrency or pthread_setconcurrency Subroutine

Purpose

Gets or sets level of concurrency.

Library

Threads Library (libthreads.a)

1160 Technical Reference, Volume 1: Base Operating System and Extensions

Syntax

#include <pthread.h>

int pthread_getconcurrency (void);

int pthread_setconcurrency (new_level)

int new_level;

Description

The pthread_setconcurrency subroutine allows an application to inform the threads implementation of its

desired concurrency level, new_level. The actual level of concurrency provided by the implementation as a

result of this function call is unspecified.

If new_level is zero, it causes the implementation to maintain the concurrency level at its discretion as if

pthread_setconcurrency was never called.

The pthread_getconcurrency subroutine returns the value set by a previous call to the

pthread_setconcurrency subroutine. If the pthread_setconcurrency subroutine was not previously

called, this function returns zero to indicate that the implementation is maintaining the concurrency level.

When an application calls pthread_setconcurrency, it is informing the implementation of its desired

concurrency level. The implementation uses this as a hint, not a requirement.

Use of these subroutines changes the state of the underlying concurrency upon which the application

depends. Library developers are advised to not use the pthread_getconcurrency and

pthread_setconcurrency subroutines since their use may conflict with an applications use of these

functions.

Parameters

 new_level Specifies the value of the concurrency level.

Return Value

If successful, the pthread_setconcurrency subroutine returns zero. Otherwise, an error number is

returned to indicate the error.

The pthread_getconcurrency subroutine always returns the concurrency level set by a previous call to

pthread_setconcurrency. If the pthread_setconcurrency subroutine has never been called,

pthread_getconcurrency returns zero.

Error Codes

The pthread_setconcurrency subroutine will fail if:

 EINVAL The value specified by new_level is negative.

EAGAIN The value specific by new_level would cause a system resource to be exceeded.

Related Information

The pthread.h file.

Base Operating System (BOS) Runtime Services (A-P) 1161

pthread_getcpuclockid Subroutine

Purpose

Accesses a thread CPU-time clock.

Syntax

#include <pthread.h>

#include <time.h>

int pthread_getcpuclockid(pthread_t thread_id, clockid_t *clock_id);

Description

The pthread_getcpuclockid subroutine returns in the clock_id parameter the clock ID of the CPU-time

clock of the thread specified by thread_id, if the thread specified by thread_id exists.

Parameters

 thread_id Specifies the ID of the pthread whose clock ID is requested.

clock_id Points to the clockid_t structure used to return the thread CPU-time clock ID of

thread_id.

Return Values

Upon successful completion, the pthread_getcpuclockid subroutine returns 0; otherwise, an error number

is returned to indicate the error.

Error Codes

 ENOTSUP The subroutine is not supported with checkpoint-restart’ed processes.

ESRCH The value specified by thread_id does not refer to an existing thread.

Related Information

“clock_getcpuclockid Subroutine” on page 167, “clock_getres, clock_gettime, and clock_settime

Subroutine” on page 168, timer_create Subroutine, timer_gettime Subroutine

pthread_getrusage_np Subroutine

Purpose

Enable or disable pthread library resource collection, and retrieve resource information for any pthread in

the current process.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_getrusage_np (Ptid, RUsage, Mode)

pthread_t Ptid;

struct rusage *RUsage;

int Mode;

1162 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The pthread_getrusage_np subroutine enables and disables resource collection in the pthread library and

collects resource information for any pthread in the current process. When compiled in 64-bit mode,

resource usage (rusage) counters are 64-bits for the calling thread. When compiled in 32-bit mode, rusage

counters are 32-bits for the calling pthread.

This functionality is enabled by default. The previous AIXTHREAD_ENRUSG used with

pthread_getrusage_np is no longer supported.

Parameters

 Ptid Specifies the target thread. Must be within the current process.

Base Operating System (BOS) Runtime Services (A-P) 1163

RUsage Points to a buffer described in the /usr/include/sys/resource.h file. The fields are defined as

follows:

ru_utime

The total amount of time running in user mode.

ru_stime

The total amount of time spent in the system executing on behalf of the processes.

ru_maxrss

The maximum size, in kilobytes, of the used resident set size.

ru_ixrss

An integral value indicating the amount of memory used by the text segment that was also

shared among other processes. This value is expressed in units of kilobytes X

seconds-of-execution and is calculated by adding the number of shared memory pages in

use each time the internal system clock ticks, and then averaging over one-second

intervals.

ru_idrss

An integral value of the amount of unshared memory in the data segment of a process,

which is expressed in units of kilobytes X seconds-of-execution.

ru_minflt

The number of page faults serviced without any I/O activity. In this case, I/O activity is

avoided by reclaiming a page frame from the list of pages awaiting reallocation.

ru_majflt

The number of page faults serviced that required I/O activity.

ru_nswap

The number of times that a process was swapped out of main memory.

ru_inblock

The number of times that the file system performed input.

ru_oublock

The number of times that the file system performed output.

Note: The numbers that the ru_inblock and ru_oublock fields display account for real I/O

only; data supplied by the caching mechanism is charged only to the first process that reads

or writes the data.

ru_msgsnd

The number of IPC messages sent.

ru_msgrcv

The number of IPC messages received.

ru_nsignals

The number of signals delivered.

ru_nvcsw

The number of times a context switch resulted because a process voluntarily gave up the

processor before its time slice was completed. This usually occurs while the process waits

for a resource to become available.

ru_nivcsw

The number of times a context switch resulted because a higher priority process ran or

because the current process exceeded its time slice.

1164 Technical Reference, Volume 1: Base Operating System and Extensions

Mode Indicates which task the subroutine should perform. Acceptable values are as follows:

PTHRDSINFO_RUSAGE_START

Returns the current resource utilization, which will be the start measurement.

PTHRDSINFO_RUSAGE_STOP

Returns total current resource utilization since the last time a

PTHRDSINFO_RUSAGE_START was performed. If the task

PTHRDSINFO_RUSAGE_START was not performed, then the resource information

returned is the accumulated value since the start of the pthread.

PTHRDSINFO_RUSAGE_COLLECT

Collects resource information for the target thread. If the task

PTHRDSINFO_RUSAGE_START was not performed, then the resource information

returned is the accumulated value since the start of the pthread.

Return Values

Upon successful completion, the pthread_getrusage_np subroutine returns a value of 0. Otherwise, an

error number is returned to indicate the error.

Error Codes

 The pthread_getrusage_np subroutine fails if:

EINVAL The address specified for RUsage is NULL, not valid, or a null value for Ptid was given.

ESRCH Either no thread could be found corresponding to the ID thread of the Ptid thread or the thread

corresponding to the Ptid thread ID was not in the current process.

Related Information

The pthreads.h subroutine.

pthread_getschedparam Subroutine

Purpose

Returns the current schedpolicy and schedparam attributes of a thread.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

#include <sys/sched.h>

int pthread_getschedparam (thread, schedpolicy, schedparam)

pthread_t thread;

int *schedpolicy;

struct sched_param *schedparam;

Description

The pthread_getschedparam subroutine returns the current schedpolicy and schedparam attributes of the

thread thread. The schedpolicy attribute specifies the scheduling policy of a thread. It may have one of the

following values:

 SCHED_FIFO Denotes first-in first-out scheduling.

Base Operating System (BOS) Runtime Services (A-P) 1165

SCHED_RR Denotes round-robin scheduling.

SCHED_OTHER Denotes the default operating system scheduling policy. It is the default value.

The schedparam attribute specifies the scheduling parameters of a thread created with this attributes

object. The sched_priority field of the sched_param structure contains the priority of the thread. It is an

integer value.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

The implementation of this subroutine is dependent on the priority scheduling POSIX option. The priority

scheduling POSIX option is implemented in the operating system.

Parameters

 thread Specifies the target thread.

schedpolicy Points to where the schedpolicy attribute value will be stored.

schedparam Points to where the schedparam attribute value will be stored.

Return Values

Upon successful completion, the current value of the schedpolicy and schedparam attributes are returned

via the schedpolicy and schedparam parameters, and 0 is returned. Otherwise, an error code is returned.

Error Codes

The pthread_getschedparam subroutine is unsuccessful if the following is true:

 ESRCH The thread thread does not exist.

Related Information

The pthread_attr_getschedparam (“pthread_attr_getschedparam Subroutine” on page 1124) subroutine.

Threads Scheduling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_getspecific or pthread_setspecific Subroutine

Purpose

Returns and sets the thread-specific data associated with the specified key.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

void *pthread_getspecific (key)

pthread_key_t key;

1166 Technical Reference, Volume 1: Base Operating System and Extensions

int pthread_setspecific (key, value)

pthread_key_t key;

const void *value;

Description

The pthread_setspecific function associates a thread-specific value with a key obtained via a previous

call to pthread_key_create. Different threads may bind different values to the same key. These values are

typically pointers to blocks of dynamically allocated memory that have been reserved for use by the calling

thread.

The pthread_getspecific function returns the value currently bound to the specified key on behalf of the

calling thread.

The effect of calling pthread_setspecific or pthread_getspecific with a key value not obtained from

pthread_key_create or after key has been deleted with pthread_key_delete is undefined.

Both pthread_setspecific and pthread_getspecific may be called from a thread-specific data destructor

function. However, calling pthread_setspecific from a destructor may result in lost storage or infinite

loops.

Parameters

 key Specifies the key to which the value is bound.

value Specifies the new thread-specific value.

Return Values

The function pthread_getspecific returns the thread-specific data value associated with the given key. If

no thread-specific data value is associated with key, then the value NULL is returned. If successful, the

pthread_setspecific function returns zero. Otherwise, an error number is returned to indicate the error.

Error Codes

The pthread_setspecific function will fail if:

 ENOMEM Insufficient memory exists to associate the value with the key.

The pthread_setspecific function may fail if:

 EINVAL The key value is invalid.

No errors are returned from pthread_getspecific.

These functions will not return an error code of EINTR.

Related Information

The pthread_key_create (“pthread_key_create Subroutine” on page 1172) subroutine, the pthread.h file.

Thread-Specific Data in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Base Operating System (BOS) Runtime Services (A-P) 1167

pthread_getthrds_np Subroutine

Purpose

Retrieves register and stack information for threads.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_getthrds_np (thread, mode, buf, bufsize, regbuf, regbufsize)

pthread_t *thread;

int mode;

struct __pthrdsinfo *buf;

int bufsize;

void *regbuf;

int *regbufsize;

Description

The pthread_getthrds_np subroutine retrieves information on the state of the thread thread and its

underlying kernel thread, including register and stack information.

Parameters

 thread The pointer to the thread. On input it identifies the target thread of the operation, or 0 to operate

on the first entry in the list of threads. On output it identifies the next entry in the list of threads,

or 0 if the end of the list has been reached. pthread_getthrds_np can be used to traverse the

whole list of threads by starting with thread pointing to 0 and calling pthread_getthrds_np

repeatedly until it returns with thread pointing to 0.

mode Specifies the type of query. These values can be bitwise or’ed together to specify more than one

type of query.

PTHRDSINFO_QUERY_GPRS

get general purpose registers

PTHRDSINFO_QUERY_SPRS

get special purpose registers

PTHRDSINFO_QUERY_FPRS

get floating point registers

PTHRDSINFO_QUERY_REGS

get all of the above registers

PTHRDSINFO_QUERY_TID

get the kernel thread id

PTHRDSINFO_QUERY_EXTCTX

get the extended machine context

PTHRDSINFO_QUERY_ALL

get everything (except for the extended context, which must be explicitly requested)

1168 Technical Reference, Volume 1: Base Operating System and Extensions

buf Specifies the address of the struct __pthrdsinfo structure that will be filled in by

pthread_getthrds_np. On return, this structure holds the following data (depending on the type

of query requested):

__pi_ptid

The thread’s thread identifier

__pi_tid

The thread’s kernel thread id, or 0 if the thread does not have a kernel thread

__pi_state

The state of the thread, equal to one of the following:

PTHRDSINFO_STATE_RUN

The thread is running

PTHRDSINFO_STATE_READY

The thread is ready to run

PTHRDSINFO_STATE_IDLE

The thread is being initialized

PTHRDSINFO_STATE_SLEEP

The thread is sleeping

PTHRDSINFO_STATE_TERM

The thread is terminated

PTHRDSINFO_STATE_NOTSUP

Error condition

__pi_suspended

1 if the thread is suspended, 0 if it is not

__pi_returned

The return status of the thread

__pi_ustk

The thread’s user stack pointer

__pi_context

The thread’s context (register information)

If the PTHRDSINFO_QUERY_EXTCTX mode is requested, then the buf specifies the address of

a _pthrdsinfox structure, which, in addition to all of the preceding information, also contains the

following:

__pi_ec

The thread’s extended context (extended register state)

bufsize The size of the __pthrdsinfo or __pthrdsinfox structure in bytes.

regbuf The location of the buffer to hold the register save data from the kernel if the thread is in a

system call.

regbufsize The pointer to the size of the regbuf buffer. On input, it identifies the maximum size of the buffer

in bytes. On output, it identifies the number of bytes of register save data. If the thread is not in a

system call, there is no register save data returned from the kernel, and regbufsize is 0. If the

size of the register save data is larger than the input value of regbufsize, the number of bytes

specified by the input value of regbufsize is copied to regbuf, pthread_getthrds_np() returns

ERANGE, and the output value of regbufsize specifies the number of bytes required to hold all of

the register save data.

Return Values

If successful, the pthread_getthrds_np function returns zero. Otherwise, an error number is returned to

indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 1169

Error Codes

The pthread_getthrds_np function will fail if:

 EINVAL Either thread or buf is NULL, or bufsize is not equal to the size of the __pthrdsinfo structure in the

library.

ESRCH No thread could be found corresponding to that specified by the thread ID thread.

ERANGE regbuf was not large enough to handle all of the register save data.

ENOMEM Insufficient memory exists to perform this operation.

Related Information

The pthread.h file.

pthread_getunique_np Subroutine

Purpose

Returns the sequence number of a thread.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_getunique_np (thread, sequence)

pthread_t *thread;

int *sequence;

Description

The pthread_getunique_np subroutine returns the sequence number of the thread thread. The sequence

number is a number, unique to each thread, associated with the thread at creation time.

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.

Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this

case, the flag is automatically set.

2. The pthread_getunique_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should

not be used when writing new applications.

Parameters

 thread Specifies the thread.

sequence Points to where the sequence number will be stored.

Return Values

Upon successful completion, the sequence number is returned via the sequence parameter, and 0 is

returned. Otherwise, an error code is returned.

1170 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The pthread_getunique_np subroutine is unsuccessful if the following is true:

 EINVAL The thread or sequence parameters are not valid.

ESRCH The thread thread does not exist.

Related Information

The pthread_self (“pthread_self Subroutine” on page 1204) subroutine.

pthread_join or pthread_detach Subroutine

Purpose

Blocks or detaches the calling thread until the specified thread terminates.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_join (thread, status)

pthread_t thread;

void **status;

int pthread_detach (thread)

pthread_t thread;

Description

The pthread_join subroutine blocks the calling thread until the thread thread terminates. The target

thread’s termination status is returned in the status parameter.

If the target thread is already terminated, but not yet detached, the subroutine returns immediately. It is

impossible to join a detached thread, even if it is not yet terminated. The target thread is automatically

detached after all joined threads have been woken up.

This subroutine does not itself cause a thread to be terminated. It acts like the pthread_cond_wait

subroutine to wait for a special condition.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

The pthread_detach subroutine is used to indicate to the implementation that storage for the thread

whose thread ID is in the location thread can be reclaimed when that thread terminates. This storage shall

be reclaimed on process exit, regardless of whether the thread has been detached or not, and may

include storage for thread return value. If thread has not yet terminated, pthread_detach shall not cause it

to terminate. Multiple pthread_detach calls on the same target thread causes an error.

Parameters

 thread Specifies the target thread.

status Points to where the termination status of the target thread will be stored. If the value is NULL, the

termination status is not returned.

Base Operating System (BOS) Runtime Services (A-P) 1171

Return Values

If successful, the pthread_join function returns zero. Otherwise, an error number is returned to indicate

the error.

Error Codes

The pthread_join and pthread_detach functions will fail if:

 EINVAL The implementation has detected that the value specified by thread does not refer to a joinable thread.

ESRCH No thread could be found corresponding to that specified by the given thread ID.

The pthread_join function will fail if:

 EDEADLK The value of thread specifies the calling thread.

The pthread_join function will not return an error code of EINTR.

Related Information

The pthread_exit (“pthread_exit Subroutine” on page 1158) subroutine, pthread_create (“pthread_create

Subroutine” on page 1153) subroutine, wait subroutine, pthread_cond_wait or pthread_cond_timedwait

(“pthread_cond_wait or pthread_cond_timedwait Subroutine” on page 1146) subroutines, the pthread.h

file.

Joining Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

pthread_key_create Subroutine

Purpose

Creates a thread-specific data key.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_key_create (key, destructor)

pthread_key_t * key;

void (* destructor) (void *);

Description

The pthread_key_create subroutine creates a thread-specific data key. The key is shared among all

threads within the process, but each thread has specific data associated with the key. The thread-specific

data is a void pointer, initially set to NULL.

The application is responsible for ensuring that this subroutine is called only once for each requested key.

This can be done, for example, by calling the subroutine before creating other threads, or by using the

one-time initialization facility.

1172 Technical Reference, Volume 1: Base Operating System and Extensions

Typically, thread-specific data are pointers to dynamically allocated storage. When freeing the storage, the

value should be set to NULL. It is not recommended to cast this pointer into scalar data type (int for

example), because the casts may not be portable, and because the value of NULL is implementation

dependent.

An optional destructor routine can be specified. It will be called for each thread when it is terminated and

detached, after the call to the cleanup routines, if the specific value is not NULL. Typically, the destructor

routine will release the storage thread-specific data. It will receive the thread-specific data as a parameter.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Parameters

 key Points to where the key will be stored.

destructor Points to an optional destructor routine, used to cleanup data on thread termination. If no cleanup

is desired, this pointer should be NULL.

Return Values

If successful, the pthread_key_create function stores the newly created key value at *key and returns

zero. Otherwise, an error number is returned to indicate the error.

Error Codes

The pthread_key_create function will fail if:

 EAGAIN The system lacked the necessary resources to create another thread-specific data key, or the

system-imposed limit on the total number of keys per process PTHREAD_KEYS_MAX has been

exceeded.

ENOMEM Insufficient memory exists to create the key.

The pthread_key_create function will not return an error code of EINTR.

Related Information

The pthread_exit (“pthread_exit Subroutine” on page 1158) subroutine, pthread_key_delete

(“pthread_key_delete Subroutine”) subroutine, pthread_getspecific (“pthread_getspecific or

pthread_setspecific Subroutine” on page 1166) subroutne, pthread_once (“pthread_once Subroutine” on

page 1192) subroutine, pthread.h file.

Thread-Specific Data in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_key_delete Subroutine

Purpose

Deletes a thread-specific data key.

Library

Threads Library (libpthreads.a)

Base Operating System (BOS) Runtime Services (A-P) 1173

Syntax

#include <pthread.h>

int pthread_key_delete (key)

pthread_key_t key;

Description

The pthread_key_delete subroutine deletes the thread-specific data key key, previously created with the

pthread_key_create subroutine. The application must ensure that no thread-specific data is associated

with the key. No destructor routine is called.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Parameters

 key Specifies the key to delete.

Return Values

If successful, the pthread_key_delete function returns zero. Otherwise, an error number is returned to

indicate the error.

Error Codes

The pthread_key_delete function will fail if:

 EINVAL The key value is invalid.

The pthread_key_delete function will not return an error code of EINTR.

Related Information

The pthread_key_create (“pthread_key_create Subroutine” on page 1172) subroutine, pthread.h file.

Thread-Specific Data in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_kill Subroutine

Purpose

Sends a signal to the specified thread.

Library

Threads Library (libpthreads.a)

Syntax

#include <signal.h>

int pthread_kill (thread, signal)

pthread_t thread;

int signal;

1174 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The pthread_kill subroutine sends the signal signal to the thread thread. It acts with threads like the kill

subroutine with single-threaded processes.

If the receiving thread has blocked delivery of the signal, the signal remains pending on the thread until

the thread unblocks delivery of the signal or the action associated with the signal is set to ignore the

signal.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Parameters

 thread Specifies the target thread for the signal.

signal Specifies the signal to be delivered. If the signal value is 0, error checking is performed, but no signal is

delivered.

Return Values

Upon successful completion, the function returns a value of zero. Otherwise the function returns an error

number. If the pthread_kill function fails, no signal is sent.

Error Codes

The pthread_kill function will fail if:

 ESRCH No thread could be found corresponding to that specified by the given thread ID.

EINVAL The value of the signal parameter is an invalid or unsupported signal number.

The pthread_kill function will not return an error code of EINTR.

Related Information

The kill (“kill or killpg Subroutine” on page 570) subroutine, pthread_cancel (“pthread_cancel Subroutine”

on page 1140) subroutine, pthread_create (“pthread_create Subroutine” on page 1153) subroutine,

sigaction subroutine, pthread_self (“pthread_self Subroutine” on page 1204) subroutine, raise

subroutine, pthread.h file.

Signal Management in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_lock_global_np Subroutine

Purpose

Locks the global mutex.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

void pthread_lock_global_np ()

Base Operating System (BOS) Runtime Services (A-P) 1175

Description

The pthread_lock_global_np subroutine locks the global mutex. If the global mutex is currently held by

another thread, the calling thread waits until the global mutex is unlocked. The subroutine returns with the

global mutex locked by the calling thread.

Use the global mutex when calling a library package that is not designed to run in a multithreaded

environment. (Unless the documentation for a library function specifically states that it is compatible with

multithreading, assume that it is not compatible; in other words, assume it is nonreentrant.)

The global mutex is one lock. Any code that calls any function that is not known to be reentrant uses the

same lock. This prevents dependencies among threads calling library functions and those functions calling

other functions, and so on.

The global mutex is a recursive mutex. A thread that has locked the global mutex can relock it without

deadlocking. The thread must then call the pthread_unlock_global_np subroutine as many times as it

called this routine to allow another thread to lock the global mutex.

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.

Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this

case, the flag is automatically set.

2. The pthread_lock_global_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should

not be used when writing new applications.

Related Information

The pthread_mutex_lock (“pthread_mutex_lock, pthread_mutex_trylock, or pthread_mutex_unlock

Subroutine” on page 1179) subroutine, pthread_unlock_global_np (“pthread_unlock_global_np

Subroutine” on page 1214) subroutine.

Using Mutexes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

pthread_mutex_init or pthread_mutex_destroy Subroutine

Purpose

Initializes or destroys a mutex.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_mutex_init (mutex, attr)

pthread_mutex_t *mutex;

const pthread_mutexattr_t *attr;

int pthread_mutex_destroy (mutex)

pthread_mutex_t *mutex;

1176 Technical Reference, Volume 1: Base Operating System and Extensions

Description

The pthread_mutex_init function initializes the mutex referenced by mutex with attributes specified by

attr. If attr is NULL, the default mutex attributes are used; the effect is the same as passing the address of

a default mutex attributes object. Upon successful initialization, the state of the mutex becomes initialized

and unlocked.

Attempting to initialize an already initialized mutex results in undefined behavior.

The pthread_mutex_destroy function destroys the mutex object referenced by mutex; the mutex object

becomes, in effect, uninitialized. An implementation may cause pthread_mutex_destroy to set the object

referenced by mutex to an invalid value. A destroyed mutex object can be re-initialized using

pthread_mutex_init; the results of otherwise referencing the object after it has been destroyed are

undefined.

It is safe to destroy an initialized mutex that is unlocked. Attempting to destroy a locked mutex results in

undefined behavior.

In cases where default mutex attributes are appropriate, the macro PTHREAD_MUTEX_INITIALIZER can

be used to initialize mutexes that are statically allocated. The effect is equivalent to dynamic initialization

by a call to pthread_mutex_init with parameter attr specified as NULL, except that no error checks are

performed.

Parameters

 mutex Specifies the mutex to initialize or delete.

attr Specifies the mutex attributes object.

Return Values

If successful, the pthread_mutex_init and pthread_mutex_destroy functions return zero. Otherwise, an

error number is returned to indicate the error. The EBUSY and EINVAL error checks act as if they were

performed immediately at the beginning of processing for the function and cause an error return prior to

modifying the state of the mutex specified by mutex.

Error Codes

The pthread_mutex_init function will fail if:

 ENOMEM Insufficient memory exists to initialize the mutex.

EINVAL The value specified by attr is invalid.

EPERM The caller does not have the privilege to perform the operation in a strictly standards conforming

environment where environment variable XPG_SUS_ENV=ON.

The pthread_mutex_destroy function may fail if:

 EBUSY The implementation has detected an attempt to destroy the object referenced by mutex while it is locked

or referenced (for example, while being used in a pthread_cond_waitor pthread_cond_timedwait by

another thread.

EINVAL The value specified by mutex is invalid.

These functions will not return an error code of EINTR.

Base Operating System (BOS) Runtime Services (A-P) 1177

Related Information

The pthread_mutex_lock, pthread_mutex_trylock (“pthread_mutex_lock, pthread_mutex_trylock, or

pthread_mutex_unlock Subroutine” on page 1179) subroutine, pthread_mutex_unlock

(“pthread_mutex_lock, pthread_mutex_trylock, or pthread_mutex_unlock Subroutine” on page 1179)

subroutine, pthread_mutexattr_setpshared (“pthread_mutexattr_getpshared or

pthread_mutexattr_setpshared Subroutine” on page 1188) subroutine.

The pthread.h file.

pthread_mutex_getprioceiling or pthread_mutex_setprioceiling

Subroutine

Purpose

Gets and sets the priority ceiling of a mutex.

Syntax

#include <pthread.h>

int pthread_mutex_getprioceiling(const pthread_mutex_t *restrict mutex,

 int *restrict prioceiling);

int pthread_mutex_setprioceiling(pthread_mutex_t *restrict mutex,

 int prioceiling, int *restrict old_ceiling);

Description

The pthread_mutex_getprioceiling subroutine returns the current priority ceiling of the mutex.

The pthread_mutex_setprioceiling subroutine either locks the mutex if it is unlocked, or blocks until it

can successfully lock the mutex, then it changes the mutex’s priority ceiling and releases the mutex. When

the change is successful, the previous value of the priority ceiling shall be returned in old_ceiling. The

process of locking the mutex need not adhere to the priority protect protocol.

If the pthread_mutex_setprioceiling subroutine fails, the mutex priority ceiling is not changed.

Return Values

If successful, the pthread_mutex_getprioceiling and pthread_mutex_setprioceiling subroutines return

zero; otherwise, an error number is returned to indicate the error.

Error Codes

The pthread_mutex_getprioceiling and pthread_mutex_setprioceilingsubroutines can fail if:

 EINVAL The priority requested by the prioceiling parameter is out of range.

EINVAL The value specified by the mutex parameter does not refer to a currently existing mutex.

ENOSYS This function is not supported (draft 7).

ENOTSUP This function is not supported together with checkpoint/restart.

EPERM The caller does not have the privilege to perform the operation in a strictly standards conforming

environment where environment variable XPG_SUS_ENV=ON.

Related Information

The “pthread_mutex_init or pthread_mutex_destroy Subroutine” on page 1176, “pthread_mutex_lock,

pthread_mutex_trylock, or pthread_mutex_unlock Subroutine” on page 1179, “pthread_mutex_timedlock

Subroutine” on page 1181.

1178 Technical Reference, Volume 1: Base Operating System and Extensions

The pthread.h file.

PTHREAD_MUTEX_INITIALIZER Macro

Purpose

Initializes a static mutex with default attributes.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

Description

The PTHREAD_MUTEX_INITIALIZER macro initializes the static mutex mutex, setting its attributes to

default values. This macro should only be used for static mutexes, as no error checking is performed.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Related Information

The pthread_mutex_init (“pthread_mutex_init or pthread_mutex_destroy Subroutine” on page 1176)

subroutine.

Using Mutexes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

pthread_mutex_lock, pthread_mutex_trylock, or pthread_mutex_unlock

Subroutine

Purpose

Locks and unlocks a mutex.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_mutex_lock (mutex)

pthread_mutex_t *mutex;

int pthread_mutex_trylock (mutex)

pthread_mutex_t *mutex;

int pthread_mutex_unlock (mutex)

pthread_mutex_t *mutex;

Base Operating System (BOS) Runtime Services (A-P) 1179

Description

The mutex object referenced by the mutex parameter is locked by calling pthread_mutex_lock. If the

mutex is already locked, the calling thread blocks until the mutex becomes available. This operation

returns with the mutex object referenced by the mutex parameter in the locked state with the calling thread

as its owner.

If the mutex type is PTHREAD_MUTEX_NORMAL, deadlock detection is not provided. Attempting to

relock the mutex causes deadlock. If a thread attempts to unlock a mutex that it has not locked or a mutex

which is unlocked, undefined behavior results.

If the mutex type is PTHREAD_MUTEX_ERRORCHECK, then error checking is provided. If a thread

attempts to relock a mutex that it has already locked, an error will be returned. If a thread attempts to

unlock a mutex that it has not locked or a mutex which is unlocked, an error will be returned.

If the mutex type is PTHREAD_MUTEX_RECURSIVE, then the mutex maintains the concept of a lock

count. When a thread successfully acquires a mutex for the first time, the lock count is set to one. Each

time the thread relocks this mutex, the lock count is incremented by one. Each time the thread unlocks the

mutex, the lock count is decremented by one. When the lock count reaches zero, the mutex becomes

available for other threads to acquire. If a thread attempts to unlock a mutex that it has not locked or a

mutex which is unlocked, an error will be returned.

If the mutex type is PTHREAD_MUTEX_DEFAULT, attempting to recursively lock the mutex results in

undefined behavior. Attempting to unlock the mutex if it was not locked by the calling thread results in

undefined behavior. Attempting to unlock the mutex if it is not locked results in undefined behavior.

The function pthread_mutex_trylock is identical to pthread_mutex_lock except that if the mutex object

referenced by the mutex parameter is currently locked (by any thread, including the current thread), the

call returns immediately.

The pthread_mutex_unlock function releases the mutex object referenced by mutex. The manner in

which a mutex is released is dependent upon the mutex’s type attribute. If there are threads blocked on

the mutex object referenced by the mutex parameter when pthread_mutex_unlock is called, resulting in

the mutex becoming available, the scheduling policy is used to determine which thread will acquire the

mutex. (In the case of PTHREAD_MUTEX_RECURSIVE mutexes, the mutex becomes available when the

count reaches zero and the calling thread no longer has any locks on this mutex).

If a signal is delivered to a thread waiting for a mutex, upon return from the signal handler the thread

resumes waiting for the mutex as if it was not interrupted.

Parameter

 mutex Specifies the mutex to lock.

Return Values

If successful, the pthread_mutex_lock and pthread_mutex_unlock functions return zero. Otherwise, an

error number is returned to indicate the error.

The function pthread_mutex_trylock returns zero if a lock on the mutex object referenced by the mutex

parameter is acquired. Otherwise, an error number is returned to indicate the error.

1180 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The pthread_mutex_trylock function will fail if:

 EBUSY The mutex could not be acquired because it was already locked.

The pthread_mutex_lock, pthread_mutex_trylock and pthread_mutex_unlock functions will fail if:

 EINVAL The value specified by the mutex parameter does not refer to an initialized mutex object.

The pthread_mutex_lock function will fail if:

 EDEADLK The current thread already owns the mutex and the mutex type is

PTHREAD_MUTEX_ERRORCHECK.

The pthread_mutex_unlock function will fail if:

 EPERM The current thread does not own the mutex and the mutex type is not PTHREAD_MUTEX_NORMAL.

These functions will not return an error code of EINTR.

Related Information

The pthread_mutex_init or pthread_mutex_destroy (“pthread_mutex_init or pthread_mutex_destroy

Subroutine” on page 1176) subroutine, pthread.h file.

Using Mutexes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

pthread_mutex_timedlock Subroutine

Purpose

Locks a mutex (ADVANCED REALTIME).

Syntax

#include <pthread.h>

#include <time.h>

int pthread_mutex_timedlock(pthread_mutex_t *restrict mutex,

 const struct timespec *restrict abs_timeout);

Description

The pthread_mutex_timedlock() function locks the mutex object referenced by mutex. If the mutex is

already locked, the calling thread blocks until the mutex becomes available, as in the

pthread_mutex_lock() function. If the mutex cannot be locked without waiting for another thread to unlock

the mutex, this wait terminates when the specified timeout expires.

The timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock

on which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout)—or

when the absolute time specified by abs_timeout has already been passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers

option is not supported, the timeout is based on the system clock as returned by the time() function.

Base Operating System (BOS) Runtime Services (A-P) 1181

The resolution of the timeout matches the resolution of the clock on which it is based. The timespec data

type is defined in the <time.h> header.

The function never fails with a timeout if the mutex can be locked immediately. The validity of the

abs_timeout parameter does not need to be checked if the mutex can be locked immediately.

As a consequence of the priority inheritance rules (for mutexes initialized with the PRIO_INHERIT

protocol), if a timed mutex wait is terminated because its timeout expires, the priority of the owner of the

mutex adjusts as necessary to reflect the fact that this thread is no longer among the threads waiting for

the mutex.

Application Usage

The pthread_mutex_timedlock() function is part of the Threads and Timeouts options and do not need

to be provided on all implementations.

Return Values

If successful, the pthread_mutex_timedlock() function returns 0; otherwise, an error number is returned

to indicate the error.

Error Codes

The pthread_mutex_timedlock() function fails if:

 [EDEADLK] The current thread already owns the mutex.

[EINVAL] The mutex was created with the protocol attribute having the value

PTHREAD_PRIO_PROTECT, and the calling thread’s priority is higher than the

mutex’s current priority ceiling.

[EINVAL] The process or thread would have blocked, and the abs_timeout parameter specified

a nanoseconds field value less than 0 or greater than or equal to 1000 million.

[EINVAL] abs_timeout is a NULL pointer.

[EINVAL] The value specified by mutex does not refer to an initialized mutex object.

[ETIMEDOUT] The mutex could not be locked before the specified timeout expired.

This function does not return an error code of [EINTR].

Related Information

“mq_receive, mq_timedreceive Subroutine” on page 830, “posix_trace_getnext_event,

posix_trace_timedgetnext_event, posix_trace_trygetnext_event Subroutine” on page 1074,

“pthread_mutexattr_destroy or pthread_mutexattr_init Subroutine,” “pthread_mutex_lock,

pthread_mutex_trylock, or pthread_mutex_unlock Subroutine” on page 1179, “pthread_rwlock_timedrdlock

Subroutine” on page 1196.

The sem_timedwait subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and

Extensions Volume 2.

The pthread.h and time.h files in AIX 5L Version 5.3 Files Reference.

pthread_mutexattr_destroy or pthread_mutexattr_init Subroutine

Purpose

Initializes and destroys mutex attributes.

1182 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_mutexattr_init (attr)

pthread_mutexattr_t *attr;

int pthread_mutexattr_destroy (attr)

pthread_mutexattr_t *attr;

Description

The function pthread_mutexattr_init initializes a mutex attributes object attr with the default value for all

of the attributes defined by the implementation.

The effect of initializing an already initialized mutex attributes object is undefined.

After a mutex attributes object has been used to initialize one or more mutexes, any function affecting the

attributes object (including destruction) does not affect any previously initialized mutexes.

The pthread_mutexattr_destroy function destroys a mutex attributes object; the object becomes, in

effect, uninitialized. An implementation may cause pthread_mutexattr_destroy to set the object

referenced by attr to an invalid value. A destroyed mutex attributes object can be re-initialized using

pthread_mutexattr_init; the results of otherwise referencing the object after it has been destroyed are

undefined.

Parameters

 attr Specifies the mutex attributes object to initialize or delete.

Return Values

Upon successful completion, pthread_mutexattr_init and pthread_mutexattr_destroy return zero.

Otherwise, an error number is returned to indicate the error.

Error Codes

The pthread_mutexattr_init function will fail if:

 ENOMEM Insufficient memory exists to initialize the mutex attributes object.

The pthread_mutexattr_destroy function will fail if:

 EINVAL The value specified by attr is invalid.

These functions will not return EINTR.

Related Information

The pthread_create (“pthread_create Subroutine” on page 1153) subroutine, pthread_mutex_init or

pthread_mutex_destroy (“pthread_mutex_init or pthread_mutex_destroy Subroutine” on page 1176)

subroutine, pthread_cond_destroy or pthread_cond_init (“pthread_cond_destroy or pthread_cond_init

Subroutine” on page 1143) subroutine, pthread.h file.

Base Operating System (BOS) Runtime Services (A-P) 1183

Using Mutexes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_mutexattr_getkind_np Subroutine

Purpose

Returns the value of the kind attribute of a mutex attributes object.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_mutexattr_getkind_np (attr, kind)

pthread_mutexattr_t *attr;

int *kind;

Description

The pthread_mutexattr_getkind_np subroutine returns the value of the kind attribute of the mutex

attributes object attr. This attribute specifies the kind of the mutex created with this attributes object. It may

have one of the following values:

 MUTEX_FAST_NP Denotes a fast mutex. A fast mutex can be locked only once. If the same

thread unlocks twice the same fast mutex, the thread will deadlock. Any

thread can unlock a fast mutex. A fast mutex is not compatible with the

priority inheritance protocol.

MUTEX_RECURSIVE_NP Denotes a recursive mutex. A recursive mutex can be locked more than

once by the same thread without causing that thread to deadlock. The

thread must then unlock the mutex as many times as it locked it. Only the

thread that locked a recursive mutex can unlock it. A recursive mutex must

not be used with condition variables.

MUTEX_NONRECURSIVE_NP Denotes the default non-recursive POSIX compliant mutex.

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.

Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this

case, the flag is automatically set.

2. The pthread_mutexattr_getkind_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should

not be used when writing new applications.

Parameters

 attr Specifies the mutex attributes object.

kind Points to where the kind attribute value will be stored.

1184 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

Upon successful completion, the value of the kind attribute is returned via the kind parameter, and 0 is

returned. Otherwise, an error code is returned.

Error Codes

The pthread_mutexattr_getkind_np subroutine is unsuccessful if the following is true:

 EINVAL The attr parameter is not valid.

Related Information

The pthread_mutexattr_setkind_np (“pthread_mutexattr_setkind_np Subroutine” on page 1190)

subroutine.

Using Mutexes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

pthread_mutexattr_getprioceiling or pthread_mutexattr_setprioceiling

Subroutine

Purpose

Gets and sets the prioceiling attribute of the mutex attributes object.

Syntax

#include <pthread.h>

int pthread_mutexattr_getprioceiling(const pthread_mutexattr_t *

 restrict attr, int *restrict prioceiling);

int pthread_mutexattr_setprioceiling(pthread_mutexattr_t *attr,

 int prioceiling);

Description

The pthread_mutexattr_getprioceiling and pthread_mutexattr_setprioceiling subroutines, respectively,

get and set the priority ceiling attribute of a mutex attributes object pointed to by the attr parameter, which

was previously created by the pthread_mutexattr_init subroutine.

The prioceiling attribute contains the priority ceiling of initialized mutexes. The values of the prioceiling

parameter are within the maximum range of priorities defined by SCHED_FIFO.

The prioceiling parameter defines the priority ceiling of initialized mutexes, which is the minimum priority

level at which the critical section guarded by the mutex is executed. In order to avoid priority inversion, the

priority ceiling of the mutex is set to a priority higher than or equal to the highest priority of all the threads

that may lock that mutex. The values of the prioceiling parameter are within the maximum range of

priorities defined under the SCHED_FIFO scheduling policy.

Return Values

Upon successful completion, the pthread_mutexattr_getprioceiling and

pthread_mutexattr_setprioceiling subroutines return zero; otherwise, an error number shall be returned

to indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 1185

Error Codes

The pthread_mutexattr_getprioceiling and pthread_mutexattr_setprioceiling subroutines can fail if:

 EINVAL The value specified by the attr or prioceiling parameter is invalid.

ENOSYS This function is not supported (draft 7).

ENOTSUP This function is not supported together with checkpoint/restart.

EPERM The caller does not have the privilege to perform the operation in a strictly standards conforming

environment where environment variable XPG_SUS_ENV=ON.

Related Information

The “pthread_mutex_init or pthread_mutex_destroy Subroutine” on page 1176, “pthread_mutex_lock,

pthread_mutex_trylock, or pthread_mutex_unlock Subroutine” on page 1179, “pthread_mutex_timedlock

Subroutine” on page 1181.

The pthread.h file.

pthread_mutexattr_getprotocol or pthread_mutexattr_setprotocol

Subroutine

Purpose

Gets and sets the protocol attribute of the mutex attributes object.

Syntax

#include <pthread.h>

int pthread_mutexattr_getprotocol(const pthread_mutexattr_t *

 restrict attr, int *restrict protocol);

int pthread_mutexattr_setprotocol(pthread_mutexattr_t *attr,

 int protocol);

Description

The pthread_mutexattr_getprotocol subroutine and pthread_mutexattr_setprotocol subroutine get and

set the protocol parameter of a mutex attributes object pointed to by the attr parameter, which was

previously created by the pthread_mutexattr_init subroutine.

The protocol attribute defines the protocol to be followed in utilizing mutexes. The value of the protocol

parameter can be one of the following, which are defined in the pthread.h header file:

v PTHREAD_PRIO_NONE

v PTHREAD_PRIO_INHERIT

v PTHREAD_PRIO_PROTECT

When a thread owns a mutex with the PTHREAD_PRIO_NONE protocol attribute, its priority and

scheduling are not affected by its mutex ownership.

When a thread is blocking higher priority threads because of owning one or more mutexes with the

PTHREAD_PRIO_INHERIT protocol attribute, it executes at the higher of its priority or the priority of the

highest priority thread waiting on any of the mutexes owned by this thread and initialized with this protocol.

When a thread owns one or more mutexes initialized with the PTHREAD_PRIO_PROTECT protocol, it

executes at the higher of its priority or the highest of the priority ceilings of all the mutexes owned by this

thread and initialized with this attribute, regardless of whether other threads are blocked on any of these

mutexes. Privilege checking is necessary when the mutex priority ceiling is more favored than current

1186 Technical Reference, Volume 1: Base Operating System and Extensions

thread priority and the thread priority must be changed. The pthread_mutex_lock subroutine does not fail

because of inappropriate privileges. Locking succeeds in this case, but no boosting is performed.

While a thread is holding a mutex which has been initialized with the PTHREAD_PRIO_INHERIT or

PTHREAD_PRIO_PROTECT protocol attributes, it is not subject to being moved to the tail of the

scheduling queue at its priority in the event that its original priority is changed, such as by a call to the

sched_setparam subroutine. Likewise, when a thread unlocks a mutex that has been initialized with the

PTHREAD_PRIO_INHERIT or PTHREAD_PRIO_PROTECT protocol attributes, it is not subject to being

moved to the tail of the scheduling queue at its priority in the event that its original priority is changed.

If a thread simultaneously owns several mutexes initialized with different protocols, it executes at the

highest of the priorities that it would have obtained by each of these protocols.

When a thread makes a call to the pthread_mutex_lock subroutine, the mutex was initialized with the

protocol attribute having the value PTHREAD_PRIO_INHERIT, when the calling thread is blocked because

the mutex is owned by another thread, that owner thread inherits the priority level of the calling thread as

long as it continues to own the mutex. The implementation updates its execution priority to the maximum

of its assigned priority and all its inherited priorities. Furthermore, if this owner thread itself becomes

blocked on another mutex, the same priority inheritance effect shall be propagated to this other owner

thread, in a recursive manner.

Behavior prior to AIX 5.3 is maintained under the non-POSIX protocol PTHREAD_PRIO_DEFAULT.

Return Values

Upon successful completion, the pthread_mutexattr_getprotocol subroutine and the

pthread_mutexattr_setprotocol subroutine return zero; otherwise, an error number shall be returned to

indicate the error.

Error Codes

The pthread_mutexattr_setprotocol subroutine fails if:

 ENOTSUP The value specified by the protocol parameter is an unsupported value.

The pthread_mutexattr_getprotocol subroutine and pthread_mutexattr_setprotocol subroutine can fail

if:

 EINVAL The value specified by the attr parameter or the protocol parameter is invalid.

ENOSYS This function is not supported (draft 7).

ENOTSUP This function is not supported together with checkpoint/restart.

EPERM The caller does not have the privilege to perform the operation in a strictly standards conforming

environment where environment variable XPG_SUS_ENV=ON.

Related Information

The “pthread_mutex_init or pthread_mutex_destroy Subroutine” on page 1176, “pthread_mutex_lock,

pthread_mutex_trylock, or pthread_mutex_unlock Subroutine” on page 1179, “pthread_mutex_timedlock

Subroutine” on page 1181.

The pthread.h file.

Base Operating System (BOS) Runtime Services (A-P) 1187

pthread_mutexattr_getpshared or pthread_mutexattr_setpshared

Subroutine

Purpose

Sets and gets process-shared attribute.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_mutexattr_getpshared (attr, pshared)

const pthread_mutexattr_t *attr;

int *pshared;

int pthread_mutexattr_setpshared (attr, pshared)

pthread_mutexattr_t *attr;

int pshared;

Description

The pthread_mutexattr_getpshared subroutine obtains the value of the process-shared attribute from the

attributes object referenced by attr. The pthread_mutexattr_setpshared subroutine is used to set the

process-shared attribute in an initialized attributes object referenced by attr.

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a mutex to be operated

upon by any thread that has access to the memory where the mutex is allocated, even if the mutex is

allocated in memory that is shared by multiple processes. If the process-shared attribute is

PTHREAD_PROCESS_PRIVATE, the mutex will only be operated upon by threads created within the

same process as the thread that initialized the mutex; if threads of differing processes attempt to operate

on such a mutex, the behavior is undefined. The default value of the attribute is

PTHREAD_PROCESS_PRIVATE.

Parameters

 attr Specifies the mutex attributes object.

pshared Points to where the pshared attribute value will be stored.

Return Values

Upon successful completion, the pthread_mutexattr_setpshared subroutine returns zero. Otherwise, an

error number is returned to indicate the error.

Upon successful completion, the pthread_mutexattr_getpshared subroutine returns zero and stores the

value of the process-shared attribute of attr into the object referenced by the pshared parameter.

Otherwise, an error number is returned to indicate the error.

Error Codes

The pthread_mutexattr_getpshared and pthread_mutexattr_setpshared subroutines will fail if:

 EINVAL The value specified by attr is invalid.

1188 Technical Reference, Volume 1: Base Operating System and Extensions

The pthread_mutexattr_setpshared function will fail if:

 EINVAL The new value specified for the attribute is outside the range of legal values for that attribute.

These subroutines will not return an error code of EINTR.

Related Information

The pthread_mutexattr_init (“pthread_mutexattr_destroy or pthread_mutexattr_init Subroutine” on page

1182) subroutine.

Advanced Attributes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_mutexattr_gettype or pthread_mutexattr_settype Subroutine

Purpose

Gets or sets a mutex type.

Library

Threads Library (libthreads.a)

Syntax

#include <pthread.h>

int pthread_mutexattr_gettype (attr, type)

const pthread_mutexattr_t *attr;

int *type;

int pthread_mutexattr_settype (attr, type)

pthread_mutexattr_t *attr;

int type;

Description

The pthread_mutexattr_gettype and pthread_mutexattr_settype subroutines respectively get and set

the mutex type attribute. This attribute is set in the type parameter to these subroutines. The default value

of the type attribute is PTHREAD_MUTEX_DEFAULT. The type of mutex is contained in the type attribute

of the mutex attributes. Valid mutex types include:

 PTHREAD_MUTEX_NORMAL This type of mutex does not detect deadlock. A thread

attempting to relock this mutex without first unlocking it will

deadlock. Attempting to unlock a mutex locked by a

different thread results in undefined behavior. Attempting

to unlock an unlocked mutex results in undefined

behavior.

PTHREAD_MUTEX_ERRORCHECK This type of mutex provides error checking. A thread

attempting to relock this mutex without first unlocking it will

return with an error. A thread attempting to unlock a mutex

which another thread has locked will return with an error.

A thread attempting to unlock an unlocked mutex will

return with an error.

Base Operating System (BOS) Runtime Services (A-P) 1189

PTHREAD_MUTEX_RECURSIVE A thread attempting to relock this mutex without first

unlocking it will succeed in locking the mutex. The

relocking deadlock which can occur with mutexes of type

PTHREAD_MUTEX_NORMAL cannot occur with this type

of mutex. Multiple locks of this mutex require the same

number of unlocks to release the mutex before another

thread can acquire the mutex. A thread attempting to

unlock a mutex which another thread has locked will

return with an error. A thread attempting to unlock an

unlocked mutex will return with an error.

PTHREAD_MUTEX_DEFAULT Attempting to recursively lock a mutex of this type results

in undefined behavior. Attempting to unlock a mutex of

this type which was not locked by the calling thread

results in undefined behavior. Attempting to unlock a

mutex of this type which is not locked results in undefined

behavior. An implementation is allowed to map this mutex

to one of the other mutex types.

It is advised that an application should not use a PTHREAD_MUTEX_RECURSIVE mutex with condition

variables because the implicit unlock performed for a pthread_cond_wait or pthread_cond_timedwait

may not actually release the mutex (if it had been locked multiple times). If this happens, no other thread

can satisfy the condition of the predicate.

Parameters

 attr Specifies the mutex object to get or set.

type Specifies the type to get or set.

Return Values

If successful, the pthread_mutexattr_settype subroutine returns zero. Otherwise, an error number is

returned to indicate the error. Upon successful completion, the pthread_mutexattr_gettype subroutine

returns zero and stores the value of the type attribute of attr into the object referenced by the type

parameter. Otherwise an error is returned to indicate the error.

Error Codes

The pthread_mutexattr_gettype and pthread_mutexattr_settype subroutines will fail if:

 EINVAL The value of the type parameter is invalid.

EINVAL The value specified by the attr parameter is invalid.

Related Information

The pthread_cond_wait (“pthread_cond_wait or pthread_cond_timedwait Subroutine” on page 1146) and

pthread_cond_timedwait (“pthread_cond_wait or pthread_cond_timedwait Subroutine” on page 1146)

subroutines.

The pthread.h file.

pthread_mutexattr_setkind_np Subroutine

Purpose

Sets the value of the kind attribute of a mutex attributes object.

1190 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_mutexattr_setkind_np (attr, kind)

pthread_mutexattr_t *attr;

int kind;

Description

The pthread_mutexattr_setkind_np subroutine sets the value of the kind attribute of the mutex attributes

object attr. This attribute specifies the kind of the mutex created with this attributes object.

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.

Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this

case, the flag is automatically set.

2. The pthread_mutexattr_setkind_np subroutine is not portable.

This subroutine is provided only for compatibility with the DCE threads. It should not be used when writing

new applications.

Parameters

 attr Specifies the mutex attributes object.

kind Specifies the kind to set. It must have one of the following values:

MUTEX_FAST_NP

Denotes a fast mutex. A fast mutex can be locked only once. If the same thread unlocks twice the

same fast mutex, the thread will deadlock. Any thread can unlock a fast mutex. A fast mutex is not

compatible with the priority inheritance protocol.

MUTEX_RECURSIVE_NP

Denotes a recursive mutex. A recursive mutex can be locked more than once by the same thread

without causing that thread to deadlock. The thread must then unlock the mutex as many times as it

locked it. Only the thread that locked a recursive mutex can unlock it. A recursive mutex must not be

used with condition variables.

MUTEX_NONRECURSIVE_NP

Denotes the default non-recursive POSIX compliant mutex.

Return Values

Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes

The pthread_mutexattr_setkind_np subroutine is unsuccessful if the following is true:

 EINVAL The attr parameter is not valid.

ENOTSUP The value of the kind parameter is not supported.

Related Information

The pthread_mutexattr_getkind_np (“pthread_mutexattr_getkind_np Subroutine” on page 1184)

subroutine.

Base Operating System (BOS) Runtime Services (A-P) 1191

Using Mutexes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

pthread_once Subroutine

Purpose

Executes a routine exactly once in a process.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_once (once_control, init_routine)

pthread_once_t *once_control;

void (*init_routine)(void);

,

pthread_once_t once_control = PTHREAD_ONCE_INIT;

Description

The pthread_once subroutine executes the routine init_routine exactly once in a process. The first call to

this subroutine by any thread in the process executes the given routine, without parameters. Any

subsequent call will have no effect.

The init_routine routine is typically an initialization routine. Multiple initializations can be handled by

multiple instances of pthread_once_t structures. This subroutine is useful when a unique initialization has

to be done by one thread among many. It reduces synchronization requirements.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Parameters

 once_control Points to a synchronization control structure. This structure has to be initialized by the static

initializer macro PTHREAD_ONCE_INIT.

init_routine Points to the routine to be executed.

Return Values

Upon successful completion, pthread_once returns zero. Otherwise, an error number is returned to

indicate the error.

Error Codes

No errors are defined. The pthread_once function will not return an error code of EINTR.

Related Information

The pthread_create (“pthread_create Subroutine” on page 1153) subroutine, pthread.h file,

PTHREAD_ONCE_INIT (“PTHREAD_ONCE_INIT Macro” on page 1193) macro.

One Time Initializations in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

1192 Technical Reference, Volume 1: Base Operating System and Extensions

PTHREAD_ONCE_INIT Macro

Purpose

Initializes a once synchronization control structure.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

static pthread_once_t once_block = PTHREAD_ONCE_INIT;

Description

The PTHREAD_ONCE_INIT macro initializes the static once synchronization control structure once_block,

used for one-time initializations with the pthread_once (“pthread_once Subroutine” on page 1192)

subroutine. The once synchronization control structure must be static to ensure the unicity of the

initialization.

Note: The pthread.h file header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Related Information

The pthread_once (“pthread_once Subroutine” on page 1192) subroutine.

One Time Initializations in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_rwlock_init or pthread_rwlock_destroy Subroutine

Purpose

Initializes or destroys a read-write lock object.

Library

Threads Library (libthreads.a)

Syntax

#include <pthread.h>

int pthread_rwlock_init (rwlock, attr)

pthread_rwlock_t *rwlock;

const pthread_rwlockattr_t *attr;

int pthread_rwlock_destroy (rwlock)

pthread_rwlock_t *rwlock;

pthread_rwlock_t rwlock=PTHREAD_RWLOCK_INITIALIZER;

Description

The pthread_rwlock_init subroutine initializes the read-write lock referenced by rwlock with the attributes

referenced by attr. If attr is NULL, the default read-write lock attributes are used; the effect is the same as

passing the address of a default read-write lock attributes object. Once initialized, the lock can be used

Base Operating System (BOS) Runtime Services (A-P) 1193

any number of times without being re-initialized. Upon successful initialization, the state of the read-write

lock becomes initialized and unlocked. Results are undefined if pthread_rwlock_init is called specifying

an already initialized read-write lock. Results are undefined if a read-write lock is used without first being

initialized.

If the pthread_rwlock_init function fails, rwlock is not initialized and the contents of rwlock are undefined.

The pthread_rwlock_destroy function destroys the read-write lock object referenced by rwlock and

releases any resources used by the lock. The effect of subsequent use of the lock is undefined until the

lock is re-initialized by another call to pthread_rwlock_init. An implementation may cause

pthread_rwlock_destroy to set the object referenced by rwlock to an invalid value. Results are undefined

if pthread_rwlock_destroy is called when any thread holds rwlock. Attempting to destroy an uninitialized

read-write lock results in undefined behavior. A destroyed read-write lock object can be re-initialized using

pthread_rwlock_init; the results of otherwise referencing the read-write lock object after it has been

destroyed are undefined.

In cases where default read-write lock attributes are appropriate, the macro

PTHREAD_RWLOCK_INITIALIZER can be used to initialize read-write locks that are statically allocated.

The effect is equivalent to dynamic initialization by a call to pthread_rwlock_init with the parameter attr

specified as NULL, except that no error checks are performed.

Parameters

 rwlock Specifies the read-write lock to be initialized or destroyed.

attr Specifies the attributes of the read-write lock to be initialized.

Return Values

If successful, the pthread_rwlock_init and pthread_rwlock_destroy functions return zero. Otherwise, an

error number is returned to indicate the error. The EBUSY and EINVAL error checks, if implemented, will

act as if they were performed immediately at the beginning of processing for the function and caused an

error return prior to modifying the state of the read-write lock specified by rwlock.

Error Codes

The pthread_rwlock_init subroutine will fail if:

 ENOMEM Insufficient memory exists to initialize the read-write lock.

EINVAL The value specified by attr is invalid.

The pthread_rwlock_destroy subroutine will fail if:

 EBUSY The implementation has detected an attempt to destroy the object referenced by rwlock while it is locked.

EINVAL The value specified by attr is invalid.

Related Information

The pthread.h file.

The pthread_rwlock_rdlock (“pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines” on page

1195), pthread_rwlock_wrlock (“pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines” on

page 1200), pthread_rwlockattr_init (“pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines”

on page 1202) and pthread_rwlock_unlock (“pthread_rwlock_unlock Subroutine” on page 1199)

subroutines.

1194 Technical Reference, Volume 1: Base Operating System and Extensions

pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines

Purpose

Locks a read-write lock object for reading.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_rwlock_rdlock (rwlock)

pthread_rwlock_t *rwlock;

int pthread_rwlock_tryrdlock (rwlock)

pthread_rwlock_t *rwlock;

Description

The pthread_rwlock_rdlock function applies a read lock to the read-write lock referenced by rwlock. The

calling thread acquires the read lock if a writer does not hold the lock and there are no writers blocked on

the lock. It is unspecified whether the calling thread acquires the lock when a writer does not hold the lock

and there are writers waiting for the lock. If a writer holds the lock, the calling thread will not acquire the

read lock. If the read lock is not acquired, the calling thread blocks (that is, it does not return from the

pthread_rwlock_rdlock call) until it can acquire the lock. Results are undefined if the calling thread holds

a write lock on rwlock at the time the call is made.

Implementations are allowed to favor writers over readers to avoid writer starvation.

A thread may hold multiple concurrent read locks on rwlock (that is, successfully call the

pthread_rwlock_rdlock function n times). If so, the thread must perform matching unlocks (that is, it must

call the pthread_rwlock_unlock function n times).

The function pthread_rwlock_tryrdlock applies a read lock as in the pthread_rwlock_rdlock function

with the exception that the function fails if any thread holds a write lock on rwlock or there are writers

blocked on rwlock.

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for reading, upon return from the signal

handler the thread resumes waiting for the read-write lock for reading as if it was not interrupted.

Parameters

 rwlock Specifies the read-write lock to be locked for reading.

Return Values

If successful, the pthread_rwlock_rdlock function returns zero. Otherwise, an error number is returned to

indicate the error.

The function pthread_rwlock_tryrdlock returns zero if the lock for reading on the read-write lock object

referenced by rwlock is acquired. Otherwise an error number is returned to indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 1195

Error Codes

The pthread_rwlock_tryrdlock function will fail if:

 EBUSY The read-write lock could not be acquired for reading because a writer holds the lock or was blocked on it.

The pthread_rwlock_rdlock and pthread_rwlock_tryrdlock functions will fail if:

 EINVAL The value specified by rwlock does not refer to an initialized read-write lock object.

EDEADLK The current thread already owns the read-write lock for writing.

EAGAIN The read lock could not be acquired because the maximum number of read locks for rwlock has been

exceeded.

Implementation Specifics

Realtime applications may encounter priority inversion when using read-write locks. The problem occurs

when a high priority thread ’locks’ a read-write lock that is about to be ’unlocked’ by a low priority thread,

but the low priority thread is preempted by a medium priority thread. This scenario leads to priority

inversion; a high priority thread is blocked by lower priority threads for an unlimited period of time. During

system design, realtime programmers must take into account the possibility of this kind of priority

inversion. They can deal with it in a number of ways, such as by having critical sections that are guarded

by read-write locks execute at a high priority, so that a thread cannot be preempted while executing in its

critical section.

Related Information

The pthread.h file.

The pthread_rwlock_init (“pthread_rwlock_init or pthread_rwlock_destroy Subroutine” on page 1193),

pthread_rwlock_wrlock (“pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines” on page

1200), pthread_rwlockattr_init (“pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines” on

page 1202), and pthread_rwlock_unlock (“pthread_rwlock_unlock Subroutine” on page 1199)

subroutines.

pthread_rwlock_timedrdlock Subroutine

Purpose

Locks a read-write lock for reading.

Syntax

#include <pthread.h>

#include <time.h>

int pthread_rwlock_timedrdlock(pthread_rwlock_t *restrict rwlock,

 const struct timespec *restrict abs_timeout);

Description

The pthread_rwlock_timedrdlock() function applies a read lock to the read-write lock referenced by

rwlock as in the pthread_rwlock_rdlock() function. However, if the lock cannot be acquired without

waiting for other threads to unlock the lock, this wait terminates when the specified timeout expires. The

timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock on

which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout)—or when

the absolute time specified by abs_timeout has already been passed at the time of the call.

1196 Technical Reference, Volume 1: Base Operating System and Extensions

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers

option is not supported, the timeout is based on the system clock as returned by the time() function.

The resolution of the timeout matches the resolution of the clock on which it is based. The timespec data

type is defined in the <time.h> header.

The function never fails with a timeout if the lock can be acquired immediately. The validity of the

abs_timeout parameter does not need to be checked if the lock can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread that is blocked on a

read-write lock through a call to pthread_rwlock_timedrdlock(), the thread resumes waiting for the lock

(as if it were not interrupted) after the signal handler returns.

The calling thread can deadlock if it holds a write lock on rwlock at the time the call is made. The results

are undefined if this function is called with an uninitialized read-write lock.

Application Usage

The pthread_rwlock_timedrdlock() function is part of the Threads and Timeouts options and do not

need to be provided on all implementations.

Return Values

The pthread_rwlock_timedrdlock() function returns 0 if the lock for reading on the read-write lock object

referenced by rwlock is acquired. Otherwise, an error number is returned to indicate the error.

Error Codes

The pthread_rwlock_timedrdlock() function fails if:

 [ETIMEDOUT] The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_timedrdlock() function might fail if:

 [EAGAIN] The read lock could not be acquired because the maximum number of read locks for

lock would be exceeded.

[EDEADLK] The calling thread already holds a write lock on rwlock.

[EINVAL] The value specified by rwlock does not refer to an initialized read-write lock object, or

the abs_timeout nanosecond value is less than 0 or greater than or equal to 1000

million.

This function does not return an error code of [EINTR].

Related Information

“mq_receive, mq_timedreceive Subroutine” on page 830, “posix_trace_getnext_event,

posix_trace_timedgetnext_event, posix_trace_trygetnext_event Subroutine” on page 1074,

“pthread_mutex_timedlock Subroutine” on page 1181, “pthread_rwlock_init or pthread_rwlock_destroy

Subroutine” on page 1193, “pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines” on page

1195, “pthread_rwlock_timedwrlock Subroutine” on page 1198, “pthread_rwlock_wrlock or

pthread_rwlock_trywrlock Subroutines” on page 1200, “pthread_rwlock_unlock Subroutine” on page 1199.

The sem_timedwait subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and

Extensions Volume 2.

The pthread.h and time.h files in AIX 5L Version 5.3 Files Reference.

Base Operating System (BOS) Runtime Services (A-P) 1197

pthread_rwlock_timedwrlock Subroutine

Purpose

Locks a read-write lock for writing.

Syntax

#include <pthread.h>

#include <time.h>

int pthread_rwlock_timedwrlock(pthread_rwlock_t *restrict rwlock,

 const struct timespec *restrict abs_timeout);

Description

The pthread_rwlock_timedwrlock() function applies a write lock to the read-write lock referenced by

rwlock as in the pthread_rwlock_wrlock() function. However, if the lock cannot be acquired without

waiting for other threads to unlock the lock, this wait terminates when the specified timeout expires. The

timeout expires when the absolute time specified by abs_timeout passes—as measured by the clock on

which timeouts are based (that is, when the value of that clock equals or exceeds abs_timeout)—or when

the absolute time specified by abs_timeout has already been passed at the time of the call.

If the Timers option is supported, the timeout is based on the CLOCK_REALTIME clock; if the Timers

option is not supported, the timeout is based on the system clock as returned by the time() function.

The resolution of the timeout matches the resolution of the clock on which it is based. The timespec data

type is defined in the <time.h> header.

The function never fails with a timeout if the lock can be acquired immediately. The validity of the

abs_timeout parameter does not need to be checked if the lock can be immediately acquired.

If a signal that causes a signal handler to be executed is delivered to a thread that is blocked on a

read-write lock through a call to pthread_rwlock_timedwrlock(), the thread resumes waiting for the lock

(as if it were not interrupted) after the signal handler returns.

The calling thread can deadlock if it holds the read-write lock at the time the call is made. The results are

undefined if this function is called with an uninitialized read-write lock.

Application Usage

The pthread_rwlock_timedwrlock() function is part of the Threads and Timeouts options and do not

need to be provided on all implementations.

Return Values

The pthread_rwlock_timedwrlock() function returns 0 if the lock for writing on the read-write lock object

referenced by rwlock is acquired. Otherwise, an error number is returned to indicate the error.

Error Codes

The pthread_rwlock_timedrdlock() function fails if:

 ETIMEDOUT The lock could not be acquired before the specified timeout expired.

The pthread_rwlock_timedrdlock() function might fail if:

 EDEADLK The calling thread already holds the rwlock.

1198 Technical Reference, Volume 1: Base Operating System and Extensions

EINVAL The value specified by rwlock does not refer to an initialized read-write lock object, or

the abs_timeout nanosecond value is less than 0 or greater than or equal to 1000

million.

This function does not return an error code of EINTR.

Related Information

“mq_receive, mq_timedreceive Subroutine” on page 830, “posix_trace_getnext_event,

posix_trace_timedgetnext_event, posix_trace_trygetnext_event Subroutine” on page 1074,

“pthread_mutex_timedlock Subroutine” on page 1181, “pthread_rwlock_init or pthread_rwlock_destroy

Subroutine” on page 1193, “pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines” on page

1195, “pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines” on page 1200,

“pthread_rwlock_unlock Subroutine.”

The sem_timedwait subroutine in AIX 5L Version 5.3 Technical Reference: Base Operating System and

Extensions Volume 2.

The pthread.h and time.h files in AIX 5L Version 5.3 Files Reference.

pthread_rwlock_unlock Subroutine

Purpose

Unlocks a read-write lock object.

Library

Threads Library (libthreads.a)

Syntax

#include <pthread.h>

int pthread_rwlock_unlock (rwlock)

pthread_rwlock_t *rwlock;

Description

The pthread_rwlock_unlock subroutine is called to release a lock held on the read-write lock object

referenced by rwlock. Results are undefined if the read-write lock rwlock is not held by the calling thread.

If this subroutine is called to release a read lock from the read-write lock object and there are other read

locks currently held on this read-write lock object, the read-write lock object remains in the read locked

state. If this subroutine releases the calling thread’s last read lock on this read-write lock object, then the

calling thread is no longer one of the owners of the object. If this subroutine releases the last read lock for

this read-write lock object, the read-write lock object will be put in the unlocked state with no owners.

If this subroutine is called to release a write lock for this read-write lock object, the read-write lock object

will be put in the unlocked state with no owners.

If the call to the pthread_rwlock_unlock subroutine results in the read-write lock object becoming

unlocked and there are multiple threads waiting to acquire the read-write lock object for writing, the

scheduling policy is used to determine which thread acquires the read-write lock object for writing. If there

are multiple threads waiting to acquire the read-write lock object for reading, the scheduling policy is used

to determine the order in which the waiting threads acquire the read-write lock object for reading. If there

Base Operating System (BOS) Runtime Services (A-P) 1199

are multiple threads blocked on rwlock for both read locks and write locks, it is unspecified whether the

readers acquire the lock first or whether a writer acquires the lock first.

Results are undefined if any of these subroutines are called with an uninitialized read-write lock.

Parameters

 rwlock Specifies the read-write lock to be unlocked.

Return Values

If successful, the pthread_rwlock_unlock subroutine returns zero. Otherwise, an error number is returned

to indicate the error.

Error Codes

The pthread_rwlock_unlock subroutine may fail if:

 EINVAL The value specified by rwlock does not refer to an initialized read-write lock object.

EPERM The current thread does not own the read-write lock.

Related Information

The pthread.h file.

The pthread_rwlock_init (“pthread_rwlock_init or pthread_rwlock_destroy Subroutine” on page 1193),

pthread_rwlock_wrlock (“pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines”),

pthread_rwlockattr_init (“pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines” on page

1202), pthread_rwlock_rdlock (“pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines” on page

1195) subroutines.

pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines

Purpose

Locks a read-write lock object for writing.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_rwlock_wrlock (rwlock)

pthread_rwlock_t *rwlock;

int pthread_rwlock_trywrlock (rwlock)

pthread_rwlock_t *rwlock;

Description

The pthread_rwlock_wrlock subroutine applies a write lock to the read-write lock referenced by rwlock.

The calling thread acquires the write lock if no other thread (reader or writer) holds the read-write lock

rwlock. Otherwise, the thread blocks (that is, does not return from the pthread_rwlock_wrlock call) until it

can acquire the lock. Results are undefined if the calling thread holds the read-write lock (whether a read

or write lock) at the time the call is made.

1200 Technical Reference, Volume 1: Base Operating System and Extensions

Implementations are allowed to favor writers over readers to avoid writer starvation.

The pthread_rwlock_trywrlock subroutine applies a write lock like the pthread_rwlock_wrlock

subroutine, with the exception that the function fails if any thread currently holds rwlock (for reading or

writing).

Results are undefined if any of these functions are called with an uninitialized read-write lock.

If a signal is delivered to a thread waiting for a read-write lock for writing, upon return from the signal

handler the thread resumes waiting for the read-write lock for writing as if it was not interrupted.

Realtime applications may encounter priority inversion when using read-write locks. The problem occurs

when a high priority thread ’locks’ a read-write lock that is about to be ’unlocked’ by a low priority thread,

but the low priority thread is preempted by a medium priority thread. This scenario leads to priority

inversion; a high priority thread is blocked by lower priority threads for an unlimited period of time. During

system design, realtime programmers must take into account the possibility of this kind of priority

inversion. They can deal with it in a number of ways, such as by having critical sections that are guarded

by read-write locks execute at a high priority, so that a thread cannot be preempted while executing in its

critical section.

Parameters

 rwlock Specifies the read-write lock to be locked for writing.

Return Values

If successful, the pthread_rwlock_wrlock subroutine returns zero. Otherwise, an error number is returned

to indicate the error.

The pthread_rwlock_trywrlock subroutine returns zero if the lock for writing on the read-write lock object

referenced by rwlock is acquired. Otherwise an error number is returned to indicate the error.

Error Codes

The pthread_rwlock_trywrlock subroutine will fail if:

 EBUSY The read-write lock could not be acquired for writing because it was already locked for reading or writing.

The pthread_rwlock_wrlock and pthread_rwlock_trywrlock subroutines may fail if:

 EINVAL The value specified by rwlock does not refer to an initialized read-write lock object.

EDEADLK The current thread already owns the read-write lock for writing or reading.

Related Information

The pthread.h file.

The pthread_rwlock_init (“pthread_rwlock_init or pthread_rwlock_destroy Subroutine” on page 1193),

pthread_rwlock_unlock (“pthread_rwlock_unlock Subroutine” on page 1199), pthread_rwlockattr_init

(“pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines” on page 1202),

pthread_rwlock_rdlock (“pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines” on page 1195)

subroutines.

Base Operating System (BOS) Runtime Services (A-P) 1201

pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines

Purpose

Initializes and destroys read-write lock attributes object.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_rwlockattr_init (attr)

pthread_rwlockattr_t *attr;

int pthread_rwlockattr_destroy (attr)

pthread_rwlockattr_t *attr;

Description

The pthread_rwlockattr_init subroutine initializes a read-write lock attributes object attr with the default

value for all of the attributes defined by the implementation. Results are undefined if

pthread_rwlockattr_init is called specifying an already initialized read-write lock attributes object.

After a read-write lock attributes object has been used to initialize one or more read-write locks, any

function affecting the attributes object (including destruction) does not affect any previously initialized

read-write locks.

The pthread_rwlockattr_destroy subroutine destroys a read-write lock attributes object. The effect of

subsequent use of the object is undefined until the object is re-initialized by another call to

pthread_rwlockattr_init. An implementation may cause pthread_rwlockattr_destroy to set the object

referenced by attr to an invalid value.

Parameters

 attr Specifies a read-write lock attributes object to be initialized or destroyed.

Return Value

If successful, the pthread_rwlockattr_init and pthread_rwlockattr_destroy subroutines return zero.

Otherwise, an error number is returned to indicate the error.

Error Codes

The pthread_rwlockattr_init subroutine will fail if:

 ENOMEM Insufficient memory exists to initialize the read-write lock attributes object.

The pthread_rwlockattr_destroy subroutine will fail if:

 EINVAL The value specified by attr is invalid.

Related Information

The pthread.h file.

1202 Technical Reference, Volume 1: Base Operating System and Extensions

The pthread_rwlock_init (“pthread_rwlock_init or pthread_rwlock_destroy Subroutine” on page 1193),

pthread_rwlock_unlock (“pthread_rwlock_unlock Subroutine” on page 1199), pthread_rwlock_wrlock

(“pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines” on page 1200),

pthread_rwlock_rdlock (“pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines” on page 1195),

and pthread_rwlockattr_getpshared (“pthread_rwlockattr_getpshared or pthread_rwlockattr_setpshared

Subroutines”) subroutines.

pthread_rwlockattr_getpshared or pthread_rwlockattr_setpshared

Subroutines

Purpose

Gets and sets process-shared attribute of read-write lock attributes object.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_rwlockattr_getpshared (attr, pshared)

const pthread_rwlockattr_t *attr;

int *pshared;

int pthread_rwlockattr_setpshared (attr, pshared)

pthread_rwlockattr_t *attr;

int pshared;

Description

The process-shared attribute is set to PTHREAD_PROCESS_SHARED to permit a read-write lock to be

operated upon by any thread that has access to the memory where the read-write lock is allocated, even if

the read-write lock is allocated in memory that is shared by multiple processes. If the process-shared

attribute is PTHREAD_PROCESS_PRIVATE, the read-write lock will only be operated upon by threads

created within the same process as the thread that initialized the read-write lock; if threads of differing

processes attempt to operate on such a read-write lock, the behavior is undefined. The default value of the

process-shared attribute is PTHREAD_PROCESS_PRIVATE.

The pthread_rwlockattr_getpshared subroutine obtains the value of the process-shared attribute from

the initialized attributes object referenced by attr. The pthread_rwlockattr_setpshared subroutine is used

to set the process-shared attribute in an initialized attributes object referenced by attr.

Parameters

 attr Specifies the initialized attributes object.

pshared Specifies the process-shared attribute of read-write lock attributes object to be gotten

and set.

Return Values

If successful, the pthread_rwlockattr_setpshared subroutine returns zero. Otherwise, an error number is

returned to indicate the error.

Upon successful completion, the pthread_rwlockattr_getpshared subroutine returns zero and stores the

value of the process-shared attribute of attr into the object referenced by the pshared parameter.

Otherwise an error number is returned to indicate the error.

Base Operating System (BOS) Runtime Services (A-P) 1203

Error Codes

The pthread_rwlockattr_getpshared and pthread_rwlockattr_setpshared subroutines will fail if:

 EINVAL The value specified by attr is invalid.

The pthread_rwlockattr_setpshared subroutine will fail if:

 EINVAL The new value specified for the attribute is outside the range of legal values for that attribute.

Related Information

The pthread.h file.

The pthread_rwlock_init (“pthread_rwlock_init or pthread_rwlock_destroy Subroutine” on page 1193),

pthread_rwlock_unlock (“pthread_rwlock_unlock Subroutine” on page 1199), pthread_rwlock_wrlock

(“pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines” on page 1200),

pthread_rwlock_rdlock (“pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines” on page 1195),

pthread_rwlockattr_init (“pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines” on page

1202) subroutines.

pthread_self Subroutine

Purpose

Returns the calling thread’s ID.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

pthread_t pthread_self (void);

Description

The pthread_self subroutine returns the calling thread’s ID.

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

Return Values

The calling thread’s ID is returned.

Errors

No errors are defined.

The pthread_self function will not return an error code of EINTR.

Related Information

The pthread_create (“pthread_create Subroutine” on page 1153) subroutine, pthread_equal

(“pthread_equal Subroutine” on page 1157) subroutine.

1204 Technical Reference, Volume 1: Base Operating System and Extensions

The pthread.h file.

Creating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_setcancelstate, pthread_setcanceltype, or pthread_testcancel

Subroutines

Purpose

Sets the calling thread’s cancelability state.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_setcancelstate (state, oldstate)

int state;

int *oldstate;

int pthread_setcanceltype (type, oldtype)

int type;

int *oldtype;

int pthread_testcancel (void)

Description

The pthread_setcancelstate subroutine atomically both sets the calling thread’s cancelability state to the

indicated state and returns the previous cancelability state at the location referenced by oldstate. Legal

values for state are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype subroutine atomically both sets the calling thread’s cancelability type to the

indicated type and returns the previous cancelability type at the location referenced by oldtype. Legal

values for type are PTHREAD_CANCEL_DEFERRED and PTHREAD_CANCEL_ASYNCHRONOUS.

The cancelability state and type of any newly created threads, including the thread in which main was first

invoked, are PTHREAD_CANCEL_ENABLE and PTHREAD_CANCEL_DEFERRED respectively.

The pthread_testcancel subroutine creates a cancellation point in the calling thread. The

pthread_testcancel subroutine has no effect if cancelability is disabled.

Parameters

 state Specifies the new cancelability state to set. It must have one of the following values:

PTHREAD_CANCEL_DISABLE

Disables cancelability; the thread is not cancelable. Cancellation requests are held pending.

PTHREAD_CANCEL_ENABLE

Enables cancelability; the thread is cancelable, according to its cancelability type. This is the

default value.

oldstate Points to where the previous cancelability state value will be stored.

type Specifies the new cancelability type to set.

oldtype Points to where the previous cancelability type value will be stored.

Base Operating System (BOS) Runtime Services (A-P) 1205

Return Values

If successful, the pthread_setcancelstate and pthread_setcanceltype subroutines return zero.

Otherwise, an error number is returned to indicate the error.

Error Codes

The pthread_setcancelstate subroutine will fail if:

 EINVAL The specified state is not PTHREAD_CANCEL_ENABLE or PTHREAD_CANCEL_DISABLE.

The pthread_setcanceltype subroutine will fail if:

 EINVAL The specified type is not PTHREAD_CANCEL_DEFERRED or PTHREAD_CANCEL_ASYNCHRONOUS.

These subroutines will not return an error code of EINTR.

Related Information

The pthread_cancel (“pthread_cancel Subroutine” on page 1140) subroutine.

The pthread.h file.

Terminating Threads in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_setschedparam Subroutine

Purpose

Returns the current schedpolicy and schedparam attributes of a thread.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

#include <sys/sched.h>

int pthread_setschedparam (thread, schedpolicy, schedparam)

pthread_t thread;

int schedpolicy;

const struct sched_param *schedparam;

Description

The pthread_setschedparam subroutine dynamically sets the schedpolicy and schedparam attributes of

the thread thread. The schedpolicy attribute specifies the scheduling policy of the thread. The schedparam

attribute specifies the scheduling parameters of a thread created with this attributes object. The

sched_priority field of the sched_param structure contains the priority of the thread. It is an integer

value.

If the target thread has system contention scope, the process must have root authority to set the

scheduling policy to either SCHED_FIFO or SCHED_RR.

1206 Technical Reference, Volume 1: Base Operating System and Extensions

Note: The pthread.h header file must be the first included file of each source file using the threads

library. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler

used. In this case, the flag is automatically set.

This subroutine is part of the Base Operating System (BOS) Runtime. The implementation of this

subroutine is dependent on the priority scheduling POSIX option. The priority scheduling POSIX option is

implemented in the operating system.

Parameters

 thread Specifies the target thread.

schedpolicy Points to the schedpolicy attribute to set. It must have one of the following values:

SCHED_FIFO

Denotes first-in first-out scheduling.

SCHED_RR

Denotes round-robin scheduling.

SCHED_OTHER

Denotes the default operating system scheduling policy. It is the default value. If

schedpolicy is SCHED_OTHER, then sched_priority must be in the range from 40 to

80, where 40 is the least favored priority and 80 is the most favored.

Note: Priority of threads with a process contention scope and a SCHED_OTHER policy is

controlled by the kernel; thus, setting the priority of such a thread has no effect. However,

priority of threads with a system contention scope and a SCHED_OTHER policy can be

modified. The modification directly affects the underlying kernel thread nice value.

schedparam Points to where the scheduling parameters to set are stored. The sched_priority field must be

in the range from 1 to 127, where 1 is the least favored priority, and 127 the most favored. If

schedpolicy is SCHED_OTHER, then sched_priority must be in the range from 40 to 80, where

40 is the least favored priority and 80 is the most favored.

Note: Prior to AIX 5.3, users are not permitted to change the priority of a thread when setting

its scheduling policy to SCHED_OTHER. In this case, the priority is managed directly by the

kernel, and the only legal value that can be passed to pthread_setschedparam is

DEFAULT_PRIO, which is defined in pthread.h as 1. All other passed values are ignored.

Beginning with AIX 5.3, users can change the priority of a thread when setting its scheduling

policy to SCHED_OTHER. The legal values that can be passed to pthread_setschedparam

range from 40 to 80. Only privileged users can set a priority higher than 60. A value ranging

from 1 to 39 provides the same priority as 40, and a value ranging from 81 to 127 provides the

same priority as 80.

Return Values

Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes

The pthread_setschedparam subroutine is unsuccessful if the following is true:

 EINVAL The thread or schedparam parameters are not valid.

ENOSYS The priority scheduling POSIX option is not implemented.

ENOTSUP The value of the schedpolicy or schedparam attributes are not supported.

EPERM The target thread has insufficient permission to perform the operation or is already engaged in a mutex

protocol.

ESRCH The thread thread does not exist.

Base Operating System (BOS) Runtime Services (A-P) 1207

Related Information

The pthread_getschedparam (“pthread_getschedparam Subroutine” on page 1165) subroutine,

pthread_attr_setschedparam (“pthread_attr_setschedparam Subroutine” on page 1132) subroutine.

Threads Scheduling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

pthread_setschedprio Subroutine

Purpose

Dynamic thread scheduling parameters access (REALTIME THREADS).

Syntax

#include <pthread.h>

int pthread_setschedprio(pthread_t thread, int prio);

Description

The pthread_setschedprio() function sets the scheduling priority for the thread whose thread ID is given

by thread to the value given by prio. If a thread whose policy or priority has been modified by

pthread_setschedprio() is a running thread or is runnable, the effect on its position in the tread list

depends on the direction of the modification as follows:

v If the priority is raised, the thread becomes the tail of the thread list.

v If the priority is unchanged, the thread does not change position in the thread list.

v If the priority is lowered, the thread becomes the head of the thread list.

Valid priorities are within the range returned by the sched_get_priority_max() and

sched_get_priority_min().

If the pthread_setschedprio() function fails, the scheduling priority of the target thread remains

unchanged.

Rationale

The pthread_setschedprio() function provides a way for an application to temporarily raise its priority and

then lower it again, without having the undesired side-effect of yielding to other threads of the same

priority. This is necessary if the application is to implement its own strategies for bounding priority

inversion, such as priority inheritance or priority ceilings. This capability is especially important if the

implementation does not support the Thread Priority Protection or Thread Priority Inheritance options;

but even if those options are supported, this capability is needed if the application is to bound priority

inheritance for other resources, such as semaphores.

The standard developers considered that, while it might be preferable conceptually to solve this problem

by modifying the specification of pthread_setschedparam(), it was too late to make such a change,

because there might be implementations that would need to be changed. Therefore, this new function was

introduced.

Return Values

If successful, the pthread_setschedprio() function returns 0; otherwise, an error number is returned to

indicate the error.

1208 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The pthread_setschedprio() function might fail if:

 EINVAL The value of prio is invalid for the scheduling policy of the specified thread.

ENOTSUP An attempt was made to set the priority to an unsupported value.

EPERM The caller does not have the appropriate permission to set the scheduling policy of the

specified thread.

EPERM The implementation does not allow the application to modify the priority to the value specified.

ESRCH The value specified by thread does not refer to an existing thread.

The pthread_setschedprio function does not return an error code of [EINTR].

Related Information

“pthread_getschedparam Subroutine” on page 1165, “pthread_setschedparam Subroutine” on page 1206.

The pthread.h file in AIX 5L Version 5.3 Files Reference.

pthread_sigmask Subroutine

Purpose

Examines and changes blocked signals.

Library

Threads Library (libpthreads.a)

Syntax

#include <signal.h>

int pthread_sigmask (how, set, oset)

int how;

const sigset_t *set;

sigset_t *oset;

Description

Refer to sigthreadmask in AIX 5L Version 5.3 Technical Reference: Base Operating System and

Extensions Volume 2.

pthread_signal_to_cancel_np Subroutine

Purpose

Cancels the specified thread.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

Base Operating System (BOS) Runtime Services (A-P) 1209

int pthread_signal_to_cancel_np (sigset, thread)

sigset_t *sigset;

pthread_t *thread;

Description

The pthread_signal_to_cancel_np subroutine cancels the target thread thread by creating a handler

thread. The handler thread calls the sigwait subroutine with the sigset parameter, and cancels the target

thread when the sigwait subroutine returns. Successive calls to this subroutine override the previous

ones.

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.

Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this

case, the flag is automatically set.

2. The pthread_signal_to_cancel_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should

not be used when writing new applications.

Parameters

 sigset Specifies the set of signals to wait on.

thread Specifies the thread to cancel.

Return Values

Upon successful completion, 0 is returned. Otherwise, an error code is returned.

Error Codes

The pthread_signal_to_cancel_np subroutine is unsuccessful if the following is true:

 EAGAIN The handler thread cannot be created.

EINVAL The sigset or thread parameters are not valid.

Related Information

The pthread_cancel (“pthread_cancel Subroutine” on page 1140) subroutine, sigwait subroutine.

pthread_spin_destroy or pthread_spin_init Subroutine

Purpose

Destroys or initializes a spin lock object.

Syntax

#include <pthread.h>

int pthread_spin_destroy(pthread_spinlock_t *lock);

int pthread_spin_init(pthread_spinlock_t *lock, int pshared);

Description

The pthread_spin_destroy subroutine destroys the spin lock referenced by lock and releases any

resources used by the lock. The effect of subsequent use of the lock is undefined until the lock is

1210 Technical Reference, Volume 1: Base Operating System and Extensions

reinitialized by another call to the pthread_spin_init subroutine. The results are undefined if the

pthread_spin_destroy subroutine is called when a thread holds the lock, or if this function is called with

an uninitialized thread spin lock.

The pthread_spin_init subroutine allocates any resources required to use the spin lock referenced by

lock and initializes the lock to an unlocked state.

If the Thread Process-Shared Synchronization option is supported and the value of pshared is

PTHREAD_PROCESS_SHARED, the implementation shall permit the spin lock to be operated upon by

any thread that has access to the memory where the spin lock is allocated, even if it is allocated in

memory that is shared by multiple processes.

If the Thread Process-Shared Synchronization option is supported and the value of pshared is

PTHREAD_PROCESS_PRIVATE, or if the option is not supported, the spin lock shall only be operated

upon by threads created within the same process as the thread that initialized the spin lock. If threads of

differing processes attempt to operate on such a spin lock, the behavior is undefined.

The results are undefined if the pthread_spin_init subroutine is called specifying an already initialized

spin lock. The results are undefined if a spin lock is used without first being initialized.

If the pthread_spin_init subroutine function fails, the lock is not initialized and the contents of lock are

undefined.

Only the object referenced by lock may be used for performing synchronization.

The result of referring to copies of that object in calls to the pthread_spin_destroy subroutine,

pthread_spin_lock subroutine, pthread_spin_trylock subroutine, or the pthread_spin_unlock

subroutine is undefined.

Return Values

Upon successful completion, these functions shall return zero; otherwise, an error number shall be

returned to indicate the error.

Error Codes

 EBUSY The implementation has detected an attempt to initialize or destroy a spin lock while it is in use

(for example, while being used in a pthread_spin_lock call) by another thread.

EINVAL The value specified by the lock parameter is invalid.

The pthread_spin_initsubroutine will fail if:

 EAGAIN The system lacks the necessary resources to initialize another spin lock.

ENOMEM Insufficient memory exists to initialize the lock.

Related Information

The “pthread_spin_lock or pthread_spin_trylock Subroutine,” “pthread_spin_unlock Subroutine” on page

1212.

pthread_spin_lock or pthread_spin_trylock Subroutine

Purpose

Locks a spin lock object.

Base Operating System (BOS) Runtime Services (A-P) 1211

Syntax

#include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t *lock);

int pthread_spin_trylock(pthread_spinlock_t *lock);

Description

The pthread_spin_lock subroutine locks the spin lock referenced by the lock parameter. The calling

thread shall acquire the lock if it is not held by another thread. Otherwise, the thread spins (that is, does

not return from the pthread_spin_lock call) until the lock becomes available. The results are undefined if

the calling thread holds the lock at the time the call is made. The pthread_spin_trylock subroutine locks

the spin lock referenced by the lock parameter if it is not held by any thread. Otherwise, the function fails.

The results are undefined if any of these subroutines is called with an uninitialized spin lock.

Return Values

Upon successful completion, these functions return zero; otherwise, an error number is returned to indicate

the error.

Error Codes

 EINVAL The value specified by the lock parameter does not refer to an initialized spin lock object.

The pthread_spin_lock subroutine fails if:

 EDEADLK The calling thread already holds the lock.

The pthread_spin_trylock subroutine fails if:

 EBUSY A thread currently holds the lock.

Related Information

“pthread_spin_destroy or pthread_spin_init Subroutine” on page 1210, “pthread_spin_unlock Subroutine.”

pthread_spin_unlock Subroutine

Purpose

Unlocks a spin lock object.

Syntax

#include <pthread.h>

int pthread_spin_unlock(pthread_spinlock_t *lock);

Description

The pthread_spin_unlock subroutine releases the spin lock referenced by the lock parameter which was

locked using the pthread_spin_lock subroutine or the pthread_spin_trylock subroutine. The results are

undefined if the lock is not held by the calling thread. If there are threads spinning on the lock when the

pthread_spin_unlock subroutine is called, the lock becomes available and an unspecified spinning thread

shall acquire the lock.

1212 Technical Reference, Volume 1: Base Operating System and Extensions

The results are undefined if this subroutine is called with an uninitialized thread spin lock.

Return Values

Upon successful completion, the pthread_spin_unlock subroutine returns zero; otherwise, an error

number is returned to indicate the error.

Error Codes

 EINVAL An invalid argument was specified.

EPERM The calling thread does not hold the lock.

Related Information

“pthread_spin_destroy or pthread_spin_init Subroutine” on page 1210, “pthread_spin_lock or

pthread_spin_trylock Subroutine” on page 1211.

pthread_suspend_np and pthread_continue_np Subroutine

Purpose

Suspends execution of the pthread specified by thread.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

int pthread_suspend_np(thread)

pthread_t thread;

int pthread_continue_np(thread)

pthread_t thread;

Description

The pthread_suspend_np subroutine immediately suspends the execution of the pthread specified by

thread. On successful return from pthread_suspend_np, the suspended pthread is no longer executing. If

pthread_suspend_np is called for a pthread that is already suspended, the pthread is unchanged and

pthread_suspend_np returns successful.

The pthread_continue_np routine resumes the execution of a suspended pthread. If

pthread_continue_np is called for a pthread that is not suspended, the pthread is unchanged and

pthread_continue_np returns successful.

A suspended pthread will not be awakened by a signal. The signal stays pending until the execution of

pthread is resumed by pthread_continue_np.

Note: Using pthread_suspend_np should only be used by advanced users because improper use of this

subcommand can lead to application deadlock or the target thread may be suspended holding

application locks. Nested suspension is not supported: a pthread that is suspended twice is

continued by a single pthread continue.

Base Operating System (BOS) Runtime Services (A-P) 1213

Parameters

 thread Specifies the target thread.

Return Values

Zero is returned when successful. A nonzero value indicates an error.

Error Codes

If any of the following conditions occur, pthread_suspend_np and pthread_continue_np fail and return

the corresponding value:

 ESRCH The thread attribute cannot be found in the current process.

pthread_unlock_global_np Subroutine

Purpose

Unlocks the global mutex.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

void pthread_unlock_global_np ()

Description

The pthread_unlock_global_np subroutine unlocks the global mutex when each call to the

pthread_lock_global_np subroutine is matched by a call to this routine. For example, if a thread called

the pthread_lock_global_np three times, the global mutex is unlocked after the third call to the

pthread_unlock_global_np subroutine.

If no threads are waiting for the global mutex, it becomes unlocked with no current owner. If one or more

threads are waiting to lock the global mutex, exactly one thread returns from its call to the

pthread_lock_global_np subroutine.

Notes:

1. The pthread.h header file must be the first included file of each source file using the threads library.

Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In this

case, the flag is automatically set.

2. The pthread_unlock_global_np subroutine is not portable.

This subroutine is not POSIX compliant and is provided only for compatibility with DCE threads. It should

not be used when writing new applications.

Related Information

The pthread_lock_global_np (“pthread_lock_global_np Subroutine” on page 1175) subroutine.

Using Mutexes in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging Programs.

1214 Technical Reference, Volume 1: Base Operating System and Extensions

pthread_yield Subroutine

Purpose

Forces the calling thread to relinquish use of its processor.

Library

Threads Library (libpthreads.a)

Syntax

#include <pthread.h>

void pthread_yield ()

Description

The pthread_yield subroutine forces the calling thread to relinquish use of its processor, and to wait in the

run queue before it is scheduled again. If the run queue is empty when the pthread_yield subroutine is

called, the calling thread is immediately rescheduled.

If the thread has global contention scope (PTHREAD_SCOPE_SYSTEM), calling this subroutine acts like

calling the yield subroutine. Otherwise, another local contention scope thread is scheduled.

The pthread.h header file must be the first included file of each source file using the threads library.

Otherwise, the -D_THREAD_SAFE compilation flag should be used, or the cc_r compiler used. In

this case, the flag is automatically set.

Related Information

The yield subroutine and the sched_yield subroutine.

Threads Scheduling in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

Threads Library Options in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

ptrace, ptracex, ptrace64 Subroutine

Purpose

Traces the execution of another process.

Library

Standard C Library (libc.a)

Syntax

#include <sys/reg.h>

#include <sys/ptrace.h>

#include <sys/ldr.h>

int ptrace (Request, Identifier, Address, Data, Buffer)

int Request;

int Identifier;

Base Operating System (BOS) Runtime Services (A-P) 1215

int *Address;

int Data;

int *Buffer;

int ptracex (request, identifier, addr, data, buff)

int request;

int identifier;

long long addr;

int data;

int *buff;

int ptrace64 (request, identifier, addr, data, buff)

int request;

long long identifier;

long long addr;

int data;

int *buff;

Description

The ptrace subroutine allows a 32-bit process to trace the execution of another process. The ptrace

subroutine is used to implement breakpoint debugging.

A debugged process executes normally until it encounters a signal. Then it enters a stopped state and its

debugging process is notified with the wait subroutine.

Exception: If the process encounters the SIGTRAP signal, a signal handler for SIGTRAP exists, and

fast traps (“Fast Trap Instructions” on page 1217) have been enabled for the process, then the signal

handler is called and the debugger is not notified. This exception only applies to AIX 4.3.3 and later

releases.

While the process is in the stopped state, the debugger examines and modifies the memory image of the

process being debugged by using the ptrace subroutine. For multi-threaded processes, the getthrds

(“getthrds Subroutine” on page 434) subroutine identifies each kernel thread in the debugged process.

Also, the debugging process can cause the debugged process to terminate or continue, with the possibility

of ignoring the signal that caused it to stop.

As a security measure, the ptrace subroutine inhibits the set-user-ID facility on subsequent exec

subroutines.

(This paragraph only applies to AIX 4.3.2 and later releases.) When a process executing under ptrace

control calls load or unload, the debugger is notified and the W_SLWTED flag is set in the status returned

by wait. (A 32-bit process calling loadbind is stopped as well.) If the process being debugged has added

modules in the shared library to its address space, the modules are added to the process’s private copy of

the shared library segments. If shared library modules are removed from a process’s address space, the

modules are deleted from the process’s private copy of the library text segment by freeing the pages that

contain the module. No other changes to the segment are made, and existing breakpoints do not have to

be reinserted.

To allow a debugger to generate code more easily (in order to handle fast trap instructions, for example),

memory from the end of the main program up to the next segment boundary can be modified. That

memory is read-only to the process but can be modified by the debugger.

When a process being traced forks, the child process is initialized with the unmodified main program and

shared library segment, effectively removing breakpoints in these segments in the child process. If

multiprocess debugging is enabled, new copies of the main program and shared library segments are

1216 Technical Reference, Volume 1: Base Operating System and Extensions

made. Modifications to privately loaded modules, however, are not affected by a fork. These breakpoints

will remain in the child process, and if these breakpoints are executed, a SIGTRAP signal will be

generated and delivered to the process.

If a traced process initiates an exec subroutine, the process stops before executing the first instruction of

the new image and returns the SIGTRAP signal.

Note: ptrace and ptracex are not supported in 64-bit mode.

Fast Trap Instructions

Note: The ″Fast Trap Instructions″ section only applies to AIX 4.3.3 and later releases.

Sometimes, allowing the process being debugged to handle certain trap instructions is useful, instead of

causing the process to stop and notify the debugger. You can use this capability to patch running

programs or programs whose source codes are not available. For a process to use this capability, you

must enable fast traps, which requires you to make a ptrace call from a debugger on behalf of the

process.

To let a process handle fast traps, a debugger uses the ptrace (PT_SET, pid, 0, PTFLAG_FAST_TRAP,

0) subroutine call. Cancel this capability with the ptrace (PT_CLEAR, pid, 0, PTFLAG_FAST_TRAP, 0)

subroutine call. If a process is able to handle fast traps when the debugger detaches, the fast trap

capability remains in effect. Consequently, when another debugger attaches to that process, fast trap

processing is still enabled. When no debugger is attached to a process, SIGTRAP signals are handled in

the same manner, regardless of whether fast traps are enabled.

A fast trap instruction is an unconditional trap immediate instruction in the form twi 14,r13,0xNXXX. This

instruction has the binary form 0x0ddfNXXX, where N is a hex digit >=8 and XXX are any three hex digits.

By using different values of 0xNXXX, a debugger can generate different fast trap instructions, allowing a

signal handler to quickly determine how to handle the signal. (The fast trap instruction is defined by the

macro _PTRACE_FASTTRAP. The _PTRACE_FASTTRAP_MASK macro can be used to check whether

a trap is a fast trap.)

Usually, a fast trap instruction is treated like any other trap instruction. However, if a process has a signal

handler for SIGTRAP, the signal is not blocked, and the fast trap capability is enabled, then the signal

handler is called and the debugger is not notified.

A signal handler can logically AND the trap instruction with _PTRACE_FASTTRAP_NUM (0x7FFF) to

obtain an integer identifying which trap instruction was executed.

For the 64-bit Process

Use ptracex where the debuggee is a 64-bit process and the operation requested uses the third (Address)

parameter to reference the debuggee’s address space or is sensitive to register size. Note that ptracex

and ptrace64 will also support 32-bit debugees.

If returning or passing an int doesn’t work for a 64-bit debuggee (for example, PT_READ_GPR), the buffer

parameter takes the address for the result. Thus, with the ptracex subroutine, PT_READ_GPR and

PT_WRITE_GPR take a pointer to an 8 byte area representing the register value.

In general, ptracex supports all the calls that ptrace does when they are modified for any that are

extended for 64-bit addresses (for example, GPRs, LR, CTR, IAR, and MSR). Anything whose size

increases for 64-bit processes must be allowed for in the obvious way (for example, PT_REGSET must be

an array of long longs for a 64-bit debuggee).

Base Operating System (BOS) Runtime Services (A-P) 1217

Parameters

Request

Determines the action to be taken by the ptrace subroutine and has one of the following values:

PT_ATTACH

This request allows a debugging process to attach a current process and place it into

trace mode for debugging. This request cannot be used if the target process is already

being traced. The Identifier parameter is interpreted as the process ID of the traced

process. The Address, Data, and Buffer parameters are ignored.

 If this request is unsuccessful, -1 is returned and the errno global variable is set to one

the following codes:

ESRCH

Process ID is not valid; the traced process is a kernel process; the process is

currently being traced; or, the debugger or traced process already exists.

EPERM

Real or effective user ID of the debugger does not match that of the traced

process, or the debugger does not have root authority.

EINVAL

The debugger and the traced process are the same.

PT_CLEAR

This request clears an internal flag or capability. The Data parameter specifies which flags

to clear. The following flag can be cleared:

PTFLAG_FAST_TRAP

Disables the special handling of a fast trap instruction (“Fast Trap Instructions” on

page 1217). This allows all fast trap instructions causing an interrupt to generate a

SIGTRAP signal.

The Identifier parameter specifies the process ID of the traced process. The Address

parameter, Buffer parameter, and the unused bits in the Data parameter are reserved for

future use and should be set to 0.

PT_CONTINUE

This request allows the process to resume execution. If the Data parameter is 0, all

pending signals, including the one that caused the process to stop, are concealed before

the process resumes execution. If the Data parameter is a valid signal number, the

process resumes execution as if it had received that signal. If the Address parameter

equals 1, the execution continues from where it stopped. If the Address parameter is not

1, it is assumed to be the address at which the process should resume execution. Upon

successful completion, the value of the Data parameter is returned to the debugging

process. The Identifier parameter is interpreted as the process ID of the traced process.

The Buffer parameter is ignored.

 If this request is unsuccessful, -1 is returned and the errno global variable is set to the

following code:

EIO The signal to be sent to the traced process is not a valid signal number.

Note: For the PT_CONTINUE request, use ptracex or prtrace64 with a 64-bit debuggee

because the resume address needs 64 bits.

1218 Technical Reference, Volume 1: Base Operating System and Extensions

PTT_CONTINUE

This request asks the scheduler to resume execution of the kernel thread specified by

Identifier. This kernel thread must be the one that caused the exception. The Data

parameter specifies how to handle signals:

v If the Data parameter is 0, the kernel thread which caused the exception will be

resumed as if the signal never occurred.

v If the Data parameter is a valid signal number, the kernel thread which caused the

exception will be resumed as if it had received that signal.

The Address parameter specifies where to resume execution:

v If the Address parameter is 1, execution resumes from the address where it stopped.

v If the Address parameter contains an address value other than 1, execution resumes

from that address.

The Buffer parameter should point to a PTTHREADS structure, which contains a list of kernel

thread identifiers to be started. This list should be NULL terminated if it is smaller than the

maximum allowed.

 On successful completion, the value of the Data parameter is returned to the debugging

process. On unsuccessful completion, the value -1 is returned, and the errno global

variable is set as follows:

EINVAL

The Identifier parameter names the wrong kernel thread.

EIO The signal to be sent to the traced kernel thread is not a valid signal number.

ESRCH

The Buffer parameter names an invalid kernel thread. Each kernel thread in the

list must be stopped and belong to the same process as the kernel thread named

by the Identifier parameter.

Note: For the PTT_CONTINUE request, use ptracex or ptrace64 with a 64-bit debuggee

because the resume address needs 64 bits.

PT_DETACH

This request allows a debugged process, specified by the Identifier parameter, to exit trace

mode. The process then continues running, as if it had received the signal whose number

is contained in the Data parameter. The process is no longer traced and does not process

any further ptrace calls. The Address and Buffer parameters are ignored.

 If this request is unsuccessful, -1 is returned and the errno global variable is set to the

following code:

EIO Signal to be sent to the traced process is not a valid signal number.

PT_KILL

This request allows the process to terminate the same way it would with an exit

subroutine.

PT_LDINFO

This request retrieves a description of the object modules that were loaded by the

debugged process. The Identifier parameter is interpreted as the process ID of the traced

process. The Buffer parameter is ignored. The Address parameter specifies the location

where the loader information is copied. The Data parameter specifies the size of this area.

The loader information is retrieved as a linked list of ld_info structures. The first element

of the list corresponds to the main executable module. The ld_info structures are defined

Base Operating System (BOS) Runtime Services (A-P) 1219

in the /usr/include/sys/ldr.h file. The linked list is implemented so that the ldinfo_nxt

field of each element gives the offset of the next element from this element. The

ldinfo_nxt field of the last element has the value 0.

 Each object module reported is opened on behalf of the debugger process. The file

descriptor and file pointer for an object module are recorded in the ldinfo_fd and

ldinfo_fp fields of the corresponding ld_info structure, respectively. The debugger

process is responsible for managing the files opened by the ptrace subroutine.

 If this request is unsuccessful, -1 is returned and the errno global variable is set to the

following code:

ENOMEM

Either the area is not large enough to accommodate the loader information, or

there is not enough memory to allocate an equivalent buffer in the kernel.

Note: For the PT_LDINFO request, use ptracex or ptrace64 with a 64-bit debuggee

because the source address needs 64 bits.

PT_MULTI

This request turns multiprocess debugging mode on and off, to allow debugging to

continue across fork and exec subroutines. A 0 value for the Data parameter turns

multiprocess debugging mode off, while all other values turn it on. When multiprocess

debugging mode is in effect, any fork subroutine allows both the traced process and its

newly created process to trap on the next instruction. If a traced process initiated an exec

subroutine, the process stops before executing the first instruction of the new image and

returns the SIGTRAP signal. The Identifier parameter is interpreted as the process ID of

the traced process. The Address and Buffer parameters are ignored.

 Also, when multiprocess debugging mode is enabled, the following values are returned

from the wait subroutine:

W_SEWTED

Process stopped during execution of the exec subroutine.

W_SFWTED

Process stopped during execution of the fork subroutine.

PT_READ_BLOCK

This request reads a block of data from the debugged process address space. The

Address parameter points to the block of data in the process address space, and the Data

parameter gives its length in bytes. The value of the Data parameter must not be greater

than 1024. The Identifier parameter is interpreted as the process ID of the traced process.

The Buffer parameter points to the location in the debugging process address space

where the data is copied. Upon successful completion, the ptrace subroutine returns the

value of the Data parameter.

 If this request is unsuccessful, -1 is returned and the errno global variable is set to one of

the following codes:

EIO The Data parameter is less than 1 or greater than 1024.

EIO The Address parameter is not a valid pointer into the debugged process address

space.

EFAULT

The Buffer parameter does not point to a writable location in the debugging

process address space.

1220 Technical Reference, Volume 1: Base Operating System and Extensions

Note: For the PT_READ_BLOCK request, use ptracex or ptrace64 with a 64-bit

debuggee because the source address needs 64 bits.

PT_READ_FPR

This request stores the value of a floating-point register into the location pointed to by the

Address parameter. The Data parameter specifies the floating-point register, defined in the

sys/reg.h file for the machine type on which the process is executed. The Identifier

parameter is interpreted as the process ID of the traced process. The Buffer parameter is

ignored.

 If this request is unsuccessful, -1 is returned and the errno global variable is set to the

following code:

EIO The Data parameter is not a valid floating-point register. The Data parameter must

be in the range 256-287.

PTT_READ_FPRS

This request writes the contents of the 32 floating point registers to the area specified by

the Address parameter. This area must be at least 256 bytes long. The Identifier

parameter specifies the traced kernel thread. The Data and Buffer parameters are ignored.

PT_READ_GPR

This request returns the contents of one of the general-purpose or special-purpose

registers of the debugged process. The Address parameter specifies the register whose

value is returned. The value of the Address parameter is defined in the sys/reg.h file for

the machine type on which the process is executed. The Identifier parameter is interpreted

as the process ID of the traced process. The Data and Buffer parameters are ignored. The

buffer points to long long target area.

Note: If ptracex or ptrace64 with a 64-bit debuggee is used for this request, the register

value is instead returned to the 8-byte area pointed to by the buffer pointer.

If this request is unsuccessful, -1 is returned and the errno global variable is set to the

following code:

EIO The Address is not a valid general-purpose or special-purpose register. The

Address parameter must be in the range 0-31 or 128-136.

PTT_READ_GPRS

This request writes the contents of the 32 general purpose registers to the area specified

by the Address parameter. This area must be at least 128 bytes long.

Note: If ptracex or ptrace64 are used with a 64-bit debuggee for the PTT_READ_GPRS

request, there must be at least a 256 byte target area. The Identifier parameter

specifies the traced kernel thread. The Data and Buffer parameters are ignored.

PT_READ_I or PT_READ_D

These requests return the word-aligned address in the debugged process address space

specified by the Address parameter. On all machines currently supported by AIX Version

4, the PT_READ_I and PT_READ_D instruction and data requests can be used with equal

results. The Identifier parameter is interpreted as the process ID of the traced process.

The Data parameter is ignored.

 If this request is unsuccessful, -1 is returned and the errno global variable is set to the

following code:

Base Operating System (BOS) Runtime Services (A-P) 1221

EIO The Address is not word-aligned, or the Address is not valid. User blocks, kernel

segments, and kernel extension segments are not considered as valid addresses.

Note: For the PT_READ_I or the PT_READ_D request, use ptracex or ptrace64 with a

64-bit debuggee because the source address needs 64 bits.

PTT_READ_SPRS

This request writes the contents of the special purpose registers to the area specified by

the Address parameter, which points to a ptsprs structure. The Identifier parameter

specifies the traced kernel thread. The Data and Buffer parameters are ignored.

Note: For the PTT_READ_SPRS request, use ptracex or ptrace64 with the 64-bit

debuggee because the new ptxsprs structure must be used.

PTT_READ_VEC

This request reads the vector register state of the specified thread. The data format is a

__vmx_context_t structure that contains the 32 vector registers, in addition to the VSCR

and VRSAVE registers.

PT_REATT

This request allows a new debugger, with the proper permissions, to trace a process that

was already traced by another debugger. The Identifier parameter is interpreted as the

process ID of the traced process. The Address, Data, and Buffer parameters are ignored.

 If this request is unsuccessful, -1 is returned and the errno global variable is set to one

the following codes:

ESRCH

The Identifier is not valid; or the traced process is a kernel process.

EPERM

Real or effective user ID of the debugger does not match that of the traced

process, or the debugger does not have root authority.

EINVAL

The debugger and the traced process are the same.

PT_REGSET

This request writes the contents of all 32 general purpose registers to the area specified

by the Address parameter. This area must be at least 128 bytes for the 32-bit debuggee or

256 bytes for the 64-bit debuggee. The Identifier parameter is interpreted as the process

ID of the traced process. The Data and Buffer parameters are ignored.

 If this request is unsuccessful, -1 is returned and the errno global variable is set to the

following code:

EIO The Address parameter points to a location outside of the allocated address space

of the process.

Note: For the PT_REGSET request, use ptracex or ptrace64 with the 64-bit debuggee

because 64-bit registers requiring 256 bytes are returned.

PT_SET

This request sets an internal flag or capability. The Data parameter indicates which flags

are set. The following flag can be set:

1222 Technical Reference, Volume 1: Base Operating System and Extensions

PTFLAG_FAST_TRAP

Enables the special handling of a fast trap instruction (“Fast Trap Instructions” on

page 1217). When a fast trap instruction is executed in a process that has a signal

handler for SIGTRAP, the signal handler will be called even if the process is being

traced.

The Identifier parameter specifies the process ID of the traced process. The Address

parameter, Buffer parameter, and the unused bits in the Data parameter are reserved for

future use and should be set to 0.

PT_TRACE_ME

This request must be issued by the debugged process to be traced. Upon receipt of a

signal, this request sets the process trace flag, placing the process in a stopped state,

rather than the action specified by the sigaction subroutine. The Identifier, Address, Data,

and Buffer parameters are ignored. Do not issue this request if the parent process does

not expect to trace the debugged process.

 As a security measure, the ptrace subroutine inhibits the set-user-ID facility on

subsequent exec subroutines, as shown in the following example:

 if((childpid = fork()) == 0)

{ /* child process */

 ptrace(PT_TRACE_ME,0,0,0,0);

 execlp()/* your favorite exec*/

 }

else

{ /* parent */

 /* wait for child to stop */

 rc = wait(status)

Note: This is the only request that should be performed by the child. The parent should

perform all other requests when the child is in a stopped state.

If this request is unsuccessful, -1 is returned and the errno global variable is set to the

following code:

ESRCH

Process is debugged by a process that is not its parent.

PT_WRITE_BLOCK

This request writes a block of data into the debugged process address space. The

Address parameter points to the location in the process address space to be written into.

The Data parameter gives the length of the block in bytes, and must not be greater than

1024. The Identifier parameter is interpreted as the process ID of the traced process. The

Buffer parameter points to the location in the debugging process address space where the

data is copied. Upon successful completion, the value of the Data parameter is returned to

the debugging process.

 If this request is unsuccessful, -1 is returned and the errno global variable is set to one of

the following codes:

EIO The Data parameter is less than 1 or greater than 1024.

EIO The Address parameter is not a valid pointer into the debugged process address

space.

EFAULT

The Buffer parameter does not point to a readable location in the debugging

process address space.

Base Operating System (BOS) Runtime Services (A-P) 1223

Note: For the PT_WRITE_BLOCK request, use ptracex or ptrace64 with the 64-bit

debuggee because 64-bit registers requiring 256 bytes are returned.

PT_WRITE_FPR

This request sets the floating-point register specified by the Data parameter to the value

specified by the Address parameter. The Identifier parameter is interpreted as the process

ID of the traced process. The Buffer parameter is ignored.

 If this request is unsuccessful, -1 is returned and the errno global variable is set to the

following code:

EIO The Data parameter is not a valid floating-point register. The Data parameter must

be in the range 256-287.

PTT_WRITE_FPRS

This request updates the contents of the 32 floating point registers with the values

specified in the area designated by the Address parameter. This area must be at least 256

bytes long. The Identifier parameter specifies the traced kernel thread. The Data and

Buffer parameters are ignored.

PT_WRITE_GPR

This request stores the value of the Data parameter in one of the process general-purpose

or special-purpose registers. The Address parameter specifies the register to be modified.

Upon successful completion, the value of the Data parameter is returned to the debugging

process. The Identifier parameter is interpreted as the process ID of the traced process.

The Buffer parameter is ignored.

Note: If ptracex or ptrace64 are used with a 64-bit debuggee for the PT_WRITE_GPR

request, the new register value is NOT passed via the Data parameter, but is

instead passed via the 8-byte area pointed to by the buffer parameter.

If this request is unsuccessful, -1 is returned and the errno global variable is set to the

following code:

EIO The Address parameter is not a valid general-purpose or special-purpose register.

The Address parameter must be in the range 0-31 or 128-136.

PTT_WRITE_GPRS

This request updates the contents of the 32 general purpose registers with the values

specified in the area designated by the Address parameter. This area must be at least 128

bytes long. The Identifier parameter specifies the traced kernel thread. The Data and

Buffer parameters are ignored.

Note: For the PTT_WRITE_GPRS request, use ptracex or ptrace64 with the 64-bit

debuggee because 64-bit registers requiring 256 bytes are returned. The buffer

points to long long source area.

PT_WRITE_I or PT_WRITE_D

These requests write the value of the Data parameter into the address space of the

debugged process at the word-aligned address specified by the Address parameter. On all

machines currently supported by AIX Version 4, instruction and data address spaces are

not separated. The PT_WRITE_I and PT_WRITE_D instruction and data requests can be

used with equal results. Upon successful completion, the value written into the address

space of the debugged process is returned to the debugging process. The Identifier

parameter is interpreted as the process ID of the traced process. The Buffer parameter is

ignored.

1224 Technical Reference, Volume 1: Base Operating System and Extensions

If this request is unsuccessful, -1 is returned and the errno global variable is set to the

following code:

EIO The Address parameter points to a location in a pure procedure space and a copy

cannot be made; the Address is not word-aligned; or, the Address is not valid.

User blocks, kernel segments, and kernel extension segments are not considered

valid addresses.

Note: For the or PT_WRITE_I or PT_WRITE_D request, use ptracex or ptrace64 with a

64-bit debuggee because the target address needs 64 bits.

PTT_WRITE_SPRS

This request updates the special purpose registers with the values in the area specified by

the Address parameter, which points to a ptsprs structure. The Identifier parameter

specifies the traced kernel thread. The Data and Buffer parameters are ignored.

Identifier

Determined by the value of the Request parameter.

Address

Determined by the value of the Request parameter.

Data Determined by the value of the Request parameter.

Buffer Determined by the value of the Request parameter.

Note: For the PTT_READ_SPRS request, use ptracex or ptrace64 with the 64-bit

debuggee because the new ptxsprs structure must be used.

PTT_WRITE_VEC

This request writes the vector register state of the specified thread. The data format is a

__vmx_context_t structure that contains the 32 vector registers, in addition to the VSCR

and VRSAVE registers.

Error Codes

The ptrace subroutine is unsuccessful when one of the following is true:

 EFAULT The Buffer parameter points to a location outside the debugging process address space.

EINVAL The debugger and the traced process are the same; or the Identifier parameter does not identify the

thread that caused the exception.

EIO The Request parameter is not one of the values listed, or the Request parameter is not valid for the

machine type on which the process is executed.

ENOMEM Either the area is not large enough to accommodate the loader information, or there is not enough

memory to allocate an equivalent buffer in the kernel.

ENXIO The target thread has not referenced the VMX unit and is not currently a VMX thread.

EPERM The Identifier parameter corresponds to a kernel thread which is stopped in kernel mode and whose

computational state cannot be read or written.

ESRCH The Identifier parameter identifies a process or thread that does not exist, that has not executed a ptrace

call with the PT_TRACE_ME request, or that is not stopped.

For ptrace: If the debuggee is a 64-bit process, the options that refer to GPRs or SPRs fail with errno =

EIO, and the options that specify addresses are limited to 32-bits.

For ptracex or ptrace64: If the debuggee is a 32-bit process, the options that refer to GPRs or SPRs fail

with errno = EIO, and the options that specify addresses in the debuggee’s address space that are larger

than 2**32 - 1 fail with errno set to EIO.

Base Operating System (BOS) Runtime Services (A-P) 1225

Also, the options PT_READ_U and PT_WRITE_U are not supported if the debuggee is a 64-bit program

(errno = ENOTSUP).

Related Information

The “exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine” on page 232, “getprocs

Subroutine” on page 406, “getthrds Subroutine” on page 434, and “load Subroutine” on page 717.

The sigaction subroutine, unload subroutine, and wait, waitpid, or wait3 subroutine in AIX 5L Version 5.3

Technical Reference: Base Operating System and Extensions Volume 2.

The dbx command AIX 5L Version 5.3 Commands Reference, Volume 2.

ptsname Subroutine

Purpose

Returns the name of a pseudo-terminal device.

Library

Standard C Library (libc.a)

Syntax

#include <stdlib.h>

char *ptsname (FileDescriptor)

int FileDescriptor

Description

The ptsname subroutine gets the path name of the slave pseudo-terminal associated with the master

pseudo-terminal device defined by the FileDescriptor parameter.

Parameters

 FileDescriptor Specifies the file descriptor of the master pseudo-terminal device

Return Values

The ptsname subroutine returns a pointer to a string containing the null-terminated path name of the

pseudo-terminal device associated with the file descriptor specified by the FileDescriptor parameter. A null

pointer is returned and the errno global variable is set to indicate the error if the file descriptor does not

describe a pseudo-terminal device in the /dev directory.

Files

 /dev/* Terminal device special files.

Related Information

The ttyname subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.3 General Programming

Concepts: Writing and Debugging Programs.

1226 Technical Reference, Volume 1: Base Operating System and Extensions

putc, putchar, fputc, or putw Subroutine

Purpose

Writes a character or a word to a stream.

Library

Standard I/O Package (libc.a)

Syntax

#include <stdio.h>

int putc (Character, Stream)

int Character;

FILE *Stream;

int putchar (Character)

int Character;

int fputc (Character, Stream)

int Character;

FILE *Stream;

int putw (Word, Stream)

int Word;

FILE *Stream;

Description

The putc and putchar macros write a character or word to a stream. The fputc and putw subroutines

serve similar purposes but are true subroutines.

The putc macro writes the character Character (converted to an unsigned char data type) to the output

specified by the Stream parameter. The character is written at the position at which the file pointer is

currently pointing, if defined.

The putchar macro is the same as the putc macro except that putchar writes to the standard output.

The fputc subroutine works the same as the putc macro, but fputc is a true subroutine rather than a

macro. It runs more slowly than putc, but takes less space per invocation.

Because putc is implemented as a macro, it incorrectly treats a Stream parameter with side effects, such

as putc(C, *f++). For such cases, use the fputc subroutine instead. Also, use fputc whenever you need to

pass a pointer to this subroutine as a parameter to another subroutine.

The putc and putchar macros have also been implemented as subroutines for ANSI compatibility. To

access the subroutines instead of the macros, insert #undef putc or #undef putchar at the beginning of

the source file.

The putw subroutine writes the word (int data type) specified by the Word parameter to the output

specified by the Stream parameter. The word is written at the position at which the file pointer, if defined,

is pointing. The size of a word is the size of an integer and varies from machine to machine. The putw

subroutine does not assume or cause special alignment of the data in the file.

Base Operating System (BOS) Runtime Services (A-P) 1227

After the fputcw, putwc, fputc, putc, fputs, puts, or putw subroutine runs successfully, and before the

next successful completion of a call either to the fflush or fclose subroutine on the same stream or to the

exit or abort subroutine, the st_ctime and st_mtime fields of the file are marked for update.

Because of possible differences in word length and byte ordering, files written using the putw subroutine

are machine-dependent, and may not be readable using the getw subroutine on a different processor.

With the exception of stderr, output streams are, by default, buffered if they refer to files, or line-buffered if

they refer to terminals. The standard error output stream, stderr, is unbuffered by default, but using the

freopen subroutine causes it to become buffered or line-buffered. Use the setbuf subroutine to change

the stream buffering strategy.

When an output stream is unbuffered, information is queued for writing on the destination file or terminal

as soon as it is written. When an output stream is buffered, many characters are saved and written as a

block. When an output stream is line-buffered, each line of output is queued for writing on the destination

terminal as soon as the line is completed (that is, as soon as a new-line character is written or terminal

input is requested).

Parameters

 Stream Points to the file structure of an open file.

Character Specifies a character to be written.

Word Specifies a word to be written (not portable because word length and byte-ordering are

machine-dependent).

Return Values

Upon successful completion, these functions each return the value written. If these functions fail, they

return the constant EOF. They fail if the Stream parameter is not open for writing, or if the output file size

cannot be increased. Because the EOF value is a valid integer, you should use the ferror subroutine to

detect putw errors.

Error Codes

The fputc subroutine will fail if either the Stream is unbuffered or the Stream buffer needs to be flushed,

and:

 EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying Stream and the process would be

delayed in the write operation.

EBADF The file descriptor underlying Stream is not a valid file descriptor open for writing.

EFBIG An attempt was made to write a file that exceeds the file size of the process limit or the maximum file

size.

EFBIG The file is a regular file and an attempt was made to write at or beyond the offset maximum.

EINTR The write operation was terminated due to the receipt of a signal, and either no data was transferred or

the implementation does not report partial transfers for this file.

Note: Depending upon which library routine the application binds to, this subroutine may return EINTR.

Refer to the signal Subroutine regarding sa_restart.

EIO A physical I/O error has occurred, or the process is a member of a background process group attempting

to perform a write subroutine to its controlling terminal, the TOSTOP flag is set, the process is neither

ignoring nor blocking the SIGTTOU signal and the process group of the process is orphaned. This error

may also be returned under implementation-dependent conditions.

ENOSPC There was no free space remaining on the device containing the file.

EPIPE An attempt is made to write to a pipe or first-in-first-out (FIFO) that is not open for reading by any

process. A SIGPIPE signal will also be sent to the process.

1228 Technical Reference, Volume 1: Base Operating System and Extensions

The fputc subroutine may fail if:

 ENOMEM Insufficient storage space is available.

ENXIO A request was made of a nonexistent device, or the request was outside the capabilities of the device.

Related Information

The fclose or fflush (“fclose or fflush Subroutine” on page 249) subroutine, feof, ferror, clearerr, or

fileno (“feof, ferror, clearerr, or fileno Macro” on page 264) subroutine, fopen, freopen, or fdopen (“fopen,

fopen64, freopen, freopen64 or fdopen Subroutine” on page 281) subroutine, fread or fwrite (“fread or

fwrite Subroutine” on page 304) subroutine, getc, fgetc, getchar, or getw (“getc, getchar, fgetc, or getw

Subroutine” on page 340) subroutine, getwc, fgetwc, or getwchar (“getwc, fgetwc, or getwchar

Subroutine” on page 468) subroutine, printf, fprintf, sprintf, NLprintf, NLfprintf, NLsprintf, or wsprintf

(“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1079)

subroutine, putwc, fputwc, or putwchar (“putwc, putwchar, or fputwc Subroutine” on page 1244)

subroutine, puts or fputs (“puts or fputs Subroutine” on page 1236) subroutine, setbuf subroutine.

putconfattrs Subroutine

Purpose

Accesses system information in the system information database.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

#include <userconf.h>

int putconfattrs (Table, Attributes, Count)

char * Table;

dbattr_t * Attributes;

int Count

Description

The putconfattrs subroutine writes one or more attributes into the system information database. If the

database is not already open, the subroutine does an implicit open for reading and writing. Data changed

by putconfattrs must be explicitly committed by calling the putconfattr subroutine with a Type parameter

specifying the SEC_COMMIT value. Until the data is committed, only get subroutine calls within the

process return the written data.

The Attributes array contains information about each attribute that is to be written. The dbattr_t data

structure contains the following fields:

attr_name

The name of the desired attribute.

attr_idx

Used internally by the putconfattrs subroutine.

attr_type

The type of the desired attribute. The list of attribute types is defined in the usersec.h header file.

attr_flag

The results of the request to write the desired attribute.

Base Operating System (BOS) Runtime Services (A-P) 1229

attr_un

A union containing the values to be written. Its union members that follow correspond to the

definitions of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:

un_char

Attributes of type SEC_CHAR and SEC_LIST store a pointer to the value to be written.

The caller is responsible for freeing this memory.

un_int Attributes of type SEC_INT and SEC_BOOL contain the value of the attribute to be

written.

un_long

Attributes of type SEC_LONG contain the value of the attribute to be written.

un_llong

Attributes of type SEC_LLONG contain the value of the attribute to be written.

attr_domain

The authentication domain containing the attribute. The putconfattrs subroutine stores the name

of the authentication domain that was used to write this attribute if it is not initialized by the caller.

The putconfattrs subroutine is responsible for managing the memory referenced by this pointer.

Use the setuserdb and enduserdb subroutines to open and close the system information database.

Failure to explicitly open and close the system information database can result in loss of memory and

performance.

Parameters

 Table The system information table containing the desired attributes. The list of valid system

information tables is defined in the userconf.h header file.

Attributes A pointer to an array of one or more elements of type dbattr_t. The list of system attributes

is defined in the usersec.h header file.

Count The number of array elements in Attributes.

Security

Files accessed:

 Mode File

rw /etc/security/.ids

rw /etc/security/audit/config

rw /etc/security/audit/events

rw /etc/security/audit/objects

rw /etc/security/login.cfg

rw /etc/security/portlog

rw /etc/security/roles

rw /usr/lib/security/methods.cfg

rw /usr/lib/security/mkuser.sys

Return Values

The putconfattrs subroutine, when successfully completed, returns a value of 0. Otherwise, a value of -1

is returned and the errno global variable is set to indicate the error.

Error Codes

The putconfattrs subroutine fails if one or more of the following are true:

 EACCESS The system information database could not be accessed for writing.

1230 Technical Reference, Volume 1: Base Operating System and Extensions

EINVAL The Table parameter is the NULL pointer.

EINVAL The Attributes parameter does not point to valid data for the requested attribute.

Limited testing is possible and all errors might not be detected.

EINVAL The Count parameter is less than or equal to 0.

ENOENT The specified Table does not exist.

If the putconfattrs subroutine fails to write an attribute, one or more of the following errors is returned in

the attr_flag field of the corresponding Attributes element:

 EACCESS The user does not have access to the attribute specified in the attr_name field.

EINVAL The attr_type field in the Attributes entry contains an invalid type.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid data for

this type of attribute. Limited testing is possible and all errors might not be detected.

ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined for this

system table.

Related Information

The setuserdb Subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

putenv Subroutine

Purpose

Sets an environment variable.

Library

Standard C Library (libc.a)

Syntax

int putenv (String)

char *String;

Description

Attention: Unpredictable results can occur if a subroutine passes the putenv subroutine a pointer to an

automatic variable and then returns while the variable is still part of the environment.

The putenv subroutine sets the value of an environment variable by altering an existing variable or by

creating a new one. The String parameter points to a string of the form Name=Value, where Name is the

environment variable and Value is the new value for it.

The memory space pointed to by the String parameter becomes part of the environment, so that altering

the string effectively changes part of the environment. The space is no longer used after the value of the

environment variable is changed by calling the putenv subroutine again. Also, after the putenv subroutine

is called, environment variables are not necessarily in alphabetical order.

The putenv subroutine manipulates the environ external variable and can be used in conjunction with the

getenv subroutine. However, the EnvironmentPointer parameter, the third parameter to the main

subroutine, is not changed.

Base Operating System (BOS) Runtime Services (A-P) 1231

The putenv subroutine uses the malloc subroutine to enlarge the environment.

Parameters

 String A pointer to the Name=Value string.

Return Values

Upon successful completion, a value of 0 is returned. If the malloc subroutine is unable to obtain sufficient

space to expand the environment, then the putenv subroutine returns a nonzero value.

Related Information

The exec: execl, execv, execle, execlp, execvp, or exect (“exec: execl, execle, execlp, execv, execve,

execvp, or exect Subroutine” on page 232) subroutine, getenv (“getenv Subroutine” on page 357)

subroutine, malloc (“malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or

posix_memalign Subroutine” on page 764) subroutine.

putgrent Subroutine

Purpose

Updates group descriptions.

Library

Standard C Library (libc.a)

Syntax

int putgrent (grp, fp)

struct group *grp;

FILE *fp;

Description

The putgrent subroutine updates group descriptions. The grp parameter is a pointer to a group structure,

as created by the getgrent, getgrgid, and getgrnam subroutines.

The putgrent subroutine writes a line on the stream specified by the fp parameter. The stream matches

the format of /etc/group.

The gr_passwd field of the line written is always set to ! (exclamation point).

Parameters

 grp Pointer to a group structure.

fp Specifies the stream to be written to.

Return Values

The putgrent subroutine returns a value of 0 upon successful completion. If putgrent fails, a nonzero

value is returned.

1232 Technical Reference, Volume 1: Base Operating System and Extensions

Files

/etc/group

/etc/security/group

Related Information

The “getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine” on page 363.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

putgroupattrs Subroutine

Purpose

Stores multiple group attributes in the group database.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

int putgroupattrs (Group, Attributes, Count)

char * Group;

dbattr_t * Attributes;

int Count

Description

The putgroupattrs subroutine writes multiple group attributes into the group database. If the database is

not already open, this subroutine does an implicit open for reading and writing. Data changed by

putgroupattrs must be explicitly committed by calling the putgroupattr subroutine with a Type parameter

specifying the SEC_COMMIT value. Until the data is committed, only get subroutine calls within the

process return the written data.

The Attributes array contains information about each attribute that is to be written. Each element in the

Attributes array must be examined upon a successful call to putgroupattrs to determine if the Attributes

array entry was successfully put. The dbattr_t data structure contains the following fields:

attr_name

The name of the desired attribute.

attr_idx

Used internally by the putgroupattrs subroutine.

attr_type

The type of the desired attribute. The list of attribute types is defined in the usersec.h header file.

attr_flag

The results of the request to write the desired attribute.

attr_un

A union containing the values to be written. Its union members that follow correspond to the

definitions of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:

Base Operating System (BOS) Runtime Services (A-P) 1233

un_char

Attributes of type SEC_CHAR and SEC_LIST store a pointer to the value to be written.

The caller is responsible for freeing this memory.

un_int Attributes of type SEC_INT and SEC_BOOL contain the value of the attribute to be

written.

un_long

Attributes of type SEC_LONG contain the value of the attribute to be written.

un_llong

Attributes of type SEC_LLONG contain the value of the attribute to be written.

attr_domain

The authentication domain containing the attribute. The putgroupattrs subroutine stores the name

of the authentication domain that was used to write this attribute if it is not initialized by the caller.

The putgroupattrs subroutine is responsible for managing the memory referenced by this pointer.

If attr_domain is specified for an attribute, the put request is sent only to that domain.

If attr_domain is not specified (that is, set to NULL), putgroupattrs attempts to put the attributes

to the first domain associated with the user. All put requests for the attributes with a NULL

attr_domain are sent to the same domain. In other words, values cannot be put into different

domains where attr_domain is unspecified; attr_domain is set to the name of the domain where

the value is put and returned to the invoker.

When attr_domain is not specified, the list of searchable domains can be restricted to a particular

domain by using the setauthdb function call.

Use the setuserdb and enduserdb subroutines to open and close the group database. Failure to explicitly

open and close the group database can result in loss of memory and performance.

Parameters

 Group Specifies the name of the group for which the attributes are to be written.

Attributes A pointer to an array of one or more elements of type dbattr_t. The list of group attributes is

defined in the usersec.h header file.

Count The number of array elements in Attributes.

Security

Files accessed:

 Mode File

rw /etc/group

rw /etc/security/group

rw /etc/security/smitacl.group

Return Values

The putgroupattrs subroutine returns a value of 0 if the Group exists, even in the case when no attributes

in the Attributes array were successfully updated. Otherwise, a value of -1 is returned and the errno global

variable is set to indicate the error.

Error Codes

The putgroupattrs subroutine fails if one or more of the following are true:

 EACCESS The system information database could not be accessed for writing.

EINVAL The Group parameter is the NULL pointer.

1234 Technical Reference, Volume 1: Base Operating System and Extensions

EINVAL The Attributes parameter does not point to valid data for the requested attribute.

Limited testing is possible and all errors might not be detected.

EINVAL The Count parameter is less than or equal to 0.

ENOENT The specified Group does not exist.

If the putgroupattrs subroutine fails to write an attribute, one or more of the following errors is returned in

the attr_flag field of the corresponding Attributes element:

 EACCESS The user does not have access to the attribute specified in the attr_name field.

EINVAL The attr_type field in the Attributes entry contains an invalid type.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid data for

this type of attribute. Limited testing is possible and all errors might not be detected.

ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined for this

group.

Examples

The following sample test program displays the output to a call to putgroupattrs. In this example, the

system has a user named foo and a group named bar.

#include <stdio.h>

#include <strings.h>

#include <string.h>

#include <usersec.h>

char * CommaToNSL(char *);

#define NATTR 2 /* Number of attributes to be put. */

#define GROUPNAME "bar" /* Group name. */

#define DOMAIN "files" /* Domain where attributes are going to put. */

main(int argc, char *argv[]) {

 int rc;

 int i;

 dbattr_t attributes[NATTR];

 /* Open the group database */

 setuserdb(S_WRITE);

 /* Valid put */

 attributes[0].attr_name = S_ADMIN;

 attributes[0].attr_type = SEC_BOOL;

 attributes[0].attr_domain = DOMAIN;

 attributes[0].attr_char = strdup("false");

 /* Valid put */

 attributes[1].attr_name = S_USERS;

 attributes[1].attr_type = SEC_LIST;

 attributes[1].attr_domain = DOMAIN;

 attributes[1].attr_char = CommaToNSL("foo");

 rc = putgroupattrs(GROUPNAME, attributes, NATTR);

 if (rc) {

 printf("putgroupattrs failed \n");

 goto clean_exit;

 }

 for (i = 0; i < NATTR; i++) {

Base Operating System (BOS) Runtime Services (A-P) 1235

if (attributes[i].attr_flag)

 printf("Put failed for attribute %s. errno = %d \n",

 attributes[i].attr_name, attributes[i].attr_flag);

 else

 printf("Put succeded for attribute %s \n",

 attributes[i].attr_name);

 }

clean_exit:

 enduserdb();

 if (attributes[0].attr_char)

 free(attributes[0].attr_char);

 if (attributes[1].attr_char)

 free(attributes[1].attr_char);

 exit(rc);

}

/*

 * Returns a new NSL created from a comma separated list.

 * The comma separated list is unmodified.

 *

 */

char *

CommaToNSL(char *CommaList)

{

 char *NSL = (char *) NULL;

 char *s;

 if (!CommaList)

 return(NSL);

 if (!(NSL = (char *) malloc(strlen(CommaList) + 2)))

 return(NSL);

 strcpy(NSL, CommaList);

 for (s = NSL; *s; s++)

 if (*s == ’,’)

 *s = ’\0’;

 *(++s) = ’\0’;

}

The following output for the call is expected:

Put succeeded for attribute admin

Put succeeded for attribute users

Related Information

The setuserdb Subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

puts or fputs Subroutine

Purpose

Writes a string to a stream.

1236 Technical Reference, Volume 1: Base Operating System and Extensions

Library

Standard I/O Library (libc.a)

Syntax

#include <stdio.h>

int puts (String)

const char *String;

int fputs (String, Stream)

const char *String;

FILE *Stream;

Description

The puts subroutine writes the string pointed to by the String parameter to the standard output stream,

stdout, and appends a new-line character to the output.

The fputs subroutine writes the null-terminated string pointed to by the String parameter to the output

stream specified by the Stream parameter. The fputs subroutine does not append a new-line character.

Neither subroutine writes the terminating null character.

After the fputwc, putwc, fputc, fputs, puts, or putw subroutine runs successfully, and before the next

successful completion of a call either to the fflush or fclose subroutine on the same stream or a call to

the exit or abort subroutine, the st_ctime and st_mtime fields of the file are marked for update.

Parameters

 String Points to a string to be written to output.

Stream Points to the FILE structure of an open file.

Return Values

Upon successful completion, the puts and fputs subroutines return the number of characters written.

Otherwise, both subroutines return EOF, set an error indicator for the stream and set the errno global

variable to indicate the error. This happens if the routines try to write to a file that has not been opened for

writing.

Error Codes

If the puts or fputs subroutine is unsuccessful because the output stream specified by the Stream

parameter is unbuffered or the buffer needs to be flushed, it returns one or more of the following error

codes:

 EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor specified by the Stream parameter and

the process would be delayed in the write operation.

EBADF Indicates that the file descriptor specified by the Stream parameter is not a valid file descriptor open for

writing.

EFBIG Indicates that an attempt was made to write to a file that exceeds the process’ file size limit or the

systemwide maximum file size.

EINTR Indicates that the write operation was terminated due to receipt of a signal and no data was transferred.

Note: Depending upon which library routine the application binds to, this subroutine may return EINTR.

Refer to the signal subroutine regarding the SA_RESTART bit.

Base Operating System (BOS) Runtime Services (A-P) 1237

EIO Indicates that the process is a member of a background process group attempting to perform a write to

its controlling terminal, the TOSTOP flag is set, the process is neither ignoring or blocking the SIGTTOU

signal, and the process group of the process has no parent process.

ENOSPC Indicates that there was no free space remaining on the device containing the file specified by the

Stream parameter.

EPIPE Indicates that an attempt is made to write to a pipe or first-in-first-out (FIFO) that is not open for reading

by any process. A SIGPIPE signal will also be sent to the process.

ENOMEM Indicates that insufficient storage space is available.

ENXIO Indicates that a request was made of a nonexistent device, or the request was outside the capabilities of

the device.

Related Information

The fopen, freopen, or fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 281)

subroutine, fread, or fwrite (“fread or fwrite Subroutine” on page 304) subroutine, gets or fgets (“gets or

fgets Subroutine” on page 425) subroutine, getws or fgetws (“getws or fgetws Subroutine” on page 471)

subroutine, printf, fprintf, and sprintf (“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or

vwsprintf Subroutine” on page 1079) subroutine, putc, putchar, fputc, or putw (“putc, putchar, fputc, or

putw Subroutine” on page 1227)subroutine, putwc, putwchar, or fputwc (“putwc, putwchar, or fputwc

Subroutine” on page 1244) subroutine, putws or fputws (“putws or fputws Subroutine” on page 1246)

subroutine.

The feof, ferror, clearerr, or fileno (“feof, ferror, clearerr, or fileno Macro” on page 264) macros.

List of String Manipulation Services.

Subroutines Overview in AIX 5L Version 5.3 General Programming Concepts: Writing and Debugging

Programs.

putuserattrs Subroutine

Purpose

Stores multiple user attributes in the user database.

Library

Security Library (libc.a)

Syntax

#include <usersec.h>

int putuserattrs (User, Attributes, Count)

char * User;

dbattr_t * Attributes;

int Count

Description

The putuserattrs subroutine writes multiple user attributes into the user database. If the database is not

already open, this subroutine does an implicit open for reading and writing. Data changed by putuserattrs

must be explicitly committed by calling the putuserattr subroutine with a Type parameter specifying the

SEC_COMMIT value. Until the data is committed, only get subroutine calls within the process return the

written data.

1238 Technical Reference, Volume 1: Base Operating System and Extensions

The Attributes array contains information about each attribute that is to be written. Each element in the

Attributes array must be examined upon a successful call to putuserattrs to determine if the Attributes

array entry was successfully put. The dbattr_t data structure contains the following fields:

attr_name

The name of the desired attribute.

attr_idx

Used internally by the putuserattrs subroutine.

attr_type

The type of the desired attribute. The list of attribute types is defined in the usersec.h header file.

attr_flag

The results of the request to write the desired attribute.

attr_un

A union containing the returned values. Its union members that follow correspond to the definitions

of the attr_char, attr_int, attr_long, and attr_llong macros, respectively:

un_char

Attributes of type SEC_CHAR and SEC_LIST contain a pointer to the value to be written.

The caller is responsible for freeing this memory.

un_int Attributes of type SEC_INT and SEC_BOOL contain the value of the attribute to be

written.

un_long

Attributes of type SEC_LONG contain the value of the attribute to be written.

un_llong

Attributes of type SEC_LLONG contain the value of the attribute to be written.

attr_domain

The authentication domain containing the attribute. The putuserattrs subroutine stores the name

of the authentication domain that was used to write this attribute if it is not initialized by the caller.

The putuserattrs subroutine is responsible for managing the memory referenced by this pointer.

If attr_domain is specified for an attribute, the put request is sent only to that domain.

If attr_domain is not specified (that is, set to NULL), putuserattrs attempts to put the attributes to

the first domain associated with the user. All put requests for the attributes with a NULL

attr_domain are sent to the same domain. In other words, values cannot be put into different

domains where attr_domain is unspecified; attr_domain is set to the name of the domain where

the value is put and returned to the invoker.

When attr_domain is not specified, the list of searchable domains can be restricted to a particular

domain by using the setauthdb function call.

Use the setuserdb and enduserdb subroutines to open and close the user database. Failure to explicitly

open and close the user database can result in loss of memory and performance.

Parameters

 User Specifies the name of the user for which the attributes are to be written.

Attributes A pointer to an array of one or more elements of type dbattr_t. The list of user attributes is

defined in the usersec.h header file.

Count The number of array elements in Attributes.

Security

Files accessed:

 Mode File

Base Operating System (BOS) Runtime Services (A-P) 1239

rw /etc/group

rw /etc/passwd

rw /etc/security/audit/config

rw /etc/security/environ

rw /etc/security/group

rw /etc/security/lastlog

rw /etc/security/limits

rw /etc/security/passwd

rw /etc/security/pwdhist.dir

rw /etc/security/pwdhist.pag

rw /etc/security/smitacl.user

rw /etc/security/user.roles

Return Values

The putuserattrs subroutine returns a value of 0 if the User exists, even in the case when no attributes in

the Attributes array were successfully updated. Otherwise, a value of -1 is returned and the errno global

variable is set to indicate the error.

Error Codes

The putuserattrs subroutine fails if one or more of the following is true:

 EACCESS The system information database could not be accessed for writing.

EINVAL The User parameter is the NULL pointer.

EINVAL The Attributes parameter does not point to valid data for the requested attribute.

Limited testing is possible and all errors might not be detected.

EINVAL The Attributes parameter does not point to valid data for the requested attribute.

Limited testing is possible and all errors might not be detected.

ENOENT The specified User parameter does not exist.

If the putuserattrs subroutine fails to write an attribute, one or more of the following errors is returned in

the attr_flag field of the corresponding Attributes element:

 EACCESS The user does not have access to the attribute specified in the attr_name field.

EINVAL The attr_type field in the Attributes entry contains an invalid type.

EINVAL The attr_un field in the Attributes entry does not point to a valid buffer or to valid data for

this type of attribute. Limited testing is possible and all errors might not be detected.

ENOATTR The attr_name field in the Attributes entry specifies an attribute that is not defined for this

user.

Examples

The following sample test program displays the output to a call to putuserattrs. In this example, the

system has a user named foo.

#include <stdio.h>

#include <strings.h>

#include <string.h>

#include <usersec.h>

char * CommaToNSL(char *);

#define NATTR 4 /* Number of attributes to be put */

#define USERNAME "foo" /* User name */

#define DOMAIN "files" /* domain where attributes are going to put. */

1240 Technical Reference, Volume 1: Base Operating System and Extensions

main(int argc, char *argv[]) {

 int rc;

 int i;

 dbattr_t attributes[NATTR];

 /* Open the user database */

 setuserdb(S_WRITE);

 /* Valid put */

 attributes[0].attr_name = S_GECOS;

 attributes[0].attr_type = SEC_CHAR;

 attributes[0].attr_domain = DOMAIN;

 attributes[0].attr_char = strdup("I am foo");

 /* Invalid put */

 attributes[1].attr_name = S_LOGINCHK;

 attributes[1].attr_type = SEC_BOOL;

 attributes[1].attr_domain = DOMAIN;

 attributes[1].attr_char = strdup("allow");

 /* Valid put */

 attributes[2].attr_name = S_MAXAGE;

 attributes[2].attr_type = SEC_INT;

 attributes[2].attr_domain = DOMAIN;

 attributes[2].attr_int = 10;

 /* Valid put */

 attributes[3].attr_name = S_GROUPS;

 attributes[3].attr_type = SEC_LIST;

 attributes[3].attr_domain = DOMAIN;

 attributes[3].attr_char = CommaToNSL("staff,system");

 rc = putuserattrs(USERNAME, attributes, NATTR);

 if (rc) {

 printf("putuserattrs failed \n");

 goto clean_exit;

 }

 for (i = 0; i < NATTR; i++) {

 if (attributes[i].attr_flag)

 printf("Put failed for attribute %s. errno = %d \n",

 attributes[i].attr_name, attributes[i].attr_flag);

 else

 printf("Put succeded for attribute %s \n",

 attributes[i].attr_name);

 }

clean_exit:

 enduserdb();

 if (attributes[0].attr_char)

 free(attributes[0].attr_char);

 if (attributes[1].attr_char)

 free(attributes[1].attr_char);

 if (attributes[3].attr_char)

 free(attributes[3].attr_char);

 exit(rc);

}

Base Operating System (BOS) Runtime Services (A-P) 1241

/*

 * Returns a new NSL created from a comma separated list.

 * The comma separated list is unmodified.

 *

 */

char *

CommaToNSL(char *CommaList)

{

 char *NSL = (char *) NULL;

 char *s;

 if (!CommaList)

 return(NSL);

 if (!(NSL = (char *) malloc(strlen(CommaList) + 2)))

 return(NSL);

 strcpy(NSL, CommaList);

 for (s = NSL; *s; s++)

 if (*s == ’,’)

 *s = ’\0’;

 *(++s) = ’\0’;

}

The following output for the call is expected:

Put succeeded for attribute gecos

Put failed for attribute login (errno = 22)

Put succeeded for attribute maxage

Put succeeded for attribute groups

Related Information

The setuserdb Subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.3 General

Programming Concepts: Writing and Debugging Programs.

putuserpwx Subroutine

Purpose

Accesses the user authentication data.

Library

Security Library (libc.a)

Syntax

#include <userpw.h>

int putuserpwx (Password)

struct userpwx *Password;

Description

The putuserpwx subroutine modifies user authentication information. It can be used with those

administrative domains that support modifying the user’s encrypted password with the putuserattrs

subroutine. The chpassx subroutine must be used to modify authentication information for administrative

domains that do not support that functionality.

1242 Technical Reference, Volume 1: Base Operating System and Extensions

The putuserpwx subroutine updates or creates password authentication data for the user defined in the

Password parameter in the administrative domain that is specified. The password entry created by the

putuserpwx subroutine is used only if there is an ! (exclamation point) in the user’s password (S_PWD)

attribute. The user application can use the putuserattrs subroutine to add an ! to this field.

The putuserpwx subroutine opens the authentication database read-write if no other access has taken

place, but the program should call setpwdb (S_READ | S_WRITE) before calling the putuserpwx

subroutine and endpwdb when access to the authentication information is no longer required.

The administrative domain specified in the upw_authdb field is set by the getuserpwx subroutine. It must

be specified by the application program if the getuserpwx subroutine is not used to produce the Password

parameter.

Parameters

 Password Specifies the password structure used to update the password information for this user. The

fields in a userpwx structure are defined in the userpw.h file and contains the following

members:

upw_name

Specifies the user’s name.

upw_passwd

Specifies the user’s encrypted password.

upw_lastupdate

Specifies the time, in seconds, since the epoch (that is, 00:00:00 GMT, 1 January

1970), when the password was last updated.

upw_flags

Specifies attributes of the password. This member is a bit mask of one or more of

the following values, defined in the userpw.h file:

PW_NOCHECK

Specifies that new passwords need not meet password restrictions in effect

for the system.

PW_ADMCHG

Specifies that the password was last set by an administrator and must be

changed at the next successful use of the login or su command.

PW_ADMIN

Specifies that password information for this user can only be changed by

the root user.

upw_authdb

Specifies the administrative domain containing the authentication data.

Security

Files accessed:

 Mode File

rw /etc/security/passwd

Return Values

If successful, the putuserpwx subroutine returns a value of 0. If the subroutine failed to update or create

the password information, the putuserpwx subroutine returns a nonzero value.

Base Operating System (BOS) Runtime Services (A-P) 1243

Error Codes

The getuserpwx subroutine fails if the following value is true:

 ENOENT The user does not have an entry in the /etc/security/passwd file.

Subroutines invoked by the putuserpwx subroutine can also set errors.

Files

 /etc/security/passwd Contains user passwords.

Related Information

The “getuserattr, IDtouser, nextuser, or putuserattr Subroutine” on page 445, “putgroupattrs Subroutine” on

page 1233, “putuserattrs Subroutine” on page 1238, setpwdb Subroutinesetuserdb Subroutine.

putwc, putwchar, or fputwc Subroutine

Purpose

Writes a character or a word to a stream.

Library

Standard I/O Library (libc.a)

Syntax

#include <stdio.h>

wint_t putwc(Character, Stream)

wint_t Character;

FILE *Stream;

wint_t putwchar(Character)

wint_t Character;

wint_t fputwc(Character, Stream)

wint_t Character;

FILE Stream;

Description

The putwc subroutine writes the wide character specified by the Character parameter to the output stream

pointed to by the Stream parameter. The wide character is written as a multibyte character at the

associated file position indicator for the stream, if defined. The subroutine then advances the indicator. If

the file cannot support positioning requests, or if the stream was opened with append mode, the character

is appended to the output stream.

The putwchar subroutine works like the putwc subroutine, except that putwchar writes the specified wide

character to the standard output.

The fputwc subroutine works the same as the putwc subroutine.

Output streams, with the exception of stderr, are buffered by default if they refer to files, or line-buffered if

they refer to terminals. The standard error output stream, stderr, is unbuffered by default, but using the

freopen subroutine causes it to become buffered or line-buffered. Use the setbuf subroutine to change

the stream’s buffering strategy.

1244 Technical Reference, Volume 1: Base Operating System and Extensions

After the fputwc, putwc, fputc. putc, fputs, puts, or putw subroutine runs successfully, and before the

next successful completion of a call either to the fflush or fclose subroutine on the same stream or to the

exit or abort subroutine, the st_ctime and st_mtime fields of the file are marked for update.

Parameters

 Character Specifies a wide character of type wint_t.

Stream Specifies a stream of output data.

Return Values

Upon successful completion, the putwc, putwchar, and fputwc subroutines return the wide character that

is written. Otherwise WEOF is returned, the error indicator for the stream is set, and the errno global

variable is set to indicate the error.

Error Codes

If the putwc, putwchar, or fputwc subroutine fails because the stream is not buffered or data in the buffer

needs to be written, it returns one or more of the following error codes:

 EAGAIN Indicates that the O_NONBLOCK flag is set for the file descriptor underlying the Stream parameter,

delaying the process during the write operation.

EBADF Indicates that the file descriptor underlying the Stream parameter is not valid and cannot be updated

during the write operation.

EFBIG Indicates that the process attempted to write to a file that already equals or exceeds the file-size limit for

the process. The file is a regular file and an attempt was made to write at or beyond the offset maximum

associated with the corresponding stream.

EILSEQ Indicates that the wide-character code does not correspond to a valid character.

EINTR Indicates that the process has received a signal that terminates the read operation.

EIO Indicates that the process is in a background process group attempting to perform a write operation to its

controlling terminal. The TOSTOP flag is set, the process is not ignoring or blocking the SIGTTOU flag,

and the process group of the process is orphaned.

ENOMEM Insufficient storage space is available.

ENOSPC Indicates that no free space remains on the device containing the file.

ENXIO Indicates a request was made of a non-existent device, or the request was outside the capabilities of the

device.

EPIPE Indicates that the process has attempted to write to a pipe or first-in-first-out (FIFO) that is not open for

reading. The process will also receive a SIGPIPE signal.

Related Information

Other wide character I/O subroutines: fgetwc (“getwc, fgetwc, or getwchar Subroutine” on page 468)

subroutine, fgetws (“getws or fgetws Subroutine” on page 471) subroutine, fputws (“putws or fputws

Subroutine” on page 1246) subroutine, getwc (“getwc, fgetwc, or getwchar Subroutine” on page 468)

subroutine, getwchar (“getwc, fgetwc, or getwchar Subroutine” on page 468) subroutine, getws (“getws or

fgetws Subroutine” on page 471) subroutine, putws (“putws or fputws Subroutine” on page 1246)

subroutine, ungetwc subroutine.

Related standard I/O subroutines: fdopen (“fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on

page 281) subroutine, fgets (“gets or fgets Subroutine” on page 425) subroutine, fopen (“fopen, fopen64,

freopen, freopen64 or fdopen Subroutine” on page 281) subroutine, fprintf (“printf, fprintf, sprintf, snprintf,

wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1079) subroutine, fputc (“putc, putchar,

fputc, or putw Subroutine” on page 1227) subroutine, fputs (“puts or fputs Subroutine” on page 1236)

subroutine, fread (“fread or fwrite Subroutine” on page 304) subroutine, freopen (“fopen, fopen64,

freopen, freopen64 or fdopen Subroutine” on page 281) subroutine, fwrite (“fread or fwrite Subroutine” on

page 304) subroutine, gets (“gets or fgets Subroutine” on page 425) subroutine, printf (“printf, fprintf,

sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1079) subroutine, putc

Base Operating System (BOS) Runtime Services (A-P) 1245

(“putc, putchar, fputc, or putw Subroutine” on page 1227) subroutine, putchar (“putc, putchar, fputc, or

putw Subroutine” on page 1227) subroutine, puts (“puts or fputs Subroutine” on page 1236) subroutine,

putw (“putc, putchar, fputc, or putw Subroutine” on page 1227) subroutine, sprintf (“printf, fprintf, sprintf,

snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine” on page 1079) subroutine.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overviewand Multibyte Code and Wide Character Code Conversion

Subroutines in AIX 5L Version 5.3 National Language Support Guide and Reference.

putws or fputws Subroutine

Purpose

Writes a wide-character string to a stream.

Library

Standard I/O Library (libc.a)

Syntax

#include <stdio.h>

int putws (String)

const wchar_t *String;

int fputws (String, Stream)

const wchar_t *String;

FILE *Stream;

Description

The putws subroutine writes the const wchar_t string pointed to by the String parameter to the standard

output stream (stdout) as a multibyte character string and appends a new-line character to the output. In

all other respects, the putws subroutine functions like the puts subroutine.

The fputws subroutine writes the const wchar_t string pointed to by the String parameter to the output

stream as a multibyte character string. In all other respects, the fputws subroutine functions like the fputs

subroutine.

After the putws or fputws subroutine runs successfully, and before the next successful completion of a

call to the fflush or fclose subroutine on the same stream or a call to the exit or abort subroutine, the

st_ctime and st_mtime fields of the file are marked for update.

Parameters

 String Points to a string to be written to output.

Stream Points to the FILE structure of an open file.

Return Values

Upon successful completion, the putws and fputws subroutines return a nonnegative number. Otherwise,

a value of -1 is returned, and the errno global variable is set to indicate the error.

1246 Technical Reference, Volume 1: Base Operating System and Extensions

Error Codes

The putws or fputws subroutine is unsuccessful if the stream is not buffered or data in the buffer needs

to be written, and one of the following errors occur:

 EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the Stream parameter, which delays the

process during the write operation.

EBADF The file descriptor underlying the Stream parameter is not valid and cannot be updated during the write

operation.

EFBIG The process attempted to write to a file that already equals or exceeds the file-size limit for the process.

EINTR The process has received a signal that terminates the read operation.

EIO The process is in a background process group attempting to perform a write operation to its controlling

terminal. The TOSTOP flag is set, the process is not ignoring or blocking the SIGTTOU flag, and the

process group of the process is orphaned.

ENOSPC No free space remains on the device containing the file.

EPIPE The process has attempted to write to a pipe or first-in-first-out (FIFO) that is not open for reading. The

process also receives a SIGPIPE signal.

EILSEQ The wc wide-character code does not correspond to a valid character.

Related Information

Other wide-character I/O subroutines: “getwc, fgetwc, or getwchar Subroutine” on page 468, “getws or

fgetws Subroutine” on page 471, “putwc, putwchar, or fputwc Subroutine” on page 1244, and ungetwc

subroutine.

Related standard I/O subroutines: “fopen, fopen64, freopen, freopen64 or fdopen Subroutine” on page 281,

“gets or fgets Subroutine” on page 425,“printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or

vwsprintf Subroutine” on page 1079, “putc, putchar, fputc, or putw Subroutine” on page 1227, “puts or

fputs Subroutine” on page 1236, “fread or fwrite Subroutine” on page 304.

Subroutines, Example Programs, and Libraries in AIX 5L Version 5.3 General Programming Concepts:

Writing and Debugging Programs.

National Language Support Overview and Multibyte Code and Wide Character Code Conversion

Subroutines in AIX 5L Version 5.3 National Language Support Guide and Reference.

pwdrestrict_method Subroutine

Purpose

Defines loadable password restriction methods.

Library

Syntax

int pwdrestrict_method (UserName, NewPassword, OldPassword, Message)

char * UserName;

char * NewPassword;

char * OldPassword;

char ** Message;

Description

The pwdrestrict_method subroutine extends the capability of the password restrictions software and lets

an administrator enforce password restrictions that are not provided by the system software.

Base Operating System (BOS) Runtime Services (A-P) 1247

Whenever users change their passwords, the system software scans the pwdchecks attribute defined for

that user for site specific restrictions. Since this attribute field can contain load module file names, for

example, methods, it is possible for the administrator to write and install code that enforces site specific

password restrictions.

The system evaluates the pwdchecks attribute’s value field in a left to right order. For each method that

the system encounters, the system loads and invokes that method. The system uses the load subroutine

to load methods. It invokes the load subroutine with a Flags value of 1 and a LibraryPath value of /usr/lib.

Once the method is loaded, the system invokes the method.

To create a loadable module, use the -e flag of the ld command. Note that the name pwdrestrict_method

given in the syntax is a generic name. The actual subroutine name can be anything (within the compiler’s

name space) except main. What is important is, that for whatever name you choose, you must inform the

ld command of the name so that the load subroutine uses that name as the entry point into the module. In

the following example, the C compiler compiles the pwdrestrict.c file and pass -e pwdrestrict_method to

the ld command to create the method called pwdrestrict:

cc -e pwdrestrict_method -o pwdrestrict pwdrestrict.c

The convention of all password restriction methods is to pass back messages to the invoking subroutine.

Do not print messages to stdout or stderr. This feature allows the password restrictions software to work

across network connections where stdout and stderr are not valid. Note that messages must be returned

in dynamically allocated memory to the invoking program. The invoking program will deallocate the

memory once it is done with the memory.

There are many caveats that go along with loadable subroutine modules:

1. The values for NewPassword and OldPassword are the actual clear text passwords typed in by the

user. If you copy these passwords into other parts of memory, clear those memory locations before

returning back to the invoking program. This helps to prevent clear text passwords from showing up in

core dumps. Also, do not copy these passwords into a file or anywhere else that another program can

access. Clear text passwords should never exist outside of the process space.

2. Do not modify the current settings of the process’ signal handlers.

3. Do not call any functions that will terminate the execution of the program (for example, the exit

subroutine, the exec subroutine). Always return to the invoking program.

4. The code must be thread-safe.

5. The actual load module must be kept in a write protected environment. The load module and directory

should be writable only by the root user.

One last note, all standard password restrictions are performed before any of the site specific methods are

invoked. Thus, methods are the last restrictions to be enforced by the system.

Parameters

 UserName Specifies a ″local″ user name.

NewPassword Specifies the new password in clear text (not encrypted).This value may be a NULL pointer.

Clear text passwords are always in 7 bit ASCII.

OldPassword Specifies the current password in clear text (not encrypted).This value may be a NULL pointer.

Clear text passwords are always in 7 bit ASCII.

Message Specifies the address of a pointer to malloc’ed memory containing an NLS error message. The

method is expected to supply the malloc’ed memory and the message.

1248 Technical Reference, Volume 1: Base Operating System and Extensions

Return Values

The method is expected to return the following values. The return values are listed in order of precedence.

 -1 Internal error. The method could not perform its password evaluation. The method must set the errno variable.

The method must supply an error message in Message unless it can’t allocate memory for the message. If it

cannot allocate memory, then it must return the NULL pointer in Message.

1 Failure. The password change did not meet the requirements of the restriction. The password restriction was

properly evaluated and the password change was not accepted. The method must supply an error message in

Message. The errno variable is ignored. Note that composition failures are cumulative, thus, even though a

failure condition is returned, trailing composition methods will be invoked.

0 Success. The password change met the requirements of the restriction. If necessary, the method may supply a

message in Message; otherwise, return the NULL pointer. The errno variable is ignored.

Base Operating System (BOS) Runtime Services (A-P) 1249

1250 Technical Reference, Volume 1: Base Operating System and Extensions

Appendix A. Base Operating System Error Codes for Services

That Require Path-Name Resolution

The following errors apply to any service that requires path name resolution:

 EACCES Search permission is denied on a component of the path prefix.

EFAULT The Path parameter points outside of the allocated address space of the process.

EIO An I/O error occurred during the operation.

ELOOP Too many symbolic links were encountered in translating the Path parameter.

ENAMETOOLONG A component of a path name exceeded 255 characters and the process has the

DisallowTruncation attribute (see the ulimit subroutine) or an entire path name exceeded

1023 characters.

ENOENT A component of the path prefix does not exist.

ENOENT A symbolic link was named, but the file to which it refers does not exist.

ENOENT The path name is null.

ENOTDIR A component of the path prefix is not a directory.

ESTALE The root or current directory of the process is located in a virtual file system that is

unmounted.

Related Information

List of File and Directory Manipulation Services.

© Copyright IBM Corp. 1994, 2005 1251

1252 Technical Reference, Volume 1: Base Operating System and Extensions

Appendix B. ODM Error Codes

When an ODM subroutine is unsuccessful, a value of -1 is returned and the odmerrno variable is set to

one of the following values:

 ODMI_BAD_CLASSNAME The specified object class name does not match the object class name in the

file. Check path name and permissions.

ODMI_BAD_CLXNNAME The specified collection name does not match the collection name in the file.

ODMI_BAD_CRIT The specified search criteria is incorrectly formed. Make sure the criteria

contains only valid descriptor names and the search values are correct. For

information on qualifying criteria, see ″Understanding ODM Object Searches″

in AIX 5L Version 5.3 General Programming Concepts: Writing and

Debugging Programs.

ODMI_BAD_LOCK Cannot set a lock on the file. Check path name and permissions.

ODMI_BAD_TIMEOUT The time-out value was not valid. It must be a positive integer.

ODMI_BAD_TOKEN Cannot create or open the lock file. Check path name and permissions.

ODMI_CLASS_DNE The specified object class does not exist. Check path name and permissions.

ODMI_CLASS_EXISTS The specified object class already exists. An object class must not exist when

it is created.

ODMI_CLASS_PERMS The object class cannot be opened because of the file permissions.

ODMI_CLXNMAGICNO_ERR The specified collection is not a valid object class collection.

ODMI_FORK Cannot fork the child process. Make sure the child process is executable and

try again.

ODMI_INTERNAL_ERR An internal consistency problem occurred. Make sure the object class is valid

or contact the person responsible for the system.

ODMI_INVALID_CLASS The specified file is not an object class.

ODMI_INVALID_CLXN Either the specified collection is not a valid object class collection or the

collection does not contain consistent data.

ODMI_INVALID_PATH The specified path does not exist on the file system. Make sure the path is

accessible.

ODMI_LINK_NOT_FOUND The object class that is accessed could not be opened. Make sure the linked

object class is accessible.

ODMI_LOCK_BLOCKED Cannot grant the lock. Another process already has the lock.

ODMI_LOCK_ENV Cannot retrieve or set the lock environment variable. Remove some

environment variables and try again.

ODMI_LOCK_ID The lock identifier does not refer to a valid lock. The lock identifier must be

the same as what was returned from the odm_lock (“odm_lock Subroutine”

on page 882) subroutine.

ODMI_MAGICNO_ERR The class symbol does not identify a valid object class.

ODMI_MALLOC_ERR Cannot allocate sufficient storage. Try again later or contact the person

responsible for the system.

ODMI_NO_OBJECT The specified object identifier did not refer to a valid object.

ODMI_OPEN_ERR Cannot open the object class. Check path name and permissions.

ODMI_OPEN_PIPE Cannot open a pipe to a child process. Make sure the child process is

executable and try again.

ODMI_PARAMS The parameters passed to the subroutine were not correct. Make sure there

are the correct number of parameters and that they are valid.

ODMI_READ_ONLY The specified object class is opened as read-only and cannot be modified.

ODMI_READ_PIPE Cannot read from the pipe of the child process. Make sure the child process

is executable and try again.

ODMI_TOOMANYCLASSES Too many object classes have been accessed. An application can only

access less than 1024 object classes.

ODMI_UNLINKCLASS_ERR Cannot remove the object class from the file system. Check path name and

permissions.

ODMI_UNLINKCLXN_ERR Cannot remove the object class collection from the file system. Check path

name and permissions.

© Copyright IBM Corp. 1994, 2005 1253

ODMI_UNLOCK Cannot unlock the lock file. Make sure the lock file exists.

Related Information

List of ODM Commands and Subroutines in AIX 5L Version 5.3 General Programming Concepts: Writing

and Debugging Programs.

1254 Technical Reference, Volume 1: Base Operating System and Extensions

Index

Special characters
_atojis macro 567

_check_lock Subroutine 125

_clear_lock Subroutine 126

_edata identifier 220

_end identifier 220

_exit subroutine 239

_Exit subroutine 239

_extext identifier 220

_jistoa macro 567

_lazySetErrorHandler Subroutine 575

_tojlower macro 567

_tojupper macro 567

_tolower subroutine 181

_toupper subroutine 181

/etc/filesystems file
accessing entries 361

/etc/hosts file
closing 870

retrieving host entries 869

/etc/utmp file
accessing entries 464

Numerics
3-byte integers

converting 577

A
a64l subroutine 1

abort subroutine 2

abs subroutine 3

absinterval subroutine 378

absolute path names
copying 470

determining 470

absolute value subroutines
cabs 127

cabsf 127

cabsl 127

fabsf 245

absolute values
computing complex 519

imaxabs 525

access control attributes
setting 142

access control information
changing 8

retrieving 10

setting 12, 14, 17, 25

access control subroutines
acl_chg 8

acl_fchg 8

acl_fget 10

acl_fput 12

acl_fset 14

access control subroutines (continued)
acl_get 10

acl_put 12

acl_set 14

aclx_convert 16

aclx_fget 17

aclx_fput 25

aclx_get 17

aclx_gettypeinfo 20

aclx_gettypes 21

aclx_print 23

aclx_printStr 23

aclx_put 25

aclx_scan 27

aclx_scanStr 27

chacl 142

chmod 146

chown 149

chownx 149

fchacl 142

fchmod 146

fchown 149

fchownx 149

frevoke 307

access subroutine 4

accessx subroutine 4

accounting subroutines
addproj 31

addprojdb 32

chprojattr 156

chprojattrdb 157

getfirstprojdb 360

getnextprojdb 387

getproj 409

getprojdb 410

getprojs 411

proj_execve 1088

projdballoc 1089

projdbfinit 1090

projdbfree 1091

acct subroutine 7

acl_chg subroutine 8

acl_fchg subroutine 8

acl_fget subroutine 10

acl_fput subroutine 12

acl_fset subroutine 14

acl_get subroutine 10

acl_put subroutine 12

acl_set subroutine 14

aclx_convert subroutine 16

aclx_fget subroutine 17

aclx_fput subroutine 25

aclx_get subroutine 17

aclx_gettypeinfo subroutine 20

aclx_gettypes subroutine 21

aclx_print subroutine 23

aclx_printStr subroutine 23

aclx_put subroutine 25

© Copyright IBM Corp. 1994, 2005 1257

aclx_scan subroutine 27

aclx_scanStr subroutine 27

acos subroutine 29

acosf subroutine 29

acosh subroutine 30

acoshf subroutine 30

acoshl subroutine 30

acosl subroutine 29

addproj subroutine 31

addprojdb subroutine 32

address identifiers 220

addssys subroutine 33

adjtime subroutine 35

advance subroutine 175

Advanced Accounting subroutines
agg_arm_stat subroutine 36

agg_lpar_stat subroutine 36

agg_proc_stat subroutine 36

buildproclist subroutine 123

buildtranlist subroutine 124

free_agg_list subroutine 36

freetranlist subroutine 124

getarmlist subroutine 405

getfilehdr subroutine 359

getlparlist subroutine 405

getproclist subroutine 405

agg_arm_stat subroutine 36

agg_lpar_stat subroutine 36

agg_proc_stat subroutine 36

aio_cancel subroutine 38

aio_error subroutine 42

aio_fsync subroutine 44

aio_nwait subroutine 46

aio_nwait_timeout subroutine 48

aio_read subroutine 50

aio_return subroutine 54

aio_suspend subroutine 57

aio_write subroutine 60

alarm subroutine 378

alloca subroutine 764

alloclmb Subroutine 66

Application Programming Interface
perfstat

cpu 961

cpu_total 962, 969, 973

disk_total 964, 968, 971

diskpath 966

netbuffer 970

pagingspace 974

protocol 978

reset 980

arc sine subroutines
asinf 89

arc tangent subroutines
atan2f 91

atan2l 91

atanf 92

atanl 92

archive files
reading headers 687

ARM Subroutines
arm_end 67

arm_end Dual Call 69

arm_getid 71

arm_getid Dual Call 73

arm_init 75

arm_init Dual Call 77

arm_start 79

arm_start Dual Call 80

arm_stop 82

arm_stop Dual Call 84

arm_update 86

arm_update Dual Call 87

ASCII strings
converting to floating-point numbers 94

converting to Internet addresses 547

asctime subroutine 195

asctime_r subroutine 202

asctime64 subroutine 198

asctime64_r subroutine 200

asin subroutine 89

asinf subroutine 89

asinh subroutine 88

asinhf subroutine 88

asinhl subroutine 88

asinl subroutine 89

assert macro 90

asynchronous I/O
reading 50

writing 60

asynchronous I/O requests
canceling 38

listing 709

retrieving error status 42

retrieving return status 54

suspending 57

synchronizing asynchronous files 44

atan subroutine 92

atan2 subroutine 91

atan2f subroutine 91

atan2l subroutine 91

atanf subroutine 92

atanh subroutine 93

atanhf subroutine 93

atanhl subroutine 93

atanl subroutine 92

atexit subroutine 239

atof subroutine 94

atoff subroutine 94

atojis subroutine 567

atol subroutine 96

atoll subroutine 96

atomic access subroutines
compare_and_swap 174

fetch_and_add 265

fetch_and_and 266

fetch_and_or 266

audit bin files
compressing and uncompressing 106

establishing 98

1258 Technical Reference, Volume 1: Base Operating System and Extensions

audit records
generating 102

reading 109

writing 110

audit subroutine 96

audit trail files
appending records 102

auditbin subroutine 98

auditevents subroutine 100

auditing modes 103

auditing subroutines
audit 96

auditbin 98

auditevents 100

auditlog 102

auditobj 103

auditpack 106

auditproc 107

auditread 109

auditwrite 110

auditlog subroutine 102

auditobj subroutine 103

auditpack subroutine 106

auditproc subroutine 107

auditread, auditread_r subroutines 109

auditwrite subroutine 110

authenticate 111

authenticatex subroutine 113

authentication subroutines
ckuseracct 162

ckuserID 164

crypt 189

encrypt 189

getlogin 385

getpass 393

getuserpw 459

newpass 860

putuserpw 459

setkey 189

authorizations 458

authorizations, compare 776

auxiliary areas
creating 527

destroying 528

drawing 529

hiding 529

processing 542

B
base 10 logarithm functions

log10f 732

base 2 logarithm functions
log2 734

log2f 734

log2l 734

basename Subroutine 115

baud rates
getting and setting 140

bcmp subroutine 116

bcopy subroutine 116

beep levels
setting 530

BeginCriticalSection Subroutine 222

Bessel functions
computing 117

binary files
reading 304

binary searches 121

binding a process to a processor 118

bit string operations 116

box characters
shaping 682

brk subroutine 120

bsearch subroutine 121

btowc subroutine 122

buffered data
writing to streams 249

buildproclist subroutine 123

buildtranlist subroutine 124

byte string operations 116

bzero subroutine 116

C
cabs subroutine 127

cabsf subroutine 127

cabsl subroutine 127

cacos subroutine 127

cacosf subroutine 127

cacosh subroutines 128

cacoshf subroutine 128

cacoshl subroutine 128

cacosl subroutine 127

calloc subroutine 764

carg subroutine 129

cargf subroutine 129

cargl subroutine 129

casin subroutine 129

casinf subroutine 129

casinfh subroutine 130

casinh subroutines 130

casinl subroutine 129

casinlh subroutine 130

catan subroutine 130

catanf subroutine 130

catanh subroutine 131

catanhf subroutine 131

catanhl subroutine 131

catanl subroutine 130

catclose subroutine 132

catgets subroutine 133

catopen subroutine 134

cbrt subroutine 135

cbrtf subroutine 135

cbrtl subroutine 135

ccos, subroutine 136

ccosf subroutine 136

ccosh subroutine 137

ccoshf subroutine 137

ccoshl subroutine 137

ccosl subroutine 136

Index 1259

CCSIDs
converting 137

ccsidtocs subroutine 137

ceil subroutine 138

ceilf subroutine 138

ceiling value function
ceilf 138

ceill 138

ceill subroutine 138

cexp subroutine 139

cexpf subroutine 139

cexpl subroutine 139

cfgetospeed subroutine 140

chacl subroutine 142

character conversion
8-bit processing codes and 566

code set converters 522, 523

conv subroutines 181

Japanese 567

Kanji-specific 566

multibyte to wide 790, 791

translation operations 181

character manipulation subroutines
_atojis 567

_jistoa 567

_tojlower 567

_tojupper 567

_tolower 181

_toupper 181

atojis 567

conv 181

ctype 569

fgetc 340

fputc 1227

getc 340

getchar 340

getw 340

isalnum 203

isalpha 203

isascii 203

iscntrl 203

isdigit 203

isgraph 203

isjalnum 569

isjalpha 569

isjdigit 569

isjgraph 569

isjhira 569

isjis 569

isjkanji 569

isjkata 569

isjlbytekana 569

isjlower 569

isjparen 569

isjprint 569

isjpunct 569

isjspace 569

isjupper 569

isjxdigit 569

islower 203

isparent 569

character manipulation subroutines (continued)
isprint 203

ispunct 203

isspace 203

isupper 203

isxdigit 203

jistoa 567

kutentojis 567

NCesc 181

NCflatchr 181

NCtolower 181

NCtoNLchar 181

NCtoupper 181

NCunesc 181

putc 1227

putchar 1227

putw 1227

toascii 181

tojhira 567

tojkata 567

tojlower 567

tojupper 567

tolower 181

toujis 567

toupper 181

character shaping 675

character testing
isblank 555

characters
classifying 203, 569

returning from input streams 340

writing to streams 1227

charsetID
multibyte character 190

chdir subroutine 145

chmod subroutine 146

chown subroutine 149

chownx subroutine 149

chpass subroutine 152

chpassx subroutine 154

chprojattr subroutine 156

chprojattrdb subroutine 157

chroot subroutine 158

chssys subroutine 160

cimag subroutine 161

cimagf subroutine 161

cimagl subroutine 161

cjistosj subroutine 566

ckuseracct subroutine 162

ckuserID subroutine 164

class subroutine 165

clearerr macro 264

clock subroutine 167

clock subroutines
clock_getcpuclockid 167

pthread_condattr_getclock 1149

pthread_condattr_setclock 1149

clock_getcpuclockid subroutine 167

clock_getres subroutine 168

clock_gettime subroutine 168

clock_nanosleep subroutine 170

1260 Technical Reference, Volume 1: Base Operating System and Extensions

clock_settime subroutine 168

clog subroutine 172

clogf subroutine 172

clogl subroutine 172

close subroutine 173

closedir subroutine 902

closedir64 subroutine 902

code sets
closing converters 522

converting names 137

opening converters 523

coded character set IDs
converting 137

command-line flags
returning 388

Common Host Bus Adapter library
HBA_SetRNIDMgmtInfo 513

compare_and_swap subroutine
atomic access 174

compile subroutine 175

complementary error subroutines
erfcl 224

complex arc cosine subroutines
cacos 127

cacosf 127

cacosl 127

complex arc hyperbolic cosine subroutines
cacosh 128

cacoshf 128

cacoshl 128

complex arc hyperbolic sine subroutines
casin 130

casinf 130

casinl 130

complex arc hyperbolic tangent subroutines
catanh 131

catanhf 131

catanhl 131

complex arc sine subroutines
casin 129

casinf 129

casinl 129

complex argument subroutines
carg 129

cargf 129

cargl 129

complex conjugate subroutines
conj 180

conjf 180

conjl 180

complex cosine functions
ccos 136

ccosf 136

ccosl 136

complex exponential functions
cexp 139

cexpf 139

cexpl 139

complex hyperbolic cosine functions
ccosh 137

ccoshf 137

complex hyperbolic cosine functions (continued)
ccoshl 137

complex hyperbolic sine subroutines
csinh 192

csinhf 192

csinhl 192

complex hyperbolic tangent subroutines
ctanh 194

ctanhf 194

ctanhl 194

complex imaginary functions
cimag 161

cimagf 161

cimagl 161

complex natural logarithm functions
clog 172

clogf 172

clogl 172

complex power subroutines
cpow 187

cpowf 187

cpowl 187

complex projection subroutines
cproj 187

cprojf 187

cprojl 187

complex tangent functions
catan 130

catanf 130

catanl 130

Complex tangent subroutines
ctan 193

ctanf 193

ctanl 193

Computes the base 2 exponential.
exp2 243

exp2f 243

exp2l 243

confstr subroutine 179

conj subroutine 180

conjf subroutine 180

conjl subroutine 180

controlling terminal 194

conv subroutines 181

conversion
date and time representations 202

date and time to string representation
using asctime subroutine 202

using ctime subroutine 202

using gmtime subroutine 202

using localtime subroutine 202

converter subroutines
btowc 122

fwscanf 324

iconv_close 522

iconv_open 523

jcode 566

mbrlen 778

mbrtowc 779

mbsinit 783

mbsrtowcs 788

Index 1261

converter subroutines (continued)
swscanf 324

wscanf 324

copysignf subroutine 183

copysignl subroutine 183

core files
coredump subroutine 330

gencore subroutine 330

coredump subroutine 330

cos subroutine 185

cosf subroutine 185

cosh subroutine 186

coshf subroutine 186

coshl subroutine 186

cosine subroutines
acosf 29

acosl 29

cosf 185

cosl 185

cosl subroutine 185

cpow subroutine 187

cpowf subroutine 187

cpowl subroutine 187

cproj subroutine 187

cprojf subroutine 187

cprojl subroutine 187

creal subroutine 188

crealf subroutine 188

creall subroutine 188

creat subroutine 894

Critical Section Subroutines
BeginCriticalSection Subroutine 222

EnableCriticalSections Subroutine 222

EndCriticalSection Subroutine 222

crypt subroutine 189

csid subroutine 190

csin subroutine 191

csinf subroutine 191

csinh subroutine 192

csinhf subroutine 192

csinhl subroutine 192

csinl subroutine 191

csjtojis subroutine 566

csjtouj subroutine 566

csqrt subroutine 192

csqrtf subroutine 192

csqrtl subroutine 192

cstoccsid subroutine 137

ctan subroutine 193

ctanf subroutine 193

ctanh subroutine 194

ctanhf subroutine 194

ctanhl subroutine 194

ctanl subroutine 193

ctermid subroutine 194

ctime subroutine 195

ctime_r subroutine 202

ctime64 subroutine 198

ctime64_r subroutine 200

ctype subroutines 203

cube root functions
cbrtf 135

cbrtl 135

cujtojis subroutine 566

cujtosj subroutine 566

current process credentials
reading 394

current process environment
reading 396

current processes
getting user name 205

group ID
initializing 548

returning 375

path name of controlling terminal 194

user ID
returning 443

current working directory
getting path name 351

cursor positions
setting 544

cuserid subroutine 205

D
data arrays

encrypting 189

data locks 982

data sorting subroutines
bsearch 121

ftw 317

hcreate 517

hdestroy 517

hsearch 517

insque 550

lfind 750

lsearch 750

remque 550

data space segments
changing allocation 120

date
displaying and setting 436

date format conversions 195

defect 219851 1171

defect 220239 403

defssys subroutine 206

delssys subroutine 207

descriptor tables
getting size 355

difftime subroutine 195

difftime64 subroutine 198

directories
changing 145

changing root 158

creating 795

directory stream operations 902

generating path names 472

getting path name of current directory 351

directory subroutines
chdir 145

chroot 158

1262 Technical Reference, Volume 1: Base Operating System and Extensions

directory subroutines (continued)
closedir 902

closedir64 902

getcwd 351

getwd 470

glob 472

globfree 475

link 708

mkdir 795

opendir 902

opendir64 902

readdir 902

readdir64 902

rewinddir 902

rewinddir64 902

seekdir 902

seekdir64 902

telldir 902

telldir64 902

dirname Subroutine 209

disclaim subroutine 210

div subroutine 3

dlclose subroutine 212

dlerror subroutine 213

dlopen Subroutine 213

dlsym Subroutine 215

double precission numbers
frexpf 308

drand48 subroutine 217

drem subroutine 219

dup subroutine 251

dup2 subroutine 251

E
ecvt subroutine 221

EnableCriticalSections Subroutine 222

encrypt subroutine 189

encryption
performing 189

EndCriticalSection Subroutine 222

endfsent subroutine 361

endfsent_r subroutine 426

endgrent subroutine 363

endhostent subroutine 870

endpwent subroutine 413

endrpcent subroutine 418

endttyent subroutine 441

endutent subroutine 464

endvfsent subroutine 467

environment variables
finding default PATH 179

finding values 357

setting 1231

erand48 subroutine 217

erf subroutine 223

erfc subroutine 224

erfcf subroutine 224

erff subroutine 223

errlog subroutine 225

errlog_close subroutine 227

errlog_find Subroutines
errlog_find_first 228

errlog_find_next 228

errlog_find_sequence 228

errlog_find_first Subroutine 228

errlog_find_next Subroutine 228

errlog_find_sequence Subroutine 228

errlog_open Subroutine 230

errlog_set_direction Subroutine 231

errlog_write Subroutine 231

errlogging Subroutines
errlog_close 227

errlog_open 230

errlog_set_direction 231

errlog_write 231

error functions
computing 223

erff 223

error handling
math 775

returning information 722

error logs
closing 227

finding 228

opening 230

setting direction 231

writing 231

writing to 225

error messages
placing into program 90

writing 980

errorlogging subroutines
errlog 225

perror 980

euclidean distance functions
hypotf 519

hypotl 519

Euclidean distance functions
computing 519

exec subroutines 232

execl subroutine 232

execle subroutine 232

execlp subroutine 232

exect subroutine 232

execution profiling
after initialization 809

using default data areas 816

using defined data areas 810

execv subroutine 232

execve subroutine 232

execvp subroutine 232

exit subroutine 239

exp subroutine 241

exp2 subroutine 243

exp2f subroutine 243

exp2l subroutine 243

expf subroutine 241

expm1 subroutine 244

expm1f subroutine 244

expm1l subroutine 244

Index 1263

exponential functions
computing 241

exponential subroutines
expf 241

expm1f, 244

expm1l 244

extended attribute subroutines
getea 356

listea 714

F
f_hpmgetcounters subroutine 515

f_hpmgettimeandcounters subroutine 515

f_hpminit subroutine 515

f_hpmstart subroutine 515

f_hpmstop subroutine 515

f_hpmterminate subroutine 515

f_hpmtstart subroutine 515

f_hpmtstop subroutine 515

fabs subroutine 245

fabsf subroutine 245

fabsl subroutine 245

faccessx subroutine 4

fattach Subroutine 246

fchacl subroutine 142

fchdir Subroutine 247

fchmod subroutine 146

fchown subroutine 149

fchownx subroutine 149

fclear subroutine 248

fclose subroutine 249

fcntl subroutine 251

fcvt subroutine 221

fdetach Subroutine 257

fdim subroutine 258

fdimf subroutine 258

fdiml subroutine 258

fdopen subroutine 281

feclearexcept subroutine 259

fegetenv subroutine 260

fegetexceptflag subroutine 260

fegetround subroutine 261

feholdexcept subroutine 262

feof macro 264

feraiseexcept subroutine 265

ferror macro 264

fesetenv subroutine 260

fesetexceptflag subroutine 260

fesetround subroutine 261

fetch_and_add subroutine
atomic access 265

fetch_and_and subroutine
atomic access 266

fetch_and_or subroutine
atomic access 266

fetestexcept subroutine 267

feupdateenv subroutine 268

ffinfo subroutine 269

fflush subroutine 249

ffs subroutine 116

fgetc subroutine 340

fgetpos subroutine 311

fgets subroutine 425

fgetwc subroutine 468

fgetws subroutine 471

FIFO files
creating 797

file access permissions
changing 142, 146

file descriptors
checking I/O status 1049

closing associated files 173

controlling 251

establishing connections 894

performing control functions 552

file names
constructing unique 799

file ownership
changing 149

file permissions
changing 142, 146

file pointers
moving read-write 751

file subroutines
access 4

accessx 4

dup 251

dup2 251

endutent 464

faccessx 4

fclear 248

fcntl 251

ffinfo 269

finfo 269

flock 728

flockfile 270

fpathconf 938

fsync 314

fsync_range 314

ftrylockfile 270

funlockfile 270

getc_unlocked 342

getchar_unlocked 342

getenv 357

getutent 464

getutid 464

getutline 464

lockf 728

lockfx 728

lseek 751

mkfifo 797

mknod 797

mkstemp 799

mktemp 799

nlist 867

nlist64 867

pathconf 938

pclose 960

pipe 981

popen 1055

putc_unlocked 342

1264 Technical Reference, Volume 1: Base Operating System and Extensions

file subroutines (continued)
putchar_unlocked 342

putenv 1231

pututline 464

setutent 464

utmpname 464

file system subroutines
confstr 179

endfsent 361

endvfsent 467

fscntl 309

getfsent 361

getfsfile 361

getfsspec 361

getfstype 361

getvfsbyflag 467

getvfsbyname 467

getvfsbytype 467

getvfsent 467

mntctl 807

setfsent 361

setvfsent 467

file systems
controlling operations 309

retrieving information 361

returning mount status 807

file trees
searching recursively 317

file-implementation characteristics 938

fileno macro 264

files
binary 304

closing 173

creating 797

creating links 708

creating space at pointer 248

determining accessibility 4

establishing connections 894

generating path names 472

getting name list 867

locking and unlocking 728

opening 894

opening streams 281

reading 304

reading asynchronously 50

repositioning pointers 311

revoking access 307

systems
getting information about 426

writing asynchronously 60

writing binary 304

finfo subroutine 269

finite subroutine 165

finite testing
isfinite 556

first-in-first-out files 797

flags
returning 388

floating point multiply-add
fma 273

fmaf 273

floating point multiply-add (continued)
fmal 273

floating point numbers
ldexpf 689

ldexpl 689

nextafterf 858

nextafterl 858

nexttoward 858

nexttowardf 858

nexttowardl 858

floating-point absolute value functions
computing 271

floating-point environment
feholdexcept 262

feupdateenv 268

floating-point environment variables
fegetenv, 260

fesetenv 260

floating-point exception
feraiseexcept 265

fetestexcept 267

floating-point exceptions 291, 295, 299

changing floating point status and control

register 297

feclearexcept 259

flags 289

querying process state 299

testing for occurrences 293, 294

floating-point number subroutines
fdim 258

fdimf 258

fdiml 258

floating-point numbers
converting to strings 221

determining classifications 165

fmax 274

fmaxf 274

fmaxl 274

fminf 275

fminl 275

fmodf 276

manipulating 808

modff 808

reading and setting rounding modes 296

rounding 271

floating-point rounding subroutines
nearbyint 857

nearbyintf 857

nearbyintl 857

floating-point status flags
fegetexceptflag 260

fesetexceptflag 260

floating-point subroutines 291, 295, 297, 299, 301

fp_sh_info 297

fp_sh_trap_info 297

floating-point trap control 287

flock subroutine 728

flockfile subroutine 270

floor functions
floorf 271

floor subroutine 271

Index 1265

floorf subroutine 271

floorl subroutine 271

fma subroutine 273

fmaf subroutine 273

fmal subroutine 273

fmax subroutine 274

fmaxf subroutine 274

fmaxl subroutine 274

fmin subroutine 771

fminf subroutine 275

fminl subroutine 275

fmod subroutine 276

fmodf subroutine 276

fmodl subroutine 276

fmout subroutine 771

fmtmsg Subroutine 277

fnmatch subroutine 279

fopen subroutine 281

fork subroutine 284

formatted output
printing 1079

fp_any_enable subroutine 287

fp_any_xcp subroutine 293

fp_clr_flag subroutine 289

fp_cpusync subroutine 291

fp_disable subroutine 287

fp_disable_all subroutine 287

fp_divbyzero subroutine 293

fp_enable subroutine 287

fp_enable_all subroutine 287

fp_flush_imprecise Subroutine 292

fp_inexact subroutine 293

fp_invalid_op subroutine 293

fp_iop_convert subroutine 294

fp_iop_infdinf subroutine 294

fp_iop_infmzr subroutine 294

fp_iop_infsinf subroutine 294

fp_iop_invcmp subroutine 294

fp_iop_snan subroutine 294

fp_iop_sqrt subroutine 294

fp_iop_vxsoft subroutine 294

fp_iop_zrdzr subroutine 294

fp_is_enabled subroutine 287

fp_overflow subroutine 293

fp_raise_xcp subroutine 295

fp_read_flag subroutine 289

fp_read_rnd subroutine 296

fp_set_flag subroutine 289

fp_sh_info subroutine 297

fp_sh_set_stat subroutine 297

fp_sh_trap_info subroutine 297

fp_swap_flag subroutine 289

fp_swap_rnd subroutine 296

fp_trap subroutine 299

fp_trapstate subroutine 301

fp_underflow subroutine 293

fpathconf subroutine 938

fpclassify macro 303

fprintf subroutine 1079

fputc subroutine 1227

fputs subroutine 1236

fputwc subroutine 1244

fputws subroutine 1246

fread subroutine 304

free subroutine 764

free_agg_list subroutine 36

freelmb Subroutine 307

freetranlist subroutine 124

freopen subroutine 281

frevoke subroutine 307

frexp subroutine 308

frexpf subroutine 308

frexpl subroutine 308

fscntl subroutine 309

fseek subroutine 311

fsetpos subroutine 311

fsync subroutine 314

fsync_range subroutine 314

ftell subroutine 311

ftime subroutine 436

ftok subroutine 315

ftrylockfile subroutine 270

ftw subroutine 317

funlockfile subroutine 270

fwide subroutine 319

fwprintf subroutine 320

fwrite subroutine 304

fwscanf subroutine 324

G
gai_strerror subroutine 328

gamma functions
computing natural logarithms 329

gamma subroutine 329

gcd subroutine 771

gcvt subroutine 221

gencore subroutine 330

genpagvalue Subroutine 332

get_malloc_log subroutine 333

get_malloc_log_live subroutine 334

get_speed subroutine 335

getargs Subroutine 336

getarmlist subroutine 405

getaudithostattr, IDtohost, hosttoID, nexthost or

putaudithostattr subroutine 337

getauthdb subroutine 339

getauthdb_r subroutine 339

getc subroutine 340

getc_unlocked subroutine 342

getchar subroutine 340

getchar_unlocked subroutine 342

getconfattr subroutine 343

getconfattrs subroutine 347

getcontext or setcontext Subroutine 350

getcwd subroutine 351

getdate Subroutine 352

getdtablesize subroutine 355

getea subroutine 356

getegid subroutine 362

getenv subroutine 357

geteuid subroutine 443

1266 Technical Reference, Volume 1: Base Operating System and Extensions

getevars Subroutine 358

getfilehdr subroutine 359

getfirstprojdb subroutine 360

getfsent subroutine 361

getfsent_r subroutine 426

getfsfile subroutine 361

getfsspec subroutine 361

getfsspec_r subroutine 426

getfstype subroutine 361

getfstype_r subroutine 426

getgid subroutine 362

getgidx subroutine 362

getgrent subroutine 363

getgrgid subroutine 363

getgrgid_r subroutine 365

getgrnam subroutine 363

getgrnam_r subroutine 366

getgroupattr subroutine 367

getgroupattrs subroutine 370

getgroups subroutine 375

getgrpaclattr Subroutine 376

gethostent subroutine 869

getinterval subroutine 378

getitimer subroutine 378

getlogin subroutine 385

getlogin_r subroutine 386

getlparlist subroutine 405

getnextprojdb subroutine 387

getopt subroutine 388

getpagesize subroutine 390

getpaginfo subroutine 391

getpagvalue subroutine 392

getpagvalue64 subroutine 392

getpass subroutine 393

getpcred subroutine 394

getpeereid subroutine 396

getpenv subroutine 396

getpgid Subroutine 398

getpgrp subroutine 398

getpid subroutine 398

getportattr Subroutine 399

getppid subroutine 398

getpri subroutine 402

getpriority subroutine 403

getproclist subroutine 405

getproj subroutine 409

getprojdb subroutine 410

getprojs subroutine 411

getpw Subroutine 412

getpwent subroutine 413

getpwnam subroutine 413

getpwuid subroutine 413

getrlimit subroutine 415

getrlimit64 subroutine 415

getroleattr Subroutine 422

getrpcbyname subroutine 418

getrpcbynumber subroutine 418

getrpcent subroutine 418

getrusage subroutine 419

getrusage64 subroutine 419

gets subroutine 425

getsfile_r subroutine 426

getsid Subroutine 427

getssys subroutine 428

getsubopt Subroutine 429

getsubsvr subroutine 430

gettcbattr subroutine 431

gettimeofday subroutine 436

gettimer subroutine 437

gettimerid subroutine 440

getttyent subroutine 441

getttynam subroutine 441

getuid subroutine 443

getuidx subroutine 443

getuinfo subroutine 444

getuinfox Subroutine 444

getuserattr subroutine 445

getuserattrs subroutine 451

GetUserAuths Subroutine 458

getuserpw subroutine 459

getuserpwx subroutine 461

getusraclattr Subroutine 462

getutent subroutine 464

getutid subroutine 464

getutline subroutine 464

getvfsbyflag subroutine 467

getvfsbyname subroutine 467

getvfsbytype subroutine 467

getvfsent subroutine 467

getw subroutine 340

getwc subroutine 468

getwchar subroutine 468

getwd subroutine 470

getws subroutine 471

glob subroutine 472

globfree subroutine 475

gmtime subroutine 195

gmtime_r subroutine 202

gmtime64 subroutine 198

gmtime64_r subroutine 200

grantpt subroutine 476

H
hash tables

manipulating 517

HBA subroutines
HBA_GetEventBuffer 482

HBA_GetFC4Statistics 483

HBA_GetFCPStatistics 485

HBA_GetFcpTargetMappingV2 486

HBA_GetPersistentBindingV2 489

HBA_OpenAdapterByWWN 494

HBA_ScsiInquiryV2 496

HBA_ScsiReadCapacityV2 498

HBA_ScsiReportLunsV2 499

HBA_SendCTPassThruV2 502

HBA_SendRLS 505

HBA_SendRNIDV2 508

HBA_SendRPL 509

HBA_SendRPS 511

HBA_CloseAdapter Subroutine 477

Index 1267

HBA_FreeLibrary Subroutine 477

HBA_GetAdapterAttributes Subroutine 478

HBA_GetAdapterName Subroutine 480

HBA_GetDiscoveredPortAttributes Subroutine 478

HBA_GetEventBuffer subroutine 482

HBA_GetFC4Statistics subroutine 483

HBA_GetFCPStatistics subroutine 485

HBA_GetFcpTargetMapping Subroutine 487

HBA_GetFcpTargetMappingV2 subroutine 486

HBA_GetNumberOfAdapters Subroutine 488

HBA_GetPersistentBinding Subroutine 484

HBA_GetPersistentBindingV2 subroutine 489

HBA_GetPortAttributes Subroutine 478

HBA_GetPortAttributesByWWN Subroutine 478

HBA_GetPortStatistics Subroutine 490

HBA_GetRNIDMgmtInfo Subroutine 491

HBA_GetVersion Subroutine 492

HBA_LoadLibrary Subroutine 493

HBA_OpenAdapter Subroutine 493

HBA_OpenAdapterByWWN subroutine 494

HBA_RefreshInformation Subroutine 495

HBA_ScsiInquiryV2 subroutine 496

HBA_ScsiReadCapacityV2 subroutine 498

HBA_ScsiReportLunsV2 subroutine 499

HBA_SendCTPassThru Subroutine 501

HBA_SendCTPassThruV2 subroutine 502

HBA_SendReadCapacity Subroutine 503

HBA_SendReportLUNs Subroutine 504

HBA_SendRLS subroutine 505

HBA_SendRNID Subroutine 506

HBA_SendRNIDV2 subroutine 508

HBA_SendRPL subroutine 509

HBA_SendRPS subroutine 511

HBA_SendScsiInquiry Subroutine 512

HBA_SetRNIDMgmtInfo Subroutine 513

hcreate subroutine 517

hdestroy subroutine 517

Host Bus Adapter API
HBA_CloseAdapter 477

HBA_FreeLibrary 477

HBA_GetAdapterAttributes 478

HBA_GetAdapterName 480

HBA_GetDiscoveredPortAttributes 478

HBA_GetFcpPersistentBinding 484

HBA_GetFcpTargetMapping 487

HBA_GetNumberOfAdapters 488

HBA_GetPortAttributes 478

HBA_GetPortAttributesByWWN 478

HBA_GetPortStatistics 490

HBA_GetRNIDMgmtInfo 491

HBA_GetVersion 492

HBA_LoadLibrary 493

HBA_OpenAdapter 493

HBA_RefreshInformation 495

HBA_SendCTPassThru 501

HBA_SendReadCapacity 503

HBA_SendReportLUNs 504

HBA_SendRNID 506

HBA_SendScsiInquiry 512

HBA_SetRNIDMgmtInfo 513

hpmGetCounters subroutine 515

hpmGetTimeAndCounters subroutine 515

hpmInit subroutine 515

hpmStart subroutine 515

hpmStop subroutine 515

hpmTerminate subroutine 515

hpmTstart subroutine 515

hpmTstop subroutine 515

hsearch subroutine 517

hyperbolic cosine subroutines
coshf 186

coshl 186

hypot subroutine 519

hypotf subroutine 519

hypotl subroutine 519

I
I/O asynchronous subroutines

aio_cancel 38

aio_error 42

aio_fsync 44

aio_nwait 46

aio_nwait_timeout 48

aio_read 50

aio_return 54

aio_suspend 57

aio_write 60

lio_listio 709

poll 1049

I/O low-level subroutines 173, 894

creat 894

open 894

I/O requests
canceling 38

listing 709

retrieving error status 42

retrieving return status 54

suspending 57

I/O stream macros
clearerr 264

feof 264

ferror 264

fileno 264

I/O stream subroutines
fclose 249

fdopen 281

fflush 249

fgetc 340

fgetpos 311

fgets 425

fgetwc 468

fgetws 471

fopen 281

fprintf 1079

fputc 1227

fputs 1236

fputwc 1244

fputws 1246

fread 304

freopen 281

fseek 311

1268 Technical Reference, Volume 1: Base Operating System and Extensions

I/O stream subroutines (continued)
fsetpos 311

ftell 311

fwide 319

fwprintf 320

fwrite 304

getc 340

getchar 340

gets 425

getw 340

getwc 468

getwchar 468

getws 471

printf 1079

putc 1227

putchar 1227

puts 1236

putw 1227

putwc 1244

putwchar 1244

putws 1246

rewind 311

sprintf 1079

swprintf 320

vfprintf 1079

vprintf 1079

vsprintf 1079

vwsprintf 1079

wprintf 320

wsprintf 1079

I/O terminal subroutines
cfsetispeed 140

ioctl 552

ioctl32 552

ioctl32x 552

ioctlx 552

iconv_close subroutine 522

iconv_open subroutine 523

identification subroutines
endgrent 363

endpwent 413

getconfattr 343

getgrent 363

getgrgid 363

getgrnam 363

getgroupattr 367

getpwent 413

getpwnam 413

getpwuid 413

gettcbattr 431

getuinfo 444

getuserattr 343, 445

IDtogroup 367

IDtouser 445

nextgroup 367

nextuser 445

putconfattr 343

putgroupattr 367

putpwent 413

puttcbattr 431

putuserattr 445

identification subroutines (continued)
setgrent 363

setpwent 413

idpthreadsa 189

IDtogroup subroutine 367

IDtouser subroutine 445

IEE Remainders
computing 219

ilogb subroutine 524

ilogbf subroutine 524

ilogbl subroutine 524

IMAIXMapping subroutine 527

IMAuxCreate callback subroutine 527

IMAuxDestroy callback subroutine 528

IMAuxDraw callback subroutine 529

IMAuxHide callback subroutine 529

imaxabs subroutine 525

imaxdiv subroutine 526

IMBeep callback subroutine 530

IMClose subroutine 531

IMCreate subroutine 531

IMDestroy subroutine 532

IMFilter subroutine 533

IMFreeKeymap subroutine 534

IMIndicatorDraw callback subroutine 534

IMIndicatorHide callback subroutine 535

IMInitialize subroutine 535

IMInitializeKeymap subroutine 537

IMIoctl subroutine 538

IMLookupString subroutine 540

IMProcess subroutine 540

IMProcessAuxiliary subroutine 542

IMQueryLanguage subroutine 543

IMSimpleMapping subroutine 543

IMTextCursor callback subroutine 544

IMTextDraw callback subroutine 545

IMTextHide callback subroutine 546

IMTextStart callback subroutine 546

imul_dbl subroutine 3

incinterval subroutine 378

inet_aton subroutine 547

infinity values
isinf 558

initgroups subroutine 548

initialize subroutine 549

input method
checking language support 543

closing 531

control and query operations 538

creating instance 531

destroying instance 532

initializing for particular language 535

input method keymap
initializing 534, 537

mapping key and state pair to string 527, 540, 543

input method subroutines
callback functions

IMAuxCreate 527

IMAuxDestroy 528

IMAuxDraw 529

IMAuxHide 529

Index 1269

input method subroutines (continued)
callback functions (continued)

IMBeep 530

IMIndicatorDraw 534

IMIndicatorHide 535

IMTextCursor 544

IMTextDraw 545

IMTextHide 546

IMTextStart 546

IMAIXMapping 527

IMClose 531

IMCreate 531

IMDestroy 532

IMFilter 533

IMFreeKeymap 534

IMinitialize 535

IMInitializeKeymap 537

IMIoctl 538

IMLookupString 540

IMProcess 540

IMProcessAuxiliary 542

IMQueryLanguage 543

IMSimpleMapping 543

input streams
reading character string from 471

reading single character from 468

returning characters or words 340

insque subroutine 550

install_lwcf_handler() subroutine 551

integers
computing absolute values 3

computing division 3

computing double-precision multiplication 3

performing arithmetic 771

Internet addresses
converting to ASCII strings 547

interoperability subroutines
ccsidtocs 137

cstoccsid 137

interprocess channels
creating 981

interprocess communication keys 315

interval timers
allocating per process 440

manipulating expiration time 378

returning values 378

inverse hyperbolic cosine subroutines
acoshf 30

acoshl 30

inverse hyperbolic functions
computing 30, 88

inverse hyperbolic sine subroutines
asinhf 88

asinhl 88

inverse hyperbolic tangent subroutines
atanhf 93

atanhl 93

invert subroutine 771

ioctl subroutine 552

ioctl32 subroutine 552

ioctl32x subroutine 552

ioctlx subroutine 552

is_wctype subroutine 565

isalnum subroutine 203

isalpha subroutine 203

isascii subroutine 203

isblank subroutine 555

iscntrl subroutine 203

isdigit subroutine 203

isendwin Subroutine 556

isfinite macro 556

isgraph subroutine 203

isgreater macro 557

isgreaterequal subroutine 558

isinf subroutine 558

isless macro 559

islessequal macro 560

islessgreater macro 560

islower subroutine 203

isnan subroutine 165

isnormal macro 561

isprint subroutine 203

ispunct subroutine 203

isspace subroutine 203

isunordered macro 562

isupper subroutine 203

iswalnum subroutine 562

iswalpha subroutine 562

iswblank subroutine 564

iswcntrl subroutine 562

iswctype subroutine 565

iswdigit subroutine 562

iswgraph subroutine 562

iswlower subroutine 562

iswprint subroutine 562

iswpunct subroutine 562

iswspace subroutine 562

iswupper subroutine 562

iswxdigit subroutine 562

isxdigit subroutine 203

itom subroutine 771

itrunc subroutine 271

J
j0 subroutine 117

j1 subroutine 117

Japanese conv subroutines 567

Japanese ctype subroutines 569

jcode subroutines 566

JFS
controlling operations 309

JIS character conversions 566

jistoa subroutine 567

jistosj subroutine 566

jistouj subroutine 566

jn subroutine 117

Journaled File System 251

jrand48 subroutine 217

1270 Technical Reference, Volume 1: Base Operating System and Extensions

K
Kanji character conversions 566

keyboard events
processing 533, 540

kill subroutine 570

killpg subroutine 570

kleenup subroutine 572

knlist subroutine 573

kpidstate subroutine 575

kutentojis subroutine 567

L
l3tol subroutine 577

l64a subroutine 1

l64a_r subroutine 578

labs subroutine 3

LAPI_Addr_get subroutine 579

LAPI_Addr_set subroutine 580

LAPI_Address subroutine 582

LAPI_Address_init subroutine 583

LAPI_Address_init64 585

LAPI_Amsend subroutine 587

LAPI_Amsendv subroutine 592

LAPI_Fence subroutine 600

LAPI_Get subroutine 601

LAPI_Getcntr subroutine 604

LAPI_Getv subroutine 605

LAPI_Gfence subroutine 609

LAPI_Init subroutine 610

LAPI_Msg_string subroutine 615

LAPI_Msgpoll subroutine 617

LAPI_Nopoll_wait subroutine 619

LAPI_Probe subroutine 620

LAPI_Purge_totask subroutine 621

LAPI_Put subroutine 623

LAPI_Putv subroutine 625

LAPI_Qenv subroutine 629

LAPI_Resume_totask subroutine 632

LAPI_Rmw subroutine 633

LAPI_Rmw64 subroutine 637

LAPI_Senv subroutine 641

LAPI_Setcntr subroutine 643

LAPI_Setcntr_wstatus subroutine 645

LAPI_Term subroutine 646

LAPI_Util subroutine 648

LAPI_Waitcntr subroutine 659

LAPI_Xfer structure types 662

LAPI_Xfer subroutine 661

lapi_xfer_type_t 662

layout values
querying 678

setting 680

transforming text 683

LayoutObject
creating 674

freeing 686

lcong48 subroutine 217

ldaclose subroutine 688

ldahread subroutine 687

ldaopen subroutine 697

ldclose subroutine 688

ldexp subroutine 689

ldexpf subroutine 689

ldexpl subroutine 689

ldfhread subroutine 690

ldgetname subroutine 692

ldiv subroutine 3

ldlinit subroutine 694

ldlitem subroutine 694

ldlnseek subroutine 695

ldlread subroutine 694

ldlseek subroutine 695

ldnrseek subroutine 699

ldnshread subroutine 700

ldnsseek subroutine 702

ldohseek subroutine 696

ldopen subroutine 697

ldrseek subroutine 699

ldshread subroutine 700

ldsseek subroutine 702

ldtbindex subroutine 703

ldtbread subroutine 704

ldtbseek subroutine 705

lfind subroutine 750

lgamma subroutine 706

lgammaf subroutine 706

lgammal subroutine 706

libhpm subroutines
f_hpmgetcounters 515

f_hpmgettimeandcounters 515

f_hpminit 515

f_hpmstart 515

f_hpmstop 515

f_hpmterminate 515

f_hpmtstart 515

f_hpmtstop 515

hpmGetCounters 515

hpmGetTimeAndCounters 515

hpmInit 515

hpmStart 515

hpmStop 515

hpmTerminate 515

hpmTstart 515

hpmTstop 515

linear searches 750

lineout subroutine 707

link subroutine 708

lio_listio subroutine 709

listea subroutine 714

llabs subroutine 3

lldiv subroutine 3

llrint subroutine 715

llrintf subroutine 715

llrintl subroutine 715

llround subroutine 716

llroundf subroutine 716

llroundl subroutine 716

load subroutine 717

loadbind subroutine 721

loadquery subroutine 722

Index 1271

locale subroutines
localeconv 724

nl_langinfo 866

locale-dependent conventions 724

localeconv subroutine 724

locales
returning language information 866

localtime subroutine 195

localtime_r subroutine 202

localtime64 subroutine 198

localtime64_r subroutine 200

lockf subroutine 728

lockfx subroutine 728

log gamma functions
lgamma 706

lgammaf 706

lgammal 706

log subroutine 736

log10 subroutine 732

log10f subroutine 732

log1p subroutine 733

log1pf subroutine 733

log1pl subroutine 733

log2 subroutine 734

log2f subroutine 734

log2l subroutine 734

logarithmic functions
computing 241

logb subroutine 735

logbf subroutine 735

logbl subroutine 735

logf subroutine 736

logical volumes
querying 753

login name
getting 385, 386

loginfailed Subroutine 737

loginrestrictions Subroutine 739

loginrestrictionsx subroutine 742

loginsuccess Subroutine 744

long integers
converting to strings 578

long integers, converting
to 3-byte integers 577

to base-64 ASCII strings 1

lpar_get_info subroutine 746

lpar_set_resources subroutine 747

lrand48 subroutine 217

lrint subroutine 748

lrintf subroutine 748

lrintl subroutine 748

lround subroutine 749

lroundf subroutine 749

lroundl subroutine 749

lsearch subroutine 750

lseek subroutine 751

ltol3 subroutine 577

LVM logical volume subroutines
lvm_querylv 753

LVM physical volume subroutines
lvm_querypv 757

LVM volume group subroutines
lvm_queryvg 760

lvm_queryvgs 763

lvm_querylv subroutine 753

lvm_querypv subroutine 757

lvm_queryvg subroutine 760

lvm_queryvgs subroutine 763

M
m_in subroutine 771

m_out subroutine 771

macros
assert 90

madd subroutine 771

madvise subroutine 773

makecontext Subroutine 774

mallinfo subroutine 764

mallinfo_heap subroutine 764

malloc subroutine 764

mallopt subroutine 764

mapped files
synchronizing 850

MatchAllAuths Subroutine 776

MatchAllAuthsList Subroutine 776

MatchAnyAuthsList Subroutine 776

math errors
handling 775

matherr subroutine 775

mblen subroutine 777

mbrlen subroutine 778

mbrtowc subroutine 779

mbsadvance subroutine 780

mbscat subroutine 781

mbschr subroutine 782

mbscmp subroutine 781

mbscpy subroutine 781

mbsinit subroutine 783

mbsinvalid subroutine 784

mbslen subroutine 784

mbsncat subroutine 785

mbsncmp subroutine 785

mbsncpy subroutine 785

mbspbrk subroutine 786

mbsrchr subroutine 787

mbsrtowcs subroutine 788

mbstomb subroutine 789

mbstowcs subroutine 790

mbswidth subroutine 791

mbtowc subroutine 791

mcmp subroutine 771

mdiv subroutine 771

memccpy subroutine 793

memchr subroutine 793

memcmp subroutine 793

memcpy subroutine 793

memmove subroutine 793

memory allocation 764

memory area operations 793

memory management
controlling execution profiling 809, 810, 816

1272 Technical Reference, Volume 1: Base Operating System and Extensions

memory management (continued)
defining addresses 220

defining available paging space 1092

disclaiming memory content 210

generating IPC keys 315

returning system page size 390

memory management subroutines
alloca 764

calloc 764

disclaim 210

free 764

ftok 315

gai_strerror 328

getpagesize 390

madvise 773

mallinfo 764

mallinfo_heap 764

malloc 764

mallopt 764

memccpy 793

memchr 793

memcmp 793

memcpy 793

memmove 793

memset 793

mincore 794

mmap 803

moncontrol 809

monitor 810

monstartup 816

mprotect 819

msem_init 834

msem_lock 835

msem_remove 836

msem_unlock 837

msleep 849

msync 850

munmap 853

mwakeup 854

psdanger 1092

realloc 764

memory mapping
advising system of paging behavior 773

determining page residency status 794

file-system objects 803

modifying access protections 819

putting a process to sleep 849

semaphores
initializing 834

locking 835

removing 836

unlocking 837

synchronizing mapped files 850

unmapping regions 853

waking a process 854

memory pages
determining residency 794

memory semaphores
initializing 834

locking 835

putting a process to sleep 849

memory semaphores (continued)
removing 836

unlocking 837

waking a process 854

memory subroutines
alloclmb 66

freelmb 307

memset subroutine 793

message catalogs
closing 132

opening 134

retrieving messages 133

message control operations 838

message facility subroutines
catclose 132

catgets 133

catopen 134

message queue identifiers 841

message queue subroutines
mq_receive 830

mq_send 831

mq_timedreceive 830

mq_timedsend 831

message queues
checking I/O status 1049

reading messages from 842

receiving messages from 847

sending messages to 845

Micro-Partitioning
lpar_get_info 746

min subroutine 771

mincore subroutine 794

mkdir subroutine 795

mkfifo subroutine 797

mknod subroutine 797

mkstemp subroutine 799

mktemp subroutine 799

mktime subroutine 195

mktime64 subroutine 198

mlockall subroutine 800, 802

mmap subroutine 803

mntctl subroutine 807

modf subroutine 808

modff subroutine 808

modfl subroutine 808

modulo remainders
computing 271

moncontrol subroutine 809

monitor subroutine 810

monstartup subroutine 816

mout subroutine 771

move subroutine 771

mprotect subroutine 819

mq_close subroutine 820

mq_getattr subroutine 821

mq_notify subroutine 822

mq_open subroutine 824

mq_receive subroutine 826, 830

mq_send subroutine 827, 831

mq_setattr subroutine 828

mq_timedreceive subroutine 830

Index 1273

mq_timedsend subroutine 831

mq_unlink subroutine 833

mrand48 subroutine 217

msem_init subroutine 834

msem_lock subroutine 835

msem_remove subroutine 836

msem_unlock subroutine 837

msgctl subroutine 838

msgget subroutine 841

msgrcv subroutine 842

msgsnd subroutine 845

msgxrcv subroutine 847

msleep subroutine 849

msqrt subroutine 771

msub subroutine 771

msync subroutine 850

mt__trce() subroutine 851

mult subroutine 771

multibyte character subroutines
csid 190

mblen 777

mbsadvance 780

mbscat 781

mbschr 782

mbscmp 781

mbscpy 781

mbsinvalid 784

mbslen 784

mbsncat 785

mbsncmp 785

mbsncpy 785

mbspbrk 786

mbsrchr 787

mbstomb 789

mbstowcs 790

mbswidth 791

mbtowc 791

multibyte characters
converting to wide 790, 791

determining display width of 791

determining length of 777

determining number of 784

extracting from string 789

locating character sequences 786

locating next character 780

locating single characters 782, 787

operations on null-terminated strings 781, 785

returning charsetID 190

validating 784

munlockall subroutine 800, 802

munmap subroutine 853

mwakeup subroutine 854

N
NaN

nan 855

nanf 855

nanl 855

nan subroutine 855

nanf subroutine 855

nanl subroutine 855

nanosleep subroutine 856

natural logarithm functions
logf 736

logl 736

natural logarithms
log1pf 733

log1pl 733

NCesc subroutine 181

NCflatchr subroutine 181

NCtolower subroutine 181

NCtoNLchar subroutine 181

NCtoupper subroutine 181

NCunesc subroutine 181

nearbyint subroutine 857

nearbyintf subroutine 857

nearbyintl subroutine 857

nearest subroutine 271

network host entries
retrieving 869

new-process image file 232

newpass subroutine 860

newpassx subroutine 862

nextafter subroutine 858

nextafterf subroutine 858

nextafterl subroutine 858

nextgroup subroutine 367

nextgrpacl Subroutine 376

nextrole Subroutine 422

nexttoward subroutine 858

nexttowardf subroutine 858

nexttowardl subroutine 858

nextuser subroutine 445

nextusracl Subroutine 462

nftw subroutine 863

nice subroutine 403

nl_langinfo subroutine 866

nlist subroutine 867

nlist64 subroutine 867

nrand48 subroutine 217

number manipulation function
copysignf 183

copysignl 183

numbers
generating

pseudo-random 217

numerical manipulation subroutines 329

a64l 1

abs 3

acos 29

acosf 29

acosh 30

acosl 29

asin 89

asinh 88

asinl 89

atan 92

atan2 91

atan2f 91

atan2l 91

atanf 92

1274 Technical Reference, Volume 1: Base Operating System and Extensions

numerical manipulation subroutines (continued)
atanh 93

atanhf 93

atanhl 93

atanl 92

atof 94

atoff 94

atol 96

atoll 96

cabs 519

cbrt 135

ceil 138

ceilf 138

ceill 138

class 165

cos 185

div 3

drand48 217

drem 219

ecvt 221

erand48 217

erf 223

erfc 224

exp 241

expm1 244

fabs 245

fabsl 245

fcvt 221

finite 165

floor 271

floorl 271

fmin 771

fmod 276

fmodl 276

fp_any_enable 287

fp_any_xcp 293

fp_clr_flag 289

fp_disable 287

fp_disable_all 287

fp_divbyzero 293

fp_enable 287

fp_enable_all 287

fp_inexact 293

fp_invalid_op 293

fp_iop_convert 294

fp_iop_infdinf 294

fp_iop_infmzr 294

fp_iop_infsinf 294

fp_iop_invcmp 294

fp_iop_snan 294

fp_iop_sqrt 294

fp_iop_zrdzr 294

fp_is_enabled 287

fp_overflow 293

fp_read_flag 289

fp_read_rnd 296

fp_set_flag 289

fp_swap_flag 289

fp_swap_rnd 296

fp_underflow 293

frexp 308

numerical manipulation subroutines (continued)
frexpl 308

gamma 329

gcd 771

gcvt 221

hypot 519

ilogb 524

imul_dbl 3

invert 771

isnan 165

itom 771

itrunc 271

j0 117

j1 117

jn 117

jrand48 217

l3tol 577

l64a 1

labs 3

lcong48 217

ldexp 689

ldexpl 689

ldiv 3

llabs 3

lldiv 3

log 736

log10 732

log1p 733

logb 735

lrand48 217

ltol3 577

m_in 771

m_out 771

madd 771

matherr 775

mcmp 771

mdiv 771

min 771

modf 808

modfl 808

mout 771

move 771

mrand48 217

msqrt 771

msub 771

mult 771

nearest 271

nextafter 858

nrand48 217

omin 771

omout 771

pow 771, 1077

rpow 771

sdiv 771

seed48 217

srand48 217

trunc 271

uitrunc 271

umul_dbl 3

unordered 165

y0 117

Index 1275

numerical manipulation subroutines (continued)
y1 117

yn 117

O
Object Data Manager 882

object file access subroutines
ldaclose 688

ldahread 687

ldaopen 697

ldclose 688

ldfhread 690

ldgetname 692

ldlinit 694

ldlitem 694

ldlread 694

ldlseek 695

ldnlseek 695

ldnrseek 699

ldnshread 700

ldnsseek 702

ldohseek 696

ldopen 697

ldrseek 699

ldshread 700

ldsseek 702

ldtbindex 703

ldtbread 704

ldtbseek 705

object file subroutines
load 717

loadbind 721

loadquery 722

object files
closing 688

computing symbol table entries 703

controlling run-time resolution 721

listing 722

loading and binding 717

manipulating line number entries 694

providing access 697

reading archive headers 687

reading file headers 690

reading indexed section headers 700

reading symbol table entries 704

retrieving symbol names 692

seeking to indexed sections 702

seeking to line number entries 695

seeking to optional file header 696

seeking to relocation entries 699

seeking to symbol tables 705

objects
setting locale-dependent conventions 724

ODM
ending session 892

error message strings 875

freeing memory 876

ODM (Object Data Manager)
initializing 882

running specified method 890

ODM object classes
adding objects 870

changing objects 872

closing 873

creating 874

locking 882

opening 885

removing 887

removing objects 886, 888

retrieving class symbol structures 884

retrieving objects 877, 878, 880

setting default path location 891

setting default permissions 892

unlocking 893

ODM subroutines
odm_add_obj 870

odm_change_obj 872

odm_close_class 873

odm_create_class 874

odm_err_msg 875

odm_free_list 876

odm_get_by_id 877

odm_get_first 880

odm_get_list 878

odm_get_next 880

odm_get_obj 880

odm_initialize 882

odm_lock 882

odm_mount_class 884

odm_open_class 885

odm_open_class_rdonly 885

odm_rm_by_id 886

odm_rm_class 887

odm_rm_obj 888

odm_run_method 890

odm_set_path 891

odm_set_perms 892

odm_terminate 892

odm_unlock 893

odm_add_obj subroutine 870

odm_change_obj subroutine 872

odm_close_class subroutine 873

odm_create_class subroutine 874

odm_err_msg subroutine 875

odm_free_list subroutine 876

odm_get_by_id subroutine 877

odm_get_first subroutine 880

odm_get_list subroutine 878

odm_get_next subroutine 880

odm_get_obj subroutine 880

odm_initialize subroutine 882

odm_lock subroutine 882

odm_mount_class subroutine 884

odm_open_class subroutine 885

odm_open_class_rdonly subroutine 885

odm_rm_by_id subroutine 886

odm_rm_class subroutine 887

odm_rm_obj subroutine 888

odm_run_method subroutine 890

odm_set_path subroutine 891

odm_set_perms subroutine 892

1276 Technical Reference, Volume 1: Base Operating System and Extensions

odm_terminate subroutine 892

odm_unlock subroutine 893

omin subroutine 771

omout subroutine 771

open file descriptors
controlling 251

performing control functions 552

open subroutine
described 894

opendir subroutine 902

opendir64 subroutine 902

openx subroutine
described 894

output stream
writing character string to 1246

writing single character to 1244

P
PAG Services

genpagvalue 332

paging memory
behavior 773

defining available space 1092

PAM subroutines
pam_acct_mgmt 905

pam_authenticate 906

pam_chauthtok 908

pam_close_session 909

pam_end 910

pam_get_data 911

pam_get_item 912

pam_get_user 913

pam_getenv 914

pam_getenvlist 915

pam_open_session 916

pam_putenv 917

pam_set_data 918

pam_set_item 919

pam_setcred 920

pam_sm_acct_mgmt 922

pam_sm_authenticate 923

pam_sm_chauthtok 924

pam_sm_close_session 926

pam_sm_open_session 927

pam_sm_setcred 928

pam_start 929

pam_strerror 932

pam_acct_mgmt subroutine 905

pam_authenticate subroutine 906

pam_chauthtok subroutine 908

pam_close_session subroutine 909

pam_end subroutine 910

pam_get_data subroutine 911

pam_get_item subroutine 912

pam_get_user subroutine 913

pam_getenv subroutine 914

pam_getenvlist subroutine 915

pam_open_session subroutine 916

pam_putenv subroutine 917

pam_set_data subroutine 918

pam_set_item subroutine 919

pam_setcred subroutine 920

pam_sm_acct_mgmt subroutine 922

pam_sm_authenticate subroutine 923

pam_sm_chauthtok subroutine 924

pam_sm_close_session subroutine 926

pam_sm_open_session subroutine 927

pam_sm_setcred subroutine 928

pam_start subroutine 929

pam_strerror subroutine 932

passwdexpired 932

passwdexpiredx subroutine 933

passwdpolicy subroutine 935

passwdstrength subroutine 937

password maintenance
password changing 152

password subroutines
passwdpolicy 935

passwdstrength 937

passwords
generating new 860

reading 393

pathconf subroutine 938

pause subroutine 941

pcap_close 941

pcap_compile 942

pcap_datalink 942

pcap_dispatch 943

pcap_dump 944

pcap_dump_close 945

pcap_dump_open 946

pcap_file 947

pcap_fileno 947

pcap_geterr 948

pcap_is_swapped 949

pcap_lookupdev 949

pcap_lookupnet 950

pcap_loop 951

pcap_major_version 952

pcap_next 953

pcap_open_live 954

pcap_open_offline 955

pcap_perror 956

pcap_setfilter 957

pcap_snapshot 958

pcap_stats 958

pcap_strerror 959

pclose subroutine 960

performance monitor subroutines
pm_delete_program_pgroup 988

pm_delete_program_pthread 989

pm_get_data_pgroup 998

pm_get_data_pthread 999

pm_get_program_pgroup 1008

pm_get_program_pthread 1009

pm_get_tdata_pgroup 998

pm_get_tdata_pthread 999

pm_initialize 1014

pm_reset_data_pgroup 1020

pm_reset_data_pthread 1021

pm_set_program_pgroup 1030

Index 1277

performance monitor subroutines (continued)
pm_set_program_pthread 1031

pm_start_pgroup 1038

pm_start_pthread 1040

pm_stop_pgroup 1046

perfstat
perfstat_partition_total subroutine 977

perfstat_cpu subroutine 961

perfstat_cpu_total subroutine 962

perfstat_disk subroutine 964

perfstat_disk_total subroutine 968

perfstat_diskadapter subroutine 965

perfstat_diskpath subroutine 966

perfstat_memory_total subroutine 969

perfstat_netbuffer subroutine 970

perfstat_netinterface subroutine 971

perfstat_netinterface_total subroutine 973

perfstat_pagingspace subroutine 974

perfstat_partial_reset subroutine 975

perfstat_partition_total subroutine 977

perfstat_protocol subroutine 978

perfstat_reset subroutine 980

permanent storage
writing file changes to 314

perror subroutine 980

pglob parameter
freeing memory 475

physical volumes
querying 757

pipe subroutine 981

pipes
closing 960

creating 981, 1055

plock subroutine 982

pm_delete_program_pgroup subroutine 988

pm_delete_program_pthread subroutine 989

pm_get_data_pgroup subroutine 998

pm_get_data_pthread subroutine 999

pm_get_program_pgroup subroutine 1008

pm_get_program_pthread subroutine 1009

pm_get_tdata_pgroup subroutine 998

pm_get_tdata_pthread subroutine 999

pm_initialize subroutine 1014

pm_reset_data_pgroup subroutine 1020

pm_reset_data_pthread subroutine 1021

pm_set_program_pgroup subroutine 1030

pm_set_program_pthread subroutine 1031

pm_start_pgroup subroutine 1038

pm_start_pthread subroutine 1040

pm_stop_pgroup subroutine 1046

poll subroutine 1049

pollset subroutines
pollset_create 1052

pollset_ctl 1052

pollset_destroy 1052

pollset_poll 1052

pollset_query 1052

pollset_create subroutine 1052

pollset_ctl subroutine 1052

pollset_destroy subroutine 1052

pollset_poll subroutine 1052

pollset_query subroutine 1052

popen subroutine 1055

POSIX Realtime subroutines
posix_fadvise 1056

posix_fallocate 1057

posix_madvise 1058

POSIX SPAWN subroutines
posix_spawn 1060

posix_spawn_file_actions_addclose 1064

posix_spawn_file_actions_adddup2 1065

posix_spawn_file_actions_addopen 1064

posix_spawn_file_actions_destroy 1066

posix_spawn_file_actions_init 1066

posix_spawnattr_destroy 1067

posix_spawnattr_getflags 1068

posix_spawnattr_getpgroup 1069

posix_spawnattr_getschedparam 1070

posix_spawnattr_getschedpolicy 1071

posix_spawnattr_getsigdefault 1072

posix_spawnattr_getsigmask 1073

posix_spawnattr_init 1067

posix_spawnattr_setflags 1068

posix_spawnattr_setpgroup 1069

posix_spawnattr_setschedparam 1070

posix_spawnattr_setschedpolicy 1071

posix_spawnattr_setsigdefault 1072

posix_spawnattr_setsigmask 1073

posix_spawnp 1060

posix_openpt Subroutine 1059

posix_spawn subroutine 1060

posix_spawn_file_actions_addclose subroutine 1064

posix_spawn_file_actions_adddup2 subroutine 1065

posix_spawn_file_actions_addopen subroutine 1064

posix_spawn_file_actions_destroy subroutine 1066

posix_spawn_file_actions_init subroutine 1066

posix_spawnattr_destroy subroutine 1067

posix_spawnattr_getflags subroutine 1068

posix_spawnattr_getpgroup subroutine 1069

posix_spawnattr_getschedparam subroutine 1070

posix_spawnattr_getschedpolicy subroutine 1071

posix_spawnattr_getsigdefault subroutine 1072

posix_spawnattr_getsigmask subroutine 1073

posix_spawnattr_init subroutine 1067

posix_spawnattr_setflags subroutine 1068

posix_spawnattr_setpgroup subroutine 1069

posix_spawnattr_setschedparam subroutine 1070

posix_spawnattr_setschedpolicy subroutine 1071

posix_spawnattr_setsigdefault subroutine 1072

posix_spawnattr_setsigmask subroutine 1073

posix_spawnp subroutine 1060

posix_trace_getnext_event subroutine 1074

posix_trace_timedgetnext_event subroutine 1074

posix_trace_trygetnext_event subroutine 1074

pow subroutine 771, 1077

power functions
computing 241

powf 1077

powf subroutine 1077

powl subroutine 1077

pre-editing space 546

1278 Technical Reference, Volume 1: Base Operating System and Extensions

print formatter subroutines
initialize 549

lineout 707

print lines
formatting 707

printer initialization 549

printf subroutine 1079

process accounting
displaying resource use 419

enabling and disabling 7

tracing process execution 1215

process credentials
reading 394

process environments
initializing run-time 572

reading 396

process group IDs
returning 362, 398

supplementary IDs
getting 375

initializing 548

process identification
alphanumeric user name 205

path name of controlling terminal 194

process IDs
returning 398

process initiation
creating child process 284

executing file 232

process locks 982

process messages
getting message queue identifiers 841

providing control operations 838

reading from message queue 842

receiving from message queue 847

sending to message queue 845

process priorities
getting or setting 403

returning scheduled priorities 402

process program counters
histogram 1086

process resource allocation
changing data space segments 120

controlling system consumption 415

getting size of descriptor table 355

locking into memory 982

starting address sampling 1086

stopping address sampling 1086

process resource use 419

process signals
alarm 378

printing system signal messages 1093

sending to processes 570

process subroutines (security and auditing)
getegid 362

geteuid 443

getgid 362

getgidx 362

getgroups 375

getpcred 394

getpenv 396

process subroutines (security and auditing) (continued)
getuid 443

getuidx 443

initgroups 548

kleenup 572

process user IDs
returning 443

processes
closing pipes 960

creating 284

getting process table entries 406

initializing run-time environment 572

initiating pipes 1055

suspending 941

terminating 2, 239, 570

tracing 1215

processes subroutines
_exit 239

abort 2

acct 7

atexit 239

brk 120

ctermid 194

cuserid 205

exec 232

exit 239

fork 284

getdtablesize 355

getpgrp 398

getpid 398

getppid 398

getpri 402

getpriority 403

getrlimit 415

getrlimit64 415

getrusage 419

getrusage64 419

kill 570

killpg 570

msgctl 838

msgget 841

msgrcv 842

msgsnd 845

msgxrcv 847

nice 403

pause 941

plock 982

profil 1086

psignal 1093

ptrace 1215

sbrk 120

setpriority 403

setrlimit 415

setrlimit64 415

times 419

unatexit 239

vfork 284

vlimit 415

vtimes 419

profil subroutine 1086

Index 1279

program assertion
verifying 90

proj_execve subroutine 1088

projdballoc subroutine 1089

projdbfinit subroutine 1090

projdbfree subroutine 1091

psdanger subroutine 1092

psignal subroutine 1093

pthdb_attr_
pthdb_attr_addr 1096

pthdb_attr_detachstate 1096

pthdb_attr_guardsize 1096

pthdb_attr_inheritsched 1096

pthdb_attr_schedparam 1096

pthdb_attr_schedpolicy 1096

pthdb_attr_schedpriority 1096

pthdb_attr_scope 1096

pthdb_attr_stackaddr 1096

pthdb_attr_stacksize 1096

pthdb_attr_suspendstate 1096

pthread subroutines
pthread_attr_getinheritsched subroutine 1123

pthread_attr_getschedpolicy subroutine 1125

pthread_attr_setinheritsched subroutine 1123

pthread_attr_setschedpolicy subroutine 1125

pthread_create_withcred_np 1155

pthread_mutex_timedlock 1181

pthread_rwlock_timedrdlock 1196

pthread_rwlock_timedwrlock 1198

pthread_atfork subroutine 1119

pthread_attr_destroy subroutine 1120

pthread_attr_getdetachstate subroutine 1129

pthread_attr_getguardsize subroutine 1121

pthread_attr_getinheritsched subroutine 1123

pthread_attr_getschedparam subroutine 1124

pthread_attr_getschedpolicy subroutine 1125

pthread_attr_getscope subroutine 1130

pthread_attr_getstackaddr subroutine 1126

pthread_attr_getstacksize subroutine 1127

pthread_attr_init subroutine 1128

pthread_attr_setdetachstate subroutine 1129

pthread_attr_setguardsize subroutine 1121

pthread_attr_setinheritsched subroutine 1123

pthread_attr_setschedparam subroutine 1132

pthread_attr_setschedpolicy subroutine 1125

pthread_attr_setscope subroutine 1130

pthread_attr_setstackaddr subroutine 1133

pthread_attr_setstacksize subroutine 1134

pthread_attr_setsupendstate_np and

pthread_attr_getsuspendstate_np subroutine 1135

pthread_cancel subroutine 1140

pthread_cleanup_pop subroutine 1142

pthread_cleanup_push subroutine 1142

pthread_cond_broadcast subroutine 1145

pthread_cond_destroy subroutine 1143

PTHREAD_COND_INITIALIZER macro 1144

pthread_cond_signal subroutine 1145

pthread_cond_timedwait subroutine 1146

pthread_cond_wait subroutine 1146

pthread_condattr_destroy subroutine 1148

pthread_condattr_getclock subroutine 1149

pthread_condattr_getpshared subroutine 1150

pthread_condattr_setclock subroutine 1149

pthread_condattr_setpshared subroutine 1152

pthread_create subroutine 1153

pthread_create_withcred_np subroutine 1155

pthread_delay_np subroutine 1156

pthread_equal subroutine 1157

pthread_exit subroutine 1158

pthread_get_expiration_np subroutine 1159

pthread_getconcurrency subroutine 1160

pthread_getcpuclockid subroutine 1162

pthread_getrusage_np subroutine 1162

pthread_getschedparam subroutine 1165

pthread_getspecific subroutine 1166

pthread_getunique_np subroutine 1170

pthread_join subroutine 1171

pthread_key_create subroutine 1172

pthread_key_delete subroutine 1173

pthread_kill subroutine 1174

pthread_lock_global_np subroutine 1175

pthread_mutex_destroy subroutine 1176

pthread_mutex_init subroutine 1176

PTHREAD_MUTEX_INITIALIZER macro 1179

pthread_mutex_lock subroutine 1179

pthread_mutex_timedlock subroutine 1181

pthread_mutex_trylock subroutine 1179

pthread_mutexattr_destroy subroutine 1182

pthread_mutexattr_getkind_np subroutine 1184

pthread_mutexattr_gettype subroutine 1189

pthread_mutexattr_init subroutine 1182

pthread_mutexattr_setkind_np subroutine 1190

pthread_mutexattr_settype subroutine 1189

pthread_once subroutine 1192

PTHREAD_ONCE_INIT macro 1193

pthread_rwlock_timedrdlock subroutine 1196

pthread_rwlock_timedwrlock subroutine 1198

pthread_self subroutine 1204

pthread_setcancelstate subroutine 1205

pthread_setschedparam subroutine 1206

pthread_setschedprio subroutine 1208

pthread_setspecific subroutine 1166

pthread_signal_to_cancel_np subroutine 1209

pthread_spin_destroy subroutine 1210

pthread_spin_init subroutine 1210

pthread_suspend_np and pthread_continue_np

subroutine 1213

pthread_unlock_global_np subroutine 1214

pthread_yield subroutine 1215

pthreads subroutines
posix_trace_getnext_event subroutine 1074

posix_trace_timedgetnext_event subroutine 1074

posix_trace_trygetnext_event subroutine 1074

pthread_setschedprio subroutine 1208

ptrace subroutine 1215

ptracex subroutine 1215

ptsname subroutine 1226

putc subroutine 1227

putc_unlocked subroutine 342

putchar subroutine 1227

putchar_unlocked subroutine 342

putconfattr subroutine 343

1280 Technical Reference, Volume 1: Base Operating System and Extensions

putconfattrs subroutine 1229

putenv subroutine 1231

putgrent subroutine 1232

putgroupattr subroutine 367

putgroupattrs subroutine 1233

putgrpaclattr Subroutine 376

putportattr Subroutine 399

putpwent subroutine 413

putroleattr Subroutine 422

puts subroutine 1236

puttcbattr subroutine 431

putuserattr subroutine 445

putuserattrs subroutine 1238

putuserpw subroutine 459

putuserpwhist subroutine 459

putuserpwx subroutine 1242

putusraclattr Subroutine 462

pututline subroutine 464

putw subroutine 1227

putwc subroutine 1244

putwchar subroutine 1244

putws subroutine 1246

Q
queues

inserting and removing elements 550

quotient and remainder
imaxdiv 526

R
radix-independent exponents

logbf 735

logbl 735

read operations
asynchronous 50

binary files 304

read-write file pointers
moving 751

readdir subroutine 902

readdir64 subroutine 902

real floating types
fpclassify 303

real value subroutines
creal 188

crealf 188

creall 188

realloc subroutine 764

regular expressions
matching patterns 175

remque subroutine 550

resabs subroutine 378

reset_speed subroutine 335

resinc subroutine 378

resource information 1162

resources subroutines
pthread_getrusage_np 1162

restimer subroutine 437

rewind subroutine 311

rewinddir subroutine 902

rewinddir64 subroutine 902

rounding direction
fegetround 261

fesetround 261

rounding numbers
llrint 715

llrintf 715

llrintl 715

llround 716

llroundf 716

llroundl 716

lrint 748

lrintf 748

lrintl 748

lround 749

lroundf 749

lroundl 749

rpc file
handling 418

rpow subroutine 771

run-time environment
initializing 572

S
sbrk subroutine 120

sdiv subroutine 771

security library subroutines
authenticatex 113

chpassx 154

getconfattrs 347

getgroupattrs 370

getuserattrs 451

getuserpwx 461

loginrestrictionsx 742

newpassx 862

passwdexpiredx 933

putconfattrs 1229

putgroupattrs 1233

putuserattrs 1238

putuserpwx 1242

security subroutines
getuinfox 444

seed48 subroutine 217

seekdir subroutine 902

seekdir64 subroutine 902

set_speed subroutine 335

setfsent subroutine 361

setfsent_r subroutine 426

setgrent subroutine 363

setitimer subroutine 378

setkey subroutine 189

setpriority subroutine 403

setpwent subroutine 413

setrlimit subroutine 415

setrlimit64 subroutine 415

setrpcent subroutine 418

setsockopt subroutine 520

settimeofday subroutine 436

settimer subroutine 437

setttyent subroutine 441

Index 1281

setutent subroutine 464

setvfsent subroutine 467

shell command-line flags 388

SIGALRM signal 380

SIGIOT signal 2

signal names
formatting 1093

sine functions
csin 191

csinf 191

csinl 191

single-byte to wide-character conversion 122

SJIS character conversions 566

sjtojis subroutine 566

sjtouj subroutine 566

snprintf subroutine 1079

socket options
setting 520

sockets kernel service subroutines
setsockopt 520

sockets network library subroutines
endhostent 870

gethostent 869

inet_aton 547

special files
creating 797

sprintf subroutine 1079

square root subroutines
csqrt 192

csqrtf 192

csqrtl 192

srand48 subroutine 217

SRC subroutines
addssys 33

chssys 160

delssys 207

getssys 428

SRC subsys record
adding 33

SRC subsys structure
initializing 206

Statistics subroutines
perfstat_cpu 961

perfstat_cpu_total 962

perfstat_disk 964

perfstat_disk_total 968

perfstat_diskadapter 965

perfstat_diskpath 966

perfstat_memory_total 969

perfstat_netbuffer 970

perfstat_netinterface 971

perfstat_netinterface_total 973

perfstat_pagingspace 974

perfstat_protocol 978

perfstat_reset 980

status indicators
beeping 530

drawing 534

hiding 535

step subroutine 175

stime subroutine 437

streams
checking status 264

closing 249

flushing 249

opening 281

repositioning file pointers 311

writing to 249

string conversion
long integers to base-64 ASCII 1

string manipulation subroutines
advance 175

bcmp 116

bcopy 116

bzero 116

compile 175

ffs 116

fgets 425

fnmatch 279

fputs 1236

gets 425

puts 1236

step 175

strings
bit string operations 116

byte string operations 116

copying 116

drawing text strings 545

matching against pattern parameters 279

reading bytes into arrays 425

writing to standard output streams 1236

zeroing out 116

subroutine
pcap_close 941

pcap_compile 942

pcap_datalink 942

pcap_dispatch 943

pcap_dump 944

pcap_dump_close 945

pcap_dump_open 946

pcap_file 947

pcap_fileno 947

pcap_geterr 948

pcap_is_swapped 949

pcap_lookupdev 949

pcap_lookupnet 950

pcap_loop 951

pcap_major_version 952

pcap_next 953

pcap_open_live 954

pcap_open_offline 955

pcap_perror 956

pcap_setfilter 957

pcap_snapshot 958

pcap_stats 958

pcap_strerror 959

subroutines
LAPI_Addr_get 579

LAPI_Addr_set 580

LAPI_Address 582

LAPI_Address_init 583

LAPI_Address_init64 585

1282 Technical Reference, Volume 1: Base Operating System and Extensions

subroutines (continued)
LAPI_Amsend 587

LAPI_Amsendv 592

LAPI_Fence 600

LAPI_Get 601

LAPI_Getcntr 604

LAPI_Getv 605

LAPI_Gfence 609

LAPI_Init 610

LAPI_Msg_string 615

LAPI_Msgpoll 617

LAPI_Nopoll_wait 619

LAPI_Probe 620

LAPI_Purge_totask 621

LAPI_Put 623

LAPI_Putv 625

LAPI_Qenv 629

LAPI_Resume_totask 632

LAPI_Rmw 633

LAPI_Rmw64 637

LAPI_Senv 641

LAPI_Setcntr 643

LAPI_Setcntr_wstatus 645

LAPI_Term 646

LAPI_Util 648

LAPI_Waitcntr 659

LAPI_Xfer 661

Subroutines
perfstat_cpu 961

perfstat_cpu_total 962

perfstat_disk_total 964, 968

perfstat_diskpath 966

perfstat_memory_total 969

perfstat_netinterface_total 971, 973

subsystem objects
modifying 160

removing 207

subsystem records
reading 428, 430

supplementary process group IDs
getting 375

initializing 548

swapcontext Subroutine 774

swprintf subroutine 320

swscanf subroutine 324

symbol-handling subroutine
knlist 573

symbols
translating names to addresses 573

sys_siglist vector 1093

system auditing 96

system data objects
auditing modes 103

system event audits
getting or setting status 100

system resources
setting maximums 415

system signal messages 1093

system variables
determining values 179

T
telldir subroutine 902

telldir64 subroutine 902

terminal baud rate
get 335

set 335

text area
hiding 546

text locks 982

text strings
drawing 545

Thread-safe C Library
subroutines

164_r 578

Thread-Safe C Library 365, 366, 426

subroutines
getfsent_r 426

getlogin_r 386

getsfile_r 426

setfsent_r 426

threads
getting thread table entries 434

Threads Library 1206

condition variables
creation and destruction 1143, 1144

creation attributes 1148, 1150, 1152

signalling a condition 1145

waiting for a condition 1146

DCE compatibility subroutines
pthread_delay_np 1156

pthread_get_expiration_np 1159

pthread_getunique_np 1170

pthread_lock_global_np 1175

pthread_mutexattr_getkind_np 1184

pthread_mutexattr_setkind_np 1190

pthread_signal_to_cancel_np 1209

pthread_unlock_global_np 1214

mutexes
creation and destruction 1179

creation attributes 1189

locking 1179

pthread_mutexattr_destroy 1182

pthread_mutexattr_init 1182

process creation
pthread_atfork subroutine 1119

pthread_attr_getguardsize subroutine 1121

pthread_attr_setguardsize subroutine 1121

pthread_getconcurrency subroutine 1160

pthread_mutex_destroy 1176

pthread_mutex_init 1176

scheduling
dynamic thread control 1165, 1215

thread creation attributes 1124, 1132

signal, sleep, and timer handling
pthread_kill subroutine 1174

thread-specific data
pthread_getspecific subroutine 1166

pthread_key_create subroutine 1172

pthread_key_delete subroutine 1173

pthread_setspecific subroutine 1166

Index 1283

Threads Library (continued)
threads

cancellation 1140, 1205

creation 1153

creation attributes 1120, 1126, 1127, 1128, 1129,

1130, 1133, 1134, 1135, 1213

ID handling 1157, 1204

initialization 1192, 1193

termination 1142, 1158, 1171

time
displaying and setting 436

reporting used CPU time 167

synchronizing system clocks 35

time format conversions 195

time manipulation subroutines
absinterval 378

adjtime 35

alarm 378

asctime 195

clock 167

clock_getres 168

clock_gettime 168

clock_settime 168

ctime 195

difftime 195

ftime 436

getinterval 378

getitimer 378

gettimeofday 436

gettimer 437

gettimerid 440

gmtime 195

incinterval 378

localtime 195

mktime 195

resabs 378

resinc 378

restimer 437

setitimer 378

settimeofday 436

settimer 437

stime 437

time 437

tzset 195

ualarm 378

time subroutine 437

time subroutines
asctime64 198

asctime64_r 200

ctime64 198

ctime64_r 200

difftime64 198

gmtime64 198

gmtime64_r 200

localtime64 198

localtime64_r 200

mktime64 198

timer
getting or setting values 437

timer subroutines
clock_getcpuclockid 167

timer subroutines (continued)
clock_nanosleep 170

pthread_condattr_getclock 1149

pthread_condattr_setclock 1149

pthread_getcpuclockid 1162

times subroutine 419

toascii subroutine 181

tojhira subroutine 567

tojkata subroutine 567

tojlower subroutine 567

tojupper subroutine 567

tolower subroutine 181

toujis subroutine 567

toupper subroutine 181

trace
install_lwcf_handler subroutine 551

mt__trce subroutine 851

transforming text 683

trunc subroutine 271

trusted processes
initializing run-time environment 572

tty description file
querying 441

tty subroutines
endttyent 441

getttyent 441

getttynam 441

setttyent 441

tzset subroutine 195

U
ualarm subroutine 378

uitrunc subroutine 271

UJIS character conversions 566

ujtojis subroutine 566

ujtosj subroutine 566

umul_dbl subroutine 3

unatexit subroutine 239

unbiased exponents
ilogbf 524

ilogbl 524

unordered subroutine 165

user accounts
checking validity 162

user authentication data
accessing 459

user database
accessing group information 363, 367

accessing user information 343, 413, 445

user information
accessing 343, 413, 445

accessing group information 363, 367

searching buffer 444

user login name
getting 385

users
authenticating 164

utmpname subroutine 464

1284 Technical Reference, Volume 1: Base Operating System and Extensions

V
vectors

sys_siglist 1093

vfork subroutine 284

vfprintf subroutine 1079

VFS (Virtual File System)
getting file entries 467

returning mount status 807

virtual memory
mapping file-system objects 803

vlimit subroutine 415

volume groups
querying 760

querying all varied on-line 763

vprintf subroutine 1079

vsprintf subroutine 1079

vtimes subroutine 419

vwsprintf subroutine 1079

W
wide character subroutines

fgetwc 468

fgetws 471

fputwc 1244

fputws 1246

getwc 468

getwchar 468

getws 471

is_wctype 565

iswalnum 562

iswalpha 562

iswcntrl 562

iswctype subroutine 565

iswdigit 562

iswgraph 562

iswlower 562

iswprint 562

iswpunct 562

iswspace 562

iswupper 562

iswxdigit 562

putwc 1244

putwchar 1244

putws 1246

wide characters
checking character class 562

converting
from multibyte 790, 791

determining properties 565

reading from input stream 468, 471

writing to output stream 1244, 1246

words
returning from input streams 340

wprintf subroutine 320

write operations
asynchronous 60

binary files 304

wscanf subroutine 324

wsprintf subroutine 1079

Y
y0 subroutine 117

y1 subroutine 117

yn subroutine 117

Index 1285

1286 Technical Reference, Volume 1: Base Operating System and Extensions

Vos remarques sur ce document / Technical publication remark form

Titre / Title : Bull AIX 5L Technical Reference: Base Operating System and Extensions

Nº Reférence / Reference Nº : 86 A2 77EM 02 Daté / Dated : October 2005

ERREURS DETECTEES / ERRORS IN PUBLICATION

AMELIORATIONS SUGGEREES / SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Vos remarques et suggestions seront examinées attentivement.

Si vous désirez une réponse écrite, veuillez indiquer ci-après votre adresse postale complète.

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.

If you require a written reply, please furnish your complete mailing address below.

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

Remettez cet imprimé à un responsable BULL ou envoyez-le directement à :

Please give this technical publication remark form to your BULL representative or mail to:

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

Technical Publications Ordering Form

Bon de Commande de Documents Techniques

To order additional publications, please fill up a copy of this form and send it via mail to:

Pour commander des documents techniques, remplissez une copie de ce formulaire et envoyez-la à :

BULL CEDOC
ATTN / Mr. L. CHERUBIN
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Phone / Téléphone : +33 (0) 2 41 73 63 96
FAX / Télécopie +33 (0) 2 41 73 60 19
E–Mail / Courrier Electronique : srv.Cedoc@franp.bull.fr

Or visit our web sites at: / Ou visitez nos sites web à:

http://www.logistics.bull.net/cedoc

http://www–frec.bull.com http://www.bull.com

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

CEDOC Reference #
No Référence CEDOC

Qty
Qté

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _] _ _ _ _ _ _ _ _ _ [_ _]

[_ _] : no revision number means latest revision / pas de numéro de révision signifie révision la plus récente

NOM / NAME : Date :

SOCIETE / COMPANY :

ADRESSE / ADDRESS :

PHONE / TELEPHONE : FAX :

E–MAIL :

For Bull Subsidiaries / Pour les Filiales Bull :

Identification:

For Bull Affiliated Customers / Pour les Clients Affiliés Bull :

Customer Code / Code Client :

For Bull Internal Customers / Pour les Clients Internes Bull :

Budgetary Section / Section Budgétaire :

For Others / Pour les Autres :

Please ask your Bull representative. / Merci de demander à votre contact Bull.

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

86 A2 77EM 02

ORDER REFERENCE

	Contents
	About This Book
	Highlighting
	Case-Sensitivity in AIX
	ISO 9000
	32-Bit and 64-Bit Support for the Single UNIX Specification
	Related Publications

	Base Operating System (BOS) Runtime Services (A-P)
	a64l or l64a Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	abort Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	abs, div, labs, ldiv, imul_dbl, umul_dbl, llabs, or lldiv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	access, accessx, or faccessx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	acct Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	acl_chg or acl_fchg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	acl_get or acl_fget Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	acl_put or acl_fput Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	acl_set or acl_fset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	aclx_convert Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	aclx_get or aclx_fget Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	aclx_gettypeinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	aclx_gettypes Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	aclx_print or aclx_printStr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	aclx_put or aclx_fput Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	aclx_scan or aclx_scanStr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	acos, acosf, or acosl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	acosh, acoshf, or acoshl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	addproj Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	addprojdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	addssys Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Files
	Related Information

	adjtime Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	agg_proc_stat, agg_lpar_stat, agg_arm_stat, or free_agg_list Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	aio_cancel or aio_cancel64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	aio_error or aio_error64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	aio_fsync Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information

	aio_nwait Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	aio_nwait_timeout Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	aio_read or aio_read64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	aio_return or aio_return64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Examples
	Related Information

	aio_suspend or aio_suspend64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Envrionment
	Return Values
	Error Codes
	Related Information
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Envrionment
	Return Values
	Related Information

	aio_write or aio_write64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	alloc, dealloc, print, read_data, read_regs, symbol_addrs, write_data, and write_regs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	alloclmb Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information

	arm_end Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_end Dual Call Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_getid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_getid Dual Call Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files

	arm_init Dual Call Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files

	arm_start Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_start Dual Call Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_stop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_stop Dual Call Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_update Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	arm_update Dual Call Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	asinh, asinhf, or asinhl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	asinf, asinl, or asin Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	assert Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	atan2f, atan2l, or atan2 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	atan, atanf, or atanl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	atanh, atanhf, or atanhl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	atof atoff Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	atol or atoll Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	audit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	auditbin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	auditevents Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Codes
	Error Codes
	Related Information

	auditlog Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	auditobj Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	auditpack Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	auditproc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	auditread, auditread_r Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	auditwrite Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	authenticate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	authenticatex Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	basename Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Related Information

	bcopy, bcmp, bzero or ffs Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	bessel: j0, j1, jn, y0, y1, or yn Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	bindprocessor Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	brk or sbrk Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	bsearch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	btowc Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	buildproclist Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	buildtranlist or freetranlist Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	_check_lock Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Values
	Related Information

	_clear_lock Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Related Information

	cabs, cabsf, or cabsl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values

	cacos, cacosf, or cacosl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values

	cacosh, cacoshf, or cacoshl Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	carg, cargf, or cargl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	casin, casinf, or casinl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	casinh, casinfh, or casinlh Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	catan, catanf, or catanl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	catanh, catanhf, or catanhl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	catclose Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	catgets Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	catopen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	cbrtf, cbrtl, or cbrt Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ccos, ccosf, or ccosl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ccosh, ccoshf, or ccoshl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ccsidtocs or cstoccsid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ceil, ceilf, or ceill Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	cexp, cexpf, or cexpl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	chacl or fchacl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	chdir Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	chmod or fchmod Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	chown, fchown, lchown, chownx, or fchownx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security

	chpass Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	chpassx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	chprojattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	chprojattrdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	chroot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	chssys Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Files
	Related Information

	cimag, cimagf, or cimagl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ckuseracct Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	ckuserID Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	class, _class, finite, isnan, or unordered Subroutines
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	clock Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	clock_getcpuclockid Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	clock_getres, clock_gettime, and clock_settime Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	clock_nanosleep Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	clog, clogf, or clogl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	close Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	compare_and_swap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	compile, step, or advance Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Related Information

	confstr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Example
	Files
	Related Information

	conj, conjf, or conjl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	conv Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	copysign, copysignf, or copysignl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	coredump Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	cosf, cosl, or cos Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	cosh, coshf, or coshl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	cpow, cpowf, or cpowl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	cproj, cprojf, or cprojl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	creal, crealf, or creall Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	crypt, encrypt, or setkey Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	csid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	csin, csinf, or csinl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	csinh, csinhf, or csinhl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	csqrt, csqrtf, or csqrtl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ctan, ctanf, or ctanl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ctanh, ctanhf, or ctanhl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ctermid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	ctime, localtime, gmtime, mktime, difftime, asctime, or tzset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ctime64, localtime64, gmtime64, mktime64, difftime64, or asctime64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	ctime64_r, localtime64_r, gmtime64_r, or asctime64_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	ctime_r, localtime_r, gmtime_r, or asctime_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	ctype, isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, or isascii Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Codes
	Related Information

	cuserid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Related Information

	defssys Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	delssys Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Security
	Files
	Related Information

	dirname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	disclaim Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	dladdr Subroutine
	Purpose
	Syntax
	Description
	Return values
	Related Information

	dlclose Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	dlerror Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Related Information

	dlopen Subroutine
	Purpose
	Syntax
	Description
	Flags
	Return Values
	Error Codes
	Related Information

	dlsym Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, seed48, or srand48 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	drem Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	_end, _etext, or _edata Identifier
	Purpose
	Syntax
	Description
	Related Information

	ecvt, fcvt, or gcvt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	EnableCriticalSections, BeginCriticalSection, and EndCriticalSection Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values

	erf, erff, or erfl Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	erfc, erfcf, or erfcl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	errlog Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	errlog_close Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Related Information

	errlog_find_first, errlog_find_next, and errlog_find_sequence Subroutines
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	errlog_open Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	errlog_set_direction Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	errlog_write Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	exec: execl, execle, execlp, execv, execve, execvp, or exect Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Error Codes
	Related Information

	exit, atexit, unatexit, _exit, or _Exit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	exp, expf, or expl Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	exp2, exp2f, or exp2l Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	expm1, expm1f, or expm1l Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fabsf, fabsl, or fabs Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fattach Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Errno Value
	Related Specifics

	fchdir Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	fclear or fclear64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	fclose or fflush Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	fcntl, dup, or dup2 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Compatibility Interfaces
	Return Values
	Error Codes
	Related Information

	fdetach Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Description
	Return Value
	Errno Value
	Related Information

	fdim, fdimf, or fdiml Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	feclearexcept Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fegetenv or fesetenv Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fegetexceptflag or fesetexceptflag Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fegetround or fesetround Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values

	feholdexcept Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fence Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Error Values

	feof, ferror, clearerr, or fileno Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	feraiseexcept Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fetch_and_add Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fetch_and_and or fetch_and_or Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fetestexcept Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	feupdateenv Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	finfo or ffinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Commands
	Return Values
	Error Codes
	Related Information

	flockfile, ftrylockfile, funlockfile Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Implementation Specifics
	Related Information

	floor, floorf, floorl, nearest, trunc, itrunc, or uitrunc Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	fma, fmaf, or fmal Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fmax, fmaxf, or fmaxl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fminf or fminl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fmod, fmodf, or fmodl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fmtmsg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Environment Variables
	Application Usage
	Return Values
	Examples
	Related Information

	fnmatch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	fopen, fopen64, freopen, freopen64 or fdopen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	POSIX
	SAA
	Related Information

	fork, f_fork, or vfork Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	fp_any_enable, fp_is_enabled, fp_enable_all, fp_enable, fp_disable_all, or fp_disable Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fp_cpusync Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	fp_flush_imprecise Subroutine
	Purpose
	Library
	Syntax
	Description
	Example
	Related Information

	fp_invalid_op, fp_divbyzero, fp_overflow, fp_underflow, fp_inexact, fp_any_xcp Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf, fp_iop_zrdzr, fp_iop_infmzr, fp_iop_invcmp, fp_iop_sqrt, fp_iop_convert, or fp_iop_vxsoft Subroutines
	Purpose
	Library
	Syntax
	Description
	Return Values

	fp_raise_xcp Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fp_read_rnd or fp_swap_rnd Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	fp_sh_info, fp_sh_trap_info, or fp_sh_set_stat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	fp_trap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	fp_trapstate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fpclassify Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fread or fwrite Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	freehostent Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	freelmb Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information

	frevoke Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	frexpf, frexpl, or frexp Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	fscntl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	fseek, fseeko, fseeko64, rewind, ftell, ftello, ftello64, fgetpos, fgetpos64, fsetpos, or fsetpos64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	fsync or fsync_range Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ftok Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ftw or ftw64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	fwide Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Errors
	Related Information

	fwprintf, wprintf, swprintf Subroutines
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Examples
	Related Information

	fwscanf, wscanf, swscanf Subroutines
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Examples
	Related Information

	gai_strerror Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	gamma Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Related Information

	gencore or coredump Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	genpagvalue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	get_malloc_log Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	get_malloc_log_live Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	get_speed, set_speed, or reset_speed Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getargs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getaudithostattr, IDtohost, hosttoID, nexthost or putaudithostattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getauthdb or getauthdb_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	getc, getchar, fgetc, or getw Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked Subroutines
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	getconfattr or putconfattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Files
	Related Information

	getconfattrs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Files
	Related Information

	getcontext or setcontext Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getcwd Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getdate Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Examples
	Related Information

	getdtablesize Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	getea Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getenv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	getevars Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getfilehdr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getfirstprojdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getgid, getegid or gegidx Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Error Codes
	Related Information

	getgrent, getgrgid, getgrnam, setgrent, or endgrent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	File
	Related Information

	getgrgid_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	getgrnam_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	getgroupattr, IDtogroup, nextgroup, or putgroupattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getgroupattrs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Examples
	Files
	Related Information

	getgroups Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getgrpaclattr, nextgrpacl, or putgrpaclattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getgrset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	File
	Related Information

	getinterval, incinterval, absinterval, resinc, resabs, alarm, ualarm, getitimer or setitimer Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getipnodebyaddr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getipnodebyname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getlogin Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	getlogin_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	File
	Related Information

	getnextprojdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getopt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	getpagesize Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	getpaginfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getpagvalue or getpagvalue64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getpass Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getpcred Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getpeereid Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	getpenv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getpgid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Code
	Related Information

	getpid, getpgrp, or getppid Subroutine
	Purpose
	Syntax
	Description
	Related Information

	getportattr or putportattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getpri Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getpriority, setpriority, or nice Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getproclist, getlparlist, or getarmlist Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getprocs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getproj Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getprojdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getprojs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getpw Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	getpwent, getpwuid, getpwnam, putpwent, setpwent, or endpwent Subroutine
	Purpose
	Library
	Syntax
	Description
	The user Structure
	Parameters
	Security
	Return Values
	Files
	Related Information

	getrlimit, getrlimit64, setrlimit, setrlimit64, or vlimit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getrpcent, getrpcbyname, getrpcbynumber, setrpcent, or endrpcent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getrusage, getrusage64, times, or vtimes Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getroleattr, nextrole or putroleattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	gets or fgets Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	getfsent_r, getfsspec_r, getfsfile_r, getfstype_r, setfsent_r, or endfsent_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getsid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getssys Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	getsubopt Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	getsubsvr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	gettcbattr or puttcbattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	getthrds Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Error Codes
	Related Information

	gettimeofday, settimeofday, or ftime Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	gettimer, settimer, restimer, stime, or time Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	gettimerid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getttyent, getttynam, setttyent, or endttyent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getuid, geteuid, or getuidx Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Error Codes
	Related Information

	getuinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Related Information

	getuinfox Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	getuserattr, IDtouser, nextuser, or putuserattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Files
	Related Information

	getuserattrs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Examples
	Files
	Related Information

	GetUserAuths Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values

	getuserpw, putuserpw, or putuserpwhist Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Files
	Related Information

	getuserpwx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Files
	Related Information

	getusraclattr, nextusracl or putusraclattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getutent, getutid, getutline, pututline, setutent, endutent, or utmpname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, or endvfsent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	getwc, fgetwc, or getwchar Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	getwd Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	getws or fgetws Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	glob Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	globfree Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	grantpt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Error Codes
	Related Information

	HBA_CloseAdapter Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	HBA_FreeLibrary Subroutine
	Purpose
	Library
	Syntax
	Description
	Error Codes
	Related Information

	HBA_GetAdapterAttributes, HBA_GetPortAttributes, HBA_GetDiscoveredPortAttributes, HBA_GetPortAttributesByWWN Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetAdapterName Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetEventBuffer Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetFC4Statistics Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetFcpPersistentBinding Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetFCPStatistics Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetFcpTargetMappingV2 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetFcpTargetMapping Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetNumberOfAdapters Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	HBA_GetPersistentBindingV2 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetPortStatistics Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	HBA_GetRNIDMgmtInfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_GetVersion Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	HBA_LoadLibrary Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	HBA_OpenAdapter Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	HBA_OpenAdapterByWWN Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_RefreshInformation Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	HBA_ScsiInquiryV2 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_ScsiReadCapacityV2 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_ScsiReportLunsV2 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendCTPassThru Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendCTPassThruV2 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendReadCapacity Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendReportLUNs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendRLS Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendRNID Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendRNIDV2 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendRPL Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendRPS Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SendScsiInquiry Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	HBA_SetRNIDMgmtInfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	hpmInit, f_hpminit, hpmStart, f_hpmstart, hpmStop, f_hpmstop, hpmTstart, f_hpmtstart, hpmTstop, f_hpmtstop, hpmGetTimeAndCounters, f_hpmgettimeandcounters, hpmGetCounters, f_hpmgetcounters, hpmTerminate, and f_hpmterminate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Error Codes
	Related Information

	hsearch, hcreate, or hdestroy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	hypot, hypotf, or hypotl Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	iconv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	iconv_close Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	iconv_open Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	ilogbf, ilogbl, or ilogb Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	imaxabs Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	imaxdiv Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMAIXMapping Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	IMAuxCreate Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMAuxDestroy Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMAuxDraw Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMAuxHide Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMBeep Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMClose Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	IMCreate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMDestroy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	IMFilter Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMFreeKeymap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	IMIndicatorDraw Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMIndicatorHide Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMInitialize Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	IMInitializeKeymap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	IMIoctl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMLookupString Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMProcess Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMProcessAuxiliary Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	IMQueryLanguage Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMSimpleMapping Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	IMTextCursor Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMTextDraw Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMTextHide Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	IMTextStart Callback Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Related Information

	inet_aton Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	initgroups Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	initialize Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	insque or remque Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	install_lwcf_handler Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	ioctl, ioctlx, ioctl32, or ioctl32x Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	File Input/Output (FIO) ioctl Command Values
	Return Values
	Related Information

	isblank Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	isendwin Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	isfinite Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	isgreater Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	isgreaterequal Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	isinf Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	isless Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	islessequal Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	islessgreater Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	isnormal Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	isunordered Macro
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	iswalnum, iswalpha, iswcntrl, iswdigit, iswgraph, iswlower, iswprint, iswpunct, iswspace, iswupper, or iswxdigit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	iswblank Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	iswctype or is_wctype Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	jcode Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	Japanese conv Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	Japanese ctype Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	kill or killpg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	kleenup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	knlist Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	kpidstate Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	_lazySetErrorHandler Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Related Information

	l3tol or ltol3 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	l64a_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	LAPI_Addr_get Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Addr_set Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Address Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	FORTRAN Examples
	Return Values
	Location
	Related Information

	LAPI_Address_init Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Address_init64 Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Amsend Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Return Values
	C Examples
	Location
	Related Information

	LAPI_Amsendv Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Fence Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Return Values
	C Examples
	Location
	Related Information

	LAPI_Get Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Getcntr Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Getv Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Gfence Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Return Values
	Location
	Related Information

	LAPI_Init Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Return Values
	C Examples
	Location
	Related Information

	LAPI_Msg_string Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Msgpoll Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Nopoll_wait Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Return Values
	Restrictions
	Location
	Related Information

	LAPI_Probe Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Return Values
	Location
	Related Information

	LAPI_Purge_totask Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	Return Values
	Location
	Related Information

	LAPI_Put Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Putv Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Qenv Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description

	LAPI_Resume_totask Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	Return Values
	Location
	Related Information

	LAPI_Rmw Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Rmw64 Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Senv Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Setcntr Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Setcntr_wstatus Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	Return Values
	Location
	Related Information

	LAPI_Term Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Util Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description

	LAPI_Waitcntr Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description
	Parameters
	Restrictions
	C Examples
	Return Values
	Location
	Related Information

	LAPI_Xfer Subroutine
	Purpose
	Library
	C Syntax
	FORTRAN Syntax
	Description

	layout_object_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	layout_object_editshape or wcslayout_object_editshape Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	layout_object_getvalue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	layout_object_setvalue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	layout_object_shapeboxchars Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	layout_object_transform or wcslayout_object_transform Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	layout_object_free Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldahread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldclose or ldaclose Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldexp, ldexpf, or ldexpl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldfhread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	ldgetname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Examples
	Related Information

	ldlread, ldlinit, or ldlitem Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldlseek or ldnlseek Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldohseek Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldopen or ldaopen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Examples
	Related Information

	ldrseek or ldnrseek Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldshread or ldnshread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	ldsseek or ldnsseek Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldtbindex Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldtbread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	ldtbseek Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	lgamma, lgammaf, or lgammal Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	lineout Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	link Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	lio_listio or lio_listio64 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information
	Purpose
	Syntax
	Description
	Parameters
	Execution Environment
	Return Values
	Related Information

	listea Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	llrint, llrintf, or llrintl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	llround, llroundf, or llroundl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	load Subroutine
	Purpose
	Syntax
	Description
	Searching for Dependent Modules
	Parameters
	Return Values
	Error Codes
	Related Information

	loadbind Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	loadquery Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	localeconv Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	lockfx, lockf, flock, or lockf64 Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	log10, log10f, or log10l Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	log1p, log1pf, or log1pl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	log2, log2f, or log2l Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	logbf, logbl, or logb Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	log, logf, or logl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	loginfailed Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	loginrestrictions Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	loginrestrictionsx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	loginsuccess Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	lpar_get_info Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	lpar_set_resources Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes

	lrint, lrintf, or lrintl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	lround, lroundf, or lroundl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	lsearch or lfind Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	lseek, llseek or lseek64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	lvm_querylv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	lvm_querypv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	lvm_queryvg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	lvm_queryvgs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	malloc, free, realloc, calloc, mallopt, mallinfo, mallinfo_heap, alloca, valloc, or posix_memalign Subroutine
	Purpose
	Libraries
	Malloc Subsystem APIs
	malloc
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	free
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	realloc
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	calloc
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	mallopt
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	mallinfo
	Syntax
	Description
	Return Values
	Error Codes
	mallinfo_heap
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	alloca
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	valloc
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	posix_memalign
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	madd, msub, mult, mdiv, pow, gcd, invert, rpow, msqrt, mcmp, move, min, omin, fmin, m_in, mout, omout, fmout, m_out, sdiv, or itom Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Files
	Related Information

	madvise Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	makecontext or swapcontext Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	matherr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	MatchAllAuths, MatchAnyAuths, MatchAllAuthsList, or MatchAnyAuthsList Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	mblen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbrlen Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	mbrtowc Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	mbsadvance Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	mbscat, mbscmp, or mbscpy Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	mbschr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbsinit Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	mbsinvalid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbslen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbsncat, mbsncmp, or mbsncpy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	mbspbrk Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbsrchr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbsrtowcs Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	mbstomb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbstowcs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mbswidth Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mbtowc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	memccpy, memchr, memcmp, memcpy, memset or memmove Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mincore Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mkdir Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mknod or mkfifo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mktemp or mkstemp Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	mlock and munlock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mlockall and munlockall Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mmap or mmap64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mntctl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	modf, modff, or modfl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	moncontrol Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	monitor Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Files
	Related Information

	monstartup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Error Codes
	Files
	Related Information

	mprotect Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	mq_close Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mq_getattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mq_notify Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mq_open Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mq_receive Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mq_send Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mq_setattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	mq_receive, mq_timedreceive Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	mq_send, mq_timedsend Subroutine
	Purpose
	Syntax
	Description
	Application Usage
	Return Values
	Error Codes
	Related Information

	mq_unlink Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msem_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msem_lock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msem_remove Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msem_unlock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msgctl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msgget Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msgrcv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msgsnd Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msgxrcv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	msleep Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	msync Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	mt__trce Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	munmap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	mwakeup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	nan, nanf, or nanl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	nanosleep Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	nearbyint, nearbyintf, or nearbyintl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, or nexttowardl Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	newpass Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	newpassx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	nftw or nftw64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	nl_langinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Related Information

	nlist, nlist64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Compatibility Interfaces
	Related Information

	ns_addr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter

	ns_ntoa Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter

	odm_add_obj Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_change_obj Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_close_class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_create_class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_err_msg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Related Information

	odm_free_list Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_get_by_id Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_get_list Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_get_obj, odm_get_first, or odm_get_next Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_initialize Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	odm_lock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_mount_class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_open_class or odm_open_class_rdonly Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	odm_rm_by_id Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_rm_class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	odm_rm_obj Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_run_method Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_set_path Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	odm_set_perms Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	odm_terminate Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	odm_unlock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	open, openx, open64, creat, or creat64 Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	opendir, readdir, telldir, seekdir, rewinddir, closedir, opendir64, readdir64, telldir64, seekdir64, rewinddir64, or closedir64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	pam_acct_mgmt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_authenticate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_chauthtok Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_close_session Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_end Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_get_data Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_get_item Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_get_user Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_getenv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pam_getenvlist Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pam_open_session Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_putenv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_set_data Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_set_item Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_setcred Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_sm_acct_mgmt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_sm_authenticate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_sm_chauthtok Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_sm_close_session Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_sm_open_session Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_sm_setcred Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_start Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pam_strerror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	passwdexpired Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	passwdexpiredx Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	passwdpolicy Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	passwdstrength Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	pathconf or fpathconf Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pause Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Related Information

	pcap_close Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	pcap_compile Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_datalink Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_dispatch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_dump Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	pcap_dump_close Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	pcap_dump_open Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_file Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_fileno Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_geterr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_is_swapped Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_lookupdev Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_lookupnet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_loop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_major_version Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_minor_version Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_next Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_open_live Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_open_offline Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_perror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	pcap_setfilter Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_snapshot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_stats Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pcap_strerror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pclose Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	perfstat_cpu Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_cpu_total Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_disk Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_diskadapter Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_diskpath Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_disk_total Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_memory_total Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_netbuffer Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_netinterface Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_netinterface_total Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_pagingspace Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_partial_reset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_partition_total Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_protocol Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	perfstat_reset Subroutine
	Purpose
	Library
	Syntax
	Description
	Files
	Related Information

	perror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Related Information

	pipe Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	plock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pm_cycles Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Files
	Related Information

	pm_delete_program Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_delete_program_group Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_delete_program_mygroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_delete_program_mythread Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_delete_program_pgroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_delete_program_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_delete_program_thread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_error Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	pm_get_data, pm_get_tdata, pm_get_data_cpu, and pm_get_tdata_cpu Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Files
	Related Information

	pm_get_data_group and pm_get_tdata_group Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_mygroup or pm_get_tdata_mygroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_mythread or pm_get_tdata_mythread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_pgroup and pm_get_tdata_pgroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_pthread or pm_get_tdata_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_data_thread or pm_get_tdata_thread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_group Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_mygroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_mythread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_pgroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_get_program_thread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_initialize Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_reset_data Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_reset_data_group Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_reset_data_mygroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_reset_data_mythread Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_reset_data_pgroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_reset_data_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_reset_data_thread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_group Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_mygroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_mythread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_pgroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_set_program_thread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_start Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_start_group Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_start_mygroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_start_mythread Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_start_pgroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_start_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_start_thread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_stop Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_stop_group Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_stop_mygroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_stop_mythread Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Files
	Related Information

	pm_stop_pgroup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_stop_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	pm_stop_thread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Files
	Related Information

	poll Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	poll Subroutine STREAMS Extensions
	Return Values
	Error Codes
	Related Information

	pollset_create, pollset_ctl, pollset_destroy, pollset_poll, and pollset_query Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	popen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	posix_fadvise Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	posix_fallocate Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	posix_madvise Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	posix_openpt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	posix_spawn or posix_spawnp Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawn_file_actions_addclose or posix_spawn_file_actions_addopen Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawn_file_actions_adddup2 Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawn_file_actions_destroy or posix_spawn_file_actions_init Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawnattr_destroy or posix_spawnattr_init Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawnattr_getflags or posix_spawnattr_setflags Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawnattr_getpgroup or posix_spawnattr_setpgroup Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawnattr_getschedparam or posix_spawnattr_setschedparam Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawnattr_getschedpolicy or posix_spawnattr_setschedpolicy Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawnattr_getsigdefault or posix_spawnattr_setsigdefault Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_spawnattr_getsigmask or posix_spawnattr_setsigmask Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	posix_trace_getnext_event, posix_trace_timedgetnext_event, posix_trace_trygetnext_event Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	powf, powl, or pow Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	printf, fprintf, sprintf, snprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Related Information

	profil Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	proj_execve Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	projdballoc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	projdbfinit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	projdbfree Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	psdanger Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	psignal Subroutine or sys_siglist Vector
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	pthdb_attr, pthdb_cond, pthdb_condattr, pthdb_key, pthdb_mutex, pthdb_mutexattr, pthdb_pthread, pthdb_pthread_key, pthdb_rwlock, or pthdb_rwlockattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_attr_detachstate,pthdb_attr_addr, pthdb_attr_guardsize,pthdb_attr_inheritsched, pthdb_attr_schedparam,pthdb_attr_schedpolicy, pthdb_attr_schedpriority,pthdb_attr_scope, pthdb_attr_stackaddr,pthdb_attr_stacksize, or pthdb_attr_suspendstate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_condattr_pshared, or pthdb_condattr_addr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_cond_addr, pthdb_cond_mutex or pthdb_cond_pshared Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_mutexattr_addr, pthdb_mutexattr_prioceiling, pthdb_mutexattr_protocol, pthdb_mutexattr_pshared or pthdb_mutexattr_type Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_mutex_addr, pthdb_mutex_lock_count, pthdb_mutex_owner, pthdb_mutex_pshared, pthdb_mutex_prioceiling, pthdb_mutex_protocol, pthdb_mutex_state or pthdb_mutex_type Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_mutex_waiter, pthdb_cond_waiter, pthdb_rwlock_read_waiter or pthdb_rwlock_write_waiter Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_pthread_arg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pthdb_pthread_context or pthdb_pthread_setcontext Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_pthread_hold, pthdb_pthread_holdstate or pthdb_pthread_unhold Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_pthread_sigmask, pthdb_pthread_sigpend or pthdb_pthread_sigwait Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Code
	Related Information

	pthdb_pthread_specific Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related information

	pthdb_pthread_tid or pthdb_tid_pthread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_rwlockattr_addr, or pthdb_rwlockattr_pshared Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_rwlock_addr, pthdb_rwlock_lock_count, pthdb_rwlock_owner, pthdb_rwlock_pshared or pthdb_rwlock_state Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthdb_session_committed Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_atfork Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_destroy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_getguardsize or pthread_attr_setguardsize Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	pthread_attr_getinheritsched, pthread_attr_setinheritsched Subroutine
	Purpose
	Syntax
	Description
	Application Usage
	Return Values
	Error Codes
	Related Information

	pthread_attr_getschedparam Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_getschedpolicy, pthread_attr_setschedpolicy Subroutine
	Purpose
	Syntax
	Description
	Application Usage
	Return Values
	Error Codes
	Related Information

	pthread_attr_getstackaddr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_getstacksize Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_getdetachstate or pthread_attr_setdetachstate Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_getscope and pthread_attr_setscope Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_setschedparam Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_setstackaddr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_setstacksize Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_attr_setsuspendstate_np and pthread_attr_getsuspendstate_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	pthread_barrier_destroy or pthread_barrier_init Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_barrier_wait Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_barrierattr_destroy or pthread_barrierattr_init Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_barrierattr_getpshared or pthread_barrierattr_setpshared Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_cancel Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_cleanup_pop or pthread_cleanup_push Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Related Information

	pthread_cond_destroy or pthread_cond_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	PTHREAD_COND_INITIALIZER Macro
	Purpose
	Library
	Syntax
	Description
	Related Information

	pthread_cond_signal or pthread_cond_broadcast Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Code
	Related Information

	pthread_cond_wait or pthread_cond_timedwait Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_condattr_destroy or pthread_condattr_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Code
	Related Information

	pthread_condattr_getclock, pthread_condattr_setclock Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_condattr_getpshared Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_condattr_setpshared Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_create_withcred_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	pthread_delay_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_equal Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	pthread_exit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Errors
	Related Information

	pthread_get_expiration_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_getconcurrency or pthread_setconcurrency Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Error Codes
	Related Information

	pthread_getcpuclockid Subroutine
	Purpose
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_getrusage_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_getschedparam Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_getspecific or pthread_setspecific Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_getthrds_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_getunique_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_join or pthread_detach Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_key_create Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_key_delete Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_kill Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_lock_global_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	pthread_mutex_init or pthread_mutex_destroy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_mutex_getprioceiling or pthread_mutex_setprioceiling Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	PTHREAD_MUTEX_INITIALIZER Macro
	Purpose
	Library
	Syntax
	Description
	Related Information

	pthread_mutex_lock, pthread_mutex_trylock, or pthread_mutex_unlock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	pthread_mutex_timedlock Subroutine
	Purpose
	Syntax
	Description
	Application Usage
	Return Values
	Error Codes
	Related Information

	pthread_mutexattr_destroy or pthread_mutexattr_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_mutexattr_getkind_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_mutexattr_getprioceiling or pthread_mutexattr_setprioceiling Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_mutexattr_getprotocol or pthread_mutexattr_setprotocol Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_mutexattr_getpshared or pthread_mutexattr_setpshared Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_mutexattr_gettype or pthread_mutexattr_settype Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_mutexattr_setkind_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_once Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	PTHREAD_ONCE_INIT Macro
	Purpose
	Library
	Syntax
	Description
	Related Information

	pthread_rwlock_init or pthread_rwlock_destroy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_rwlock_rdlock or pthread_rwlock_tryrdlock Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	pthread_rwlock_timedrdlock Subroutine
	Purpose
	Syntax
	Description
	Application Usage
	Return Values
	Error Codes
	Related Information

	pthread_rwlock_timedwrlock Subroutine
	Purpose
	Syntax
	Description
	Application Usage
	Return Values
	Error Codes
	Related Information

	pthread_rwlock_unlock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_rwlock_wrlock or pthread_rwlock_trywrlock Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_rwlockattr_init or pthread_rwlockattr_destroy Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Error Codes
	Related Information

	pthread_rwlockattr_getpshared or pthread_rwlockattr_setpshared Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_self Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Errors
	Related Information

	pthread_setcancelstate, pthread_setcanceltype, or pthread_testcancel Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_setschedparam Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_setschedprio Subroutine
	Purpose
	Syntax
	Description
	Rationale
	Return Values
	Error Codes
	Related Information

	pthread_sigmask Subroutine
	Purpose
	Library
	Syntax
	Description

	pthread_signal_to_cancel_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pthread_spin_destroy or pthread_spin_init Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_spin_lock or pthread_spin_trylock Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_spin_unlock Subroutine
	Purpose
	Syntax
	Description
	Return Values
	Error Codes
	Related Information

	pthread_suspend_np and pthread_continue_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes

	pthread_unlock_global_np Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	pthread_yield Subroutine
	Purpose
	Library
	Syntax
	Description
	Related Information

	ptrace, ptracex, ptrace64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	ptsname Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	putc, putchar, fputc, or putw Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	putconfattrs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Related Information

	putenv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	putgrent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Files
	Related Information

	putgroupattrs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Examples
	Related Information

	puts or fputs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	putuserattrs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Examples
	Related Information

	putuserpwx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Security
	Return Values
	Error Codes
	Files
	Related Information

	putwc, putwchar, or fputwc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	putws or fputws Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	pwdrestrict_method Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	Appendix A. Base Operating System Error Codes for Services That Require Path-Name Resolution
	Related Information

	Appendix B. ODM Error Codes
	Related Information

	Index

