
VisualAge C++ for AIX Compiler
Reference

SC09-4959-00

���

VisualAge C++ for AIX Compiler
Reference

SC09-4959-00

���

Before using this information and the product it supports, be sure to read the information in “Notices” on page 411.

May 2002 Edition

This edition applies to Version 6 Release 0 of VisualAge C++ Professional for AIX (product number 5765–F56) and
to all subsequent releases and modifications until otherwise indicated in new editions.

IBM® welcomes your comments. You can send them by either of the following methods:
v Internet: compinfo@ca.ibm.com

Be sure to include your e-mail address if you want a reply.
v By mail to the following address:

IBM Canada Ltd. Laboratory
Information Development
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario, Canada L6G 1C7

Include the title and order number of this book, and the page number or topic related to your comment.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995,2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

How to read syntax diagrams vii
Symbols vii
Syntax items vii
Syntax examples viii

Part 1. Concepts 1

VisualAge C++ Compiler 3
Compiler Modes 3
Object Models 4
Compiler Options. 5
Types of Input Files 6
Types of Output Files 7
Compiler Message and Listing Information 8

Compiler Messages 8
Compiler Listings. 8

Program Parallelization 9
IBM SMP Directives 9
OpenMP Directives 10
Countable Loops 11
Reduction Operations in Parallelized Loops . . . 12
Shared and Private Variables in a Parallel
Environment 13

Using VisualAge C++ with Other
Programming Languages. 15

Part 2. Tasks 17

Set Up the Compilation Environment 19
Set Environment Variables 19

Set Environment Variables in bsh, ksh, or sh
Shells 19
Set Environment Variables in csh Shell 19

Set Environment Variables to Select 64- or 32-bit
Modes 20
Set Parallel Processing Run-time Options 20
Set Environment Variables for the Message and
Help Files 20

Invoke the Compiler 23
Invoke the Linkage Editor 23

Specify Compiler Options 25
Specify Compiler Options on the Command Line. . 25

-q Options 25
Flag Options 26

Specify Compiler Options in Your Program Source
Files 27
Specify Compiler Options in a Configuration File. . 27

Tailor a Configuration File 28
Configuration File Attributes 28

Specify Compiler Options for Architecture-Specific,
32- or 64-bit Compilation 29
Resolving Conflicting Compiler Options 31

Specify Path Names for Include Files 33
Directory Search Sequence for Include Files Using
Relative Path Names 33

Structure a Program that Uses
Templates 35
Declaration of Stack in stack.h 35
Declaration of operator Functions in stack.c . . . 35
Template Functions Declared Inline and Template
Functions With Internal Linkage 36
Template Functions Defined within the Compilation
Unit 37
Use -qtempinc to Generate Template Functions
Automatically 38

How the Compiler Generates the Function
Definitions. 39
Specifying the Template-Implementation File . . 40
Specifying a Different Path for the tempinc
Subdirectory 40
Regenerating the Template Instantiation File . . 40
Breaking a Template Instantiation File into More
Than One File 40
Contents of Template Instantiation File 40
Using #pragma Directives in Header Files . . . 41
Considerations for Shared Libraries 42

Use -qnotempinc to Define Template Functions . . 42
Use -qtemplateregistry to Define Template Functions 43

Recompiling Parts of Your Program After Making
Source Changes 43

Control Parallel Processing with
Pragmas 45

Use C and C++ with Other
Programming Languages. 47
Interlanguage Calling Conventions 47
Corresponding Data Types 47

Special Treatment of Character and Aggregate
Data 48

Use the Subroutine Linkage Conventions in
Interlanguage Calls 49

Interlanguage Calls - Parameter Passing 50
Interlanguage Calls - Call by Reference
Parameters 51
Interlanguage Calls - Call by Value Parameters 52
Interlanguage Calls - Rules for Passing
Parameters by Value 52
Interlanguage Calls - Pointers to Functions . . . 54
Interlanguage Calls - Function Return Values . . 54
Interlanguage Calls - Stack Floor 55

© Copyright IBM Corp. 1995,2002 iii

Interlanguage Calls - Stack Overflow 55
Interlanguage Calls - Traceback Table 56
Interlanguage Calls - Type Encoding and
Checking 56

Sample Program: C Calling Fortran 57

Part 3. Reference 59

Compiler Options 61
Compiler Command Line Options 61

+ (plus sign) 71
(pound sign) 72
32, 64 73
aggrcopy 74
alias 75
align. 77
alloca 81
ansialias 82
arch 83
assert 86
attr 87
B 88
b 89
bitfields 90
bmaxdata 91
brtl 92
C 93
c 94
cache 95
chars 97
check 98
cinc 100
compact 101
cpluscmt 102
D 106
dataimported 108
datalocal 109
dbxextra 110
digraph 111
dollar 113
dpcl 114
E 115
e 117
eh 118
enum 119
expfile. 125
extchk 126
F 127
f. 128
fdpr 129
flag. 130
float 131
flttrap 135
fold 137
fullpath 138
funcsect 139
G 140
g 141
genproto 142
halt. 143

haltonmsg 144
heapdebug 145
hot 146
hsflt 148
hssngl 149
I. 150
idirfirst 151
ignerrno 152
ignprag 153
info 154
initauto 157
inlglue 158
inline 159
ipa 163
isolated_call 170
keepinlines 171
keyword 172
L 173
l 174
langlvl. 175
largepage. 189
ldbl128, longdouble 190
libansi 191
linedebug 192
list 193
listopt 194
longlit 195
longlong 197
M 198
ma 199
macpstr 200
maf. 203
makedep 204
maxerr 206
maxmem 208
mbcs, dbcs 209
mkshrobj 210
namemangling 214
O, optimize 215
o 219
objmodel 220
oldpassbyvalue 221
P 222
p 223
pascal 224
path 225
pdf1, pdf2 226
pg 229
phsinfo 230
print 231
priority 232
proclocal, procimported, procunknown 233
proto 235
Q 236
r. 239
report 240
rndflt 241
rndsngl 243
ro 244
roconst 245
rrm. 246

iv VisualAge C++ for AIX Compiler Reference

rtti 247
S 248
s 249
showinc 250
smallstack 251
smp 252
source 254
spill 255
spnans 256
srcmsg 257
staticinline 258
statsym 259
stdinc 260
strict 261
strict_induction. 262
suppress 263
symtab 264
syntaxonly 265
t. 266
tabsize. 267
tbtable. 268
tempinc 269
templaterecompile 270
templateregistry 271
tempmax 272
threaded 273
tmplparse 274
tocdata 275
tocmerge 276
tune 277
twolink 279
U 281
unique 282
unroll 283
unwind 285
upconv 286
V 287
v 288
vftable. 289
W 290
w 291
warn64 292
xcall 293
xref. 294
y 295
Z 296

General Purpose Pragmas 297
#pragma align 299
#pragma alloca 300
#pragma chars 301
#pragma comment. 302
#pragma define. 303
#pragma disjoint 304
#pragma enum 305
#pragma execution_frequency 306
#pragma hashome 308
#pragma ibm snapshot 309
#pragma implementation 310
#pragma info 311
#pragma ishome 314
#pragma isolated_call 315

#pragma langlvl 317
#pragma leaves. 318
#pragma map 319
#pragma mc_func 321
#pragma namemangling 322
#pragma nameManglingRule 323
#pragma object_model 324
#pragma options 325
#pragma option_override 331
#pragma pack 332
#pragma pass_by_value 335
#pragma priority 336
#pragma reachable 337
#pragma reg_killed_by 338
#pragma report. 339
#pragma strings 341
#pragma unroll 342

Pragmas to Control Parallel Processing 344
#pragma ibm critical 346
#pragma ibm independent_calls 347
#pragma ibm independent_loop 348
#pragma ibm iterations 349
#pragma ibm parallel_loop 350
#pragma ibm permutation 351
#pragma ibm schedule 352
#pragma ibm sequential_loop 354
#pragma omp atomic 355
#pragma omp parallel 356
#pragma omp for 358
#pragma omp ordered 362
#pragma omp parallel for 363
#pragma omp section, #pragma omp sections 364
#pragma omp parallel sections 366
#pragma omp single 367
#pragma omp master 368
#pragma omp critical 369
#pragma omp barrier 370
#pragma omp flush 371
#pragma omp threadprivate 372

Acceptable Compiler Mode and Processor
Architecture Combinations 373

Compiler Messages. 379
Message Severity Levels and Compiler Response 379
Compiler Return Codes 379
Compiler Message Format 380

Parallel Processing Support 383
IBM SMP Run-time Options for Parallel Processing 383

Scheduling Algorithm Options 383
Parallel Environment Options 384
Performance Tuning Options 384
Dynamic Profiling Options 385

OpenMP Run-time Options for Parallel Processing 386
Scheduling Algorithm Environment Variable 386
Parallel Environment Environment Variables 387
Dynamic Profiling Environment Variable . . . 387

Built-in Functions Used for Parallel Processing . . 388

Part 4. Appendixes 391

Contents v

Appendix A. Built-in Functions 393
General Purpose Built-in Functions 393
LIBANSI Built-in Functions. 394
Built-in Functions for PowerPC Processors . . . 394

Appendix B. National Languages
Support in VisualAge C++ 401
Converting Files Containing Multibyte Data to
New Code Pages 401
Multibyte Character Support 401

String Literals and Character Constants . . . 401
Preprocessor Directives 402
Macro Definitions 402
Compiler Options 402
File Names and Comments 403

Restrictions 403

Appendix C. Problem Solving 405
Message Catalog Errors 405
Correcting Paging Space Errors During
Compilation 405

Appendix D. ASCII Character Set . . . 407

Notices 411
Programming Interface Information 413
Trademarks and Service Marks 413
Industry Standards 413

vi VisualAge C++ for AIX Compiler Reference

How to read syntax diagrams

This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments)
that comprise a command statement. They are read from left to right and from top
to bottom, following the main path of the horizontal line.

Symbols
The following symbols may be displayed in syntax diagrams:

Symbol Definition

��─── Indicates the beginning of the syntax diagram.

───� Indicates that the syntax diagram is continued to the next line.

�─── Indicates that the syntax is continued from the previous line.

───�� Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:
v Keywords - a command name or any other literal information.
v Variables - variables are italicized, appear in lowercase and represent the name

of values you can supply.
v Delimiters - delimiters indicate the start or end of keywords, variables, or

operators. For example, a left parenthesis is a delimiter.
v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal

(=), and other mathematical operations that may need to be performed.
v Fragment references - a part of a syntax diagram, separated from the diagram to

show greater detail.
v Separators - a separator separates keywords, variables or operators. For example,

a comma (,) is a separator.

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or
optional.

Item type Definition

Required Required items are displayed on the main path of the horizontal
line.

Optional Optional items are displayed below the main path of the horizontal
line.

Default Default items are displayed above the main path of the horizontal
line.

© Copyright IBM Corp. 1995,2002 vii

Syntax examples
The following table provides syntax examples.

Table 1. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the horizontal
line. You must specify these items.

�� KEYWORD required_item ��

Required choice.

A required choice (two or more items) appears in a
vertical stack on the main path of the horizontal line. You
must choose one of the items in the stack.

�� KEYWORD required_choice1
required_choice2

��

Optional item.

Optional items appear below the main path of the
horizontal line.

�� KEYWORD
optional_item

��

Optional choice.

A optional choice (two or more items) appear in a vertical
stack below the main path of the horizontal line. You may
choose one of the items in the stack.

�� KEYWORD
optional_choice1
optional_choice2

��

Default.

Default items appear above the main path of the
horizontal line. The remaining items (required or
optional) appear on (required) or below (optional) the
main path of the horizontal line. The following example
displays a default with optional items.

��
default_choice1

KEYWORD
optional_choice2
optional_choice3

��

Variable.

Variables appear in lowercase italics. They represent
names or values.

�� KEYWORD variable ��

viii VisualAge C++ for AIX Compiler Reference

Table 1. Syntax examples (continued)

Item Syntax example

Repeatable item.

An arrow returning to the left above the main path of the
horizontal line indicates an item that can be repeated.

An arrow returning to the left above a group of
repeatable items indicates that one of the items can be
selected, or a single item can be repeated.

�� �KEYWORD repeatable_item ��

Fragment.

The ─┤ fragment ├─ symbol indicates that a labelled
group is described below the main syntax diagram.
Syntax is occasionally broken into fragments if the
inclusion of the fragment would overly complicate the
main syntax diagram.

�� KEYWORD fragment ��

fragment:

,required_choice1
,default_choice

,required_choice2
,optional_choice

How to read syntax diagrams ix

x VisualAge C++ for AIX Compiler Reference

Part 1. Concepts

© Copyright IBM Corp. 1995,2002 1

2 VisualAge C++ for AIX Compiler Reference

VisualAge C++ Compiler

You can use IBM VisualAge C++ as a C compiler for files with a .c (small c) suffix,
or as a C++ compiler for files with a .C (capital C), .cc, .cpp, or .cxx suffix. The
compiler processes your program source files to create an executable object
module.

Note: Throughout these pages, the xlC command invocation is used to describe
the actions of the compiler. You can, however, substitute other forms of the
compiler invocation command if your particular environment requires it,
and compiler option usage will remain the same unless otherwise specified.

For more information about the VisualAge C++ compiler, see the following topics
in this section:
v “Compiler Modes”
v “Object Models” on page 4
v “Compiler Options” on page 5
v “Types of Input Files” on page 6
v “Types of Output Files” on page 7
v “Compiler Message and Listing Information” on page 8

Compiler Modes
Several forms of VisualAge C++ compiler invocation commands support various
version levels of the C and C++ languages. In most cases, you should use the xlC
command to compile your C++ source files, and the xlc command to compile C
source files. Use the xlC command when you have both C and C++ source files..

You can, however, use other forms of the command if your particular environment
and file systems require it. The various compiler invocation commands are:

xlC xlC128 xlC_r xlC128_r xlC_r4 xlC128_r4 xlC_r7 xlC128_r7
xlc xlc128 xlc_r xlc_r4 xlc_r7
cc cc128 cc_r cc_r4 cc_r7
c89

The four basic compiler invocation commands appear as the first entry of each line
in the table above. Select a basic invocation using the following criteria:

xlC Invokes the compiler so that source files are compiled as C++ language source
code.

Files with .c suffixes, assuming you have not used the -+ compiler option, are
compiled as C language source code with a default language level of ansi, and
compiler option -qansialias to allow type-based aliasing.

If any of your source files are C++, you must use this invocation to link with the
correct runtime libraries.

xlc Invokes the compiler for C source files with a default language level of ansi, and
compiler option -qansialias to allow type-based aliasing.

© Copyright IBM Corp. 1995,2002 3

cc Invokes the compiler for C source files with a default language level of extended
and compiler options -qnoro and -qnoroconst (to provide compatibility with the
RT compiler and placement of string literals or constant values in read/write
storage). Use this invocation for legacy C code that does not require compliance
with ANSI C.

c89 Invokes the compiler for C source files, with a default language level of ansi,
and specifies compiler options -qansialias (to allow type based aliasing) and
-qnolonglong (disabling use of long long), and sets -D_ANSI_C_SOURCE (for
ANSI-conformant headers). Use this invocation for strict conformance to the
ANSI standard (ISO/IEC 9899:1990).

IBM VisualAge C++ provides variations on the four basic compiler invocations.
These variations are described below:

128-suffixed
Invocations

All 128-suffixed invocation commands are functionally similar to their
corresponding base compiler invocations. They specify the -qldbl128
option, which increases the length of long double types in your program
from 64 to 128 bits. They also link with the 128 versions of the C and
C++ runtimes.

_r-suffixed
Invocations

All _r-suffixed invocations additionally set the macro names
-D_THREAD_SAFE and add the libraries -L/usr/lib/threads, -lc and
-lpthreads. The compiler option -qthreaded is also added. Use these
commands if you want to create Posix threaded applications.

AIX 4.1 and 4.2 support Posix Draft 7. AIX 4.3 supports Draft 10. The _r7
invocations are provided on AIX 4.3 to help with migration to Draft 10.
See -qthreaded for additional information. The _r4 invocations should be
used for DCE threaded applications.

Migrating AIX Version 3.2.5 DCE Applications to AIX Version 4.3.3 and higher

The main invocation commands (except c89) have additional _r4-suffixed forms.
These forms provide compatibility between DCE applications written for AIX
Version 3.2.5 and AIX Version 4. They link your application to the correct AIX
Version 4 DCE libraries, providing compatibility between the latest version of the
pthreads library and the earlier versions supported on AIX Version 3.2.5.

Related Tasks
“Invoke the Compiler” on page 23

Related References
“Compiler Command Line Options” on page 61
“General Purpose Pragmas” on page 297
“Pragmas to Control Parallel Processing” on page 344
“threaded” on page 273

Object Models
VisualAge C++ lets you compile your program to either of two object models. The
two object models are:
v compat
v ibm

The two object models differ in the following areas:
v Layout for the virtual function table
v Virtual base class support

4 VisualAge C++ for AIX Compiler Reference

v Name mangling scheme

Select compat if you need your runtime module to be compatible with any runtime
modules compiled with the compat object module or with previous versions of
VisualAge C++.

Select ibm if you want improved performance. This is especially true for class
hierarchies with many virtual base classes. The size of the derived class is
considerably smaller and access to the virtual function table is faster.

All classes in the same inheritance hierarchy must have the same object model.

Use the -qobjmodel compiler option or the object_model pragma to specify a
target object model.

Related References
“objmodel” on page 220
“#pragma object_model” on page 324

Compiler Options
Compiler options perform a wide variety of functions, such as setting compiler
characteristics, describing the object code and compiler output to be produced, and
performing some preprocessor functions. You can specify compiler options in one
or more of three ways:
v on the command line
v in a configuration file (.cfg)
v in your source program

The compiler assumes default settings for most compiler options not explicitly set
by you in the ways listed above.

When specifying compiler options, it is possible for option conflicts and
incompatibilities to occur. IBM VisualAge C++ resolves most of these conflicts and
incompatibilities in a consistent fashion, as follows:

Compiler options priority sequence

�� Source file overrides Command line overrides Configuration file overrides Default settings ��

Option conflicts that do not follow this priority sequence are described in
“Resolving Conflicting Compiler Options” on page 31.

Related Tasks
“Invoke the Compiler” on page 23
“Specify Compiler Options” on page 25
“Resolving Conflicting Compiler Options” on page 31

Related References
“Compiler Command Line Options” on page 61
“General Purpose Pragmas” on page 297
“Pragmas to Control Parallel Processing” on page 344

VisualAge C++ Compiler 5

Types of Input Files
You can input the following types of files to the VisualAge C++ compiler:

C and C++
Source Files

These are files containing a C or C++ source module. To use the
compiler as a C language compiler to compile a C language source file,
the source file must have a .c (lowercase c) suffix, for example,
mysource.c.

To use the compiler as a C++ language compiler, source file must have a
.C (uppercase C), .cc, .cpp, or .cxx suffix. To compile other files as C++
source files, use the -+ compiler option. All files specified with this
option with a suffix other than .o, .a, or .s, are compiled as C++ source
files.

The compiler will also accept source files with the .i suffix. This
extension designates preprocessed source files.

The compiler processes the source files in the order in which they
appear. If the compiler cannot find a specified source file, it produces an
error message and the compiler proceeds to the next specified file.
However, the link editor will not be run and temporary object files will
be removed.

Your program can consist of several source files. All of these source files
can be compiled at once using only one invocation of xlC. Although
more than one source file can be compiled using a single invocation of
the compiler, you can specify only one set of compiler options on the
command line per invocation. Each distinct set of command-line
compiler options that you want to specify requires a separate invocation.

By default, the xlC command preprocesses and compiles all the specified
source files. Although you will usually want to use this default, you can
use the xlC command to preprocess the source file without compiling by
specifying either the -E or the -P option. If you specify the -P option, a
preprocessed source file, file_name.i, is created and processing ends.

The -E option preprocesses the source file, writes to standard output,
and halts processing without generating an output file.

Preprocessed
Source Files

Preprocessed source files have a .i suffix, for example, file_name.i. The
xlC command sends the preprocessed source file, file_name.i, to the
compiler where it is preprocessed again in the same way as a .c file.
Preprocessed files are useful for checking macros and preprocessor
directives.

Object Files Object files must have a .o suffix, for example, year.o. Object files,
library files, and nonstripped executable files serve as input to the
linkage editor. After compilation, the linkage editor links all of the
specified object files to create an executable file.

Assembler Files Assembler files must have a .s suffix, for example, check.s. Assembler
files are assembled to create an object file.

Nonstripped
Executable Files

Extended Common Object File Format (XCOFF) files that have not been
stripped with the AIX strip command can be used as input to the
compiler. See the strip command in the AIX Commands Reference and the
description of a.out file format in the AIX Files Reference for more
information.

Related Concepts
“Types of Output Files” on page 7

6 VisualAge C++ for AIX Compiler Reference

Related References
See:
strip command in Commands Reference, Volume 5: s through u
Files Reference

Types of Output Files
You can specify the following types of output files when invoking the IBM
VisualAge C++ compiler.

Executable File By default, executable files are named a.out. To name the executable file
something else, use the -ofile_name option with the invocation command.
This option creates an executable file with the name you specify as
file_name. The name you specify can be a relative or absolute path name
for the executable file.

The format of the a.out file is described in the AIX Version 4 Files
Reference.

Object Files Object files must have a .o suffix, for example, year.o, unless the
-ofilename option is specified.

If you specify the -c option, an output object file, file_name.o, is produced
for each input source file file_name.c. The linkage editor is not invoked,
and the object files are placed in your current directory. All processing
stops at the completion of the compilation.

You can link-edit the object files later into a single executable file using
the xlC command.

Assembler Files Assembler files must have a .s suffix, for example, check.s.

They are created by specifying the -S option. Assembler files are
assembled to create an object file.

Preprocessed
Source Files

Preprocessed source files have a .i suffix, for example, tax_calc.i.

To make a preprocessed source file, specify the -P option. The source
files are preprocessed but not compiled. You can also use redirect the
output from the -E option to generate a preprocessed file that contains
#line directives.

A preprocessed source file, file_name.i, is produced for each source file,
file_name.c.

Listing Files Listing files have a .lst suffix, for example, form.lst.

Specifying any one of the listing-related options to the invocation
command produces a compiler listing (unless you have specified the
-qnoprint option). The file containing this listing is placed in your
current directory and has the same file name (with a .lst extension) as
the source file from which it was produced.

Target File Output files associated with the -M or -qmakedep options have a .u
suffix, for example, conversion.u.

The file contains targets suitable for inclusion in a description file for the
AIX make command. A .u file is created for every input C or C++ file,
and is used by the make command to determine if a given input file
needs to be recompiled as a result of changes made to another input file.
.u files are not created for any other files (unless you use the -+ option
so other file suffixes are treated as .C files).

Related Concepts
“Types of Input Files” on page 6

VisualAge C++ Compiler 7

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds5/strip.htm#HDRA254B9AC39
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds5/aixcmds5tfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/files/aixfiles/aixfilestfrm.htm

Compiler Message and Listing Information
When the compiler encounters a programming error while compiling a C or C++
source program, it issues a diagnostic message to the standard error device and to
the listing file.

Compiler Messages
The compiler issues messages specific to the C or C++ language, and XL messages
common to all XL compilers.

If you specify the compiler option -qsrcmsg and the error is applicable to a
particular line of code, the reconstructed source line or partial source line is
included with the error message in the stderr file. A reconstructed source line is a
preprocessed source line that has all the macros expanded.

The compiler also places messages in the source listing if you specify the -qsource
option.

You can control the diagnostic messages issued, according to their severity, using
either the -qflag option or the -w option. To get additional informational messages
about potential problems in your program, use the -qinfo option.

Compiler Listings
The listings produced by the compiler are a useful debugging aid. By specifying
appropriate options, you can request information on all aspects of a compilation.
The listing consists of a combination of the following sections:
v Header section that lists the compiler name, version, and release, as well as the

source file name and the date and time of the compilation
v Source section that lists the input source code with line numbers. If there is an

error at a line, the associated error message appears after the source line.
v Options section that lists the options that were in effect during the compilation
v Attribute and cross-reference listing section that provides information about the

variables used in the compilation unit
v File table section that shows the file number and file name for each main source

file and include file
v Compilation epilogue section that summarizes the diagnostic messages, lists the

number of source lines read, and indicates whether the compilation was
successful

v Object section that lists the object code

Each section, except the header section, has a section heading that identifies it. The
section heading is enclosed by angle brackets

Related References
“Message Severity Levels and Compiler Response” on page 379
“Compiler Message Format” on page 380
“flag” on page 130
“info” on page 154
“langlvl” on page 175
“source” on page 254
“srcmsg” on page 257

8 VisualAge C++ for AIX Compiler Reference

Program Parallelization

The compiler offers you three methods of implementing shared memory program
parallelization. These are:
v Automatic parallelization of program loops.
v Explicit parallelization of C program code using IBM SMP pragma directives.
v Explicit parallelization of C and C++ program code using pragma directives

compliant to the OpenMP Application Program Interface specification.

All methods of program parallelization are enabled when the -qsmp compiler
option is in effect without the omp suboption. You can enable strict OpenMP
compliance with the -qsmp=omp compiler option, but doing so will disable
automatic parallelization.

Parallel regions of program code are executed by multiple threads, possibly
running on multiple processors. The number of threads created is determined by
the run-time options and calls to library functions. Work is distributed among
available threads according to the specified scheduling algorithm.

Note: The -qsmp option must only be used together with thread-safe compiler
invocation modes.

For more information about parallel programming support offered by the
VisualAge C++ compiler, see the following topics in this section:
v “IBM SMP Directives”
v “OpenMP Directives” on page 10
v “Countable Loops” on page 11
v “Reduction Operations in Parallelized Loops” on page 12
v “Shared and Private Variables in a Parallel Environment” on page 13

For complete information about the OpenMP Specification, see:
OpenMP Web site
OpenMP Specification.

IBM SMP Directives
IBM SMP directives exploit shared memory parallelism through the

parallelization of countable loops. A loop is considered to be countable if it has any of
the forms described in (Countable Loops).

The compiler can automatically locate and where possible parallelize all countable
loops in your program code. In general, a countable loop is automatically
parallelized only if all of the follow conditions are met:
v the order in which loop iterations start or end does not affect the results of the

program.
v the loop does not contain I/O operations.
v floating point reductions inside the loop are not affected by round-off error,

unless the -qnostrict option is in effect.
v the -qnostrict_induction compiler option is in effect.

© Copyright IBM Corp. 1995,2002 9

http://www.openmp.org
http://www.openmp.org/specs

v the -qsmp compiler option is in effect without the omp suboption. The compiler
must be invoked using a thread-safe compiler mode.

You can also explicitly instruct the compiler to parallelize selected countable loops.

The VisualAge C++ compiler provides pragma directives that you can use to
improve on automatic parallelization performed by the compiler. Pragmas fall into
two general categories.
1. The first category of pragmas lets you give the compiler information on the

characteristics of a specific countable loop. The compiler uses this information
to perform more efficient automatic parallelization of the loop.

2. The second category gives you explicit control over parallelization. Use these
pragmas to force or suppress parallelization of a loop, apply specific
parallelization algorithms to a loop, and synchronize access to shared variables
using critical sections.

Related Concepts
“OpenMP Directives”
“Countable Loops” on page 11
“Reduction Operations in Parallelized Loops” on page 12
“Shared and Private Variables in a Parallel Environment” on page 13

Related Tasks
“Set Parallel Processing Run-time Options” on page 20
“Control Parallel Processing with Pragmas” on page 45

Related References
“smp” on page 252
“Pragmas to Control Parallel Processing” on page 344
“IBM SMP Run-time Options for Parallel Processing” on page 383
“OpenMP Run-time Options for Parallel Processing” on page 386
“Built-in Functions Used for Parallel Processing” on page 388

For complete information about the OpenMP Specification, see:
OpenMP Web site
OpenMP Specification.

OpenMP Directives
OpenMP directives exploit shared memory parallelism by defining

various types of parallel regions. Parallel regions can include both iterative and
non-iterative segments of program code.

Pragmas fall into four general categories:
1. The first category of pragmas lets you define parallel regions in which work is

done by threads in parallel. Most of the OpenMP directives either statically or
dynamically bind to an enclosing parallel region.

2. The second category lets you define how work will be distributed or shared
across the threads in a parallel region.

3. The third category lets you control synchronization among threads.
4. The fourth category lets you define the scope of data visibility across threads.

Related Concepts
“IBM SMP Directives” on page 9
“Countable Loops” on page 11

10 VisualAge C++ for AIX Compiler Reference

http://www.openmp.org
http://www.openmp.org/specs

“Reduction Operations in Parallelized Loops” on page 12
“Shared and Private Variables in a Parallel Environment” on page 13

Related Tasks
“Set Parallel Processing Run-time Options” on page 20
“Control Parallel Processing with Pragmas” on page 45

Related References
“smp” on page 252
“Pragmas to Control Parallel Processing” on page 344
“IBM SMP Run-time Options for Parallel Processing” on page 383
“OpenMP Run-time Options for Parallel Processing” on page 386
“Built-in Functions Used for Parallel Processing” on page 388

See also Parallel Programming in General Programming Concepts: Writing and
Debugging Programs.

For complete information about the OpenMP Specification, see:
OpenMP Web site
OpenMP Specification.

Countable Loops
A loop is considered to be countable if it has any of the forms shown below, and:
v there is no branching into or out of the loop.
v the incr_expr expression is not within a critical section.

The following are examples of countable loops.
for ([iv]; exit_cond; incr_expr)

statement

for ([iv]; exit_cond; [expr]) {
[declaration_list]
[statement_list]
incr_expr;
[statement_list]

}

while (exit_cond) {
[declaration_list]
[statement_list]
incr_expr;
[statement_list]

}

do {
[declaration_list]
[statement_list]
incr_expr;
[statement_list]

} while (exit_cond)

The following definitions apply to the above examples:

exit_cond takes
form:

iv <= ub
iv < ub
iv >= ub
iv > ub

Program Parallelization 11

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/parallel_prg.htm#HDRPARALLEL_PRG
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/genprogctfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/genprogctfrm.htm
http://www.openmp.org
http://www.openmp.org/specs

incr_expr takes
form:

++iv
iv++
--iv
iv--
iv += incr
iv -= incr
iv = iv + incr
iv = incr + iv
iv = iv - incr

iv Iteration variable. The iteration variable is a signed integer that has either
automatic or register storage class, does not have its address taken, and is not
modified anywhere in the loop except in incr_expr.

incr Loop invariant signed integer expression. The value of the expression is known at
run-time and is not 0. incr cannot reference extern or static variables, pointers or
pointer expressions, function calls, or variables that have their address taken.

ub Loop invariant signed integer expression. ub cannot reference extern or static
variables, pointers or pointer expressions, function calls, or variables that have
their address taken.

Related Concepts
“IBM SMP Directives” on page 9
“OpenMP Directives” on page 10
“Reduction Operations in Parallelized Loops”
“Shared and Private Variables in a Parallel Environment” on page 13

Related Tasks
“Set Parallel Processing Run-time Options” on page 20
“Control Parallel Processing with Pragmas” on page 45

Related References
“smp” on page 252
“Pragmas to Control Parallel Processing” on page 344
“IBM SMP Run-time Options for Parallel Processing” on page 383
“OpenMP Run-time Options for Parallel Processing” on page 386
“Built-in Functions Used for Parallel Processing” on page 388

Reduction Operations in Parallelized Loops
The compiler can recognize and properly handle most reduction operations in a
loop during both automatic and explicit parallelization. In particular, it can handle
reduction statements that have either of the following forms:

var = var op expr;

var assign_op expr;

12 VisualAge C++ for AIX Compiler Reference

where:

var Is an identifier designating an automatic or register variable that does
not have its address taken and is not referenced anywhere else in the
loop, including all loops that are nested. For example, in the following
code, only S in the nested loop is recognized as a reduction:

int i,j, S=0;
#pragma ibm parallel_loop
for (i= 0 ;i < N; i++) {

S = S+ i;
#pragma ibm parallel_loop
for (j=0;j< M; j++) {

S = S + j;
}

}

op Is one of the following operators:
+ - * ^ | &

assign_op Is one of the following operators:
+= -= *= ^= |= &=

expr Is any valid expression.

Recognized reductions are listed by the -qinfo=reduction option. When using IBM
directives, use critical sections to synchronize access to all reduction variables not
recognized by the compiler. OpenMP directives provide you with mechanisms to
specify reduction variables explictily.

Shared and Private Variables in a Parallel Environment
Variables can have either shared or private context in a parallel environment.
v Variables in shared context are visible to all threads running in associated

parallel loops.
v Variables in private context are hidden from other threads. Each thread has its

own private copy of the variable, and modifications made by a thread to its
copy are not visible to other threads.

The default context of a variable is determined by the following rules:
v Variables with static storage duration are shared.
v Dynamically allocated objects are shared.
v Variables with automatic storage duration are private.
v Variables in heap allocated memory are shared. There can be only one shared

heap.
v All variables defined outside a parallel construct become shared when the

parallel loop is encountered.
v Loop iteration variables are private within their loops. The value of the iteration

variable after the loop is the same as if the loop were run sequentially.
v Memory allocated within a parallel loop by the alloca function persists only for

the duration of one iteration of that loop, and is private for each thread.

The following code segments show examples of these default rules:

Program Parallelization 13

int E1; /* shared static */

void main (argvc,...) { /* argvc is shared */
int i; /* shared automatic */

void *p = malloc(...); /* memory allocated by malloc */
/* is accessible by all threads */
/* and cannot be privatized */

#pragma omp parallel firstprivate (p)
{

int b; /* private automatic */
static int s; /* shared static */

#pragma omp for
for (i =0;...) {

= b; /* b is still private here ! */
foo (i); /* i is private here because it */

/* is an iteration variable */
}

#pragma omp parallel
{

= b /* b is shared here because it */
/* is another parallel region */

}
}

}

int E2; /*shared static */

void foo (int x) { /* x is private for the parallel */
/* region it was called from */

int c; /* the same */
... }

The compiler can privatize some shared variables if it is possible to do so without
changing the semantics of the program. For example, if each loop iteration uses a
unique value of a shared variable, that variable can be privatized. Privatized
shared variables are reported by the -qinfo=private option. Use critical sections to
synchronize access to all shared variables not listed in this report.

Some OpenMP preprocessor directives let you specify visibility context for selected
data variables. For more information, see OpenMP directive descriptions or the
OpenMP C and C++ Application Program Interface specification.

Related Concepts
“IBM SMP Directives” on page 9
“OpenMP Directives” on page 10
“Countable Loops” on page 11
“Reduction Operations in Parallelized Loops” on page 12

Related Tasks
“Set Parallel Processing Run-time Options” on page 20
“Control Parallel Processing with Pragmas” on page 45

Related References
“smp” on page 252
“Pragmas to Control Parallel Processing” on page 344
“IBM SMP Run-time Options for Parallel Processing” on page 383
“OpenMP Run-time Options for Parallel Processing” on page 386
“Built-in Functions Used for Parallel Processing” on page 388

14 VisualAge C++ for AIX Compiler Reference

Using VisualAge C++ with Other Programming Languages

With VisualAge C++, you can call functions written in other XL languages from
your C and C++ programs. Similarly, the other XL language programs can call
functions written in Cand C++. You should already be familar with the syntax of
the languages you are using.

See “Use C and C++ with Other Programming Languages” on page 47 for more
information.

© Copyright IBM Corp. 1995,2002 15

16 VisualAge C++ for AIX Compiler Reference

Part 2. Tasks

© Copyright IBM Corp. 1995,2002 17

18 VisualAge C++ for AIX Compiler Reference

Set Up the Compilation Environment

Before you compile your C or C++ programs, you must set up the environment
variables and the configuration file for your application. For more information, see
the following topics in this section:
v “Set Environment Variables”
v “Set Environment Variables to Select 64- or 32-bit Modes” on page 20
v “Set Parallel Processing Run-time Options” on page 20
v “Set Environment Variables for the Message and Help Files” on page 20

Set Environment Variables
You use different commands to set the environment variables depending on
whether you are using the Bourne shell (bsh or sh), Korn shell (ksh), or C shell
(csh). To determine the current shell, use the echo command:

echo $SHELL

The Bourne-shell path is /bin/bsh or /bin/sh. The Korn shell path is /bin/ksh. The
C-shell path is /bin/csh.

For more information about the NLSPATH and LANG environment variables, see
System User’s Guide: Operating System and Devices. The AIX international language
facilities are described in the AIX General Programming Concepts.

Set Environment Variables in bsh, ksh, or sh Shells
The following statements show how you can set environment variables in the
Bourne or Korn shells:

LANG=en_US
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/L/%N
export LANG NLSPATH

To set the variables so that all users have access to them, add the commands to the
file /etc/profile. To set them for a specific user only, add the commands to the file
.profile in the user’s home directory. The environment variables are set each time
the user logs in.

Set Environment Variables in csh Shell
The following statements show how you can set environment variables in the C
shell:

setenv LANG en_US
setenv NLSPATH /usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/L/%N

In the C shell, you cannot set the environment variables so that all users have
access to them. To set them for a specific user only, add the commands to the file
.cshrc in the user’s home directory. The environment variables are set each time the
user logs in.

Related Tasks
“Set Environment Variables to Select 64- or 32-bit Modes” on page 20
“Set Parallel Processing Run-time Options” on page 20
“Set Environment Variables for the Message and Help Files” on page 20

© Copyright IBM Corp. 1995,2002 19

Related References
See also:
System User’s Guide: Operating System and Devices
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs

Set Environment Variables to Select 64- or 32-bit Modes
You can set the OBJECT_MODE environment variable to specify a default
compilation mode. Permissible values for the OBJECT_MODE environment
variable are:

(unset) Compiler programs generate and/or use 32-bit objects.
32 Compiler programs generate and/or use 32-bit objects.
64 Compiler programs generate and/or use 64-bit objects.
32_64 Set the compiler programs to accept both 32- and 64-bit objects. The compiler

never functions in this mode, and using this choice may generate an error
message, depending on other compilation options set at compile-time.

Related Tasks
“Specify Compiler Options for Architecture-Specific, 32- or 64-bit Compilation” on
page 29
“Set Environment Variables” on page 19

Set Parallel Processing Run-time Options
The XLSMPOPTS environment variable sets options for programs using loop
parallelization. For example, to have a program run-time create 4 threads and use
dynamic scheduling with chunk size of 5, you would set the XLSMPOPTS
environment variable as shown below:

XLSMPOPTS=PARTHDS=4:SCHEDULE=DYNAMIC=5

Additional environment variables set options for program parallelization using
OpenMP-compliant directives.

Related Tasks
“Set Environment Variables” on page 19

Related References
“IBM SMP Run-time Options for Parallel Processing” on page 383
“OpenMP Run-time Options for Parallel Processing” on page 386

Set Environment Variables for the Message and Help Files
Before using the compiler, you must install the message catalogs and help files and
set the following two environment variables:

LANG Specifies the national language for message and help files.
NLSPATH Specifies the path name of the message and help files.

The LANG environment variable can be set to any of the locales provided on the
system. See the description of locales in AIX General Programming Concepts for IBM
RISC System/6000 for more information.

20 VisualAge C++ for AIX Compiler Reference

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixuser/usrosdev/usrosdevtfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/genprogctfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/genprogctfrm.htm

The national language code for United States English is en_US. If the appropriate
message catalogs have been installed on your system, any other valid national
language code can be substituted for en_US.

To determine the current setting of the national language on your system, use the
both of the following echo commands:

echo $LANG
echo $NLSPATH

The LANG and NLSPATH environment variables are initialized when the
operating system is installed, and might differ from the ones you want to use.

Related Tasks
“Set Environment Variables” on page 19

Related References
See also:
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs

Set Up the Compilation Environment 21

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/genprogctfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/genprogctfrm.htm

22 VisualAge C++ for AIX Compiler Reference

Invoke the Compiler

The IBM VisualAge C++ compiler is invoked using the following syntax, where
invocation can be replaced with any valid VisualAge C++ invocation command:

�� invocation �

command_line_options input_files
��

The parameters of the compiler invocation command can be the names of input
files, compiler options, and linkage-editor options. Compiler options perform a
wide variety of functions, such as setting compiler characteristics, describing the
object code and compiler output to be produced, and performing some
preprocessor functions.

To compile without link-editing, use the -c compiler option. The -c option stops the
compiler after compilation is completed and produces as output, an object file
file_name.o for each file_name.c input source file, unless the -o option was used to
specify a different object filename. The linkage editor is not invoked. You can
link-edit the object files later using the invocation command, specifying the object
files without the -c option.

Notes:

1. Any object files produced from an earlier compilation are deleted as part of the
compilation process, even if new object files are not produced.

2. By default, the invocation command calls both the compiler and the linkage
editor. It passes linkage editor options to the linkage editor. Consequently, the
invocation commands also accept all linkage editor options.

Invoke the Linkage Editor
The linkage editor link-edits specified object files to create one executable file.
Invoking the compiler with one of the invocation commands automatically calls
the linkage editor unless you specify one of the following compiler options: -E, -P,
-c, -S, -qsyntaxonly or -#.

Input Files
Object files, library files, and unstripped executable files serve as input to
the linkage editor. Object files must have a .o suffix, for example, year.o.
Static library file names have a .a suffix, for example, libold.a. Dynamic
library file names have a .so suffix, for example, libold.so.

Library files are created by combining one or more files into a single
archive file with the AIX ar command. For a description of the ar
command, refer to the AIX Version 4 Commands Reference.

Output Files
The linkage editor generates an executable file and places it in your current
directory. The default name for an executable file is a.out. To name the
executable file explicitly, use the -ofile_name option with the xlC command,

© Copyright IBM Corp. 1995,2002 23

where file_name is the name you want to give to the executable file. If you
use the -qmkshrobj option to create a shared library, the default name of
the shared object created is shr.o.

You can invoke the linkage editor explicitly with the ld command. However, the
compiler invocation commands set several linkage-editor options, and link some
standard files into the executable output by default. In most cases, it is better to
use one of the compiler invocation commands to link-edit your .o files.

Note: When link-editing .o files, do not use the -e option of the ld command. The
default entry point of the executable output is __start. Changing this label
with the -e flag can cause erratic results.

Related Concepts
“Compiler Modes” on page 3

Related Tasks
“Specify Compiler Options on the Command Line” on page 25

Related References
“Compiler Command Line Options” on page 61
“Message Severity Levels and Compiler Response” on page 379

See also:
ld command in Commands Reference, Volume 5: s through u

24 VisualAge C++ for AIX Compiler Reference

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds3/ld.htm#HDRA09493AC
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds5/aixcmds5tfrm.htm

Specify Compiler Options

You can specify compiler options in one or more of three ways:
v On the command line (see page 25)
v In your source program (see page 27)
v In a configuration (.cfg) file (see page 27)

The compiler assumes default settings for most compiler options not explicitly set
by you in the ways listed above.

Specify Compiler Options on the Command Line
Most options specified on the command line override both the default settings of
the option and options set in the configuration file. Similarly, most options
specified on the command line are in turn overridden by options set in the source
file. Options that do not follow this scheme are listed in Resolving Conflicting
Compiler Options.

There are two kinds of command-line options:
v -qoption_keyword (compiler-specific)
v Flag options (available to compilers on AIX systems)

-q Options

��

�

-q option_keyword
:

= suboption

��

Command-line options in the -qoption_keyword format are similar to on and off
switches. For most -q options, if a given option is specified more than once, the last
appearance of that option on the command line is the one recognized by the
compiler. For example, -qsource turns on the source option to produce a compiler
listing, and -qnosource turns off the source option so no source listing is produced.
For example:

xlC -qnosource MyFirstProg.c -qsource MyNewProg.c

would produce a source listing for both MyNewProg.c and MyFirstProg.c because
the last source option specified (-qsource) takes precedence.

You can have multiple -qoption_keyword instances in the same command line, but
they must be separated by blanks. Option keywords can appear in either
uppercase or lowercase, but you must specify the -q in lowercase. You can specify
any -qoption_keyword before or after the file name. For example:

xlC -qLIST -qnomaf file.c
xlC file.c -qxref -qsource

Some options have suboptions. You specify these with an equal sign following the
-qoption. If the option permits more than one suboption, a colon (:) must separate
each suboption from the next. For example:

© Copyright IBM Corp. 1995,2002 25

xlC -qflag=w:e -qattr=full file.c

compiles the C source file file.c using the option -qflag to specify the severity level
of messages to be reported, the suboptions w (warning) for the minimum level of
severity to be reported on the listing, and e (error) for the minimum level of
severity to be reported on the terminal. The option -qattr with suboption full will
produce an attribute listing of all identifiers in the program.

Flag Options
The compilers available on AIX systems use a number of common conventional
flag options. IBM VisualAge C++ supports these flags. Lowercase flags are
different from their corresponding uppercase flags. For example, -c and -C are two
different compiler options: -c specifies that the compiler should only preprocess
and compile and not invoke the linkage editor, while -C can be used with -P or -E
to specify that user comments should be preserved.

IBM VisualAge C++ also supports flags directed to other AIX programming tools
and utilities (for example, the AIX ld command). The compiler passes on those
flags directed to ld at link-edit time.

Some flag options have arguments that form part of the flag. For example:
xlC stem.c -F/home/tools/test3/new.cfg:myc -qproclocal=sort:count

where new.cfg is a custom configuration file.

You can specify flags that do not take arguments in one string. For example:
xlC -Ocv file.c

has the same effect as:
xlC -O -c -v file.c

and compiles the C source file file.c with optimization (-O) and reports on
compiler progress (-v), but does not invoke the linkage editor (-c).

A flag option that takes arguments can be specified as part of a single string, but
you can only use one flag that takes arguments, and it must be the last option
specified. For example, you can use the -o flag (to specify a name for the
executable file) together with other flags, only if the -o option and its argument are
specified last. For example:

xlC -Ovotest test.c

has the same effect as:
xlC -O -v -otest test.c

Most flag options are a single letter, but some are two letters. Note that -pg
(extended profiling) is not the same as -p -g (profiling, -p, and generating debug
information, -g). Take care not to specify two or more options in a single string if
there is another option that uses that letter combination.

Related Concepts
“Compiler Options” on page 5

Related Tasks
“Invoke the Compiler” on page 23
“Specify Compiler Options in Your Program Source Files” on page 27

26 VisualAge C++ for AIX Compiler Reference

“Specify Compiler Options in a Configuration File”
“Resolving Conflicting Compiler Options” on page 31

Related References
“Compiler Command Line Options” on page 61

Specify Compiler Options in Your Program Source Files
You can specify compiler options within your program source by using #pragma
directives.

A pragma is an implementation-defined instruction to the compiler. It has the
general form given below, where character_sequence is a series of characters that
giving a specific compiler instruction and arguments, if any.

�� �# pragma character_sequence ��

The character_sequence on a pragma is subject to macro substitutions, unless
otherwise stated. More than one pragma construct can be specified on a single
#pragma directive. The compiler ignores unrecognized pragmas, issuing an
informational message indicating this.

Options specified with pragma directives in program source files override all other
option settings.

These #pragma directives are listed in the detailed descriptions of the options to
which they apply. For complete details on the various #pragma preprocessor
directives, see List of Pragma Preprocessor Directives.

Related Concepts
“Compiler Options” on page 5

Related Tasks
“Invoke the Compiler” on page 23
“Specify Compiler Options on the Command Line” on page 25
“Specify Compiler Options in a Configuration File”
“Resolving Conflicting Compiler Options” on page 31

Related References
“General Purpose Pragmas” on page 297

Specify Compiler Options in a Configuration File
The default configuration file, (/etc/vac.cfg), specifies information that the
compiler uses when you invoke it. This file defines values used by the compiler to
compile C or C++ programs. You can make entries to this file to support specific
compilation requirements or to support other C or C++ compilation environments.

Most options specified in the configuration file override the default settings of the
option. Similarly, most options specified in the configuration file are in turn
overridden by options set in the source file and on the command line. Options that
do not follow this scheme are listed in Resolving Conflicting Compiler Options.

Specify Compiler Options 27

Tailor a Configuration File
The default configuration file is installed to /etc/vac.cfg.

You can copy this file and make changes to the copy to support specific
compilation requirements or to support other C or C++ compilation environments.
To specify a configuration file other than the default, you use the -F option.

For example, to make -qnoro the default for the xlC compiler invocation
command, add -qnoro to the xlC stanza in your copied version of the
configuration file.

You can link the compiler invocation command to several different names. The
name you specify when you invoke the compiler determines which stanza of the
configuration file the compiler uses. You can add other stanzas to your copy of the
configuration file to customize your own compilation environment. You can use
the -F option with the compiler invocation command to make links to select
additional stanzas or to specify a stanza or another configuration file. For example:

xlC myfile.c -Fmyconfig:SPECIAL

would compile myfile.c using the SPECIAL stanza in a myconfig.cfg configuration
file that you had created.

Configuration File Attributes
A stanza in the configuration file can contain the following attributes:

as Path name to be used for the assembler. The default is /bin/as.
asopt List of options for the assembler and not for the compiler. These override all

normal processing by the compiler and are directed to the assembler specified
in the as stanza. The string is formatted for the AIX getopt() subroutine as a
concatenation of flag letters, with a letter followed by a colon (:) if the
corresponding flag takes a parameter.

cppcode Path name to be used for the code generation phase of the compiler. The
default is /usr/vacpp/exe/xlCcode.

ccomp C Front end. The default is /usr/vacpp/exe/xlcentry.
codeopt List of options for the code-generation phase of the compiler.
comp C++ Front end. The default is /usr/vacpp/exe/xlCentry.
cppopt List of options for the lexical analysis phase of the compiler.
crt Path name of the object file passed as the first parameter to the linkage editor.

If you do not specify either the -p or the -pg option, the crt value is used. The
default is /lib/crt0.o.

csuffix Suffix for source programs. The default is c (lowercase c).
dis Path name of the disassembler. The default is /usr/vacpp/exe/dis.
gcrt Path name of the object file passed as the first parameter to the linkage editor.

If you specify the -pg option, the gcrt value is used. The default is /lib/grt0.o.
ld Path name to be used to link C or C++ programs. The default is /bin/ld.
ldopt List of options that are directed to the linkage editor part of the compiler.

These override all normal processing by the compiler and are directed to the
linkage editor. If the corresponding flag takes a parameter, the string is
formatted for the AIX getopt() subroutine as a concatenation of flag letters,
with a letter followed by a colon (:).

libraries2 Library options, separated by commas, that the compiler passes as the last
parameters to the linkage editor. libraries2 specifies the libraries that the
linkage editor is to use at link-edit time for both profiling and nonprofiling.
The default is empty.

mcrt Path name of the object file passed as the first parameter to the linkage editor
if you have specified the -p option. The default is /lib/mcrt0.o.

28 VisualAge C++ for AIX Compiler Reference

options A string of option flags, separated by commas, to be processed by the compiler
as if they had been entered on the command line.

osuffix The suffix for object files. The default is .o.
proflibs Library options, separated by commas, that the compiler passes to the linkage

editor when profiling options are specified. proflibs specifies the profiling
libraries used by the linkage editor at link-edit time. The default is
-L/lib/profiled and -L/usr/lib/profiled.

ssuffix The suffix for assembler files. The default is .s.
use Values for attributes are taken from the named stanza and from the local

stanza. For single-valued attributes, values in the use stanza apply if no value
is provided in the local, or default, stanza. For comma-separated lists, the
values from the use stanza are added to the values from the local stanza.

xlC The path name of the xlC compiler component. The default is
/usr/vacpp/bin/xlC.

Related Concepts
“Compiler Options” on page 5

Related Tasks
“Invoke the Compiler” on page 23
“Specify Compiler Options on the Command Line” on page 25
“Specify Compiler Options in Your Program Source Files” on page 27
“Resolving Conflicting Compiler Options” on page 31

Related References
“Compiler Command Line Options” on page 61

Specify Compiler Options for Architecture-Specific, 32- or 64-bit
Compilation

You can use IBM VisualAge C++ compiler options to optimize compiler output for
use on specific processor architectures. You can also instruct the compiler to
compile in either 32- or 64-bit mode.

The compiler evaluates compiler options in the following order, with the last
allowable one found determining the compiler mode:
1. Internal default (32-bit mode)
2. OBJECT_MODE environment variable setting, as follows:

OBJECT_MODE
Setting

User-selected compilation-mode behavior, unless overridden by
configuration file or command-line options

not set 32-bit compiler mode.
32 32-bit compiler mode.
64 64-bit compiler mode.

32_64 Fatal error and stop with following message, 1501-054
OBJECT_MODE=32_64 is not a valid setting for the compiler unless
an explicit configuration file or command-line compiler-mode setting
exists.

any other Fatal error and stop with following message, 1501-055 OBJECT_MODE
setting is not recognized and is not a valid setting for the
compiler unless an explicit configuration file or command-line
compiler-mode setting exists.

3. Configuration file settings
4. Command line compiler options (-q32, -q64, -qarch, -qtune)
5. Source file statements (#pragma options tune=suboption)

Specify Compiler Options 29

The compilation mode actually used by the compiler depends on a combination of
the settings of the -q32, -q64, -qarch, and -qtune compiler options, subject to the
following conditions:
v Compiler mode is set acording to the last-found instance of the -q32 or -q64

compiler options. If neither of these compiler options is chosen, the compiler
mode is set by the value of the OBJECT_MODE environment variable.

v Architecture target is set according to the last-found instance of the -qarch
compiler option, provided that the specified -qarch setting is compatible with
the compiler mode setting. If the -qarch option is not set, the compiler assumes a
-qarch setting of com.

v Tuning of the architecture target is set according to the last-found instance of the
-qtune compiler option, provided that the -qtune setting is compatible with the
architecture target and compiler mode settings. If the -qtune option is not set, the
compiler assumes a default -qtune setting according to the -qarch setting in use.

Allowable combinations of these options are found in the Acceptable Compiler
Mode and Processor Architecture Combinations table.

Possible option conflicts and compiler resolution of these conflicts are described
below:
v -q32 or -q64 setting is incompatible with user-selected -qarch option.

Resolution: -q32 or -q64 setting overrides -qarch option; compiler issues a
warning message, sets -qarch to com, and sets the -qtune option to the -qarch
setting’s default -qtune value.

v -q32 or -q64 setting is incompatible with user-selected -qtune option.
Resolution: -q32 or -q64 setting overrides -qtune option; compiler issues a
warning message, and sets -qtune to the -qarch setting’s default -qtune value.

v -qarch option is incompatible with user-selected -qtune option.
Resolution: Compiler issues a warning message, and sets -qtune to the -qarch
setting’s default -qtune value.

v Selected -qarch or -qtune options are not known to the compiler.
Resolution: Compiler issues a warning message, sets -qarch to com, and sets
-qtune to the -qarch setting’s default -qtune setting. The compiler mode (32- or
64-bit) is determined by the OBJECT_MODE environment variable or -q32/-q64
compiler settings.

Related Concepts
“Compiler Options” on page 5

Related Tasks
“Invoke the Compiler” on page 23
“Specify Compiler Options on the Command Line” on page 25
“Set Environment Variables to Select 64- or 32-bit Modes” on page 20

Related References
“Compiler Command Line Options” on page 61
“Resolving Conflicting Compiler Options” on page 31
“Acceptable Compiler Mode and Processor Architecture Combinations” on
page 373

30 VisualAge C++ for AIX Compiler Reference

Resolving Conflicting Compiler Options
In general, if more than one variation of the same option is specified (with the
exception of xref and attr), the compiler uses the setting of the last one specified.
Compiler options specified on the command line must appear in the order you
want the compiler to process them.

If a command-line flag is valid for more than one compiler program (for example
-B, -W, or -I applied to the compiler, linkage editor, and assembler program
names), you must specify it in cppopt, codeopt, inlineopt, ldopt, or asopt in the
configuration file. The command-line flags must appear in the order that they are
to be directed to the appropriate compiler program.

Two exceptions to the rules of conflicting options are the -Idirectory and -Ldirectory
options, which have cumulative effects when they are specified more than once.

In most cases, conflicting or incompatible options are resolved according to the
precedence shown in the following figure:

Most options that do not follow this scheme are summarized in the following
table.

Option Conflicting Options Resolution

-qhalt Severity specified Lowest severity specified.

-qnoprint -qxref | -qattr | -qsource | -qlistopt |
-qlist

-qnoprint

-qfloat=rsqrt -qnoignerrno Last option specified

-qxref -qxref=FULL -qxref=FULL

-qattr -qattr=FULL -qattr=FULL

-p | -pg |
-qprofile

-p | -pg | -qprofile Last option specified

-qhsflt -qrndsngl | -qspnans -qhsflt

-qhssngl -qrndsngl | -qspnans -qhssngl

-E -P | -o | -S -E

-P -c | -o | -S -P

-# -v -#

-F -B | -t | -W | -qpath | configuration file
settings

-B | -t | -W | -qpath

-qpath -B | -t -qpath overrides -B and -t

-S -c -S

Related Concepts
“Compiler Options” on page 5

Related Tasks
“Invoke the Compiler” on page 23
“Specify Compiler Options on the Command Line” on page 25

Specify Compiler Options 31

Related References
“Compiler Command Line Options” on page 61

32 VisualAge C++ for AIX Compiler Reference

Specify Path Names for Include Files

When you imbed one source file in another using the #include preprocessor
directive, you must supply the name of the file to be included. You can specify a
file name either by using a full path name or by using a relative path name.
v Use a Full Path Name to Imbed Files

The full path name, also called the absolute path name, is the file’s complete name
starting from the root directory. These path names start with the / (slash)
character. The full path name locates the specified file regardless of the directory
you are presently in (called your working or current directory).
The following example specifies the full path to file mine.h in John Doe’s
subdirectory example_prog:

/u/johndoe/example_prog/mine.h

v Use a Relative Path Name to Imbed Files

The relative path name locates a file relative to the directory that holds the current
source file or relative to directories defined using the -Idirectory option.

Directory Search Sequence for Include Files Using Relative Path
Names

C and C++ define two versions of the #include preprocessor directive. IBM
VisualAge C++ supports both. With the #include directive, you can search
directories by enclosing the file name between < > or “ ” characters.

The result of using each method is as follows:

#include type Directory Search Order

#include <file_name> 1. If you specify the -Idirectory option, the compiler searches
for file_name in the directory called directory first. If more
than one directory is specified, the compiler searches the
directories in the order that they appear on the command
line.

2. For C++ compilations, the compiler searches the directory
/usr/vacpp/include.

3. The compiler searches the directory /usr/include.

#include “file_name” 1. Starts searching from the directory where your current
source file resides. The current source file is the file that
contains the directive #include “file_name”.

2. If you specify the option -Idirectory, the compiler searches
for file_name in directory. If more than one directory is
specified, the compiler searches the directories in the order
that they appear on the command line.

3. For C++ compilations, the compiler searches the directory
/usr/vacpp/include.

4. The compiler searches the directory /usr/include.

Notes:

1. file_name specifies the name of the file to be included, and can include a full or
partial directory path to that file if you desire.

© Copyright IBM Corp. 1995,2002 33

v If you specify a file name by itself, the compiler searches for the file in the
directory search list.

v If you specify a file name together with a partial directory path, the compiler
appends the partial path to each directory in the search path, and tries to
find the file in the completed directory path.

v If you specify a full path name, the two versions of the #include directive
have the same effect because the location of the file to be included is
completely specified.

2. The only difference between the two versions of the #include directive is that
the “ ” (user include) version first begins a search from the directory where
your current source file resides. Typically, standard header files are included
using the < > (system include) version, and header files that you create are
included using the “ ” (user include) version.

3. You can change the search order by specifying the -qstdinc and -qidirfirst
options along with the -Idirectory option.
Use the -qnostdinc option to search only the directories specified with the
-Idirectory option and the current source file directory, if applicable. For C
programs, the /usr/include directory is not searched. For C++ programs, the
/usr/vacpp/include and /usr/include directories are not searched.
Use the -qidirfirst option with the #include “file_name” directive to search the
directories specified with the -Idirectory option before searching other
directories.
Use the -I option to specify the directory search paths.

Related References
“I” on page 150

34 VisualAge C++ for AIX Compiler Reference

Structure a Program that Uses Templates

The following class template, Stack, is used as an example in the sections that
follow. Stack implements a stack of items. The overloaded operators << and >> are
used to push items to the stack and pop items from the stack. Both return an
integer result: 1 = success, 0 = failure. The declaration of the Stack class template is
contained in the file stack.h

See the following sections:
v “Declaration of Stack in stack.h”
v “Declaration of operator Functions in stack.c”
v “Template Functions Declared Inline and Template Functions With Internal

Linkage” on page 36
v “Template Functions Defined within the Compilation Unit” on page 37
v “Use -qtempinc to Generate Template Functions Automatically” on page 38
v “Use -qnotempinc to Define Template Functions” on page 42
v “Use -qtemplateregistry to Define Template Functions” on page 43

Declaration of Stack in stack.h
typedef enum{tr,fl} Bool;
template <class Item, int size> class Stack {
public:
int operator << (Item item); // Push operator
int operator >> (Item& item); // Pop operator
Stack(Bool p=fl) {top = 0;} // Constructor defined inline
private:
Item stack[size]; // The stack of elements
int top; // Index to top of stack

};

In this example, the constructor function is defined inline, and has external linkage.
The other functions are defined using separate function templates. These members
of class template are contained out of line in the file stack.c

Related Tasks
“Structure a Program that Uses Templates”
“Declaration of operator Functions in stack.c”
“Template Functions Declared Inline and Template Functions With Internal
Linkage” on page 36
“Template Functions Defined within the Compilation Unit” on page 37
“Use -qtempinc to Generate Template Functions Automatically” on page 38
“Use -qnotempinc to Define Template Functions” on page 42
“Use -qtemplateregistry to Define Template Functions” on page 43

Related References
“tempinc” on page 269

Declaration of operator Functions in stack.c
template <class Item, int size>
int Stack<Item,size>::operator << (Item item) {
if (top >= size) return 0;
stack[top++] = item;

© Copyright IBM Corp. 1995,2002 35

return 1;
}
template <class Item, int size>
int Stack<Item,size>::operator >> (Item& item)
{
if (top <= 0) return 0;
item = stack[--top];
return 1;
}

Related Tasks
“Structure a Program that Uses Templates” on page 35
“Declaration of Stack in stack.h” on page 35
“Template Functions Declared Inline and Template Functions With Internal
Linkage”
“Template Functions Defined within the Compilation Unit” on page 37
“Use -qtempinc to Generate Template Functions Automatically” on page 38
“Use -qnotempinc to Define Template Functions” on page 42
“Use -qtemplateregistry to Define Template Functions” on page 43

Related References
“tempinc” on page 269

Template Functions Declared Inline and Template Functions With
Internal Linkage

If a template function is considered to be inline if one of the following applies:
v it is defined within a class definition
v it is declared using the inline specifier

An inline function is defined in each translation unit in which it is used and has
exactly the same definition in each case. Thus, the compiler generates the same
function in each of the compilation units where the template function is
instantiated. The compiler may also inline the function for you (inline substitution
of the function body at the point of call, similar to macro substitution).

A namespace scope template function has internal linkage if it is explicitly declared
static. No other template function has internal linkage. The inline function
specifier does not affect the linkage of a template function. You must define a
template function that has internal linkage within the compilation unit in which it
is used (implicitly instantiated, explicitly instantiated or specialized) because a
name that has internal linkage cannot be referred to by other names from other
translation units.

The definition of a template function must be in scope (visible) at the point of an
explicit specialization or instantiation. On the other hand, the only requirement for
a template function to be implicitly instantiated, is that the function declaration has
to be in scope at the point of instantiation.

In the Stack template class example, the constructor is defined inline in the class
template declaration. As a result, any compilation unit that uses an instance of the
Stack class will have the appropriate constructor generated as an inline function by
the compiler.

Related Tasks
“Structure a Program that Uses Templates” on page 35
“Declaration of Stack in stack.h” on page 35

36 VisualAge C++ for AIX Compiler Reference

“Declaration of operator Functions in stack.c” on page 35
“Template Functions Defined within the Compilation Unit”
“Use -qtempinc to Generate Template Functions Automatically” on page 38
“Use -qnotempinc to Define Template Functions” on page 42
“Use -qtemplateregistry to Define Template Functions” on page 43

Related References
“tempinc” on page 269

Template Functions Defined within the Compilation Unit
If a compilation unit explicitly instantiates or specializes a template function or
static data member of a template with a set of arguments, the compiler generates
the definition. At link-edit time, references in all compilation units to this function
or static data member are resolved to this definition. If different compilation units
try to explicitly instantiate or specialize the same template function or static data
member with the same set of arguments, the compiler may give issue messages
warning of duplicate symbol definitions.

If a compilation unit contains a template declaration that defines a function or
static data member of a template, the compiler generates the code for all functions
and static data members that are explicitly specialized or implicitly instantiated
within the compilation unit, and for which the definition of the template function
or static data member is in scope at the point of instantiation

More than one compilation unit could meet this criteria. If so, several compilation
units may generate code for the same template function or static data member of a
template.

The link-edit step does not remove any unused template function or static data
member code from the executable program. Therefore, if the same code that
defines functions or static data members is contained in multiple compilation units,
you may generate a very large executable program. In the Stack class template
example, for any compilation units that include the file stack.c, the compiler
generates code for each Stack class instance in that compilation unit. For example,
a compilation unit that contains:

#include “stack.h”
#include “stack.c”
void Swap(int &i, Stack<int,20>& s)
{
int j;
s >> j;
s << j;
i = j;
}

will automatically generate code for these functions :
Stack<int,20>::operator << (int)
Stack<int,20>::operator>> (int&)

Related Tasks
“Structure a Program that Uses Templates” on page 35
“Declaration of Stack in stack.h” on page 35
“Declaration of operator Functions in stack.c” on page 35
“Template Functions Declared Inline and Template Functions With Internal
Linkage” on page 36
“Use -qtempinc to Generate Template Functions Automatically” on page 38

Structure a Program that Uses Templates 37

“Use -qnotempinc to Define Template Functions” on page 42
“Use -qtemplateregistry to Define Template Functions” on page 43

Related References
“tempinc” on page 269

Use -qtempinc to Generate Template Functions Automatically
To avoid producing template code for the same function multiple times, use the
compiler to automatically generate the template functions. This is the
recommended way to use templates with the compiler.

The compiler can generate template function code automatically, provided the
template functions are referenced but not defined in your program code. To use
this method, you must generate a special file called a template-implementation file
that the compiler uses to generate the function code.

With this template-implementation file, the compiler generates each function
definition only once for the whole program. The compiler determines what
instances of the function must be created and avoids generating multiple copies of
the template functions.

You can specify more than one template implementation file for a header file using
the #pragma implementation directive.

To generate template functions automatically:
1. Declare but do not define the template function.
2. Place the class or function template declaration in a header file and include this

header file in your source program by using the #include directive. If the
template function has class (template) scope, its declaration is part of the class
(template) definition. If the template function has namespace scope, you must
declare but not define the function using a function template.

3. Create a special template-implementation file for each of the header files that
contain these template declarations. Use the same name for the
template-implementation file as for the header file but use a .c (lower case c)
instead of a .h suffix. Place these template-implementation files in the same
directories as their corespondent .h files.

4. Define all the functions declared in the header file in this template-
implementation file.

5. Place the definitions of any types (classes) that are used in template arguments
in header files (so with other words the types used for implicit instantiation). If
the class definitions require other header files, use the #include directive to
include them in either your implementation file or in the .h file (not in the
main file that uses the template). If any type (class) is required to declare a
template function (for example, the types are used as parameter types), place
them either in the template declaration file (the .h file) or in a separate header
file. If you use a header file, include it in the template declaration file using the
#include directive and NOT directly in your main file (for example the Bool
type in the stack example). Do not put the definitions of any classes that are
used in template arguments (the implicit instantiation) or in template function
definition in your source file. If a user-defined type is used in an implicit
function instantiation, the compiler will automatically include the file in the
tempinc generated template file, but will not do that for types used in template
function definition or declaration.

38 VisualAge C++ for AIX Compiler Reference

6. If you compile and then link at a different time, repeat any compiler options
you specified at compile time, when you link. Using the same compiler options
allows the compiler to properly compile the template-include files that are
generated at compile time. For example, use the same path names for the
-Idirectory option so that the compiler uses the same include files.

Note: If you have many files that all use the same template with the same
arguments, do not use the -qnotempinc option. Automatic function
generation is disabled by the -qnotempinc option. In the Stack class
template example, the stack.h header file is included in any compilation
units that use instances of the class. The stack.c file is not included by any
of these compilation units. The compiler uses it to build the necessary
functions. For example, a main compilation unit may contain:

#include “stack.h”
void Swap(int &i, Stack<int,20>& s)
{
int j;
s >> j;
s << j;
i = j;
}

During the link-edit step, the compiler will automatically generate code for
these functions :

Stack<int,20>::operator << (int)
Stack<int,20>::operator>> (int&)

Note to Users of xlC V3.x: Previous versions of xlC instantiated every method of a
class whether used or not. With VisualAge C++ V5.0 or
later, xlC only instantiates the methods that are used.
This may result in unresolved symbols for poorly
organized code. Check your organization. Reference
symbols in the source file where the symbols were
generated with xlC V3.x.

How the Compiler Generates the Function Definitions
During compilation of your program, the compiler builds up a special template
instantiation file for each header file that contains template functions or static data
members of a template class that require code generation. The compiler stores
these template instantiation files in the tempinc subdirectory of the working
directory. It creates the tempinc subdirectory if one does not already exist.

Before link-editing your program, the compiler checks the contents of the tempinc
subdirectory, compiles its template instantiation files, and generates the necessary
template code.

You can rename the template-implementation file or place it in a different directory
with the #pragma implementation directive. If you designate a relative path name,
the path must be relative to the directory containing the header file.

In the Stack class template example, if you want to use the file stack.defs as the
template implementation file instead of stack.c, add the line #pragma
implementation(“stack.defs”) anywhere in the stack.h file. The compiler expects
to find the template implementation file stack.defs in the same directory as
stack.h.

Structure a Program that Uses Templates 39

Specifying the Template-Implementation File
Define all the functions declared in the header file in the template-implementation
files. These definitions can be explicit specializations, template definitions, or both.
Static data members must be defined too. If you include explicit specializations, the
compiler uses them rather than those generated from the template when it
processes the template instantiation file.

If you use a class as a template argument and the class definition is needed in the
template-implementation file to generate the template function, include the class
definition in the header file. The compiler includes the header file in the template
instantiation file. This makes the class definition available when the function
definition is compiled.

Specifying a Different Path for the tempinc Subdirectory
By default, the compiler builds and compiles the special template-include files in
the tempinc subdirectory of the working directory. To redirect these files to another
directory, use the -qtempinc option. If you specify a directory, make sure you
specify it consistently for all compilations and link-edits of your program.

Regenerating the Template Instantiation File
The compiler builds a template instantiation file corresponding to each header file
containing template function declarations. After the compiler creates one of these
files, it may add information to it as each compilation unit is compiled. The
compiler never removes information from the file.

As you develop your program, you may remove function instantiations or
reorganize your program, so that the template instantiation files become obsolete.
Since the compiler does not remove information from the template instantiation
files, you may want to delete one or more of these files and recompile your
program periodically. To regenerate all of the template instantiation files, delete the
tempinc directory and recompile your program.

If a compiler-generated file in a tempinc directory has compiler errors, the file will
be recompiled whenever a link is done using the xlC compiler invocation with that
tempinc directory. To avoid this recompilation, either fix the errors in the file or
remove it from the tempinc directory.

Breaking a Template Instantiation File into More Than One File
Normally the compiler generates one template instantiation file for each template
header file (either the default one or one specified by #pragma implementation).
When compiled, the template instantiation file may be too large to be created by
the compiler. If so, you can break the template instantiation file into more than one
file using the -qtempmax=number compiler option. More than one object file will
be created, all of them smaller in size than the first one.

Contents of Template Instantiation File
This section contains two examples of template instantiation files. The first is an
example showing the information that would be in a typical template instantiation
file. The second is the file produced for Stack class template example.

Example of a Typical Template-Include File
The following example shows the layout of a typical template instantiation file
generated by the compiler. The compiler does not remove information from the
file. You can edit these files but it is neither necessary nor advisable.

40 VisualAge C++ for AIX Compiler Reference

/*0698421265*/#include “/home/myapp/src/list.h” 1
/*0000000000*/#include “/home/myapp/src/list.c” 2
/*0698414046*/#include “/home/myapp/src/mytype.h” 3
/*0698414046*/#include “/usr/vacpp/include/iostream.h” 4
template int List<MyType>::foo(); 5
template ostream& operator<<(ostream&, List<MyType>); 6
template int count(List<MyType>); 1. 2. 3. 4. 7

A descriptions of each line follows:
1. The header file that corresponds to the template-include file. The number in

comments at the start of each #include line (in this case, /*0698421265*/) is a
timestamp for the included file. The compiler uses this number to determine if
the template-include file should be recompiled. A time stamp of zeroes (as in
line 2.) means the compiler is to ignore the timestamp.

2. The template implementation file that corresponds to the header file in line 1.
3. Another header file that the compiler needs to compile the template-include

file. All other header files that the compiler needs to compile the
template-include file are inserted at this point. In this example, the type
MyType is used as a template argument and was defined in the mytype.h
header file (MyType is needed for the instantiation of template function foo).

4. Another include file inserted by the compiler. It is referenced in the function
explicit instantiation at line 6 (ostream is needed for the instantiation of the
operator <<).

5. Code for the member function foo of class template List is going to be
generated, for the specific type MyType, by this explicit instantiation.

6. The operator << function has namespace scope. It is matching a template
declaration in the file list.h and has its definition in list.c. The compiler inserted
this explicit instantiation to force the generation of the function code.

7. count function is a function that has namespace scope. The compiler inserted
this explicit instantiation to force the generation of the function code.

Template-Include File (Stack.C) for the Stack class Template
Example

/*0709395703*/#include “/home/myapp/stack.h”
/*0000000000*/#include “/home/myapp/stack.c”
template int Stack<int,20>::operator<<(int);
template int Stack<int,20>::operator>>(int &);

Using #pragma Directives in Header Files
When a #pragma directive is specified in a program, the directive is in effect until
it is reset or overridden. You must reset any #pragma directives that would have
an unwanted effect on other include files. For example, if you had a header file,
header1.h, with:

...
#pragma options enum=small
enum enum1 {p,q,r,s};
...

and another file, header2.h, with:
...
enum enum2 {a,b,c,d};
...

enum2 would be treated as small if header2.h followed header1.h. enum2 would
be treated as int if header2.h preceded header1.h and if header2.h had no

Structure a Program that Uses Templates 41

#pragma options enum=small directive. In this example, you should specify
#pragma options enum=reset at the end of header1.h to avoid any carry over to
another file.

Considerations for Shared Libraries
In a traditional application development environment, different applications can
share both source files and compiled files. If you decide to use templates,
applications can share source files but cannot share compiled files.

If you use templates:
v Each application must have its own template directory.
v You must compile all of the files for the application, even if some of the files

have already been compiled for another application.

Related Tasks
“Structure a Program that Uses Templates” on page 35
“Declaration of Stack in stack.h” on page 35
“Declaration of operator Functions in stack.c” on page 35
“Template Functions Declared Inline and Template Functions With Internal
Linkage” on page 36
“Template Functions Defined within the Compilation Unit” on page 37
“Use -qnotempinc to Define Template Functions”
“Use -qtemplateregistry to Define Template Functions” on page 43

Related References
“tempinc” on page 269

Use -qnotempinc to Define Template Functions
You can structure your program to define the template functions directly in your
compilation units. If you know what instances of a particular template function
will be needed, you can define both the template functions and the necessary
declarations in one compilation unit. If you use this method, you do not have to
reference any compiler-generated files.

However, if you change the body of the function template, you may have to
recompile many of the files. Compile and link time may be longer, and the object
file produced may become quite large. Careful program structuring can avoid these
issues.

To structure your program without using automatic template generation:
1. Specify the -qnotempinc option so that the compiler does not generate

template-include files.
2. Place the template function definitions into one or more of your compilation

units.
3. Place a reference for each template function to be generated in a compilation

unit that also contains a definition of the function. Code is generated if the
template definition is visible and there’s and implicit or explicit instantiation, or
if you write a new definition for specific template arguments via an explicit
specialization. There is no distinction between member and non-member
functions or static data members for this.

In the Stack class template example above, the compiler generates the necessary
function code if you include both stack.h and stack.c in all compilation units

42 VisualAge C++ for AIX Compiler Reference

which use instances of the Stack class. Code is generated for all the necessary
functions. Code may be generated multiple times resulting in a very large object
file.

If the tempinc feature is on, the macro __TEMPINC__ is defined in all compilation
units in which automatic template generation is on. This allows you to write code
that will compile correctly with and without the -qtempinc option by using
conditional compilation.

Related Tasks
“Structure a Program that Uses Templates” on page 35
“Declaration of Stack in stack.h” on page 35
“Declaration of operator Functions in stack.c” on page 35
“Template Functions Declared Inline and Template Functions With Internal
Linkage” on page 36
“Template Functions Defined within the Compilation Unit” on page 37
“Use -qtempinc to Generate Template Functions Automatically” on page 38
“Use -qtemplateregistry to Define Template Functions”

Related References
“tempinc” on page 269

Use -qtemplateregistry to Define Template Functions
Unlike the -qtempincc template instantiation mechanism, the -qtemplateregistry
option does not impose specific requirements on the organization of your source
code. Any program that compiles successfully when both -qnotempinc and
-qnotemplateregistry are in effect (i.e., the instantiate at every occurrence approach)
will also compile when -qtemplateregistry is in effect.

The -qtemplateregistry option relies on a first-come, first-serve type of algorithm.
When a program references a new instantiation for the first time, it is instantiated
in the compilation in which it occurs. When another compilation unit references
the same instantiation, it is not instantiated again. Thus, only one copy is
generated for the entire program. The information to accomplish this is stored in a
template registry file, and you must use the same registry file for the entire
program. The default file name for the compiler option is templreg, but you can
use the -qtemplateregistry compiler option to specify any other valid file name to
override this default. When cleaning your program build environment before
starting a fresh or scratch build, you must delete the registry file along with the
old object files.

-qtemplateregistry must not be used together with -qtempinc. Before initiating a
build that uses the -qtemplateregistry option, ensure that there are no instantiation
files in subdirectory tempinc of your working directory.

Recompiling Parts of Your Program After Making Source
Changes

If you change your source code and recompile only the affected parts, you could
possibly change the dependencies between compilation units. The template registry
handles this automatically because it stores all references to templates as well as all
the instantiations.

For example, if you have compilation units A and B that both reference the same
instantiation and you compile A first, then A’s object file will contain the code for
the instantiation. If you modify A so that it no longer references the instantiation,

Structure a Program that Uses Templates 43

and you recompile A only, then its object file will no longer contain the code for
the instantiation. Without further action an undefined symbol error will occur. To
handle this situation the compiler will automatically recompile B using the same
compiler options as it did for A, so that B’s object file contains the code for the
instantiation.

If necessary, automatic recompilation of dependent compilation units can be
disabled with the -qnotemplaterecompile compiler option.

Related Tasks
“Structure a Program that Uses Templates” on page 35
“Declaration of Stack in stack.h” on page 35
“Declaration of operator Functions in stack.c” on page 35
“Template Functions Declared Inline and Template Functions With Internal
Linkage” on page 36
“Template Functions Defined within the Compilation Unit” on page 37
“Use -qtempinc to Generate Template Functions Automatically” on page 38
“Use -qnotempinc to Define Template Functions” on page 42

Related References
“tempinc” on page 269
“templaterecompile” on page 270
“templateregistry” on page 271

44 VisualAge C++ for AIX Compiler Reference

Control Parallel Processing with Pragmas

Parallel processing operations are controlled by pragma directives in your program
source. You can use either IBM SMP or OpenMP parallel processng directives. Each
have their own usage characteristics.

IBM SMP Directives

Syntax
#pragma ibm pragma_name_and_args
<countable for|while|do loop>

Pragma directives must appear immediately before the section of code to which
they apply. For most parallel processing pragma directives this section of code
must be a countable loop, and the compiler will report an error if one is not found.

More than one parallel processing pragma directive can be applied to a countable
loop. For example:

#pragma ibm independent_loop
#pragma ibm independent_calls
#pragma ibm schedule(static,5)
<countable for|while|do loop>

Some pragma directives are mutually-exclusive of each other. If mutually-exclusive
pragmas are specified for the same loop, the pragma last specified applies to the
loop. In the example below, the parallel_loop pragma directive is applied to the
loop, and the sequential_loop pragma directive is ignored.

#pragma ibm sequential_loop
#pragma ibm parallel_loop

Other pragmas, if specified repeatedly for a given loop, have an additive effect. For
example:

#pragma ibm permutation (a,b)
#pragma ibm permutation (c)

is equivalent to:
#pragma ibm permutation (a,b,c)

OpenMP Directives

Syntax
#pragma omp pragma_name_and_args
statement_block

Pragma directives generally appear immediately before the section of code to
which they apply. The omp parallel directive is used to define the region of
program code to be parallelized. Other OpenMP directives define visibility of data
variables in the defined parallel region and how work within that region is shared
and synchronized.

© Copyright IBM Corp. 1995,2002 45

For example, the following example defines a parallel region in which iterations of
a for loop can run in parallel:

#pragma omp parallel
{

#pragma omp for
for (i=0; i<n; i++)

...
}

This example defines a parallel region in which two or more non-iterative sections
of program code can run in parallel:

#pragma omp sections
{

#pragma omp section
structured_block_1

...
#pragma omp section

structured_block_2
...

....
}

Related Concepts
“Program Parallelization” on page 9

Related Tasks
“Set Parallel Processing Run-time Options” on page 20

Related References
“smp” on page 252
“Pragmas to Control Parallel Processing” on page 344
“IBM SMP Run-time Options for Parallel Processing” on page 383
“OpenMP Run-time Options for Parallel Processing” on page 386
“Built-in Functions Used for Parallel Processing” on page 388

For complete information about the OpenMP Specification, see:
OpenMP Web site
OpenMP Specification.

46 VisualAge C++ for AIX Compiler Reference

http://www.openmp.org
http://www.openmp.org/specs

Use C and C++ with Other Programming Languages

You can use objects created in other programming languages in your C or C++
programs. The following topics in this section give an overview of programming
considerations to follow when doing so.
v “Interlanguage Calling Conventions”
v “Corresponding Data Types”
v “Use the Subroutine Linkage Conventions in Interlanguage Calls” on page 49
v “Sample Program: C Calling Fortran” on page 57

Interlanguage Calling Conventions
You should follow these recommendations when writing C and C++ code to call
functions written in other languages:
v Avoid using uppercase letters in identifiers. Fortran and Pascal use only

lowercase letters for all external names. Although both fold external identifiers
to lowercase by default, the Fortran compiler can be set to distinguish external
names by case.

v Avoid using the underscore (_) and dollar sign ($) as the first character in
identifiers, to prevent conflict with the naming conventions for the C and C++
language libraries.

v Avoid using long identifier names. The maximum number of significant
characters in identifiers is 250 characters.

Related Concepts
“Using VisualAge C++ with Other Programming Languages” on page 15

Related Tasks
“Corresponding Data Types”
“Use the Subroutine Linkage Conventions in Interlanguage Calls” on page 49
“Sample Program: C Calling Fortran” on page 57

Corresponding Data Types
The following table shows the correspondence between the data types available in
C/C++, Fortran, and Pascal. Several data types in C have no equivalent
representation in Pascal or Fortran. Do not use them when programming for
interlanguage calls. Blank table cells indicate that no matching data type exists.

C and C++ Data Types Fortran Data Types Pascal Data Types

Correspondence of Data Types among C, C++, Fortran, and Pascal

bool LOGICAL*4

char CHARACTER CHAR

signed char INTEGER*1
BYTE

PACKED -128..127

unsigned char LOGICAL*1 PACKED 0..255

signed short int INTEGER*2 PACKED -32768..32767

unsigned short int LOGICAL*2 PACKED 0..65535

signed long int INTEGER*4 INTEGER

© Copyright IBM Corp. 1995,2002 47

C and C++ Data Types Fortran Data Types Pascal Data Types

unsigned long int LOGICAL*4 —

signed long long int INTEGER*8 —

unsigned long long int LOGICAL*8 —

float REAL
REAL*4

SHORTREAL

double REAL*8
DOUBLE PRECISION

REAL

long double (default) REAL*8
DOUBLE PRECISION

REAL

long double (with
-qlongdouble or -qldbl128)

REAL*16 —

structure of two floats COMPLEX
COMPLEX*4

RECORD of two
SHORTREALS

structure of two doubles COMPLEX*16
DOUBLE COMPLEX

RECORD of two REALS

struct of two long doubles
(default)

COMPLEX*16 —

struct — RECORD (see notes below)

enumeration INTEGER*4 Enumeration

char[n] CHARACTER*n PACKED ARRAY[1..n] OF
CHAR

array pointer (*) to type Dimensioned variable
(transposed)

ARRAY

pointer (*) to function Functional Parameter Functional Parameter

structure (with
-qalign=packed)

Sequence derived type PACKED RECORD

Special Treatment of Character and Aggregate Data
Most numeric data types have counterparts across the three languages. Character
and aggregate data types require special treatment:
v Because of padding and alignment differences, C structures do not exactly

correspond to the Pascal RECORD data type.
v C character strings are delimited by a ’\0’character. In Fortran, all character

variables and expressions have a length that is determined at compile time. If
Fortran passes a string argument to another routine, it adds a hidden argument
giving the length to the end of the argument list. This length argument must be
explicitly declared in C. The C code should not assume a null terminator; the
supplied or declared length should always be used. Use the strncat, strncpm,
and strncpy functions of the C runtime library. These functions are described in
the Technical Reference, Volumes 1 and 2: Base Operating System and Extensions.

v Pascal’s STRING data type corresponds to a C structure For example.:
VAR s: STRING(10);

is equivalent to:
struct {

int length;
char str [10];

};

48 VisualAge C++ for AIX Compiler Reference

where length contains the actual length of STRING.
v The -qmacpstr option converts Pascal string literals into null-terminated strings,

where the first byte contains the length of the string.
v C and Pascal store array elements in row-major order (array elements in the

same row occupy adjacent memory locations). Fortran stores array elements in
ascending storage units in column-major order (array elements in the same
column occupy adjacent memory locations). The following example shows how
a two-dimensional array declared by A[3][2] in C, A[1..3,1..2] in Pascal, and by
A(3,2) in Fortran, is stored:

Storage of a Two-Dimensional Array

Storage Unit
C and C++ Element

Name
Pascal Element

Name
Fortran Element

Name

Lowest A[0][0] A[1,1] A(1,1)

A[0][1] A[1,2] A(2,1)

A[1][0] A[2,1] A(3,1)

A[1][1] A[2,2] A(1,2)

A[2][0] A[3,1] A(2,2)

Highest A[2][1] A[3,2] A(3,2)

v In general, for a multidimensional array, if you list the elements of the array in
the order they are laid out in memory, a row-major array will be such that the
rightmost index varies fastest, while a column-major array will be such that the
leftmost index varies fastest.

Related Concepts
“Using VisualAge C++ with Other Programming Languages” on page 15

Related Tasks
“Interlanguage Calling Conventions” on page 47
“Use the Subroutine Linkage Conventions in Interlanguage Calls”
“Sample Program: C Calling Fortran” on page 57

Related References
See also:
AIX 5L Version 5.1 Technical Reference: Base Operating System and Extensions,
Volume 1 (A-P)
AIX 5L Version 5.1 Technical Reference: Base Operating System and Extensions,
Volume 2 (Q-Z)

Use the Subroutine Linkage Conventions in Interlanguage Calls
Subroutine linkage conventions describe the machine state at subroutine entry and
exit. Routines that are compiled separately in the same or different languages are
linked when the programs are linked, and run when called.

These linkage convention provide fast and efficient subroutine linkage between
languages. They specify how parameters are passed taking full advantage of
floating-point registers (FPRs) and general-purpose registers (GPRs), and minimize
the saving and restoring of registers on subroutine entry and exit.
v “Interlanguage Calls - Parameter Passing” on page 50

Use C and C++ with Other Programming Languages 49

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/libs/basetrf1/basetrf1tfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/libs/basetrf1/basetrf1tfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/libs/basetrf2/basetrf2tfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/libs/basetrf2/basetrf2tfrm.htm

v “Interlanguage Calls - Call by Reference Parameters” on page 51
v “Interlanguage Calls - Call by Value Parameters” on page 52
v “Interlanguage Calls - Rules for Passing Parameters by Value” on page 52
v “Interlanguage Calls - Pointers to Functions” on page 54
v “Interlanguage Calls - Function Return Values” on page 54
v “Interlanguage Calls - Stack Floor” on page 55
v “Interlanguage Calls - Stack Overflow” on page 55
v “Interlanguage Calls - Traceback Table” on page 56
v “Interlanguage Calls - Type Encoding and Checking” on page 56
v “Sample Program: C Calling Fortran” on page 57

Related Concepts
“Using VisualAge C++ with Other Programming Languages” on page 15

Related Tasks
“Interlanguage Calling Conventions” on page 47
“Corresponding Data Types” on page 47

Interlanguage Calls - Parameter Passing
The RISC System/6000 linkage convention specifies the methods for parameter
passing and whether return values are to be in FPRs, GPRs, or both. The GPRs and
FPRs available for argument passing are specified in two fixed lists: R3-R10 and
FP1-FP13.

Prototyping affects how parameters are passed and whether widening occurs:

Nonprototyped functions
In nonprototyped functions in the C language, floating-point arguments are
widened to double and integral types are widened to int.

Prototyped functions
No widening conversions occur except in arguments passed to an ellipsis
function. Floating-point double arguments are only passed in FPRs. If an
ellipsis is present in the prototype, floating-point double arguments are
passed in both FPRs and GPRs.

When there are more argument words than available parameter GPRs and FPRs,
the remaining words are passed in storage on the stack. The values in storage are
the same as if they were in registers. Space for more than 8 words of arguments
(float and nonfloat) must be reserved on the stack even if all the arguments were
passed in registers.

The size of the parameter area is sufficient to contain all the arguments passed on
any call statement from a procedure associated with the stack frame. Although not
all the arguments for a particular call actually appear in storage, they can be
regarded as forming a list in this area, each one occupying one or more words.

The methods of passing parameters are as follows:
v In C, all function arguments are passed by value, and the called function

receives a copy of the value passed to it.
v In Fortran, by default, arguments are passed by reference, and the called

function receives the address of the value passed to it. You can use the %VAL

50 VisualAge C++ for AIX Compiler Reference

Fortran built-in function to pass by value. Refer to the AIX XL Fortran
Compiler/6000 User’s Guide for more information about using %VAL and
interlanguage calls.

v In Pascal, the function declaration determines whether a parameter is expected
to be passed by value or by reference.

Related Concepts
“Using VisualAge C++ with Other Programming Languages” on page 15

Related Tasks
“Interlanguage Calling Conventions” on page 47
“Corresponding Data Types” on page 47
“Use the Subroutine Linkage Conventions in Interlanguage Calls” on page 49
“Sample Program: C Calling Fortran” on page 57
“Interlanguage Calls - Call by Reference Parameters”
“Interlanguage Calls - Call by Value Parameters” on page 52
“Interlanguage Calls - Rules for Passing Parameters by Value” on page 52
“Interlanguage Calls - Pointers to Functions” on page 54
“Interlanguage Calls - Function Return Values” on page 54
“Interlanguage Calls - Stack Floor” on page 55
“Interlanguage Calls - Stack Overflow” on page 55
“Interlanguage Calls - Traceback Table” on page 56
“Interlanguage Calls - Type Encoding and Checking” on page 56

Interlanguage Calls - Call by Reference Parameters
For call-by-reference (as in Fortran), the address of the parameter is passed in a
register.

When passing parameters by reference, if you write C or C++ functions that:
v you want to call from a Fortran program, declare all parameters as pointers.
v calls a program written in Fortran, all arguments must be pointers or scalars

with the address operator.
v you want to call from a Pascal program, declare as pointers all parameters that

the Pascal program treats as reference parameters.
v calls a program written in Pascal, all arguments corresponding to reference

parameters must be pointers.

Related Concepts
“Using VisualAge C++ with Other Programming Languages” on page 15

Related Tasks
“Interlanguage Calling Conventions” on page 47
“Corresponding Data Types” on page 47
“Use the Subroutine Linkage Conventions in Interlanguage Calls” on page 49
“Sample Program: C Calling Fortran” on page 57
“Interlanguage Calls - Parameter Passing” on page 50
“Interlanguage Calls - Call by Value Parameters” on page 52
“Interlanguage Calls - Rules for Passing Parameters by Value” on page 52
“Interlanguage Calls - Pointers to Functions” on page 54
“Interlanguage Calls - Function Return Values” on page 54
“Interlanguage Calls - Stack Floor” on page 55
“Interlanguage Calls - Stack Overflow” on page 55
“Interlanguage Calls - Traceback Table” on page 56
“Interlanguage Calls - Type Encoding and Checking” on page 56

Use C and C++ with Other Programming Languages 51

Interlanguage Calls - Call by Value Parameters
In prototype functions with a variable number of arguments— specified with an
ellipsis, as in function(...)— the compiler widens all floating-point arguments to
double precision. Integral arguments (except for long int) are widened to int.
Because of this widening, some data types cannot be passed between Pascal and C
without explicit conversions, and Pascal routines cannot have value parameters of
certain data types.

The following information refers to call by value, as in C. In the following list,
arguments are classified as floating values or nonfloating values:
v Each nonfloating scalar argument requires 1 word and appears in that word

exactly as it would appear in a GPR. It is right-justified, if language semantics
specify, and is word aligned.

v Each float value occupies 1 word, float doubles occupy 2 successive words in the
list, and long doubles occupy either 2 or 4 words, depending on the setting of
the -qldbl128/-qlongdouble option.

v Structure values appear in successive words as they would anywhere in storage,
satisfying all appropriate alignment requirements. Structures are aligned to a
fullword and occupy (sizeof(struct X)+(wordsize-1))/wordsize) fullwords, with
any padding at the end. A structure smaller than a word is left-justified within
its word or register. Larger structures can occupy multiple registers and can be
passed partly in storage and partly in registers.

v Other aggregate values are passed val-by-ref; that is, the compiler actually passes
their addresses and arranges for a copy to be made in the invoked program.

v A function pointer is passed as a pointer to the routine’s function descriptor. The
first word contains the entry-point address. See Interlanguage Calls - Pointers to
Functions for more information.

Related Concepts
“Using VisualAge C++ with Other Programming Languages” on page 15

Related Tasks
“Interlanguage Calling Conventions” on page 47
“Corresponding Data Types” on page 47
“Use the Subroutine Linkage Conventions in Interlanguage Calls” on page 49
“Sample Program: C Calling Fortran” on page 57
“Interlanguage Calls - Parameter Passing” on page 50
“Interlanguage Calls - Call by Reference Parameters” on page 51
“Interlanguage Calls - Rules for Passing Parameters by Value”
“Interlanguage Calls - Pointers to Functions” on page 54
“Interlanguage Calls - Function Return Values” on page 54
“Interlanguage Calls - Stack Floor” on page 55
“Interlanguage Calls - Stack Overflow” on page 55
“Interlanguage Calls - Traceback Table” on page 56
“Interlanguage Calls - Type Encoding and Checking” on page 56

Interlanguage Calls - Rules for Passing Parameters by Value
The following is a 32-bit example of a call to a prototyped function:

int i, j; //32 bits each
long k; //32 bits
double d1, d2;
float f1;
short int s1;

52 VisualAge C++ for AIX Compiler Reference

char c;
...
void f(int, int, int, double, float, char, double, short);
f(i, j, k, d1, f1, c, d2, s1);

The function call results in the following storage mapping:

Notes:

1. A parameter is guaranteed to be mapped only if its address is taken.
2. Data with less than fullword alignment is copied into high-order bytes. Because

the function in the example is prototyped, the mapping of parameters c and s1
is right-justified.

3. The parameter list is a conceptually contiguous piece of storage containing a
list of words. For efficiency, the first 8 words of the list are not actually stored
in the space reserved for them, but passed in GPR3-GPR10. Furthermore, the
first 13 floating point value parameter values are not passed in GPRs, but are
passed in FPR1-FPR13. In all cases, parameters beyond the first 8 words of the
list are also stored in the space reserved for them.

4. If the called procedure intends to treat the parameter list as a contiguous piece
of storage (for example, if the address of a parameter is taken in C), the
parameter registers are stored in the space reserved for them in the stack.

5. A register image is stored on the stack.
6. The argument area (P1 ... Pn) must be large enough to hold the largest

parameter list.

Related Concepts
“Using VisualAge C++ with Other Programming Languages” on page 15

Related Tasks
“Interlanguage Calling Conventions” on page 47
“Corresponding Data Types” on page 47
“Use the Subroutine Linkage Conventions in Interlanguage Calls” on page 49
“Sample Program: C Calling Fortran” on page 57
“Interlanguage Calls - Parameter Passing” on page 50
“Interlanguage Calls - Call by Reference Parameters” on page 51
“Interlanguage Calls - Call by Value Parameters” on page 52
“Interlanguage Calls - Pointers to Functions” on page 54
“Interlanguage Calls - Function Return Values” on page 54

Use C and C++ with Other Programming Languages 53

“Interlanguage Calls - Stack Floor” on page 55
“Interlanguage Calls - Stack Overflow” on page 55
“Interlanguage Calls - Traceback Table” on page 56
“Interlanguage Calls - Type Encoding and Checking” on page 56

Interlanguage Calls - Pointers to Functions
A function pointer is a data type whose values range over function addresses.
Variables of this type appear in several programming languages such as C and
Fortran. In Fortran, a dummy argument that appears in an EXTERNAL statement
is a function pointer. Function pointers are supported in contexts such as the target
of a call statement or an actual argument of such a statement.

A function pointer is a fullword quantity that is the address of a function
descriptor. The function descriptor is a 3-word object. The first word contains the
address of the entry point of the procedure, the second has the address of the TOC
of the module in which the procedure is bound, and the third is the environment
pointer for languages such as Pascal. There is only one function descriptor per
entry point. It is bound into the same module as the function it identifies, if the
function is external. The descriptor has an external name, which is the same as the
function name, but without a leading . (dot). This descriptor name is used in all
import and export operations.

Related Concepts
“Using VisualAge C++ with Other Programming Languages” on page 15

Related Tasks
“Interlanguage Calling Conventions” on page 47
“Corresponding Data Types” on page 47
“Use the Subroutine Linkage Conventions in Interlanguage Calls” on page 49
“Sample Program: C Calling Fortran” on page 57
“Interlanguage Calls - Parameter Passing” on page 50
“Interlanguage Calls - Call by Reference Parameters” on page 51
“Interlanguage Calls - Call by Value Parameters” on page 52
“Interlanguage Calls - Rules for Passing Parameters by Value” on page 52
“Interlanguage Calls - Function Return Values”
“Interlanguage Calls - Stack Floor” on page 55
“Interlanguage Calls - Stack Overflow” on page 55
“Interlanguage Calls - Traceback Table” on page 56
“Interlanguage Calls - Type Encoding and Checking” on page 56

Interlanguage Calls - Function Return Values
Functions pass their return values according to type:
v Pointers, enumerated types, and integral values (int, short, long, char, and

unsigned types) of any length are returned, right-justified, in R3; long long
values are returned in R3 and R4. (R3 in 64-bit mode)

v floats and doubles are returned in FP1; 128-bit long doubles are returned in FP1
and FP2.

v Calling functions supply a pointer to a memory location where the called
function stores the returned value.

v long doubles are returned in R1 and R2.

Related Concepts
“Using VisualAge C++ with Other Programming Languages” on page 15

54 VisualAge C++ for AIX Compiler Reference

Related Tasks
“Interlanguage Calling Conventions” on page 47
“Corresponding Data Types” on page 47
“Use the Subroutine Linkage Conventions in Interlanguage Calls” on page 49
“Sample Program: C Calling Fortran” on page 57
“Interlanguage Calls - Parameter Passing” on page 50
“Interlanguage Calls - Call by Reference Parameters” on page 51
“Interlanguage Calls - Call by Value Parameters” on page 52
“Interlanguage Calls - Rules for Passing Parameters by Value” on page 52
“Interlanguage Calls - Pointers to Functions” on page 54
“Interlanguage Calls - Stack Floor”
“Interlanguage Calls - Stack Overflow”
“Interlanguage Calls - Traceback Table” on page 56
“Interlanguage Calls - Type Encoding and Checking” on page 56

Interlanguage Calls - Stack Floor
The stack floor is a system-defined address below which the stack cannot grow.

Other system invariants related to the stack must be maintained by all compilers
and assemblers:
v No data is saved or accessed from an address lower than the stack floor.
v The stack pointer is always valid. When the stack frame size is more than 32767

bytes, take care to ensure that its value is changed in a single instruction, so that
there is no timing window in which a signal handler would either overlay the
stack data or erroneously appear to overflow the stack segment.

Related Concepts
“Using VisualAge C++ with Other Programming Languages” on page 15

Related Tasks
“Interlanguage Calling Conventions” on page 47
“Corresponding Data Types” on page 47
“Use the Subroutine Linkage Conventions in Interlanguage Calls” on page 49
“Sample Program: C Calling Fortran” on page 57
“Interlanguage Calls - Parameter Passing” on page 50
“Interlanguage Calls - Call by Reference Parameters” on page 51
“Interlanguage Calls - Call by Value Parameters” on page 52
“Interlanguage Calls - Rules for Passing Parameters by Value” on page 52
“Interlanguage Calls - Pointers to Functions” on page 54
“Interlanguage Calls - Function Return Values” on page 54
“Interlanguage Calls - Stack Overflow”
“Interlanguage Calls - Traceback Table” on page 56
“Interlanguage Calls - Type Encoding and Checking” on page 56

Interlanguage Calls - Stack Overflow
The RISC System/6000 linkage convention requires no explicit inline check for
overflow. The operating system uses a storage-protect mechanism to detect stores
past the end of the stack segment.

Related Concepts
“Using VisualAge C++ with Other Programming Languages” on page 15

Related Tasks
“Interlanguage Calling Conventions” on page 47
“Corresponding Data Types” on page 47

Use C and C++ with Other Programming Languages 55

“Use the Subroutine Linkage Conventions in Interlanguage Calls” on page 49
“Sample Program: C Calling Fortran” on page 57
“Interlanguage Calls - Parameter Passing” on page 50
“Interlanguage Calls - Call by Reference Parameters” on page 51
“Interlanguage Calls - Call by Value Parameters” on page 52
“Interlanguage Calls - Rules for Passing Parameters by Value” on page 52
“Interlanguage Calls - Pointers to Functions” on page 54
“Interlanguage Calls - Function Return Values” on page 54
“Interlanguage Calls - Stack Floor” on page 55
“Interlanguage Calls - Traceback Table”
“Interlanguage Calls - Type Encoding and Checking”

Interlanguage Calls - Traceback Table
The compiler supports the traceback mechanism, which is required by the AIX
Operating System symbolic debugger to unravel the call or return stack. Each
function has a traceback table in the text segment at the end of its code. This table
contains information about the function, including the type of function as well as
stack frame and register information.

Related Concepts
“Using VisualAge C++ with Other Programming Languages” on page 15

Related Tasks
“Interlanguage Calling Conventions” on page 47
“Corresponding Data Types” on page 47
“Use the Subroutine Linkage Conventions in Interlanguage Calls” on page 49
“Sample Program: C Calling Fortran” on page 57
“Interlanguage Calls - Parameter Passing” on page 50
“Interlanguage Calls - Call by Reference Parameters” on page 51
“Interlanguage Calls - Call by Value Parameters” on page 52
“Interlanguage Calls - Rules for Passing Parameters by Value” on page 52
“Interlanguage Calls - Pointers to Functions” on page 54
“Interlanguage Calls - Function Return Values” on page 54
“Interlanguage Calls - Stack Floor” on page 55
“Interlanguage Calls - Stack Overflow” on page 55
“Interlanguage Calls - Type Encoding and Checking”

Interlanguage Calls - Type Encoding and Checking
Detecting errors before a program is run is a key objective of IBM VisualAge C++.
Runtime errors are hard to find, and many are caused by mismatching subroutine
interfaces or conflicting data definitions.

VisualAge C++ uses a scheme for early detection that encodes information about
all external symbols (data and programs). If the -qextchk option has been
specified, this information about external symbols is checked at bind or load time
for consistency.

The AIX 5L for POWER-based Systems: Assembler Language Reference book describes
the following details of the Subroutine Linkage Convention:
v Register usage (general-purpose, floating-point, and special-purpose registers)
v Stack
v The calling routine’s responsibilities
v The called routine’s responsibilities

56 VisualAge C++ for AIX Compiler Reference

Related Concepts
“Using VisualAge C++ with Other Programming Languages” on page 15

Related Tasks
“Interlanguage Calling Conventions” on page 47
“Corresponding Data Types” on page 47
“Use the Subroutine Linkage Conventions in Interlanguage Calls” on page 49
“Sample Program: C Calling Fortran”
“Interlanguage Calls - Parameter Passing” on page 50
“Interlanguage Calls - Call by Reference Parameters” on page 51
“Interlanguage Calls - Call by Value Parameters” on page 52
“Interlanguage Calls - Rules for Passing Parameters by Value” on page 52
“Interlanguage Calls - Pointers to Functions” on page 54
“Interlanguage Calls - Function Return Values” on page 54
“Interlanguage Calls - Stack Floor” on page 55
“Interlanguage Calls - Stack Overflow” on page 55
“Interlanguage Calls - Traceback Table” on page 56

Also, on the Web see:
AIX 5L for POWER-based Systems: Assembler Language Reference
Files Reference

Sample Program: C Calling Fortran
A C program can call a Fortran function or subroutine.

The following example illustrates how program units written in different languages
can be combined to create a single program. It also demonstrates parameter
passing between C and Fortran subroutines with different data types as arguments.

#include <iostream.h>
extern double add(int *, double [],
int *, double []);

double ar1[4]={1.0, 2.0, 3.0, 4.0};
double ar2[4]={5.0, 6.0, 7.0, 8.0};

main()
{
int x, y;
double z;

x = 3;

z = add(&x, ar1, y, ar2); /* Call Fortran add routine */
/* Note: Fortran indexes arrays 1..n*/
/* C indexes arrays 0..(n-1) */

printf(“The sum of %1.0f and %1.0f is %2.0f \n”,
ar1[x-1], ar2[y-1], z);
}

The Fortran subroutine is:
C Fortran function add.f - for C interlanguage call example
C Compile separately, then link to C program

REAL FUNCTION ADD*8 (A, B, C, D)
REAL*8 B,D
INTEGER*4 A,C

Use C and C++ with Other Programming Languages 57

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixassem/alangref/alangreftfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/files/aixfiles/aixfilestfrm.htm

DIMENSION B(4), D(4)
ADD = B(A) + D(C)
RETURN
END

Related Concepts
“Using VisualAge C++ with Other Programming Languages” on page 15

Related Tasks
“Interlanguage Calling Conventions” on page 47
“Corresponding Data Types” on page 47
“Use the Subroutine Linkage Conventions in Interlanguage Calls” on page 49

58 VisualAge C++ for AIX Compiler Reference

Part 3. Reference

© Copyright IBM Corp. 1995,2002 59

60 VisualAge C++ for AIX Compiler Reference

Compiler Options

This section describes the compiler options available in VisualAge C++. Options
fall into three general groups, as described in the following topics in this section.
v “Compiler Command Line Options”
v “General Purpose Pragmas” on page 297
v “Pragmas to Control Parallel Processing” on page 344

Compiler Command Line Options
This section lists and describes VisualAge C++ command line options.

To get detailed information on any option listed, see the full description page(s) for
that option. Those pages describe each of the compiler options, including:
v The command-line syntax of the compiler option. The first line under the Syntax

heading specifies the command-line or configuration-file method of specification.
The second line, if one appears, is the #pragma options keyword for use in your
source file.

v The default setting of the option if you do not specify the option on the
command line, in the configuration file, or in a #pragma directive within your
program.

v The purpose of the option and additional information about its behavior. Unless
specifically noted, all options apply to both C and C++ program compilations.

Options that appear entirely in lowercase must be entered in full.

Option Name Type Default Description

+ (plus sign) -flag - Compiles any file, filename.nnn,
as a C++ language file, where nnn is
any suffix other than .o, .a, or .s.

(pound sign) -flag - Traces the compilation without doing
anything.

32, 64 -qopt 32 Selects 32- or 64-bit compiler mode.

aggrcopy -qopt See aggrcopy. Enables destructive copy operations for
structures and unions.

alias -qopt See alias. Specifies which type-based aliasing is to
be used during optimization.

align -qopt align=full Specifies what aggregate alignment
rules the compiler uses for file
compilation.

alloca -qopt - Substitutes inline code for calls to
function alloca as if #pragma alloca
directives are in the source code.

ansialias -qopt See ansialias. Specifies whether type-based aliasing is
to be used during optimization.

arch -qopt arch=com Specifies the architecture on which the
executable program will be run.

© Copyright IBM Corp. 1995,2002 61

Option Name Type Default Description

assert -qopt noassert Requests the compiler to apply
aliasing assertions to your compilation
unit.

attr -qopt noattr Produces a compiler listing that
includes an attribute listing for all
identifiers.

B -flag - Determines substitute path names for
the compiler, assembler, linkage editor,
and preprocessor.

b -flag bdynamic Instructs the linker to process
subsequent shared objects as either
dynamic, shared or static.

bitfields -qopt unsigned Specifies if bitfields are signed.

bmaxdata -flag 0 Sets the size of the heap in bytes.

brtl -flag - Enables runtime linking.

C -flag - Preserves comments in preprocessed
output.

c -flag - Instructs the compiler to pass source
files to the compiler only.

cache -qopt - Specify a cache configuration for a
specific execution machine.

chars -qopt chars=unsigned Instructs the compiler to treat all
variables of type char as either signed
or unsigned.

check -qopt nocheck Generates code which performs certain
types of run-time checking.

cinc -qopt nocinc Include files from specified
directories have the tokens extern ″C″ {
inserted before the file, and } appended
after the file.

compact -qopt nocompact When used with optimization, reduces
code size where possible, at the expense
of execution speed.

cpluscmt -qopt See cpluscmt. Use this option if you want
C++ comments to be recognized in C
source files.

D -flag - Defines the identifier name as in a
#define preprocessor directive.

dataimported -qopt - Mark data as imported.

datalocal -qopt - Marks data as local.

dbxextra -qopt nodbxextra Specifies that all typedef
declarations, struct, union, and enum
type definitions are included for
debugger processing.

digraph -qopt See digraph. Allows use of digraph character
sequences in your program.

dollar -qopt nodollar Allows the $ symbol to be used in the
names of identifiers.

62 VisualAge C++ for AIX Compiler Reference

Option Name Type Default Description

dpcl -qopt nodpcl Generates block scopes to support the
IBM Dynamic Probe Class Library.

E -flag - Runs the source files named in the
compiler invocation through the
preprocessor.

e -flag - Specifies the entry name for the shared
object. Equivalent to using ld -e name.
See your system documentation for
additional information about ld options.

eh -qopt eh Controls exception handling.

enum -qopt enum=int Specifies the amount of storage
occupied by the enumerations.

expfile -qopt - Saves all exported symbols in a file.

extchk -qopt noextchk Generates bind-time type checking
information and checks for compile-time
consistency.

F -flag - Names an alternative configuration file
for xlC.

f -flag - Names a file to store a list of object
files.

fdpr -qopt nofdpr Collect program information for use
with the AIX fdpr performance-tuning
utility.

flag -qopt flag=i:i Specifies the minimum severity level of
diagnostic messages to be reported.

float -qopt See float. Specifies various floating point options
to speed up or improve the accuracy of
floating point operations.

flttrap -qopt noflttrap Generates extra instructions to detect
and trap floating point exceptions.

fold -qopt fold Specifies that constant floating point
expressions are to be evaluated at
compile time.

fullpath -qopt nofullpath Specifies what path information is
stored for files when you use -g and the
distributed graphical debugger.

funcsect -qopt nofuncsect Place instructions for each function in a
separate object file, control section or
csect.

G -flag - Linkage editor (ld command) option
only. Used to generate a dynamic libary
file.

g -flag - Generates debugging information used
by a debugger such as the Distributed
Debugger.

genproto -qopt nogenproto Produces ANSI prototypes
from K&R function definitions.

halt -qopt halt=s Instructs the compiler to stop after the
compilation phase when it encounters
errors of specified severity or greater.

Compiler Options 63

Option Name Type Default Description

haltonmsg -qopt - Instructs the compiler to stop
after the compilation phase when it
encounters a specific error message.

heapdebug -qopt noheapdebug Enables debug versions of memory
management functions.

hot -qopt nohot Instructs the compiler to perform
high-order transformations on loops
and array language during
optimization, and to to pad array
dimensions and data objects to avoid
cache misses.

hsflt -qopt nohsflt Speeds up calculations by removing
range checking on single-precision float
results and on conversions from floating
point to integer.

hssngl -qopt nohssngl Specifies that single-precision
expressions are rounded only when the
results are stored into float memory
locations.

I -flag - Specifies an additional search path if the
file name in the #include directive is
not specified using its absolute path
name.

idirfirst -qopt noidirfirst Specifies the search order for files
included with the #include “ file_name”
directive.

ignerrno -qopt noignerrno Allows the compiler to perform
optimizations that assume errno is not
modified by system calls.

ignprag -qopt - Instructs the compiler to ignore certain
pragma statements.

info -qopt noinfo Produces informational messages.

initauto -qopt noinitauto Initializes automatic storage to a
specified two-digit hexadecimal byte
value.

inlglue -qopt noinlglue Generates fast external linkage by
inlining the pointer glue code necessary
to make a call to an external function or
a call through a function pointer.

inline -qopt See inline. Attempts to inline functions instead of
generating calls to a function.

ipa -qopt ipa=object
(compile-time)

noipa (link-time)

Turns on or customizes a class of
optimizations known as interprocedural
analysis (IPA).

isolated_call -qopt - Specifies functions in the source file that
have no side effects.

keepinlines -qopt nokeepinlines Instructs the compiler to keep
or discard definitions for unreferenced
extern inline functions.

64 VisualAge C++ for AIX Compiler Reference

Option Name Type Default Description

keyword -qopt See keyword. Controls whether a specified string is
treated as a keyword or an identifier.

L -flag See L. Searches the specified directory for
library files specified by the -l option.

l -flag See l. Searches a specified library for linking.

langlvl -qopt See langlvl. Selects the C or C++ language level for
compilation.

largepage -qopt nolargepage. Instructs the compiler to exploit large
page heaps available on Power 4
systems running AIX v5.1D or later.

ldbl128,
longdouble

-qopt noldbl128 Increases the size of long double type
from 64 bits to 128 bits.

libansi -qopt nolibansi Assumes that all functions with the
name of an ANSI C library function are
in fact the system functions.

linedebug -qopt nolinedebug Generates abbreviated line number and
source file name information for the
debugger.

list -qopt nolist Produces a compiler listing that
includes an object listing.

listopt -qopt nolistopt Produces a compiler listing that
displays all options in effect.

longlit -qopt nolonglit Makes unsuffixed literals the long type
for 64-bit mode.

longlong -qopt See longlong. Allows long long types in your
program.

M -flag - Creates an output file that contains
targets suitable for inclusion in a
description file for the AIX make
command.

ma -flag - Substitutes inline code for calls
to function alloca as if #pragma alloca
directives are in the source code.

macpstr -qopt nomacpstr Converts Pascal string literals
into null-terminated strings where the
first byte contains the length of the
string.

maf -qopt maf Specifies whether the floating-point
multiply-add instructions are to be
generated.

makedep -qopt - Creates an output file that contains
targets suitable for inclusion in a
description file for the AIX make
command.

maxerr -qopt nomaxerr Instructs the compiler to halt
compilation when a specified number of
errors of specified or greater severity is
reached.

Compiler Options 65

Option Name Type Default Description

maxmem -qopt maxmem=8192 Limits the amount of memory used for
local tables of specific,
memory-intensive optimizations.

mbcs, dbcs -qopt nombcs Use the -qmbcs option if your program
contains multibyte characters.

mkshrobj -qopt - Creates a shared object from generated
object files.

namemangling -qopt namemangling=ansi Selects the name mangling
scheme for external symbol names
generated from C++ source code.

O, optimize -qopt,
-flag

nooptimize Optimizes code at a choice of levels
during compilation.

o -flag - Specifies a name or directory for the
output executable file(s) created either
by the compiler or the linkage editor.

objmodel -qopt objmodel=compat Sets the type of object model.

oldpassbyvalue -qopt nooldpassbyvalue Specifies how classes
containing const or reference members
are passed in function arguments.

P -flag - Preprocesses the C or C++ source files
named in the compiler invocation and
creates an output preprocessed source
file for each input source file.

p -flag - Sets up the object files produced by the
compiler for profiling.

pascal -qopt nopascal Ignores the word pascal in
type specifiers and function
declarations.

path -qopt - Constructs alternate program and path
names.

pdf1, pdf2 -qopt nopdf1, nopdf2 Tunes optimizations through
Profile-Directed Feedback.

pg -flag - Sets up the object files for profiling, but
provides more information than is
provided by the -p option.

phsinfo -qopt nophsinfo Reports the time taken in each
compilation phase.

print -qopt - Suppresses listings.

priority -qopt - Specifies the priority level for
the initialization of static constructors

proclocal,
procimported,
procunknown

-qopt See proclocal. Mark functions as local, imported, or
unknown.

proto -qopt noproto Assumes all functions are
prototyped.

Q -flag See Q. Attempts to inline functions instead of
generating calls to a function.

r -flag - Produces a relocatable object.

66 VisualAge C++ for AIX Compiler Reference

Option Name Type Default Description

report -qopt noreport Instructs the compiler to produce
transformation reports that show how
program loops are parallelized and
optimized.

rndflt -qopt norndflt Controls the compile-time rounding
mode of constant floating point
expressions.

rndsngl -qopt norndsngl Specifies that the result of each
single-precision float operation is to be
rounded to single precision.

ro -qopt See ro. Specifies the storage type for string
literals.

roconst -qopt See roconst. Specifies the storage location for
constant values.

rrm -qopt norrm Prevents floating-point optimizations
that are incompatible with run-time
rounding to plus and minus infinity
modes.

rtti -qopt nortti Generates run-time type
identification (RTTI) information for the
typeid operator and the dynamic_cast
operator.

S -flag - Generates an assembly language file (.s)
for each source file.

s -flag - Strips symbol table.

showinc -qopt noshowinc If used with -qsource, all the include
files are included in the source listing.

smallstack -qopt nosmallstack Instructs the compiler to reduce the size
of the stack frame.

smp -qopt nosmp Enables parallelization of IBM
SMP-compliant program code.

source -qopt nosource Produces a compiler listing and
includes source code.

spill -qopt spill=512 Specifies the size of the register
allocation spill area.

spnans -qopt nospnans Generates extra instructions to detect
signalling NaN on conversion from
single precision to double precision.

srcmsg -qopt nosrcmsg Adds the corresponding source
code lines to the diagnostic messages in
the stderr file.

staticinline -qopt nostaticinline Controls whether inline
functions are treated as static or extern.

statsym -qopt nostatsym Adds user-defined, non-external names
that have a persistent storage class to
the name list.

stdinc -qopt stdinc Specifies which files are included with
#include <file_name> and #include
“file_name” directives.

Compiler Options 67

Option Name Type Default Description

strict -qopt See strict. Turns off aggressive optimizations of
the -O3 option that have the potential to
alter the semantics of your program.

strict_induction -qopt See strict_induction. Disables loop induction variable
optimizations that have the potential to
alter the semantics of your program.

suppress -qopt nosuppress Specifies compiler message numbers to
be suppressed.

symtab -qopt - Set symbol tables for unreferenced
variables or xcoff objects.

syntaxonly -qopt - Causes the compiler to perform
syntax checking without generating an
object file.

t -flag See t. Adds the prefix specified by the -B
option to designated programs. -tE
replaces the CreateExportList script.

tabsize -qopt tabsize=8 Changes the length of tabs as perceived
by the compiler.

tbtable -qopt See tbtable=full. Sets traceback table characteristics.

tempinc -qopt See tempinc. Generates separate include files
for template functions and class
declarations, and places these files in a
directory which can be optionally
specified.

templaterecompile -qopt See
templaterecompile.

Helps manage dependencies
between compilation units that have
been compiled using the
-qtemplateregistry compiler option.

templateregistry -qopt See
templateregistry.

Maintains records of all
templates as they are encountered in the
source and ensures that only one
instantiation of each template is made.

tempmax -qopt tempmax=1 Specifies the maximum number
of template include files to be generated
by the tempinc option for each header
file.

threaded -qopt See threaded. Indicates that the program will run in a
multi-threaded environment.

tmplparse -qopt tmplparse=no Controls whether parsing and
semantic checking are applied to
template definition implementations.

tocdata -qopt notocdata. Marks data as local.

tocmerge -qopt notocmerge. Enables TOC merging to reduce TOC
pointer loads and improves the
scheduling of external loads.

tune -qopt See tune. Specifies the architecture for which the
executable program is optimized.

twolink -qopt See notwolink. Minimizes the number of static
constructors included from libraries.

68 VisualAge C++ for AIX Compiler Reference

Option Name Type Default Description

U -flag - Undefines a specified identifier defined
by the compiler or by the -D option.

unique -qopt nounique Generates unique names for
static constructor/deconstructor file
compilation units.

unroll -qopt unroll=auto Unrolls inner loops in the program.

unwind -qopt unwind Informs the compiler that the
application does not rely on any
program stack unwinding mechanism.

upconv -qopt noupconv Preserves the unsigned
specification when performing integral
promotions.

V -flag - Instructs the compiler to report
information on the progress of the
compilation in a command-like format.

v -flag - Instructs the compiler to report
information on the progress of the
compilation.

vftable -qopt See vftable. Controls the generation of
virtual function tables.

W -flag - Passes the listed words to a designated
compiler program.

w -flag - Requests that warning messages be
suppressed.

warn64 -qopt nowarn64 Enables warning of possible long to
integer data truncations.

xcall -qopt noxcall Generates code to static routines within
a compilation unit as if they were
external calls.

xref -qopt noxref Produces a compiler listing that
includes a cross-reference listing of all
identifiers.

y -flag - Specifies the compile-time rounding
mode of constant floating-point
expressions. See also rndflt.

Z -flag - Specifies a search path for library
names.

Related Concepts
“Compiler Options” on page 5

Related Tasks
“Specify Compiler Options on the Command Line” on page 25
“Specify Compiler Options in Your Program Source Files” on page 27
“Specify Compiler Options in a Configuration File” on page 27
“Specify Compiler Options for Architecture-Specific, 32- or 64-bit Compilation” on
page 29
“Resolving Conflicting Compiler Options” on page 31

Compiler Options 69

Related References
“General Purpose Pragmas” on page 297
“Pragmas to Control Parallel Processing” on page 344
“Acceptable Compiler Mode and Processor Architecture Combinations” on
page 373

70 VisualAge C++ for AIX Compiler Reference

+ (plus sign)

Purpose
Compiles any file, filename.nnn, as a C++ language file, where nnn is any suffix
other than .o, .a, or .s.

Syntax

�� -+ ��

Notes
If you do not use the -+ option, files must have a suffix of .C (uppercase C), .cc,
.cpp, or .cxx to be compiled as a C++ file. If you compile files with suffix .c
(lowercase c) without specifying -+, the files are compiled as a C language file.

Example
To compile the file myprogram.cplspls as a C++ source file, enter:

xlC -+ myprogram.cplspls

Related References
“Compiler Command Line Options” on page 61

Compiler Options 71

(pound sign)

Purpose
Traces the compilation without invoking anything. This option previews the
compilation steps specified on the command line. When the xlC command is
issued with this option, it names the programs within the preprocessor, compiler,
and linkage editor that would be invoked, and the options that would be specified
to each program. The preprocessor, compiler, and linkage editor are not invoked.

Syntax

�� -# ��

Notes
The -# option overrides the -v option. It displays the same information as -v, but
does not invoke the compiler. Information is displayed to standard output.

Use this command to determine commands and files will be involved in a
particular compilation. It avoids the overhead of compiling the source code and
overwriting any existing files, such as .lst files.

Example
To preview the steps for the compilation of the source file myprogram.c, enter:

xlC myprogram.c -#

Related References
“Compiler Command Line Options” on page 61
“v” on page 288

72 VisualAge C++ for AIX Compiler Reference

32, 64

Purpose
Selects either 32- or 64-bit compiler mode.

Syntax

�� -q 32
64

��

Notes
The -q32 and -q64 options override the compiler mode set by the value of the
OBJECT_MODE environment variable, if it exists. If the -q32 and -q64 options are
not specified, and the OBJECT_MODE environment variable is not set, the
compiler defaults to 32-bit output mode.

If the compiler is invoked in in 64-bit mode, the __64BIT__ preprocessor macro is
defined.

Use -q32 and -q64 options, along with the -qarch and -qtune compiler options, to
optimize the output of the compiler to the architecture on which that output will
be used. Refer to the Acceptable Compiler Mode and Processor Architecture
Combinations table for valid combinations of the -q32, -q64, -qarch, and -qtune
compiler options. In 64-bit mode, -qarch=com is treated the same as -qarch=ppc.

Using -qarch=ppc or any ppc family architecture with -qfloat=hssngl or
-qfloat=hsflt may produce incorrect results on rs64b or future systems.

Example
To specify that the executable program testing compiled from myprogram.c is to
run on a computer with a 32-bit PowerPC architecture, enter:

xlC -o testing myprogram.c -q32 -qarch=ppc

Important Notes!
1. If you mix 32-and 64-bit compilation modes for different source files, your

XCOFF objects will not bind. You must recompile completely to ensure that all
objects are in the same mode.

2. Your link options must reflect the type of objects you are linking. If you
compiled 64-bit objects, you must link these objects using 64-bit mode.

Related References
“Compiler Command Line Options” on page 61
“arch” on page 83
“float” on page 131
“tune” on page 277
“Acceptable Compiler Mode and Processor Architecture Combinations” on
page 373

Compiler Options 73

aggrcopy

Purpose
Enables destructive copy operations for structures and unions.

Syntax

�� -q aggrcopy = nooverlap
overlap

��

Default Setting
The default setting of this option is -qaggrcopy=nooverlap when compiling to the
ANSI, SAA, SAAL2, extc89, stdc99, and extc99 language levels.

The default setting of this option is -qaggrcopy=overlap when compiling to the
EXTENDED and CLASSIC language levels.

Programs that do not comply to the ANSI C standard as it pertains to non-overlap
of source and destination assignment may need to be compiled with the
-qaggrcopy=overlap compiler option.

Notes
If the -qaggrcopy=nooverlap compiler option is enabled, the compiler assumes that
the source and destination for structure and union assignments do not overlap.
This assumption lets the compiler generate faster code.

Example
xlC myprogram.c -qaggrcopy=nooverlap

Related References
“Compiler Command Line Options” on page 61
“langlvl” on page 175

74 VisualAge C++ for AIX Compiler Reference

alias

Purpose
Instructs the compiler to apply aliasing assertions to your compilation unit. The
compiler will take advantage of the aliasing assertions to improve optimizations
where possible, unless you specify otherwise.

Syntax

�� �

:
noaddrtaken
noallptrs
typeptr
ansi

-q alias = noansi
notypeptr
allptrs
addrtaken

��

where available aliasing options are:

[NO]TYPeptr Pointers to different types are never aliased. In other words, in the
compilation unit no two pointers of different types will point to
the same storage location.

[NO]ALLPtrs Pointers are never aliased (this also implies -qalias=typeptr).
Therefore, in the compilation unit, no two pointers will point to
the same storage location.

[NO]ADDRtaken Variables are disjoint from pointers unless their address is taken.
Any class of variable for which an address has not been recorded
in the compilation unit will be considered disjoint from indirect
access through pointers.

[NO]ANSI Type-based aliasing is used during optimization, which restricts
the lvalues that can be safely used to access a data object. The
optimizer assumes that pointers can only point to an object of the
same type. This (ansi) is the default for the xlc, xlC, and c89
compilers. This option has no effect unless you also specify the -O
option.

If you select noansi, the optimizer makes worst case aliasing
assumptions. It assumes that a pointer of a given type can point to
an external object or any object whose address is already taken,
regardless of type. This is the default for the cc compiler.

Notes
The following are not subject to type-based aliasing:
v Signed and unsigned types. For example, a pointer to a signed int can point to

an unsigned int.
v Character pointer types can point to any type.
v Types qualified as volatile or const. For example, a pointer to a const int can

point to an int.

Example
To specify worst-case aliasing assumptions when compiling myprogram.c, enter:

xlC myprogram.c -O -qalias=noansi

Compiler Options 75

Related References
“Compiler Command Line Options” on page 61
“ansialias” on page 82

76 VisualAge C++ for AIX Compiler Reference

align

Purpose
Specifies what aggregate alignment rules the compiler uses for file compilation.
Use this option to specify the maximum alignment to be used when mapping a
class-type object, either for the whole source program or for specific parts.

Syntax

��
full

-q align = power
mac68k
twobyte
packed
bit_packed
natural

��

where available alignment options are:

power The compiler uses the RISC System/6000 alignment rules.
full The compiler uses the RISC System/6000. alignment rules. The power

option is the same as full.
mac68k The compiler uses the Macintosh** alignment rules.
twobyte The compiler uses the Macintosh alignment rules. The mac68k option

is the same as twobyte.
packed The compiler uses the packed alignment rules.
bit_packed The compiler uses the bit_packed alignment rules. Alignment rules

for bit_packed are the same as that for packed alignment except that
bitfield data is packed on a bit-wise basis without respect to byte
boundaries.

natural The compiler maps structure members to their natural boundaries.
This has the same effect as the power suboption, except that it also
applies alignment rules to doubles and long doubles that are not the
first member of a structure or union.

See also “#pragma align” on page 299 and “#pragma options” on page 325.

Notes
If you use the -qalign option more than once on the command line, the last
alignment rule specified applies to the file.

Within your source file, you can use #pragma options align=reset to revert to a
previous alignment rule. The compiler stacks alignment directives, so you can go
back to using the previous alignment directive, without knowing what it is, by
specifying the #pragma align=reset directive. For example, you can use this option
if you have a class declaration within an include file and you do not want the
alignment rule specified for the class to apply to the file in which the class is
included.

You can code #pragma options align=reset in a source file to change the alignment
option to what it was before the last alignment option was specified. If no previous
alignment rule appears in the file, the alignment rule specified in the invocation
command is used.

Compiler Options 77

Examples
Example 1 - Imbedded #pragmas

Using the compiler invocation:
xlC -qalign=mac68k file.c /* <-- default alignment rule for file is */

/* Macintosh */

Where file.c has:
struct A {

int a;
struct B {

char c;
double d;

#pragma options align=power /* <-- B will be unaffected by this */
/* #pragma, unlike previous behavior; */
/* Macintosh alignment rules still */
/* in effect */

} BB;
#pragma options align=reset /* <-- A unaffected by this #pragma; */
} AA; /* Macintosh alignment rules still */

/* in effect */

Example 2 - Affecting Only Aggregate Definition

Using the compiler invocation:
xlC file2.c /* <-- default alignment rule for file is */

/* RISC System/6000 since no alignment rule specified */

Where file2.c has:
extern struct A A1;
typedef struct A A2;

#pragma options align=packed /* <-- use packed alignment rules */
struct A {

int a;
char c;

};
#pragma options align=reset /* <-- Go back to default alignment rules */

struct A A1; /* <-- aligned using packed alignment rules since */
A2 A3; /* this rule applied when struct A was defined */

Using the __align specifier
You can use the __align specifier to explicitly specify data alignment when
declaring or defining a data item.

__align Specifier:

Purpose: Use the __align specifier to explicitly specify alignment and padding
when declaring or defining data items.

Syntax:
declarator __align (int_const) identifier;

__align (int_const) struct_or_union_specifier [identifier] {struct_decln_list}

where:

int_const Specifies a byte-alignment boundary. int_const must be an integer
greater than 0 and equal to a power of 2.

78 VisualAge C++ for AIX Compiler Reference

Notes: The __align specifier can only be used with declarations of first-level
variables and aggregate definitions. It ignores parameters and automatics.

The __align specifier cannot be used on individual elements within an aggregate
definition, but it can be used on an aggregate definition nested within another
aggregate definition.

The __align specifier cannot be used in the following situations:
v Individual elements within an aggregate definition.
v Variables declared with incomplete type.
v Aggregates declared without definition.
v Individual elements of an array.
v Other types of declarations or definitions, such as typedef, function, and enum.
v Where the size of variable alignment is smaller than the size of type alignment.

Not all alignments may be representable in an object file.

Examples: Applying __align to first-level variables:
int __align(1024) varA; /* varA is aligned on a 1024-byte boundary

and padded with 1020 bytes */

static int __align(512) varB; /* varB is aligned on a 512-byte boundary
and padded with 508 bytes */

int __align(128) functionB(); /* An error */

typedef int __align(128) T; /* An error */

__align enum C {a, b, c}; /* An error */

Applying __align to align and pad aggregate tags without affecting aggregate
members:

__align(1024) struct structA {int i; int j;}; /* struct structA is aligned
on a 1024-byte boundary
with size including padding
of 1024 bytes */

__align(1024) union unionA {int i; int j;}; /* union unionA is aligned
on a 1024-byte boundary
with size including padding
of 1024 bytes */

Applying __align to a structure or union, where the size and alignment of the
aggregate using the structure or union is affected:

__align(128) struct S {int i;}; /* sizeof(struct S) == 128 */

struct S sarray[10]; /* sarray is aligned on 128-byte boundary
with sizeof(sarray) == 1280 */

struct S __align(64) svar; /* error - alignment of variable is
smaller than alignment of type */

struct S2 {struct S s1; int a;} s2; /* s2 is aligned on 128-byte boundary
with sizeof(s2) == 256 bytes */

Compiler Options 79

Applying __align to an array:
AnyType __align(64) arrayA[10]; /* Only arrayA is aligned on a 64-byte

boundary, and elements within that array
are aligned according to the alignment
of AnyType. Padding is applied after the
back of the array and does not affect
the size of the array member itself. */

Applying __align where size of variable alignment differs from size of type
alignment:

__align(64) struct S {int i;};

struct S __align(32) s1; /* error, alignment of variable is smaller
than alignment of type */

struct S __align(128) s2; /* s2 is aligned on 128-byte boundary */

struct S __align(16) s3[10]; /* error */

int __align(1) s4; /* error */

__align(1) struct S {int i;}; /* error */

Related References
“Compiler Command Line Options” on page 61
“#pragma align” on page 299

80 VisualAge C++ for AIX Compiler Reference

alloca

Purpose
If #pragma alloca is unspecified, or if you do not use -ma, alloca is treated as a
user-defined identifier rather than as a built-in function.

Syntax

�� -q alloca ��

Notes
If #pragma alloca is unspecified, or if you do not use -ma, alloca is treated as a
user-defined identifier rather than as a built-in function.

C++ programs must specify #include <malloc.h> to include the alloca function
declaration.

Example
To compile myprogram.c so that calls to the function alloca are treated as inline,
enter:

xlC myprogram.c -qalloca

Related References
“Compiler Command Line Options” on page 61
“ma” on page 199
“#pragma alloca” on page 300

Compiler Options 81

ansialias

Purpose
Specifies whether type-based aliasing is to be used during optimization.
Type-based aliasing restricts the lvalues that can be used to access a data object
safely.

Syntax

��
ansialias

-q noansialias ��

See also “#pragma options” on page 325.

Notes
This option is obsolete. Use -qalias= in your new applications.

The default with xlc, xlC and c89 is ansialias. The optimizer assumes that pointers
can only point to an object of the same type.

The default with cc is noansialias.

This option has no effect unless you also specify the -O option.

If you select noansialias, the optimizer makes worst-case aliasing assumptions. It
assumes that a pointer of a given type can point to an external object or any object
whose address is already taken, regardless of type.

The following are not subject to type-based aliasing:
v Signed and unsigned types; for example, a pointer to a signed int can point to

an unsigned int.
v Character pointer types can point to any type.
v Types qualified as volatile or const; for example, a pointer to a const int can

point to an int.

Example
To specify worst-case aliasing assumptions when compiling myprogram.c, enter:

xlC myprogram.c -O -qnoansialias

Related References
“Compiler Command Line Options” on page 61
“alias” on page 75
“#pragma options” on page 325

82 VisualAge C++ for AIX Compiler Reference

arch

Purpose
Specifies the general processor architecture for which the code (instructions) should
be generated.

Syntax

��
com

-q arch = auto
403
601
602
603
604
pwr
pwr2
pwrx
p2sc
pwr2s
pwr3
pwr4
ppc
ppcgr
ppcgrsq
rs64a
rs64b
rs64c

��

where available architecture options are:

com v In 32-bit execution mode, produces object code containing instructions
that will run on any of the POWER, POWER2*, and PowerPC* hardware
platforms (that is, the instructions generated are common to all platforms.
Using -qarch=com is referred to as compiling in common mode.

v In 64-bit mode, produces object code that will run on all the 64-bit
PowerPC hardware platforms but not 32-bit-only platforms.

v Defines the _ARCH_COM macro and produces portable programs.

v This is the default option unless the -O4 compiler option was specified.
auto v Produces object code containing instructions that will run on the

hardware platform on which it is compiled.
ppc v In 32-bit mode, produces object code containing instructions that will run

on any of the 32-bit PowerPC hardware platforms. This suboption will
cause the compiler to produce single-precision instructions to be used
with single-precision data.

v In 64-bit mode, produces object code that will run on any of the 64-bit
PowerPC hardware platforms but not 32-bit-only platforms.

v Defines the _ARCH_PPC macro.
403 v Produces object code containing instructions that will run on the 403

hardware platform.

v Defines the _ARCH_PPC and _ARCH_403 macros.
601 v Produces object code containing instructions that will run on the 601

hardware platform.

v Defines the _ARCH_601 macro.

Compiler Options 83

602 v Produces object code containing instructions that will run on the 602
hardware platform.

v Defines the _ARCH_PPC and _ARCH_602 macros.
603 v Produces object code containing instructions that will run on the 603

hardware platform.

v Defines the _ARCH_PPC, _ARCH_PPCGR, and _ARCH_603 macros.
604 v Produces object code containing instructions that will run on the 604

hardware platform.

v Defines the _ARCH_PPC, _ARCH_PPCGR, and _ARCH_604 macros.
pwr v Produces object code containing instructions that will run on any of the

POWER, POWER2, and 601 hardware platforms .

v Defines the _ARCH_PWR macro.
pwr2
pwrx

v Produces object code containing instructions that will run on the POWER2
hardware platforms, including pwr2s and p2sc.

v Defines the _ARCH_PWR and _ARCH_PWR2 macros.
pwr2s v Produces object code containing instructions that will run on the pwr2s

hardware platform.

v Defines the _ARCH_PWR, _ARCH_PWR2, and _ARCH_PWR2S macros.
p2sc v Produces object code containing instructions that will run on the p2sc

hardware platform.

v Defines the _ARCH_PWR, _ARCH_PWR2, and _ARCH_P2SC macros.
pwr3 v Produces object code containing instructions that will run on the POWER3

hardware platforms.

v Defines the _ARCH_PPC, _ARCH_PPCGR, _ARCH_PPCGRSQ, and
_ARCH_PWR3 macros.

pwr4 v Produces object code containing instructions that will run on the POWER4
hardware platforms.

v Defines the _ARCH_PPC, _ARCH_PPCGR, _ARCH_PPCGRSQ, and
_ARCH_PWR4 macros.

ppcgr v In 32-bit mode, produces object code containing optional graphics
instructions for PowerPC processors.

v In 64-bit mode, produces object code containing optional graphics
instructions that will run on 64-bit PowerPC hardware platforms but not
on32-bit-only platforms.

v Defines the _ARCH_PPC and _ARCH_PPCGR macros.
ppcgrsq v In 32-bit mode, produces object code containing optional graphics and

sqrt instructions that will run on PowerPC processors.

v In 64-bit mode, produces object code containing optional graphics
instructions and sqrt that will run on 64-bit PowerPC hardware
processors, but not on 32-bit-only processors.

v Defines the _ARCH_PPC, _ARCH_PPCGR, and _ARCH_PPCGRSQ
macros.

rs64a v Produces object code that will run on rs64a processors.

v Defines the _ARCH_PPC and _ARCH_RS64A macros.
rs64b v Produces object code that will run on rs64b processors.

v Defines the _ARCH_PPC, _ARCH_PPCGR, _ARCH_PPCGRSQ, and
_ARCH_RS64B macros.

rs64c v Produces object code that will run on rs64c processors.

v Defines the _ARCH_PPC, _ARCH_PPCGR, _ARCH_PPCGRSQ, and
_ARCH_RS64C macros.

84 VisualAge C++ for AIX Compiler Reference

See also “#pragma options” on page 325.

Default
The default setting of -qarch is -qarch=com unless the OBJECT_MODE
environment variable is set to 64.

Notes
If you want maximum performance on a specific architecture and will not be using
the program on other architectures, use the appropriate architecture option.

Using -qarch=ppc or any ppc family architecture with -qfloat=hssngl or
-qfloat=hsflt may produce incorrect results on rs64b or future systems.

You can use -qarch=suboption with -qtune=suboption. -qarch=suboption specifies the
architecture for which the instructions are to be generated, and -qtune=suboption
specifies the target platform for which the code is optimized.

Example
To specify that the executable program testing compiled from myprogram.c is to
run on a computer with a 32-bit PowerPC architecture, enter:

xlC -o testing myprogram.c -qarch=ppc

Related Tasks
“Specify Compiler Options for Architecture-Specific, 32- or 64-bit Compilation” on
page 29

Related References
“Compiler Command Line Options” on page 61
“float” on page 131
“O, optimize” on page 215
“tune” on page 277
“Acceptable Compiler Mode and Processor Architecture Combinations” on
page 373

Compiler Options 85

assert

Purpose
Requests the compiler to apply aliasing assertions to your compilation unit. The
compiler will take advantage of the aliasing assertions to improve optimizations
where possible.

Syntax

��
noassert

-q assert = typeptr
allptrs
addrtaken

��

where available aliasing options include:

noassert No aliasing assertions are applied.
ASSert=TYPeptr Pointers to different types are never aliased. In other words, in

the compilation unit no two pointers of different types will
point to the same storage location.

ASSert=ALLPtrs Pointers are never aliased (this implies -qassert=typeptr).
Therefore, in the compilation unit, no two pointers will point to
the same storage location.

ASSert=ADDRtaken Variables are disjoint from pointers unless their address is taken.
Any class of variable for which an address has not been
recorded in the compilation unit will be considered disjoint from
indirect access through pointers.

See also “#pragma options” on page 325.

Notes
This option is obsolete. Use -qalias= in your new applications.

Related References
“Compiler Command Line Options” on page 61
“alias” on page 75

86 VisualAge C++ for AIX Compiler Reference

attr

Purpose
Produces a compiler listing that includes an attribute listing for all identifiers.

Syntax

��
noattr

-q attr
=
full

��

where:

-qattr=full Reports all identifiers in the program.
-qattr Reports only those identifiers that are used.

See also “#pragma options” on page 325.

Notes
This option does not produce a cross-reference listing unless you also specify
-qxref.

The -qnoprint option overrides this option.

If -qattr is specified after -qattr=full, it has no effect. The full listing is produced.

Example
To compile the program myprogram.c and produce a compiler listing of all
identifiers, enter:

xlC myprogram.c -qxref -qattr=full

A typical cross-reference listing has the form:

Related References
“Compiler Command Line Options” on page 61
“print” on page 231
“xref” on page 294
“#pragma options” on page 325

Compiler Options 87

B

Purpose
Determines substitute path names for programs such as the compiler, assembler,
linkage editor, and preprocessor.

Syntax

�� -B
prefix -t program

��

where program can be:

program Description

a Assembler

b Compiler back end

c Compiler front end

I Interprocedural Analysis tool

l linkage editor

p compiler preprocessor

Notes
The optional prefix defines part of a path name to the new programs. The compiler
does not add a / between the prefix and the program name.

To form the complete path name for each program, IBM VisualAge C++ adds
prefix to the standard program names for the compiler, assembler, linkage editor
and preprocessor.

Use this option if you want to keep multiple levels of some or all of IBM
VisualAge C++ executables and have the option of specifying which one you want
to use.

If -Bprefix is not specified, the default path is used.

-B -tprograms specifies the programs to which the -B prefix name is to be
appended.

The -Bprefix -tprograms options override the -Fconfig_file option.

Example
To compile myprogram.c using a substitute xlC compiler in /lib/tmp/mine/ enter:

xlC myprogram.c -B/lib/tmp/mine/

To compile myprogram.c using a substitute linkage editor in /lib/tmp/mine/, enter:
xlC myprogram.c -B/lib/tmp/mine/ -tl

Related References
“Compiler Command Line Options” on page 61
“path” on page 225

88 VisualAge C++ for AIX Compiler Reference

b

Purpose
Controls how shared objects are processed by the linkage editor.

Syntax

��
dynamic

-b shared
static

��

where options are:

dynamic, shared Causes the linker to process subsequent shared objects in
dynamic mode. This is the default. In dynamic mode, shared
objects are not statically included in the output file. Instead, the
shared objects are listed in the loader section of the output file.

static Causes the linker to process subsequent shared objects in static
mode. In static mode, shared objects are statically linked in the
output file.

Notes
The default option, -bdynamic, ensures that the C library (lib.c) links dynamically.
To avoid possible problems with unresolved linker errors when linking the C
library, you must add the -bdynamic option to the end of any compilation sections
that use the -bstatic option.

For more information about this and other ld options, see the AIX Commands
Reference.

Related References
“Compiler Command Line Options” on page 61

See also:
ld command in Commands Reference, Volume 5: s through u

Compiler Options 89

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds3/ld.htm#HDRA09493AC
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds5/aixcmds5tfrm.htm

bitfields

Purpose
Specifies if bitfields are signed. By default, bitfields are unsigned.

Syntax

��
unsigned

-q bitfields = signed ��

where options are:

signed Bitfields are signed.
unsigned Bitfields are unsigned.

Related References
“Compiler Command Line Options” on page 61

90 VisualAge C++ for AIX Compiler Reference

bmaxdata

Purpose
This option sets the maximum size of the area shared by the static data (both
initialized and uninitialized) and the heap to size bytes. This value is used by the
system loader to set the soft ulimit.

The default setting is -bmaxdata=0.

Syntax

��
0

-bmaxdata = number ��

Notes
Valid values for number are 0 and multiples of 0x10000000 (0x10000000, 0x20000000,
0x30000000, ...). The maximum value allowed by the system is 0x80000000.

If the value of size is 0, a single 256MB (0x10000000 byte) data segment (segment 2)
will be shared by the static data, the heap, and the stack. If the value is non-zero,
a data area of the specified size (starting in segment 3) will be shared by the static
data and the heap, while a separate 256 MB data segment (segment 2) will be used
by the stack. So, the total data size when 0 is specified 0 is 256MB, and the total
size when 0x10000000 is specified is 512MB, with 256MB for the stack and 256MB
for static data and the heap.

Related References
“Compiler Command Line Options” on page 61

Compiler Options 91

brtl

Purpose
Enables run-time linking for the output file.

Syntax

�� -brtl ��

Notes
DCE thread libraries and heap debug libraries are not compatible with runtime
linking. Do not specify the -qbrtl compiler option if you are invoking the compiler
with xlc_r4 or xlC_r4.

Run-time linking is the ability to resolve undefined and non-deferred symbols in
shared modules after the program execution has already begun. It is a mechanism
for providing run-time definitions (these function definitions are not available at
link-time) and symbol rebinding capabilities. The main application must be built to
enable run-time linking. You cannot simply link any module with the run-time
linker.

To include runtime linking in your program, compile using the -brtl compiler
option. This will add a reference to the runtime linker to your program, which will
be called by your program’s start-up code (/lib/crt0.o) when program execution
begins. Shared object input files are listed as dependents in the program loader
section in the same order as they are specified on the command line. When the
program execution begins, the system loader loads these shared objects so their
definitions are available to the runtime linker.

The system loader must be able to load and resolve all symbols referenced in the
the main program and called modules, or the program will not execute.

Related References
“Compiler Command Line Options” on page 61
“b” on page 89
“G” on page 140

Also, see the Shared Objects and Runtime Linking chapter in General
Programming Concepts: Writing and Debugging Programs.

92 VisualAge C++ for AIX Compiler Reference

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/shared_object_runtime_linking.htm#HDRVBQDN2E5STCL
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/genprogctfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/genprogctfrm.htm

C

Purpose
Preserves comments in preprocessed output.

Syntax

�� -C ��

Notes
The -C option has no effect without either the -E or the -P option. With the -E
option, comments are written to standard output. With the -P option, comments
are written to an output file.

Example
To compile myprogram.c to produce a file myprogram.i that contains the
preprocessed program text including comments, enter:

xlC myprogram.c -P -C

Related References
“Compiler Command Line Options” on page 61
“E” on page 115
“P” on page 222

Compiler Options 93

c

Purpose
Instructs the compiler to pass source files to the compiler only.

Syntax

�� -c ��

Notes
The compiled source files are not sent to the linkage editor. The compiler creates
an output object file, file_name.o, for each valid source file, file_name.c or file_name.i.

The -c option is overridden if either the -E, -P, or -qsyntaxonly options are
specified.

The -c option can be used in combination with the -o option to provide an explicit
name of the object file that is created by the compiler.

Example
To compile myprogram.c to produce an object file myfile.o, but no executable file,
enter the command:

xlC myprogram.c -c

To compile myprogram.c to produce the object file new.o and no executable file,
enter:

xlC myprogram.c -c -o new.o

Related References
“Compiler Command Line Options” on page 61
“E” on page 115
“o” on page 219
“P” on page 222
“syntaxonly” on page 265

94 VisualAge C++ for AIX Compiler Reference

cache

Purpose
The -qcache option specifies the cache configuration for a specific execution
machine. If you know the type of execution system for a program, and that system
has its instruction or data cache configured differently from the default case, use
this option to specify the exact cache characteristics. The compiler uses this
information to calculate the benefits of cache-related optimizations.

Syntax

�� �

:

-q cache = assoc = 0
1
n>1

auto
cos= = cycles
level = 1

2
3

line = bytes
size = Kbytes
type = C

c
D
d
I
i

��

where available cache optons are:

assoc=number Specifies the set associativity of the cache, where number is one of:.

0 Direct-mapped cache

1 Fully associative cache

N>1 n-way set associative cache
auto Automatically detects the specific cache configuration of the

compiling machine. This assumes that the execution environment
will be the same as the compilation environment.

cost=cycles Specifies the performance penalty resulting from a cache miss.
level=level Specifies the level of cache affected, where level is one of:.

1 Basic cache

2 Level-2 cache or, if there is no level-2 cache, the table
lookaside buffer (TLB)

3 TLB
If a machine has more than one level of cache, use a separate
-qcache option.

line=bytes Specifies the line size of the cache.
size=Kbytes Specifies the total size of the cache.

Compiler Options 95

type=cache_type The settings apply to the specified type of cache, where cache_type is
one of:

C or c Combined data and instruction cache

D or d Data cache

I or i Instruction cache

Notes
If you specify the wrong values for the cache configuration or run the program on
a machine with a different configuration, the program will work correctly but may
be slightly slower.

You must specify -O4, -O5, or -qipa with the -qcache option.

Use the following guidelines when specifying -qcache suboptions:
v Specify information for as many configuration parameters as possible.
v If the target execution system has more than one level of cache, use a separate

-qcache option to describe each cache level.
v If you are unsure of the exact size of the cache(s) on the target execution

machine, specify an estimated cache size on the small side. It is better to leave
some cache memory unused than it is to experience cache misses or page faults
from specifying a cache size larger than actually present.

v The data cache has a greater effect on program performance than the instruction
cache. If you have limited time available to experiment with different cache
configurations, determine the optimal configuration specifications for the data
cache first.

v If you specify the wrong values for the cache configuration, or run the program
on a machine with a different configuration, program performance may degrade
but program output will still be as expected.

v The -O4 and -O5 optimization options automatically select the cache
characteristics of the compiling machine. If you specify the -qcache option
together with the -O4 or -O5 options, the option specified last takes precedence.

Example
To tune performance for a system with a combined instruction and data level-1
cache, where cache is 2-way associative, 8 KB in size and has 64-byte cache lines,
enter:

xlC -O4 -qcache=type=c:level=1:size=8;line=64;assoc=2 file.C

Related References
“Compiler Command Line Options” on page 61
“ipa” on page 163
“O, optimize” on page 215

96 VisualAge C++ for AIX Compiler Reference

chars

Purpose
Instructs the compiler to treat all variables of type char as either signed or
unsigned.

Syntax

��
unsigned

-q chars = signed ��

See also “#pragma chars” on page 301 and “#pragma options” on page 325.

Notes
You can also specify sign type in your source program using either of the
following preprocessor directives:

#pragma options chars=sign_type

#pragma chars (sign_type)

where sign_type is either signed or unsigned.

Regardless of the setting of this option, the type of char is still considered to be
distinct from the types unsigned char and signed char for purposes of
type-compatibility checking or C++ overloading.

Example
To treat all char types as signed when compiling myprogram.c, enter:

xlC myprogram.c -qchars=signed

Related References
“Compiler Command Line Options” on page 61
“#pragma chars” on page 301
“#pragma options” on page 325

Compiler Options 97

check

Purpose
Generates code that performs certain types of runtime checking. If a violation is
encountered, a runtime exception is raised by sending a SIGTRAP signal to the
process.

Syntax

��

�

nocheck
-q check

:

= all
nullptr
nonullptr
bounds
nobounds
divzero
nodivzero

��

where:

all Switches on all the following suboptions. You can use the all
option along with the no... form of one or more of the other
options as a filter.

For example, using:

xlC myprogram.c -qcheck=all:nonull

provides checking for everything except for addresses
contained in pointer variables used to reference storage.

If you use all with the no... form of the options, all should be
the first suboption.

NULLptr |
NONULLptr

Performs runtime checking of addresses contained in pointer
variables used to reference storage. The address is checked at
the point of use; a trap will occur if the value is less than 512.

bounds | nobounds Performs runtime checking of addresses when subscripting
within an object of known size. The index is checked to
ensure that it will result in an address that lies within the
bounds of the object’s storage. A trap will occur if the address
does not lie within the bounds of the object.

DIVzero | NODIVzero Performs runtime checking of integer division. A trap will
occur if an attempt is made to divide by zero.

See also “#pragma options” on page 325.

Notes
The -qcheck option has the following suboptions. If you use more than one
suboption, separate each one with a colon (:).

Using the -qcheck option without any suboptions turns all the suboptions on.

98 VisualAge C++ for AIX Compiler Reference

Using the -qcheck option with suboptions turns the specified suboptions on if they
do not have the no prefix, and off if they have the no prefix.

You can specify the -qcheck option more than once. The suboption settings are
accumulated, but the later suboptions override the earlier ones.

The #pragma options directive must be specified before the first statement in the
compilation unit.

The -qcheck option affects the runtime performance of the application. When
checking is enabled, runtime checks are inserted into the application, which may
result in slower execution.

Examples
1.

For -qcheck=null:bounds:
void func1(int* p) {

p = 42; / Traps if p is a null pointer */
}

void func2(int i) {
int array[10];
array[i] = 42; /* Traps if i is outside range 0 - 9 */

}

2.

For -qcheck=divzero:
void func3(int a, int b) {

a / b; /* Traps if b=0 */
}

Related References
“Compiler Command Line Options” on page 61
“#pragma options” on page 325

Compiler Options 99

cinc

Purpose
Include files from specified directories have the tokens extern ″C″ { inserted before
the file, and } appended after the file.

Syntax

��
nocinc

-q
cinc = directory_prefix

��

where:

directory_prefix Specifies the directory where files affected by this option are
found.

Notes
Include files from directories specified by directory_prefix have the tokens extern
″C″ { inserted before the file, and } appended after the file.

Related References
“Compiler Command Line Options” on page 61

100 VisualAge C++ for AIX Compiler Reference

compact

Purpose
When used with optimization, reduces code size where possible, at the expense of
execution speed.

Syntax

��
nocompact

-q compact ��

See also “#pragma options” on page 325.

Notes
Code size is reduced by inhibiting optimizations that replicate or expand code
inline. Execution time may increase.

Example
To compile myprogram.c to reduce code size, enter:

xlC myprogram.c -qcompact

Related References
“Compiler Command Line Options” on page 61
“#pragma options” on page 325

Compiler Options 101

cpluscmt

Purpose
Use this option if you want C++ comments to be recognized in C source files.

Syntax

�� -q nocpluscmt
cpluscmt

��

Default
The default setting varies according to the langlvl compiler option setting.
v If langlvl is set to stdc99 or extc99, cpluscmt is implicitly selected. You can

override this implicit selection by specifying -qlanglvl=stdc99 -qnocpluscmt or
-qlanglvl=extc99 -qnocpluscmt.

v Otherwise, the default setting is nocpluscmt.

Notes
The #pragma options directive must appear before the first statement in the C
language source file and applies to the entire file.

The __C99_CPLUSCMT compiler macro is defined when cpluscmt is selected.

The character sequence // begins a C++ comment, except within a header name, a
character constant, a string literal, or a comment. The character sequence //, or /*
and */ are ignored within a C++ comment. Comments do not nest, and macro
replacement is not performed within comments.

C++ comments have the form //text. The two slashes (//) in the character sequence
must be adjacent with nothing between them. Everything to the right of them until
the end of the logical source line, as indicated by a new-line character, is treated as
a comment. The // delimiter can be located at any position within a line.

// comments are not part of C89. The result of the following valid C89 program will
be incorrect if -qcpluscmt is specified:

main() {
int i = 2;
printf(“%i\n”, i //* 2 */

+ 1);
}

The correct answer is 2 (2 divided by 1). When -qcpluscmt is specified, the result
is 3 (2 plus 1).

The preprocessor handles all comments in the following ways:
v If the -C option is not specified, all comments are removed and replaced by a

single blank.
v If the -C option is specified, comments are output unless they appear on a

preprocessor directive or in a macro argument.
v If -E is specified, continuation sequences are recognized in all comments and are

output
v If -P is specified, comments are recognized and stripped from the output,

forming concatenated output lines.

102 VisualAge C++ for AIX Compiler Reference

A comment can span multiple physical source lines if they are joined into one
logical source line through use of the backslash (\) character. You can represent the
backslash character by a trigraph (??/).

Examples
1. Example of C++ Comments

The following examples show the use of C++ comments:
// A comment that spans two \

physical source lines

// A comment that spans two ??/
physical source lines

2. Preprocessor Output Example 1

For the following source code fragment:
int a;
int b; // A comment that spans two \

physical source lines
int c;

// This is a C++ comment
int d;

The output for the -P option is:
int a;
int b;
int c;

int d;

The ANSI mode output for the -P -C options is:
int a;
int b; // A comment that spans two physical source lines
int c;

// This is a C++ comment
int d;

The output for the -E option is:
int a;
int b;

int c;

int d;

The ANSI mode output for the -E-C options is:
#line 1 “fred.c”
int a;
int b; // a comment that spans two \

physical source lines
int c;

// This is a C++ comment
int d;

Extended mode output for the -P-C options or -E-C options is:
int a;
int b; // A comment that spans two \

physical source lines
int c;

// This is a C++ comment
int d;

Compiler Options 103

3. Preprocessor Output Example 2 - Directive Line

For the following source code fragment:
int a;
#define mm 1 // This is a C++ comment on which spans two \

physical source lines
int b;

// This is a C++ comment
int c;

The output for the -P option is:
int a;
int b;

int c;

The output for the -P-C options:
int a;
int b;

// This is a C++ comment
int c;

The output for the -E option is:
#line 1 “fred.c”
int a;
#line 4
int b;

int c;

The output for the -E-C options:
#line 1 “fred.c”
int a;
#line 4
int b;

// This is a C++ comment
int c;

4. Preprocessor Output Example 3 - Macro Function Argument

For the following source code fragment:
#define mm(aa) aa
int a;
int b; mm(// This is a C++ comment

int blah);
int c;

// This is a C++ comment
int d;

The output for the -P option:
int a;
int b; int blah;
int c;

int d;

The output for the -P-C options:
int a;
int b; int blah;
int c;

// This is a C++ comment
int d;

104 VisualAge C++ for AIX Compiler Reference

The output for the -E option is:
#line 1 “fred.c”
int a;
int b;
int blah;
int c;

int d;

The output for the -E-C option is:
#line 1 “fred.c”
int a;
int b;
int blah;
int c;

// This is a C++ comment
int d;

5. Compile Example

To compile myprogram.c. so that C++ comments are recognized as comments,
enter:

xlc myprogram.c -qcpluscmt

Related References
“Compiler Command Line Options” on page 61
“C” on page 93
“E” on page 115
“langlvl” on page 175
“P” on page 222

Compiler Options 105

D

Purpose
Defines the identifier name as in a #define preprocessor directive. definition is an
optional definition or value assigned to name.

Syntax

�� -D name
=

definition

��

Notes
The identifier name can also be defined in your source program using the #define
preprocessor directive.

-Dname= is equivalent to #define name.

-Dname is equivalent to #define name 1. (This is the default.)

To aid in program portability and standards compliance, the AIX Version 4
Operating System provides several header files that define macro names you can
set with the -D option. You can find most of these header files either in the
/usr/include directory or in the /usr/include/sys directory. See “Header Files
Overview” in the AIX Version 4 Files Reference for more information.

The configuration file uses the -D option to specify the following predefined
macros:

Macro name Applies to AIX v5.1 Applies to AIX v4.3

AIX U U

AIX32 U U

AIX41 U U

AIX43 U U

AIX50 U

AIX51 U

IBMR2 U U

POWER U U

ANSI_C_SOURCE U U

To ensure that the correct macros for your source file are defined, use the -D
option with the appropriate macro name. If your source file includes the
/usr/include/sys/stat.h header file, you must compile with the option
-D_POSIX_SOURCE to pick up the correct definitions for that file.

If your source file includes the /usr/include/standards.h header file,
_ANSI_C_SOURCE, _XOPEN_SOURCE, and _POSIX_SOURCE are defined if
you have not defined any of them.

The -Uname option has a higher precedence than the -Dname option.

106 VisualAge C++ for AIX Compiler Reference

Examples
1. AIX v4.2 and later provides support for files greater than 2 gigabytes in size so

you can store large quantities of data in a single file. To allow Large File
manipulation in your application, compile with the -D_LARGE_FILES and
-qlonglong compiler options. For example:

xlC myprogram.c -D_LARGE_FILES -qlonglong

2. To specify that all instances of the name COUNT be replaced by 100 in
myprogram.c, enter:

xlC myprogram.c -DCOUNT=100

This is equivalent to having #define COUNT 100 at the beginning of the source
file.

Related References
“Compiler Command Line Options” on page 61
“U” on page 281

See also:
Header Files command in the Files Reference

Compiler Options 107

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/files/aixfiles/Chapter_4.htm#HDRA257B96AA
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/files/aixfiles/aixfilestfrm.htm

dataimported

Purpose
Marks data as imported.

Syntax

��

�

-q dataimported
:

= names

��

Notes
Imported variables are dynamically bound with a shared portion of a library.
-qdataimported changes the default to assume that all variables are imported.
Specifying -qdataimported=names marks the named variables as imported, where
names is a list of identifiers separated by colons (:). The default is not changed.

Conflicts among the -qdataimported and -qdatalocal data-marking options are
resolved in the following manner:

Options that list variable names: The last explicit specification for a particular variable
name is used.

Options that change the default: This form does not specify a name list. The last option
specified is the default for variables not explicitly listed
in the name-list form.

Related References
“Compiler Command Line Options” on page 61
“datalocal” on page 109

108 VisualAge C++ for AIX Compiler Reference

datalocal

Purpose
Marks data as local.

Syntax

��

�

-q datalocal
:

= names

��

Notes
Local variables are statically bound with the functions that use them. -qdatalocal
changes the default to assume that all variables are local. Specifying
-qdatalocal=names marks the named variables as local, where names is a list of
identifiers separated by colons (:). The default is not changed. Performance may
decrease if an imported variable is assumed to be local.

Conflicts among the -qdataimported and -qdatalocal data-marking options are
resolved in the following manner:

Options that list variable names: The last explicit specification for a particular variable
name is used.

Options that change the default: This form does not specify a name list. The last option
specified is the default for variables not explicitly
listed in the name-list form.

Related References
“Compiler Command Line Options” on page 61
“dataimported” on page 108

Compiler Options 109

dbxextra

Purpose
Specifies that all typedef declarations, struct, union, and enum type definitions are
included for debugging.

Syntax

��
nodbxextra

-q dbxextra ��

See also “#pragma options” on page 325.

Notes
Use this option with the -g option to produce additional debugging information
for use with the IBM Distributed Debugger.

When you specify the -g option, debugging information is included in the object
file. To minimize the size of object and executable files, the compiler only includes
information for symbols that are referenced. Debugging information is not
produced for unreferenced arrays, pointers, or file-scope variables unless
-qdbxextra is specified.

Using -qdbxextra may make your object and executable files larger.

Example
To include all symbols in myprogram.c for debugging, enter:

xlc myprogram.c -g -qdbxextra

Related References
“Compiler Command Line Options” on page 61
“g” on page 141
“#pragma options” on page 325

110 VisualAge C++ for AIX Compiler Reference

digraph

Purpose
Lets you use digraph key combinations or keywords to represent characters not
found on some keyboards.

Syntax

�� -q nodigraph
digraph

��

See also “#pragma options” on page 325.

Defaults
v -qnodigraph

v -qdigraph

When -qlanglvl=extc99 or -qlanglvl=stdc99 is in effect, the default changes to
digraph.

Notes
A digraph is a keyword or combination of keys that lets you produce a character
that is not available on all keyboards.

The digraph key combinations are:

Key Combination Character Produced
<% {
%> }
<: [
:>]

%% #

Additional keywords, valid in C++ programs only, are:

Keyword Character Produced
bitand &
and &&

bitor |
or ||
xor ^
compl ~
and_eq &=
or_eq |=
xor_eq ^=
not !

not_eq !=

Example
To disable digraph character sequences when compiling your program, enter:

xlC myprogram.c -qnodigraph

Compiler Options 111

Related References
“Compiler Command Line Options” on page 61
“langlvl” on page 175
“#pragma options” on page 325

112 VisualAge C++ for AIX Compiler Reference

dollar

Purpose
Allows the $ symbol to be used in the names of identifiers.

Syntax

��
nodollar

-q dollar ��

See also “#pragma options” on page 325.

Example
To compile myprogram.c so that $ is allowed in identifiers in the program, enter:

xlC myprogram.c -qdollar

Related References
“Compiler Command Line Options” on page 61
“#pragma options” on page 325

Compiler Options 113

dpcl

Purpose
Generates symbols that tools based on the Dynamic Probe Class Library (DPCL)
can use to see the structure of an executable file.

Syntax

��
nodpcl

-q dpcl ��

Notes
When you specify the -qdpcl option, the compiler emits symbols to define blocks
of code in a program. You can then use tools that use the DPCL interface to
examine performance information such as memory usage for object files that you
have compiled with this option.

You must also specify the -g option when you specify -qdpcl.

You cannot specify the -qipa or -qsmp options together with -qdpcl.

Related References
“Compiler Command Line Options” on page 61
“dpcl”
“g” on page 141
“ipa” on page 163
“smp” on page 252

114 VisualAge C++ for AIX Compiler Reference

E

Purpose
Runs the source files named in the compiler invocation through the preprocessor.
The -E option calls the preprocessor directly as /usr/vacpp/exe/xlCcpp.

Syntax

�� -E ��

Notes
The -E and -P options have different results. When the -E option is specified, the
compiler assumes that the input is a C or C++ file and that the output will be
recompiled or reprocessed in some way. These assumptions are:
v Original source coordinates are preserved. This is why #line directives are

produced.
v All tokens are output in their original spelling, which, in this case, includes

continuation sequences. This means that any subsequent compilation or
reprocessing with another tool will give the same coordinates (for example, the
coordinates of error messages).

The -P option is used for general-purpose preprocessing. No assumptions are made
concerning the input or the intended use of the output. This mode is intended for
use with input files that are not written in C or C++. As such, all
preprocessor-specific constructs are processed as described in the ANSI C standard.
In this case, the continuation sequence is removed as described in the “Phases of
Translation” of that standard. All non-preprocessor-specific text should be output
as it appears.

Using -E causes #line directives to be generated to preserve the source coordinates
of the tokens. Blank lines are stripped and replaced by compensating #line
directives.

The line continuation sequence is removed and the source lines are concatenated
with the -P option. With the -E option, the tokens are output on separate lines in
order to preserve the source coordinates. The continuation sequence may be
removed in this case.

The -E option overrides the -P, -o, and -qsyntaxonly options, and accepts any file
name.

If used with the -M option, -E will work only for files with a .C (C++ source files),
.c (C source files), or a .i (preprocessed source files) filename suffix. Source files
with unrecognized filename suffixes are treated and preprocessed as C files, and
no error message is generated.

Unless -C is specified, comments are replaced in the preprocessed output by a
single space character. New lines and #line directives are issued for comments that
span multiple source lines, and when -C is not specified. Comments within a
macro function argument are deleted.

The default is to preprocess, compile, and link-edit source files to produce an
executable file.

Compiler Options 115

Example
To compile myprogram.c and send the preprocessed source to standard output,
enter:

xlC myprogram.c -E

If myprogram.c has a code fragment such as:
#define SUM(x,y) (x + y) ;
int a ;
#define mm 1 ; /* This is a comment in a

preprocessor directive */
int b ; /* This is another comment across

two lines */
int c ;

/* Another comment */
c = SUM(a, /* Comment in a macro function argument*/

b) ;

the output will be:
#line 2 “myprogram.c”
int a;
#line 5
int b;

int c;

c =
(a + b);

Related References
“Compiler Command Line Options” on page 61
“E” on page 115
“M” on page 198
“o” on page 219
“P” on page 222
“syntaxonly” on page 265

116 VisualAge C++ for AIX Compiler Reference

e

Purpose
This option is used only together with the -qmkshrobj compiler option. See the
description for the -qmkshrobj compiler option for more information.

Syntax

�� -e name ��

Related References
“Compiler Command Line Options” on page 61
“mkshrobj” on page 210

Compiler Options 117

eh

Purpose
Controls whether exception handling is enabled in the module being compiled.

If your program does not use C++ structured exception handling, compile with
-qnoeh to prevent generation of code that is not needed by your application.

If your program uses C++ exception handling, the program behaviour is undefined
if -qnoeh is specified

Syntax

��
eh

-q noeh ��

Related References
“Compiler Command Line Options” on page 61

118 VisualAge C++ for AIX Compiler Reference

enum

Purpose
Specifies the amount of storage occupied by enumerations.

Syntax

��
small

-q enum = int
intlong
1
2
4
8

��

where valid enum settings are:

-qenum=small Specifies that enumerations occupy a minimum amount of storage:
either 1, 2, or 4 bytes of storage, depending on the range of the
enum constants. In 64-bit compilation mode, the enumerations can
also use 8 bytes of storage.

-qenum=int Specifies that enumerations occupy 4 bytes of storage and are
represented by int.

-qenum=1 Specifies that enumerations occupy 1 byte of storage.
-qenum=2 Specifies that enumerations occupy 2 bytes of storage.
-qenum=4 Specifies that enumerations occupy 4 bytes of storage.
-qenum=8 Valid only in 64-bit compiler mode. Specifies that enumerations

occupy 8 bytes of storage.

-qenum=intlong Valid only in 64-bit compiler mode. Specifies that
enumerations occupy 8 bytes of storage and are represented by long,
if -q64 is specified and the range of the enum constants exceed the
limit for int. Otherwise, the enumerations occupy 4 bytes of storage
and are represented by int.

See also “#pragma enum” on page 305 and “#pragma options” on page 325.

Notes
The enum constants are always of type int, except for the following cases:
v If -q64 is not specified, and if the range of these constants is beyond the range of

int, enum constants will have type unsigned int and be 4 bytes long.
v If -q64 is specified, and if the range of these constants is beyond the range of

int, enum constants will have type long and be 8 bytes long.

The -qenum=small option allocates to an enum variable the amount of storage that
is required by the smallest predefined type that can represent that range of enum
constants. By default, an unsigned predefined type is used. If any enum constant is
negative, a signed predefined type is used.

The -qenum=1|2|4|8 options allocate a specific amount of storage to an enum
variable. If the specified storage size is smaller than that required by the range of
enum variables, the requested size is kept but a warning is issued. For example:

Compiler Options 119

enum {frog, toad=257} amph;
1506-387 (W) The enum cannot be packed to the requested size.

Use a larger value for -qenum.
(The enum size is 1 and the value of toad is 1)

For each #pragma options enum= directive that you put in a source file, it is good
practice to have a corresponding #pragma options enum=reset before the end of
that file. This is the only way to prevent one file from potentially changing the
enum= setting of another file that #includes it. The #pragma enum() directive can
be instead of #pragma options enum=. The two pragmas are interchangeable.

The tables below show the priority for selecting a predefined type. They also
shows the the predefined type, the maximum range of enum constants for the
corresponding predefined type, and the amount of storage that is required for that
predefined type (that is, the value that the sizeof operator would yield when
applied to the minimum-sized enum).

120 VisualAge C++ for AIX Compiler Reference

32
-b

it
C

om
p

il
at

io
n

M
od

e

R
an

ge
en

um
=

in
t

en
um

=
sm

al
l

en
um

=
1

en
um

=
2

en
um

=
4

va
ri

ab
le

co
ns

ta
nt

va
ri

ab
le

co
ns

ta
nt

va
ri

ab
le

co
ns

ta
nt

va
ri

ab
le

co
ns

ta
nt

va
ri

ab
le

co
ns

ta
nt

0
..

12
7

in
t

in
t

un
si

gn
ed

ch
ar

in
t

si
gn

ed
ch

ar
in

t
sh

or
t

in
t

in
t

in
t

-1
28

..
12

7
in

t
in

t
si

gn
ed

ch
ar

in
t

si
gn

ed
ch

ar
in

t
sh

or
t

in
t

in
t

in
t

0
..

25
5

in
t

in
t

un
si

gn
ed

ch
ar

in
t

un
si

gn
ed

ch
ar

in
t

sh
or

t
in

t
in

t
in

t

0
..

32
76

7
in

t
in

t
un

si
gn

ed
sh

or
t

in
t

un
si

gn
ed

sh
or

t1
in

t
sh

or
t

in
t

in
t

in
t

-3
27

68
..

32
76

7
in

t
in

t
sh

or
t

in
t

sh
or

t1
in

t
sh

or
t

in
t

in
t

in
t

0
..

65
53

5
in

t
in

t
un

si
gn

ed
sh

or
t

in
t

un
si

gn
ed

sh
or

t1
in

t
un

si
gn

ed
sh

or
t

in
t

in
t

in
t

0
..

21
47

48
36

47
in

t
in

t
un

si
gn

ed
in

t
un

si
gn

ed
in

t
un

si
gn

ed
in

t1
in

t
un

si
gn

ed
in

t1
in

t
in

t
in

t

-(
21

47
48

36
47

+
1)

..
21

47
48

36
47

in
t

in
t

in
t

in
t

in
t1

in
t

in
t1

in
t

in
t

in
t

0
..

42
94

96
72

95
un

si
gn

ed
in

t
un

si
gn

ed
in

t
un

si
gn

ed
in

t
un

si
gn

ed
in

t
un

si
gn

ed
in

t1
un

si
gn

ed
in

t
un

si
gn

ed
in

t1
un

si
gn

ed
in

t
un

si
gn

ed
in

t
un

si
gn

ed
in

t

N
ot

e:

1.
T

he
se

en
um

er
at

io
ns

ar
e

to
o

la
rg

e
to

th
e

pa
rt

ic
ul

ar
en

u
m

=
1|

2|
4

op
ti

on
.T

he
si

ze
of

th
e

en
um

is
in

cr
ea

se
d

to
ho

ld
th

e
en

ti
re

ra
ng

e
of

va
lu

es
.I

t
is

re
co

m
m

en
d

ed
th

at
yo

u
ch

an
ge

th
e

en
um

op
ti

on
to

m
at

ch
th

e
si

ze
of

th
e

en
um

re
qu

ir
ed

.

Compiler Options 121

64
-b

it
C

om
p

il
at

io
n

M
od

e

en
um

=
in

t
en

um
=

in
tl

on
g

en
um

=
sm

al
l

en
um

=
1

en
um

=
2

en
um

=
4

en
um

=
8

R
an

ge
va

r
co

ns
t

va
r

co
ns

t
va

r
co

ns
t

va
r

co
ns

t
va

r
co

ns
t

va
r

co
ns

t
va

r
co

ns
t

0.
.1

27
in

t
in

t
in

t
in

t
un

si
gn

ed
ch

ar
in

t
si

gn
ed

ch
ar

in
t

sh
or

t
in

t
in

t
in

t
lo

ng
lo

ng

-1
28

..1
27

in
t

in
t

in
t

in
t

si
gn

ed
ch

ar
in

t
si

gn
ed

ch
ar

in
t

sh
or

t
in

t
in

t
in

t
lo

ng
lo

ng

0.
.2

55
in

t
in

t
in

t
in

t
un

si
gn

ed
ch

ar
in

t
un

si
gn

ed
ch

ar
in

t
sh

or
t

in
t

in
t

in
t

lo
ng

lo
ng

0.
.3

27
67

in
t

in
t

in
t

in
t

un
si

gn
ed

sh
or

t
in

t
un

si
gn

ed
sh

or
t1

in
t

sh
or

t
in

t
in

t
in

t
lo

ng
lo

ng

-3
27

68
..3

27
67

in
t

in
t

in
t

in
t

sh
or

t
in

t
sh

or
t1

in
t

sh
or

t
in

t
in

t
in

t
lo

ng
lo

ng

0.
.6

55
35

in
t

in
t

in
t

in
t

un
si

gn
ed

sh
or

t
in

t
un

si
gn

ed
sh

or
t1

in
t

un
si

gn
ed

sh
or

t
in

t
in

t
in

t
lo

ng
lo

ng

0.
.2

14
74

83
64

7
in

t
in

t
in

t
in

t
un

si
gn

ed
in

t
un

si
gn

ed
in

t
in

t1
in

t
in

t1
in

t
in

t
in

t
lo

ng
lo

ng

-(
21

47
48

36
47

+
1)

..2
14

74
83

64
7

in
t

in
t

in
t

in
t

in
t

in
t

in
t1

in
t

in
t1

in
t

in
t

in
t

lo
ng

lo
ng

0.
.4

29
49

67
29

5
un

si
gn

ed
in

t
un

si
gn

ed
in

t
un

si
gn

ed
in

t
un

si
gn

ed
in

t
un

si
gn

ed
in

t
un

si
gn

ed
in

t
un

si
gn

ed
in

t1
un

si
gn

ed
in

t
un

si
gn

ed
in

t1
un

si
gn

ed
in

t
un

si
gn

ed
in

t
un

si
gn

ed
in

t
lo

ng
lo

ng

0.
.(2

6
3
-1

)
E

R
R

2
E

R
R

2
lo

ng
lo

ng
un

si
gn

ed
lo

ng
un

si
gn

ed
lo

ng
lo

ng
1

lo
ng

lo
ng

1
lo

ng
lo

ng
1

lo
ng

lo
ng

lo
ng

-2
6

3
..(

26
3
-1

)
E

R
R

2
E

R
R

2
lo

ng
lo

ng
lo

ng
lo

ng
lo

ng
1

lo
ng

lo
ng

1
lo

ng
lo

ng
1

lo
ng

lo
ng

lo
ng

0.
.2

6
4

E
R

R
2

E
R

R
2

un
si

gn
ed

lo
ng

un
si

gn
ed

lo
ng

un
si

gn
ed

lo
ng

un
si

gn
ed

lo
ng

un
si

gn
ed

lo
ng

1
un

si
gn

ed
lo

ng
un

si
gn

ed
lo

ng
1

un
si

gn
ed

lo
ng

un
si

gn
ed

lo
ng

1
un

si
gn

ed
lo

ng
un

si
gn

ed
lo

ng
un

si
gn

ed
lo

ng

N
ot

es
:

1.
T

he
se

en
um

er
at

io
ns

ar
e

to
o

la
rg

e
to

th
e

pa
rt

ic
ul

ar
en

u
m

=
1|

2|
4

op
ti

on
.T

he
si

ze
of

th
e

en
um

is
in

cr
ea

se
d

to
ho

ld
th

e
en

ti
re

ra
ng

e
of

va
lu

es
.I

t
is

re
co

m
m

en
d

ed
th

at
yo

u
ch

an
ge

th
e

en
um

op
ti

on
to

m
at

ch
th

e
si

ze
of

th
e

en
um

re
qu

ir
ed

.

2.
T

he
se

en
um

er
at

io
ns

ar
e

to
o

la
rg

e
fo

r
th

e
en

um
=

in
t

op
ti

on
.I

t
is

re
co

m
m

en
d

ed
th

at
yo

u
ch

an
ge

re
d

uc
e

th
e

ra
ng

e
of

th
e

va
lu

es
of

th
e

en
um

er
at

io
ns

or
ch

an
ge

th
e

en
um

op
ti

on
to

en
u

m
=

in
tl

on
g.

122 VisualAge C++ for AIX Compiler Reference

The following are invalid enumerations or invalid usage of #pragma options
enum=:
v You cannot change the storage allocation of an enum using a #pragma options

enum= within the declaration of an enum. The following code segment
generates a warning and the second occurrence of the enum option is ignored:

#pragma options enum=small
enum e_tag {

a,
b,
#pragma options enum=int /* error: cannot be within a declaration */
c

} e_var;
#pragma options enum=reset /* second reset isn’t required */

v The range of enum constants must fall within the range of either unsigned int
or int (signed int). For example, the following code segments contain errors:

#pragma options enum=small
enum e_tag { a=-1,

b=2147483648 /* error: larger than maximum int */
} e_var;

#pragma options enum=reset

v The enum constant range does not fit within the range of an unisgned int.
#pragma options enum=small
enum e_tag { a=0,

b=4294967296 /* error: larger than maximum int */
} e_var;

#pragma options enum=reset

A -qenum=reset option corresponding to the #pragma options enum=reset
directive does not exist. Attempting to use -qenum=reset generates a warning
message and the option is ignored.

Examples
1. One typical use for the reset suboption is to reset the enumeration size set at

the end of an include file that specifies an enumeration storage different from
the default in the main file. For example, the following include file,
small_enum.h, declares various minimum-sized enumerations, then resets the
specification at the end of the include file to the last value on the option stack:

#ifndef small_enum_h
#define small_enum_h 1
/*
* File small_enum.h
* This enum must fit within an unsigned char type
*/
#pragma options enum=small
enum e_tag {a, b=255};
enum e_tag u_char_e_var; /* occupies 1 byte of storage */

/* Reset the enumeration size to whatever it was before */
#pragma options enum=reset
#endif

The following source file, int_file.c, includes small_enum.h:
/*
* File int_file.c
* Defines 4 byte enums
*/
#pragma options enum=int
enum testing {ONE, TWO, THREE};
enum testing test_enum;

Compiler Options 123

/* various minimum-sized enums are declared */
#include “small_enum.h”

/* return to int-sized enums. small_enum.h has reset the
* enum size
*/
enum sushi {CALIF_ROLL, SALMON_ROLL, TUNA, SQUID, UNI};
enum sushi first_order = UNI;

The enumerations test_enum and test_order both occupy 4 bytes of storage
and are of type int. The variable u_char_e_var defined in small_enum.h
occupies 1 byte of storage and is represented by an unsigned char data type.

2. If the following C fragment is compiled with the enum=small option:
enum e_tag {a, b, c} e_var;

the range of enum constants is 0 through 2. This range falls within all of the
ranges described in the table above. Based on priority, the compiler uses
predefined type unsigned char.

3. If the following C code fragment is compiled with the enum=small option:
enum e_tag {a=-129, b, c} e_var;

the range of enum constants is -129 through -127. This range only falls within
the ranges of short (signed short) and int (signed int). Because short (signed
short) smaller, it will be used to represent the enum.

4. If you compile a file myprogram.c using the command:
xlC myprogram.c -qenum=small

assuming file myprogram.c does not contain #pragma options=int statements,
all enum variables within your source file will occupy the minimum amount of
storage.

5. If you compile a file yourfile.c that contains the following lines:
enum testing {ONE, TWO, THREE};
enum testing test_enum;

#pragma options enum=small
enum sushi {CALIF_ROLL, SALMON_ROLL, TUNA, SQUID, UNI};
enum sushi first_order = UNI;

#pragma options enum=int
enum music {ROCK, JAZZ, NEW_WAVE, CLASSICAL};
enum music listening_type;

using the command:
xlC yourfile.c

only the enum variable first_order will be minimum-sized (that is, enum
variable first_order will only occupy 1 byte of storage). The other two enum
variables test_enum and listening_type will be of type int and occupy 4 bytes
of storage.

Related References
“Compiler Command Line Options” on page 61
“#pragma enum” on page 305
“#pragma options” on page 325

124 VisualAge C++ for AIX Compiler Reference

expfile

Purpose
Saves all exported symbols in a designated file.

This option is used only together with the -qmkshrobj compiler option. See the
description for the -qmkshrobj compiler option for more information.

Syntax

�� -q expfile = filename ��

Related References
“Compiler Command Line Options” on page 61
“mkshrobj” on page 210

Compiler Options 125

extchk

Purpose
Generates bind-time type checking information and checks for compile-time
consistency.

Syntax

��
noextchk

-q extchk ��

See also “#pragma options” on page 325.

Notes
-qextchk checks for consistency at compile time and detects mismatches across
compilation units at link time.

-qextchk does not perform type checking on functions or objects that contain
references to incomplete types.

Example
To compile myprogram.c so that bind-time checking information is produced,
enter:

xlC myprogram.c -qextchk

Related References
“Compiler Command Line Options” on page 61
“#pragma options” on page 325

126 VisualAge C++ for AIX Compiler Reference

F

Purpose
Names an alternative configuration file (.cfg) for xlC.

Syntax

�� -F config_file
: stanza

: stanza

��

where suboptions are:

config_file Specifies the name of a compiler configuration file.
stanza Specifies the name of the command used to invoke the compiler. This

directs the compiler to use the entries under stanza in the config_file to set
up the compiler environment.

Notes
The default is a configuration file supplied at installation time called
(/etc/vac.cfg). Any file names or stanzas that you specify on the command line or
within your source file override the defaults specified in the /etc/vac.cfg
configuration file.

For information regarding the contents of the configuration file, refer to “Specify
Compiler Options in a Configuration File” on page 27.

The -B, -t, and -W options override the -F option.

Example
To compile myprogram.c using a configuration file called /usr/tmp/myvac.cfg,
enter:

xlC myprogram.c -F/usr/tmp/myvac.cfg:xlC

Related Tasks
“Specify Compiler Options in a Configuration File” on page 27

Related References
“Compiler Command Line Options” on page 61
“B” on page 88
“t” on page 266
“W” on page 290

Compiler Options 127

f

Purpose
Names a file to store a list of object files for xlC to pass to the linker.

Syntax

�� -f filelistname ��

Notes
The filelistname file should contain only the names of object files. There should be
one object file per line.

This option is the same as the -f option for the ld command.

Example
To pass the list of files contained in myobjlistfile to the linker, enter:

xlC -f/usr/tmp/myobjlistfile

Related References
“Compiler Command Line Options” on page 61

128 VisualAge C++ for AIX Compiler Reference

fdpr

Purpose
Collects information about your program for use with the AIX fdpr (Feedback
Directed Program Restructuring) performance-tuning utility.

Syntax

��
nofdpr

-q fdpr ��

Notes
You should compile your program with -qfdpr before optimizing it with the fdpr
performance-tuning utility. Optmization data is stored in the object file.

For more information on using the fdpr performance-tuning utilty, refer to the AIX
Version 4 Commands Reference or enter the command:

man fdpr

Example
To compile myprogram.c so it include data required by the fdpr utility, enter:

xlC myprogram.c -qfdpr

Related References
“Compiler Command Line Options” on page 61

Compiler Options 129

flag

Purpose
Specifies the minimum severity level of diagnostic messages to be reported in a
listing and displayed on a terminal. The diagnostic messages display with their
associated sub-messages.

Syntax

��

i i
(1) (2)

-qflag = :
w w
e e
s s
u u

��

Notes:

1 Minimum severity level messages reported in listing

2 Minimum severity level messages reported on terminal

where message severity levels are:

severity Description

i Information

w Warning

e Error

s Severe error

u Unrecoverable error

See also “#pragma options” on page 325.

Notes
You must specify a minimum message severity level for both listing and terminal
reporting.

Specifying informational message levels does not turn on the -qinfo option.

Example
To compile myprogram.c so that the listing shows all messages that were
generated and your workstation displays only error and higher messages (with
their associated information messages to aid in fixing the errors), enter:

xlC myprogram.c -qflag=I:E

Related References
“Compiler Command Line Options” on page 61
“info” on page 154
“#pragma options” on page 325
“Compiler Messages” on page 379

130 VisualAge C++ for AIX Compiler Reference

float

Purpose
Specifies various floating-point options. These options provide different strategies
for speeding up or improving the accuracy of floating-point calculations.

Syntax

�� �

:
nospnans
norsqrt
norrm
norndsngl
nonans
maf
nohssngl
nohsflt
fold
nofltint
noemulate

-qfloat = emulate
fltint
nofold
hsflt
hssngl
nomaf
nans
rndsngl
rrm
rsqrt
spnans

��

Option selections are described in the Notes section below. See also “#pragma
options” on page 325.

Notes
Using the float option may produce results that are not precisely the same as the
default. Incorrect results may be produced if not all required conditions are met.
For these reasons, you should only use this option if you are experienced with
floating-point calculations involving IEEE floating-point values and can properly
assess the possibility of introducing errors in your program.

The float option has the following suboptions.

-qfloat=emulate
-qfloat=noemulate

Emulates the floating-point instructions omitted by the PowerPC 403
processor. The default is float=noemulate.

To emulate PowerPC 403 processor floating-point instructions, use
-qfloat=emulate. Function calls are emitted in place of PowerPC 403
floating-point instructions. Use this option only in a single-threaded,
stand-alone environment targeting the PowerPC 403 processor.

Do not use -qfloat=emulate with any of the following:

v -qarch=pwr, -qarch=pwr2, -qarch=pwrx

v -qlongdouble, -qldbl128

v xlC128 or xlc128 compiler invocation commands

Compiler Options 131

-qfloat=fltint
-qfloat=nofltint

Speeds up floating-point-to-integer conversions by using faster inline
code that does not check for overflows. The default is float=nofltint,
which checks floating-point-to-integer conversions for out-of-range
values.

This suboption must only be used with an optimization option.

v For -O2, the default is -qfloat=nofltint.

v For -O3, the default is -qfloat=fltint.

To include range checking in floating-point-to-integer conversions
with the -O3 option, specify -qfloat=nofltint.

v -qnostrict sets -qfloat=fltint

Changing the optimization level will not change the setting of the
fltint suboption if fltint has already been specified.

This option is ignored unless -qarch=pwr or, in 32-bit mode,
-qarch=com. For PWR2 and PPC family architectures, faster inline
code is used that correctly handles out-of-range values.

If the -qstrict | -qnostrict and -qfloat= options conflict, the last
setting is used.

-qfloat=fold
-qfloat=nofold

Specifies that constant floating-point expressions are to be evaluated
at compile time rather than at run time.

The -qfloat=fold option replaces the obsolete -qfold option. Use
-qfloat=fold in your new applications.

-qfloat=hsflt
-qfloat=nohsflt

Speeds up calculations by truncating instead of rounding computed
values to single precision before storing and on conversions from
floating point to integer. The nohsflt suboption specifies that
single-precision expressions are rounded after expression evaluation
and that floating-point-to-integer conversions are to be checked for
out-of-range values.

The hsflt suboption overrides the rndsngl, nans, and spnans
suboptions.

Note: The hsflt suboption is for specific applications in which
floating-point computations have known characteristics. Using this
option when you are compiling other application programs can
produce incorrect results without warning.

The -qfloat=hsflt option replaces the obsolete -qhsflt option. Use
-qfloat=hsflt in your new applications.

This option has little effect unless the -qarch option is set to pwr,
pwr2, pwrx, pwr2s or, in 32-bit mode, com. For PPC family
architectures, all single-precision (float) operations are rounded and
the option only affects double-precision (double) expressions cast to
single-precision (float).

Using this option with -qfloat=rndsngl or -q64 or -qarch=ppc or any
PPC family architecture may produce incorrect results on rs64b or
future systems.

132 VisualAge C++ for AIX Compiler Reference

-qfloat=hssngl |
-qfloat=nohssngl

Specifies that single-precision expressions are rounded only when
the results are stored into float memory locations. nohssngl specifies
that single-precision expressions are rounded after expression
evaluation. Using hssngl can improve runtime performance but is
safer than using -qfloat=hsflt.

The -qfloat=hssngl option replaces the obsolete -qhssngl option. Use
-qfloat=hssngl in your new applications.

This suboption has little effect unless the -qarch option is set to pwr,
pwr2, pwrx, pwr2s or, in 32-bit mode, com. For PPC family
architectures, all single-precision (float) operations are rounded and
the option only affects double-precision (double) expressions cast to
single-precision (float) and used in an assignment operator for which
a store instruction is generated.

Using this suboption with -qfloat=rndsngl or -q64 or -qarch=ppc or
any PPC family architecture may produce incorrect results on rs64b
or future systems.

-qfloat=maf
-qfloat=nomaf

Makes floating-point calculations faster and more accurate by using
floating-point multiply-add instructions where appropriate. The
results may not be exactly equivalent to those from similar
calculations performed at compile time or on other types of
computers. This option may affect the precision of floating-point
intermediate results.

The -qfloat=maf option replaces the obsolete -qmaf option. Use
-qfloat=maf in your new applications.

-qfloat=nans
-qfloat=nonans

Generates extra instructions to detect signalling NaN
(Not-a-Number) when converting from single precision to double
precision at run time. The option nonans specifies that this
conversion need not be detected. -qfloat=nans is required for full
compliance to the IEEE 754 standard.

The hsflt option overrides the nans option.

When used with the -qflttrap or -qflttrap=invalid option, the
compiler detects invalid operation exceptions in comparison
operations that occur when one of the operands is a signalling NaN.

The -qfloat=nans option replaces the obsolete -qfloat=spnans option
and the -qspnans option. Use -qfloat=nans in your new
applications.

-qfloat=rndsngl
-qfloat=norndsngl

Specifies that the result of each single-precision (float) operation is to
be rounded to single precision. -qfloat=norndsngl specifies that
rounding to single-precision happens only after full expressions have
been evaluated. Using this option may sacrifice speed for consistency
with results from similar calculations on other types of computers.

The hsflt suboption overrides the rndsngl option.

This suboption has no effect unless the -qarch option is set to pwr,
pwr2, pwrx, pwr2s or, in 32-bit mode, com. For PPC family
architectures, all single-precision (float) operations are rounded.

Using this option with -qfloat=hssngl or -qfloat=hsflt may produce
incorrect results on rs64b or future systems.

The -qfloat=rndsngl option replaces the obsolete -qrndsngl option.
Use -qfloat=rndsngl in your new applications.

Compiler Options 133

-qfloat=rrm
-qfloat=norrm

Prevents floating-point optimizations that are incompatible with
runtime rounding to plus and minus infinity modes. Informs the
compiler that the floating-point rounding mode may change at run
time or that the floating-point rounding mode is not round to nearest
at run time.

-qfloat=rrm must be specified if the Floating Point Status and
Control register is changed at run time (as well as for initializing
exception trapping).

The -qfloat=rrm option replaces the obsolete -qrrm option. Use
-qfloat=rrm in your new applications.

-qfloat=rsqrt
-qfloat=norsqrt

Specifies whether a sequence of code that involves division by the
result of a square root can be replaced by calculating the reciprocal
of the square root and multiplying. Allowing this replacement
produces code that runs faster.

v For -O2, the default is -qfloat=norsqrt.

v For -O3, the default is -qfloat=rsqrt. Use -qfloat=norsqrt to
override this default.

v -qnostrict sets -qfloat=rsqrt. (Note that -qfloat=rsqrt means that
errno will not be set for any sqrt function calls.)

v -qfloat=rsqrt has no effect when -qarch=pwr2 is also specified.

v -qfloat=rsqrt has no effect unless -qignerrno is also specified.

Changing the optimization level will not change the setting of the
rsqrt option if rsqrt has already been specified. If the -qstrict |
-qnostrict and -qfloat= options conflict, the last setting is used.

-qfloat=spnans |
-qfloat=nospnans

Generates extra instructions to detect signalling NaN on conversion
from single precision to double precision. The option nospnans
specifies that this conversion need not be detected.

The hsflt suboption overrides the spnans suboption.

The -qfloat=nans option replaces the obsolete -qfloat=spnans and
-qspnans options. Use -qfloat=nans in your new applications.

Example
To compile myprogram.c so that range checking occurs and multiply-add
instructions are not generated, enter:

xlC myprogram.c -qfloat=fltint:nomaf

Related References
“Compiler Command Line Options” on page 61
“arch” on page 83
“float” on page 131
“flttrap” on page 135
“ldbl128, longdouble” on page 190
“rrm” on page 246
“strict” on page 261
“#pragma options” on page 325

134 VisualAge C++ for AIX Compiler Reference

flttrap

Purpose
Generates extra instructions to detect and trap floating-point exceptions.

Syntax

��

�

noflttrap
-q flttrap

:

= overflow
underflow
zerodivide
invalid
inexact
enable
imprecise

��

where suboptions do the following:

OVerflow Generates code to detect and trap floating-point overflow.
UNDerflow Generates code to detect and trap floating-point underflow.
ZEROdivide Generates code to detect and trap floating-point division by zero.
INValid Generates code to detect and trap floating-point invalid operation

exceptions.
INEXact Generates code to detect and trap floating-point inexact exceptions.
ENable Enables the specified exceptions in the prologue of the main program.

This suboption is required if you want to turn on exception trapping
without modifying the source code.

IMPrecise Generates code for imprecise detection of the specified exceptions. If
an exception occurs, it is detected, but the exact location of the
exception is not determined.

See also “#pragma options” on page 325.

Notes
This option is recognized during linking. -qnoflttrap specifies that these extra
instructions need not be generated.

Specifying the -qflttrap option with no suboptions is equivalent to setting
-qflttrap=overflow:underflow:zerodivide:invalid:inexact. The exceptions are not
automatically enabled, and all floating-point operations are checked to provide
precise exception-location information.

If specified with #pragma options, the -qnoflttrap option must be the first option
specified.

If your program contains signalling NaNs, you should use the -qfloat=nans along
with -qflttrap to trap any exceptions.

The compiler exhibits behavior as illustrated in the following examples when the
-qflttrap option is specified together with -qoptimize options:
v with -O:

Compiler Options 135

– 1/0 generates a div0 exception and has a result of infinity
– 0/0 generates an invalid operation

v with -O3:
– 1/0 generates a div0 exception and has a result of infinity
– 0/0 returns zero multiplied by the result of the previous division.

Example
To compile myprogram.c so that floating-point overflow and underflow and divide
by zero are detected, enter:

xlC myprogram.c -qflttrap=overflow:underflow:zerodivide:enable

Related References
“Compiler Command Line Options” on page 61
“float” on page 131
“O, optimize” on page 215

136 VisualAge C++ for AIX Compiler Reference

fold

Purpose
Specifies that constant floating-point expressions are to be evaluated at compile
time.

Syntax

��
fold

-q nofold ��

See also “#pragma options” on page 325.

Notes
This option is obsolete. Use -qfloat=fold in your new applications.

Related References
“Compiler Command Line Options” on page 61
“float” on page 131
“#pragma options” on page 325

Compiler Options 137

fullpath

Purpose
Specifies what path information is stored for files when you use the -g compiler
option.

Syntax

��
nofullpath

-q fullpath ��

Notes
Using -qfullpath causes the compiler to preserve the absolute (full) path name of
source files specified with the -g option.

The relative path name of files is preserved when you use -qnofullpath.

-qfullpath is useful if the executable file was moved to another directory. If you
specified -qnofullpath, the debugger would be unable to find the file unless you
provide a search path in the debugger. Using -qfullpath would locate the file
successfully.

Related References
“Compiler Command Line Options” on page 61
“g” on page 141

138 VisualAge C++ for AIX Compiler Reference

funcsect

Purpose
Place instructions for each function in a separate object file, control section or csect.
By default, each object file will consist of a single control section combining all
functions defined in the corresponding source file.

Syntax

��
nofuncsect

-q funcsect ��

Notes
Using multiple csects increases the size of the object file, but often reduces the size
of the final executable by allowing the linkage editor ro remove functions that are
not called or that have been inlined by the optimizer at all places they are called. If
the file contains initialized static data or the pragma statement

#pragma comment copyright

some functions will be one machine word larger.

The #pragma options directive must be specified before the first statement in the
compilation unit.

Related References
“Compiler Command Line Options” on page 61
“twolink” on page 279

Compiler Options 139

G

Purpose
Tells the linkage editor to create a shared object enabled for runtime linking.

Syntax

�� -G ��

Notes
The compiler will automatically export all global symbols from the shared object
unless you specify which symbols to export by using -bE:, -bexport:, -bexpall or
-bnoexpall.

If you use -G to create a shared library, the compiler will:
1. If the user doesn’t specify -bE:, -bexport:, -bexpall or -bnoexpall, create an

export list containing all global symbols using the CreateExportList script. You
can specify another script with the -tE/-B or -qpath=E: options.

2. If CreateExportList was used to create the export list and -qexpfile was
specified, the export list is saved.

3. Calls the linker with the appropriate options and object files to build a shared
object.

This is a linkage editor (ld) option. Refer to your operating system documentation
for a description of ld command usage and syntax.

Related References
“Compiler Command Line Options” on page 61
“B” on page 88
“b” on page 89
“brtl” on page 92
“expfile” on page 125
“path” on page 225
“t” on page 266

Also, on the Web see:
Shared Objects and Runtime Linking chapter in General Programming Concepts:
Writing and Debugging Programs
ld Command section in Commands Reference, Volume 3: i through m

140 VisualAge C++ for AIX Compiler Reference

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/shared_object_runtime_linking.htm#HDRVBQDN2E5STCL
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/genprogctfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/genprogctfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds3/ld.htm#HDRA09493AC
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds3/aixcmds3tfrm.htm

g

Purpose
Generates debugging information used by tools such as the IBM Distributed
Debugger.

Syntax

�� -g ��

Notes
Avoid using this option with -O (optimization) option. The information produced
may be incomplete or misleading.

If you specify the -g option, the inlining option defaults to -Q! (no functions are
inlined).

The default with -g is not to include information about unreferenced symbols in
the debugging information.

To include information about both referenced and unreferenced symbols, use the
-qdbxextra option with -g.

To specify that source files used with -g are referred to by either their absolute or
their relative path name, use -qfullpath.

You can also use the -qlinedebug option to produce abbreviated debugging
information in a smaller object size.

Example
To compile myprogram.c to produce an executable program testing so you can
debug it, enter:

xlC myprogram.c -o testing -g

To compile myprogram.c to produce an executable program testing all containing
additional information about unreferenced symbols so you can debug it, enter:

xlC myprogram.c -o testing_all -g -qdbxextra

Related References
“Compiler Command Line Options” on page 61
“dbxextra” on page 110
“fullpath” on page 138
“linedebug” on page 192
“O, optimize” on page 215
“Q” on page 236

Compiler Options 141

genproto

Purpose
Produces ANSI prototypes from K&R function definitions. This should help to ease
the transition from K&R to ANSI.

Syntax

��
nogenproto

-q genproto
= parnames

��

Notes
Using -qgenproto without PARMnames will cause prototypes to be generated
without parameter names. Parameter names are included in the prototype when
PARMnames is specified.

Example
For the following function, foo.c:

foo(a,b,c)
float a;
int *b;

specifying
xlc -c -qgenproto foo.c

produces
int foo(double, int*, int);

The parameter names are dropped. On the other hand, specifying
xlc -c -qgenproto=parm foo.c

produces
int foo(double a, int* b, int c);

In this case the parameter names are kept.

Note that float a is represented as double or double a in the prototype, since ANSI
states that all narrow-type arguments (such as chars, shorts, and floats) are
widened before they are passed to K&R functions.

Related References
“Compiler Command Line Options” on page 61

142 VisualAge C++ for AIX Compiler Reference

halt

Purpose
Instructs the compiler to stop after the compilation phase when it encounters
errors of specified severity or greater.

Syntax

��

(2)
e

(1)
s

-qhalt = i
w
u

��

Notes:

1 Default for C.

2 Default for C++.

where severity levels in order of increasing severity are:

severity Description

i Information

w Warning

e Error

s Severe error

u Unrecoverable error

See also “#pragma options” on page 325.

Notes
When the compiler stops as a result of the -qhalt option, the compiler return code
is nonzero.

When -qhalt is specified more than once, the lowest severity level is used.

The -qhalt option can be overridden by the -qmaxerr option.

Diagnostic messages may be controlled by the -qflag option.

Example
To compile myprogram.c so that compilation stops if a warning or higher level
message occurs, enter:

xlC myprogram.c -qhalt=w

Related References
“Compiler Command Line Options” on page 61
“flag” on page 130
“maxerr” on page 206
“#pragma options” on page 325

Compiler Options 143

haltonmsg

Purpose
Instructs the compiler to stop after the compilation phase when it encounters the
specified msg_number.

Syntax

�� -qhaltonmsg = msg_number ��

Notes
When the compiler stops as a result of the -qhaltonmsg option, the compiler return
code is nonzero.

Related References
“Compiler Command Line Options” on page 61
“Compiler Messages” on page 379

144 VisualAge C++ for AIX Compiler Reference

heapdebug

Purpose
Enables debug versions of memory management functions.

Syntax

��
noheapdebug

-q heapdebug ��

Notes
The -qheapdebug options specifies that the debug versions of memory
management functions (_debug_calloc, _debug_malloc, new, etc.) be used in place
of regular memory management functions. This option defines the
__DEBUG_ALLOC__ macro.

By default, the compiler uses the regular memory management functions
(calloc,malloc, new, etc.) and does not preinitialize their local storage.

This option makes the compiler search both usr/vacpp/include and usr/include.

Example
To compile myprogram.c with the debug versions of memory management
functions, enter:

xlC -qheapdebug myprogram.c -o testing

Related References
“Compiler Command Line Options” on page 61

Compiler Options 145

hot

Purpose
Instructs the compiler to perform high-order transformations on loops and array
language during optimization, and to to pad array dimensions and data objects to
avoid cache misses.

Syntax

�� �
nohot

-q hot
vector

= novector
arraypad

= n

��

where:

arraypad The compiler will pad any arrays where it infers there may be a benefit
and will pad by whatever amount it chooses. Not all arrays will
necessarily be padded, and different arrays may be padded by different
amounts.

arraypad=n The compiler will pad every array in the code. The pad amount must be
a positive integer value, and eac array will be padded by an integral
number of elements. Because n is an integral value, we recommend that
pad values be multiples of the largest array element size, typically 4, 8,
or 16.

vector |
novector

The compiler converts certain operations that are performed in a loop on
successive elements of an array (for example, square root, reciprocal
square root) into a call to a library routine. This call will calculate several
results at one time, which is faster than calculating each result
sequentially.

If you specify -qhot=novector, the compiler performs high-order
transformations on loops and arrays, but avoids optimizations where
certain code is replaced by calls to vector library routines. The
-qhot=vector option may affect the precision of your program’s results
so you should specify either -qhot=novector or -qstrict if the change in
precision is unacceptable to you.

Default
The -qhot=vector suboption is on by default when you specify the -qhot, -qsmp,
-O4, or -O5 options. If you do not specify at least level 2 of -O for -qhot, the
compiler assumes -O2.

Notes
Because of the implementation of the cache architecture, array dimensions that are
powers of two can lead to decreased cache utilization. The optional arraypad
suboption permits the compiler to increase the dimensions of arrays where doing
so might improve the efficiency of array-processing loops. If you have large arrays
with some dimensions (particularly the first one) that are powers of 2, or if you
find that your array-processing programs are slowed down by cache misses or
page faults, consider specifying -qhot=arraypad.

146 VisualAge C++ for AIX Compiler Reference

Both -qhot=arraypad and -qhot=arraypad=n are unsafe options; they do not
perform any checking for reshaping or equivalences that may cause the code to
break if padding takes place.

Example
The following example turns on the -qhot=vector option:

xlC -qhot=vector myprogram.c

Related References
“Compiler Command Line Options” on page 61
“C” on page 93
“O, optimize” on page 215
“smp” on page 252

Compiler Options 147

hsflt

Purpose
Speeds up calculations by removing range checking on single-precision float
results, and on conversions from floating point to integer. -qnohsflt specifies that
single-precision expressions are rounded after expression evaluation, and that
floating-point-to-integer conversions are to be checked for out of range values.

Syntax

��
nohsflt

-q hsflt ��

See also “#pragma options” on page 325.

Notes
This option is obsolete. Use -qfloat=hsflt in your new applications.

The -qhsflt option overrides the -qrndsngl and -qspnans options.

The -qhsflt option is intended for specific applications in which floating-point
computations have known characteristics. Using this option when compiling other
application programs can produce incorrect results without warning.

Related References
“Compiler Command Line Options” on page 61
“float” on page 131
“rndsngl” on page 243
“spnans” on page 256
“#pragma options” on page 325

148 VisualAge C++ for AIX Compiler Reference

hssngl

Purpose
Specifies that single-precision expressions are rounded only when the results are
stored into float memory locations. -qnohssngl specifies that single-precision
expressions are rounded after expression evaluation. Using -qhssngl can improve
run-time performance.

Syntax

��
nohssngl

-q hssngl ��

See also “#pragma options” on page 325.

Notes
This option is obsolete. Use -qfloat=hssngl in your new applications.

Related References
“Compiler Command Line Options” on page 61
“float” on page 131
“#pragma options” on page 325

Compiler Options 149

I

Purpose
Specifies an additional search path if the file name in the #include directive is not
specified using its absolute path name.

Syntax

�� -I directory ��

Notes
The value for directory must be a valid path name (for example, /u/golnaz, or /tmp,
or ./subdir). The compiler appends a slash (/) to the directory and then
concatenates it with the file name before doing the search. The path directory is the
one that the compiler searches first for #include files whose names do not start
with a slash (/). If directory is not specified, the default is to search the standard
directories.

If the -I directory option is specified both in the configuration file and on the
command line, the paths specified in the configuration file are searched first.

The -I directory option can be specified more than once on the command line. If
you specify more than one -I option, directories are searched in the order that they
appear on the command line. See Directory Search Sequence for Include Files Using
Relative Path Names for more information about searching directories.

If you specify a full (absolute) path name on the #include directive, this option has
no effect.

Example
To compile myprogram.c and search /usr/tmp and then /oldstuff/history for
included files, enter:

xlC myprogram.c -I/usr/tmp -I/oldstuff/history

Related Tasks
“Compiler Command Line Options” on page 61

Related References
“Directory Search Sequence for Include Files Using Relative Path Names” on
page 33

150 VisualAge C++ for AIX Compiler Reference

idirfirst

Syntax

��
noidirfirst

-q idirfirst ��

See also “#pragma options” on page 325.

Purpose
Specifies the search order for files included with the #include “file_name” directive.

Notes
Use -qidirfirst with the -I directory option.

The normal search order (for files included with the #include “file_name” directive)
without the idirfirst option is:
1. Search the directory where the current source file resides.
2. Search the directory or directories specified with the -Idirectory option.
3. Search the standard include directories, which are:

v for C programs, /usr/include

v for C++ programs, /usr/vacpp/include and /usr/include

With -qidirfirst, the directories specified with the -I directory option are searched
before the directory where the current file resides.

-qidirfirst has no effect on the search order for the #include <file_name> directive.

-qidirfirst is independent of the -qnostdinc option, which changes the search order
for both #include “file_name” and #include <file_name>.

The search order of files is described in (Directory Search Sequence for Include
Files Using Relative Path Names).

The last valid #pragma option [NO]IDIRFirst remains in effect until replaced by a
subsequent #pragma option [NO]IDIRFirst.

Example
To compile myprogram.c and search /usr/tmp/myinclude for included files before
searching the current directory (where the source file resides), enter:

xlC myprogram.c -I/usr/tmp/myinclude -qidirfirst

Related References
“Compiler Command Line Options” on page 61
“I” on page 150
“stdinc” on page 260
“#pragma options” on page 325

Compiler Options 151

ignerrno

Purpose
Allows the compiler to perform optimizations that assume errno is not modified
by system calls.

Syntax

��
noignerrno

-q ignerrno ��

See also “#pragma options” on page 325.

Notes
Library routines set errno when an exception occurs. This setting and subsequent
side effects of errno may be ignored by specifying -qignerrno.

Related References
“Compiler Command Line Options” on page 61
“#pragma options” on page 325

152 VisualAge C++ for AIX Compiler Reference

ignprag

Purpose
Instructs the compiler to ignore certain pragma statements.

Syntax

�� -qignprag = disjoint
isolated
all
ibm
omp

��

where pragma statements affected by this option are:

disjoint Ignores all #pragma disjoint directives in the source file.
isolated Ignores all #pragma isolated_call directives in the source file.
all Ignores all #pragma isolated_call and #pragma disjoint directives in

the source file.
ibm Ignores all IBM parallel processing directives in the source file, such as

#pragma ibm parallel_loop, #pragma ibm schedule.
omp Ignores all OpenMP parallel processing directives in the source file,

such as #pragma omp parallel, #pragma omp critical.

See also “#pragma options” on page 325.

Notes
Suboptions are:

This option is useful for detecting aliasing pragma errors. Incorrect aliasing gives
runtime errors that are hard to diagnose. When a runtime error occurs, but the
error disappears when you use -qignprag with the -O option, the information
specified in the aliasing pragmas is likely incorrect.

Example
To compile myprogram.c and ignore any #pragma isolated directives, enter:

xlC myprogram.c -qignprag=isolated

Related References
“Compiler Command Line Options” on page 61
“#pragma disjoint” on page 304
“#pragma isolated_call” on page 315
“#pragma options” on page 325
“Pragmas to Control Parallel Processing” on page 344

Compiler Options 153

info

Purpose
Produces informational messages.

Syntax

��

�

-q info
lan

=
all
reset
private
reduction

:

group
noinfo

��

where -qinfo options and diagnostic message groups are described in the Notes
section below. See also “#pragma info” on page 311 and “#pragma options” on
page 325.

Notes
Specifying -qinfo or -qinfo=all turns on all diagnostic messages for all groups
except for the ppt (preprocessor trace) group in C++ code. Specifying -qnoinfo or
-qinfo=noall turns off all diagnostic messages for all groups

Specifying -qnoinfo turns off all diagnostic messages.

You can use the #pragma options info=suboption[:suboption ...] or #pragma options
noinfo forms of this compiler option to temporarily enable or disable messages in
one or more specific sections of program code, and #pragma options info=reset to
return to your initial -qinfo settings.

Available forms of the -qinfo option are:

all Turns on all diagnostic messages for all groups.

The -qinfo and -qinfo=all forms of the option have the same
effect.

The -qinfo=all option does not include the ppt group
(preprocessor trace).

noinfo Turns off all diagnostic messages for specific portions of your program.
private Lists shared variables made private to a parallel loop.
reduction Lists all variables that are recognized as reduction variables inside a

parallel loop

154 VisualAge C++ for AIX Compiler Reference

group Turns on or off specific groups of messages, where group can be one or
more of:

group Type of messages returned or suppressed

c99|noc99 C code that may behave differently between C89 and
C99 language levels.

cls|nocls Classes

cmp|nocmp Possible redundancies in unsigned comparisons

cnd|nocnd Possible redundancies or problems in conditional
expressions

cns|nocns Operations involving constants

cnv|nocnv Conversions

dcl|nodcl Consistency of declarations

eff|noeff Statements and pragmas with no effect

enu|noenu Consistency of enum variables

ext|noext Unused external definitions

gen|nogen General diagnostic messages

gnr|nognr Generation of temporary variables

got|nogot Use of goto statements

ini|noini Possible problems with initialization

inl|noinl Functions not inlined

lan|nolan Language level effects

obs|noobs Obsolete features

ord|noord Unspecified order of evaluation

par|nopar Unused parameters

por|nopor Nonportable language constructs

ppc|noppc Possible problems with using the preprocessor

ppt|noppt Trace of preprocessor actions

pro|nopro Missing function prototypes

rea|norea Code that cannot be reached

ret|noret Consistency of return statements

trd|notrd Possible truncation or loss of data or precision

tru|notru Variable names truncated by the compiler

trx|notrx Hexadecimal floating point constants rounding

uni|nouni Unitialized variables

use|nouse Unused auto and static variables

vft|novft Generation of virtual function tables

Example
To compile myprogram.c to produce informational message about all items except
conversions and unreached statements, enter:

xlC myprogram.c -qinfo=all -qinfo=nocnv:norea

Compiler Options 155

Related Concepts
“Reduction Operations in Parallelized Loops” on page 12
“Shared and Private Variables in a Parallel Environment” on page 13

Related References
“Compiler Command Line Options” on page 61
“#pragma info” on page 311
“#pragma options” on page 325

156 VisualAge C++ for AIX Compiler Reference

initauto

Purpose
Initializes automatic storage to the two-digit hexadecimal byte value hex_value.

Syntax

��
noinitauto

-q initauto = hex_value ��

See also “#pragma options” on page 325.

Notes
The option generates extra code to initialize the automatic (stack-allocated) storage
of functions. It reduces the runtime performance of the program and should only
be used for debugging.

There is no default setting for the initial value of -qinitauto; you must set an
explicit value (for example, -qinitauto=FA).

Example
To compile myprogram.c so that automatic stack storage is initialized to hex value
FF (decimal 255), enter:

xlC myprogram.c -qinitauto=FF

Related References
“Compiler Command Line Options” on page 61

Compiler Options 157

inlglue

Purpose
Generates fast external linkage by inlining the pointer glue code necessary to make
a call to an external function or a call through a function pointer.

Syntax

��
noinlglue

-q inlglue ��

See also “#pragma options” on page 325.

Notes
Glue code, generated by the linker, is used for passing control between two external
functions, or when you call functions through a pointer. It is also used to
implement C++ virtual function calls. Therefore the -qinlglue option only affects
function calls through pointers or calls to an external compilation unit. For calls to
an external function, you should specify that the function is imported by using, for
example, the -qprocimported option.

The inlining of glue code can cause the size of code to grow. This can be
overridden by specifying the -qcompact option, thereby disabling the -qinlglue
option.

Related References
“Compiler Command Line Options” on page 61
“compact” on page 101
“proclocal, procimported, procunknown” on page 233
“#pragma options” on page 325

158 VisualAge C++ for AIX Compiler Reference

inline

Purpose
Attempts to inline functions instead of generating calls to a function. Inlining is
performed if possible, but, depending on which optimizations are performed, some
functions might not be inlined.

Syntax

�� -q noinline
inline

= threshold
limit

+ names
-

��

The following -qinline options apply in the the C language:

-qinline The compiler attempts to inline all appropriate functions with 20
executable source statements or fewer, subject to any other settings
of the suboptions to the -qinline option. If -qinline is specified
last, all functions are inlined.

-qinline=threshold Sets a size limit on the functions to be inlined. The number of
executable statements must be less than or equal to threshold for
the function to be inlined. threshold must be a positive integer. The
default value is 20. Specifying a threshold value of 0 causes no
functions to be inlined except those functions marked with the
__inline, _Inline, or _inline keywords.

The threshold value applies to logical C statements. Declarations are
not counted, as you can see in the example below:

increment()
{

int a, b, i;
for (i=0; i<10; i++) /* statement 1 */
{

a=i; /* statement 2 */
b=i; /* statement 3 */

}
}

-qinline-names The compiler does not inline functions listed by names. Separate
each name with a colon (:). All other appropriate functions are
inlined. The option implies -qinline.

For example:

-qinline-salary:taxes:expenses:benefits

causes all functions except those named salary, taxes, expenses, or
benefits to be inlined if possible.

A warning message is issued for functions that are not defined in
the source file.

Compiler Options 159

-qinline+names Attempts to inline the functions listed by names and any other
appropriate functions. Each name must be separated by a colon (:).
The option implies -qinline.

For example,

-qinline+food:clothes:vacation

causes all functions named food, clothes, or vacation to be inlined
if possible, along with any other functions eligible for inlining.

A warning message is issued for functions that are not defined in
the source file or that are defined but cannot be inlined.

This suboption overrides any setting of the threshold value. You can
use a threshold value of zero along with -qinline+names to inline
specific functions. For example:

-qinline=0

followed by:

-qinline+salary:taxes:benefits

causes only the functions named salary, taxes, or benefits to be
inlined, if possible, and no others.

-qinline=limit Specifies the maximum size (in bytes of generated code) to which a
function can grow due to inlining. This limit does not affect the
inlining of user specified functions.

-qnoinline Does not inline any functions. If -qnoinline is specified last, no
functions are inlined.

The following -qinline options apply to the C++ language:

-qinline Compiler inlines all functions that it can.
-qnoinline Compiler does not inline any functions.

Default
The default is to treat inline specifications as a hint to the compiler, and the result
depends on other options that you select:
v If you specify the -g option (to generate debug information), no functions are

inlined.
v If you optimize your program -O, the compiler attempts to inline all functions

declared as inline. Otherwise, the compiler attempts to inline some of the
simpler functions declared as inline.

Notes
The -qinline option is functionally equivalent to the -Q option.

Because inlining does not always improve run time, you should test the effects of
this option on your code. Do not attempt to inline recursive or mutually recursive
functions.

Normally, application performance is optimized if you request optimization (-O
option), and compiler performance is optimized if you do not request optimization.

To maximize inlining, specify optimization (-O) and also specify the appropriate
-qinline options.

160 VisualAge C++ for AIX Compiler Reference

The VisualAge C++ (inline, _inline, _Inline, and __inline) C language keywords
override all -qinline options except -qnoinline. The compiler will try to inline
functions marked with these keywords regardless of other -qinline option settings.

The inline, _Inline, _inline, and __inline Function Specifiers: The C compiler
provides keywords that you can use to specify functions that you want the
compiler to inline:
v inline
v _Inline
v _inline
v __inline

For example:

_Inline int catherine(int a);

causes catherine to be inlined, meaning that code is generated for the function,
rather than a function call. The inline keywords also implicitly declare the function
as static.

Using the inline specifiers with data or to declare the main() function generates an
error.

By default, function inlining is turned off, and functions qualified with inline
specifiers are treated simply as static functions. To turn on function inlining,
specify either the -qinline or -Q compiler options. Inlining is also turned on if you
turn optimization on with the -O or -qoptimize compiler option.

Recursive functions (functions that call themselves) are inlined for the first
occurrence only. The call to the function from within itself is not inlined.

You can also use the -qinline or -Q compiler options to automatically inline all
functions smaller than a specified size. For best performance, however, use the
inline keywords to choose the functions you want to inline rather than using
automatic inlining.

An inline function can be declared and defined simultaneously. If it is declared
with one of the inline specifier keywords, it can be declared without a definition.
The following code fragments shows an inline function definition. Note that the
definition includes both the declaration and body of the inline function.

_inline int add(int i, int j) { return i + j; }

inline double fahr(double t)

Note: The use of the inline specifier does not change the meaning of the function,
but inline expansion of a function may not preserve the order of evaluation
of the actual arguments.

Example
To compile myprogram.c so that no functions are inlined, enter:

xlC myprogram.c -O -qnoinline

To compile myprogram.c so that the compiler attempts to inline functions of fewer
than 12 lines, enter:

xlC myprogram.c -O -qinline=12

Compiler Options 161

Related References
“Compiler Command Line Options” on page 61
“O, optimize” on page 215
“Q” on page 236

162 VisualAge C++ for AIX Compiler Reference

ipa

Purpose
Turns on or customizes a class of optimizations known as interprocedural analysis
(IPA).

Compile-time syntax

�� -qipa
object

= noobject

��

where:

-qipa
Compile-time

Options

Description

-qipa Activates interprocedural analysis with the following -qipa
suboption defaults:

v inline=auto

v level=1

v missing=unknown

v noprof

v partition=medium

-qipa=object

-qipa=noobject

Specifies whether to include standard object code in the object
files.

Specifying the noobject suboption ican substantially reduce overall
compile time by not generating object code during the first IPA
phase.

If the -S compiler option is specified with noobject, noobject is
ignored.

If compilation and linking are performed in the same step, and
neither the -S nor any listing option is specified, -qipa=noobject is
implied by default.

If any object file used in linking with -qipa was created with the
-qipa=noobject option, any file containing an entry point (the
main program for an executable program, or an exported function
for a library) must be compiled with -qipa.

Compiler Options 163

Link-time syntax

��

� �

�

�

�

�

�

�

noipa -qlibansi
-q ipa -qnolibansi

,
,

= exits = name
inline

auto
= noauto

,

suboption
limit = num
threshold = size
,

name
,

noinline = name
,

isolated = name
1

level = 0
2
a.lst short

list =
name long

,

lowfreq = name
unknown

missing = safe
isolated
pure
medium

partition = small
large
size

nopdfname
pdfname

= filename
nothreads
threads

= N
,

pure = name
safe
unknown

filename

��

where:

-qipa Link-time
Options

Description

-qnoipa Deactivates interprocedural analysis.

-qipa Activates interprocedural analysis with the following -qipa
suboption defaults:

v inline=auto

v level=1

v missing=unknown

v noprof

v partition=medium

164 VisualAge C++ for AIX Compiler Reference

-qipa Link-time
Options

Description

-qlibansi

-qnolibansi

The -qlibansi option assumes that all functions with the name of
an ANSI C or C++ defined library function are in fact library
functions. This is the default setting.

The -qnolibansi option does not make this assumption.

Suboptions can also include one or more of the forms shown below. Separate
multiple suboptions with commas.

Link-time Suboptions Description

exits=name{,name} Specifies names of functions which represent program exits.
Program exits are calls which can never return and can never
call any procedure which has been compiled with IPA pass 1.

inline=auto

inline=noauto

Enables or disables automatic inlining only. The compiler
still accepts user-specified functions as candidates for
inlining.

inline[=suboption] Same as specifying the -qinline compiler option, with
suboption being any valid -qinline suboption.

inline=limit=num Changes the size limits that the -Q option uses to determine
how much inline expansion to do. This established limit is
the size below which the calling procedure must remain.
number is the optimizer’s approximation of the number of
bytes of code that will be generated. Larger values for this
number allow the compiler to inline larger subprograms,
more subprogram calls, or both. This argument is
implemented only when inline=auto is on.

inline=threshold=size Specifies the upper size limit of functions to be inlined,
where size is a value as defined under inline=limit. This
argument is implemented only when inline=auto is on.

inline=name{,name} Specifies a comma-separated list of functions to try to inline,
where functions are identified by name.

noinline=name{,name} Specifies a comma-separated list of functions that must not
be inlined, where functions are identified by name.

isolated=name,{name} Specifies a list of isolated functions that are not compiled with
IPA. Neither isolated functions nor functions within their call
chain can refer to global variables.

level=0

level=1

level=2

Specifies the optimization level for interprocedural analysis.
The default level is 1. Valid levels are as follows:

v Level 0 - Does only minimal interprocedural analysis and
optimization.

v Level 1 - Turns on inlining, limited alias analysis, and
limited call-site tailoring.

v Level 2 - Performs full interprocedural data flow and alias
analysis.

Compiler Options 165

Link-time Suboptions Description

list

list=[name]
[short|long]

Specifies that a listing file be generated during the link
phase. The listing file contains information about
transformations and analyses performed by IPA, as well as
an optional object listing generated by the back end for each
partition. This option can also be used to specify the name of
the listing file.

If listings have been requested (using either the -qlist or
-qipa=list options), and name is not specified, the listing file
name defaults to a.lst.

The long and short suboptions can be used to request more
or less information in the listing file. The short suboption,
which is the default, generates the Object File Map, Source
File Map and Global Symbols Map sections of the listing.
The long suboption causes the generation of all of the
sections generated through the short suboption, as well as
the Object Resolution Warnings, Object Reference Map,
Inliner Report and Partition Map sections.

lowfreq=name{,name} Specifies names of functions which are likely to be called
infrequently. These will typically be error handling, trace, or
initialization functions. The compiler may be able to make
other parts of the program run faster by doing less
optimization for calls to these functions.

missing=attribute Specifies the interprocedural behavior of procedures that are
not compiled with -qipa and are not explicitly named in an
unknown, safe, isolated, or pure suboption.

The following attributes may be used to refine this
information:

v safe - Functions which do not indirectly call a visible (not
missing) function either through direct call or through a
function pointer.

v isolated - Functions which do not directly reference global
variables accessible to visible functions. Functions bound
from shared libraries are assumed to be isolated.

v pure - Functions which are safe and isolated and which do
not indirectly alter storage accessible to visible functions.
pure functions also have no observable internal state.

v unknown - The default setting. This option greatly restricts
the amount of interprocedural optimization for calls to
unknown functions. Specifies that the missing functions are
not known to be safe, isolated, or pure.

partition=small

partition=medium

partition=large

partition=size

Specifies the size of each program partition created by IPA
during pass 2.

The size of the partition is directly proportional to the time
required to link and the quality of the generated code. When
partition sizes are large, the time to complete linkage is
longer but the quality of the generated code is generally
better. An integer may be used to specify partition size for
finer control. This integer is in terms of unspecified units and
its meaning may change from release to release. Its use
should be limited to very short term tuning efforts.

166 VisualAge C++ for AIX Compiler Reference

Link-time Suboptions Description

pdfname

pdfname=filename

Specifies the name of the profile data file containing the PDF
profiling information. If you do not specify filename, the
default file name is __pdf.

The profile is placed in the current working directory or in
the directory named by the PDFDIR environment variable.
This lets you do simultaneous runs of multiple executables
using the same PDFDIR, which can be useful when tuning
with PDF on dynamic libraries.

nothreads

threads

threads=N

Specifies the number of threads the compiler assigns to code
generation.

Specifying nothreads is equivalent to running one serial
process. This is the default.

Specifying threads allows the compiler to determine how
many threads to use, depending on the number of processors
available.

Specifying threads=N instructs the program to use N
threads. Though N can be any integer value in the range of 1
to MAXINT, N is effectively limited to the number of
processors available on your system.

pure=name{,name} Specifies a list of pure functions that are not compiled with
-qipa. Any function specified as pure must be isolated and
safe, and must not alter the internal state nor have
side-effects, defined as potentially altering any data visible to
the caller.

safe=name{,name} Specifies a list of safe functions that are not compiled with
-qipa. Safe functions can modify global variables, but may
not call functions compiled with -qipa.

unknown=name{,name} Specifies a list of unknown functions that are not compiled
with -qipa. Any function specified as unknown can make
calls to other parts of the program compiled with -qipa, and
modify global variables and dummy arguments.

Compiler Options 167

Link-time Suboptions Description

filename Gives the name of a file which contains suboption
information in a special format.

The file format is the following:

... comment
attribute{, attribute} = name{, name}
missing = attribute}, attribute}
exits = name{, name}
lowfreq = name{, name}
inline [= auto | = noauto]
inline = name{, name} [from name{, name}]
inline-threshold = unsigned_integer
inline-limit = unsigned_integer
list [= file-name | short | long]
noinline
noinline = name{, name} [from name{, name}]
level = 0 | 1 | 2
prof [= file-name]
noprof
partition = small | medium | large | unsigned_integer

where attribute is one of:

v exits

v lowfreq

v unknown

v safe

v isolated

v pure

Notes
This option turns on or customizes a class of optimizations known as
interprocedural analysis (IPA).
v IPA can significantly increase compilation time, even with the -qipa=noobject

option, so using IPA should be limited to the final performance tuning stage of
development.

v Specify the -qipa option on both the compile and link steps of the entire
application, or as much of it as possible. You should at least compile the file
containing main, or at least one of the entry points if compiling a library.

v While IPA’s interprocedural optimizations can significantly improve performance
of a program, they can also cause previously incorrect but functioning programs
to fail. Listed below are some programming practices that can work by accident
without aggressive optimization, but are exposed with IPA:
1. Relying on the allocation order or location of automatics. For example, taking

the address of an automatic variable and then later comparing it with the
address of another local to determine the growth direction of a stack. The C
language does not guarantee where an automatic variable is allocated, or it’s
position relative to other automatics. Do not compile such a function with
IPA(and expect it to work).

2. Accessing an either invalid pointer or beyond an array’s bounds. IPA can
reorganize global data structures. A wayward pointer which may have
previously modified unused memory may now trample upon user allocated
storage.

v Ensure you have sufficient resources to compile with IPA. IPA can generate
significantly larger object files than traditional compilers. As a result, the
temporary storage used to hold these intermediate files (by convention /tmp on

168 VisualAge C++ for AIX Compiler Reference

AIX) is sometimes too small. If a large application is being compiled, consider
redirecting temporary storage with the TMPDIR environment variable.

v Ensure there is enough swap space to run IPA (at least 200Mb for large
programs). Otherwise the operating system might kill IPA with a signal 9 ,
which cannot be trapped, and IPA will be unable to clean up its temporary files.

v You can link objects created with different releases of the compiler, but you must
ensure that you use a linker that is at least at the same release level as the newer
of the compilers used to create the objects being linked.

v Some symbols which are clearly referenced or set in the source code may be
optimized away by IPA, and may be lost to debug, nm, or dump outputs. Using
IPA together with the -g compiler will usually result in non-steppable output.

The necessary steps to use IPA are:
1. Do preliminary performance analysis and tuning before compiling with the

-qipa option, because the IPA analysis uses a two-pass mechanism that
increases compile and link time. You can reduce some compile and link
overhead by using the -qipa=noobject option.

2. Specify the -qipa option on both the compile and the link steps of the entire
application, or as much of it as possible. Use suboptions to indicate
assumptions to be made about parts of the program not compiled with -qipa.
During compilation, the compiler stores interprocedural analysis information in
the .o file. During linking, the -qipa option causes a complete recompilation of
the entire application.

Note: If a Severe error occurs during compilation, -qipa returns RC=1 and
terminates. Performance analysis also terminates.

Example
To compile a set of files with interprocedural analysis, enter:

xlC -c -O3 *.c -qipa
xlC -o product *.o -qipa

Here is how you might compile the same set of files, improving the optimization
of the second compilation, and the speed of the first compile step. Assume that
there exits two functions, trace_error and debug_dump, which are rarely executed.

xlC -c -O3 *.c -qipa=noobject
xlC -c - *.o -qipa=lowfreq=trace_error,debug_dump

Related References
“Compiler Command Line Options” on page 61
“libansi” on page 191
“list” on page 193
“pdf1, pdf2” on page 226
“S” on page 248

Compiler Options 169

isolated_call

Purpose
Specifies functions in the source file that have no side effects.

Syntax

�� �

:

-q isolated_call = function_name ��

where:

function_name Is the name of a function that does not have side effects, except
changing the value of a variable pointed to by a pointer or reference
parameter, or does not rely on functions or processes that have side
effects.

Side effects are any changes in the state of the runtime environment.
Examples of such changes are accessing a volatile object, modifying an
external object, modifying a file, or calling another function that does
any of these things. Functions with no side effects cause no changes to
external and static variables.

function_name can be a list of functions separated by colons (:).

See also “#pragma isolated_call” on page 315 and “#pragma options” on page 325.

Notes
Marking a function as isolated can improve the runtime performance of optimized
code by indicating the following to the optimizer:
v external and static variables are not changed by the called function
v calls to the function with loop-invariant parameters may be moved out of loops
v multiple calls to the function with the same parameter may be merged into one

call
v calls to the function may be discarded if the result value is not needed

The #pragma options keyword isolated_call must be specified at the top of the
file, before the first C or C++ statement. You can use the #pragma isolated_call
directive at any point in your source file.

Example
To compile myprogram.c, specifying that the functions myfunction(int) and
classfunction(double) do not have side effects, enter:

xlC myprogram.c -qisolated_call=myfunction:classfunction

Related References
“Compiler Command Line Options” on page 61
“#pragma isolated_call” on page 315
“#pragma options” on page 325

170 VisualAge C++ for AIX Compiler Reference

keepinlines

Purpose
Instructs the compiler to keep or discard definitions for unreferenced extern inline
functions.

Syntax

��
nokeepinlines

-q keepinlines ��

Notes
The default -qnokeepinlines setting instructs the compiler to discard the
definitions of unreferenced extern inline functions. This can reduce the size of the
object files.

The -qkeepinlines setting keeps the definitions of unreferenced extern inline
functions. This setting provides the same behavior as VisualAge C++ compilers
previous to the v5.0.2.1 update level, allowing compatibility with shared libraries
and object files built with the earlier releases of the compiler.

Related References
“Compiler Command Line Options” on page 61
“inline” on page 159
“The inline, _Inline, _inline, and __inline Function Specifiers” on page 161

Compiler Options 171

keyword

Purpose
This option controls whether the specified name is treated as a keyword or an
identifier whenever it appears in your program source.

Syntax

�� -q keyword = keyword_name
nokeyword

��

Notes
By default all the built-in keywords defined in the C and C++ language standards
are reserved as keywords. You cannot add keywords to the language with this
option. However, you can use -qnokeyword=keyword_name to disable built-in
keywords, and use -qkeyword=keyword_name to reinstate those keywords.

This option can be used with all C++ built-in keywords.

This option can also be used with the following C built-in keywords:
v asm
v restrict
v typeof

Example
You can reinstate bool with the following invocation:

xlC -qkeyword=bool

Related References
“Compiler Command Line Options” on page 61

172 VisualAge C++ for AIX Compiler Reference

L

Purpose
Searches the path directory for library files specified by the -lkey option.

Syntax

�� -L directory ��

Notes
If the -Ldirectory option is specified both in the configuration file and on the
command line, the paths specified in the configuration file are searched first.

Default
The default is to search only the standard directories.

Example
To compile myprogram.c so that the directory /usr/tmp/old and all other directories
specified by the -l option are searched for the library libspfiles.a, enter:

xlC myprogram.c -lspfiles -L/usr/tmp/old

Related References
“Compiler Command Line Options” on page 61
“l” on page 174

Compiler Options 173

l

Purpose
Searches the specified library file, libkey.so, and then libkey.a for dynamic linking,
or just libkey.a for static linking.

Syntax

�� -l key ��

Default
The default is to search only some of the compiler run-time libraries. See the
default configuration file for the list of default libraries corresponding to the
invocation command being used and the level of the operating system.

Notes
The actual search path can be modified with the -Ldirectory or -Z options. See -B,
-brtl, and -bstatic,-bdynamic for information on specifying the types of libraries
that are searched (for static or dynamic linking).

Example
To compile myprogram.c and include my library (libmylibrary.a), enter:

xlC myprogram.c -lmylibrary

Related Tasks
“Specify Compiler Options in a Configuration File” on page 27

Related References
“Compiler Command Line Options” on page 61
“B” on page 88
“b” on page 89
“brtl” on page 92
“l”
“Z” on page 296

174 VisualAge C++ for AIX Compiler Reference

langlvl

Purpose
Selects the language level for the compilation.

Syntax

�� -q langlvl = language ��

where values for language are described below in the Notes section.

See also “#pragma langlvl” on page 317 and “#pragma options” on page 325.

Default
The default language level is ansi when using xlc or c89 to invoke the compiler,
and extended when using xlC or cc. The extended language level is based on C89.

You can also use either of the following preprocessor directives to specify the
language level in your source program:

#pragma options langlvl=language
#pragma langlvl(language)

The pragma directive must appear before any noncommentary lines in the source
code.

Notes
For C programs, you can use the following -qlanglvl suboptions for

language:

ansi Compilation conforms to the ANSI C89 standard.
classic Allows the compilation of non-ANSI programs, and conforms closely

to the K&R level preprocessor. This language level is not supported
by the AIX v5.1 system header files, such as math.h. If you must use
the AIX v5.1 system header files, consider compiling your program to
the ansi or extended language levels.

extended Provides compatibility with the RT compiler and classic. This
language level is based on C89.

saal2 Compilation conforms to the SAA C Level 2 CPI language definition,
with some exceptions.

saa Compilation conforms to the current SAA C CPI language definition.
This is currently SAA C Level 2.

stdc89 Compilation conforms to the ANSI C89 standard.
stdc99 Compilation conforms to the ISO C99 standard.

Note: Not all operating system releases support the header files and
runtime library required by C99.

extc89 Compilation conforms to the ANSI C89 standard, and accepts
implementation-specific language extensions.

extc99 Compilation conforms to the ISO C99 standard, and accepts
implementation-specific language extensions.
Note: Not all operating system releases support the header files and
runtime library required by C99.

Compiler Options 175

[no]ucs Under language levels stdc99 and extc99, the default is -qlanglvl=ucs

This option controls whether Unicode characters are allowed in
identifiers, string literals and character literals in program source
code.

The Unicode character set is supported by the C standard. This
character set contains the full set of letters, digits and other characters
used by a wide range of languages, including all North American
and Western European languages. Unicode characters can be 16 or 32
bits. The ASCII one-byte characters are a subset of the Unicode
character set.

When this option is set to yes, you can insert Unicode characters in
your source files either directly or using a notation that is similar to
escape sequences. Because many Unicode characters cannot be
displayed on the screen or entered from the keyboard, the latter
approach is usually preferred. Notation forms for Unicode characters
are \uhhhh for 16-bit characters, or \Uhhhhhhhh for 32-bit characters,
where h represents a hexadecimal digit. Short identifiers of characters
are specified by ISO/IEC 10646.

The following -qlanglvl suboptions are accepted but ignored by the C compiler.
Use -qlanglvl=extended, -qlanglvl=extc99, or -qlanglvl=extc89 to enable the
functions that these suboptions imply. For other values of -qlanglvl, the functions
implied by these suboptions are disabled.

[no]gnu_assert GNU C portability option.
[no]gnu_explicitregvar GNU C portability option.
[no]gnu_include_next GNU C portability option.
[no]gnu_locallabel GNU C portability option.
[no]gnu_warning GNU C portability option.

For C++ programs, you can specify one or more of the following -qlanglvl
suboptions for language:

ansi Compilation conforms to the C89 standard for C programs,
and the ANSI C++ standard for C++ programs.

compat366 Compilation conforms to the IBM C and C++ Compilers V
3.6.

extended Compilation is the same as ansi mode, with some differences
to accomodate extended language features.

strict98 Compilation conforms to the ANSI C standard for C
programs, and the ANSI C++ standard for C++ programs.

176 VisualAge C++ for AIX Compiler Reference

[no]anonstruct This suboption controls whether anonymous structs and
anonymous classes are allowed in your C++ source.

By default, VisualAge C++ allows anonymous structs. This is
an extension to the C++ standard and gives behavior that is
compatible with the C++ compilers provided by Microsoft
Visual C++.

Anonymous structs typically are used in unions, as in the
following code fragment:

union U {
struct {

int i:16;
int j:16;

};
int k;

} u;
// ...
u.j=3;

When this suboption is set, you receive a warning if your
code declares an anonymous struct and -qinfo=por is
specified. When you build with -qlanglvl=noanonstruct, an
anonymous struct is flagged as an error. Specify noanonstruct
for compliance with standard C++.

[no]ansifor This suboption controls whether scope rules defined in the
C++ standard apply to names declared in for-init statements.

By default, standard C++ rules are used. For example the
following code causes a name lookup error:

{
//...
for (int i=1; i<5; i++) {

cout << i * 2 << endl;
}
i = 10; // error

}

The reason for the error is that i, or any name declared within
a for-init-statement, is visible only within the for statement.
To correct the error, either declare i outside the loop or set
ansiForStatementScopes to no.

Set noansifor to allow old language behavior. You may need
to do this for code that was developed with other products,
such as the compilers provided by earlier versions of
VisualAge C++ and predecessor products, and Microsoft
Visual C++.

[no]ansisinit This suboption can be used to select between old (v3.6 or
earlier) and current (v5.0 or later) compiler behaviors.

This suboption is useful for building an application that
includes an existing shared library originally built with a v3.6
or earlier version of the VisualAge C++ compiler. Specifying
the noansisinit suboption ensures that the behavior of global
(including static locals) objects with destructors in your
newly-compiled objects are compatible with objects built with
earlier compilers.

The default setting is ansisinit.

Compiler Options 177

[no]gnu_assert GNU C portability option to enable or disable support for the
following GNU C system identification assertions:
v #assert
v #unassert
v #cpu
v #machine
v #system

[no]gnu_explicitregvar GNU C portability option to control whether the compiler
accepts and ignores the specification of explicit registers for
variables.

[no]gnu_include_next GNU C portability option to enable or disable support for the
GNU C #include_next preprocessor directive.

[no]gnu_locallabel GNU C portability option to enable or disable support for
locally-declared labels.

[no]gnu_warning GNU C portability option to enable or disable support for the
GNU C #warning preprocessor directive.

[no]oldfriend This option controls whether friend declarations that name
classes without elaborated class names are treated as C++
errors.

By default, VisualAge C++ lets you declare a friend class
without elaborating the name of the class with the keyword
class. This is an extension to the C++ standard and gives
behavior that is compatible with the C++ compilers provided
by earlier versions of VisualAge C++ and predecessor
products, and Microsoft Visual C++.

For example, the statement below declares the class IFont to
be a friend class and is valid when the oldfriend suboption is
set specified.

friend IFont;

Set the nooldfriend suboption for compliance with standard
C++. The example declaration above causes a warning unless
you modify it to the statement as below, or suppress the
warning message with -qsuppress option.

friend class IFont;

[no]oldmath This suboption controls which versions of math function
declarations in <math.h> are included when you specify
math.h as an included or primary source file.

By default, the new standard math functions are used. Build
with -qlanglvl=nooldmath for strict compliance with the C++
standard.

For compatibility with modules that were built with earlier
versions of VisualAge C++ and predecessor products you
may need to build with -qlanglvl=oldmath.

178 VisualAge C++ for AIX Compiler Reference

[no]oldtempacc This suboption controls whether access to a copy constructor
to create a temporary object is always checked, even if
creation of the temporary object is avoided.

By default, VisualAge C++ suppresses the access checking.
This is an extension to the C++ standard and gives behavior
that is compatible with the C++ compilers provided by
VisualAge C++ for OS/2 3.0, VisualAge for C++ for
Windows, Version 3.5, and Microsoft Visual C++.

When this suboption is set to yes, you receive a warning if
your code uses the extension, unless you disable the warning
message with the -qsuppress option.

Set -qlanglvl=nooldtempacc for compliance with standard
C++. For example, the throw statement in the following code
causes an error because the copy constructor is a protected
member of class C:

class C {
public:

C(char *);
protected:

C(const C&);
};

C foo() {return C(“test”);} // returns a copy of a C object

void f()
{
// catch and throw both make implicit copies of the thrown object

throw C(“error”); // throws a copy of a C object
const C& r = foo(); // uses the copy of a C object created by

}

The example code above contains three ill formed uses of the
copy constructor C(const C&).

[no]oldtmplalign This suboption specifies the alignment rules implemented in
versions of the compiler (xlC) prior to Version 5.0. These
earlier versions of the xlC compiler ignore alignment rules
specified for nested templates. By default, these alignment
rules are not ignored in VisualAge C++ 4.0 or later. For
example, given the following template the size of A<char>::B
will be 5 with -qlanglvl=nooldtmplalign, and 8 with
-qlanglvl=oldtmplalign :

template <class T>
struct A {
#pragma options align=packed
struct B {
T m;
int m2;

};
#pragma options align=reset
};

Compiler Options 179

[no]oldtmplspec This suboption controls whether template specializations that
do not conform to the C++ standard are allowed.

By default, VisualAge C++ allows these old specializations
(-qlanglvl=nooldtmplspec). This is an extension to standard
C++ and gives behavior that is compatible with the C++
compilers provided by VisualAge C++ for OS/2 3.0,
VisualAge for C++ for Windows, Version 3.5, and Microsoft
Visual C++.

When -qlanglvl=oldtmplspec is set, you receive a warning if
your code uses the extension, unless you suppress the
warning message with the -qsuppress option.

For example, you can explicitly specialize the template class
ribbon for type char with the following lines:

template<class T> class ribbon { /*...*/};
class ribbon<char> { /*...*/};

Set -qlanglvl=nooldtmplspec for compliance with standard
C++. In the example above, the template specialization must
be modified to:

template<class T> class ribbon { /*...*/};
template<> class ribbon<char> { /*...*/};

[no]anonunion This suboption controls what members are allowed in
anonymous unions.

When this suboption is set to anonunion, anonymous unions
can have members of all types that standard C++ allows in
non-anonymous unions. For example, non-data members,
such as structs, typedefs, and enumerations are allowed.

Member functions, virtual functions, or objects of classes that
have non-trivial default constructors, copy constructors, or
destructors cannot be members of a union, regardless of the
setting of this option.

By default, VisualAge C++ allows non-data members in
anonymous unions. This is an extension to standard C++ and
gives behavior that is compatible with the C++ compilers
provided by previous versions of VisualAge C++ and
predecessor products, and Microsoft Visual C++.

When this option is set to anonunion, you receive a warning
if your code uses the extension, unless you suppress the
arning message with the -qsuppress option.

Set noanonunion for compliance with standard C++.

180 VisualAge C++ for AIX Compiler Reference

[no]illptom This suboption controls what expressions can be used to form
pointers to members. VisualAge C++ can accept some forms
that are in common use, but do not conform to the C++
standard.

By default, VisualAge C++ allows these forms. This is an
extension to standard C++ and gives behavior that is
compatible with the C++ compilers provided by earlier
versions of VisualAge C++ and predecessor products, and
Microsoft Visual C++.

When this suboption is set to illptom, you receive warnings if
your code uses the extension, unless you suppress the
warning messages with the -qsuppress option.

For example, the following code defines a pointer to a
function member, p, and initializes it to the address of C::foo,
in the old style:

struct C {
void foo(int);
};

void (C::*p) (int) = C::foo;

Set noillptom for compliance with the C++ standard. The
example code above must be modified to use the & operator.

struct C {
void foo(int);
};

void (C::*p) (int) = &C::foo;

Compiler Options 181

[no]implicitint This suboption controls whether VisualAge C++ will accept
missing or partially specified types as implicitly specifying
int. This is no longer accepted in the standard but may exist
in legacy code.

With the suboption set to noimplicitint, all types must be
fully specified.

With the suboption set to implicitint, a function declaration
at namespace scope or in a member list will implicitly be
declared to return int. Also, any declaration specifier sequence
that does not completely specify a type will implicitly specify
an integer type. Note that the effect is as if the int specifier
were present. This means that the specifier const, by itself,
would specify a constant integer.

The following specifiers do not completely specify a type.
v auto
v const
v extern
v extern “<literal>”
v inline
v mutable
v friend
v register
v static
v typedef
v virtual
v volatile
v platform specific types (for example, _cdecl)

Note that any situation where a type is specified is affected
by this suboption. This includes, for example, template and
parameter types, exception specifications, types in expressions
(eg, casts, dynamic_cast, new), and types for conversion
functions.

By default, VisualAge C++ sets -qlanglvl=implicitint. This is
an extension to the C++ standard and gives behavior that is
compatible with the C++ compilers provided by earlier
versions of VisualAge C++ and predecessor products, and
Microsoft Visual C++.

For example, the return type of function MyFunction is int
because it was omitted in the following code:

MyFunction()
{

return 0;
}

Set -qlanglvl=noimplicitint for compliance with standard
C++. For example, the function declaration above must be
modified to:

int MyFunction()
{

return 0;
}

182 VisualAge C++ for AIX Compiler Reference

[no]newexcp This suboption determines whether or not the C++ operator
new throws an exception. The standard exception
std::bad_alloc can be thrown when the requested memory
allocation fails. This option does not apply to the nothrow
versions of the new operator.

The standard implementation of the new operators fully
support exceptions. For compatibility with previous versions
of VisualAge C++, these operators return 0 by default.

[no]offsetnonpod This suboption controls whether the offsetof macro can be
applied to classes that are not data-only. C++ programmers
often casually call data-only classes “Plain Old Data” (POD)
classes.

By default, VisualAge C++ allows offsetof to be used with
nonPOD classes. This is an extension to the C++ standard,
and gives behavior that is compatible with the C++ compilers
provided by VisualAge C++for OS/2 3.0, VisualAge for C++
for Windows, Version 3.5, and Microsoft Visual C++

When this option is set, you receive a warning if your code
uses the extension, unless you suppress the warning message
with the -qsuppress option.

Set -qlanglvl=nooffsetnonpod for compliance with standard
C++.

Set -qlanglvl=offsetnonpod if your code applies offsetof to a
class that contains one of the following:

v user-declared constructors or destructors
v user-declared assignment operators
v private or protected non-static data members
v base classes
v virtual functions
v non-static data members of type pointer to member
v a struct or union that has non-data members
v references

[no]olddigraph This option controls whether old-style digraphs are allowed
in your C++ source. It applies only when -qdigraph is also
sete.

By default, VisualAge C++ supports only the digraphs
specified in the C++ standard.

Set -qlanglvl=olddigraph if your code contains at least one of
following digraphs:

Digraph

Resulting Character

%% # (pound sign)

%%%%
(double pound sign, used as the
preprocessor macro concatenation operator)

Set -qlanglvl=noolddigraph for compatibility with standard
C++ and the extended C++ language level supported by
previous versions of VisualAge C++ and predecessor
products.

Compiler Options 183

[no]trailenum This suboption controls whether trailing commas are allowed
in enum declarations.

By default, the compiler allows one or more trailing commas
at the end of the enumerator list. This is an extension to the
C++ standard, and provides compatibility with Microsoft
Visual C++. The following enum declaration uses this
extension:

enum grain { wheat, barley, rye,, };

Set -qlanglvl=notrailenum for compliance with standard C++
or with the ANSI language level supported by previous
versions of VisualAge C++ and predecessor products.

[no]typedefclass This suboption provides backwards compatibility with
previous versions of VisualAge C++ and predecessor
products.

The current C++ standard does not allow a typedef name to
be specified where a class name is expected. This option
relaxes that restriction. Set -qlanglvl=typedefclass to allow
the use of typedef names in base specifiers and constructor
initializer lists.

By default, a typedef name cannot be specified where a class
name is expected.

[no]ucs This suboption controls whether Unicode characters are
allowed in identifiers, string literals and character literals in
C++ sources.

The Unicode character set is supported by the C++ standard.
This character set contains the full set of letters, digits and
other characters used by a wide range of languages, including
all North American and Western European languages.
Unicode characters can be 16 or 32 bits. The ASCII one-byte
characters are a subset of the Unicode character set.

When -qlanglvl=ucs is set, you can insert Unicode characters
in your source files either directly or using a notation that is
similar to escape sequences. Because many Unicode characters
cannot be displayed on the screen or entered from the
keyboard, the latter approach is usually preferred. Notation
forms for Unicode characters are \uhhhh for 16-bit characters,
or \Uhhhhhhhh for 32-bit characters, where h represents a
hexadecimal digit. Short identifiers of characters are specified
by ISO/IEC 10646.

Under language levels stdc99 and extc99, the default setting
of -qlanglvl=ucs can be disabled by specifying
-qlanglvl=noucs.

184 VisualAge C++ for AIX Compiler Reference

[no]zeroextarray This suboption controls whether zero-extent arrays are
allowed as the last non-static data member in a class
definition.

By default, the compiler allows arrays with zero elements.
This is an extension to the C++ standard, and provides
compatibility with Microsoft Visual C++. The example
declarations below define dimensionless arrays a and b.

struct S1 { char a[0]; };
struct S2 { char b[]; };

Set nozeroextarray for compliance with standard C++ or with
the ANSI language level supported by previous versions of
VisualAge C++ and predecessor products.

When this option is set, you receive warnings about
zero-extent arrays in your code, unless you suppress the
warning message with the -qsuppress option.

Compiler Options 185

Exceptions to the ansi mode addressed by classic are as follows:

Tokenization Tokens introduced by macro expansion may be combined with adjacent
tokens in some cases. Historically, this was an artifact of the text-based
implementations of older preprocessors, and because, in older
implementations, the preprocessor was a separate program whose output
was passed on to the compiler.

For similar reasons, tokens separated only by a comment may also be
combined to form a single token. Here is a summary of how tokenization
of a program compiled in classic mode is performed:

1. At a given point in the source file, the next token is the longest
sequence of characters that can possibly form a token. For example,
i+++++j is tokenized as i ++ ++ + j even though i ++ + ++ j may
have resulted in a correct program.

2. If the token formed is an identifier and a macro name, the macro is
replaced by the text of the tokens specified on its #define directive.
Each parameter is replaced by the text of the corresponding argument.
Comments are removed from both the arguments and the macro text.

3. Scanning is resumed at the first step from the point at which the macro
was replaced, as if it were part of the original program.

4. When the entire program has been preprocessed, the result is scanned
again by the compiler as in the first step. The second and third steps do
not apply here since there will be no macros to replace. Constructs
generated by the first three steps that resemble preprocessing directives
are not processed as such.

It is in the third and fourth steps that the text of adjacent but previously
separate tokens may be combined to form new tokens.

The \ character for line continuation is accepted only in string and
character literals and on preprocessing directives.

Constructs such as:

#if 0
“unterminated

#endif
#define US ”Unterminating string
char *s = US terminated now“

will not generate diagnostic messages, since the first is an unterminated
literal in a FALSE block, and the second is completed after macro
expansion. However:

char *s = US;

will generate a diagnostic message since the string literal in US is not
completed before the end of the line.

Empty character literals are allowed. The value of the literal is zero.

186 VisualAge C++ for AIX Compiler Reference

Preprocessing
directives

The # token must appear in the first column of the line. The token
immediately following # is available for macro expansion. The line can be
continued with \ only if the name of the directive and, in the following
example, the (has been seen:

#define f(a,b) a+b
f\
(1,2) /* accepted */

#define f(a,b) a+b
f(\
1,2) /* not accepted */

The rules concerning \ apply whether or not the directive is valid. For
example,

#\
define M 1 /* not allowed */

#def\
ine M 1 /* not allowed */

#define\
M 1 /* allowed */

#dfine\
M 1 /* equivalent to #dfine M 1, even

though #dfine is not valid */

Following are the preprocessor directive differences between classic mode
and ansi mode. Directives not listed here behave similarly in both modes.

#ifdef/#ifndef
When the first token is not an identifier, no diagnostic message is
generated, and the condition is FALSE.

#else When there are extra tokens, no diagnostic message is generated.

#endif When there are extra tokens, no diagnostic message is generated.

#include
The < and > are separate tokens. The header is formed by
combining the spelling of the < and > with the tokens between
them. Therefore /* and // are recognized as comments (and are
always stripped), and the ” and ’ do begin literals within the <
and >. (Remember that in C programs, C++-style comments //
are recognized when -qcpluscmt is specified.)

#line The spelling of all tokens which are not part of the line number
form the new file name. These tokens need not be string literals.

#error Not recognized in classic mode.

#define
A valid macro parameter list consists of zero or more identifiers
each separated by commas. The commas are ignored and the
parameter list is constructed as if they were not specified. The
parameter names need not be unique. If there is a conflict, the last
name specified is recognized.

For an invalid parameter list, a warning is issued. If a macro name
is redefined with a new definition, a warning will be issued and
the new definition used.

#undef When there are extra tokens, no diagnostic message is generated.

Compiler Options 187

Macro
expansion

v When the number of arguments on a macro invocation does not match
the number of parameters, a warning is issued.

v If the (token is present after the macro name of a function-like macro, it
is treated as too few arguments (as above) and a warning is issued.

v Parameters are replaced in string literals and character literals.

v Examples:

#define M() 1
#define N(a) (a)
#define O(a,b) ((a) + (b))

M(); /* no error */
N(); /* empty argument */
O(); /* empty first argument

and too few arguments */

Text Output No text is generated to replace comments.

Related References
“Compiler Command Line Options” on page 61
“bitfields” on page 90
“chars” on page 97
“flag” on page 130
“inline” on page 159
“M” on page 198
“ro” on page 244
“suppress” on page 263
“#pragma langlvl” on page 317
“#pragma options” on page 325

188 VisualAge C++ for AIX Compiler Reference

largepage

Purpose
Instructs the compiler to exploit large page heaps available on Power 4 systems
running AIX v5.1D or later.

Syntax

��
nolargepage

-q largepage ��

Notes
Compiling with -qlargepage can result in improved program performance. This
option has effect only on Power 4 systems running AIX v5.1D or later.

This option is only valid when used together with IPA (-qipa, -O4, -O5 compiler
options).

Example
To compile myprogram.c to use large page heaps, enter:

xlC myprogram.c -qlargepage

Related References
“Compiler Command Line Options” on page 61
“ipa” on page 163

Compiler Options 189

ldbl128, longdouble

Purpose
Increases the size of long double type from 64 bits to 128 bits.

Syntax

��
noldbl128

-q ldbl128
nolongdouble
longdouble

��

See also “#pragma options” on page 325.

Notes
The -qlongdouble option is the same as the -qldbl128 option.

Separate libraries are provided that support 128-bit long double types. These
libraries will be automatically linked if you use any of the invocation commands
with the 128 suffix (xlC128, xlc128, cc128, xlC128_r, xlc128_r, or cc128_r). You can
also manually link to the 128-bit versions of the libraries using the -lkey option, as
shown in the following table:

Default (64-bit) long double 128-bit long double

Library
Form of the -lkey

option
Library

Form of the -lkey
option

libC.a -lC libC128.a -lC128

libC_r.a -lC_r libC128_r.a -lC128_r

Linking without the 128-bit versions of the libraries when your program uses
128-bit long doubles (for example, if you specify -qldbl128 alone) may produce
unpredictable results.

The -qldbl128 option defines __LONGDOUBLE128.

The #pragma options directive must appear before the first C or C++ statement in
the source file, and the option applies to the entire file.

Example
To compile myprogram.c so that long double types are 128 bits, enter:

xlC myprogram.c -qldbl128 -lC128

or:
xlC128 myprogram.c

Related References
“Compiler Command Line Options” on page 61
“l” on page 174
“#pragma options” on page 325

190 VisualAge C++ for AIX Compiler Reference

libansi

Purpose
Assumes that all functions with the name of an ANSI C library function are in fact
the system functions.

Syntax

��
nolibansi

-q libansi ��

See also “#pragma options” on page 325.

Notes
This will allow the optimizer to generate better code because it will know about
the behavior of a given function, such as whether or not it has any side effects.

Related References
“Compiler Command Line Options” on page 61
“#pragma options” on page 325

Compiler Options 191

linedebug

Purpose
Generates line number and source file name information for the debugger.

Syntax

��
nolinedebug

-q linedebug ��

Notes
This option produces minimal debugging information, so the resulting object size
is smaller than that produced if the -g debugging option is specified. You can use
the debugger to step through the source code, but you will not be able to see or
query variable information. The traceback table, if generated, will include line
numbers.

Avoid using this option with -O (optimization) option. The information produced
may be incomplete or misleading.

If you specify the -qlinedebug option, the inlining option defaults to -Q! (no
functions are inlined).

The -g option overrides the -qlinedebug option. If you specify -g -qnolinedebug
on the command line, -qnolinedebug is ignored and the following warning is
issued:

1506-... (W) Option -qnolinedebug is incompatible with option -g and is ignored

Example
To compile myprogram.c to produce an executable program testing so you can
step through it with a debugger, enter:

xlC myprogram.c -o testing -qlinedebug

Related References
“Compiler Command Line Options” on page 61
“g” on page 141
“O, optimize” on page 215
“Q” on page 236
“#pragma options” on page 325

192 VisualAge C++ for AIX Compiler Reference

list

Purpose
Produces a compiler listing that includes an object listing.

Syntax

��
nolist

-q list ��

See also “#pragma options” on page 325.

Notes
For C, options that are not defaults appear in all listings, even if nolist is specified.
The noprint option overrides this option. This does not appply to C++.

Example
To compile myprogram.c to produce an object listing enter:

xlC myprogram.c -qlist

Related References
“Compiler Command Line Options” on page 61
“print” on page 231
“#pragma options” on page 325

Compiler Options 193

listopt

Purpose
Produces a compiler listing that displays all options in effect at time of compiler
invocation.

The listing will show options in effect as set by the compiler default, configuration
file, and command line settings. Option settings caused by #pragma statements in
the program source are not shown in the compiler listing.

Syntax

��
nolistopt

-q listopt ��

Example
To compile myprogram.c to produce a compiler listing that shows all options in
effect, enter:

xlC myprogram.c -qlistopt

Related References
“Compiler Command Line Options” on page 61
“Resolving Conflicting Compiler Options” on page 31

194 VisualAge C++ for AIX Compiler Reference

longlit

Purpose
Makes unsuffixed literals into the long type in 64-bit mode.

Syntax

��
nolonglit

-q longlit ��

Notes
The following table shows the implicit types for constants in 64-bit mode when
compiling in the stdc89, extc89, or extended language level:

default 64-bit mode 64-bit mode with qlonglit

unsuffixed decimal signed int
signed long
unsigned long

signed long
unsigned long

unsuffixed octal or hex signed int
unsigned int
signed long
unsigned long

signed long
unsigned long

suffixed by u/U unsigned int
unsigned long

unsigned long

suffixed by l/L signed long
unsigned long

signed long
unsigned long

suffixed by ul/UL unsigned long unsigned long

The following table shows the implicit types for constants in 64-bit mode when
compiling in the stdc99 or extc99 language level:

Decimal Constant -qlonglit effect on Decimal
Constant

unsuffixed int
long int

long int

u or U unsigned int
unsigned long int

unsigned long int

l or L long int long int

Both u or U, and l
or L

unsigned long int unsigned long int

ll or LL long long int long long int

Both u or U, and ll
or LL

unsigned long long int unsigned long long int

Compiler Options 195

Octal or Hexadecimal
Constant

-qlonglit effect on Octal or
Hexadecimal Constant

unsuffixed int
unsigned int
long int
unsigned long int

long int
unsigned long int

u or U unsigned int
unsigned long int

unsigned long int

l or L long int
unsigned long int

long int
unsigned long int

Both u or U, and l
or L

unsigned long int unsigned long int

ll or LL long long int
unsigned long long int

long long int
unsigned long long int

Both u or U, and ll
or LL

unsigned long long int unsigned long long int

Related References
“Compiler Command Line Options” on page 61
“langlvl” on page 175

196 VisualAge C++ for AIX Compiler Reference

longlong

Purpose
Allows long long integer types in your program.

Syntax

��
longlong

-q nolonglong ��

Default
The default with xlc , xlC and cc is -qlonglong, which defines _LONG_LONG
(long long types will work in programs). The default with c89 is -qnolonglong
(long long types are not supported).

Notes
This option cannot be specified when the selected language level is stdc99

or extc99. It is used to control the long long support that is provided as an
extension to the C89 standard. This extension is slightly different from the long
long support that is part of the C99 standard.

Examples
1. To compile myprogram.c so that long long ints are not allowed, enter:

xlC myprogram.c -qnolonglong

2. AIX v4.2 and later provides support for files greater than 2 gigabytes in size so
you can store large quantities of data in a single file. To allow Large File
manipulation in your application, compile with the -D_LARGE_FILES and
-qlonglong compiler options. For example:

xlC myprogram.c -D_LARGE_FILES -qlonglong

Related References
“Compiler Command Line Options” on page 61

Compiler Options 197

M

Purpose
Creates an output file that contains targets suitable for inclusion in a description
file for the make command.

Syntax

�� -M ��

Notes
The -M option is functionally identical to the -qmakedep option.

.u files are not make files; .u files must be edited before they can be used with the
make command. For more information on this command, see your operating
system documentation.

The output file contains a line for the input file and an entry for each include file.
It has the general form:

file_name.o:file_name.c
file_name.o:include_file_name

Include files are listed according to the search order rules for the #include
preprocessor directive, described in Directory Search Sequence for Include Files Using
Relative Path Names. If the include file is not found, it is not added to the .u file.

Files with no include statements produce output files containing one line that lists
only the input file name.

Examples
If you do not specify the -o option, the output file generated by the -M option is
created in the current directory. It has a .u suffix. For example, the command:

xlC -M person_years.c

produces the output file person_years.u.

A .u file is created for every input file with a .c or .i suffix. Output .u files are not
created for any other files. For example, the command:

xlC -M conversion.c filter.c /lib/libm.a

produces two output files, conversion.u and filter.u, and an executable file as well.
No .u file is created for the library.

If the current directory is not writable, no .u file is created. If you specify
-ofile_name along with -M, the .u file is placed in the directory implied by
-ofile_name. For example, for the following invocation:

xlC -M -c t.c -o /tmp/t.o

places the .u output file in /tmp/t.u.

Related References
“Compiler Command Line Options” on page 61
“makedep” on page 204
“o” on page 219

198 VisualAge C++ for AIX Compiler Reference

ma

Purpose
Substitutes inline code for calls to function alloca as if #pragma alloca directives
are in the source code.

Syntax

�� -ma ��

Notes
If #pragma alloca is unspecified, or if you do not use -ma, alloca is treated as a
user-defined identifier rather than as a built-in function.

This option does not apply to C++ programs. In C++ programs, you must instead
specify #include <malloc.h> to include the alloca function declaration.

Example
To compile myprogram.c so that calls to the function alloca are treated as inline,
enter:

xlc myprogram.c -ma

Related References
“Compiler Command Line Options” on page 61
“#pragma alloca” on page 300

Compiler Options 199

macpstr

Purpose
Converts Pascal string literals into null-terminated strings where the first byte
contains the length of the string.

Syntax

��
nomacpstr

-q macpstr ��

See also “#pragma options” on page 325.

Notes
A Pascal string literal always contains the characters “\p. The characters \p in the
middle of a string do not form a Pascal string literal; the characters must be
immediately preceded by the ” (double quote) character.

The final length of the Pascal string literal can be no longer than 255 bytes (the
maximum length that can fit in a byte).

For example, the -qmacpstr converts:
“\pABC”

to:
’\03’ , ’A’ , ’B’ , ’C’ , ’\0’

The compiler ignores the -qmacpstr option when the -qmbcs or -qdbcs option is
active because Pascal-string-literal processing is only valid for one-byte characters.

The #pragma options keyword MACPSTR is only valid at the top of a source file
before any C or C++ source statements. If you attempt to use it in the middle of a
source file, it is ignored and the compiler issues an error message.

Examples of Pascal String Literals: The compiler replaces trigraph sequences by
the corresponding single-character representation. For example:

“??/p pascal string”

becomes:
“\p pascal string”

200 VisualAge C++ for AIX Compiler Reference

The following are examples of valid Pascal string literals:

ANSI Mode “\p pascal string”

Each instance of a new-line character and an immediately preceding
backslash (\) character is deleted, splicing the physical source lines into
logical ones. For example:

“\p pascal \
string”

Two Pascal string literals are concatenated to form one Pascal string
literal. For example:

“\p ABC” “\p DEF”

or

“\p ABC” “DEF”
becomes:

“\06ABCDEF”

For the macro ADDQUOTES:

#define ADDQUOTES (x) #x
where x is:

\p pascal string
or

\p pascal \
string

becomes:

“\p pascal string”

Note however that:

ADDQUOTES(This is not a “\p pascal string”)
becomes:

“This is not a \”\\p pascal string\“”

Extended Mode Is the same as ANSI mode, except the macro definition would be:

#define ADDQUOTES_Ext (x) “x”
where x is the same as in the ANSI example:

\p pascal string
\p pascal \
string

String Literal Processing: The following describes how Pascal string literals are
processed.
v Concatenating a Pascal string literal to a normal string gives a non-Pascal string.

For example:
“ABC” “\pDEF”

gives:
“ABCpDEF”

v A Pascal string literal cannot be concatenated with a wide string literal.
v The compiler truncates a Pascal string literal that is longer than 255 bytes

(excluding the length byte and the terminating NULL) to 255 characters.

Compiler Options 201

v The compiler ignores the -qmacpstr option if -qmbcs or -qdbcs is used, and
issues a warning message.

v Because there is no Pascal-string-literal processing of wide strings, using the
escape sequence \p in a wide string literal with the -qmacpstr option, generates
a warning message and the escape sequence is ignored.

v The Pascal string literal is not a basic type different from other C or C++ string
literals. After the processing of the Pascal string literal is complete, the resulting
string is treated the same as all other strings. If the program passes a C string to
a function that expects a Pascal string, or vice versa, the behavior is undefined.

v Concatenating two Pascal string literals, for example, strcat(), does not result in
a Pascal string literal. However, as described above, two adjacent Pascal string
literals can be concatenated to form one Pascal string literal in which the first
byte is the length of the new string literal.

v Modifying any byte of the Pascal string literal after the processing has been
completed does not alter the original length value in the first byte.

v No errors or warnings are issued when the bytes of the processed Pascal string
literal are modified.

v Entering the characters:
’\p’ , ’A’ , ’B’ , ’C’ , ’\0’

into a character array does not form a Pascal string literal.

Example
To compile mypascal.c and convert string literals into null-terminated strings,
enter:

xlc mypascal.c -qmacpstr

Related References
“Compiler Command Line Options” on page 61
“mbcs, dbcs” on page 209
“#pragma options” on page 325

202 VisualAge C++ for AIX Compiler Reference

maf

Purpose
Specifies whether floating-point multiply-add instructions are to be generated. This
option affects the precision of floating-point intermediate results.

Syntax

��
maf

-q nomaf ��

See also “#pragma options” on page 325.

Notes
This option is obsolete. Use -qfloat=maf in your new applications.

Related References
“Compiler Command Line Options” on page 61
“float” on page 131
“#pragma options” on page 325

Compiler Options 203

makedep

Purpose
Creates an output file that contains targets suitable for inclusion in a description
file for the make command.

Syntax

�� -q makedep ��

Notes
The -qmakedep option is functionally identical to the -M option.

.u files are not make files; .u files must be edited before they can be used with the
make command. For more information on this command, see your operating
system documentation..

If you do not specify the -o option, the output file generated by the -qmakedep
option is created in the current directory. It has a .u suffix. For example, the
command:

xlC -qmakedep person_years.c

produces the output file person_years.u.

A .u file is created for every input file with a .c or .i suffix. Output .u files are not
created for any other files. For example, the command:

xlC -qmakedep conversion.c filter.c /lib/libm.a

produces two output files, conversion.u and filter.u (and an executable file as
well). No .u file is created for the library.

If the current directory is not writable, no .u file is created. If you specify
-ofile_name along with -qmakedep, the .u file is placed in the directory implied by
-ofile_name. For example, for the following invocation:

xlC -qmakedep -c t.c -o /tmp/t.o

places the .u output file in /tmp/t.u.

The output file contains a line for the input file and an entry for each include file.
It has the general form:

file_name.o:file_name.c
file_name.o:include_file_name

Include files are listed according to the search order rules for the #include
preprocessor directive, described in “Directory Search Sequence for Include Files
Using Relative Path Names” on page 33. If the include file is not found, it is not
added to the .u file.

Files with no include statements produce output files containing one line that lists
only the input file name.

Related References
“Compiler Command Line Options” on page 61
“M” on page 198

204 VisualAge C++ for AIX Compiler Reference

“o” on page 219
“Directory Search Sequence for Include Files Using Relative Path Names” on
page 33

Compiler Options 205

maxerr

Purpose
Instructs the compiler to halt compilation when num errors of a specified severity
level or higher is reached.

Syntax

��
nomaxerr

-q maxerr = num
s

: i
w
(1)

e

��

Notes:

1 C only

where num must be an integer. Choices for severity level can be one of the
following:

sev_level Description

i Informational

w Warning

e Error (C only)

s Severe error

Notes
If a severity level is not specified, the current value of the -qhalt option is used.
The default value for -qhalt is s (severe error).

If the -qmaxerr option is specified more than once, the -qmaxerr option specified
last determines the action of the option. If both the -qmaxerr and -qhalt options
are specified, the -qmaxerr or -qhalt option specified last determines the severity
level used by the -qmaxerr option.

An unrecoverable error occurs when the number of errors reached the limit
specified. The error message issued is similar to:

1506-672 (U) The number of errors has reached the limit of ...

If -qnomaxerr is specified, the entire source file is compiled regardless of how
many errors are encountered.

Diagnostic messages may be controlled by the -qflag option.

Examples
1. To stop compilation of myprogram.c when 10 warnings are encounted, enter

the command:
xlC myprogram.c -qmaxerr=10:w

2. To stop compilation of myprogram.c when 5 severe errors are encounted,
assuming that the current -qhalt option value is S (severe), enter the command:

206 VisualAge C++ for AIX Compiler Reference

xlC myprogram.c -qmaxerr=5

3. To stop compilation of myprogram.c when 3 informationals are encountered,
enter the command:

xlC myprogram.c -qmaxerr=3:i

or:
xlC myprogram.c -qmaxerr=5:w qmaxerr=3 -qhalt=i

Related References
“Compiler Command Line Options” on page 61
“flag” on page 130
“halt” on page 143
“Message Severity Levels and Compiler Response” on page 379

Compiler Options 207

maxmem

Purpose
Limits the amount of memory used for local tables of specific, memory-intensive
optimizations to size kilobytes. If that memory is insufficient for a particular
optimization, the scope of the optimization is reduced.

Syntax

��
8192

-q maxmem = size ��

Notes
v A size value of -1 permits each optimization to take as much memory as it needs

without checking for limits. Depending on the source file being compiled, the
size of subprograms in the source, the machine configuration, and the workload
on the system, this might exceed available system resources.

v The limit set by -qmaxmem is the amount of memory for specific optimizations,
and not for the compiler as a whole. Tables required during the entire
compilation process are not affected by or included in this limit.

v Setting a large limit has no negative effect on the compilation of source files
when the compiler needs less memory.

v Limiting the scope of optimization does not necessarily mean that the resulting
program will be slower, only that the compiler may finish before finding all
opportunities to increase performance.

v Increasing the limit does not necessarily mean that the resulting program will be
faster, only that the compiler is better able to find opportunities to increase
performance if they exist.

Depending on the source file being compiled, the size of the subprograms in the
source, the machine configuration, and the workload on the system, setting the
limit too high might lead to page-space exhaustion. In particular, specifying
-qmaxmem=-1 allows the compiler to try and use an infinite amount of storage,
which in the worst case can exhaust the resources of even the most well-equipped
machine.

Example
To compile myprogram.c so that the memory specified for local table is 16384
kilobytes, enter:

xlC myprogram.c -qmaxmem=16384

Related References
“Compiler Command Line Options” on page 61

208 VisualAge C++ for AIX Compiler Reference

mbcs, dbcs

Purpose
Use the -qmbcs option if your program contains multibyte characters. The -qmbcs
option is equivalent to -qdbcs.

Syntax

��
nombcs

-q mbcs
nodbcs
dbcs

��

See also “#pragma options” on page 325.

Notes
Multibyte characters are used in certain languages such as Chinese, Japanese, and
Korean.

Example
To compile myprogram.c if it contains multibyte characters, enter:

xlC myprogram.c -qmbcs

Related References
“Compiler Command Line Options” on page 61
“#pragma options” on page 325
Appendix B, “National Languages Support in VisualAge C++” on page 401

Compiler Options 209

mkshrobj

Purpose
Creates a shared object from generated object files.

Syntax

�� -q mkshrobj
= priority

��

where priority specifies the priority level for the file. priority may be any number
from -214782623 (highest priority-initialized first) to 214783647 (lowest
priority-initialized last). Numbers from -214783648 to -214782624 are reserved for
system use. If no priority is specified the default priority of 0 is used. The priority
is not used when linking shared objects (using the xlc command) written in C.

Notes
This option, together with the related options described below, should be used
instead of the makeC++SharedLib command to create a shared object. The
advantage to using this option is that the compiler will automatically include and
compile the template instantiations in the tempinc directory.

The compiler will automatically export all global symbols from the shared object
unless one explicitly specifies which symbols to export with the -bE:, -bexport: or
-bexpall options.

The priority suboption has no effect if the you use the xlc command to link with or
the shared object has no static initialization.

The following related options can be used with the -qmkshrobj compiler option:

-oshared_file.o Is the name of the file that will hold the shared file information.
The default is shr.o.

-qexpfile=filename Saves all exported symbols in filename. This option is ignored
unless xlC automatically creates the export list.

-e name Sets the entry name for the shared executable to name. The
default is -bnoentry.

If you use -qmkshrobj to create a shared library, the compiler will:
1. If the user doesn’t specify -bE:, -bexport:, -bexpall or -bnoexpall, create an

export list containing all global symbols using the CreateExportList script. You
can specify another script with the -tE/-B or -qpath=E: options.

2. If CreateExportList was used to create the export list and -qexpfile was
specified, the export list is saved.

3. Calls the linker with the appropriate options and object files to build a shared
object.

Example
The following example shows how to construct a shared library containing two
shared objects using the the -qmkshrobj option, and the AIX ar command. The
shared library is then linked with a file that contains the main function. Different
priorities are used to ensure objects are initialized in the specified order.

210 VisualAge C++ for AIX Compiler Reference

The example below shows how the objects in this example are arranged in various
files.

The first part of this example shows how to use the -qpriority=N option and the
#pragma priority(N) directive to specify the initialization order for objects within
the object files.

The example shows how to make two shared objects: animals.o containing object
files compiled from house.C, farm.C, and zoo.C, and fish.o containing object files
compiled from fresh.C and salt.C. The -qmkshrobj=P option is used to specify the
priority of the initialization of the shared objects.

The priority values for the shared objects are chosen so that all the objects in fish.o
are initialized before the objects in myprogram.o, and all the objects in animals.o
are initialized after the objects in myprogram.o.

To specify this initialization order, follow these steps:
1. Develop an initialization order for the objects in house.C, farm.C, and zoo.C:

a. To ensure that the object lion L in zoo.C is initialized before any other
objects in either of the other two files, compile zoo.C using a -qpriority=N
option with N less than zero so both objects have a priority number less
than any other objects in farm.C and house.C:

xlC zoo.C -c -qpriority=-50

b. Compile the house.C and farm.C files without specifying the -qpriority=N
option (so N=0) so objects within the files retain the priority numbers
specified by their #pragma priority(N) directives:

xlC house.C farm.C -c

c. Combine these three files in a shared library. Use xlC -qmkshrobj to
construct a library animals.o with a priority of 40:

xlC -qmkshrobj=40 -o animals.o house.o farm.o zoo.o

2. Develop an initialization order for the objects in fresh.C, and salt.C:
a. Compile the fresh.C and salt.C files:

xlC fresh.C salt.C -c

Compiler Options 211

b. To assure that all objects in fresh.C and salt.C are initialized before any
other objects, use xlC -qmkshrobj to construct a library fish.o with a
priority of -100.

xlC -qmkshrobj=-100 -o fish.o fresh.o salt.o

Because the shared library fish.o has a lower priority number (-100) than
animals.o (40), when the files are placed in an archive file with the ar
command, their objects are initialized first.

3. Compile myprogram.C that contains the function main to produce an object file
myprogram.o. By not specifying a priority, this file is compiled with a default
priority of zero, and the objects in main have a priority of zero.

xlC myprogram.C -c

4. To create a library that contains the two shared objects animals.o and fish.o,
you use the ar command. To produce an archive file, libzoo.a, enter the
command:

ar rv libzoo.a animals.o fish.o

where:

rv Are two ar options. r replaces a named file if it already appears in the
library, and v writes to standard output a file-by-file description of
the making of the new library.

libzoo.a Is the name you specified for the archive file that will contain the
shared object files and their priority levels.

animals.o
fish.o

Are the two shared files you created with xlC -qmkshrobj.

5. To produce an executable file, animal_time, so that the objects are initialized in
the order you have specified, enter:

xlC -oanimal_time myprogram.o -L. -lzoo

6. The order of initialization of the objects is shown in the following table.

Order of Initialization of Objects in libzoo.a

File Class Object Priority
Value

Comment

“fish.o” -100 All objects in “fish.o” are initialized first
because they are in a library prepared with
-qmkshrobj=-100 (lowest priority number,
-100, specified for any files in this
compilation)

“shark S” -100(-200) Initialized first in “fish.o” because within
file, #pragma priority(-200)

“trout A” -100(-80) #pragma priority(-80)

“tuna T” -100(10) #pragma priority(10)

“bass B” -100(500) #pragma priority(500)

“myprog.o” 0 File generated with no priority
specifications; default is 0

“CAGE” 0(0) Object generated in main with no priority
specifications; default is 0

212 VisualAge C++ for AIX Compiler Reference

Order of Initialization of Objects in libzoo.a

“animals.o” 40 File generated with -qmkshrobj=40

“lion L” 40(-50) Initialized first in file “animals.o” compiled
with -qpriority=-50

“horse H” 40(0) Follows with priority of 0 (since
-qpriority=N not specified at compilation
and no #pragma priority(N) directive)

“dog D” 40(20) Next priority number (specified by
#pragma priority(20))

“zebra N” 40(50) Next priority number from #pragma
priority(50)

“cat C” 40(100) Next priority number from #pragma
priority(100)

“cow W” 40(500) Next priority number from #pragma
priority(500) (Initialized last)

You can place both nonshared and shared files with different priority levels in
the same archive library using the AIX ar command.

Related References
“Compiler Command Line Options” on page 61
“b” on page 89
“e” on page 117
“expfile” on page 125
“o” on page 219
“path” on page 225
“priority” on page 232
“#pragma priority” on page 336

Compiler Options 213

namemangling

Purpose
Chooses the name mangling scheme for external symbol names generated from
C++ source code.

Syntax

��
ansi

-q namemangling = v5
v4
v3
compat

��

where available choices for mangling schemes are:

ansi The name mangling scheme fully supports the various language features of
Standard C++, including function template overloading.

v5 The name mangling scheme is compatible with VisualAge C++ version 5.0.

v4 The name mangling scheme is compatible with VisualAge C++ version 4.0.

v3 Use this scheme for compatibility with link modules created with versions
of VisualAge C++ released prior to version 4.0, or with link modules that
were created with the #pragma namemangling or -qnamemangling=compat
compiler options specified.

This scheme cannot be used when a function has the same name and the
same function parameter list as a function template specialization. For
example, VisualAge C++ will issue a diagnostic message in the following
case when -qnamemangling=compat is enabled:

int foo(int) { return 42; }

template int foo(T) { return 42; }

int main() {
return foo(4); // instantiate int foo< int>(int)
}

compat Same as the v3 suboption, described above.

See also “#pragma namemangling” on page 322.

Notes
By default VisualAge C++ uses a scheme that supports the C++ standard.

Related References
“Compiler Command Line Options” on page 61
“#pragma namemangling” on page 322
“#pragma nameManglingRule” on page 323

214 VisualAge C++ for AIX Compiler Reference

O, optimize

Purpose
Optimizes code at a choice of levels during compilation.

Syntax

��
nooptimize

-q optimize
= 0

2
3
4
5

-O
-O2
-O3
-O4
-O5

��

where optimization settings are:

-O
-qOPTimize

Performs optimizations that the compiler developers considered the
best combination for compilation speed and runtime performance. The
optimizations may change from product release to release. If you need
a specific level of optimization, specify the appropriate numeric value.

This setting implies -qstrict_induction unless -qnostrict_induction is
explicitly specified.

-O2
-qOPTimize=2

Same as -O.

-O3
-qOPTimize=3

Performs additional optimizations that are memory intensive,
compile-time intensive, or both. These optimizations are performed in
addition to those performed with only the -O option specified. They are
recommended when the desire for runtime improvement outweighs the
concern for minimizing compilation resources.

This is the compiler’s highest and most aggressive level of
optimization. -O3 performs optimizations that have the potential to
slightly alter the semantics of your program. It also applies the -O2
level of optimization with unbounded time and memory. The compiler
guards against these optimizations at -O2.

Use the -qstrict option with -O3 to turn off the aggressive
optimizations that might change the semantics of a program. -qstrict
combined with -O3 invokes all the optimizations performed at -O2 as
well as further loop optimizations. The -qstrict compiler option must
appear after the -O3 option, otherwise it is ignored.

Compiler Options 215

-O3
-qOPTimize=3
(continued)

The aggressive optimizations performed when you specify -O3 are:

1. Aggressive code motion, and scheduling on computations that have
the potential to raise an exception, are allowed.

Loads and floating-point computations fall into this category. This
optimization is aggressive because it may place such instructions
onto execution paths where they will be executed when they may
not have been according to the actual semantics of the program.

For example, a loop-invariant floating-point computation that is
found on some, but not all, paths through a loop will not be moved
at -O2 because the computation may cause an exception. At -O3, the
compiler will move it because it is not certain to cause an exception.
The same is true for motion of loads. Although a load through a
pointer is never moved, loads off the static or stack base register are
considered movable at -O3. Loads in general are not considered to
be absolutely safe at -O2 because a program can contain a
declaration of a static array a of 10 elements and load
a[60000000003], which could cause a segmentation violation.

The same concepts apply to scheduling.

Example:

In the following example, at -O2, the computation of b+c is not
moved out of the loop for two reasons:

a. it is considered dangerous because it is a floating-point
operation

b. it does not occur on every path through the loop

At -O3, the code is moved.

...
int i ;
float a[100], b, c ;
for (i = 0 ; i < 100 ; i++)
{
if (a[i] < a[i+1])
a[i] = b + c ;

}
...

2. Conformance to IEEE rules are relaxed.

With -O2 certain optimizations are not performed because they may
produce an incorrect sign in cases with a zero result, and because
they remove an arithmetic operation that may cause some type of
floating-point exception.

For example, X + 0.0 is not folded to X because, under IEEE rules,
-0.0 + 0.0 = 0.0, which is -X. In some other cases, some
optimizations may perform optimizations that yield a zero result
with the wrong sign. For example, X - Y * Z may result in a -0.0
where the original computation would produce 0.0.

In most cases the difference in the results is not important to an
application and -O3 allows these optimizations.

3. Floating-point expressions may be rewritten.

Computations such as a*b*c may be rewritten as a*c*b if, for
example, an opportunity exists to get a common subexpression by
such rearrangement. Replacing a divide with a multiply by the
reciprocal is another example of reassociating floating-point
computations.

216 VisualAge C++ for AIX Compiler Reference

-O3,
-qOPTimize=3
(continued)

Notes

v -qfloat=fltint:rsqrt are on by default in -O3.

v Built-in functions do not change errno at -O3.

v Aggressive optimizations do not include the following floating-point
suboptions: -qfloat=hsflt, hssngl, and -qfloat=rndsngl, or anything
else that affects the precision mode of a program.

v Integer divide instructions are considered too dangerous to optimize
even at -O3.

v The default -qmaxmem value is -1 at -O3.

v Refer to -qflttrap to see the behavior of the compiler when you
specify optimize options with the flttrap option.

v You can use the -qstrict and -qstrict_induction compiler options to
turn off effects of -O3 that might change the semantics of a program.
Reference to the -qstrict compiler option can appear before or after
the -O3 option.

v The -O3 compiler option followed by the -O option leaves
-qignerrno on.

-O4
-qOPTimize=4

This option is the same as -O3, except that it also:

v Sets the -qipa option

v Sets the -qhot option

v Sets the -qarch and -qtune options to the architecture of the
compiling machine

Note: Later settings of -O, -qcache, -qipa, -qarch, and -qtune options
will override the settings implied by the -O4 option.

-O5
-qOPTimize=5

This option is the same as -O4, except that it:

v Sets the -qipa=level=2 option to perform full interprocedural data
flow and alias analysis.

Note: Later settings of -O, -qcache, -qipa, -qarch, and -qtune options
will override the settings implied by the -O5 option.

-qNOOPTimize
-qOPTimize=0

Performs only quick local optimizations such as constant folding and
elimination of local common subexpressions.

This setting implies -qstrict_induction unless -qnostrict_induction is
explicitly specified.

Notes
You can abbreviate -qoptimize... to -qopt.... For example, -qnoopt is equivalent to
-qnooptimize.

Increasing the level of optimization may or may not result in additional
performance improvements, depending on whether additional analysis detects
further opportunities for optimization.

Compilations with optimizations may require more time and machine resources
than other compilations.

Optimization can cause statements to be moved or deleted, and generally should
not be specified along with the -g flag for debugging programs. The debugging
information produced may not be accurate.

Compiler Options 217

Example
To compile myprogram.c for maximum optimization, enter:

xlC myprogram.c -O3

Related References
“Compiler Command Line Options” on page 61
“arch” on page 83
“cache” on page 95
“float” on page 131
“g” on page 141
“ignprag” on page 153
“ipa” on page 163
“langlvl” on page 175
“strict” on page 261
“strict_induction” on page 262
“tune” on page 277

218 VisualAge C++ for AIX Compiler Reference

o

Purpose
Specifies an output location for the object, assembler, or executable files created by
the compiler. When the -o option is used during compiler invocation, file_spec can
be the name of either a file or a directory. When the -o option is used during direct
linkage-editor invocation, file_spec can only be the name of a file.

Syntax

�� -o filespec ��

Notes
When -o is specified as part of a complier invocation, file_spec can be the relative or
absolute path name of either a directory or a file.
1. If file_spec is the name of a directory, files created by the compiler are placed

into that directory.
2. If a directory with the name file_spec does not exist, the -o option specifies that

the name of the file produced by the compiler will be file_spec. Otherwise, files
created by the compiler will take on their default names. For example, the
compiler invocation:

xlC test.c -c -o new.o

produces the object file new.o instead of test.o , and
xlC test.c -o new

produces the object file new instead of a.out.

A file_spec with a C or C++ source file suffix (.C, .c, or .i), such as my_text.c or
bob.i, results in an error and neither the compiler nor the linkage editor is
invoked.

If you use -c and -o together and the filespec does not specify a directory, you
can only compile one source file at a time. In this case, if more than one source
file name is listed in the compiler invocation, the compiler issues a warning
message and ignores -o.

The -E, -P, and -qsyntaxonly options override the -ofilename option.

Example
To compile myprogram.c so that the resulting file is called myaccount, assuming
that no directory with name myaccount exists, enter:

xlC myprogram.c -o myaccount

If the directory myaccount does exist, the executable file produced by the compiler
is placed in the myaccount directory.

Related References
“Compiler Command Line Options” on page 61
“c” on page 94
“E” on page 115
“o”
“P” on page 222
“syntaxonly” on page 265

Compiler Options 219

objmodel

Purpose
Sets the type of object model.

Syntax

��
compat

-q objmodel = ibm ��

where choices for object model are:

-qobjmodel=compat Uses the xlC object model compatible with previous versions of
the compiler.

-qobjmodel=ibm Uses the new object model.

See also “#pragma object_model” on page 324.

Example
To compile myprogram.C with the ibm object model, enter:

xlC myprogram.C -qobjmodel=ibm

Related Concepts
“Object Models” on page 4

Related References
“Compiler Command Line Options” on page 61
“#pragma object_model” on page 324

220 VisualAge C++ for AIX Compiler Reference

oldpassbyvalue

Purpose
Specifies how classes containing const or reference members are passed in function
arguments. All classes in the compilation unit are affected by this option.

Syntax

��
nooldpassbyvalue

-q oldpassbyvalue ��

See also “#pragma pass_by_value” on page 335.

Notes
The VisualAge C++ v3.6 compiler only uses pass by value if the class has no const
or reference data member and the copy constructor is trivial and the destructor is
trivial. The VisualAge C++ v5.0 compiler uses pass by value if the copy constructor
is trivial and the destructor is trivial, regardless of const or reference data
members.

When -qoldpassbyvalue is specified, the compiler mimics the VisualAge C++ v3.6
compiler in that when a class containing a const or reference member is passed as
a function argument, it is not passed by value. All such classes in the compilation
unit are affected.

The #pragma pass_by_value directive overrides -qoldpassbyvalue, and gives you
additional control in enabling this options. See the description for #pragma
pass_by_value for more information.

Related References
“Compiler Command Line Options” on page 61
“#pragma pass_by_value” on page 335

Compiler Options 221

P

Purpose
Preprocesses the C or C++ source files named in the compiler invocation and
creates an output preprocessed source file, file_name.i for each input source file
file_name.c or file_name.C. The -P option calls the preprocessor directly as
/usr/vac/exe/xlCcpp.

Syntax

�� -P ��

Notes
The -P option retains all white space including line-feed characters, with the
following exceptions:
v All comments are reduced to a single space (unless -C is specified).
v Line feeds at the end of preprocessing directives are not retained.
v White space surrounding arguments to function-style macros is not retained.

#line directives are not issued.

The -P option cannot accept a preprocessed source file, file_name.ias input. Source
files with unrecognized filename suffixes are treated and preprocessed as C files,
and no error message is generated.

In extended mode, the preprocessor interprets the backslash character when it is
followed by a new-line character as line-continuation in:
v macro replacement text
v macro arguments
v comments that are on the same line as a preprocessor directive.

Line continuations elsewhere are processed in ANSI mode only.

The -P option is overridden by the -E option. The -P option overrides the -c, -o,
and -qsyntaxonly option. The -C option may used in conjunction with both the -E
and -P options.

The default is to compile and link-edit C or C++ source files to produce an
executable file.

Related References
“Compiler Command Line Options” on page 61
“C” on page 93
“c” on page 94
“E” on page 115
“o” on page 219

222 VisualAge C++ for AIX Compiler Reference

p

Purpose
Sets up the object files produced by the compiler for profiling.

Syntax

�� -p ��

Notes
If the -qtbtable option is not set, the -p option will generate full traceback tables.

When compiling and linking in separate steps, the -p option must be specified in
both steps.

Example
To compile myprogram.c so that it can be used with the operating system prof
command, enter:

xlC myprogram.c -p

Related References
“Compiler Command Line Options” on page 61
“tbtable” on page 268

Also, on the Web see:
prof Command section in Commands Reference, Volume 4: n through r for
information about profiling.

Compiler Options 223

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds4/prof.htm#HDRA09496A1
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds4/aixcmds4tfrm.htm

pascal

Purpose
Ignores the word pascal in type specifiers and function declarations.

Syntax

��
nopascal

-q pascal ��

Notes
This option can be used to improve compatibility of IBM VisualAge C++ programs
on some other systems.

Related References
“Compiler Command Line Options” on page 61

224 VisualAge C++ for AIX Compiler Reference

path

Purpose
Constructs alternate program names. The program and directory path specified by
this option is used in place of the regular program.

Syntax

�� � -q path = c : path
b
p
a
I
L
l
E
m

��

where progran names are:

Program Description
c Compiler front end
b Compiler back end
p Compiler preprocessor
a Assembler
I Interprocedural Analysis tool - compile phase
L Interprocedural Analysis tool - link phase
l Linkage editor
E CreateExportList utility
m Linkage helper (munch utility)

Notes
Constructs alternate program names. The program and directory path directory are
used in place of the regular programs.

The -qpath option overrides the -Fconfig_file, -t, and -B options.

Examples
To compile myprogram.c using a substitute xlC compiler in /lib/tmp/mine/ enter:

xlC myprogram.c -qpath=c:/lib/tmp/mine/

To compile myprogram.c using a substitute linkage editor in /lib/tmp/mine/, enter:
xlC myprogram.c -qpath=l:/lib/tmp/mine/

Related References
“Compiler Command Line Options” on page 61
“B” on page 88
“F” on page 127
“t” on page 266

Compiler Options 225

pdf1, pdf2

Purpose
Tunes optimizations through profile-directed feedback (PDF), where results from
sample program execution are used to improve optimization near conditional
branches and in frequently executed code sections.

Syntax

��

nopdf2
nopdf1

-q pdf1
pdf2

��

Notes
To use PDF, follow these steps:
1. Compile some or all of the source files in a program with the -qpdf1 option.

You need to specify the -O2 option, or preferably the -O3, -O4, or -O5 option,
for optimization. Pay special attention to the compiler options that you use to
compile the files, because you will need to use the same options later.
In a large application, concentrate on those areas of the code that can benefit
most from optimization. You do not need to compile all of the application’s
code with the -qpdf1 option.

2. Run the program all the way through using a typical data set. The program
records profiling information when it finishes. You can run the program
multiple times with different data sets, and the profiling information is
accumulated to provide an accurate count of how often branches are taken and
blocks of code are executed.

Important: Use data that is representative of the data that will be used during
a normal run of your finished program.

3. Relink your program using the same compiler options as before, but change
-qpdf1 to -qpdf2. Remember that -L, -l, and some others are linker options, and
you can change them at this point. In this second compilation, the accumulated
profiling information is used to fine-tune the optimizations. The resulting
program contains no profiling overhead and runs at full speed.

For best performance, use the -O3, -O4, or -O5 option with all compilations when
you use PDF.

The profile is placed in the current working directory or in the directory that the
PDFDIR environment variable names, if that variable is set.

To avoid wasting compilation and execution time, make sure that the PDFDIR
environment variable is set to an absolute path. Otherwise, you might run the
application from the wrong directory, and it will not be able to locate the profile
data files. When that happens, the program may not be optimized correctly or may
be stopped by a segmentation fault. A segmentation fault might also happen if you
change the value of the PDFDIR variable and execute the application before
finishing the PDF process.

226 VisualAge C++ for AIX Compiler Reference

Because this option requires compiling the entire application twice, it is intended
to be used after other debugging and tuning is finished, as one of the last steps
before putting the application into production.

Restrictions
v PDF optimizations require at least the -O2 optimization level.
v You must compile the main program with PDF for profiling information to be

collected at run time.
v Do not compile or run two different applications that use the same PDFDIR

directory at the same time, unless you have used the -qipa=pdfname suboption
to distinguish the sets of profiling information.

v You must use the same set of compiler options at all compilation steps for a
particular program. Otherwise, PDF cannot optimize your program correctly and
may even slow it down. All compiler settings must be the same, including any
supplied by configuration files.

v Avoid mixing PDF files created by the current version of VisualAge C++ with
PDF files created by other versions of the compiler.

v If -qipa is not invoked either directly or through other options, -qpdf1 and
-qpdf2 will invoke the -qipa=level=0 option.

v If you do compile a program with -qpdf1, remember that it will generate
profiling information when it runs, which involves some performance overhead.
This overhead goes away when you recompile with -qpdf2 or with no PDF at
all.

The following commands, found in /usr/xlopt/bin, are available for managing the
PDFDIR directory:

resetpdf [pathname] Sets to zeros all profiling information (but does not remove
the data files) from the pathname directory, or from the
PDFDIR directory if pathname is not specified, or from the
current directory if PDFDIR is not set.

When you make changes to the application and recompile
some files, the profiling information for those files is
automatically reset because the changes may alter the
program flow. Run resetpdf to reset the profiling information
for the entire application after you make significant changes
that may change execution counts for parts of the program
that were not recompiled.

cleanpdf [pathname] Removes all profiling information from the pathname
directory; or if pathname is not specified, from the PDFDIR
directory; or if PDFDIR is not set, from the current directory.

Removing the profiling information reduces the runtime
overhead if you change the program and then go through the
PDF process again.

Run this program after compiling with -qpdf2, or after
finishing with the PDF process for a particular application. If
you continue using PDF with an application after running
cleanpdf, you must recompile all the files with -qpdf1.

Compiler Options 227

Examples
Here is a simple example:

/* Set the PDFDIR variable. */
export PDFDIR=$HOME/project_dir

/* Compile all files with -qpdf1. */
xlC -qpdf1 -O3 file1.C file2.C file3.C

/* Run with one set of input data. */
a.out <sample.data

/* Recompile all files with -qpdf2. */
xlC -qpdf2 -O3 file1.C file2.C file3.C

/* The program should now run faster than
without PDF if #the sample data is typical. */

Here is a more elaborate example.
/* Set the PDFDIR variable. */
export PDFDIR=$HOME/project_dir

/* Compile most of the files with -qpdf1. */
xlC -qpdf1 -O3 -c file1.C file2.C file3.C

/* This file is not so important to optimize.
xlC -c file4.C

/* Non-PDF object files such as file4.o can be linked in. */
xlC -qpdf1 file1.o file2.o file3.o file4.o

/* Run several times with different input data. */
a.out <polar_orbit.data
a.out <elliptical_orbit.data
a.out <geosynchronous_orbit.data

/* No need to recompile the source of non-PDF object files (file4.C). */
xlC -qpdf2 -O3 file1.C file2.C file3.C

/* Link all the object files into the final application. */
xlC file1.o file2.o file3.o file4.o

Related References
“Compiler Command Line Options” on page 61
“O, optimize” on page 215

228 VisualAge C++ for AIX Compiler Reference

pg

Purpose
Sets up the object files for profiling, but provides more information than is
provided by the -p option.

If the -qtbtable option is not set, the -pg option will generate full traceback tables.

Syntax

�� -pg ��

Example
To compile myprogram.c for use with the AIX gprof command, enter:

xlC myprogram.c -pg

Remember to compile and link with the -pg option. For example:
xlC myprogram.c -pg -c
xlC myprogram.o -pg -o program

Related References
“Compiler Command Line Options” on page 61
“tbtable” on page 268

Also, on the Web see:
gprof Command section in Commands Reference, Volume 2: d through h for
information about profiling.

Compiler Options 229

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds2/gprof.htm#HDRBYH10PRIO
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds2/aixcmds2tfrm.htm

phsinfo

Purpose
Reports the time taken in each compilation phase. Phase information is sent to
standard output.

Syntax

��
nophsinfo

-q phsinfo ��

Notes
The output takes the form number1 | number2 for each phase where number1
represents the CPU time used by the compiler and number2 represents the total of
the compiler time and the time that the CPU spends handling system calls.

Example
To compile myprogram.c and report the time taken for each phase of the
compilation, enter:

xlC myprogram.C -qphsinfo

Related References
“Compiler Command Line Options” on page 61

230 VisualAge C++ for AIX Compiler Reference

print

Purpose
Suppresses listings. -qnoprint overrides all of the listing-producing options,
regardless of where they are specified.

Syntax

��
print

-q noprint ��

Notes
The default is to not suppress listings if they are requested.

The options that produce listings are:
v -qattr
v -qlist
v -qlistopt
v -qsource
v -qxref

Example
To compile myprogram.c and suppress all listings, even if some files have #pragma
options source and similar directives, enter:

xlC myprogram.c -qnoprint

Related References
“Compiler Command Line Options” on page 61
“attr” on page 87
“list” on page 193
“listopt” on page 194
“source” on page 254
“xref” on page 294

Compiler Options 231

priority

Purpose
Specifies the priority level for the initialization of static constructors

Syntax

�� -q priority = number ��

See also “#pragma priority” on page 336 and “#pragma options” on page 325.

Notes

number Is the initialization priority level assigned to the static constructors within a
file, or the priority level of a shared or non-shared file or library.

You can specify a priority level from -(2147483647 + 1) (highest priority) to
+2147483647 (lowest priority).

Example
To compile the file myprogram.C to produce an object file myprogram.o so that
objects within that file have an initialization priority of -200, enter:

xlC myprogram.C -c -qpriority=-200

All objects in the resulting object file will be given an initialization priority of -200,
provided that the source file contains no #pragma priority(number) directives
specifying a different priority level.

Related References
“Compiler Command Line Options” on page 61
“#pragma options” on page 325
“#pragma priority” on page 336

232 VisualAge C++ for AIX Compiler Reference

proclocal, procimported, procunknown

Purpose
Marks functions as local, imported, or unknown.

Syntax

�� � �

:

-q proclocal = function_name
noproclocal
procimported
noprocimported
procunknown
noprocunknown

��

See also “#pragma options” on page 325.

Default
The default is to assume that all functions whose definition is in the current
compilation unit are local proclocal, and that all other functions are unknown
procunknown. If any functions that are marked as local resolve to shared library
functions, the linkage editor will detect the error and issue warnings such as:

ld: 0711-768 WARNING: Object foo.o, section 1, function .printf:
The branch at address 0x18 is not followed by a recognized no-op
or TOC-reload instruction. The unrecognized instruction is 0x83E1004C.

An executable file is produced, but it will not run. The error message indicates that
a call to printf in object file foo.o caused the problem. When you have confirmed
that the called routine should be imported from a shared object, recompile the
source file that caused the warning and explicitly mark printf as imported. For
example:

xlC -c -qprocimported=printf foo.c

Notes

Local functions Are statically bound with the functions that call them. -qproclocal changes
the default to assume that all functions are local. -qproclocal=names marks
the named functions as local, where names is a list of function identifiers
separated by colons (:). The default is not changed.

Smaller, faster code is generated for calls to functions marked as local.
Imported
functions

Are dynamically bound with a shared portion of a library. -qprocimported
changes the default to assume that all functions are imported.
-qprocimported=names marks the named functions as imported, where
names is a list of function identifiers separated by colons (:). The default is
not changed.

The code generated for calls to functions marked as imported might be
larger, but it is faster than the default code sequence generated for
functions marked as unknown. If any marked functions are resolved to
statically bound objects, the generated code may be larger and run more
slowly than the default code sequence generated for unknown functions.

Compiler Options 233

Unknown
functions

Are resolved to either statically or dynamically bound objects during
link-editing. -qprocunknown changes the default to assume that all
functions are unknown. -qprocunknown=names marks the named functions
as unknown, where names is a list of function identifiers separated by
colons (:). The default is not changed.

Conflicts among the procedure-marking options are resolved in the following
manner:

Options that list function
names

The last explicit specification for a particular function
name is used.

Options that change the
default

This form does not specify a name list. The last option
specified is the default for functions not explicitly listed
in the name-list form.

Example
To compile myprogram.c along with the archive library oldprogs.a so that:
v functions fun and sun are specified as local,
v functions moon and stars are specified as imported, and,
v function venus is specified as unknown,

enter:
xlC myprogram.c oldprogs.a -qprolocal=fun(int):sun()

-qprocimported=moon():stars(float) -qprocunknown=venus()

Related References
“Compiler Command Line Options” on page 61

234 VisualAge C++ for AIX Compiler Reference

proto

Purpose
If this option is set, the compiler assumes that all functions are prototyped.

Syntax

��
noproto

-q proto ��

Notes
This option asserts that procedure call points agree with their declarations even if
the procedure has not been prototyped. Callers can pass floating-point arguments
in floating-point registers only and not in General-Purpose Registers (GPRs). The
compiler assumes that the arguments on procedure calls are the same types as the
corresponding parameters of the procedure definition.

You can obtain warnings for functions that do not have prototypes.

Example
To compile my_c_program.c to assume that all functions are prototyped, enter:

xlc my_c_program.c -qproto

Related References
“Compiler Command Line Options” on page 61

Compiler Options 235

Q

Purpose
In the C language, attempts to inline functions instead of generating calls to a
function. Inlining is performed if possible, but, depending on which optimizations
are performed, some functions might not be inlined.

In the C++ language, specifies which functions will be inlined instead of
generating a call to a function.

Syntax

��

�

-Q
!

:
(1)

- names
+

(1)
= theshold

��

Notes:

1 C only

In the C++ language, the following -Q options apply:

-Q Compiler inlines all functions that it can.
-Q! Compiler does not inline any functions.

In the C language, the following -Q options apply:

-Q Attempts to inline all appropriate functions with 20 executable source
statements or fewer, subject to the setting of any of the suboptions to
the -Q option. If -Q is specified last, all functions are inlined.

-Q! Does not inline any functions. If -Q! is specified last, no functions are
inlined.

-Q-names Does not inline functions listed by function_name. Separate each
function_name with a colon (:). All other appropriate functions are
inlined. The option implies -Q.

For example:

-Q-salary:taxes:expenses:benefits

causes all functions except those named salary, taxes, expenses, or
benefits to be inlined if possible.

A warning message is issued for functions that are not defined in the
source file.

236 VisualAge C++ for AIX Compiler Reference

-Q+names Attempts to inline the functions listed by function_name and any other
appropriate functions. Each function_name must be separated by a
colon (:). The option implies -Q.

For example,

-Q+food:clothes:vacation

causes all functions named food, clothes, or vacation to be inlined if
possible, along with any other functions eligible for inlining.

A warning message is issued for functions that are not defined in the
source file or that are defined but cannot be inlined.

This suboption overrides any setting of the threshold value. You can
use a threshold value of zero along with -Q+function_name to inline
specific functions. For example:

-Q=0
followed by:

-Q+salary:taxes:benefits
causes only the functions named salary, taxes, or benefits to be
inlined, if possible, and no others.

-Q=threshold Sets a size limit on the functions to be inlined. The number of
executable statements must be less than or equal to threshold for the
function to be inlined. threshold must be a positive integer. The default
value is 20. Specifying a threshold value of 0 causes no functions to be
inlined except those functions marked with the __inline, _Inline, or
_inline keywords.

The threshold value applies to logical C statements. Declarations are
not counted, as you can see in the example below:

increment()
{
int a, b, i;
for (i=0; i<10; i++) /* statement 1 */
{

a=i; /* statement 2 */
b=i; /* statement 3 */

}
}

Default
The default is to treat inline specifications as a hint to the compiler and depends
on other options that you select:
v If you specify the -g option (to generate debug information), no functions are

inlined.
v If you optimize your programs, (specify the -O option) the compiler attempts to

inline the functions declared as inline.

Notes
The -Q option is functionally equivalent to the -qinline option.

Because inlining does not always improve run time, you should test the effects of
this option on your code.

Do not attempt to inline recursive or mutually recursive functions.

Compiler Options 237

Normally, application performance is optimized if you request optimization (-O
option), and compiler performance is optimized if you do not request optimization.

The inline, _inline, _Inline, and __inline language keywords override all -Q
options except -Q!. The compiler will try to inline functions marked with these
keywords regardless of other -Q option settings.

To maximize inlining:
v for C programs, specify optimization (-O) and also specify the appropriate -Q

options for the C language.
v for C++ programs, specify optimization (-O) but do not specify the -Q option.

Examples
To compile the program myprogram.c so that no functions are inlined, enter:

xlC myprogram.c -O -Q!

To compile the program my_c_program.c so that the compiler attempts to inline
functions of fewer than 12 lines, enter:

xlC my_c_program.c -O -Q=12

Related References
“Compiler Command Line Options” on page 61
“inline” on page 159
“O, optimize” on page 215
“Q” on page 236
“The inline, _Inline, _inline, and __inline Function Specifiers” on page 161

238 VisualAge C++ for AIX Compiler Reference

r

Purpose
Produces a relocatable object. This permits the output file to be produced even
though it contains unresolved symbols.

Syntax

�� -r ��

Notes
A file produced with this flag is expected to be used as a file parameter in another
call to xlC.

Example
To compile myprogram.c and myprog2.c into a single object file mytest.o, enter:

xlC myprogram.c myprog2.c -r -o mytest.o

Related References
“Compiler Command Line Options” on page 61

Compiler Options 239

report

Purpose
Instructs the compiler to produce transformation reports that show how program
loops are parallelized and/or optimized. The transformation reports are included
as part of the compiler listing.

Syntax

��
noreport

-q report ��

Notes
Specifying -qreport together with -qhot instructs the compiler to produce a
pseudo-C code listing and summary showing how loops are transformed. You can
use this information to tune the performance of loops in your program.

Specifying -qreport together with -qsmp instructs the compiler to also produce a
report showing how the program deals with data and automatic parallelization of
loops in your program. You can use this information to determine how loops in
your program are or are not parallelized.

The pseudo-C code listing is not intended to be compilable. Do not include any of
the pseudo-C code in your program, and do not explicitly call any of the internal
routines whose names may appear in the pseudo-C code listing.

Example
To compile myprogram.c so the compiler listing includes a report showing how
loops are optimized, enter:

xlC -qhot -O3 -qreport myprogram.c

To compile myprogram.c so the compiler listing also includes a report showing
how parallelized loops are transformed, enter:

xlC -qsmp -O3 -qreport myprogram.c

Related References
“Compiler Command Line Options” on page 61
“hot” on page 146
“smp” on page 252

240 VisualAge C++ for AIX Compiler Reference

rndflt

Purpose
This option controls the compile-time rounding mode of constant floating point
expressions. It does not affect run-time rounding.

Syntax

�� -q rndflt
nearest

= minusinf
plusinf
zero

norndflt

��

where available rounding options are:

Option Effect

nearest Round to nearest representable number. This is the default.

minusinf Round toward minus infinity.

plusinf Round toward plus infinity.

zero Round toward zero.

Notes
By default, constant floating-point expressions are rounded toward the nearest
representable number at compile time.

The following table describes the effect of specifying -qrndflt=option for each of the
following options.

Compile-time floating-point arithmetic can have two effects on program results:
v In specific cases, the result of a computation at compile time might differ slightly

from the result that would have been calculated at run time. The reason is that
more rounding operations occur at compile time. For example, where a
multiply-add floating point operation might be used at run time, separate
multiply and add operations might be used at compile time, producing a
slightly different result.

v Computations that produce exceptions can be folded to the IEEE result that
would have been produced by default in a run-time operation. This would
prevent an exception from occuring at run time. The -qflttrp option can be used
to generate instructions that detect and trap floating-point exceptions.

In general, code that affects the rounding mode at run time should be compiled
with the option that matches that rounding mode. For example, when the
following program is compiled, the expression 1.0/3.0 is folded at compile time
into a double-precision result:

main()
{
float x, y;
int i;
x = 1.0/3.0;
i = *(int *)&x;
printf(“1/3 = %.8x\n”, i);

Compiler Options 241

x = 1.0;
y = 3.0;
x = x/y;
i = *(int *)&x;
printf(“1/3 = %.8x\n”, i);
}

This result is then converted to single precision and stored in float x.

The -qfloat=nofold option can be specified to suppress all compile-time folding of
floating-point computations. For example, the following code fragment may be
evaluated either at compile time or at run time, depending on the setting of -qfloat
and other options:

x = 1.0;
y = 3.0;
x = x/y;

The -qrndflt option only affects compile-time rounding of floating-point
computations. If this code is evaluated at run time, the default run-time rounding
of “round to nearest” is still in effect and takes precedence over the compile-time
rounding mode.

Related References
“Compiler Command Line Options” on page 61
“float” on page 131
“flttrap” on page 135
“rndflt” on page 241

242 VisualAge C++ for AIX Compiler Reference

rndsngl

Purpose
Specifies that the results of each single-precision float operation is to be rounded to
single precision. -qnorndsngl specifies that rounding to single-precision happens
only after full expressions have been evaluated.

Syntax

��
norndsngl

-q rndsngl ��

See also “#pragma options” on page 325.

Notes
This option is obsolete. Use -qfloat=rndsngl. in your new applications.

The -qhsflt option overrides the -qrndsngl options.

The -qrndsngl option is intended for specific applications in which floating-point
computations have known characteristics. Using this option when compiling other
application programs can produce incorrect results without warning.

Related References
“Compiler Command Line Options” on page 61
“float” on page 131
“hsflt” on page 148
“#pragma options” on page 325

Compiler Options 243

ro

Purpose
Specifies the storage type for string literals.

Syntax

��
ro

-q noro ��

See also “#pragma options” on page 325.

Default
The default with xlc, xlC and c89 is -qro. The default with cc is -qnoro.

Notes
If -qro is specified, the compiler places string literals in read-only storage. If -qnoro
is specified, string literals are placed in read/write storage.

You can also specify the storage type in your source program using:
#pragma strings storage_type

where storage_type is read-only or writable.

Placing string literals in read-only memory can improve runtime performance and
save storage, but code that attempts to modify a read-only string literal generates a
memory error.

Example
To compile myprogram.c so that the storage type is writable, enter:

xlC myprogram.c -qnoro

Related References
“Compiler Command Line Options” on page 61
“#pragma options” on page 325

244 VisualAge C++ for AIX Compiler Reference

roconst

Purpose
Specifies the storage location for constant values.

Syntax

��
roconst

-q noroconst ��

See also “#pragma options” on page 325.

Default
The default with xlc, xlC and c89 is -qroconst. The default with cc is -qnoroconst.

Notes
If -qroconst is specified, the compiler places constants in read-only storage. If
-qnoroconst is specified, constant values are placed in read/write storage.

Placing constant values in read-only memory can improve runtime performance,
save storage, and provide shared access. Code that attempts to modify a read-only
constant value generates a memory error.

Constant value in the context of the -qroconst option refers to variables that are
qualified by const (including const-qualified characters, integers, floats,
enumerations, structures, unions, and arrays). The following variables do not apply
to this option:

v variables qualified with volatile and aggregates (such as a struct or a
union) that contain volatile variables

v pointers and complex aggregates containing pointer members
v automatic and static types with block scope
v uninitialized types
v regular structures with all members qualified by const

v initializers that are addresses, or initializers that are cast to non-address
values

The -qroconst option does not imply the -qro option. Both options must be
specified if you wish to specify storage characteristics of both string literals (-qro)
and constant values (-qroconst).

Related References
“Compiler Command Line Options” on page 61
“ro” on page 244
“#pragma options” on page 325

Compiler Options 245

rrm

Purpose
Prevents floating-point optimizations that are incompatible with run-time rounding
to plus and minus infinity modes.

Syntax

��
norrm

-q rrm ��

See also “#pragma options” on page 325.

Notes
This option informs the compiler that, at run time, the floating-point rounding
mode may change or that the mode is not set to -yn (rounding to the nearest
representable number.)

-qrrm must also be specified if the Floating Point Status and Control register is
changed at run time.

The default, -qnorrm, generates code that is compatible with run-time rounding
modes nearest and zero. For a list of rounding mode options, see the -y compiler
option.

This option is obsolete. Use -qfloat=rrm in your new applications.

Related References
“Compiler Command Line Options” on page 61
“float” on page 131
“#pragma options” on page 325

246 VisualAge C++ for AIX Compiler Reference

rtti

Purpose
Use this option to generate run-time type identification (RTTI) information for the
typeid operator and the dynamic_cast operator.

Syntax

��
nortti

-q rtti = all
type
typeinfo
dyna
dynamiccast

��

where available suboptions are:

all The compiler generates the information needed for the RTTI typeid
and dynamic_cast operators. If you specify just -qrtti, this is the
default suboption.

type | typeinfo The compiler generates the information needed for the RTTI typeid
operator, but the information needed for dynamic_cast operator is
not generated.

dyna |
dynamiccast

The compiler generates the information needed for the RTTI
dynamic_cast operator, but the information needed for typeid
operator is not generated.

Notes
For best run-time performance, suppress RTTI information generation with the
default -qnortti setting.

The C++ language offers a (RTTI) mechanism for determining the class of an object
at run time. It consists of two operators:
v one for determining the run-time type of an object (typeid), and,
v one for doing type conversions that are checked at run time (dynamic_cast).

A type_info class describes the RTTI available and defines the type returned by the
typeid operator.

You should be aware of the following effects when specifying the -qrtti compiler
option:
v Contents of the virtual function table will be different when -qrtti is specified.
v When linking objects together, all corresponding source files must be compiled

with the correct -qrtti option specified.
v If you compile a library with mixed objects (-qrtti specified for some objects,

-qnortti specified for others), you may get an undefined symbol error.

Related References
“Compiler Command Line Options” on page 61

Compiler Options 247

S

Purpose
Generates an assembler language file (.s) for each source file. The resulting .s files
can be assembled to produce object .o files or an executable file (a.out).

Syntax

�� -S ��

Notes
You can invoke the assembler with the xlC command. For example,

xlC myprogram.s

will invoke the assembler, and if successful, the loader to create an executable file,
a.out.

If you specify -S with -E or -P, -E or -P takes precedence. Order of precedence
holds regardless of the order in which they were specified on the command line.

You can use the -o option to specify the name of the file produced only if no more
than one source file is supplied. For example, the following is not valid:

xlC myprogram1.c myprogram2.c -o -S

Restrictions
The generated assembler files do not include all the data that is included in a .o
file by the -g or -qipa options.

Examples
1. To compile myprogram.c to produce an assembler language file myprogram.s,

enter:
xlC myprogram.c -S

2. To assemble this program to produce an object file myprogram.o, enter:
xlC myprogram.s -c

3. To compile myprogram.c to produce an assembler language file asmprogram.s,
enter:

xlC myprogram.c -S -o asmprogram.s

Related References
“Compiler Command Line Options” on page 61
“E” on page 115
“g” on page 141
“ipa” on page 163
“o” on page 219
“P” on page 222
“tbtable” on page 268

Also, on the Web see:
AIX 5L for POWER-based Systems: Assembler Language Reference
Files Reference

248 VisualAge C++ for AIX Compiler Reference

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixassem/alangref/alangreftfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/files/aixfiles/aixfilestfrm.htm

s

Purpose
This option strips the symbol table, line number information, and relocation
information from the output file. Specifying -s saves space, but limits the
usefulness of traditional debug programs when you are generating debug
information using options such as -g.

Syntax

�� -s ��

Notes
Using the strip command has the same effect.

Related References
“Compiler Command Line Options” on page 61
“g” on page 141

Compiler Options 249

showinc

Purpose
If used with the -qsource compiler option, all include files are shown in the source
listing.

Syntax

��
noshowinc

-q showinc ��

See also “#pragma options” on page 325.

Example
To compile myprogram.c so that all included files appear in the source listing,
enter:

xlC myprogram.c -qsource -qshowinc

Related References
“Compiler Command Line Options” on page 61
“source” on page 254
“#pragma options” on page 325

250 VisualAge C++ for AIX Compiler Reference

smallstack

Purpose
Instructs the compiler to reduce the size of the stack frame.

Syntax

��
nosmallstack

-q smallstack ��

Notes
AIX limits the stack size to 256 MB. Programs that allocate large amounts of data
to the stack may result in stack overflows. This option can reduce the stack frame
to help avoid overflows.

This option is only valid when used together with IPA (-qipa, -O4, -O5 compiler
options).

Specifying this option may adversely affect program performance.

Example
To compile myprogram.c to use a small stack frame, enter:

xlC myprogram.c -qsmallstack

Related References
“Compiler Command Line Options” on page 61
“g” on page 141

Compiler Options 251

smp

Purpose
Enables automatic parallelization of program code.

Syntax

��

�

nosmp
-q smp

:
auto

= noauto
opt
noopt
omp
noomp
explicit
noexplicit
nonested_par
nested_par
norec_locks
rec_locks
schedule runtime

= dynamic
guided = n
static
affinity

��

where:

auto Enables automatic parallelization and optimization of
program code.

noauto Disables automatic parallelization of program code.
Program code explicitly parallelized with SMP or OMP
pragma statements is optimized.

opt Enables automatic parallelization and optimization of
program code.

noopt Enables automatic parallelization, but disables optimization
of parallelized program code. Use this setting when
debugging parallelized program code..

omp Enables strict compliance to the OMP standard. Automatic
parallelization is disabled. Parallelized program code is
optimized. Only OMP parallelization pragmas are
recognized.

noomp Enables automatic parallelization and optimization of
program code.

explicit Enables pragmas controlling explicit parallelization of
loops.

noexplicit Disables pragmas controlling explicit parallelization of
loops.

252 VisualAge C++ for AIX Compiler Reference

nested_par If specified, nested parallel constructs are not serialized.
nested_par does not provide true nested parallelism
because it does not cause new team of threads to be
created for nested parallel regions. Instead, threads that are
currently available are re-used.

This option should be used with caution. Depending on the
number of threads available and the amount of work in an
outer loop, inner loops could be executed sequentially even
if this option is in effect. Parallelization overhead may not
necessarily be offset by program performance gains.

nonested_par Disables parallization of nested parallel constructs.
rec_locks If specified, recursive locks are used, and nested critical

sections will not cause a deadlock.
norec_locks If specified, recursive locks are not used.
schedule=sched_type[=n] Specifies what kind of scheduling algorithms and chunking

are used for loops to which no other scheduling algorithm
has been explicitly assigned in the source code. If
sched_type is not specified, runtime is assumed for the
default setting.

Notes
v The -qnosmp default option setting specifies that no code should be generated

for parallelization directives, though syntax checking will still be performed. Use
-qignprag=omp:ibm to completely ignore parallelization directives.

v Specifying -qsmp without suboptions is equivalent to specifying
-qsmp=auto:explicit:noomp:norec_locks:nonested_par:schedule=runtime or
-qsmp=opt:explicit:noomp:norec_locks:nonested_par:schedule=runtime.

v Specifying -qsmp implicitly sets -O2. The -qsmp option overrides -qnooptimize,
but does not override -O3, -O4, or -O5. When debugging parallelized program
code, you can disable optimization in parallelized program code by specifying
qsmp=noopt.

v Specifying -qsmp defines the _IBMSMP preprocessing macro.
v -qsmp must be used only with thread-safe compiler mode invocations such as

xlc_r. These invocations ensure that the pthreads, xlsmp, and thread-safe
versions of all default run-time libraries are linked to the resulting executable.

Related Concepts
“Program Parallelization” on page 9

Related Tasks
“Set Parallel Processing Run-time Options” on page 20
“Control Parallel Processing with Pragmas” on page 45

Related References
“Compiler Command Line Options” on page 61
“O, optimize” on page 215
“threaded” on page 273
“Pragmas to Control Parallel Processing” on page 344
“#pragma ibm schedule” on page 352
“IBM SMP Run-time Options for Parallel Processing” on page 383
“OpenMP Run-time Options for Parallel Processing” on page 386
“Built-in Functions Used for Parallel Processing” on page 388

Compiler Options 253

source

Purpose
Produces a compiler listing and includes source code.

Syntax

��
nosource

-q source ��

See also “#pragma options” on page 325.

Notes
The -qnoprint option overrides this option.

Parts of the source can be selectively printed by using pairs of #pragma options
source and #pragma options nosource preprocessor directives throughout your
source program. The source following #pragma options source and preceding
#pragma options nosource is printed.

Examples
The following code causes the parts of the source code between the #pragma
options directives to be included in the compiler listing:

#pragma options source
. . .

/* Source code to be included in the compiler listing
is bracketed by #pragma options directives.

*/
. . .

#pragma options nosource

To compile myprogram.c to produce a compiler listing that includes the source for
myprogram.c, enter:

xlC myprogram.c -qsource

Related References
“Compiler Command Line Options” on page 61
“print” on page 231
“#pragma options” on page 325

254 VisualAge C++ for AIX Compiler Reference

spill

Purpose
Specifies the register allocation spill area as being size bytes.

Syntax

��
512

-q spill = size ��

See also “#pragma options” on page 325.

Notes
If your program is very complex, or if there are too many computations to hold in
registers at one time and your program needs temporary storage, you might need
to increase this area. Do not enlarge the spill area unless the compiler issues a
message requesting a larger spill area. In case of a conflict, the largest spill area
specified is used.

Example
If you received a warning message when compiling myprogram.c and want to
compile it specifying a spill area of 900 entries, enter:

xlC myprogram.c -qspill=900

Related References
“Compiler Command Line Options” on page 61
“#pragma options” on page 325

Compiler Options 255

spnans

Purpose
Generates extra instructions to detect signalling NaN on conversion from single
precision to double precision. The -qnospnans option specifies that this conversion
need not be detected.

Syntax

��
nospnans

-q spnans ��

See “#pragma options” on page 325.

Notes
The -qhsflt option overrides the -qspnans option

This option is obsolete. Use -qfloat=nans in your new applications.

Related References
“Compiler Command Line Options” on page 61
“float” on page 131
“hsflt” on page 148
“#pragma options” on page 325

256 VisualAge C++ for AIX Compiler Reference

srcmsg

Purpose
Adds the corresponding source code lines to the diagnostic messages in the stderr
file.

Syntax

��
nosrcmsg

-q srcmsg ��

See also “#pragma options” on page 325.

Notes
The compiler reconstructs the source line or partial source line to which the
diagnostic message refers and displays it before the diagnostic message. A pointer
to the column position of the error may also be displayed. Specifying -qnosrcmsg
suppresses the generation of both the source line and the finger line, and the error
message simply shows the file, line and column where the error occurred.

The reconstructed source line represents the line as it appears after macro
expansion. At times, the line may be only partially reconstructed. The characters
“....” at the start or end of the displayed line indicate that some of the source line
has not been displayed.

The default (-qnosrcmsg) displays concise messages that can be parsed. Instead of
giving the source line and pointers for each error, a single line is displayed,
showing the name of the source file with the error, the line and character column
position of the error, and the message itself.

Example
To compile myprogram.c so that the source line is displayed along with the
diagnostic message when an error occurs, enter:

xlc myprogram.c -qsrcmsg

Related References
“Compiler Command Line Options” on page 61
“#pragma options” on page 325

Compiler Options 257

staticinline

Purpose
This option controls whether inline functions are treated as static or extern. By
default, VisualAge C++ treats inline functions as extern.

Syntax

��
nostaticinline

-q staticinline ��

Example
Using the -qstaticinline option causes function f in the following declaration to be
treated as static, even though it is not explicitly declared as such.

inline void f() {/*...*/};

Using the default, -qnostaticinline, gives f external linkage.

Related References
“Compiler Command Line Options” on page 61

258 VisualAge C++ for AIX Compiler Reference

statsym

Purpose
Adds user-defined, nonexternal names that have a persistent storage class, such as
initialized and uninitialized static variables, to the name list (the symbol table of
xcoff objects).

Syntax

��
nostatsym

-q statsym ��

Default
The default is to not add static variables to the symbol table. However, static
functions are added to the symbol table.

Example
To compile myprogram.c so that static symbols are added to the symbol table,
enter:

xlC myprogram.c -qstatsym

Related References
“Compiler Command Line Options” on page 61

Compiler Options 259

stdinc

Purpose
Specifies which directories are used for files included by the #include <file_name>
and #include “file_name” directives. The -qnostdinc option excludes the standard
include directies (/usr/include for C and /usr/vacpp/include, /usr/include for C++)
from the search.

Syntax

��
stdinc

-q nostdinc ��

See also “#pragma options” on page 325.

Notes
If you specify -qnostdinc, the compiler will not search the directory /usr/include
for C files, or the directories /usr/vacpp/include and /usr/include for C++ files,
unless you explicitly add them with the -Idirectory option.

If a full (absolute) path name is specified, this option has no effect on that path
name. It will still have an effect on all relative path names.

-qnostdinc is independent of -qidirfirst. (-qidirfirst searches the directory specified
with -Idirectory before searching the directory where the current source file resides.

The search order for files is described in Directory Search Sequence for Include Files
Using Relative Path Names.

The last valid #pragma options [NO]STDINC remains in effect until replaced by a
subsequent #pragma options [NO]STDINC.

Example
To compile myprogram.c so that the directory /tmp/myfiles is searched for a file
included in myprogram.c with the #include “myinc.h” directive, enter:

xlC myprogram.c -qnostdinc -I/tmp/myfiles

Related References
“Compiler Command Line Options” on page 61
“I” on page 150
“idirfirst” on page 151
“#pragma options” on page 325

260 VisualAge C++ for AIX Compiler Reference

strict

Purpose
Turns off the aggressive optimizations that have the potential to alter the semantics
of your program.

Syntax

�� -q nostrict
strict

��

See also “#pragma options” on page 325.

Default
v -qnostrict with optimization levels of 3 or higher.
v -qstrict otherwise.

Notes
-qstrict turns off the following optimizations:
v Performing code motion and scheduling on computations such as loads and

floating-point computations that may trigger an exception.
v Relaxing conformance to IEEE rules.
v Reassociating floating-point expressions.

This option is only valid with -O2 or higher optimization levels.

-qstrict sets -qfloat=nofltint:nosqrt.

-qnostrict sets -qfloat=fltint:sqrt.

You can use -qfloat=fltint and -qfloat=rsqrt to override the -qstrict settings.

For example:
v Using -O3 -qstrict -qfloat=fltint means that -qfloat=fltint is in effect, but there

are no other aggressive optimizations.
v Using -O3 -qnostrict -qfloat=norsqrt means that the compiler performs all

aggressive optimizations except -qfloat=rsqrt.

If there is a conflict between the options set with -qnostrict and -qfloat=options,
the last option specified is recognized.

Example
To compile myprogram.c so that the aggressive optimizations of -O3 are turned off,
range checking is turned off -qfloat=fltint, and division by the result of a square
root is replaced by multiplying by the reciprocal -qfloat=rsqrt, enter:

xlC myprogram.c -O3 -qstrict -qfloat=fltint:rsqrt

Related References
“Compiler Command Line Options” on page 61
“float” on page 131
“O, optimize” on page 215
“#pragma options” on page 325

Compiler Options 261

strict_induction

Purpose
Disables loop induction variable optimizations that have the potential to alter the
semantics of your program. Such optimizations can change the result of a program
if truncation or sign extension of a loop induction variable should occur as a result
of variable overflow or wrap-around.

Syntax

�� -q nostrict_induction
strict_induction

��

Default
v -qnostrict_induction with optimization levels 3 or higher.
v -qstrict_induction otherwise.

Notes
Use of this option is generally not recommended because it can cause considerable
performance degradation. If your program is not sensitive to induction variable
overflow or wrap-around, you should consider using -qnostrict_induction in
conjunction with the -O2 optimization option.

Related References
“Compiler Command Line Options” on page 61
“O, optimize” on page 215

262 VisualAge C++ for AIX Compiler Reference

suppress

Purpose
Prevents the specified compiler or driver informational or warning messages from
being displayed or added to the listings.

Syntax

�� �

�

:

-q suppress = msg_num
(1)

nosuppress
:

(2)
nosuppress = msg_num

��

Notes:

1 C only

2 C++ only

Notes
This option suppresses compiler messages only, and has no effect on linker or
operating system messages.

To suppress IPA messages, enter -qsuppress before -qipa on the command line.

Compiler messages that cause compilation to stop, such as (S) and (U) level
messages, or other messages depending on the setting of the -qhalt compiler
option, cannot be suppressed. For example, if the -qhalt=w compiler option is set,
warning messages will not be suppressed by the -qsuppress compiler option.

The -qnosuppress compiler option cancels previous settings of -qsuppress.

Example
If your program normally results in the following output:

“t.c”, line 1.1:1506-224 (I) Incorrect #pragma ignored

you can suppress the message by compiling with:
xlC myprogram.c -qsuppress

Related References
“Compiler Command Line Options” on page 61
“halt” on page 143
“ipa” on page 163

Compiler Options 263

symtab

Purpose
Controls the symbol table.

Syntax

�� -q symtab = unref
static

��

where:

unref Specifies that all typedef declarations, struct, union, and enum type definitions
are included for processing by the Distributed Debugger.

Use this option with the -g option to produce additional debugging information
for use with the Distributed Debugger.

When you specify the -g option, debugging information is included in the object
file. To minimize the size of object and executable files, the compiler only
includes information for symbols that are referenced. Debugging information is
not produced for unreferenced arrays, pointers, or file-scope variables unless
-qsymtab=unref is specified.

Using -qsymtab=unref may make your object and executable files larger.

static Adds user-defined, nonexternal names that have a persistent storage class, such
as initialized and uninitialized static variables, to the name list (the symbol table
of xcoff objects).

The default is to not add static variables to the symbol table.

Examples
To compile myprogram.c so that static symbols are added to the symbol table,
enter:

xlC myprogram.c -qsymtab=static

To include all symbols in myprogram.c in the symbols table for use with the
Distributed Debugger, enter:

xlC myprogram.c -g -qsymtab=unref

Related References
“Compiler Command Line Options” on page 61
“g” on page 141

264 VisualAge C++ for AIX Compiler Reference

syntaxonly

Purpose
Causes the compiler to perform syntax checking without generating an object file.

Syntax

�� -q syntaxonly ��

Notes
The -P, -E, and -C options override the -qsyntaxonly option, which in turn
overrides the -c and -o options.

The -qsyntaxonly option suppresses only the generation of an object file. All other
files (listings, etc) are still produced if their corresponding options are set.

Examples
To check the syntax of myprogram.c without generating an object file, enter:

xlc myprogram.c -qsyntaxonly

or
xlc myprogram.c -o testing -qsyntaxonly

Note that in the second example, the -qsyntaxonly option overrides the -o option
so no object file is produced.

Related References
“Compiler Command Line Options” on page 61
“C” on page 93
“c” on page 94
“E” on page 115
“o” on page 219
“P” on page 222

Compiler Options 265

t

Purpose
Adds the prefix specified by the -B option to the designated programs.

Syntax

�� �-t c
b
p
a
I
L
l
E
m

��

where programs are:

Program Description
c Compiler front end
b Compiler back end
p Compiler preprocessor
a Assembler
I Interprocedural Analysis tool - compile phase
L Interprocedural Analysis tool - link phase
l Linkage editor
E CreateExportList utility
m Linkage helper (munch utility)

Notes
This option must be used together with the -B option.

Default
If -B is specified but prefix is not, the default prefix is /lib/o. If -Bprefix is not
specified at all, the prefix of the standard program names is /lib/n.

If -B is specified but -tprograms is not, the default is to construct path names for all
the standard program names: (c,b, I, a, l, and m).

Example
To compile myprogram.c so that the name /u/newones/compilers/ is prefixed to the
compiler and assembler program names, enter:

xlC myprogram.c -B/u/newones/compilers/ -tca

Related References
“Compiler Command Line Options” on page 61
“B” on page 88

266 VisualAge C++ for AIX Compiler Reference

tabsize

Purpose
Changes the length of tabs as perceived by the compiler.

Syntax

�� -q tabsize = n ��

where n is the number of character spaces representing a tab in your source
program.

Notes
This option only affects error messages that specify the column number at which
an error occurred. For example, the compiler will consider tabs as having a width
of one character if you specify -qtabsize=1. In this case, you can consider one
character position (where each character and each tab equals one position,
regardless of tab length) as being equivalent to one character column.

Related References
“Compiler Command Line Options” on page 61

Compiler Options 267

tbtable

Purpose
Generates a traceback table that contains information about each function,
including the type of function as well as stack frame and register information. The
traceback table is placed in the text segment at the end of its code.

Syntax

�� -q tbtable = none
full
small

��

where suboptions are::

none No traceback table is generated. The stack frame cannot be unwound so
exception handling is disabled.

full A full traceback table is generated, complete with name and parameter
information. This is the default if -qnoopt or -g are specified.

small The traceback table generated has no name or parameter information, but
otherwise has full traceback capability. This is the default if you have
specified optimization and have not specified -g.

See also “#pragma options” on page 325.

Notes
The #pragma options directive must be specified before the first statement in the
compilation unit.

Many performance measurement tools require a full traceback table to properly
analyze optimized code. The compiler configuration file contains entries to
accomodate this requirement. If you do not require full traceback tables for your
optimized code, you can save file space by making the following changes to your
compiler configuration file:
1. Remove the -qtbtable=full option from the options lines of the C or C++

compilation stanzas.
2. Remove the -qtbtable=full option from the xlCopt line of the DFLT stanza.

With these changes, the defaults for the tbtable option are:
v When compiling with optization options set, -qtbtable=small

v When compiling with no otimization options set, -qtbtable=full

See Interlanguage Calls - Traceback Table for a brief description of traceback tables.

Related References
“Compiler Command Line Options” on page 61
“g” on page 141
“O, optimize” on page 215
“#pragma options” on page 325
“Interlanguage Calls - Traceback Table” on page 56

See also:
ld command in Commands Reference, Volume 5: s through u

268 VisualAge C++ for AIX Compiler Reference

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds3/ld.htm#HDRA09493AC
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds5/aixcmds5tfrm.htm

tempinc

Purpose
Generates separate include files for template functions and class declarations, and
places these files in a directory which can be optionally specified.

Syntax

�� -q notempinc
tempinc

= directory

��

Default
The default is to generate the separate include files and place them in the tempinc
directory of the current directory at compile time.

The -qtempinc and -qtemplateregistry compiler options are mutually exclusive.
Specifying -qtempinc implies -qnotemplateregistry. However, specifying
-qnotempinc does not imply -qtemplateregistry.

Notes
When you specify -qtempinc, the compiler assigns a value of 1 to the
__TEMPINC__ macro. This assignment will not occur if -qnotempinc has been
specified.

Example
To compile the file myprogram.c and place the generated include files for the
template functions in the /tmp/mytemplates directory, enter:

xlC myprogram.C -qtempinc=/tmp/mytemplates

Related Tasks
“Structure a Program that Uses Templates” on page 35
“Use -qtempinc to Generate Template Functions Automatically” on page 38
“Use -qnotempinc to Define Template Functions” on page 42

Related References
“Compiler Command Line Options” on page 61
“templateregistry” on page 271

Compiler Options 269

templaterecompile

Purpose
Helps manage dependencies between compilation units that have been compiled
using the -qtemplateregistry compiler option.

Syntax

�� -q templaterecompile
notemplaterecompile

��

Notes
The -qtemplaterecompile option helps to manage dependencies between
compilation units that have been compiled using the -qtemplateregistry option.
Given a program in which multiple compilation units reference the same template
instantiation, the -qtemplateregistry option nominates a single compilation unit to
contain the instantiation. No other compilation units will contain this instantiation.
Duplication of object code is thereby avoided. If a source file that has been
compiled previously is compiled again, the -qtemplaterecompile option consults
the template registry to determine whether changes to this source file require the
recompile of other compilation units. This can occur when the source file has
changed in such a way that it no longer references a given instantiation and the
corresponding object file previously contained the instantiation. If so, affected
compilation units will be recompiled automatically.

The -qtemplaterecompile option requires that object files generated by the
compiler remain in the subdirectory to which they were originally written. If your
automated build process moves object files from their original subdirectory, use the
-qnotemplaterecompile option whenever -qtemplateregistry is enabled.

Related Tasks
“Structure a Program that Uses Templates” on page 35
“Use -qtemplateregistry to Define Template Functions” on page 43

Related References
“Compiler Command Line Options” on page 61
“templateregistry” on page 271
“tempinc” on page 269

270 VisualAge C++ for AIX Compiler Reference

templateregistry

Purpose
Maintains records of all templates as they are encountered in the source and
ensures that only one instantiation of each template is made.

Syntax

�� -q notemplateregistry
templateregistry

= registry_file

��

Default
The -qtempinc and -qtemplateregistry compiler options are mutually exclusive.
Specifying -qtempinc implies -qnotemplateregistry. However, specifying
-qnotempinc does not imply -qtemplateregistry.

Notes
The -qtemplateregistry option maintains records of all templates as they are
encountered in the source, and ensures that only one instantiation of each template
is made. The first time that the compiler encounters a reference to a template
instantiation, that instantiation is generated and the related object code is placed in
the current object file. Any further references to identical instantiations of the same
template in different compilation units are recorded but the redundant
instantiations are not generated. No special file organization is required to use the
-qtemplateregistry option. If you do not specify a location, the compiler places all
template registry information in a default location.

Example
To compile the file myprogram.c and place the template registry information into
the /tmp/mytemplateregistry file, enter:

xlC myprogram.C -qtemplateregistry=/tmp/mytemplateregistry

Related Tasks
“Structure a Program that Uses Templates” on page 35
“Use -qtemplateregistry to Define Template Functions” on page 43

Related References
“Compiler Command Line Options” on page 61
“templaterecompile” on page 270
“tempinc” on page 269

Compiler Options 271

tempmax

Purpose
Specifies the maximum number of template include files to be generated by the
-qtempinc option for each header file.

Syntax

��
1

-q tempmax = number ��

Notes
Specify the maximum number of template files by giving number a value between
1 and 99999.

Instantiations are spread among the template include files.

This option should be used when the size of files generated by the -qtempinc
option become very large and take a significant amount of time to recompile when
a new instance is created.

Related Tasks
“Structure a Program that Uses Templates” on page 35

Related References
“Compiler Command Line Options” on page 61
“tempinc” on page 269

272 VisualAge C++ for AIX Compiler Reference

threaded

Purpose
Indicates to the compiler that the program will run in a multi-threaded
environment. Always use this option when compiling or linking multi-threaded
applications. This option ensures that all optimizations are thread-safe.

Syntax

�� -q nothreaded
threaded

��

Default
The default is -qthreaded when compiling with _r invocation modes, and
-qnothreaded when compiling with other invocation modes.

Notes
This option applies to both compile and linkage editor operations.

To maintain thread safety, a file compiled with the -qthreaded option, whether
explicitly by option selection or implicitly by choice of _r compiler invocation
mode, must also be linked with the -qthreaded option.

This option does not make code thread-safe, but it will ensure that code already
thread-safe will remain so after compile and linking.

Related References
“Compiler Command Line Options” on page 61
“smp” on page 252

Compiler Options 273

tmplparse

Purpose
This option controls whether parsing and semantic checking are applied to
template definition (class template definitions, function bodies, member function
bodies, and static data member initializers) or only to template instantiations.
VisualAge C++ can check function bodies and variable initializers in template
definitions and produce error or warning messages.

Syntax

��
no

-q tmplparse = warn
error

��

where suboptions are:

no Do not parse the template definitions. This reduces the number of errors
issued in code written for previous versions of VisualAge C++ and
predecessor products. This is the default.

warn Parses template definitions and issues warning messages for semantic
errors.

error Treats problems in template definitions as errors, even if the template is
not instantiated.

Notes
This option applies to template definitions, not their instantiations. Regardless of
the setting of this option, error messages are produced for problems that appear
outside definitions. For example, errors found during the parsing or semantic
checking of constructs such as the following, always cause error messages:
v return type of a function template
v parameter list of a function template

Related Tasks
“Structure a Program that Uses Templates” on page 35

Related References
“Compiler Command Line Options” on page 61

274 VisualAge C++ for AIX Compiler Reference

tocdata

Purpose
Marks data as local.

Syntax

��
notocdata

-q tocdata ��

Notes
Local variables are statically bound with the functions that use them. -qtocdata
changes the default to assume that all variables are local. -qtocdata marks the
named variables as local. The default is not changed. Performance may decrease if
an imported variable is assumed to be local.

Imported variables are dynamically bound with a shared portion of a library.
-qnotocdata changes the default to assume that all variables are imported. The
default is not changed.

Conflicts among the data-marking options are resolved in the following manner:

Options that list
variable names

The last explicit specification for a particular variable name is
used.

Options that
change the
default

This form does not specify a name list. The last option specified is
the default for variables not explicitly listed in the name-list form.

Related References
“Compiler Command Line Options” on page 61

Compiler Options 275

tocmerge

Purpose
Enables TOC merging to reduce TOC pointer loads and improves the scheduling of
external loads.

Syntax

��
notocmerge

-q tocmerge ��

Notes
This compiler option enables TOC merging to reduce TOC pointer loads and
improves the scheduling of external loads. If If -qtocmerge specified, the compiler
reads from the file specified in the -bImportfile linker option. If -qtocmerge is
specified but no import filename specified, the option is ignored and a warning
message is issued.

Related References
“Compiler Command Line Options” on page 61

276 VisualAge C++ for AIX Compiler Reference

tune

Purpose
Specifies the architecture system for which the executable program is optimized.

Syntax

�� -q tune = auto
403
601
602
603
604
p2sc
pwr
pwr2
pwr2s
pwr3
pwr4
pwrx
rs64a
rs64b
rs64c

��

where architecture suboptions are:

Suboption Description
auto Produces object code optimized for the hardware platfom on which it is

compiled.
403 Produces object code optimized for the PowerPC 403 processor.
601 Produces object code optimized for the PowerPC 601 processor.
602 Produces object code optimized for the PowerPC 602 processor.
603 Produces object code optimized for the PowerPC 603 processor.
604 Produces object code optimized for the PowerPC 604 processor.
p2sc Produces object code optimized for the PowerPC P2SC processor.
pwr Produces object code optimized for the POWER hardware platforms.
pwr2 Produces object code optimized for the POWER2 hardware platforms.
pwr2s Produces object code optimized for the POWER2 hardware platforms, avoiding

certain quadruple-precision instructions that would slow program performance.
pwr3 Produces object code optimized for the POWER3 hardware platforms.
pwr4 Produces object code optimized for the POWER4 hardware platforms.
pwrx Produces object code optimized for the POWER2 hardware platforms (same as

-qtune=pwr2).
rs64a Produces object code optimized for the RS64A processor.
rs64b Produces object code optimized for the RS64B processor.
rs64c Produces object code optimized for the RS64C processor.

See also “#pragma options” on page 325.

Default
The default setting of the -qtune= option depends on the setting of the -qarch=
option.
v If -qtune is specified without -qarch, the compiler uses -qarch=com.

Compiler Options 277

v If -qarch is specified without -qtune=, the compiler uses the default tuning
option for the specified architecture. Listings will show only:

TUNE=DEFAULT

To find the actual default -qtune setting for a given -qarch setting, refer to the
table in “Acceptable Compiler Mode and Processor Architecture Combinations” on
page 373.

Notes
You can use -qtune=suboption with -qarch=suboption.
v -qarch=suboption specifies the architecture for which the instructions are to be

generated, and,
v -qtune=suboption specifies the target platform for which the code is optimized.

Example
To specify that the executable program testing compiled from myprogram.c is to be
optimized for a POWER hardware platform, enter:

xlC -o testing myprogram.c -qtune=pwr

Related Tasks
“Specify Compiler Options for Architecture-Specific, 32- or 64-bit Compilation” on
page 29

Related References
“Compiler Command Line Options” on page 61
“arch” on page 83
“Acceptable Compiler Mode and Processor Architecture Combinations” on
page 373

278 VisualAge C++ for AIX Compiler Reference

twolink

Purpose
Minimizes the number of static constructors included from libraries and object
files.

Syntax

��
notwolink

-q twolink ��

Notes
Normally, the compiler links in all static constructors defined anywhere in the
object (.o) files and library (.a) files. The -qtwolink option makes link time take
longer, but linking is compatible with older versions of C or C++ compilers.

Before using -qtwolink, make sure that any .o files placed in an archive do not
change the behavior of the program.

Default
The default is -qnotwolink. All static constructors in .o files and object files are
invoked. This generates larger executable files, but ensures that placing a .o file in
a library does not change the behavior of a program.

Example
Given the include file foo.h:

#include <stdio.h>
struct foo {

foo() {printf (“in foo\n”);}
~foo() {printf (“in ~foo\n”);}

};

and the C++ program t.C:
#include “foo.h”
foo bar;

and the program t2.C:
#include “foo.h”
main() { }

Compile t.Cc and t2.C in two steps, first invoking the compiler to produce object
files:

xlC -c t.C t2.C

and then link them to produce the executable file a.out:
xlC t.o t2.o

Invoking a.out produces:
in foo
in ~foo

If you use the AIX ar command with the t.o file to produce an archive file t.a:
ar rv t.a t.o

and then use the default compiler command:

Compiler Options 279

xlC t2.o t.a

the output from the executable file is the same as above:
in foo
in ~foo

However, if you use the -qtwolink option:
xlC -qtwolink t2.o t.a

there is no output from the executable file a.out because the static constructor foo()
in t.C is not found.

Related References
“Compiler Command Line Options” on page 61
“funcsect” on page 139
“tbtable” on page 268

Also, on the Web see:
ar Command section in Commands Reference, Volume 1: a through c for
information about profiling.

280 VisualAge C++ for AIX Compiler Reference

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds1/ar.htm#HDRA0949A5B
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds1/aixcmds1tfrm.htm

U

Purpose
Undefines the identifier name defined by the compiler or by the -Dname option.

Syntax

�� -U name ��

Notes
The -Uname option is not equivalent to the #undef preprocessor directive. It cannot
undefine names defined in the source by the #define preprocessor directive. It can
only undefine names defined by the compiler or by the -Dname option.

The identifier name can also be undefined in your source program using the
#undef preprocessor directive.

The -Uname option has a higher precedence than the -Dname option.

Example
To compile myprogram.c so that the definition of the name COUNT, is nullified,
enter:

xlC myprogram.c -UCOUNT

For example if the option -DCOUNT=1000 is used, a source line #undefine
COUNT is generated at the top of the source.

Related References
“Compiler Command Line Options” on page 61
“D” on page 106

Compiler Options 281

unique

Purpose
Generates unique names for static constructor/deconstructor file compilation units.

Syntax

��
nounique

-q unique ��

Notes
Unique names are generated with -qunique by encoding random numbers into
thename of the static initialization (sinit) and static termination (sterm) functions.
Default behavior is encoding the absolute path name of the source file in the sinit
and sterm functions. If the absolute path name will be identical for multiple
compilations (for example, if a make script is used), the -qunique option is
necessary.

If you use -qunique, you must always link with all .o and .a files. Do not include
an executable file on the link step.

Example
Suppose you want to compile several files using the same path name, ensuring
that static construction works correctly. A make file may generate the following
steps:

sqlpreprocess file1.sql > t.C
xlC -qunique t.C -o file1.o

rm -f t.C
sqlpreprocess file2.sql > t.C

xlC -qunique t.C -o file2.o
rm -f t.C

xlC file1.o file2.o

Following is a sample make file for the above example:
rule to get from file.sql to file.o
.SUFFIXES: .sql
.sql.o:

sqlpreprocess $< > t.C
$(CCC) t.C -c $(CCFLAGS) -o $@
rm -f t.C

Related References
“Compiler Command Line Options” on page 61

282 VisualAge C++ for AIX Compiler Reference

unroll

Purpose
Unrolls inner loops in the program, This can help improve program performance.

Syntax

�� -q unroll
auto

= yes
no

nounroll

��

where:

-qunroll=auto Leaves the decision to unroll loops to the compiler.

-qunroll or -qunroll=yes Is a suggestion to the compiler to unroll loops.

-qnounroll or -qunroll=no Instructs the compiler to not unroll loops.

See also “#pragma unroll” on page 342 and “#pragma options” on page 325.

Notes
Specifying -qunroll is equivalent to specifying -qunroll=yes.

When -qunroll, -qunroll=yes, or -qunroll=auto is specified, the bodies of inner
loops will be unrolled, or duplicated, by the optimizer. The optimizer determines
and applies the best unrolling factor for each loop. In some cases, the loop control
may be modified to avoid unnecessary branching.

To see if the unroll option improves performance of a particular application, you
should first compile the program with usual options, then run it with a
representative workload. You should then recompile with command line -qunroll
option and/or the unroll pragmas enabled, then rerun the program under the
same conditions to see if performance improves.

You can use the #pragma unroll directive to gain more control over unrolling.
Setting this pragma overrides the -qunroll compiler option setting.

Examples
1. In the following examples, unrolling is disabled:

xlC -qnounroll file.c

xlC -qunroll=no file.c

2. In the following examples, unrolling is enabled:
xlC -qunroll file.c

xlC -qunroll=yes file.c

xlC -qunroll=auto file.c

3. See “#pragma unroll” on page 342 for examples of how program code is
unrolled by the compiler.

Compiler Options 283

Related References
“Compiler Command Line Options” on page 61
“#pragma options” on page 325
“#pragma unroll” on page 342

284 VisualAge C++ for AIX Compiler Reference

unwind

Purpose
Informs the compiler that the application does not rely on any program stack
unwinding mechanism.

Syntax

��
unwind

-q nounwind ��

Notes
Selecting the -qnounwind option can improve optimization of non-volatile register
saves and restores.

For C++ programs, specifying -qnounwind will also imply -qnoeh.

Related References
“Compiler Command Line Options” on page 61
“eh” on page 118

Compiler Options 285

upconv

Purpose
Preserves the unsigned specification when performing integral promotions.

Syntax

��
noupconv

-q upconv ��

See also “#pragma options” on page 325.

Notes
The -qupconv option promotes any unsigned type smaller than an int to an
unsigned int instead of to an int.

Unsignedness preservation is provided for compatibility with older dialects of C.
The ANSI C standard requires value preservation as opposed to unsignedness
preservation.

Default
The default is -qnoupconv, except when -qlanglvl=ext, in which case the default is
-qupconv. The compiler does not preserve the unsigned specification.

The default compiler action is for integral promotions to convert a char, short int,
int bitfield or their signed or unsigned types, or an enumeration type to an int.
Otherwise, the type is converted to an unsigned int.

Example
To compile myprogram.c so that all unsigned types smaller than int are converted
to unsigned int, enter:

xlc myprogram.c -qupconv

The following short listing demonstrates the effect of -qupconv:
#include <stdio.h>
int main(void) {

unsigned char zero = 0;
if (-1 <zero)

printf(“Value-preserving rules in effect\n”);
else

printf(“Unsignedness-preserving rules in effect\n”);
return 0;

}

Related References
“Compiler Command Line Options” on page 61
“langlvl” on page 175

286 VisualAge C++ for AIX Compiler Reference

V

Purpose
Instructs the compiler to report information on the progress of the compilation,
names the programs being invoked within the compiler and the options being
specified to each program. Information is displayed in a format similar to that of
shell commands.

Syntax

�� -V ��

Notes
The -V option is overridden by the -# option.

Example
To compile myprogram.c so you can watch the progress of the compilation and see
messages that describe the progress of the compilation, the programs being
invoked, and the options being specified, enter:

xlC myprogram.C -V

Related References
“Compiler Command Line Options” on page 61

Compiler Options 287

v

Purpose
Instructs the compiler to report information on the progress of the compilation,
names the programs being invoked within the compiler and the options being
specified to each program. Information is displayed to standard output.

Syntax

�� -v ��

Notes
The -v option is overridden by the -# option.

Example
To compile myprogram.c so you can watch the progress of the compilation and see
messages that describe the progress of the compilation, the programs being
invoked, and the options being specified, enter:

xlC myprogram.c -v

Related References
“Compiler Command Line Options” on page 61

288 VisualAge C++ for AIX Compiler Reference

vftable

Purpose
Controls the generation of virtual function tables.

Syntax

�� -q novftable
vftable

��

Default
The default is to define the virtual function table for a class if the current
compilation unit contains the body of the first non-inline virtual member function
declared in the class member list.

Notes
Specifying -qvftable generates virtual function tables for all classes with virtual
functions that are defined in the current compilation unit.

If you specify -qnovftable, no virtual function tables are generated in the current
compilation unit.

Example
To compile the file myprogram.c so that no virtual function tables are generated,
enter:

xlC myprogram.C -qnovftable

Related References
“Compiler Command Line Options” on page 61

Compiler Options 289

W

Purpose
Passes the listed options to a designated compiler program.

Syntax

�� -W a , directory
b
c
I
l
p

��

where programs are:

program Description

a Assembler

b Compiler back end

c Compiler front end

I Interprocedural Analysis tool

l linkage editor

p compiler preprocessor

Notes
When used in the configuration file, the -W option accepts the escape sequence
backslash comma (\,) to represent a comma in the parameter string.

Example
To compile myprogram.c so that the option -pg is passed to the linkage editor (l)
and the assembler (a), enter:

xlC myprogram.c -Wl,-pg -Wa,-pg

In a configuration file, use the \, sequence to represent the comma (,).
-Wl\,-pg,-Wa\,-pg

Related References
“Compiler Command Line Options” on page 61

290 VisualAge C++ for AIX Compiler Reference

w

Purpose
Requests that warnings and lower-level messages be suppressed. Specifying this
option is equivalent to specifying -qflag=e:e.

Syntax

�� -w ��

Example
To compile myprogram.c so that no warning messages are displayed, enter:

xlC myprogram.c -w

Related References
“Compiler Command Line Options” on page 61
“flag” on page 130

Compiler Options 291

warn64

Purpose
Enables checking for possible long-to-integer truncation.

Syntax

�� -q warn64 ��

Notes
All generated messages have level Informational.

This option functions in either 32- or 64-bit compiler modes. In 32-bit mode, it
functions as a preview aid to discover possible 32- to 64-bit migration problems.

Informational messages are displayed where data conversion may cause problems
in 64-bit compilation mode, such as:
v truncation due to explicit or implicit conversion of long types into int types
v unexpected results due to explicit or implicit conversion of int types into long

types
v invalid memory references due to explicit conversion by cast operations of

pointer types into into types
v invalid memory references due to explicit conversion by cast operations of int

types into pointer types
v problems due to explicit or implicit conversion of constants into long types
v problems due to explicit or implicit conversion by cast operations of constants

into pointer types
v conflicts with pragma options arch in source files and on the command line

Related References
“Compiler Command Line Options” on page 61
“32, 64” on page 73

292 VisualAge C++ for AIX Compiler Reference

xcall

Purpose
Generates code to static routines within a compilation unit as if they were external
routines.

Syntax

��
noxcall

-q xcall ��

Notes
-qxcall generates slower code than -qnoxcall.

Example
To compile myprogram.c so all static routines are compiled as external routines,
enter:

xlC myprogram.c -qxcall

Related References
“Compiler Command Line Options” on page 61

Compiler Options 293

xref

Purpose
Produces a compiler listing that includes a cross-reference listing of all identifiers.

Syntax

��
noxref

-q xref ��

where:

xref=full Reports all identifiers in the program.
xref Reports only those identifiers that are used.

See also “#pragma options” on page 325.

Notes
The -qnoprint option overrides this option.

Any function defined with the #pragma mc_func function_name directive is listed
as being defined on the line of the #pragma directive.

Example
To compile myprogram.c and produce a cross-reference listing of all identifiers
whether they are used or not, enter:

xlC myprogram.c -qxref=full -qattr

A typical cross-reference listing has the form:

Related References
“Compiler Command Line Options” on page 61
“print” on page 231
“#pragma mc_func” on page 321
“#pragma options” on page 325

294 VisualAge C++ for AIX Compiler Reference

y

Purpose
Specifies the compile-time rounding mode of constant floating-point expressions.

Syntax

�� -y n
m
p
z

��

where suboptions are:

n Round to the nearest representable number. This is the default.
m Round toward minus infinity.
p Round toward plus infinity.
z Round toward zero.

Example
To compile myprogram.c so that constant floating-point expressions are rounded
toward zero at compile time, enter:

xlC myprogram.c -yz

Related References
“Compiler Command Line Options” on page 61

Compiler Options 295

Z

Purpose
This option specifies a prefix for the library search path.

Syntax

�� -Z string ��

Notes
This option is useful when developing a new version of a library. Usually you use
it to build on one level of AIX and run on a different level, so that you can search
a different path on the development platform than on the target platform. This is
possible because the prefix is not stored in the executable.

If you use this option more than once, the strings are appended to each other in
the order specified and then they are added to the beginning of the library search
paths.

Related References
“Compiler Command Line Options” on page 61

296 VisualAge C++ for AIX Compiler Reference

General Purpose Pragmas
The pragmas listed below are available for general programming use. Unless noted
otherwise, pragmas can be used in both C and C++ programs.

Language
Application

#pragma Description

#pragma align Aligns data items within structures.

#pragma alloca Provides an inline version of the function
alloca(size_t size).

#pragma chars Sets the sign type of character data.

#pragma comment Places a comment into the object file.

#pragma define Forces the definition of a template class without
actually defining an object of the class.

#pragma disjoint Lists the identifiers that are not aliased to each
other within the scope of their use.

#pragma enum Specifies the size of enum variables that follow.

#pragma
execution_frequency

Marks program source code that is not
frequently executed.

#pragma hashome Informs the compiler that the specified class has
a home module that will be specified by the
IsHome pragma.

#pragma ibm snapshot Sets a debugging breakpoint at the point of the
pragma, and defines a list of variables to
examine when program execution reaches that
point.

#pragma
implementation

Tells the compiler the name of the file
containing the function-template definitions that
correspond to the template declarations in the
include file which contains the pragma.

#pragma info Controls the diagnostic messages generated by
the info(...) compiler options.

#pragma ishome Informs the compiler that the specified class’s
home module is the current compilation unit.

#pragma isolated_call Lists functions that do not alter data objects
visible at the time of the function call.

#pragma langlvl Selects the C or C++ language level for
compilation.

#pragma leaves Takes a function name and specifies that the
function never returns to the instruction after
the function call.

#pragma map Tells the compiler that all references to an
identifier are to be converted to a new name.

#pragma mc_func Specifies machine instructions for a particular
function.

#pragma
namemangling

Sets the name mangling scheme and maximum
length of external names generated from source
code.

Compiler Options 297

Language
Application

#pragma Description

#pragma
nameManglingRule

Instructs the compiler whether or not to mangle
function names according to their function
parameter types.

#pragma object_model Specifies the object model to use for the
structures, unions, and classes that follow it.

#pragma options Specifies options to the compiler in your source
program.

#pragma
option_override

Specifies alternate optimization options for
specific functions.

#pragma pack Modifies the current alignment rule for
members of structures that follow this pragma.

#pragma
pass_by_value

Specifies how classes containing const or
reference members are passed in function
arguments. All classes in the compilation unit
are affected by this option.

#pragma priority Specifies the order in which static objects are to
be initialized at run time.

#pragma reachable Declares that the point after the call to a routine
marked reachable can be the target of a branch
from some unknown location.

#pragma reg_killed_by Specifies those registers which value will be
corrupted by the specified function. It must be
used together with #pragma mc_func.

#pragma report Controls the generation of specific messages.

#pragma strings Sets storage type for strings.

#pragma unroll Unrolls inner loops in the program, This can
help improve program performance.

Related Concepts
“Program Parallelization” on page 9

Related Tasks
“Specify Compiler Options in Your Program Source Files” on page 27
“Control Parallel Processing with Pragmas” on page 45

Related References
“Pragmas to Control Parallel Processing” on page 344

298 VisualAge C++ for AIX Compiler Reference

#pragma align

Description
The #pragma align directive specifies how the compiler should align data items
within structures.

Syntax

��
power

pragma align { twobyte }
natural
packed
mac68k
full

��

Related References
“General Purpose Pragmas” on page 297
“align” on page 77

Compiler Options 299

#pragma alloca

Description
The #pragma alloca directive specifies that the compiler should provide an inline
version of the function alloca(size_t <size>). The function alloca(size_t <size>) can be
used to allocate space for an object. The amount of space allocated is determined
by the value of <size>, which is measured in bytes. The allocated space is put on
the stack.

Syntax

�� # pragma alloca ��

Notes
You must specify the #pragma alloca directive or -ma compiler option to have the
compiler provide an inline version of alloca.

Once specified, it applies to the rest of the file and cannot be turned off. If a source
file contains any functions that you want compiled without #pragma alloca, place
these functions in a different file.

Related References
“General Purpose Pragmas” on page 297
“alloca” on page 81

300 VisualAge C++ for AIX Compiler Reference

#pragma chars

Descripton
The #pragma chars directive sets the sign type of char objects to be either signed
or unsigned.

Syntax

��
unsigned

pragma chars { signed } ��

Notes
This pragma must appear before any source statements, in order for this pragma to
take effect

Once specified, the pragma applies to the entire file and cannot be turned off. If a
source file contains any functions that you want to be compiled without #pragma
chars, place these functions in a different file. If the pragma is specified more than
once in the source file, the first one will take precedence.

Note: The default character type behaves like an unsigned char.

Related References
“General Purpose Pragmas” on page 297
“chars” on page 97

Compiler Options 301

#pragma comment

Description
The #pragma comment directive places a comment into the target or object file.

Syntax

��
compiler

pragma comment { date }
timestamp

copyright
user , ″token_sequence″

��

where:

compiler the name and version of the compiler is appended to the end of the generated
object module.

date the date and time of compilation is appended to the end of the generated
object module.

timestamp the date and time of the last modification of the source is appended to the end
of the generated object module.

copyright the text specified by the token_sequence is placed by the compiler into the
generated object module and is loaded into memory when the program is run.

user the text specified by the token_sequence is placed by the compiler into the
generated object but is not loaded into memory when the program is run.

Related References
“General Purpose Pragmas” on page 297

302 VisualAge C++ for AIX Compiler Reference

#pragma define

Description
The #pragma define directive forces the definition of a template class without
actually defining an object of the class. This pragma is only provided for backward
compatibility purposes.

Syntax

�� # pragma define (template_classname) ��

where the template_classname is the name of the template to be defined.

Notes
A user can explicitly instantiate a class, function or member template specialization
by using a construct of the form:
template declaration

For example:
#pragma define(Array<char>)

is equivalent to:
template class Array<char>;

This pragma must be defined in global scope (i.e. it cannot be enclosed inside a
function/class body). It is used when organizing your program for the efficient or
automatic generation of template functions.

Related References
“General Purpose Pragmas” on page 297

Compiler Options 303

#pragma disjoint

Description
The #pragma disjoint directive lists the identifiers that are not aliased to each
other within the scope of their use.

Syntax

�� �� �# pragma disjoint { * identifier , * identifier } ��

Notes
The directive informs the compiler that none of the identifiers listed shares the
same physical storage, which provides more opportunity for optimizations. If any
identifiers actually share physical storage, the pragma may cause the program to
give incorrect results.

An identifier in the directive must be visible at the point in the program where the
pragma appears. The identifiers in the disjoint name list cannot refer to any of the
following:
v a member of a structure, or union
v a structure, union, or enumeration tag
v an enumeration constant
v a typedef name
v a label

This pragma can be disabled with the -qignprag compiler option.

Example
int a, b, *ptr_a, *ptr_b;
#pragma disjoint(*ptr_a, b) // *ptr_a never points to b
#pragma disjoint(*ptr_b, a) // *ptr_b never points to a
one_function()
{

b = 6;
*ptr_a = 7; // Assignment does not alter the value of b
another_function(b); // Argument “b” has the value 6

}

Because external pointer ptr_a does not share storage with and never points to the
external variable b, the assignment of 7 to the object that ptr_a points to will not
change the value of b. Likewise, external pointer ptr_b does not share storage with
and never points to the external variable a. The compiler can assume that the
argument of another_function has the value 6 and will not reload the variable from
memory.

Related References
“General Purpose Pragmas” on page 297
“ignprag” on page 153
“alias” on page 75

304 VisualAge C++ for AIX Compiler Reference

#pragma enum

Description
The #pragma enum directive specifies the size of enum variables that follow. The
size at the left brace of a declaration is the one that affects that declaration,
regardless of whether further enum directives occur within the declaration. This
pragma pushes a value on a stack each time it is used, with a reset option
available to return to the previously pushed value.

Syntax

��
small

pragma enum (int)
options 1

2
4
reset
pop

��

where option can be substituted with one of the following:

small enum size is the smallest integral type that can contain all variables.
int enum size is 4
1 enum size is 1
2 enum size is 2
4 enum size is 4
pop the option will reset the enum size to the one before the previously set enum size.
reset the option is an alternative method of resetting the enum size to the one before the

previously set enum size. This option is provided for backwards compatibility.

Notes
Popping on an empty stack generates a warning message and the enum value
remains unchanged.

The #pragma enum directive overrides the -qenum compiler option.

Example
#pragma enum(1)
#pragma enum(2)
#pragma enum(4)
#pragma enum(pop) /* will reset enum size to 2 */
#pragma enum(reset) /* will reset enum size to 1 */
#pragma enum(pop) /* will reset enum size to default

Related References
“General Purpose Pragmas” on page 297
“enum” on page 119

Compiler Options 305

#pragma execution_frequency

Description
The #pragma execution_frequency directive lets you mark program source code
that is not frequently executed.

Syntax

�� # pragma execution_frequency (very_low) ��

Notes
Use this pragma to mark program source code that will be executed only
infrequently. The pragma must be placed within block scope, and acts on the
closest point of branching.

The pragma is used as a hint to the optimizer. If optimization is not selected, this
pragma has no effect.

Examples
1. This pragma is used in an if statement block to mark code that is executed

infrequently.
int *array = (int *) malloc(10000);

if (array == NULL) {
/* Block A */
#pragma execution_frequency(very_low)
error();

}

The code block ″Block B″ would be marked as infrequently executed and
″Block C″ is likely to be chosen during branching.

if (Foo > 0) {
#pragma execution_frequency(very_low)
/* Block B */
doSomething();

} else {
/* Block C */
doAnotherThing();

}

2. This pragma is used in a switch statement block to mark code that is executed
infrequently.

while (counter > 0) {
#pragma execution_frequency(very_low)
doSomething();

} /* This loop is unlikely to be executed. Even if it is executed,
it is likely that only very few iterations are executed. */

switch (a) {
case 1:

doOneThing();
break;

case 2:
#pragma execution_frequency(very_low)
doTwoThings();
break;

default:
doNothing();

} /* The second case is not likely chosen. */

306 VisualAge C++ for AIX Compiler Reference

3. This pragma cannot be used at file scope. It can be placed anywhere within a
block scope and it affects the closest branching.

int a;
#pragma execution_frequency(very_low)
int b;

int foo(boolean boo) {
#pragma execution_frequency(very_low)
char c;

if (boo) {
/* Block A */
doSomething();
{

/* Block C */
doSomethingAgain();
#pragma execution_frequency(very_low)
doAnotherThing();

}
} else {

/* Block B */
doNothing();

}

return 0;
}

#pragma execution_frequency(very_low)

The first and fourth pragmas are invalid, while the second and third are valid.
However, only the third pragma has effect and it affects whether branching to
Block A or Block B in the decision ″if (boo)″. The second pragma is ignored by
the compiler.

Related References
“General Purpose Pragmas” on page 297

Compiler Options 307

#pragma hashome

Description
The #pragma hashome directive informs the compiler that the specified class has a
home module that will be specified by #pragma ishome. This class’s virtual
function table, along with certain inline functions, will not be generated as static.
Instead, they will be referenced as externals in the compilation unit of the class in
which #pragma ishome was specified.

Syntax

�� # pragma hashome (className)
AllInlines

��

where:

className specifies the name of a class that requires the above mentioned external
referencing. className must be a class and it must be defined.

AllInlines specifies that all inline functions from within className should be referenced as
being external. This argument is case insensitive

Notes
A warning will be produced if there is a #pragma ishome without a matching
#pragma hashome.

Related References
“General Purpose Pragmas” on page 297
“#pragma ishome” on page 314

308 VisualAge C++ for AIX Compiler Reference

#pragma ibm snapshot

Description
The #pragma ibm snapshot directive sets a debugging breakpoint at the point of
the pragma, and defines a list of variables to examine when program execution
reaches that point.

Syntax

�� �

,

pragma ibm snapshot (variable_name) ��

where variable_name is a predefined or namespace scope type. Class, structure, or
union members cannot be specified.

Notes
Variables specified in #pragma ibm snapshot can be observed in the debugger, but
should not be modified. Modifying these variables in the debugger may result in
unpredictable behavior.

Example
#pragma ibm snapshot(a, b, c)

Related References
“General Purpose Pragmas” on page 297

Compiler Options 309

#pragma implementation

Description
The #pragma implementation directive tells the compiler the name of the template
header file containing the function-template definitions. These definitions
correspond to the template declarations in the include file containing the pragma.

Syntax

�� # pragma implementation (string_literal) ��

Notes
This pragma can appear anywhere that a declaration is allowed. It is used when
organizing your program for the efficient or automatic generation of template
functions.

Related References
“General Purpose Pragmas” on page 297
“tempmax” on page 272

310 VisualAge C++ for AIX Compiler Reference

#pragma info

Description
The #pragma info directive instructs the compiler to produce or suppress specific
groups of compiler messages.

Syntax

��

�

all
pragma info (none)

restore
,

group

��

where:

all Turns on all diagnostic checking.
none Turns off all diagnostic suboptions for specific portions of your program
restore Restores the options that were in effect before the previous #pragma info

directive.

Compiler Options 311

group Generates or suppresses all messages associated with the specified diagnostic
group. More than one group name in the following list can be specified.

group Type of messages returned or suppressed

c99|noc99 C code that may behave differently between C89 and C99
language levels.

cls|nocls Classes

cmp|nocmp Possible redundancies in unsigned comparisons

cnd|nocnd Possible redundancies or problems in conditional
expressions

cns|nocns Operations involving constants

cnv|nocnv Conversions

dcl|nodcl Consistency of declarations

eff|noeff Statements and pragmas with no effect

enu|noenu Consistency of enum variables

ext|noext Unused external definitions

gen|nogen General diagnostic messages

gnr|nognr Generation of temporary variables

got|nogot Use of goto statements

ini|noini Possible problems with initialization

inl|noinl Functions not inlined

lan|nolan Language level effects

obs|noobs Obsolete features

ord|noord Unspecified order of evaluation

par|nopar Unused parameters

por|nopor Nonportable language constructs

ppc|noppc Possible problems with using the preprocessor

ppt|noppt Trace of preprocessor actions

pro|nopro Missing function prototypes

rea|norea Code that cannot be reached

ret|noret Consistency of return statements

trd|notrd Possible truncation or loss of data or precision

tru|notru Variable names truncated by the compiler

trx|notrx Hexadecimal floating point constants rounding

uni|nouni Unitialized variables

use|nouse Unused auto and static variables

vft|novft Generation of virtual function tables

Notes
You can use the #pragma info directive to temporarily override the current -qinfo
compiler option settings specified on the command line, in the configuration file,
or by earlier invocations of the #pragma info directive.

312 VisualAge C++ for AIX Compiler Reference

Example
For example, in the code segments below, the #pragma info(eff, nouni) directive
preceding MyFunction1 instructs the compiler to generate messages identifying
statements or pragmas with no effect, and to suppress messages identifying
unitialized variables. The #pragma info(restore) directive preceding MyFunction2
instructs the compiler to restore the message options that were in effect before the
#pragma info(eff, nouni) directive was invoked.

#pragma info(eff, nouni)
int MyFunction1()
{

.

.

.

}

#pragma info(restore)
int MyFunction2()
{

.

.

.

}

Related References
“General Purpose Pragmas” on page 297
“info” on page 154

Compiler Options 313

#pragma ishome

Description
The #pragma ishome directive informs the compiler that the specified class’s home
module is the current compilation unit. The home module is where items, such as
the virtual function table, are stored. If an item is referenced from outside of the
compilation unit, it will not be generated outside its home. The advantage of this is
the minimization of code.

Syntax

�� # pragma ishome (className) ��

where:

className the literal name of the class whose home will be the current compilation unit.

Notes
A warning will be produced if there is a #pragma ishome without a matching
#pragma hashome.

Related References
“General Purpose Pragmas” on page 297
“#pragma hashome” on page 308

314 VisualAge C++ for AIX Compiler Reference

#pragma isolated_call

Description
The #pragma isolated_call directive lists a function that does not have or rely on
side effects, other than those implied by its parameters.

Syntax

�� # pragma isolated_call (function) ��

where function is a primary expression that can be an identifier, operator function,
conversion function, or qualified name. An identifier must be of type function or a
typedef of function. If the name refers to an overloaded function, all variants of
that function are marked as isolated calls.

Notes
The -qisolated_call compiler option has the same effect as this pragma.

The pragma informs the compiler that the function listed does not have or rely on
side effects, other than those implied by its parameters. Functions are considered to
have or rely on side effects if they:
v Access a volatile object
v Modify an external object
v Modify a static object
v Modify a file
v Access a file that is modified by another process or thread
v Allocate a dynamic object, unless it is released before returning
v Release a dynamic object, unless it was allocated during the same invocation
v Change system state, such as rounding mode or exception handling
v Call a function that does any of the above

Essentially, any change in the state of the runtime environment is considered a side
effect. Modifying function arguments passed by pointer or by reference is the only
side effect that is allowed Functions with other side effects can give incorrect
results when listed in #pragma isolated_call directives.

Marking a function as isolated_call indicates to the optimizer that external and
static variables cannot be changed by the called function and that pessimistic
references to storage can be deleted from the calling function where appropriate.
Instructions can be reordered with more freedom, resulting in fewer pipeline
delays and faster execution in the processor. Multiple calls to the same function
with identical parameters can be combined, calls can be deleted if their results are
not needed, and the order of calls can be changed.

The function specified is permitted to examine non-volatile external objects and
return a result that depends on the non-volatile state of the runtime environment.
The function can also modify the storage pointed to by any pointer arguments
passed to the function, that is, calls by reference. Do not specify a function that
calls itself or relies on local static storage. Listing such functions in the #pragma
isolated_call directive can give unpredictable results.

Compiler Options 315

The -qignprag compiler option causes aliasing pragmas to be ignored. Use the
-qignprag compiler option to debug applications containing the #pragma
isolated_call directive.

Example
The following example shows the use of the #pragma isolated_call directive.
Because the function this_function does not have side effects, a call to it will not
change the value of the external variable a. The compiler can assume that the
argument to other_function has the value 6 and will not reload the variable from
memory.

int a;

// Assumed to have no side effects
int this_function(int);

#pragma isolated_call(this_function)
that_function()
{

a = 6;
// Call does not change the value of "a"
this_function(7);

// Argument "a" has the value 6
other_function(a);

}

Related References
“General Purpose Pragmas” on page 297
“ignprag” on page 153
“isolated_call” on page 170

316 VisualAge C++ for AIX Compiler Reference

#pragma langlvl

Description
The #pragma langlvl directive selects the C or C++ language level for compilation.

Syntax

��
extended

pragma langlvl (ansi)
compat
saa
saal2

��

where:

ansi Defines the predefined macro __STDC__ and undefines other langlvl variables.
Allows only language constructs that conform to ANSI/ISO C standards.

extended Defines the predefined macro __EXTENDED__ and undefines other langlvl
variables. The default language level is extended.

classic Defines the predefined macro __CLASSIC__ and undefines other langlvl
variables.

saa Defines the predefined macro __SAA__ and undefines other langlvl variables.
Allows only language constructs that conform to the most recent level of SAA C
standards (currently Level 2). These include ANSI C constructs. This language
level is valid for C programs only.

saal2 Defines the predefined macro __SAAL2__ and undefines other langlvl variables.
Allows only language constructs that conform to SAA Level 2 C standards. These
include ANSI C constructs. This language level is valid for C programs only.

Notes
This pragma can be specified only once in a source file, and it must appear before
any statements in a source file.

The compiler uses predefined macros in the header files to make declarations and
definitions available that define the specified language level.

This directive can dynamically alter preprocessor behavior. As a result, compiling
with the -E compiler option may produce results different from those produced
when not compiling with the -E option.

Related References
“General Purpose Pragmas” on page 297
“E” on page 115
“langlvl” on page 175

Compiler Options 317

#pragma leaves

Description
The #pragma leaves directive takes a function name and specifies that the function
never returns to the instruction after the call.

Syntax

�� �

,

pragma leaves (function) ��

Notes
This pragma tells the compiler that function never returns to the caller.

The advantage of the pragma is that it allows the compiler to ignore any code that
exists after function, in turn, the optimizer can generate more efficient code. This
pragma is commonly used for custom error-handling functions, in which programs
can be terminated if a certain error is encountered. Some functions which also
behave similarily are exit, longjmp, and terminate.

Example
#pragma leaves(handle_error_and_quit)
void test_value(int value)
{
if (value == ERROR_VALUE)
{
handle_error_and_quit(value);
TryAgain(); // optimizer ignores this because

// never returns to execute it
}
}

Related References
“General Purpose Pragmas” on page 297

318 VisualAge C++ for AIX Compiler Reference

#pragma map

Description
The #pragma map directive tells the compiler that all references to an identifier are
to be converted to “name”.

Syntax

�� # pragma map (identifier , ″name″)
function_signature

��

where:

identifier A name of a data object or a nonoverloaded function with external
linkage.

If the identifier is the name of an overloaded function or a
member function, there is a risk that the pragma will override the
compiler-generated names. This will create problems during linking.

function_signature A name of a function or operator with internal linkage. The name can be
qualified.

name The external name that is to be bound to the given object, function, or
operator.

Specify the mangled name if linking into a C++ name (a name
that will have C++ linkage signature, which is the default signature in
C++). See Example 3, in the Examples section below.

Notes
You should not use #pragma map to map the following:
v C++ Member functions
v Overloaded functions
v Objects generated from templates
v Functions with built in linkage

The directive can appear anywhere in the program. The identifiers appearing in
the directive, including any type names used in the prototype argument list, are
resolved as though the directive had appeared at file scope, independent of its
actual point of occurrence.

Examples

Example 1
int funcname1()
{

return 1;
}

#pragma map(func , "funcname1") // maps ::func to funcname1

int main()
{

return func(); // no function prototype needed in C
}

Compiler Options 319

Example 2
extern "C" int funcname1()
{

return 0;
}

extern "C" int func(); //function prototypes needed in C++

#pragma map(func , "funcname1") // maps ::func to funcname1

int main()
{

return func();
}

Example 3
#pragma map(foo, "bar__Fv")

int foo(); //function prototypes needed in C++

int main()
{

return foo();
}

int bar() {return 7;}

Note: You can avoid using the mangled name bar_FV by declaring bar as
having C linkage. See Example 4, below.

Example 4
#pragma map(foo, "bar")

int foo(); //function prototypes needed in C++

int main()
{

return foo();
}

extern "C" int bar() {return 7;}

Related References
“General Purpose Pragmas” on page 297

320 VisualAge C++ for AIX Compiler Reference

#pragma mc_func

Description
The #pragma mc_func directive allows you to specify machine instructions for a
particular function.

Syntax

�� �# pragma mc_func function { literal } ��

where:

function v Is a previously undeclared function with no parameters and a return type of int. This will declare
the function.

v Is a previously declared function with a return type of int.
literal a string that contains zero or more hexadecimal digits. The number of digits must be even.

Related References
“General Purpose Pragmas” on page 297
“#pragma reg_killed_by” on page 338

Compiler Options 321

#pragma namemangling

Description
The #pragma namemangling directive sets the name mangling scheme and the
maximum length of external symbol names generated from C++ source code.

Syntax

��
ansi

pragma namemangling (compat)
, num_chars

��

where:

ansi The name mangling scheme fully supports the various language features of
Standard C++, including function template overloading. If you specify ansi
but do not specify a size with num_chars, the default maximum is 64000
characters.

v5 The name mangling scheme is compatible with VisualAge C++ version 4.0.
If you specify v5 but do not specify a size with num_chars, the default
maximum is 64000 characters.

v4 The name mangling scheme is compatible with VisualAge C++ version 4.0.
If you specify v4 but do not specify a size with num_chars, the default
maximum is 64000 characters.

v3 The name mangling scheme is compatible with versions of VisualAge C++
earlier than version v4.0. If you specify v3 but do not specify a size with
num_chars, the default maximum is 255 characters. Use this scheme for
compatibility with link modules created with versions of VisualAge C++
released prior to version 4.0, or with link modules that were created with
the #pragma namemangling or -qnamemangling=compat compiler options
specified.

compat Same as the v3 suboption, described above.

Related References
“General Purpose Pragmas” on page 297
“namemangling” on page 214
“#pragma nameManglingRule” on page 323

322 VisualAge C++ for AIX Compiler Reference

#pragma nameManglingRule

Description
The #pragma nameManglingRule directive instructs the compiler whether or not
to mangle function names according to their function parameter types.

Syntax

�� # pragma nameManglingRule (fnparmtype , on)
off
pop

��

where:

on Function arguments are mangled according to function parameter types. For
example, cv qualifiers in function arguments are not mangled..

off Name mangling is compatible with VisualAge C++ version 5.0, and cv
qualifiers in function arguments are mangled.

pop Discards the current #pragma nameManglingRule setting, and replaces it
with the previous #pragma nameManglingRule setting from the stack. If no
previous settings remain on the stack, the default #pragma
nameManglingRule setting is used.

Defaults
The default is #pragma nameManglingRule(fnparmtype, on) when the
-qnamemangling=ansi or #pragma namemangling(ansi) compiler options are in
effect.

For all other settings of -qnamemangling or #pragma namemangling, the default
is #pragma nameManglingRule(fnparmtype, off).

Notes
This directive provides name mangling scheme compatibility between the current
level of the VisualAge C++ compiler and previous versions.

#pragma nameManglingRule is allowed in global, class, and function scopes.
Different pragma settings can be specified in front of function declarations and
definitions. If #pragma nameManglingRule settings in subsequent declarations
and definitions conflict, the compiler ignores those settings and issues a warning
message.

A given #pragma nameManglingRule setting remains in effect until overridden by
another #pragma nameManglingRule setting.

Each new #pragma nameManglingRule setting is pushed onto a stack, over top of
the previously-specified setting. The setting currently in effect can be removed
from the top of the stack with the pop suboption. It is replaced by the previous
setting stored in the stack, if any remain. If no settings remain, the default
#pragma nameManglingRule setting is used.

Related References
“General Purpose Pragmas” on page 297
“namemangling” on page 214
“#pragma namemangling” on page 322

Compiler Options 323

#pragma object_model

Description
The #pragma object_model directive specifies the object model to use for the
structures, unions, and classes that follow it.

Syntax

��
compat

pragma object_model (ibm)
pop

��

where choices for object model are:

compat Uses the xlC object model compatible with previous versions of the
compiler.

ibm Uses the new object model.
pop Reverts to the object model setting previously in effect. If no previous object

model setting exists, sets the object model to the default setting..

Notes
This pragma affects the structures, unions, and classes that follow it, until another
#pragma objmodel statement is reached.

When this pragma is used, the current object model setting is placed on a stack.
Subsequent use of this pragma places the newest setting on top of the stack.
Specifying #pragma objmodel(pop) removes the current object model setting from
the stack, and sets the object model to the next setting in the stack.

Related Concepts
“Object Models” on page 4

Related References
“General Purpose Pragmas” on page 297
“objmodel” on page 220

324 VisualAge C++ for AIX Compiler Reference

#pragma options

Description
The #pragma options directive specifies compiler options for your source program.

Syntax

�� �

� �

pragma option option_keyword
options ;

,

option_keyword = value

��

Notes
By default, pragma options generally apply to the entire source program. Some
pragmas must be specified before any program source statements. See the
documentation for specific options for more information.

To specify more than one compiler option with the #pragma options directive,,
separate the options using a blank space. For example:

#pragma options langlvl=ansi halt=s spill=1024 source

Most #pragma options directives must come before any statements in your source
program; only comments, blank lines, and other #pragma specifications can
precede them. For example, the first few lines of your program can be a comment
followed by the #pragma options directive:

/* The following is an example of a #pragma options directive: */

#pragma options langlvl=ansi halt=s spill=1024 source

/* The rest of the source follows ... */

Options specified before any code in your source program apply to your entire
program source code. You can use other #pragma directives throughout your
program to turn an option on for a selected block of source code. For example, you
can request that parts of your source code be included in your compiler listing:

#pragma options source

/* Source code between the source and nosource #pragma
options is included in the compiler listing */

#pragma options nosource

The settings in the table below are valid options for #pragma options. For more
information, refer to the pages for the equivalent compiler option.

Language
Application

Valid settings for
#pragma options
option_keyword

Compiler option
equivalent

Description

align=option -qalign Specifies what aggregate
alignment rules the
compiler uses for file
compilation.

Compiler Options 325

Language
Application

Valid settings for
#pragma options
option_keyword

Compiler option
equivalent

Description

[no]ansialias -qansialias Specifies whether
type-based aliasing is to be
used during optimization.

arch=option -qarch Specifies the architecture on
which the executable
program will be run.

assert=option -qassert Requests the compiler to
apply aliasing assertions to
your compilation unit.

[no]attr

attr=full

-qattr Produces an attribute
listing containing all
names.

chars=option -qchars

See also #pragma
chars

Instructs the compiler to
treat all variables of type
char as either signed or
unsigned.

[no]check -qcheck Generates code which
performs certain types of
run-time checking.

[no]compact -qcompact When used with
optimization, reduces code
size where possible, at the
expense of execution speed.

[no]dbcs -qmbcs, dbcs String literals and
comments can contain
DBCS characters.

[no]dbxextra -qdbxextra Generates symbol table
information for
unreferenced variables.

[no]digraph -qdigraph Allows special digraph and
keyword operators.

[no]dollar -qdollar Allows the $ symbol to be
used in the names of
identifiers.

enum=option -qenum

See also #pragma
enum

Specifies the amount of
storage occupied by the
enumerations.

[no]extchk -qextchk Performs external name
type-checking and function
call checking.

326 VisualAge C++ for AIX Compiler Reference

Language
Application

Valid settings for
#pragma options
option_keyword

Compiler option
equivalent

Description

flag=option -qflag Specifies the minimum
severity level of diagnostic
messages to be reported.

Severity levels can also be
specified with:

#pragma options flag=i =>
#pragma report (level,I)

#pragma options flag=w =>
#pragma report (level,W)

#pragma options flag=e,s,u
=> #pragma report (level,E)

float=[no]option -qfloat Specifies various floating
point options to speed up
or improve the accuracy of
floating point operations.

[no]flttrap=option -qflttrap Generates extra instructions
to detect and trap floating
point exceptions.

[no]fold -qfold Specifies that constant
floating point expressions
are to be evaluated at
compile time.

[no]fullpath -qfullpath Specifies the path
information stored for files
for dbx stabstrings.

[no]funcsect -qfuncsect Places intructions for each
function in a separate cset.

halt -qhalt Stops compiler when errors
of the specified severity
detected.

[no]idirfirst -qidirfirst Specifies search order for
user include files.

[no]ignerrno -qignerrno Allows the compiler to
perform optimizations that
assume errno is not
modified by system calls.

[no]ignprag -qignprag Instructs the compiler to
ignore certain pragma
statements.

[no]info=option -qinfo

See also #pragma
info

Produces informational
messages.

initauto=value -qinitauto Initializes automatic
storage to a specified
hexadecimal byte value.

Compiler Options 327

Language
Application

Valid settings for
#pragma options
option_keyword

Compiler option
equivalent

Description

[no]inlglue -qinlglue Generates fast external
linkage by inlining the
pointer glue code necessary
to make a call to an
external function or a call
through a function pointer.

isolated_call=names -qisolated_call

See also #pragma
isolated_call

Specifies functions in the
source file that have no
side effects.

langlvl -qlanglvl Specifies different language
levels.

This directive can
dynamically alter
preprocessor behavior. As a
result, compiling with the
-E compiler option may
produce results different
from those produced when
not compiling with the -E
option.

[no]ldbl128 -qldbl128,
longdouble

Increases the size of long
double type from 64 bits to
128 bits.

[no]libansi -qlibansi Assumes that all functions
with the name of an ANSI
C library function are in
fact the system functions.

[no]list -qlist Produces a compiler listing
that includes an object
listing.

[no]longlong -qlonglong Allows long long types in
your program.

[no]macpstr -qmacpstr Converts Pascal string
literals into null-terminated
strings where the first byte
contains the length of the
string.

[no]maf -qmaf Specifies whether
floating-point multiply-add
instructions are to be
generated.

[no]maxmem=number -qmaxmem Instructs the compiler to
halt compilation when a
specified number of errors
of specified or greater
severity is reached.

[no]mbcs -qmbcs, dbcs String literals and
comments can contain
DBCS characters.

328 VisualAge C++ for AIX Compiler Reference

Language
Application

Valid settings for
#pragma options
option_keyword

Compiler option
equivalent

Description

priority=number -qpriority

See also “#pragma
priority” on
page 336

Specifies the priority level
for the initialization of
static constructors

[no]proclocal,
[no]procimported,
[no]procunknown

-qproclocal,
procimported,
procunknown

Marks functions as local,
imported, or unknown.

[no]proto -qproto If this option is set, the
compiler assumes that all
functions are prototyped.

[no]rndsngl -qrndsngl Specifies that the results of
each single-precision float
operation is to be rounded
to single precision.

[no]ro -qro Specifies the storage type
for string literals.

[no]roconst -qroconst Specifies the storage
location for constant
values.

[no]rrm -qrrm Prevents floating-point
optimizations that are
incompatible with run-time
rounding to plus and
minus infinity modes.

[no]showinc -qshowinc If used with -qsource, all
include files are included in
the source listing.

[no]source -qsource Produces a source listing.

spill=number -qspill Specifies the size of the
register allocation spill
area.

[no]srcmsg -qsrcmsg Adds the corresponding
source code lines to the
diagnostic messages in the
stderr file.

[no]stdinc -qstdinc Specifies which files are
included with #include
<file_name> and #include
″file_name″ directives.

[no]strict -qstrict Turns off aggressive
optimizations of the -O3
compiler option that have
the potential to alter the
semantics of your program.

tbtable=option -qtbtable Changes the length of tabs
as perceived by the
compiler.

Compiler Options 329

Language
Application

Valid settings for
#pragma options
option_keyword

Compiler option
equivalent

Description

tune=option -qtune Specifies the architecture
for which the executable
program is optimized.

[no]unroll

unroll=number

-qunroll Unrolls inner loops in the
program by a specified
factor.

[no]upconv -qupconv Preserves the unsigned
specification when
performing integral
promotions.

[no]vftable -qvftable Controls the generation of
virtual function tables.

[no]xref -qxref Produces a compiler listing
that includes a
cross-reference listing of all
identifiers.

Related References
“General Purpose Pragmas” on page 297
“E” on page 115

330 VisualAge C++ for AIX Compiler Reference

#pragma option_override

Description
The #pragma option_override directive lets you specify alternate optimization
options for specific functions.

Syntax

�� # pragma option_override (func_name [,″ option ″]) ��

Notes
By default, optimization options specified on the command line apply to the entire
source program. This option lets you override those default settings for specified
functions (func_name) in your program.

Per-function optimizations have effect only if optimization is already enabled by
compilation option. You can request per-function optimizations at a level less than
or greater than that applied to the rest of the program being compiled. Selecting
options through this pragma affects only the specific optimization option selected,
and does not affect the implied settings of related options.

Options are specified in double quotes, so they are not subject to macro expansion.
The option specified within quotes must comply with the syntax of the build
option.

The function specified in this pragma can not be overloaded. Member functions are
not supported.

This pragma affects only functions defined in your compilation unit and can
appear anywhere in the compilation unit, for example:
v before or after a compilation unit
v before or after the function definition
v before or after the function declaration
v before or after a function has been referenced
v inside or outside a function definition.

Related References
“General Purpose Pragmas” on page 297

Compiler Options 331

#pragma pack

Description
The #pragma pack directive modifies the current alignment rule for members of
structures follow the directive.

Syntax

�� # pragma pack (nopack)
1
2
4
8
16
pop

��

where:

1 | 2 | 4 | 8
| 16

Members of structures are aligned on the specified byte-alignment.

nopack No packing is applied, and ″nopack″ is pushed onto the pack stack

pop The top element on the pragma pack stack is popped.

Notes
The #pragma pack directive modifies the current alignment rule for only the
members of structures whose declarations follow the directive. It does not affect
the alignment of the structure directly, but by affecting the alignment of the
members of the structure, it may affect the alignment of the overall structure
according to the alignment rule.

The #pragma pack directive cannot increase the alignment of a member., but rather
can decrease the alignment. For example, for a member with data type of integer
(int), a #pragma pack(2) directive would cause that member to be packed in the
structure on a 2-byte boundary, while a #pragma pack(4) directive would have no
effect.

The #pragma pack directive is stack based. All pack values are pushed onto a stack
as the source code is parsed. The value at the top of the current pragma pack stack
is the value used to pack members of all subsequent structures within the scope of
the current alignment rule.

A #pragma pack stack is associated with the current element in the alignment rule
stack. Alignment rules are specified with the -qalign compiler option or with the
#pragma options align directive. If a new alignment rule is created, a new
#pragma pack stack is created. If the current alignment rule is popped off the
alignment rule stack, the current #pragma pack stack is emptied and the previous
#pragma pack stack is restored. Stack operations (pushing and popping pack
settings) affect only the current #pragma pack stack.

The pragma pack directive does not affect the alignment of the bits in a bitfield.

332 VisualAge C++ for AIX Compiler Reference

Examples
1. In the code shown below, the structure S2 will have its members packed to

1-byte, but structure S1 will not be affected. This is because the declaration for
S1 began before the pragma directive. However, since the declaration for S2
began after the pragma directive, it is affected.

struct s_t1 {
char a;
int b;
#pragma pack(1)
struct s_t2 {

char x;
int y;

} S2;
char c;
int b;

} S1;

2. In the code segment below:
a. The members of S1 would by aligned with the twobyte alignment rule, S2

members would be packed on 1-byte, S3 members packed on 2-bytes, and
S4 packed on 4-bytes.

b. The #pragma options align=reset directive pops the current alignment rule
(which in the above case was the twobyte alignment rule). All #pragma
pack directives issued while the #pragma options align=twobyte directive
was in effect are also popped.

c. The #pragma pack(4) directive encountered is restored, as well as the
alignment rule that was in effect before the #pragma options align=twobyte
directive was popped.
#pragma pack(4)
#pragma options align=twobyte
struct s_t1 {
char a;
int b;
}S1;

#pragma pack(1)
struct s_t2 {
char a;
short b;
} S2;

#pragma pack(2)
struct s_t3 {
char a;
double b;
} S3;

#pragma options align=reset
struct s_t4 {
char a;
int b;
} S4;

3. This example shows how a #pragma pack directive can affect the size and
mapping of a structure:

struct s_t {
char a;
int b;
short c;
int d;
}S;

Compiler Options 333

Default mapping: With #pragma pack(1):

sizeof S = 16 sizeof S = 11

offsetof a = 0 offsetof a = 0

offsetof b = 4 offsetof b = 1

offsetof c = 8 offsetof c = 5

offsetof d = 12 offsetof d = 7

align of a = 1 align of a = 1

align of b = 4 align of b = 1

align of c = 2 align of c = 1

align of d = 4 align of d = 1

Related References
“General Purpose Pragmas” on page 297
“align” on page 77
“#pragma options” on page 325

334 VisualAge C++ for AIX Compiler Reference

#pragma pass_by_value

Description
The #pragma pass_by_value directive specifies how classes containing const or
reference members are passed in function arguments. All classes in the compilation
unit are affected by this option.

Syntax

�� # pragma pass_by_value (compat)
ansi
default
source
pop
reset

��

where:

compat Pushes the equivalent of the -qoldpassbyvalue on to the stack.

ansi Pushes the equivalent of the -qnooldpassbyvalue option on to the stack.

default Pushes the compiler default setting for the option -qnooldpassbyvalue on to
the stack.

source Pushes the value of the original command line option (-qoldpassbyvalue or
-qnooldpassbyvalue) on to the stack.

pop Pops the stack, discarding the current #pragma pass_by_value setting, and
restoring the previous #pragma pass_by_value setting on the stack as the
option now in effect.

reset Same as pop.

Notes
The current setting of #pragma pass_by_value specifies how classes are passed as
function arguments in the program source code following the pragma. The setting
remains in effect until a subsequent use of the pragma invokes a new setting.

The setting of #pragma pass_by_value overrides the -qoldpassbyvalue compiler
option.

If pop or reset is called on an empty stack, the compiler issues a warning message
and assumes the -qoldpassbyvalue setting originally set on the command line. If
-qoldpassbyvalue was not set on the command line, the compiler will assume the
default setting set in the compiler default configuration file.

Use #pragma pass_by_value(compat) to instruct the compiler to mimic the
behavior of earlier VisualAge C++ compilers (v3.6 or earlier) when passing classes
as function arguments. Classes containing a const or reference member are not
passed by value.

Related References
“General Purpose Pragmas” on page 297
“oldpassbyvalue” on page 221

Compiler Options 335

#pragma priority

Description
The #pragma priority directive specifies the order in which static objects are to be
initialized at run time.

Syntax

�� # pragma priority (n) ��

Notes
Where n is an integer literal in the range of INT_MIN to INT_MAX. The default
value is 0. A negative value indicates a higher priority; a positive value indicates a
lower priority. The first 1024 priorities (INT_MIN to INT_MIN + 1023) are reserved
for use by the compiler and its libraries. The priority value specified applies to all
runtime static initialization in the current compilation unit.

Any global object declared before another object in a file is constructed first. Use
#pragma priority to specify the construction order of objects across files. However,
if the user is creating an executable or shared library target from source files,
VisualAge C++ will check dependency ordering, which may override #pragma
priority.

For example, if the constructor to object B is passed object A as a parameter, then
VisualAge C++ will arrange for A to be constructed first, even if this violates the
top-to-bottom or #pragma priority ordering. This is essential for orderless
programming, which VisualAge C++permits. If the target is an .obj/.lib, this
processing is not done, because there may not be enough information to detect the
dependencies.

To ensure that the objects are always constructed from top to bottom in a file, the
compiler enforces the restriction that the priority specifies all objects before and all
objects after it until the next #pragma (is encountered) is at that priority.

Example
#pragma priority(1)

Related References
“General Purpose Pragmas” on page 297

336 VisualAge C++ for AIX Compiler Reference

#pragma reachable

Description
The #pragma reachable directive declares that the point after the call to a routine,
function, can be the target of a branch from some unknown location. This pragma
should be used in conjunction with setjmp.

Syntax

�� �

,

pragma reachable (function) ��

Related References
“General Purpose Pragmas” on page 297

Compiler Options 337

#pragma reg_killed_by

Description
The #pragma reg_killed_by directive specifies those registers whose value will be
corrupted by the specified function. The list of registers that follow the function
name will become the list of registers killed by the function. This #pragma can
only be used on functions that are defined using #pragma mc_func.

Syntax

�� �

,

pragma reg_killed_by function regid
-regid

��

where:

function The function previously defined using the #pragma mc_func.
regid Either a single register or the beginning and ending registers in a range.

Notes
A single register is volatile according to the register conventions. regid is subject to
the following restrictions:
v the class name part of the register name must be valid
v the register number is either required or prohibited
v when the register number is required it must be in the valid range

If any of these restrictions are not met, an error is issued and the register is
ignored.

Example
#pragma reg_killed_by function_a fp0-fp31

Related References
“General Purpose Pragmas” on page 297
“#pragma mc_func” on page 321

338 VisualAge C++ for AIX Compiler Reference

#pragma report

Description
The #pragma report directive controls the generation of specific messages. The
pragma will take precedence over #pragma info. Specifying #pragma report(pop)
will revert the report level to the previous level. If no previous report level was
specified, then a warning will be issued and the report level will remain
unchanged.

Syntax

�� # pragma report (level , E)
W
I

enable , message_number
disable

pop

��

where:

level Indicates the minimum severity level of diagnostic messages to display.
E | W | I Used in conjunction with level to determine the type of diagnostic

messages to display.

E Signifies a minimum message severity of ’error’. This is
considered as the most severe type of diagnostic message. A
report level of ’E’ will display only ’error’ messages. An
alternative way of setting the report level to ’E’ is by specifying
the -qflag(E) compiler option.

W Signifies a minimum message severity of ’warning’. A report level
of ’W’ will filter out all informational messages, and display only
those messages classified as warning or error messages. An
alternative way of setting the report level to ’W’ is by specifying
the -qflag(E) compiler option.

I Signifies a minimum message severity of ’information’.
Information messages are considered as the least severe type of
diagnostic message. A level of ’I’ would display messages of all
types. The VisualAge C++ development environment sets this as
the default option. An alternative way of setting the report level
to ’I’ is by specifying the -qflag(E) compiler option.

enable | disable Enables or disables the specified message number.
message_number Is an identifier containing the message number prefix, followed by the

message number. An example of a message number is: CPPC1004
pop resets the report level back to the previous report level. If a pop operation

is performed on an empty stack, the report level will remain unchanged
and no message will be generated.

Examples
1. #pragma info declares all messages to be information messages. The pragma

report instructs the compiler to to display only those messages with a severity
of ’W’ or warning messages. In this case, none of the messages will be
displayed.

1 #pragma info(all)
2 #pragma report(level, W)

Compiler Options 339

2. If CPPC1000 was an error message, it would be displayed. If it was any other
type of diagnostic message, it would not be displayed.

1 #pragma report(enable, CPPC1000) // enables message number CPPC1000
2 #pragma report(level, E) // display only error messages.

Changing the order of the code like so:
1 #pragma report(level, E)
2 #pragma report(enable, CPPC1000)

would yield the same result. The order in which the two lines of code appear
in, does not affect the outcome. However, if the message was ’disabled’, then
regardless of what report level is set and order the lines of code appear in, the
diagnostic message will not be displayed.

3. In line 1 of the example below, the initial report level is set to ’I’, causing
message CPPC1000 to display regardless of the type of diagnostic message it
classified as. In line 3, a new report level of ’E’ is set, indicating at only
messages with a severity level of ’E’ will be displayed. Immediately following
line 3, the current level ’E’ is ’popped’ and reset back to ’I’.

1 #pragma report(level, I)
2 #pragma report(enable, CPPC1000)
3 #pragma report(level, E)
4 #pragma report(pop)

Related References
“General Purpose Pragmas” on page 297
“flag” on page 130

340 VisualAge C++ for AIX Compiler Reference

#pragma strings

Description
The #pragma strings directive sets storage type for strings. It specifies that the
compiler can place strings into read-only memory or must place strings into
read/write memory.

Syntax

�� # pragma strings (writeable)
readonly

��

Notes
Strings are read-only by default.

This pragma must appear before any source statements in order to have effect.

Example
#pragma strings(writeable)

Related References
“General Purpose Pragmas” on page 297

Compiler Options 341

#pragma unroll

Description
The #pragma unroll directive is used to unroll inner loops in your program, which
can help improve program peformance.

Syntax

�� # pragma nounroll
unroll ()

n

��

where n is the loop unrolling factor. The value of n is a positive scalar integer or
compile-time constant initialization expression. If n is not specified, the optimizer
determines an appropriate unrolling factor for each loop.

Notes
The #pragma unroll and #pragma nounroll directives must appear immediately
before the loop to be affected. Only one of these directives can be specified for a
given loop.

Specifying #pragma nounroll for a loop instructs the compiler to not unroll that
loop. Specifying #pragma unroll(1) has the same effect.

To see if the unroll option improves performance of a particular application, you
should first compile the program with usual options, then run it with a
representative workload. You should then recompile with command line -qunroll
option and/or the unroll pragmas enabled, then rerun the program under the
same conditions to see if performance improves.

Examples
1. In the following example, loop control is not modified:

#pragma unroll(2)
while (*s != 0)
{

*p++ = *s++;
}

Unrolling this by a factor of 2 gives:
while (*s)
{

*p++ = *s++;
if (*s == 0) break;
*p++ = *s++;

}

2. In this example, loop control is modified:
#pragma unroll(3)
for (i=0; i<n; i++) {

a[i]=b[i] * c[i];
}

Unrolling by 3 gives:
i=0;
if (i>n-2) goto remainder;
for (; i<n-2; i+=3) {

a[i]=b[i] * c[i];

342 VisualAge C++ for AIX Compiler Reference

a[i+1]=b[i+1] * c[i+1];
a[i+2]=b[i+2] * c[i+2];

}
if (i<n) {

remainder:
for (; i<n; i++) {

a[i]=b[i] * c[i];
}

}

Related References
“General Purpose Pragmas” on page 297
“unroll” on page 283

Compiler Options 343

Pragmas to Control Parallel Processing
The #pragma directives on this page give you control over how the compiler
handles parallel processing in your program. These pragmas fall into two groups;
IBM-specific directives, and directives conforming to the OpenMP Application
Program Interface specification.

Use the -qsmp compiler option to specify how you want parallel processing
handled in your program. You can also instruct the compiler to ignore all parallel
processing-related #pragma directives by specifying the -qignprag=ibm:omp
compiler option.

Directives apply only to the statement or statement block immediately following
the directive.

IBM Pragma Directives Description

#pragma ibm critical Instructs the compiler that the statement or statement
block immediately following this pragma is a critical
section.

#pragma ibm independent_calls Asserts that specified function calls within the chosen
loop have no loop-carried dependencies.

#pragma ibm independent_loop Asserts that iterations of the chosen loop are
independent, and that the loop can therefore be
parallelized.

#pragma ibm iterations Specifies the approximate number of loop iterations for
the chosen loop.

#pragma ibm parallel_loop Explicitly instructs the compiler to parallelize the chosen
loop.

#pragma ibm permutation Asserts that specified arrays in the chosen loop contain
no repeated values.

#pragma ibm schedule Specifies scheduling algorithms for parallel loop
execution.

#pragma ibm sequential_loop Explicitly instructs the compiler to execute the chosen
loop sequentially.

OpenMP Pragma Directives Description

#pragma omp atomic Identifies a specific memory location that must be
updated atomically and not be exposed to multiple,
simultaneous writing threads.

#pragma omp parallel Defines a parallel region to be run by multiple threads
in parallel. With specific exceptions, all other OpenMP
directives work within parallelized regions defined by
this directive.

#pragma omp for Work-sharing construct identifying an iterative for-loop
whose iterations should be run in parallel.

#pragma omp parallel for Shortcut combination of omp parallel and omp for
pragma directives, used to define a parallel region
containing a single for directive.

#pragma omp ordered Work-sharing construct identifying a structured block of
code that must be executed in sequential order.

344 VisualAge C++ for AIX Compiler Reference

OpenMP Pragma Directives Description

#pragma omp section, #pragma
omp sections

Work-sharing construct identifying a non-iterative
section of code containing one or more subsections of
code that should be run in parallel.

#pragma omp parallel sections Shortcut combination of omp parallel and omp sections
pragma directives, used to define a parallel region
containing a single sections directive.

#pragma omp single Work-sharing construct identifying a section of code that
must be run by a single available thread.

#pragma omp master Synchronization construct identifying a section of code
that must be run only by the master thread.

#pragma omp critical Synchronization construct identifying a statement block
that must be executed by a single thread at a time.

#pragma omp barrier Synchronizes all the threads in a parallel region.

#pragma omp flush Synchronization construct identifying a point at which
the compiler ensures that all threads in a parallel region
have the same view of specified objects in memory.

#pragma omp threadprivate Defines the scope of selected file-scope data variables as
being private to a thread, but file-scope visible within
that thread.

Related Concepts
“Program Parallelization” on page 9

Related Tasks
“Set Parallel Processing Run-time Options” on page 20
“Control Parallel Processing with Pragmas” on page 45

Related References
“smp” on page 252
“IBM SMP Run-time Options for Parallel Processing” on page 383
“OpenMP Run-time Options for Parallel Processing” on page 386
“Built-in Functions Used for Parallel Processing” on page 388

For complete information about the OpenMP Specification, see:
OpenMP Web site
OpenMP Specification.

Compiler Options 345

http://www.openmp.org
http://www.openmp.org/specs

#pragma ibm critical

Description
The critical pragma identifies a critical section of program code that must only be
run by one process at a time.

Syntax
#pragma ibm critical [(name)]
<statement>

where name can be used to optionally identify the critical region. Identifiers
naming a critical region have external linkage.

Notes
The compiler reports an error if you try to branch into or out of a critical section.
Some situations that will cause an error are:
v A critical section that contains the return statement.
v A critical section that contains goto, continue, or break statements that transfer

program flow outside of the critical section.
v A goto statement outside a critical section that transfers program flow to a label

defined within a critical section.

Related References
“Pragmas to Control Parallel Processing” on page 344

346 VisualAge C++ for AIX Compiler Reference

#pragma ibm independent_calls

Description
The independent_calls pragma asserts that specified function calls within the
chosen loop have no loop-carried dependencies. This information helps the
compiler perform dependency analysis.

Syntax
#pragma ibm independent_calls [(identifier [,identifier] ...)]
<countable for/while/do loop>

where identifier represents the name of a function.

Notes
identifier cannot be the name of a pointer to a function.

If no function identifiers are specified, the compiler assumes that all functions
inside the loop are free of carried dependencies.

Related References
“Pragmas to Control Parallel Processing” on page 344

Compiler Options 347

#pragma ibm independent_loop

Description
The independent_loop pragma asserts that iterations of the chosen loop are
independent, and that the loop can be parallelized.

Syntax
#pragma ibm independent_loop [if (exp)]
<countable for/while/do loop>

where exp represents a scalar expression.

Notes
When the if argument is specified, loop iterations are considered independent only
as long as exp evaluates to TRUE at run-time.

This pragma can be combined with the schedule pragma to select a specific
parallel process scheduling algorithm. For more information, see the description for
the schedule pragma.

Related References
“Pragmas to Control Parallel Processing” on page 344
“#pragma ibm schedule” on page 352

348 VisualAge C++ for AIX Compiler Reference

#pragma ibm iterations

Description
The iterations pragma specifies the approximate number of loop iterations for the
chosen loop.

Syntax
#pragma ibm iterations (iteration-count)
<countable for/while/do loop>

where iteration-count represents a positive integral constant expression.

Notes
The compiler uses the information in the iteration-count variable to determine if it is
efficient to parallelize the loop.

Related References
“Pragmas to Control Parallel Processing” on page 344

Compiler Options 349

#pragma ibm parallel_loop

Description
The parallel_loop pragma explicitly instructs the compiler to parallelize the chosen
loop.

Syntax
#pragma ibm parallel_loop [if (exp)] [schedule (sched-type)]
<countable for/while/do loop>

where exp represents a scalar expression, and sched-type represents any scheduling
algorithm as valid for the schedule directive.

Notes
When the if argument is specified, the loop executes in parallel only if exp
evaluates to TRUE at run-time. Otherwise the loop executes sequentially. The loop
will also run sequentially if it is in a critical section.

This pragma can be applied to a wide variety of C loops, and the compiler will try
to determine if a loop is countable or not.

Program sections using the parallel_loop pragma must be able to produce a
correct result in both sequential and parallel mode. For example, loop iterations
must be independent before the loop can be parallelized. Explicit parallel
programming techniques involving condition synchronization are not permitted.

This pragma can be combined with the schedule pragma to select a specific
parallel process scheduling algorithm. For more information, see the description for
the schedule pragma.

A warning is generated if this pragma is not followed by a countable loop.

Related References
“Pragmas to Control Parallel Processing” on page 344
“#pragma ibm schedule” on page 352

350 VisualAge C++ for AIX Compiler Reference

#pragma ibm permutation

Description
The permutation pragma asserts that specified arrays in the chosen loop contain
no repeated values.

Syntax
#pragma ibm permutation (identifier [,identifier] ...)
<countable for/while/do loop>

where identifier represents the name of an array.

Notes
identifier cannot be the name of a pointer or a variable modified type.

An array specified by this pragma cannot be a function parameter.

Related References
“Pragmas to Control Parallel Processing” on page 344

Compiler Options 351

#pragma ibm schedule

Description
The schedule pragma specifies the scheduling algorithms used for parallel
processing.

Syntax
#pragma ibm schedule (sched-type)
<countable for/while/do loop>

where sched-type represents one of the following options:

affinity Iterations of a loop are initially divided into local partitions of size
ceiling(number_of_iterations/number_of_threads). Each local partition then
further subdivided into chunks of size
ceiling(number_of_iterations_remaining_in_partition/2).

When a thread becomes available, it takes the next chunk from its local
partition. If there are no more chunks in the local partition, the thread takes
an available chunk from the partition of another thread.

affinity,n As above, except that each local partition is subdivided into chunks of size n.
n must be an integral assignment expression of value 1 or greater.

dynamic Iterations of a loop are divided into chunks of size 1.

Chunks are assigned to threads on a first-come, first-serve basis as threads
become available. This continues until all work is completed.

dynamic,n As above, except that all chunks are set to size n. n must be an integral
assignment expression of value 1 or greater.

guided Chunks are made progressively smaller until a chunk size of one is reached.
The first chunk is of size ceiling(number_of_iterations/number_of_threads).
Remaining chunks are of size
ceiling(number_of_iterations_remaining/number_of_threads).

Chunks are assigned to threads on a first-come, first-serve basis as threads
become available. This continues until all work is completed.

guided,n As above, except the minimum chunk size is set to n. n must be an integral
assignment expression of value 1 or greater.

runtime Scheduling policy is determined at run-time.
static Iterations of a loop are divided into chunks of size

ceiling(number_of_iterations/number_of_threads). Each thread is assigned a
separate chunk.

This scheduling policy is also known as block scheduling.
static,n Iterations of a loop are divided into chunks of size n. Each chunk is assigned

to a thread in round-robin fashion.

n must be an integral assignment expression of value 1 or greater.

This scheduling policy is also known as block cyclic scheduling.
static,1 Iterations of a loop are divided into chunks of size 1. Each chunk is assigned

to a thread in round-robin fashion.

This scheduling policy is also known as cyclic scheduling.

Notes
Scheduling algorithms for parallel processing can be specified using any of the
methods shown below. If used, methods higher in the list override entries lower in
the list.

352 VisualAge C++ for AIX Compiler Reference

v pragma statements
v compiler command line options
v run-time command line options
v run-time default options

Scheduling algorithms can also be specified using the schedule argument of the
parallel_loop and independent_loop pragma statements. For example, the
following sets of statements are equivalent:

#pragma ibm parallel_loop
#pragma ibm schedule (sched_type)
<countable for|while|do loop>
and

#pragma ibm parallel_loop (sched_type)
<countable for|while|do loop>

If different scheduling types are specified for a given loop, the last one specified is
applied.

Related References
“Pragmas to Control Parallel Processing” on page 344
“#pragma ibm independent_loop” on page 348
“#pragma ibm parallel_loop” on page 350

Compiler Options 353

#pragma ibm sequential_loop

Description
The sequential_loop pragma explicitly instructs the compiler to execute the chosen
loop sequentially.

Syntax
#pragma ibm sequential_loop
<countable for/while/do loop>

Notes
This pragma disables automatic parallelization of the chosen loop, and is always
respected by the compiler.

Related References
“Pragmas to Control Parallel Processing” on page 344

354 VisualAge C++ for AIX Compiler Reference

#pragma omp atomic

Description
The omp atomic directive identifies a specific memory location that must be
updated atomically and not be exposed to multiple, simultaneous writing threads.

Syntax
#pragma omp atomic

<statement_block>

where statement is an expression statement of scalar type that takes one of the
forms that follow:

statement Conditions

x bin_op = expr where:

bin_op is one of:

+ * - / & ^ | << >>

expr is an expression of scalar type that does not reference x.

x++

++x

x--

--x

Notes
Load and store operations are atomic only for object x. Evaluation of expr is not
atomic.

All atomic references to a given object in your program must have a compatible
type.

Objects that can be updated in parallel and may be subject to race conditions
should be protected with the omp atomic directive.

Examples
extern float x[], *p = x, y;

/* Protect against race conditions among multiple updates. */
#pragma omp atomic
x[index[i]] += y;

/* Protect against races with updates through x. */
#pragma omp atomic
p[i] -= 1.0f;

Related References
“Pragmas to Control Parallel Processing” on page 344

Compiler Options 355

#pragma omp parallel

Description
The omp parallel directive explicitly instructs the compiler to parallelize the
chosen segment of code.

Syntax
#pragma omp parallel [clause[clause] ...]
<statement_block>

where clause is any of the following:

if (exp) When the if argument is specified, the program code executes in parallel
only if the scalar expression represented by exp evaluates to a non-zero
value at run-time. Only one if clause can be specified.

private (list) Declares the scope of the data variables in list to be private to each thread.
Data variables in list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to each thread.
Each new private object is initialized with the value of the original
variable as if there was an implied declaration within the statement block.
Data variables in list are separated by commas.

shared (list) Declares the scope of the data variables in list to be shared across all
threads.

default (shared
| none)

Defines the default data scope of variables in each thread. Only one
default clause can be specified on an omp parallel directive.

Specifying default(shared) is equivalent to stating each variable in a
shared(list) clause.

Specifying default(none) requires that each data variable visible to the
parallelized statement block must be explcitly listed in a data scope clause,
with the exception of those variables that are:

v const-qualified,

v specified in an enclosed data scope attribute clause, or,

v used as a loop control variable referenced only by a corresponding omp
for or omp parallel for directive.

copyin (list) For each data variable specified in list, the value of the data variable in the
master thread is copied to the thread-private copies at the beginning of the
parallel region. Data variables in list are separated by commas.

Each data variable specified in the copyin clause must be a threadprivate
variable.

reduction
(operator: list)

Performs a reduction on all scalar variables in list using the specified
operator. Reduction variables in list are separated by commas.

A private copy of each variable in list is created for each thread. At the
end of the statement block, the final values of all private copies of the
reduction variable are combined in a manner appropriate to the operator,
and the result is placed back into the original value of the shared
reduction variable.

Variables specified in the reduction clause:

v must be of a type appropriate to the operator.

v must be shared in the enclosing context.

v must not be const-qualified.

v must not have pointer type.

356 VisualAge C++ for AIX Compiler Reference

Notes
When a parallel region is encountered, a logical team of threads is formed. Each
thread in the team executes all statements within a parallel region except for
work-sharing constructs. Work within work-sharing constructs is distributed
among the threads in a team.

Loop iterations must be independent before the loop can be parallelized. An
implied barrier exists at the end of a parallelized statement block.

Nested parallel regions are always serialized.

Related References
“Pragmas to Control Parallel Processing” on page 344
“#pragma omp for” on page 358
“#pragma omp parallel for” on page 363
“#pragma omp parallel sections” on page 366

Compiler Options 357

#pragma omp for

Description
The omp for directive instructs the compiler to distribute loop iterations within the
team of threads that encounters this work-sharing construct.

Syntax
#pragma omp for [clause[clause] ...]
<for_loop>

where clause is any of the following:

private (list) Declares the scope of the data variables in list to be private to
each thread. Data variables in list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to
each thread. Each new private object is initialized as if there
was an implied declaration within the statement block. Data
variables in list are separated by commas.

lastprivate (list) Declares the scope of the data variables in list to be private to
each thread. The final value of each variable in list, if
assigned, will be the value assigned to that variable in the last
iteration. Variables not assigned a value will have an
indeterminate value. Data variables in list are separated by
commas.

reduction (operator:list) Performs a reduction on all scalar variables in list using the
specified operator. Reduction variables in list are separated by
commas.

A private copy of each variable in list is created for each
thread. At the end of the statement block, the final values of
all private copies of the reduction variable are combined in a
manner appropriate to the operator, and the result is placed
back into the original value of the shared reduction variable.

Variables specified in the reduction clause:

v must be of a type appropriate to the operator.

v must be shared in the enclosing context.

v must not be const-qualified.

v must not have pointer type.
ordered Specify this clause if an ordered construct is present within

the dynamic extent of the omp for directive.

358 VisualAge C++ for AIX Compiler Reference

schedule (type) Specifies how iterations of the for loop are divided among
available threads. Acceptable values for type are:

dynamic
Iterations of a loop are divided into chunks of size
ceiling(number_of_iterations/number_of_threads).

Chunks are dynamically assigned to threads on a
first-come, first-serve basis as threads become
available. This continues until all work is completed.

dynamic,n
As above, except chunks are set to size n. n must be
an integral assignment expression of value 1 or
greater.

guided Chunks are made progressively smaller until the
default minimum chunk size is reached. The first
chunk is of size
ceiling(number_of_iterations/number_of_threads).
Remaining chunks are of size
ceiling(number_of_iterations_remaining/number_of_threads).

The minimum chunk size is 1.

Chunks are assigned to threads on a first-come,
first-serve basis as threads become available. This
continues until all work is completed.

guided,n
As above, except the minimum chunk size is set to n.
n must be an integral assignment expression of value
1 or greater.

runtime
Scheduling policy is determined at run-time. Use the
OMP_SCHEDULE environment variable to set the
scheduling type and chunk size.

static Iterations of a loop are divided into chunks of size
ceiling(number_of_iterations/number_of_threads). Each
thread is assigned a separate chunk.

This scheduling policy is also known as block
scheduling.

static,n Iterations of a loop are divided into chunks of size n.
Each chunk is assigned to a thread in round-robin
fashion.

n must be an integral assignment expression of value
1 or greater.

This scheduling policy is also known as block cyclic
scheduling.

static,1 Iterations of a loop are divided into chunks of size 1.
Each chunk is assigned to a thread in round-robin
fashion.

This scheduling policy is also known as cyclic
scheduling.

nowait Use this clause to avoid the implied barrier at the end of the
for directive. This is useful if you have multiple independent
work-sharing sections or iterative loops within a given
parallel region. Only one nowait clause can appear on a given
for directive.

Compiler Options 359

and where for_loop is a for loop construct with the following canonical shape:
for (init_expr; exit_cond; incr_expr)
statement

where:

init_expr takes form: iv = b
integer-type iv = b

exit_cond takes form: iv <= ub
iv < ub
iv >= ub
iv > ub

incr_expr takes form: ++iv
iv++
--iv
iv--
iv += incr
iv -= incr
iv = iv + incr
iv = incr + iv
iv = iv - incr

and where:

iv Iteration variable. The iteration variable must be a signed
integer not modified anywhere within the for loop. It is
implicitly made private for the duration of the for operation.
If not specified as lastprivate, the iteration variable will
have an indeterminate value after the operation completes..

b, ub, incr Loop invariant signed integer expressions. No
synchronization is performed when evaluating these
expressions and evaluated side effects may result in
indeterminate values..

Notes
Program sections using the omp for pragma must be able to produce a correct
result regardless of which thread executes a particular iteration. Similarly, program
correctness must not rely on using a particular scheduling algorithm.

The for loop iteration variable is implicitly made private in scope for the duration
of loop execution. This variable must not be modified within the body of the for
loop. The value of the increment variable is indeterminate unless the variable is
specified as having a data scope of lastprivate.

An implicit barrier exists at the end of the for loop unless the nowait clause is
specified.

Restrictions are:
v The for loop must be a structured block, and must not be terminated by a break

statement.
v Values of the loop control expressions must be the same for all iterations of the

loop.
v An omp for directive can accept only one schedule clauses.
v The value of n (chunk size) must be the same for all threads of a parallel region.

360 VisualAge C++ for AIX Compiler Reference

Related References
“Pragmas to Control Parallel Processing” on page 344
“#pragma omp parallel for” on page 363

Compiler Options 361

#pragma omp ordered

Description
The omp ordered directive identifies a structured block of code that must be
executed in sequential order.

Syntax
#pragma omp ordered

statement_block

Notes
The omp ordered directive must be used as follows:
v It must appear within the extent of a omp for or omp parallel for construct

containing an ordered clause.
v It applies to the statement block immediately following it. Statements in that

block are executed in the same order in which iterations are executed in a
sequential loop.

v An iteration of a loop must not execute the same omp ordered directive more
than once.

v An iteration of a loop must not execute more than one distinct omp ordered
directive.

Related References
“Pragmas to Control Parallel Processing” on page 344
“#pragma omp for” on page 358
“#pragma omp parallel for” on page 363

362 VisualAge C++ for AIX Compiler Reference

#pragma omp parallel for

Description
The omp parallel for directive effectively combines the omp parallel and omp for
directives. This directive lets you define a parallel region containing a single for
directive in one step.

Syntax
#pragma omp parallel for [clause[clause] ...]
<for_loop>

Notes
All clauses and restrictions described in the omp parallel and omp for directives
apply to the omp parallel for directive.

Related References
“Pragmas to Control Parallel Processing” on page 344
“#pragma omp for” on page 358
“#pragma omp parallel” on page 356

Compiler Options 363

#pragma omp section, #pragma omp sections

Description
The omp sections directive distributes work among threads bound to a defined
parallel region.

Syntax
#pragma omp sections [clause[clause] ...]

{
[#pragma omp section]

statement-block
[#pragma omp section]

statement-block
.
.
.

}

where clause is any of the following:

private (list) Declares the scope of the data variables in list to be private to each
thread. Data variables in list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to each
thread. Each new private object is initialized as if there was an
implied declaration within the statement block. Data variables in
list are separated by commas.

lastprivate (list) Declares the scope of the data variables in list to be private to each
thread. The final value of each variable in list, if assigned, will be
the value assigned to that variable in the last section. Variables not
assigned a value will have an indeterminate value. Data variables
in list are separated by commas.

reduction (operator: list) Performs a reduction on all scalar variables in list using the
specified operator. Reduction variables in list are separated by
commas.

A private copy of each variable in list is created for each thread. At
the end of the statement block, the final values of all private
copies of the reduction variable are combined in a manner
appropriate to the operator, and the result is placed back into the
original value of the shared reduction variable.

Variables specified in the reduction clause:

v must be of a type appropriate to the operator.

v must be shared in the enclosing context.

v must not be const-qualified.

v must not have pointer type.
nowait Use this clause to avoid the implied barrier at the end of the

sections directive. This is useful if you have multiple independent
work-sharing sections within a given parallel region. Only one
nowait clause can appear on a given sections directive.

Notes
The omp section directive is optional for the first program code segment inside the
omp sections directive. Following segments must be preceded by an omp section
directive. All omp section directives must appear within the lexical construct of the
program source code segment associated with the omp sections directive.

When program execution reaches a omp sections directive, program segments
defined by the following omp section directive are distributed for parallel

364 VisualAge C++ for AIX Compiler Reference

execution among available threads. A barrier is implicitly defined at the end of the
larger program region associated with the omp sections directive unless the
nowait clause is specified.

Related References
“Pragmas to Control Parallel Processing” on page 344
“#pragma omp parallel sections” on page 366

Compiler Options 365

#pragma omp parallel sections

Description
The omp parallel sections directive effectively combines the omp parallel and
omp sections directives. This directive lets you define a parallel region containing
a single sections directive in one step.

Syntax
#pragma omp parallel sections [clause[clause] ...]

{
[#pragma omp section]

statement-block
[#pragma omp section]

statement-block
.
.
.

]
}

Notes
All clauses and restrictions described in the omp parallel and omp sections
directives apply to the omp parallel sections directive.

Related References
“Pragmas to Control Parallel Processing” on page 344
“#pragma omp parallel” on page 356
“#pragma omp section, #pragma omp sections” on page 364

366 VisualAge C++ for AIX Compiler Reference

#pragma omp single

Description
The omp single directive identifies a section of code that must be run by a single
available thread.

Syntax
#pragma omp single [clause[clause] ...]

statement_block

where clause is any of the following:

private (list) Declares the scope of the data variables in list to be private to each
thread. Data variables in list are separated by commas.

firstprivate (list) Declares the scope of the data variables in list to be private to each
thread. Each new private object is initialized as if there was an implied
declaration within the statement block. Data variables in list are
separated by commas.

nowait Use this clause to avoid the implied barrier at the end of the single
directive. Only one nowait clause can appear on a given single directive.

Notes
An implied barrier exists at the end of a parallelized statement block unless the
nowait clause is specified.

Related References
“Pragmas to Control Parallel Processing” on page 344

Compiler Options 367

#pragma omp master

Description
The omp master directive identifies a section of code that must be run only by the
master thread.

Syntax
#pragma omp master

statement_block

Notes
Threads other than the master thread will not execute the statement block
associated with this construct.

No implied barrier exists on either entry to or exit from the master section.

Related References
“Pragmas to Control Parallel Processing” on page 344

368 VisualAge C++ for AIX Compiler Reference

#pragma omp critical

Description
The omp critical directive identifies a section of code that must be executed by a
single thread at a time.

Syntax
#pragma omp critical [(name)]

statement_block

where name can optionally be used to identify the critical region. Identifiers
naming a critical region have external linkage and occupy a namespace distinct
from that used by ordinary identifiers.

Notes
A thread waits at the start of a critical region identified by a given name until no
other thread in the program is executing a critical region with that same name.
Critical sections not specifically named by omp critical directive invocation are
mapped to the same unspecified name.

Related References
“Pragmas to Control Parallel Processing” on page 344

Compiler Options 369

#pragma omp barrier

Description
The omp barrier directive identifies a synchronization point at which threads in a
parallel region will wait until all other threads in that section reach the same point.
Statement execution past the omp barrier point then continues in parallel.

Syntax
#pragma omp barrier

Notes
The omp barrier directive must appear within a block or compound statement. For
example:

if (x!=0) {
#pragma omp barrier /* valid usage */

}

if (x!=0)
#pragma omp barrier /* invalid usage */

Related References
“Pragmas to Control Parallel Processing” on page 344

370 VisualAge C++ for AIX Compiler Reference

#pragma omp flush

Description
The omp flush directive identifies a point at which the compiler ensures that all
threads in a parallel region have the same view of specified objects in memory.

Syntax
#pragma omp flush [(list)]

where list is a comma-separated list of variables that will be synchronized.

Notes
If list includes a pointer, the pointer is flushed, not the object being referred to by
the pointer. If list is not specified, all shared objects are synchronized except those
inaccessible with automatic storage duration.

An implied flush directive appears in conjuction with the following directives:
v omp barrier

v Entry to and exit from omp critical.
v Exit from omp parallel.
v Exit from omp for.
v Exit from omp sections.
v Exit from omp single.

The omp flush directive must appear within a block or compound statement. For
example:

if (x!=0) {
#pragma omp flush /* valid usage */

}

if (x!=0)
#pragma omp flush /* invalid usage */

Related References
“Pragmas to Control Parallel Processing” on page 344
“#pragma omp barrier” on page 370
“#pragma omp critical” on page 369
“#pragma omp for” on page 358
“#pragma omp parallel” on page 356
“#pragma omp parallel for” on page 363
“#pragma omp parallel sections” on page 366
“#pragma omp section, #pragma omp sections” on page 364
“#pragma omp single” on page 367

Compiler Options 371

#pragma omp threadprivate

Description
The omp threadprivate directive defines the scope of selected file-scope data
variables as being private to a thread, but file-scope visible within that thread.

Syntax
#pragma omp threadprivate (list)

where list is a comma-separated list of variables.

Notes
Each copy of an omp threadprivate data variable is initialized once prior to first
use of that copy. If an object is changed before being used to initialize a
threadprivate data variable, behavior is unspecified.

A thread must not reference another thread’s copy of an omp threadprivate data
variable. References will always be to the master thread’s copy of the data variable
when executing serial and master regions of the program.

Use of the omp threadprivate directive is governed by the following points:
v An omp threadprivate directive must appear at file scope outside of any

definition or declaration.
v A data variable must be declared with file scope prior to inclusion in an omp

threadprivate directive list.
v An omp threadprivate directive and its list must lexically precede any reference

to a data variable found in that list.
v A data variable specified in an omp threadprivate directive in one translation

unit must also be specified as such in all other translation units in which it is
declared.

v Data variables specified in an omp threadprivate list must not appear in any
clause other than the copyin, schedule, and if clauses.

v The address of a data variable in an omp threadprivate list is not an address
constant.

v A data variable specified in an omp threadprivate list must not have an
incomplete or reference type.

Related References
“Pragmas to Control Parallel Processing” on page 344

372 VisualAge C++ for AIX Compiler Reference

Acceptable Compiler Mode and Processor Architecture Combinations
You can use the -q32, -q64, -qarch, and -qtune compiler options to optimize the
output of the compiler to suit:

v the broadest possible selection of target processors,
v a range of processors within a given processor architecture family,
v a single specific processor.

Generally speaking, the options do the following:
v -q32 selects 32-bit execution mode.
v -q64 selects 64-bit execution mode.
v -qarch selects the general family processor architecture for which

instruction code should be generated. Certain -qarch settings produce code
that will run only on RS/6000 systems that support all of the instructions
generated by the compiler in response to a chosen -qarch setting.

v -qtune selects the specific processor for which compiler output is
optimized. Some -qtune settings can also be specified as -qarch options, in
which case they do not also need to be specified as a -qtune option. The
-qtune option influences only the performance of the code when running
on a particular system but does not determine where the code will run.

There are three main families of RS/6000 machines:
v POWER
v POWER2
v PowerPC

All RS/6000 machines share a common set of instructions, but may also include
additional instructions unique to a given processor or processor family.

For example, the POWER2 instruction set is a superset of the POWER instructions
set. The PowerPC instruction set includes some instructions not available on
POWER systems but does not support all of the POWER instruction set. It also
includes a number of POWER2 instructions not available in the POWER
instruction set. Also, some features found in the POWER2 instruction set may or
may not be implemented on particular PowerPC processors. These optional feature
groups include:

v support for the graphics instruction group
v support for the sqrt instruction group
v support for 64-bit mode (-q64 compiler option)

Other differences in processer features, which may affect instruction code produced
by the compiler, are shown below:

Processor graphics support sqrt support 64-bit support large page
support

601 no no no no
603 yes no no no
604 yes no no no

rs64a no no yes no
rs64b yes yes yes no
rs64c yes yes yes no
pwr3 yes yes yes no
pwr4 yes yes yes yes, with AIX

v5.1D or later

Compiler Options 373

If you want to generate code that will run across a variety of processors, use the
following guidelines to select the appropriate -qarch and/or -qtune compiler
options. Code compiled with:

v -qarch=com will run on any RS/6000.
v -qarch=pwr will run on any POWER or POWER2 machine.
v -qarch=pwr2 (or pwr2s, pwrx, p2sc) will run only on POWER2 machines.
v -qarch=pwr4 (or equivalent option -qarch=gp) will run only on Power4

machines.
v -qarch=ppc will run only on all PowerPC machines.
v -q64 will run only on PowerPC machines with 64-bit support
v other -qarch options that refer to specific processors will run on any

functionally equivalent PowerPC machine. In the examples found in the
table below, code compiled with -qarch=pwr3 will also run on a rs64b but
not on a rs64a. Similarly, code compiled with -qarch=603 will run on a
pwr3 but not on a rs64a.

If you want to generate code optimized specifically for a particular processor,
acceptable combinations of -q32, -q64, -qarch, and -qtune compiler options are
shown in the following tables (one tabel each for 32-bit and 64-bit execution
modes). If you specify incompatible combinations of these options, the compiler
will assume its own option selections, as described in (Specify Compiler Options
for Architecture-Specific, 32- or 64-bit Compilation).

The default execution mode is 32-bit unless the OBJECT_MODE environment
variable is set to 64.

Related Tasks
“Specify Compiler Options for Architecture-Specific, 32- or 64-bit Compilation” on
page 29
“Set Environment Variables to Select 64- or 32-bit Modes” on page 20

Related References
“Compiler Command Line Options” on page 61
“32, 64” on page 73
“arch” on page 83
“tune” on page 277

374 VisualAge C++ for AIX Compiler Reference

A
cc

ep
ta

b
le

-q
ar

ch
/-

q
tu

n
e

C
om

b
in

at
io

n
s

fo
r

32
-b

it
E

xe
cu

ti
on

M
od

e

-q
ar

ch
op

ti
on

P
re

d
ef

in
ed

M
ac

ro
(s

)
D

ef
au

lt
-q

tu
n

e
se

tt
in

gs

A
va

il
ab

le
-q

tu
n

e
se

tt
in

g(
s)

co
m

_A
R

C
H

_C
O

M
pw

r2
pw

r
pw

r2
pw

r2
s

pw
r3

pw
r4

pw
rx

p2
sc

60
1

60
2

60
3

60
4

40
3

rs
64

a
rs

64
b

rs
64

c

pw
r

_A
R

C
H

_P
W

R
pw

r2
pw

r
pw

r2
pw

r2
s

pw
rx

p2
sc

60
1

pw
r2

pw
rx

_A
R

C
H

_P
W

R
_A

R
C

H
_P

W
R

2
pw

r2
pw

r2
pw

r2
s

pw
rx

p2
sc

pw
r2

s
_A

R
C

H
_P

W
R

_A
R

C
H

_P
W

R
2

_A
R

C
H

_P
W

R
2S

pw
r2

s
pw

r2
s

p2
sc

_A
R

C
H

_P
W

R
_A

R
C

H
_P

W
R

2
_A

R
C

H
_P

2S
C

p2
sc

p2
sc

60
1

_A
R

C
H

_6
01

60
1

60
1

pp
c

_A
R

C
H

_P
PC

60
4

60
1

60
2

60
3

60
4

40
3

rs
64

a
rs

64
b

rs
64

c
pw

r3
pw

r3

60
1

_A
R

C
H

_6
01

60
1

60
1

60
2

_A
R

C
H

_P
PC

_A
R

C
H

_6
02

60
2

60
2

40
3

_A
R

C
H

_P
PC

_A
R

C
H

_4
03

40
3

40
3

pp
cg

r
_A

R
C

H
_P

PC
_A

R
C

H
_P

PC
G

R
60

4
60

3
60

4

60
3

_A
R

C
H

_P
PC

_A
R

C
H

_P
PC

G
R

_A
R

C
H

_6
03

60
3

60
3

60
4

_A
R

C
H

_P
PC

_A
R

C
H

_P
PC

G
R

_A
R

C
H

_6
04

60
4

60
4

pp
cg

rs
q

_A
R

C
H

_P
PC

_A
R

C
H

_P
PC

G
R

SQ
60

4
60

3
60

4

pw
r3

_A
R

C
H

_P
PC

_A
R

C
H

_P
PC

G
R

_A
R

C
H

_P
PC

G
R

SQ
_A

R
C

H
_P

W
R

3
pw

r3
pw

r3

pw
r4

_A
R

C
H

_P
PC

_A
R

C
H

_P
PC

G
R

_A
R

C
H

_P
PC

G
R

SQ
_A

R
C

H
_P

W
R

4
pw

r4
pw

r4

rs
64

b
_A

R
C

H
_P

PC
_A

R
C

H
_P

PC
G

R
_A

R
C

H
_P

PC
G

R
SQ

_A
R

C
H

_R
S6

4B
rs

64
b

rs
64

b

rs
64

c
_A

R
C

H
_P

PC
_A

R
C

H
_P

PC
G

R
_A

R
C

H
_P

PC
G

R
SQ

_A
R

C
H

_R
S6

4C
rs

64
c

rs
64

c

rs
64

a
_A

R
C

H
_P

PC
_A

R
C

H
_R

S6
4A

rs
64

a
rs

64
a

Compiler Options 375

A
cc

ep
ta

b
le

-q
ar

ch
/-

q
tu

n
e

C
om

b
in

at
io

n
s

fo
r

64
-b

it
E

xe
cu

ti
on

M
od

e

-q
ar

ch
op

ti
on

P
re

d
ef

in
ed

M
ac

ro
(s

)
D

ef
au

lt
-q

tu
n

e
se

tt
in

g

A
va

il
ab

le
-q

tu
n

e
se

tt
in

g(
s)

co
m

_A
R

C
H

_C
O

M
pw

r3
au

to
pw

r3
pw

r4
rs

64
a

rs
64

b
rs

64
c

pp
c

_A
R

C
H

_P
PC

pw
r3

au
to

rs
64

a
rs

64
b

rs
64

c
pw

r3
pw

r4

pp
cg

r
_A

R
C

H
_P

PC
_A

R
C

H
_P

PC
G

R
pw

r3
au

to
pw

r3

pp
cg

rs
q

_A
R

C
H

_P
PC

_A
R

C
H

_P
PC

G
R

_A
R

C
H

_P
PC

G
R

SQ
pw

r3
au

to
pw

r3

pw
r3

_A
R

C
H

_P
PC

_A
R

C
H

_P
PC

G
R

_A
R

C
H

_P
PC

G
R

SQ
_A

R
C

H
_P

W
R

3
pw

r3
au

to
pw

r3

pw
r4

_A
R

C
H

_P
PC

_A
R

C
H

_P
PC

G
R

_A
R

C
H

_P
PC

G
R

SQ
_A

R
C

H
_P

W
R

4
pw

r4
au

to
pw

r4

rs
64

b
_A

R
C

H
_P

PC
_A

R
C

H
_P

PC
G

R
_A

R
C

H
_P

PC
G

R
SQ

_A
R

C
H

_R
S6

4B
rs

64
b

au
to

rs
64

b

rs
64

c
_A

R
C

H
_P

PC
_A

R
C

H
_P

PC
G

R
_A

R
C

H
_P

PC
G

R
SQ

_A
R

C
H

_R
S6

4C
rs

64
c

au
to

rs
64

c

rs
64

a
_A

R
C

H
_P

PC
_A

R
C

H
_R

S6
4A

rs
64

a
au

to
rs

64
a

376 VisualAge C++ for AIX Compiler Reference

Related Tasks
“Specify Compiler Options for Architecture-Specific, 32- or 64-bit Compilation” on
page 29
“Set Environment Variables to Select 64- or 32-bit Modes” on page 20

Related References
“Compiler Command Line Options” on page 61
“32, 64” on page 73
“arch” on page 83
“tune” on page 277

Compiler Options 377

378 VisualAge C++ for AIX Compiler Reference

Compiler Messages

This section outlines some of the basic reporting mechanisms the compiler uses to
describe compilation errors.
v “Message Severity Levels and Compiler Response”
v “Compiler Return Codes”
v “Compiler Message Format” on page 380

Message Severity Levels and Compiler Response
The following table shows the compiler response associated with each level of
message severity.

Letter Severity Compiler Response

I Informational Compilation continues. The message reports conditions found
during compilation.

W Warning Compilation continues. The message reports valid, but
possibly unintended, conditions.

E Error

Compilation continues and object code is generated. Error
conditions exist that the compiler can correct, but the
program might not run correctly.

S Severe error Compilation continues, but object code is not generated. Error
conditions exist that the compiler cannot correct.

U Unrecoverable
error

The compiler halts. An internal compiler error has been
found. This message should be reported to your IBM service
representative.

Related Concepts
“Compiler Message and Listing Information” on page 8

Related References
“Compiler Return Codes”
“Compiler Message Format” on page 380
“halt” on page 143
“maxerr” on page 206
“haltonmsg” on page 144

Compiler Return Codes
At the end of compilation, the compiler sets the return code to zero under any of
the following conditions:
v No messages are issued.
v The highest severity level of all errors diagnosed is less than the setting of the

-qhalt compiler option, and the number of errors did not reach the limit set by
the -qmaxerr compiler option.

v No message specifid by the -qhaltonmsg compiler option is issued.

© Copyright IBM Corp. 1995,2002 379

Otherwise, the compiler sets the return code to one of the following values:

Return Code Error Type

1 Any error with a severity level higher than the setting of the halt
compiler option has been detected.

40 An option error or an unrecoverable error has been detected.

41 A configuration file error has been detected.

250 An out-of-memory error has been detected. The xlCcommand cannot
allocate any more memory for its use.

251 A signal-received error has been detected. That is, an unrecoverable
error or interrupt signal has occurred.

252 A file-not-found error has been detected.

253 An input/output error has been detected: files cannot be read or
written to.

254 A fork error has been detected. A new process cannot be created.

255 An error has been detected while the process was running.

Note: Errors may also occur at runtime. For example, a runtime return code of 99
indicates that a static initialization has failed.

Related Concepts
“Compiler Message and Listing Information” on page 8

Related References
“Message Severity Levels and Compiler Response” on page 379
“Compiler Message Format”
“halt” on page 143
“maxerr” on page 206
“haltonmsg” on page 144

Compiler Message Format
Diagnostic messages have the following format when the -qnosrcmsg option is
active (which is the default):

“file”, line line_number.column_number: 15dd-nnn (severity) text.

where:

file is the name of the C or C++ source file with the error.
line_number is the line number of the error.
column_number is the column number for the error
15 is the compiler product identifier

380 VisualAge C++ for AIX Compiler Reference

cc is a two-digit code indicating the VisualAge C++ component that issued
the message. cc can have the following values:

00 - code generating or optimizing message

01 - compiler services message.

05 - message specific to the C compiler

06 - message specific to the C compiler

40 - message specific to the C++ compiler

47 - message specific to munch utility

86 - message specific to interprocedural analysis (IPA).
nnn is the message number
severity is a letter representing the severity of the error
text is a message describing the error

Diagnostic messages have the following format when the -qsrcmsg option is
specified:

x - 15dd-nnn(severity) text.

where x is a letter referring to a finger in the finger line.

Related Concepts
“Compiler Message and Listing Information” on page 8

Related References
“Message Severity Levels and Compiler Response” on page 379
“Compiler Return Codes” on page 379
“halt” on page 143
“maxerr” on page 206
“haltonmsg” on page 144

Compiler Messages 381

382 VisualAge C++ for AIX Compiler Reference

Parallel Processing Support

This section contains information on environment variables and built-in functions
used to control parallel processing. Topics in this section are:
v “IBM SMP Run-time Options for Parallel Processing”
v “OpenMP Run-time Options for Parallel Processing” on page 386
v “Built-in Functions Used for Parallel Processing” on page 388

IBM SMP Run-time Options for Parallel Processing
Run-time time options affecting SMP parallel processing can be specified with the
XLSMPOPTS environment variable. This environment variable must be set before
you run an application, and uses basic syntax of the form:

�� �

:

XLSMPOPTS = option_and_args ��

Parallelization run-time options can also be specified using OMP environment
variables. When runtime options specified by OMP- and XLSMPOPTS-specific
environment variables conflict, OMP options will prevail.

Note: You must use thread-safe compiler mode invocations when compiling
parallelized program code.

SMP run-time option settings for the XLSMPOPTS environment variable are shown
below, grouped by category:

Scheduling Algorithm Options

XLSMPOPTS
Environment Variable
Option

Description

schedule=algorith=[n] This option specifies the scheduling algorithm used for loops not
explictly assigned a scheduling alogorithm with the ibm schedule
pragma.

Valid options for algorithm are:

v guided

v affinity

v dynamic

v static

If specified, the value of n must be an integer value of 1 or
greater.

The default is scheduling algorithm is static.

See #pragma ibm schedule for a description of these algorithms.

© Copyright IBM Corp. 1995,2002 383

Parallel Environment Options

XLSMPOPTS
Environment Variable
Option

Description

parthds=num num represents the number of parallel threads requested, which is
usually equivalent to the number of processors available on the
system.

Some applications cannot use more threads than the maximum
number of processors available. Other applications can experience
significant performance improvements if they use more threads
than there are processors. This option gives you full control over
the number of user threads used to run your program.

The default value for num is the number of processors available
on the system.

usrthds=num num represents the number of user threads expected.

This option should be used if the program code explicitly creates
threads, in which case num should be set to the number of threads
created.

The default value for num is 0.

stack=num num specifies the largest amount of space required for a thread’s
stack.

The default value for num is 4194304.

Performance Tuning Options

XLSMPOPTS
Environment Variable
Option

Description

spins=num num represents the number of loop spins before a yield occurs.

When a thread completes its work, the thread continues executing
in a tight loop looking for new work. One complete scan of the
work queue is done during each busy-wait state. An extended
busy-wait state can make a particular application highly
responsive, but can also harm the overall responsiveness of the
system unless the thread is given instructions to periodically scan
for and yield to requests from other applications.

A complete busy-wait state for benchmarking purposes can be
forced by setting both spins and yields to 0.

The default value for num is 100.

yields=num num represents the number of yields before a sleep occurs.

When a thread sleeps, it completely suspends execution until
another thread signals that there is work to do. This provides
better system utilization, but also adds extra system overhead for
the application.

The default value for num is 100.

384 VisualAge C++ for AIX Compiler Reference

XLSMPOPTS
Environment Variable
Option

Description

delays=num num represents a period of do-nothing delay time between each
scan of the work queue. Each unit of delay is achieved by running
a single no-memory-access delay loop.

The default value for num is 500.

Dynamic Profiling Options

XLSMPOPTS
Environment Variable
Option

Description

profilefreq=num num represents the sampling rate at which each loop is revisited
to determine appropriateness for parallel processing.

The run-time library uses dynamic profiling to dynamically tune
the performance of automatically-parallelized loops. Dynamic
profiling gathers information about loop running times to
determine if the loop should be run sequentially or in parallel the
next time through. Threshold running times are set by the
parthreshold and seqthreshold dynamic profiling options,
described below.

If num is 0, all profiling is turned off, and overheads that occur
because of profiling will not occur. If num is greater than 0,
running time of the loop is monitored once every num times
through the loop.

The default for num is 16. The maximum sampling rate is 32.
Higher values of num are changed to 32.

parthreshold=mSec mSec specifies the expected running time in milliseconds below
which a loop must be run sequentially. mSec can be specified
using decimal places.

If parthreshold is set to 0, a parallelized loop will never be
serialized by the dynamic profiler.

The default value for mSec is 0.2 milliseconds.

seqthreshold=mSec mSec specifies the expected running time in milliseconds beyond
which a loop that has been serialized by the dynamic profiler
must revert to being run in parallel mode again. mSec can be
specified using decimal places.

The default value for mSec is 5 milliseconds.

Related Concepts
“Program Parallelization” on page 9
“IBM SMP Directives” on page 9
“OpenMP Directives” on page 10

Related References
“OpenMP Run-time Options for Parallel Processing” on page 386
“smp” on page 252
“Pragmas to Control Parallel Processing” on page 344
“Built-in Functions Used for Parallel Processing” on page 388

Parallel Processing Support 385

For complete information about the OpenMP Specification, see:
OpenMP Web site
OpenMP Specification.

OpenMP Run-time Options for Parallel Processing
OpenMP run-time time options affecting parallel processing are set by specifying
OMP environment variables. These environment variables, which must be set
before you run an application, use syntax of the form:

�� env_variable = option_and_args ��

Parallelization run-time options can also be specified by the XLSMPOPTS
environment variable. When OMP and XLSMPOPTS run-time options conflict,
OMP options will prevail.

Note: You must use thread-safe compiler mode invocations when compiling
parallelized program code.

OpenMP run-time options fall into different categories as described below:

Scheduling Algorithm Environment Variable

OMP_SCHEDULE=algorithm This option specifies the scheduling algorithm used for
loops not explictly assigned a scheduling alogorithm
with the omp schedule directive. For example:

OMP_SCHEDULE=“guided, 4”

Valid options for algorithm are:

v dynamic[, n]

v guided[, n]

v runtime

v static[, n]

If specified, the value of n must be an integer value of 1
or greater.

The default is scheduling algorithm is static.

See “Scheduling Algorithm Options” on page 383 for a
description of these algorithms.

386 VisualAge C++ for AIX Compiler Reference

http://www.openmp.org
http://www.openmp.org/specs

Parallel Environment Environment Variables

OMP_NUM_THREADS=num num represents the number of parallel threads requested,
which is usually equivalent to the number of processors
available on the system.

This number can be overridden during program
execution by calling the omp_set_num_threads()
runtime library function.

Some applications cannot use more threads than the
maximum number of processors available. Other
applications can experience significant performance
improvements if they use more threads than there are
processors. This option gives you full control over the
number of user threads used to run your program.

The default value for num is the number of processors
available on the system.

OMP_NESTED=TRUE|FALSE This environment variable enables or disables nested
parallelism. The setting of this environment variable can
be overrridden by calling the omp_set_nested() runtime
library function.

If nested parallelism is disabled, nested parallel regions
are serialized and run in the current thread.

In the current implementation, nested parallel regions are
always serialized. As a result, OMP_SET_NESTED does
not have any effect, and omp_get_nested() always
returns 0. If -qsmp=nested_par option is on (only in
non-strict OMP mode), nested parallel regions may
employ additional threads as available. However, no new
team will be created to run nested parallel regions.

The default value for OMP_NESTED is FALSE.

Dynamic Profiling Environment Variable

OMP_DYNAMIC=TRUE|FALSE This environment variable enables or disables dynamic
adjustment of the number of threads available for
running parallel regions.

If set to TRUE, the number of threads available for
executing parallel regions may be adjusted at runtime to
make the best use of system resources. See the
description for profilefreq=num in “Dynamic Profiling
Options” on page 385 for more information.

If set to FALSE, dynamic adjustment is disabled.

The default setting is TRUE.

Related Concepts
“Program Parallelization” on page 9
“IBM SMP Directives” on page 9
“OpenMP Directives” on page 10

Parallel Processing Support 387

Related References
“IBM SMP Run-time Options for Parallel Processing” on page 383
“smp” on page 252
“Pragmas to Control Parallel Processing” on page 344
“Built-in Functions Used for Parallel Processing”

For complete information about the OpenMP Specification, see:
OpenMP Web site
OpenMP Specification.

Built-in Functions Used for Parallel Processing
Use these built-in functions to obtain information about the parallel environment.
Function definitions for the omp_ functions can be found in the omp.h header file.

Function Prototype Description

int __parthds(void) This function returns the value of the parthds
run-time option. If the parthds option is not
explicitly set by the user, the function returns the
default value set by the run-time library.

If the -qsmp compiler option was not specified
during program compilation, this function returns
1 regardless of run-time options selected.

int __usrthds(void) This function returns the value of the usrthds
run-time option.

If the usrthds option is not explicitly set by the
user, or the -qsmp compiler option was not
specified during program compilation, this
function returns 0 regardless of run-time options
selected.

int omp_get_num_threads(void); This function returns the number of threads
currently in the team executing the parallel region
from which it is called.

int omp_get_max_threads(void); This function returns the maximum value that can
be returned by calls to omp_get_num_threads.

int omp_get_thread_num(void); This function returns the thread number, within
its team, of the thread executing the function. The
thread number lies between 0 and
omp_get_num_threads()-1, inclusive. The master
thread of the team is thread 0.

int omp_get_num_procs(void); This function returns the maximum number of
processors that could be assigned to the program.

int omp_in_parallel(void); This function returns non-zero if it is called within
the dynamic extent of a parallel region executing
in parallel; otherwise, it returns 0.

void omp_set_dynamic(int
dynamic_threads);

This function enables or disables dynamic
adjustment of the number of threads available for
execution of parallel regions.

int omp_get_dynamic(void); This function returns non-zero if dynamic thread
adjustments enabled and returns 0 otherwise.

void omp_set_nested(int nested); This function enables or disables nested
parallelism.

388 VisualAge C++ for AIX Compiler Reference

http://www.openmp.org
http://www.openmp.org/specs

Function Prototype Description

int omp_get_nested(void); This function returns non-zero if nested
parallelism is enabled and 0 if it is disabled.

void omp_init_lock(omp_lock_t *lock);

void
omp_init_nest_lock(omp_nest_lock_t
*lock);

These functions provide the only means of
initializing a lock. Each function initializes the
lock associated with the parameter lock for use in
subsequent calls.

void omp_destroy_lock(omp_lock_t
*lock);

void
omp_destroy_nest_lock(omp_nest_lock_t
*lock);

These functions ensure that the pointed to lock
variable lock is uninitialized.

void omp_set_lock(omp_lock_t *lock);

void
omp_set_nest_lock(omp_nest_lock_t
*lock);

Each of these functions blocks the thread
executing the function until the specified lock is
available and then sets the lock. A simple lock is
available if it is unlocked. A nestable lock is
available if it is unlocked or if it is already owned
by the thread executing the function.

void omp_unset_lock(omp_lock_t
*lock);

void
omp_unset_nest_lock(omp_nest_lock_t
*lock);

These functions provide the means of releasing
ownership of a lock.

int omp_test_lock(omp_lock_t *lock);

int
omp_test_nest_lock(omp_nest_lock_t
*lock);

These functions attempt to set a lock but do not
block execution of the thread.

Note: In the current implementation, nested parallel regions are always serialized.
As a result, omp_set_nested does not have any effect, and omp_get_nested
always returns 0.

For complete information about OpenMP runtime library functions, refer to the
OpenMP C/C++ Application Program Interface specification.

Related Concepts
“Program Parallelization” on page 9

Related Tasks
“Set Parallel Processing Run-time Options” on page 20
“Control Parallel Processing with Pragmas” on page 45

Related References
“Pragmas to Control Parallel Processing” on page 344
“smp” on page 252
“IBM SMP Run-time Options for Parallel Processing” on page 383
“OpenMP Run-time Options for Parallel Processing” on page 386
“General Purpose Built-in Functions” on page 393
“LIBANSI Built-in Functions” on page 394
“Use the Subroutine Linkage Conventions in Interlanguage Calls” on page 49

Parallel Processing Support 389

390 VisualAge C++ for AIX Compiler Reference

Part 4. Appendixes

© Copyright IBM Corp. 1995,2002 391

392 VisualAge C++ for AIX Compiler Reference

Appendix A. Built-in Functions

The compiler provides you with a selection of built-in functions to help you write
more efficient programs. This section summarizes the various built-in functions
available to you.
v “General Purpose Built-in Functions”
v “LIBANSI Built-in Functions” on page 394
v “Built-in Functions for PowerPC Processors” on page 394

You can also find additional built-in functions to support parallel processing
program execution described at “Built-in Functions Used for Parallel Processing”
on page 388.

General Purpose Built-in Functions

Name C/C++ Protype Description

__cntlz4 unsigned int __cntlz4(unsigned int); Count Leading Zeros, 4-Byte
Integer

__cntlz8 unsigned int __cntlz8(unsigned long
long);

Count Leading Zeros, 8-Byte
Integer

__cnttz4 unsigned int __cnttz4(unsigned int); Count Trailing Zeros, 4-Byte
Integer

__cnttz8 unsigned int __cnttz8(unsigned long
long);

Count Trailing Zeros, 8-Byte
Integer

__fmsub double __fmsub(double, double, double); floating point long multiply
then sub

__fnabs double __fnabs(double); floating point long negative
absolute

__fnabss float __fnabss(float); floating point short negative
absolute

__fnadd double __fnmadd(double, double,
double);

floating point long negative
multiply then add

__fnmsub double __fnmsub(double, double,
double);

floating point long negative
multiply then sub

__iospace_eieio (equivalent to: void
__iospace_eieio(void);)

I/O Sync Point

__load2r unsigned short __load2r(unsigned
short*);

load 2 byte register

__load4r unsigned int __load4r(unsigned int*); load 4 byte register

__prefetch_by_loadvoid __prefetch_by_load(const void*); touch a memory location via
explicit load

__readflm double d __readflm(); read floating point
status/control register

__setflm double __setflm(double); Set Floating Point
Status/Control Register

__settrnd double __setrnd(int); Set Rounding Mode

__trap void __trap(int); trap

© Copyright IBM Corp. 1995,2002 393

Related References
“General Purpose Built-in Functions” on page 393
“LIBANSI Built-in Functions”
“Built-in Functions for PowerPC Processors”
“Built-in Functions Used for Parallel Processing” on page 388

LIBANSI Built-in Functions

Name C/C++ Protype Description

__abs int __abs(int); integer absolute value

__acos double __acos(double); arc-cosine

__alloca void* __alloca(size_t); memory allocation on stack

__bcopy void __bcopy(char*, char*, int);

__fabs double __fabs(double); long float point absolute
value

__fabss float __fabss(float); short floating point absolute
value

__labs long __labs(long); long int absolute value

__llabs long long __llabs(long long); long long absolute

__memchr void* __memchr(const void*, int, size_t); memory character

__memcmp int __memcmp(const void*, const void*,
size_t);

memory compare

__strchr char* __strchr(const char*, int); string char

__strcmp int __strcmp(const char*, const char*); string compare

__strlen size_t __strlen(const char*); string length

__strncmp int __strncmp(const char*, const char*,
size_t);

string numbered compare

__strrchr char* __strrchr(const char*, int); string reverse char

Related References
“General Purpose Built-in Functions” on page 393
“LIBANSI Built-in Functions”
“Built-in Functions for PowerPC Processors”
“Built-in Functions Used for Parallel Processing” on page 388

Built-in Functions for PowerPC Processors
PowerPC platforms support RS/6000 machine instructions not available on other
platforms. If performance is critical to your application, the VisualAge C++
compiler provides a set of built-in functions that directly map to certain PowerPC
instructions. By using these functions, function call return costs, parameter passing,
stack adjustment and all the additional costs related with function invocations are
eliminated.

Not all functions described below are supported by all RS/6000 processors. Using
an unsupported function will result in an error message being displayed.

394 VisualAge C++ for AIX Compiler Reference

Name Prototype Return Value or Action Performed

__check_lock_mp unsigned int
__check_lock_mp (const int*
addr, int old_value, int
new_value)

Check Lock on MultiProcessor systems.
Conditionally updates a single word
variable atomically. addr specifies the
address of the single word variable.
old_value specifies the old value to be
checked against the value of the single
word variable. new_value specifies the
new value to be conditionally assigned
to the single word variable. The word
variable must be aligned on a full word
boundary

Return values:

1. A return value of false indicates that
the single word variable was equal
to the old value and has been set to
the new value.

2. A return value of true indicates that
the single word variable was not
equal to the old value and has been
left unchanged.

__check_lock_up unsigned int
__check_lock_mp (const int*
addr, int old_value, int
new_value)

Check Lock on UniProcessor systems.
Conditionally updates a single word
variable atomically. addr specifies the
address of the single word variable.
old_value specifies the old value to be
checked against the value of the single
word variable. new_value specifies the
new value to be conditionally assigned
to the single word variable. The word
variable must be aligned on a full word
boundary.

Return valies:

v A return value of false indicates that
the single word variable was equal to
the old value, and has been set to the
new value.

v A return value of true indicates that
the single word variable was not
equal to the old value and has been
left unchanged.

__clear_lock_mp void __clear_lock_mp (const
int* addr, int value)

Clear Lock on MultiProcessor systems.
Atomic store of the value into the single
word variable at the address addr. The
word variable must be aligned on a full
word boundary.

__clear_lock_up void __clear_lock_up (const
int* addr, int value)

Clear Lock on UniProcessor systems.
Atomic store of the value into the single
word variable at the address addr. The
word variable must be aligned on a full
word boundary.

__dcbt() void __dcbt (void *); Data Cache Block Touch. Loads the
block of memory containing the
specified address into the data cache.

Appendix A. Built-in Functions 395

Name Prototype Return Value or Action Performed

__dcbz() void __dcbz (void *); Data Cache Block set to Zero. Sets the
specified address in the data cache to
zero (0).

__eieio (Compiler will recognize
__eieio built-in.)

Extra name for the existing
__iospace_eieio built-in. Compiler will
recognize __eieio built-in. Everything
except for the name is exactly same as
for __iospace_eieio. __eieio is consistent
with the corresponding PowerPC
instruction name.

__fabs() double __fabs (double); __fabs (x) = |x|

__fabss() float __fabss (float); __fabss (x) = |x|

__fcfid double __fcfid (double) Floating Convert From Integer
Doubleword. The 64bit signed
fixedpoint operand is converted to a
double-precision floating-point.

__fctid double __fctid (double) Floating Convert to Integer
Doubleword. The floating-point operand
is converted into 64-bit signed
fixed-point integer,using the rounding
mode specified by FPSCRRN

(Floating-Point Rounding Control field
in the Floating-Point Status and Control
Register).

__fctidz double __fctidz (double) Floating Convert to Integer Doubleword
with Rounding towards Zero. The
floating-point operand is converted into
64-bit signed fixed-point integer, using
the rounding mode Round toward Zero

__fctiw double __fctiw (double) Floating Convert To Integer Word. The
floating-point operand is converted to a
32-bit signed fixed-point integer, using
the rounding mode specified by
FPSCRRN (Floating-Point Rounding
Control field in the Floating-Point Status
and Control Register).

__fctiwz double __fctiwz (double) Floating Convert To Integer Word with
Rounding towards Zero. The
floating-point operand is converted to a
32-bit signed fixed-point integer, using
the rounding mode Round toward Zero

__fmadd() double __fmadd (double,
double, double);

__fmadd (a, x, y) = [a * x + y]

__fmadds() float __fmadds (float, float,
float);

__fmadds (a, x, y) = [a * x + y]

__fmsubs() float __fmsubs (float, float,
float);

__fmsubs (a, x, y) = [a * x - y]

__fmsub() double __fmsub (double,
double, double);

__fmsub (a, x, y) = [a * x - y]

396 VisualAge C++ for AIX Compiler Reference

Name Prototype Return Value or Action Performed

__fnabss() float __fnabss (float); __fnabss (x) = -|x|

__fnabs() double __fnabs (double); __fnabs (x) = -|x|

__fnmadd() double __fnmadd (double,
double, double);

__fnmadd (a, x, y) = [- (a * x + y)]

__fnmadds() float __fnmadds (float, float,
float);

__fnmadds (a, x, y) = [- (a * x + y)]

__fnmsub() double __fnmsub (double
double, double);

__fnmsub (a, x, y) = [- (a * x - y)]

__fnmsubs() float __fnmsubs (float, float,
float);

__fnmsubs (a, x, y) = [- (a * x - y)]

__fres() float __fres (float); __fres (x) = [(estimate of) 1.0/x]

__fsqrt() double __fsqrt (double); __fsqrt (x) = square root of x

__fsqrts() float __fsqrts (float); __fsqrts (x) = square root of x

__frsqrte() double __frsqrte (double); __frsqrte (x) = [(estimate of) 1.0/sqrt(x)]

__fsel() double __fsel (double, double,
double);

if (a >= 0.0) then __fsel (a, x, y) = x;
else __fsel (a, x, y) = y

__fsels() float __fsels (float, float,
float);

if (a >= 0.0) then __fsels (a, x, y) = x;
else __fsels (a, x, y) = y

__lwsync (Compiler will recognize
__lwsync built-in.)

Extra name for the existing
__iospace_lwsync built-in. Compiler
will recognize __lwsync built-in.
Everything except for the name is
exactly same as for __iospace_lwsync.
__lwsync is consistent with the
corresponding PowerPC instruction
name.

__mtfsb0 void __mtfsb0(unsigned int
bt)

Move to FPSCR Bit 0. Bit bt of the
FPSCR is set to 0. bt must be a constant
and 0<=bt<=31.

__mtfsb1 void __mtfsb1(unsigned int
bt)

Move to FPSCR Bit 1. Bit bt of the
FPSCR is set to 1. bt must be a constant
and 0<=bt<=31.

__mtfsf void __mtfsf(unsigned int flm,
unsigned int frb)

Move to FPSCR Fields. The contents of
frb are placed into the FPSCR under
control of the field mask specified by
flm. The field mask flm identifies the
4bit fields of the FPSCR affected. flm
must be a constant 8–bit mask.

__mtfsfi void __mtfsfi(unsigned int bf,
unsigned int u)

Move to FPSCR Field Immediate. The
value of the u is placed into FPSCR field
specified by bf. bf and u must be
constants, with 0<=bf<=7 and 0<=u<=15.

__mulhd long long int __mulhd(long
long int ra, long long int rb)

Multiply High Doubleword Signed.
Returns the highorder 64 bits of the
128bit product of the operands ra and
rb.

Appendix A. Built-in Functions 397

Name Prototype Return Value or Action Performed

__mulhdu unsigned long long int
__mulhdu(unsigned long
long int ra, unsigned long
long int rb)

Multiply High Doubleword Unsigned.
Returns the highorder 64 bits of the
128bit product of the operands ra and
rb.

__mulhw int __mulhw(int ra, int rb) Multiply High Word Signed. Returns the
highorder 32 bits of the 64bit product of
the operands ra and rb.

__mulhwu unsigned int
__mulhwu(unsigned int ra,
unsigned int rb)

Multiply High Word Unsigned. Returns
the highorder 32 bits of the 64bit
product of the operands ra and rb.

__rdlam unsigned long long
__rdlam(unsigned long long
rs, unsigned int shift,
unsigned long long mask)

Rotate Double Left and AND with
Mask. The contents of rs are rotated left
shift bits. The rotated data is ANDed
with the mask and returned as a result.
mask must be a constant and represent a
contiguous bitfield.

__rldimi unsigned long long
__rldimi(unsigned long long
rs, unsigned long long is,
unsigned int shift, unsigned
long long mask)

Rotate Left Doubleword Immediate then
Mask Insert. Rotates rs left shift bits then
inserts rs into is under bit mask mask.
Shift must be a constant and
0<=shift<=63. mask must be a constant
and represent a contiguous bitfield.

__rlwimi unsigned int
__rlwimi(unsigned int rs,
unsigned int is, unsigned int
shift, unsigned int mask)

Rotate Left Word Immidiate then Mask
Insert. Rotates rs left shift bits then
inserts rs into is under bit mask mask.
Shift must be a constant and
0<=shift<=31. mask must be a constant
and represent a contiguous bitfield.

__rlwnm unsigned int
__rlwnm(unsigned int rs,
unsigned int shift, unsigned
int mask)

Rotate Left Word then AND with Mask.
Rotates rs left shift bits, then ANDs rs
with bit mask mask. mask must be a
constant and represent a contiguous
bitfield.

__rotatel4 unsigned int
__rotatel4(unsigned int rs,
unsigned int shift)

Rotate Left Word. Rotates rs left shift
bits.

__rotatel8 unsigned long long
__rotatel8(unsigned long long
rs, unsigned long long shift)

Rotate Left Doubleword. Rotates rs left
shift bits.

__stfiw void __stfiw(const int* addr,
double value)

Store Floating-Point as Integer Word.
The contents of the loworder 32 bits of
value are stored, without conversion,
into the word in storage addressed by
addr.

__sync (Compiler will recognize
__sync built-in.)

Extra name for the existing
__iospace_sync built-in. Compiler will
recognize __sync built-in. Everything
except for the name is exactly same as
for __iospace_sync. __sync is consistent
with the corresponding PowerPC
instruction name.

398 VisualAge C++ for AIX Compiler Reference

Name Prototype Return Value or Action Performed

__tdw void __tdw(long long a, long
long b, unsigned int TO)

Trap Doubleword. Operand a is
compared with operand b. This
comparison results in five conditions
which are ANDed with TO, which must
be a constant and 0<=TO<=31..

If the result is not 0 the system trap
handler is invoked. These conditions are
as follows:

0 Less Than, using signed
comparison.

1 Greater Than, using signed
comparison.

3 Equal

4 Less Than, using unsigned
comparison.

5 Greater Than, using unsigned
comparison.

__trap() void __trap (int); Trap if the parameter is not zero.

__trapd() void __trapd (longlong); Trap if the parameter is not zero.

__tw void __tw(int a, int b,
unsigned int TO)

Trap Word. Operand a is compared with
operand b. This comparison results in
five conditions which are ANDed with
TO, which must be a constant and
0<=TO<=31..

If the result is not 0 the system trap
handler is invoked. These conditions are
as follows:

0 Less Than, using signed
comparison.

1 Greater Than, using signed
comparison.

3 Equal

4 Less Than, using unsigned
comparison.

5 Greater Than, using unsigned
comparison.

Related References
“General Purpose Built-in Functions” on page 393
“LIBANSI Built-in Functions” on page 394
“Built-in Functions for PowerPC Processors” on page 394
“Built-in Functions Used for Parallel Processing” on page 388

Appendix A. Built-in Functions 399

400 VisualAge C++ for AIX Compiler Reference

Appendix B. National Languages Support in VisualAge C++

This and related pages summarize the national language support (NLS) specific to
IBM VisualAge C++.

For more information, see the following topics in this section:
v “Converting Files Containing Multibyte Data to New Code Pages”
v “Multibyte Character Support”

See also National Language Support in General Programming Concepts: Writing
and Debugging Programs.

Converting Files Containing Multibyte Data to New Code Pages
If you have installed new code pages on your system, you can use the AIX iconv
migration utility to convert files containing multibyte data to use new code pages.
This command converts files containing multibyte data from the IBM-932 code set
to the IBM-euc code set.

The iconv command is described in the AIX Commands Reference. Using the NLS
code set converters with the iconv command is described in “Converters Overview
for Programming” in the AIX General Programming Concepts.

Related References
Appendix B, “National Languages Support in VisualAge C++”
“Multibyte Character Support”

See also:
iconv command in Commands Reference, Volume 3: i through m:
Converters Overview for Programming section in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs

Multibyte Character Support
Support for multibyte characters includes support for wide characters. Generally,
wide characters are permitted anywhere multibyte characters are, but they are
incompatible with multibyte characters in the same string because their bit patterns
differ. Wherever permitted, you can mix single-byte and multibyte characters in the
same string.

Note: You must specify the -qmbcs option to use multibyte characters anywhere in
your program.

In the examples that follow, multibyte_char represents any string of one or more
multibyte characters.

String Literals and Character Constants
Multibyte characters are supported in string literals and character constants.
Strings containing multibyte characters are treated in essentially the same way as
strings without multibyte characters. Multibyte characters can appear in several
contexts:
v Preprocessor directives

© Copyright IBM Corp. 1995,2002 401

http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/nls.htm#HDRA2919F7
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/genprogctfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/genprogctfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds3/iconv.htm#HDRA332F9AC8
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/cmds/aixcmds3/aixcmds3tfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/convert_prg.htm#HDRA171C184
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/genprogctfrm.htm
http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixprggd/genprogc/genprogctfrm.htm

v Macro definitions
v The # and ## operators
v The definition of the macro name in the -D compiler option

Wide-character strings can be manipulated the same way as single-byte character
strings. The system provides equivalent wide-character and single-byte string
functions.

The default storage type for all string literals is read-only. The -qro option sets the
storage type of string literals to read-only, and the -qnoro option makes string
literals writable.

Note: Because a character constant can store only 1 byte, avoid assigning multibyte
characters to character constants. Only the last byte of a multibyte character
constant is stored. Use a wide-character representation instead. Wide-character
string literals and constants must be prefixed by L. For example:

wchar_t *a = L“wide_char_string”;
wchar_t b = L’c’;

Preprocessor Directives
The following preprocessor directives permit multibyte-character constants and
string literals:
v #define

v #pragma comment

v #include

Macro Definitions
Because string literals and character constants can be part of #define statements,
multibyte characters are also permitted in both object-like and function-like macro
definitions.

Compiler Options
Multibyte characters can appear in the compiler suboptions that take file names as
arguments:
v -l key

v -o file_name

v -B prefix

v -F config_file:stanza

v -I directory

v -L directory

The -Dname=definition option permits multibyte characters in the definition of the
macro name. In the following example, the first definition is a string literal, and
the second is a character constant:

-DMYMACRO=“kpsmultibyte_chardcs”
-DMYMACRO=’multibyte_char’

The -qmbcs compiler option permits both double-byte and multibyte characters. In
other respects, it is equivalent to the -qdbcs option, but it should be used when
multibyte characters appear in the program.

402 VisualAge C++ for AIX Compiler Reference

The listings produced by the -qlist and -qsource options display the date and time
for the appropriate international language. Multibyte characters in the file name of
the C or C++ source file also appear in the name of the corresponding list file. For
example, a C source file called:

multibyte_char.c

gives a list file called
multibyte_char.lst

File Names and Comments
Any file name can contain multibyte characters. The file name can be a relative or
absolute path name. For example:

#include<multibyte_char/mydir/mysource/multibyte_char.h>
#include “multibyte_char.h”

xlC /u/myhome/c_programs/kanji_files/multibyte_char.c -omultibyte_char

Multibyte characters are also permitted in comments, if you specify the -qmbcs
compiler option.

Restrictions
v Multibyte characters are not permitted in identifiers.
v Hexadecimal values for multibyte characters must be in the range of the code

page being used.
v You cannot mix wide characters and multibyte characters in macro definitions.

For example, a macro expansion that concatenates a wide string and a multibyte
string is not permitted.

v Assignment between wide characters and multibyte characters is not permitted.
v Concatenating wide character strings and multibyte character strings is not

permitted.

Related References
Appendix B, “National Languages Support in VisualAge C++” on page 401
“Converting Files Containing Multibyte Data to New Code Pages” on page 401
“+ (plus sign)” on page 71
“mbcs, dbcs” on page 209

Appendix B. National Languages Support in VisualAge C++ 403

404 VisualAge C++ for AIX Compiler Reference

Appendix C. Problem Solving

Topics in this section are:
v “Message Catalog Errors”
v “Correcting Paging Space Errors During Compilation”

Message Catalog Errors
Before the compiler can compile your program, the message catalogs must be
installed and the environment variables LANG and NLSPATH must be set to a
language for which the message catalog has been installed.

If you see the following message during compilation, the appropriate message
catalog cannot be opened:

Error occurred while initializing the message system in
file: message_file

where message_file is the name of the message catalog that the compiler cannot
open. This message is issued in English only.

You should then verify that the message catalogs and the environment variables
are in place and correct. If the message catalog or environment variables are not
correct, compilation can continue, but all nondiagnostic messages are suppressed
and the following message is issued instead:

No message text for message_number.

where message_number is the IBM VisualAge C++ internal message number. This
message is issued in English only.

To determine message catalogs which are installed on your system, list all of the
file names for the catalogs using the following command:

ls /usr/lib/nls/msg/%L/*.cat

where %L is the current primary language environment (locale) setting. The
default locale is C. The locale for United States English is en_US.

The default message catalogs in /usr/vacpp/exe/default_msg are called when:
v IBM VisualAge C++ cannot find message catalogs for the locale specified by %L.
v The locale has never been changed from the default, C.

For more information about the NLSPATH and LANG environment variables, see
your operating system documentation.

Related Tasks
“Set Environment Variables” on page 19
“Set Environment Variables for the Message and Help Files” on page 20

Correcting Paging Space Errors During Compilation
If the operating system runs low on paging space during a compilation, the
compiler issues one of the following messages:

© Copyright IBM Corp. 1995,2002 405

1501-229 Compilation ended due to lack of space.

1501-224 fatal error in ../exe/xlCcode: signal 9 received.

If lack of paging space causes other compiler programs to fail, the following
message is displayed:

Killed.

To minimize paging-space problems, do any of the following and recompile your
program:
v Reduce the size of your program by splitting it into two or more source files
v Compile your program without optimization.
v Reduce the number of processes competing for system paging space.
v Increase the system paging space.

To check the current paging-space settings enter the command: lsps -a or use the
AIX System Management Interface Tool (SMIT) command smit pgsp.

See your operating system documentation for more information about paging
space and how to allocate it.

406 VisualAge C++ for AIX Compiler Reference

Appendix D. ASCII Character Set

VisualAge C++ uses the American National Standard Code for Information
Interchange (ASCII) character set as its collating sequence.

The following table lists the standard ASCII characters in ascending numerical
order, with their corresponding decimal, octal, and hexadecimal values. It also
shows the control characters with Ctrl- notation. For example, the carriage return
(ASCII symbol CR) appears as Ctrl-M, which you enter by simultaneously
pressing the Ctrl key and the M key.

Decimal
Value

Octal
Value

Hex
Value

Control
Character

ASCII
Symbol

Meaning

0 0 00 Ctrl-@ NUL null

1 1 01 Ctrl-A SOH start of heading

2 2 02 Ctrl-B STX start of text

3 3 03 Ctrl-C ETX end of text

4 4 04 Ctrl-D EOT end of transmission

5 5 05 Ctrl-E ENQ enquiry

6 6 06 Ctrl-F ACK acknowledge

7 7 07 Ctrl-G BEL bell

8 10 08 Ctrl-H BS backspace

9 11 09 Ctrl-I HT horizontal tab

10 12 0A Ctrl-J LF new line

11 13 0B Ctrl-K VT vertical tab

12 14 OC Ctrl-L FF form feed

13 15 0D Ctrl-M CR carriage return

14 16 0E Ctrl-N SO shift out

15 17 0F Ctrl-O SI shift in

16 20 10 Ctrl-P DLE data link escape

17 21 11 Ctrl-Q DC1 device control 1

18 22 12 Ctrl-R DC2 device control 2

19 23 13 Ctrl-S DC3 device control 3

20 24 14 Ctrl-T DC4 device control 4

21 25 15 Ctrl-U NAK negative acknowledge

22 26 16 Ctrl-V SYN synchronous idle

23 27 17 Ctrl-W ETB end of transmission
block

24 30 18 Ctrl-X CAN cancel

25 31 19 Ctrl-Y EM end of medium

26 32 1A Ctrl-Z SUB substitute

27 33 1B Ctrl-[ESC escape

28 34 1C Ctrl-\ FS file separator

© Copyright IBM Corp. 1995,2002 407

Decimal
Value

Octal
Value

Hex
Value

Control
Character

ASCII
Symbol

Meaning

29 35 1D Ctrl-] GS group separator

30 36 1E Ctrl-^ RS record separator

31 37 1F Ctrl-_ US unit separator

32 40 20 SP digit select

33 41 21 ! exclamation point

34 42 22 “ double quotation mark

35 43 23 # pound sign, number
sign

36 44 24 $ dollar sign

37 45 25 % percent sign

38 46 26 & ampersand

39 47 27 ’ apostrophe

40 50 28 (left parenthesis

41 51 29) right parenthesis

42 52 2A * asterisk

43 53 2B + addition sign

44 54 2C , comma

45 55 2D - subtraction sign

46 56 2E . period

47 57 2F / right slash

48 60 30 0

49 61 31 1

50 62 32 2

51 63 33 3

52 64 34 4

53 65 35 5

54 66 36 6

55 67 37 7

56 70 38 8

57 71 39 9

58 72 3A : colon

59 73 3B ; semicolon

60 74 3C < less than

61 75 3D = equal

62 76 3E > greater than

63 77 3F ? question mark

64 100 40 @ at sign

65 101 41 A

66 102 42 B

67 103 43 C

408 VisualAge C++ for AIX Compiler Reference

Decimal
Value

Octal
Value

Hex
Value

Control
Character

ASCII
Symbol

Meaning

68 104 44 D

69 105 45 E

70 106 46 F

71 107 47 G

72 110 48 H

73 111 49 I

74 112 4A J

75 113 4B K

76 114 4C L

77 115 4D M

78 116 4E N

79 117 4F O

80 120 50 P

81 121 51 Q

82 122 52 R

83 123 53 S

84 124 54 T

85 125 55 U

86 126 56 V

87 127 57 W

88 130 58 X

89 131 59 Y

90 132 5A Z

91 133 5B [left bracket

92 134 5C \ left slash, backslash

93 135 5D] right bracket

94 136 5E ^ hat, circumflex, caret

95 137 5F _ underscore

96 140 60 ` grave accent

97 141 61 a

98 142 62 b

99 143 63 c

100 144 64 d

101 145 65 e

102 146 66 f

103 147 67 g

104 150 68 h

105 151 69 i

106 152 6A j

107 153 6B k

Appendix D. ASCII Character Set 409

Decimal
Value

Octal
Value

Hex
Value

Control
Character

ASCII
Symbol

Meaning

108 154 6C l

109 155 6D m

110 156 6E n

111 157 6F o

112 160 70 p

113 161 71 q

114 162 72 r

115 163 73 s

116 164 74 t

117 165 75 u

118 166 76 v

119 167 77 w

120 170 78 x

121 171 79 y

122 172 7A z

123 173 7B { left brace

124 174 7C | logical or, vertical bar

125 175 7D } right brace

126 176 7E ~ similar, tilde

127 177 7F DEL delete

410 VisualAge C++ for AIX Compiler Reference

Notices

Note to U.S. Government Users Restricted Rights -- use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1995,2002 411

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director
IBM Canada Ltd. Laboratory
B3/KB7/8200/MKM
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

412 VisualAge C++ for AIX Compiler Reference

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2002. All rights reserved.

Programming Interface Information
Programming interface information is intended to help you create application
software using this program.

General-use programming interface allow the customer to write application
software that obtain the services of this program’s tools.

However, this information may also contain diagnosis, modification, and tuning
information. Diagnosis, modification, and tuning information is provided to help
you debug your application software.

Warning: Do not use this diagnosis, modification, and tuning information as a
programming interface because it is subject to change.

Trademarks and Service Marks
The following terms are trademarks of the International Business Machines
Corporation in the United States, or other countries, or both:

AIX
IBM
Open Class
POWER
POWER2
PowerPC
RS/6000
VisualAge

Other company, product, and service names, which may be denoted by a double
asterisk(**), may be trademarks or service marks of others.

Industry Standards
The following standards are supported:
v The C language is consistent with the International Standard for Information

Systems-Programming Language C (ISO/IEC 9899-1999 (E)).
v The C++ language is consistent with the International Standard for Information

Systems-Programming Language C++ (ISO/IEC 14882:1998).

Notices 413

414 VisualAge C++ for AIX Compiler Reference

���

SC09-4959-00

	Contents
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	Part 1. Concepts
	VisualAge C++ Compiler
	Compiler Modes
	Object Models
	Compiler Options
	Types of Input Files
	Types of Output Files
	Compiler Message and Listing Information
	Compiler Messages
	Compiler Listings

	Program Parallelization
	IBM SMP Directives
	OpenMP Directives
	Countable Loops
	Reduction Operations in Parallelized Loops
	Shared and Private Variables in a Parallel Environment

	Using VisualAge C++ with Other Programming Languages
	Part 2. Tasks
	Set Up the Compilation Environment
	Set Environment Variables
	Set Environment Variables in bsh, ksh, or sh Shells
	Set Environment Variables in csh Shell

	Set Environment Variables to Select 64- or 32-bit Modes
	Set Parallel Processing Run-time Options
	Set Environment Variables for the Message and Help Files

	Invoke the Compiler
	Invoke the Linkage Editor

	Specify Compiler Options
	Specify Compiler Options on the Command Line
	-q Options
	Flag Options

	Specify Compiler Options in Your Program Source Files
	Specify Compiler Options in a Configuration File
	Tailor a Configuration File
	Configuration File Attributes

	Specify Compiler Options for Architecture-Specific, 32- or 64-bit Compilation
	Resolving Conflicting Compiler Options

	Specify Path Names for Include Files
	Directory Search Sequence for Include Files Using Relative Path Names

	Structure a Program that Uses Templates
	Declaration of Stack in stack.h
	Declaration of operator Functions in stack.c
	Template Functions Declared Inline and Template Functions With Internal Linkage
	Template Functions Defined within the Compilation Unit
	Use -qtempinc to Generate Template Functions Automatically
	How the Compiler Generates the Function Definitions
	Specifying the Template-Implementation File
	Specifying a Different Path for the tempinc Subdirectory
	Regenerating the Template Instantiation File
	Breaking a Template Instantiation File into More Than One File
	Contents of Template Instantiation File
	Example of a Typical Template-Include File
	Template-Include File (Stack.C) for the Stack class Template Example

	Using #pragma Directives in Header Files
	Considerations for Shared Libraries

	Use -qnotempinc to Define Template Functions
	Use -qtemplateregistry to Define Template Functions
	Recompiling Parts of Your Program After Making Source Changes

	Control Parallel Processing with Pragmas
	Use C and C++ with Other Programming Languages
	Interlanguage Calling Conventions
	Corresponding Data Types
	Special Treatment of Character and Aggregate Data

	Use the Subroutine Linkage Conventions in Interlanguage Calls
	Interlanguage Calls - Parameter Passing
	Interlanguage Calls - Call by Reference Parameters
	Interlanguage Calls - Call by Value Parameters
	Interlanguage Calls - Rules for Passing Parameters by Value
	Interlanguage Calls - Pointers to Functions
	Interlanguage Calls - Function Return Values
	Interlanguage Calls - Stack Floor
	Interlanguage Calls - Stack Overflow
	Interlanguage Calls - Traceback Table
	Interlanguage Calls - Type Encoding and Checking

	Sample Program: C Calling Fortran

	Part 3. Reference
	Compiler Options
	Compiler Command Line Options
	+ (plus sign)
	# (pound sign)
	32, 64
	aggrcopy
	alias
	align
	Using the __align specifier

	alloca
	ansialias
	arch
	assert
	attr
	B
	b
	bitfields
	bmaxdata
	brtl
	C
	c
	cache
	chars
	check
	cinc
	compact
	cpluscmt
	D
	dataimported
	datalocal
	dbxextra
	digraph
	dollar
	dpcl
	E
	e
	eh
	enum
	expfile
	extchk
	F
	f
	fdpr
	flag
	float
	flttrap
	fold
	fullpath
	funcsect
	G
	g
	genproto
	halt
	haltonmsg
	heapdebug
	hot
	hsflt
	hssngl
	I
	idirfirst
	ignerrno
	ignprag
	info
	initauto
	inlglue
	inline
	ipa
	isolated_call
	keepinlines
	keyword
	L
	l
	langlvl
	largepage
	ldbl128, longdouble
	libansi
	linedebug
	list
	listopt
	longlit
	longlong
	M
	ma
	macpstr
	maf
	makedep
	maxerr
	maxmem
	mbcs, dbcs
	mkshrobj
	namemangling
	O, optimize
	o
	objmodel
	oldpassbyvalue
	P
	p
	pascal
	path
	pdf1, pdf2
	pg
	phsinfo
	print
	priority
	proclocal, procimported, procunknown
	proto
	Q
	r
	report
	rndflt
	rndsngl
	ro
	roconst
	rrm
	rtti
	S
	s
	showinc
	smallstack
	smp
	source
	spill
	spnans
	srcmsg
	staticinline
	statsym
	stdinc
	strict
	strict_induction
	suppress
	symtab
	syntaxonly
	t
	tabsize
	tbtable
	tempinc
	templaterecompile
	templateregistry
	tempmax
	threaded
	tmplparse
	tocdata
	tocmerge
	tune
	twolink
	U
	unique
	unroll
	unwind
	upconv
	V
	v
	vftable
	W
	w
	warn64
	xcall
	xref
	y
	Z

	General Purpose Pragmas
	#pragma align
	#pragma alloca
	#pragma chars
	#pragma comment
	#pragma define
	#pragma disjoint
	#pragma enum
	#pragma execution_frequency
	#pragma hashome
	#pragma ibm snapshot
	#pragma implementation
	#pragma info
	#pragma ishome
	#pragma isolated_call
	#pragma langlvl
	#pragma leaves
	#pragma map
	#pragma mc_func
	#pragma namemangling
	#pragma nameManglingRule
	#pragma object_model
	#pragma options
	#pragma option_override
	#pragma pack
	#pragma pass_by_value
	#pragma priority
	#pragma reachable
	#pragma reg_killed_by
	#pragma report
	#pragma strings
	#pragma unroll

	Pragmas to Control Parallel Processing
	#pragma ibm critical
	#pragma ibm independent_calls
	#pragma ibm independent_loop
	#pragma ibm iterations
	#pragma ibm parallel_loop
	#pragma ibm permutation
	#pragma ibm schedule
	#pragma ibm sequential_loop
	#pragma omp atomic
	#pragma omp parallel
	#pragma omp for
	#pragma omp ordered
	#pragma omp parallel for
	#pragma omp section, #pragma omp sections
	#pragma omp parallel sections
	#pragma omp single
	#pragma omp master
	#pragma omp critical
	#pragma omp barrier
	#pragma omp flush
	#pragma omp threadprivate

	Acceptable Compiler Mode and Processor Architecture Combinations

	Compiler Messages
	Message Severity Levels and Compiler Response
	Compiler Return Codes
	Compiler Message Format

	Parallel Processing Support
	IBM SMP Run-time Options for Parallel Processing
	Scheduling Algorithm Options
	Parallel Environment Options
	Performance Tuning Options
	Dynamic Profiling Options

	OpenMP Run-time Options for Parallel Processing
	Scheduling Algorithm Environment Variable
	Parallel Environment Environment Variables
	Dynamic Profiling Environment Variable

	Built-in Functions Used for Parallel Processing

	Part 4. Appendixes
	Appendix A. Built-in Functions
	General Purpose Built-in Functions
	LIBANSI Built-in Functions
	Built-in Functions for PowerPC Processors

	Appendix B. National Languages Support in VisualAge C++
	Converting Files Containing Multibyte Data to New Code Pages
	Multibyte Character Support
	String Literals and Character Constants
	Preprocessor Directives
	Macro Definitions
	Compiler Options
	File Names and Comments
	Restrictions

	Appendix C. Problem Solving
	Message Catalog Errors
	Correcting Paging Space Errors During Compilation

	Appendix D. ASCII Character Set
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

