
GCL

Programmer's Manual

 D
PS

7
0
0
0
/
X
TA

N
O

VA
S
C

A
LE

 7
0
0
0

Job Control and IOF

REFERENCE
47 A2 36UJ 05

DPS7000/XTA
NOVASCALE 7000

GCL
Programmer's Manual

Job Control and IOF

August 1999

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
47 A2 36UJ 05

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not
limited to, copying, distributing, modifying, and making derivative works.

Copyright Bull SAS 1996, 1999

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of this
book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

Intel® and Itanium® are registered trademarks of Intel Corporation.

Windows® and Microsoft® software are registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Linux® is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Bull will not be liable for errors contained
herein, or for incidental or consequential damages in connection with the use of this material.

47 A2 36UJ Rev05 iii

Preface

This manual explains the GCL interface with GCOS 7 in interactive and batch
modes.

This publication is intended for all GCOS 7 users. It complements the information
given in the IOF Terminal User's Reference Manual to which the reader must refer
for detailed information on the set of system-level commands, directives and
utilities. Other aspects for handling the system are treated in the IOF Programmer's
Manual.

It describes all the essential GCL functions. The primitives dealt with are in GPL
and COBOL, and where applicable, the FORTRAN and C language equivalents are
given.

Section 1 describes the general requirements of programming in
GCL and the creation of new GCL commands.

Section 2 treats GCL in terms of basic commands, system
variables and builtin functions.

Section 3 deals with command management and how to handle
libraries, their members and the workspace.

Section 4 describes how to use GCL in accessing GCOS files
and lists the commands available.

Section 5 deals with the GCL batch job and the parametrization
of statements and input enclosures.

Section 6 treats aspects for TRACE and DEBUG facilities when
handling GCL procedures.

Section 7 describes primitives and the use of help texts for
assuring the Programmatic Interface for GCL
translation.

Scope and
Objectives

Intended
Readers

Prerequisites

Structure

GCL Programmer's Manual

iv 47 A2 36UJ Rev05

GCOS 7 System Administrator's Manual (V7) .. 47 A2 41US
GCOS 7 System Operator's Guide (V7)... 47 A2 47US
GCOS 7 System Administrator's Guide (V8 and V9)............................... 47 A2 54US
GCOS 7 System Operator's Guide (V8 and V9) 47 A2 53US

IOF Terminal User's Reference Manual
Part 1... 47 A2 38UJ
Part 2... 47 A2 39UJ
Part 3... 47 A2 40UJ

IOF Programmer's Manual ... 47 A2 37UJ

JCL Reference Manual ...47 A2 11UJ
JCL User's Guide .. 47 A2 12UJ

GPL Reference Manual ...47 A2 35UL
GPL User's Guide..47 A2 36UL
GPL System Primitives Reference Manual..47 A2 34UL

C Language User's Guide..47 A2 60UL
C Language Primitives Reference Manual..47 A2 64UL

COBOL 85 Reference Manual...47 A2 05UL
COBOL 85 User's Guide ...47 A2 06UL

FORTRAN 77 Reference Manual ..47 A2 15UL
FORTRAN 77 User's Guide...47 A2 06UL
GCOS 7 File Recovery Facilities User's Guide47 A2 37UF

Text Editor User's Guide ...47 A2 05UP

FULL Screen Editor User's Guide ..47 A2 06UP

Library Maintenance Reference Manual...47 A2 01UP
Library Maintenance User's Guide ...47 A2 02UP

Data Management Utilities User's Guide ...47 A2 26UF

Bibliography

Preface

47 A2 36UJ Rev05 v

The following notation is used in syntax formats:

ITEM Capitals represent a keyword that is to be entered as-is.

item Small italics represent a metalanguage term for which
the user supplies a value.

In the following, the non-italic item represents either
a keyword or a metalanguage term:

[item] An item within square brackets is optional.

{ item1 }

{ item2 } or { item1 | item2 | item3 }
{ item3 }

A set of items within braces:

− either in a column
− or in a line separated by |

means one item must be selected. The default, if any,
heads the list and is underlined.

... An ellipsis indicates that the item it follows may be
repeated.

Syntax
Notation

GCL Programmer's Manual

vi 47 A2 36UJ Rev05

47 A2 36UJ Rev05 vii

Table of Contents

1. Introduction

1.1 Command Language... 1-1

1.1.1 Purpose of Command Language... 1-1

1.1.2 Objects... 1-2

1.1.3 Variables and Expressions .. 1-2

1.2 Global Variables.. 1-4

1.2.1 Declaring Global Variables .. 1-5

1.2.2 Assigning Values to Variables ... 1-9

1.2.3 Types ... 1-11

1.2.4 References to Variables .. 1-12

1.3 Expressions... 1-14

1.4 Reading and Writing Values ... 1-16

1.5 Stored Sequences of GCL .. 1-18

1.5.1 ALTER_INPUT Command... 1-19

1.5.2 EXECUTE_GCL Command... 1-20

1.6 STARTUP Sequences .. 1-21

1.6.1 IOF Startups .. 1-21

1.6.2 Batch Startups ... 1-23

1.7 Creating New GCL Commands .. 1-24

1.7.1 Domains, Libraries and Search Rules ... 1-24

1.7.2 MAINTAIN_COMMAND... 1-27

1.7.3 GCL Procedures .. 1-28

1.7.4 Example 1: Creating a Directive .. 1-32

1.7.5 Example 2: Creating a new IOF Command... 1-34

1.8 Absentee Jobs .. 1-36

GCL Programmer's Manual

viii 47 A2 36UJ Rev05

1.9 SYS.SPOOL Files ... 1-37

1.9.1 Purpose of SYS.SPOOL Files ... 1-37

1.9.2 Use of SYS.SPOOL Files .. 1-37

1.9.3 Number of SYS.SPOOL Files.. 1-38

1.9.4 Size of SYS.SPOOL Files.. 1-39

1.9.5 Access Rights .. 1-39

1.9.6 GCL Commands Applicable to SYS.SPOOL Files.. 1-39

2. GCL Basic Language

2.1 GCL Basic Commands ... 2-1

2.1.1 ABORT... 2-5

2.1.2 CASE ... 2-6

2.1.3 CASEOF .. 2-8

2.1.4 CHAIN.. 2-9

2.1.5 CONTROL ... 2-11

2.1.6 ELSE.. 2-13

2.1.7 ENDCASEOF .. 2-14

2.1.8 ENDIF .. 2-15

2.1.9 ENDPROC... 2-16

2.1.10 ENDUNLIST .. 2-17

2.1.11 ENDUNTIL... 2-18

2.1.12 ENDWHILE.. 2-19

2.1.13 GOTO .. 2-20

2.1.14 IF.. 2-22

2.1.15 KWD... 2-24

2.1.16 LABEL.. 2-31

2.1.17 LOCAL ... 2-32

2.1.18 OTHERWISE (OTHER) ... 2-37

2.1.19 PROC... 2-38

2.1.20 RETRY... 2-43

2.1.21 RETURN.. 2-45

2.1.22 SCALL.. 2-46

2.1.23 SYSTEM .. 2-47

2.1.24 UNLIST .. 2-48

2.1.25 UNTIL... 2-50

2.1.26 VCALL.. 2-51

2.1.27 VCHAIN ... 2-52

2.1.28 WHILE.. 2-53

47 A2 36UJ Rev05 ix

2.2 System Variables .. 2-54

2.2.1 #: Terminal Line.. 2-56

2.2.2 #AUTOLF: Auto Line Feed .. 2-56

2.2.3 #BINLIB: Binary Input Libraries ... 2-57

2.2.4 #BLIB: Binary Output Library... 2-57

2.2.5 #BRKPMODE: Break Processing Mode.. 2-58

2.2.6 #BRK: Break .. 2-58

2.2.7 #CC: Continuation Character .. 2-58

2.2.8 #CINLIB: Compile Unit (CU) Input Libraries .. 2-58

2.2.9 #CLIB: Compile Unit (CU) Output Library.. 2-59

2.2.10 #CSET: character set .. 2-59

2.2.11 #DEBUG: Debug GCL Procedures ... 2-60

2.2.12 #DI: Directive Identifier .. 2-60

2.2.13 #EDITCTL: Text Editor Controls.. 2-61

2.2.14 #ENVT: Working Environment... 2-61

2.2.15 #EXPTABS: Expand Tabulations .. 2-62

2.2.16 #FORMLANG: MAINTAIN_FORM Generation Language 2-62

2.2.17 #GCLFORM: GCL Format ... 2-63

2.2.18 #INVCHAR: Invalid Character Representation.. 2-63

2.2.19 #JCLCOMP: JCL Compatibility Mode ... 2-64

2.2.20 #JOBLANG: Default Command Language for Batch Jobs.............................. 2-64

2.2.21 #LANG: National Language... 2-65

2.2.22 #LINLIB: Load Module (LM) Input Libraries... 2-65

2.2.23 #LLIB: Load Module (LM) Output Library .. 2-66

2.2.24 #MENU: Dialog Through Menus and Prompts .. 2-66

2.2.25 #NO: negative Replies... 2-67

2.2.26 #NOVICE: Novice Mode.. 2-67

2.2.27 #PAGEMODE: Page Mode.. 2-68

2.2.28 #PAGETOP: Page Top.. 2-68

2.2.29 #PL: Page Length .. 2-69

2.2.30 #PROMPT: Prompting on the Terminal... 2-69

2.2.31 #PRTLIB: Printout Library.. 2-69

2.2.32 #PW: Printing Width... 2-70

2.2.33 #ROLL: Roll Mode ... 2-70

2.2.34 #SEV: Severity... 2-71

2.2.35 #SINLIB: Source Language (SL) Input Libraries ... 2-71

2.2.36 #SLIB: Source Language (SL) Output Library... 2-72

2.2.37 #STATUS: Session Status .. 2-72

2.2.38 #SWITCHES: Program Switches .. 2-73

2.2.39 #TABS: Tabulation Stops ... 2-73

GCL Programmer's Manual

x 47 A2 36UJ Rev05

2.2.40 #TRACE: Trace GCL Procedure Execution ... 2-74

2.2.41 #WD: Working Directory ... 2-74

2.2.42 #WSTATION: Working Station .. 2-75

2.2.43 #XINLIB: Sharable Module (SM) Input Libraries ... 2-75

2.2.44 #XLIB: Sharable Module (SM) Output Library... 2-75

2.2.45 #YES: Positive Replies .. 2-76

2.2.46 #ZOK: Busy Message.. 2-76

2.3 Builtin Functions.. 2-77

2.3.1 Arithmetic Builtins .. 2-79
2.3.1.1 #ABS ... 2-79
2.3.1.2 #DIVIDE .. 2-79
2.3.1.3 #MAX... 2-79
2.3.1.4 #MIN.. 2-80
2.3.1.5 #MINUS... 2-80
2.3.1.6 #MOD .. 2-80
2.3.1.7 #PLUS ... 2-80
2.3.1.8 #SIGNUM .. 2-81
2.3.1.9 #TIMES ... 2-81

2.3.2 Relational Builtins .. 2-82
2.3.2.1 #EQ ... 2-82
2.3.2.2 #GE ... 2-82
2.3.2.3 #GT ... 2-83
2.3.2.4 #LE .. 2-83
2.3.2.5 #LT .. 2-83
2.3.2.6 #NE.. 2-83

2.3.3 Boolean Builtins ... 2-84
2.3.3.1 #AND... 2-84
2.3.3.2 #NAND .. 2-84
2.3.3.3 #NOR .. 2-84
2.3.3.4 #NOT... 2-85
2.3.3.5 #OR ... 2-85
2.3.3.6 #XOR... 2-85

2.3.4 Character Handling Builtins ... 2-86
2.3.4.1 #CAT ... 2-86
2.3.4.2 #CTN ... 2-86
2.3.4.3 #INDEX ... 2-86
2.3.4.4 #LC.. 2-87
2.3.4.5 #MODIFY .. 2-87
2.3.4.6 #QUOTE.. 2-87
2.3.4.7 #SUBSTITUTE.. 2-88
2.3.4.8 #SUBSTR.. 2-89
2.3.4.9 #UC ... 2-89
2.3.4.10 #UNQUOTE .. 2-89
2.3.4.11 #VERIFY ... 2-90

47 A2 36UJ Rev05 xi

2.3.5 Terminal Handling Builtins ... 2-91
2.3.5.1 #KLN.. 2-91
2.3.5.2 #L... 2-91
2.3.5.3 #MASTER ... 2-92
2.3.5.4 #QUERY.. 2-92
2.3.5.5 #READ .. 2-92
2.3.5.6 #READL .. 2-93

2.3.6 List Handling Builtins ... 2-94
2.3.6.1 #ELEM... 2-94
2.3.6.2 #FMT ... 2-95
2.3.6.3 #INDEX_SET .. 2-95
2.3.6.4 #LCOUNT.. 2-95
2.3.6.5 #LCTN ... 2-96
2.3.6.6 #LINDEX ... 2-96
2.3.6.7 #LLENGTH.. 2-96
2.3.6.8 #MAXLLENGTH.. 2-97
2.3.6.9 #MINLLENGTH ... 2-97
2.3.6.10 #REPLACE.. 2-97
2.3.6.11 #STRING... 2-98
2.3.6.12 #STRIP.. 2-98

2.3.7 Object Management Builtins.. 2-99
2.3.7.1 #CHECKSTAR .. 2-99
2.3.7.2 #DROP .. 2-99
2.3.7.3 #DROPGB... 2-99
2.3.7.4 #EXIST .. 2-100
2.3.7.5 #LENGTH.. 2-100
2.3.7.6 #LISTGB.. 2-100
2.3.7.7 #MLENGTH... 2-101
2.3.7.8 #NEXIST ... 2-101
2.3.7.9 #VALUE... 2-101

2.3.8 Context Handling Builtins... 2-102
2.3.8.1 #BILLING... 2-102
2.3.8.2 #CPU... 2-102
2.3.8.3 #DATE... 2-102
2.3.8.4 #DOMAINID .. 2-102
2.3.8.5 #ELAPSED.. 2-103
2.3.8.6 #EXTDATE.. 2-103
2.3.8.7 #FW... 2-103
2.3.8.8 #LSYS ... 2-103
2.3.8.9 #MDAY .. 2-104
2.3.8.10 #MODE.. 2-104
2.3.8.11 #PROJECT.. 2-104
2.3.8.12 #RON .. 2-104
2.3.8.13 #TERMID... 2-104
2.3.8.14 #TIME.. 2-105
2.3.8.15 #TTYPE... 2-105
2.3.8.16 #USERID... 2-105
2.3.8.17 #WAIT ... 2-105
2.3.8.18 #WDAY.. 2-105
2.3.8.19 #YDAY... 2-106

GCL Programmer's Manual

xii 47 A2 36UJ Rev05

2.3.9 "Is it?" Builtins .. 2-107
2.3.9.1 #ISITBOOL.. 2-107
2.3.9.2 #ISITDATE .. 2-107
2.3.9.3 #ISITDEC .. 2-107
2.3.9.4 #ISITFILE .. 2-108
2.3.9.5 #ISITFSET... 2-108
2.3.9.6 #ISITHEXA .. 2-108
2.3.9.7 #ISITLIB .. 2-108
2.3.9.8 #ISITNAME ... 2-109
2.3.9.9 #ISITOUTPUT... 2-109
2.3.9.10 #ISITRFILE.. 2-109
2.3.9.11 #ISITSTAR .. 2-109
2.3.9.12 #ISITTIME ... 2-110
2.3.9.13 #ISITVOLUME... 2-110

2.3.10 Conversion Builtins .. 2-111
2.3.10.1 #BINTODEC.. 2-111
2.3.10.2 #BYTE ... 2-111
2.3.10.3 #CVBOOL ... 2-111
2.3.10.4 #CVDATDEC... 2-112
2.3.10.5 #CVDEC.. 2-112
2.3.10.6 #CVDECDAT... 2-112
2.3.10.7 #CVFILE.. 2-113
2.3.10.8 #CVFSET .. 2-113
2.3.10.9 #CVHEXA.. 2-113
2.3.10.10 #CVLIB .. 2-113
2.3.10.11 #CVNAME ... 2-113
2.3.10.12 #CVOUTPUT... 2-113
2.3.10.13 #CVRFILE ... 2-114
2.3.10.14 #CVSTAR.. 2-114
2.3.10.15 #CVVOLUME .. 2-114
2.3.10.16 #DECTOHEXA.. 2-114
2.3.10.17 #FB15.. 2-114
2.3.10.18 #FB31.. 2-115
2.3.10.19 #HEXATODEC.. 2-115
2.3.10.20 #RJD ... 2-115

2.3.11 File Handling Builtins ... 2-116
2.3.11.1 #EFN ... 2-116
2.3.11.2 #EXPANDPATH.. 2-116
2.3.11.3 #FSITE .. 2-116
2.3.11.4 #SUBFILE ... 2-116

3. Command Management

3.1 Creating Procedures ... 3-1

3.2 Binary and Source Libraries, Workspace ... 3-2

3.3 Updating Procedures .. 3-2

3.4 Library Management ... 3-3

47 A2 36UJ Rev05 xiii

3.5 Domains .. 3-4

3.5.1 Definition of Domains... 3-4

3.5.2 Protection of Domains ... 3-5

3.5.3 Adding to an Existing Domain ... 3-5

3.5.4 Standard Domains ... 3-6

3.5.5 Creating a New Command .. 3-8

3.5.6 Creating a User Domain .. 3-10

3.6 Libraries .. 3-11

3.7 Access Restrictions... 3-12

3.7.1 Environments... 3-12

3.7.2 Access Rights .. 3-12

3.8 Command Management Commands .. 3-14

3.8.1 APPEND (AP).. 3-15

3.8.2 BINLIB (LIB)... 3-17

3.8.3 CLEAR (CLR) .. 3-18

3.8.4 COMPILE (COMP) .. 3-19

3.8.5 COPY (CP) .. 3-22

3.8.6 COUNT_ENTRIES (COUNT) .. 3-24

3.8.7 CREATE (CR).. 3-25

3.8.8 DECOMPILE (DEC)... 3-27

3.8.9 DELETE (DL)... 3-29

3.8.10 DELETE_ENVT (DLENVT) ... 3-31

3.8.11 DISPLAY (D).. 3-32

3.8.12 DISPLAY_SCREEN (DSCRN) .. 3-33

3.8.13 DOMAIN... 3-35

3.8.14 EDIT (ED) .. 3-36

3.8.15 ENVT ... 3-38

3.8.16 FSE.. 3-40

3.8.17 LEDIT (LED) .. 3-41

3.8.18 LIST (LS) ... 3-44

3.8.19 LIST_ACCESS (LSA) .. 3-46

3.8.20 LIST_ENVT (LSENVT) .. 3-48

3.8.21 LIST_PROJ (LSPROJ) .. 3-49

3.8.22 LOAD (LD) ... 3-50

3.8.23 MERGE.. 3-52

3.8.24 MODIFY_ACCESS (MDA)... 3-54

3.8.25 MODIFY_LOCK (MDLK).. 3-58

3.8.26 ON_ERROR .. 3-60

3.8.27 PRINT (PR).. 3-62

3.8.28 PROJ ... 3-64

GCL Programmer's Manual

xiv 47 A2 36UJ Rev05

3.8.29 QUIT (Q) .. 3-66

3.8.30 RESAVE (RSV) ... 3-67

3.8.31 RESEQUENCE (RSQ) .. 3-70

3.8.32 RESET... 3-71

3.8.33 RESTORE_ACCESS (RSTA) ... 3-72

3.8.34 SAVE (SV) ... 3-74

3.8.35 SAVE_ACCESS (SVA).. 3-76

3.8.36 SLLIB ... 3-78

3.8.37 STATUS (ST)... 3-79

4. Access to GCOS Files through GCL

4.1 Files... 4-1

4.2 Command Parameters.. 4-2

4.3 Completion Codes... 4-2

4.4 Address Format... 4-2

4.5 Temporary Files .. 4-2

4.6 Types of Access.. 4-2

4.7 Access Requirements ... 4-3

4.8 Break Processing .. 4-4

4.9 Example of Procedure Using Break Processing... 4-5

4.10 GCOS File Access Commands... 4-7

4.10.1 BUILD_RECORD (BREC) ... 4-8

4.10.2 CLOSE_FILE (CLOSEF) ... 4-10

4.10.3 DECLARE_FILE (DCLF) ... 4-12

4.10.4 DELETE_RECORD (DLREC) ... 4-16

4.10.5 EDIT_FILE_ERROR (EDFERR).. 4-19

4.10.6 EXIST_FILE (EXISTF)... 4-22

4.10.7 LIST_DECLARED_FILE (LSDCLF)... 4-24

4.10.8 MODIFY_RECORD (MDREC) .. 4-26

4.10.9 OPEN_FILE (OPENF) ... 4-30

4.10.10 POINT_RECORD (PTREC)... 4-34

4.10.11 READ_RECORD (RDREC)... 4-38

4.10.12 RELEASE_FILE (RLSF) .. 4-42

4.10.13 RETURN_DECLARED_FILE (RTDCLF)... 4-44

4.10.14 SPLIT_RECORD (SPREC) ... 4-47

4.10.15 WRITE_RECORD (WRREC)... 4-49

47 A2 36UJ Rev05 xv

5. GCL Batch Job

5.1 Overview ... 5-1

5.1.1 GCL Job Statements ... 5-1

5.1.2 Job Submission ... 5-3

5.1.3 Job Translation and Execution .. 5-4

5.2 Input Reader Statements .. 5-5

5.2.1 $JOB.. 5-6

5.2.2 $ENDJOB .. 5-11

5.2.3 $INPUT .. 5-12

5.2.4 $ENDINPUT .. 5-22

5.2.5 $SWINPUT .. 5-23

5.2.6 $SENDCONS .. 5-26

5.2.7 $OPTIONS... 5-27

5.3 System Level Commands ... 5-29

5.4 Directives .. 5-29

5.5 GCL Basic Commands ... 5-29

5.6 Parameterization ... 5-30

5.6.1 Parameterization of GCL Statements.. 5-30

5.6.2 Parameterization of Input Enclosures.. 5-31

5.6.3 Example of Parameterization .. 5-32

5.7 Chaining of Commands .. 5-33

5.8 Recoveries .. 5-34

5.9 Reports.. 5-35

5.9.1 Job Occurrence Report (JOR)... 5-35

5.9.2 H_BATCH Report .. 5-37

6. Debugging

6.1 GCL Job Debugging.. 6-1

6.2 DUMP.. 6-2

6.3 Example of Debugging.. 6-3

GCL Programmer's Manual

xvi 47 A2 36UJ Rev05

7. Programmatic Interface

7.1 GCL Interface.. 7-1

7.1.1 Primitives ... 7-2
7.1.1.1 GCLINIT .. 7-2
7.1.1.2 GCLTERM... 7-5
7.1.1.3 GCLREAD ... 7-6
7.1.1.4 GCLABORT... 7-8
7.1.1.5 GCLRETRY... 7-10

7.1.2 Primitives in Schematic Program... 7-12

7.2 Interface Between Program and Procedure ... 7-13

7.2.1 Domain... 7-13

7.2.2 SYSTEM Command .. 7-13

7.3 Programming Rules .. 7-14

7.4 Example of Application ... 7-15

7.4.1 Programming in COBOL.. 7-17

7.4.2 GCL Procedure BANK of IOF Domain .. 7-20

7.4.3 GCL Procedures BALANCE, DEBIT and CREDIT.. 7-20

7.4.4 Equivalent Programming in GPL ... 7-21

7.5 Help Text Handling.. 7-22

7.5.1 Definition of a Help Text .. 7-22

7.5.2 Requesting a Help Text ... 7-24

7.5.3 Help Operations... 7-25

7.5.4 Conventions... 7-26

7.5.5 CREATE_HELP_TEXT: CRHELP... 7-27

7.5.6 Formatting Controls ... 7-28

7.5.7 Examples of Help Texts... 7-29
7.5.7.1 Source Text ... 7-29
7.5.7.2 Composed Text ... 7-31
7.5.7.3 Domain Level Help Text .. 7-33
7.5.7.4 Command Level Help Text.. 7-34
7.5.7.5 Parameter Level Help Text ... 7-35

7.5.8 HELP Primitive... 7-36

7.6 Managing GCL Variables.. 7-38

7.6.1 Global Variables .. 7-38

7.6.2 System Variables... 7-38

7.6.3 GCL Variable Primitives... 7-38
7.6.3.1 READVAR ... 7-39
7.6.3.2 MODVAR... 7-41

47 A2 36UJ Rev05 xvii

7.7 File Literal Analysis ... 7-43

7.7.1 File Literal .. 7-44

7.7.2 Syntax of a Volume Literal... 7-45

7.7.3 Primitives ... 7-46
7.7.3.1 DCANFILE... 7-47
7.7.3.2 ANFILE.. 7-47

7.8 Fileset Literal Analysis .. 7-48

7.8.1 Fileset Literal ... 7-48

7.8.2 Primitives ... 7-49
7.8.2.1 DCANFST ... 7-49
7.8.2.2 ANFST... 7-50
7.8.2.3 ANFLFST .. 7-51

7.9 Star Convention Analysis Primitives ... 7-52

7.9.1 Primitives ... 7-52
7.9.1.1 DCANSTAR... 7-53
7.9.1.2 ANSTAR.. 7-54
7.9.1.3 CHKSTAR ... 7-55

7.10 Job Submission... 7-56

7.10.1 Synchronous Job Submission ... 7-56

7.10.2 Asynchronous Job Submission ... 7-56

7.10.3 Description of Parameters ... 7-57

7.10.4 Information About the Launched Job... 7-58

7.10.5 COBOL Equivalents... 7-59

7.10.6 Obtaining Error Messages from Error Numbers and Classes......................... 7-67

7.10.7 Examples ... 7-67
7.10.7.1 Job Submitted on Local Site through GPL Program....................... 7-68
7.10.7.2 Job Submission through COBOL Interface H_IN_URUN 7-69
7.10.7.3 Job Submission through COBOL Interface H_IN_UEJR 7-70

7.10.8 Error Messages ... 7-71

 Index

GCL Programmer's Manual

xviii 47 A2 36UJ Rev05

47 A2 36UJ Rev05 1-1

 1. Introduction

GCL Programming involves using GCL commands and directives to be submitted
to GCOS 7 for performing repetitive tasks. The startup sequence for user logon is
such an example.

Once the program has been developed and tested, the user need not have to key in
the program each time it is to be executed:

• by storing the program in a file

• and by expressing parameters as variables for substitution at the execution of the
task with user-defined values which can be dynamically altered without
modifying the stored GCL sequence.

1.1 Command Language

1.1.1 Purpose of Command Language

GCL is a set of commands that allow the user to request GCOS to perform specific
activities in interactive and batch modes. Menus, prompts and helps facilitate the
use of GCL.

Commands can be submitted to GCOS:

• either interactively at the terminal

• or stored in a file for multiple executions

• or compiled into procedures that create new commands of the language.

GCL Programmer's Manual

1-2 47 A2 36UJ Rev05

1.1.2 Objects

Objects are the basic elements on which the commands operate. Files, libraries,
outputs, catalogs, and programs are objects, just as the user profile is.

Examples of activities that include functions and procedures to be executed on
objects are:

• to create the environment that controls resources and their allocations to
applications

• to manage files being copy, save, restore, compare, create, delete and load
• to define new commands
• to test programs, and to observe and change system values in the process
• and to ensure the security of objects against unauthorized use.

1.1.3 Variables and Expressions

Wherever a value can be specified for a parameter, either in keyword or positional
notation, this value can be specified as being the value of a variable or the result of
evaluating an expression. Variables may be user-defined or system-defined.
Expressions are combinations of builtin functions whose arguments may be
variables or other builtin functions.

User variables are denoted by a name preceded by a percent (%) sign (for example,
%V, %PRICE, %NEW-RATIO).

The names of system variables begin with a number sign character (for example,
#PL, #NOVICE).

Builtin functions also have names which begin with a number sign and their
arguments, if any, are enclosed in parentheses (for example, #PLUS(6, %V) or
#DIVIDE(%QUANTITY, %RATIO)).

A command can be coded:

 DLLIB LIB=%LB BYPASS=0 FORCE=0 SILENT=%S
or DLLIB %LB,0,0,%S

Introduction

47 A2 36UJ Rev05 1-3

When a parameter is a list of like values, it may also be replaced by a variable or an
expression, provided that the value of the variable or the result of the expression is
a list of suitable type and length. Elements in such lists may also be expressions or
variables. A builtin function is also provided for building up a list from elements
that may be variables, expressions, or constants. In lists of unlike values,
individual elements may be substituted by variables or expressions. For example,
one could write:

CPF A B DYNALC=TEMPRY ALLOCATE=(SIZE=%S,12,%U,1,1)

But the list as a whole cannot be substituted by a variable or an expression;
expressions always produce lists of like values.

GCL Programmer's Manual

1-4 47 A2 36UJ Rev05

1.2 Global Variables

Parameters of commands and directives can be referred to either as literal values or
by symbolic names. The statement:

PRINT_FILE MYDIR.TEST.REL.FILE2

only prints a specific file and performs no other operation.

If a series of operations is to be performed on the same file, its name would have to
be reentered each time.

GCL allows naming parameters by their symbolic names. The parameter can then
be referred to later on by its symbolic name which functions as a variable. A
variable that applies for the duration of the session is global variable. This Section
discusses how to use variables in GCL programs to facilitate command entry and
the resulting repetitive processing.

There are certain limits concerning the number of global variables. For each job or
for each IOF session, the user has available:

• 170 optimized variables present in memory during each jobstep, namely:
− 40 variables with a length of 1 byte
− 40 variables with a maximum length of 8 bytes
− 40 variables with a maximum length of 16 bytes
− 30 variables with a maximum length of 32 bytes
− 20 variables with a maximum length of 80 bytes.

• 97 variables with no limitation on length, allocated in a subfile of the user's
SYS.POOL.

A maximum of 100 global variables can be declared in the same procedure.

Continuing on from the above example, the following two commands would make
the variable known and assign a value to it:

GLOBAL F2 FILE
LET F2 MYDIR.TEST.REL.FILE2

Any further reference to that value can be in the form of %F2, for example:

PRINT_FILE %F2
DELETE_FILE %F2
COMPARE_FILE %F2 MYDIR.TEST.REL.FILE1
...

The percentage sign (%) introduces the reference to the value of the variable and
distinguishes it from the file name F2.

Introduction

47 A2 36UJ Rev05 1-5

1.2.1 Declaring Global Variables

A global variable must be declared before being used. The GLOBAL directive
specifies the mandatory name of the variable and optional values that the variable
can take. A complete list of directives is treated in the IOF Terminal User's
Reference Manual.

Syntax:

 { GLOBAL }
 { }
 { GB }

 NAME= name31

 [{ CHAR }]
 [TYPE={ BOOL | DEC | FILE | FSET | HEXA | LIB }]
 [{ NAME | OUTPUT | RFILE | STAR | VOLUME }]

 [LENGTH= dec3]

 [NUMVAL=(dec2 [dec2])]

 [VALUES=(condition [condition]...)]
 [PROMPT= char40]

Parameters:

NAME mandatory: up to 31 alphanumeric characters
beginning with a letter, defining the name of the
variable.

To redefine a variable with different attributes, the
previous definition must be first deleted by
DELETE_GLOBAL (DLGB).

TYPE the type of the variable. See Paragraph "Types".

Default: CHAR (plain character string)

GCL Programmer's Manual

1-6 47 A2 36UJ Rev05

LENGTH the maximum length for each element of the variable.

Default and maximum applicable values depend on the
type of the variable being defined.

For example:

GLOBAL AGE DEC 3 means a value of up to three
decimals.

Type Maximum
Length

Default
Length

CHAR 255 80
BOOL 1 1
DEC 31 31
FILE 255 44
FSET 255 80
HEXA 8 8

LIB 255 44
NAME 44 31

OUTPUT 255 80
RFILE 255 80
STAR 88 31

VOLUME 255 80

NUMVAL a pair of numbers denoting minimum and maximum
number of elements in list of variables, max => min
and dec2 <= 64.

When only one number is provided, both the
maximum and minimum are set to that value.

Default: (min=0,max=1)

PROMPT prompt for user in menu mode to enter a value for the
associated variable and is displayed by the command:

LET variable-name #

where value read from the terminal is assigned to the
variable.

Example:

GLOBAL X DEC 3 PROMPT='Your age?'
LET X #
Your age?

Introduction

47 A2 36UJ Rev05 1-7

VALUES list of up to 32 conditions that values assigned to the
variable must meet. At least one condition must be
satisfied: an OR is performed on the conditions and the
value assigned. Conditions must conform to the type
and length specified for the variable. Different types
of conditions may appear in the same list.

Example 1:

VALUES=(&9 * $/) means applies to a variable
which starts with a digit, or is an asterisk or contains a
slash.

Example 2:

GLOBAL AGE DEC 3 VALUES=0<=*<=180
means that AGE takes values in the inclusive range of
0 through 180.
Default: All values conforming to the variable type
and length.

Type of Condition Form Examples

discrete value value A
123
*

relational, see Note {> }value
{< }value
{>=}value
{<=}value
{= }value

>2
<32
>=0

<=XYZ
=0

range, see Note {> } {> }
value{ }*{ }value

{>=} {>=}

A<=*<H
0<*<=99
A<=*<=Z

contains $value $XYZ
$.

$',' contains a comma
starts with /value /AXY

/' ' starts with space
/.

starts with digit &9 &9
starts with letter &A &A

alphanumeric start &X &X
not ^any of above ^=*

^$XYZ
^&9

GCL Programmer's Manual

1-8 47 A2 36UJ Rev05

NOTE:
Non-numeric values are compared by their EBCDIC collating sequences.

EXAMPLES :

GLOBAL COUNT DEC 3
VALUES=>0

decimal, up to 3 digits, values must be
positive

GLOBAL LIST
 NAME 20
 NUMBAL=(1,30)
 VALUES=&A

each name is 20 characters long
list of up to 30 names
beginning with a letter

GLOBAL REPLY NAME 3
 VALUES=(YES NO)

GB C

GLOBAL B BOOL

GB D DEC
 VALUES=(0 10<=*<=99)

variable to take only the values YES and
NO

defaults to string of 0 to 80 characters

boolean variable

variable which is 0 or a decimal in range
10-99

❑

Constraints:

• When the GLOBAL directive is used in immediate mode (non-compiled), the
values assigned to the parameters of the directive cannot be expressions. They
must be literal values.

• When the GLOBAL directive is used in a compiled sequence (GCL procedure,
sequence executed by EXECUTE_GCL, sequence executed by GCL in batch),
the parameters of the directive can be expressions including variable names
provided that the GLOBAL directive is executed through the SCALL command
and the contents of the variable is referenced by #VALUE.

• When execution of a GCL procedure that contains:

− keywords declared with variables or expressions as default values and
− global variables declaration,

• is aborted by the user using "/" character in a prompt screen or by GCL kernel,
the global variables declared in the aborted procedure remain active. This way
lead to the error message "INCONSISTENT GLOBAL REDEFINITION FOR
VARIABLE MYVAR" in case of redefinition with another characteristics.

Introduction

47 A2 36UJ Rev05 1-9

• In this case the global variable must be deleted by the user using the command
DLGB MYVAR.

EXAMPLE :

LOCAL N NAME;
LET N #CVNAME(#CAT(#USERID,'_TERMID'));
SCALL GLOBAL NAME=%N,TYPE=NAME;
LET %N #CVNAME(#TERMID);
LET # #VALUE(%N);
...

❑

1.2.2 Assigning Values to Variables

Once a variable has been declared, it can be assigned a value. Any attempt to refer
to a variable that has not been assigned a value results in the diagnostic
VARIABLE n NOT ASSIGNED. The LET directive assigns a value to a
variable.

LET AGE 62

assigns the value 62 to the variable AGE. Since LET is a directive, it can be used
to change the value of a variable at any time and the change becomes effective
immediately. The next reference to the variable will be a reference to the new
value.

There is no percentage sign before the name of the variable.

The construct:

LET %VAR 3

assigns 3 to the variable whose name substitutes for VAR:

LET VAR AGE
LET %VAR 3

results in AGE being assigned the value 3 and is equivalent to:

LET AGE 3

GCL Programmer's Manual

1-10 47 A2 36UJ Rev05

The assigned value must, therefore, meet the requirements of the GLOBAL
directive that declared the variable:

• if the type is incorrect, a TYPE ERROR diagnostic is returned
• if the value is longer than that specified by LENGTH, a LENGTH ERROR is

returned
• if the value does not satisfy the VALUES conditions, a VALUE ERROR is

returned.

EXAMPLE :

Using the declarative for AGE:

LET AGE 1234 results in LENGTH ERROR
LET AGE ABC results in TYPE ERROR
LET AGE -3 results in VALUE ERROR

When the declared variable is a list, the values to be assigned are enclosed within
parentheses.

If LIST is declared, for example:

GLOBAL LIST DEC 2 NUMVAL=(3,6) VALUES=>0

a list of 3 through 6 decimal values, each one up to two digits and positive, the
directive:

LET LIST (1,3,5,7)
or
LET LIST (1 3 5 7)

assigns LIST a set of four values.

If an attempt is made to assign fewer values than the minimum or more than the
maximum, INDEX ERROR is returned. For example:

LET LIST 6 --> INDEX ERROR (only 1 value)
LET LIST (6 9) --> INDEX ERROR (2 values)
LET LIST (2 4 6 8 10 12 14)--> INDEX ERROR (7 values)

If any one of the elements in the list fails to meet one of the GLOBAL
requirements (LENGTH, TYPE, VALUES) the appropriate diagnostic is returned.

❑

Introduction

47 A2 36UJ Rev05 1-11

1.2.3 Types

Since GCL is a typed language, the assignments and references of variables and
expressions must be consistent with their type. For example, if AGE is decimal,
assigning the name of a file to it will result in an error diagnostic. The twelve types
in GCL are:

BOOL Boolean value 0 or 1
CHAR Character string, quoted or unquoted
DEC Decimal value, signed or unsigned
FILE File for example, A.B.FILE or A.B.MYLIB..SF
FSET Fileset for example, A.*.B
HEXA Hexadecimal value for example, A23F
LIB Library for example, A.B.MYLIB
NAME Name for example, JOE, A-B, MYPG
OUTPUT Output for example, X123:2:1
RFILE Remote File for example, $LYON:A.B.C
STAR Star-Name for example, A*B
VOLUME Volume for example, VOL2:MS/D500

A literal value assigned to a variable must be valid for the type of variable.

One variable can be assigned the value of another variable by the following
construct:

LET V1 %V2

where the variable V1 is assigned the current value of the variable V2. In this case,
the variables V1 and V2 must be of the same type. A limited number of implicit
conversions are supported by GCL. These are summarized in the following
diagram:

---^---------^---------^-------CHAR--------^---------^---------^--
 | | | | | | |
 | | | | | | |
 OUTPUT VOLUME DEC RFILE FSET STAR HEXA
 ̂ | | ̂
 | | | |
 | +----^----+ |
 BOOL | NAME
 |
 FILE
 ̂
 |
 |
 LIB

GCL Programmer's Manual

1-12 47 A2 36UJ Rev05

In the diagram, a CHAR variable may be assigned the value of a variable of
another type. A DEC value may be assigned the value of a DEC or BOOL
variable. But a BOOL variable cannot be assigned a DEC value, nor can OUTPUT
be assigned a VOLUME value.

Explicit conversions assign the value of one variable to another. These conversions
are provided through a set of dedicated builtin functions, for example:

LET AGE #CVDEC(%C)

If C is a variable, say CHAR, whose current value is a valid for a DEC value, then
assign it to AGE. Otherwise return a TYPE ERROR. A set of dedicated builtin
functions ensures whether a given variable has a value that is acceptable to a
variable of another type.

LET B #ISITDEC(%C)

will assign the boolean variable B the value 1 if the value of C is a valid for a DEC
value. Otherwise, it will assign the boolean value 0.

1.2.4 References to Variables

In all commands and directives, a value that can be specified for a parameter can be
replaced by a reference to a variable as in the examples above. The actual process
used involves substituting the current value of the variable for its reference
wherever it appears.

References to variables are introduced by a percentage sign (%) to distinguish them
from literal name values. The value denoted by the variable must be acceptable in
the context where it is used, otherwise an error diagnostic is reported. For
example:

CLEAR_LIBRARY %B

where B is a boolean value cannot be accepted since a boolean value is not treated
as a library.

Using lists is illustrated in the following example.

The COBOL command accepts as its first parameter a list of names or star-names
denoting the names of source COBOL programs to be compiled. The line coding:

COBOL (A B C)

Introduction

47 A2 36UJ Rev05 1-13

requests the compilation of three source COBOL programs. Assuming that three
following global variables have been declared:

GLOBAL G1 NAME
GLOBAL G2 NAME
GLOBAL L NAME NUMVAL=(0,4)

resulting in two scalar name variables G1 and G2, and L a list of up to four names.
Assuming that the following assignments have taken place:

LET G1 A
LET G2 B
LET L (C D E)

then:

COBOL %G1 stands for COBOL A
COBOL %G2 stands for COBOL B
COBOL %L stands for COBOL (C D E)
COBOL (%G1 %G2) stands for COBOL (A B)
COBOL (%L %G1) stands for COBOL (C D E A)
COBOL (%G2 X Y %L) stands for COBOL (B X Y C D E)

The example shows how a variable can:

• stand for a list

• be an element of a list

• or be combined with other variables and with literal values to build up a list.

Local and global variables referenced in a procedure must be declared either in the
procedure or before the procedure is activated. A sequence of GCL statements
executed through the GCL command EXECUTE_GCL is similar to a called
procedure. The variables declared in the sequence are not known to the procedure
that executes the EXECUTE_GCL.

The following sequence is correct:

PROCEDURE A; PROCEDURE B;
GLOBAL G.....; Local V...;
CALL B; LET V %G;
 ENDPROC;

The following sequence is wrong:

PROCEDURE A; PROCEDURE B;
LOCAL V...; GLOBAL G.....;
CALL B; ENDPROC;
LET V G%

GCL Programmer's Manual

1-14 47 A2 36UJ Rev05

1.3 Expressions

Variables can be operated on and combined into expressions to build new values.
In GCL, expressions are created from builtin functions. A builtin function is
denoted by #, followed by a name and an optional list of arguments enclosed
within parentheses, e.g.:

LET AGE #PLUS(%AGE,1)

assigns to the variable AGE the value of the variable AGE plus 1 to increments the
value of AGE. In this example, #PLUS is a builtin function with two arguments.

Builtin functions can have any number of arguments. Following are some
examples:

#TIME and #DATE are builtins with no argument give today's time and
date.

#LENGTH(a) is a builtin with one argument that gives the length of
its argument expressed as a number of characters.

#CVDEC(a), #ISITDEC(a) are also builtins with one argument.

#PLUS(a,b), #MINUS(a,b) are arithmetic builtins with two arguments.

Some builtins may have a varying number of arguments. For example, #PLUS
may have two or more arguments:

LET A #PLUS (%A,%B,%C,%D)

adds up A, B, C, and D into A.

Similarly, the #CAT builtin returns a result which is the concatenation (that is,
combining together in a single string) of its arguments:

#CAT (ABC, XYZ, QP)

yields string ABCXYZQP.

Builtins are numerous; they are fully discussed in Section 2. There is a builtin for
most types of operations to perform on variables.

Arguments of builtins may be literal values, variable references, system variables,
or other builtins. Builtin functions can be nested as deeply as desired. For
example:

#CAT(X,#PLUS(1,#TIMES(4,#PLUS(2,3))))

results in the string of characters X21.

Introduction

47 A2 36UJ Rev05 1-15

Arguments of the builtins must be of a certain type:

• #PLUS requires DEC arguments
• #CAT accepts CHAR arguments.

Similarly the result of a builtin also has a type:

• the result of #PLUS, #MINUS or #CVDEC is DEC
• the result of #ISITDEC is BOOL
• and the result of #CAT is CHAR.

Implicit and explicit conversion rules are the same as for the assignment of
variables.

Wherever a variable may be used, an expression in the form of a builtin function
can also be used. This also applies to lists, where a builtin may be used to denote a
list or a single element within a list:

LET LIST (6 3 #PLUS(4,3) #MINUS(6,2))

has the same effect as:

LET LIST (6 3 7 4)

GCL Programmer's Manual

1-16 47 A2 36UJ Rev05

1.4 Reading and Writing Values

The construct to ascertain the value of an expression is:

LET # expression

It results in printing the expression at the terminal.

LET # %LIST

displays the value of the variable LIST. The expression to the right of # can be as
complex as necessary.

The # alone is a particular instance of a system variable denoting the current line
on the output device being either the IOF terminal, or SYSOUT or PRTFILE in
batch. Assigning a value to it results in printing that value on the output device.

For IOF:

When used in an expression like:

#PLUS (#,1)

1 is added to a value which is to be entered at the terminal. Enter the value when
the prompt #? appears. The value keyed in will replace # in the expression, and
evaluation continues. In this particular case, the value entered must be numeric to
be acceptable to the #PLUS builtin.

The most use of # in an expression is in constructs like:

LET V #

to assign to a variable a value read in from the terminal, in which case:

• the prompt to enter the value will be in the form V?
• the value supplied will be assigned to variable V
• however, if variable V was declared with PROMPT, this prompt will appear to

request the user to supply a value.

The following sequence:

GLOBAL AGE DEC 3 PROMPT='What is your age?'
LET AGE #
What is your age? 22
LET # %AGE
22

is an easy way to build up any type of dialog required. It is particularly useful
when using stored sequences of GCL.

Introduction

47 A2 36UJ Rev05 1-17

For Batch:

'LET V #' cannot be used.

To assign to a variable, a value read in from the terminal of the job submitter, use
'READ_FROM_CONSOLE'.

GCL Programmer's Manual

1-18 47 A2 36UJ Rev05

1.5 Stored Sequences of GCL

The commands of a task performed repeatedly can be stored in a library member.
The system can then fetch the commands from that member at the user's request
rather than for the user to key in the task sequence at the terminal.

The following sequence of GCL commands will compile, link and execute a
COBOL program, then print the contents of its output file:

COBOL MYPG
LINK MYPG
EXEC_PG MYPG FILE1=IFN1 ASG1=.MYFILE
PRINT_FILE .MYFILE

This task can be repeatedly performed for as many times as there are different
programs and files.

The following sequence of GCL commands stored in a source library:

COBOL %P
LINK %P
EXEC_PG %P FILE1=IFN1 ASG1=%F
PRINT_FILE %F

has elements which are to be replaced by references to variables or parameters.
Here the library member storing the sequence is called TEST.

The commands which allow executing such a sequence are:

• ALTER_INPUT (AI) in IOF

• EXECUTE_GCL (EXGCL) in batch.

See IOF Terminal User's Reference Manual for the description and syntax of these
commands.

Introduction

47 A2 36UJ Rev05 1-19

1.5.1 ALTER_INPUT Command

The ALTER_INPUT command allows replacing entries normally keyed in at the
terminal by entries in a file. The entry stream that can be executed by
ALTER_INPUT can contain:

• commands belonging to levels S: and C:

• and data to be processed by a processor at level I:, for example.

The entry stream can be parameterized using Global Variables which are
referenced in the commands to be executed but not in the data.

In the preceding example:

• two Global Variables must be declared:
 GLOBAL P NAME;
 GLOBAL F FILE;

• their desired values allocated:
 LET P MYPG;
 LET F .MYFILE;

• and the sequence executed by:
 ALTER_INPUT TEST or AI TEST;

Basic GCL Commands cannot be executed in a sequence activated by
ALTER_INPUT.

GCL Programmer's Manual

1-20 47 A2 36UJ Rev05

1.5.2 EXECUTE_GCL Command

• When in the current domain, the EXECUTE_GCL command allows executing:
− commands of the current domain
− all the directives
− and all basic GCL commands.

• At level S:, the EXECUTE_GCL command allows executing:
− all the commands in the IOF domain
− all the directives in the H_NOCTX domain
− and all basic GCL commands.

• At level C: of MNLIB SL, the EXECUTE_GCL command allows executing:
− all the commands in the LIBMAINT_SL domain
− all the directives in the H_NOCTX domain
− and all basic GCL commands.

The file to be executed by EXECUTE_GCL can only contain commands.
Commands can be parameterized as for ALTER_INPUT by using Global Variables.

The commands in the file TEST can be executed by:

EXGCL TEST;

However, the VALUES parameter of EXECUTE_GCL can also be used to pass
values expected by the sequence to be executed. In this case, these expected
parameters must be described in the GCL basic command KWD (values may be
determined by default).

The file TEST previously described:
• the equivalent of the sequence would be:
 KWD P NAME;
 KWD F FILE;
 COBOL %P;
 LINK %P;
 EXEC_PG %P FILE1=IFN1 ASG1=%F;
 PRINT_FILE %F;

• and the sequence executed by:
 EXGCL TEST, LIB=MYLIB, VALUES=(P=MYPG,F=.MYFILE);

Introduction

47 A2 36UJ Rev05 1-21

1.6 STARTUP Sequences

IOF offers a facility whereby a stored sequence of commands or lines can be
automatically executed when the user logs on. This sequence is known as a startup
sequence. Startup sequences can be defined at system, project, and user levels.
Their execution may be mandatory or optional.

A typical use of a startup sequence would be to place the user under the control of
a certain processor without having to request it.

An optional startup sequence can be bypassed. (Mandatory sequences may not be
bypassed except by the project SYSADMIN.)

1.6.1 IOF Startups

Startup sequences are described in IOF Terminal User's Reference Manual.

When the user logs on to IOF, the system simulates an AI directive to the startup
sequence of the user or the project associated with the user. In the startup sequence
all the commands required can be stored to set the user's normal operating context.

Following is an annotated example of what a project level startup might look like:

LET # 'BEGINNING OF PROJECT XYZ STARTUP'; issue a message
MDP NOVICE=0 GCLFORM=LINE; modify elements of
 profile

MWINLIB SL .REF define working libraries
MWLIB SL <WORK
MWINLIB BIN .CMDS
MWLIB BIN X$TEMPRY

$$AI >JONES IF=#EQ(JONES,#USERID) test if user JONES
$$AI >HENRY IF=#EQ(HENRY,#USERID) test if user HENRY
$$AI NORMAL-STUFF for other users execute
$$AI SPECIAL-STUFF IF=some-condition additional sequences and
$$AI >END leave

$JONES: Jones is a PASCAL fan
MWLIB BIN .JONES.SPECIAL who wants automatically
PASCAL to enter the PASCtAL
$$AI >END compiler at logon

GCL Programmer's Manual

1-22 47 A2 36UJ Rev05

$HENRY: Henry wants no mail
MAIL OFF additional and has
MWLIB CU .CU.REF working libraries
MWINLIB CU .CU.WORK
MWLIB LM .LMS

$END:

Another kind of project-level startup could have the following structure:

LET # 'BEGIN STARTUP';
MWLIB SL .WORK
MWLIB
 .
 .
MWINLIB

AI #CVNAME(#CAT(#USERID,-STP))

LET # 'END STARTUP';

issue a message

define the working libraries
and other common rules

then ask to execute a user-dependent
sequence built up from the user's
name followed by -STP

issue a message

Each user is free to put in a personalized sequence, for example:

• JONES-STP will contain the GCL to enter PASCAL
• HENRY-STP will contain additional library definitions and the MAIL OFF

command.

Startups are solely at the discretion of the system administrator.

Introduction

47 A2 36UJ Rev05 1-23

1.6.2 Batch Startups

For GCL batch jobs, specific startups are executed before the execution of the
submitted GCL sequence but after its compilation. As in IOF, 2 startup sequences
can be attached to a Project in the catalog, namely, a mandatory startup and an
optional one.

Possible startups are:
a) SITE_GCL_B
b) project_GCL_B
c) project_user_GCL_B.

In a batch startup:

• the following can be used:
− commands of the IOF domain
− directives
− and operator commands through EXDIR.

• however, the following may not be used:
− GCL basic commands, however, the EXECUTE_GCL command is authorized

in a startup and allows executing sequences containing GCL basic commands
− statements processed by the Input Reader
− input enclosures
− and parameterization through VALUES.

GCL Programmer's Manual

1-24 47 A2 36UJ Rev05

1.7 Creating New GCL Commands

All GCL commands so far are standard system-supplied commands. However,
IOF provides a means whereby each user can define personalized commands or
commands to be used by other users. This facility is described in Section 3.

Creating a new command involves:

• writing a program that defines the command and its function; the program is a
GCL procedure which is a particular construct of GCL commands, some of
which are dedicated to this purpose

• compiling the GCL procedure through the MAINTAIN_COMMAND
(Command Management) processor which also provides some facilities for
handling compiled GCL procedures in libraries

• then storing the compiled GCL procedure in a BINary library; if this library is
one of the user's input binary libraries defined by the MWINLIB BIN command,
the command is immediately accessible to that user.

1.7.1 Domains, Libraries and Search Rules

The new command can be used:

• at system level
• within a given processor
• or as a directive.

The scope of the command is its domain, for example:

• a command that compiles, links and executes a program is only accessible at
system level and belongs to the IOF domain

• a command that edits and renumbers a source program is only accessible from
within MAINTAIN_LIBRARY SL and belongs to the LIBMAINT_SL domain

• a command used as a directive is accessible in all contexts and belongs to the
H_NOCTX domain.

The System Administrator's Manual gives the list of standard domains. Section 3
gives the list of all existing domains.

A user-defined command belonging to a particular domain may make use of all
commands and directives of that domain but not those of another domain since the
context is no longer valid. For example, a command used at system level may be
expressed in terms of other system-level commands and directives but may not
refer to MAINTAIN_LIBRARY SL or other processors' commands.

Introduction

47 A2 36UJ Rev05 1-25

Storing the command determines who is the user of the command:

• to be the sole user of that command,
− store the definition in a binary library
− and ensure that the library is named in a MWINLIB BIN command for it to be

in the input search path

• to allow the command to be available to a set of users such as a project, store the
definition in a library that is in the search path of all its potential users by
including a suitable MWINLIB BIN command in the startup sequence common
to all these users

• if the command is to be used by all the users of an installation, store the
definition
− either in the SYS.HBINLIB library to which only the System Administrator

has write access
− or in any other library that is in all users' search paths, possibly by including a

reference to it in a MWINLIB BIN command in the site-level startup
sequence.

The number of binary libraries allowed in the GCL search path as well as
SYS.HBINLIB depends on the GCL15BIN CONFIG parameter declared at
GCOS 7 system configuration. At execution, GCL can process a maximum of
4,090 command names or aliases, and a maximum of 3,276 prompts.

When a command is keyed in at the terminal:

• the system looks for its definition in the user's binary library input search path, if
any, in the order in which the search path is defined in the MWINLIB BIN
command, first INLIB1, then INLIB2 and lastly INLIB3 or INLIB15 until it
finds a definition of that name

• if the search fails, the definition is taken from the system library SYS.HBINLIB
containing all system-supplied command definitions.

If the same command name exists in several libraries of the user's search path, only
the one in the first library referred to as the most local one will be accessible.
Altering the search path enables modifying the set of commands to access. The
following example illustrates this:

GCL Programmer's Manual

1-26 47 A2 36UJ Rev05

The search path is defined by MWINLIB BIN (.L1 .L2 .L3)

• .L1 contains commands C1, C2, C3
• .L2 contains commands C2, C4
• .L3 contains commands C3, C5

then:

• C1 refers to the definition in .L1
• C2 refers to the definition in .L1
• C3 refers to the definition in .L1
• C4 refers to the definition in .L2
• C5 refers to the definition in .L3
• C6 refers to the definition in SYS.HBINLIB

Modifying the search path as below:

MWINLIB BIN (.L3 .L2 .L1)

results in:

• C1 referring to the definition in .L1
• C2 referring to the definition in .L2
• C3 referring to the definition in .L3
• C4 referring to the definition in .L2
• C5 referring to the definition in .L3
• C6 referring to the definition in SYS.HBINLIB.

Introduction

47 A2 36UJ Rev05 1-27

1.7.2 MAINTAIN_COMMAND

MAINTAIN_COMMAND (MNCMD) is the compiler for command definitions. It
is described in Section 3.

MAINTAIN_COMMAND enables working on a copy of a command definition
held in a workspace and not operating on it directly. Handling the workspace
involves:

• storing the workspace contents in the binary library through the SAVE or
RESAVE command

• loading the command definition from the library into the workspace through the
LOAD command.

Command definition proceeds as follows:

• creating the command in the workspace through the CREATE command
• adding lines in the workspace through the APPEND command
• and editing the contents of the workspace through the LEDIT command.

MAINTAIN_COMMAND is an incremental compiler which checks each line of a
command definition and compiles it as it is entered. However, complete command
definitions stored in a source library can be submitted for compilation through the
COMPILE command.

Menus and prompts are available on request:

• to assist in keying in the definition
• or when an error is detected in an entry.

Other MAINTAIN_COMMAND commands:

• define the DOMAIN and the library (BINLIB) to which the command definition
belongs

• LIST the names of the commands of a particular domain
• and PRINT the definition of a particular command.

Up to 2045 command names or aliases may be compiled in the same binary library
(BINLIB) for the same domain.

GCL Programmer's Manual

1-28 47 A2 36UJ Rev05

1.7.3 GCL Procedures

A command is defined by a GCL procedure consisting of a sequence of GCL
commands embedded between a PROC and an ENDPROC command.

The commands that can appear within a procedure are the following:

• dedicated GCL procedure commands dealt with in Section 2
• directives treated in the IOF Terminal User's Reference Manual
• any system-supplied or user-defined command that belongs to the domain of the

command being defined.

PROC Command

The PROC command:
• heads the definition
• provides the name of the command
• its aliases
• and the short explanatory text to be displayed with the name of the command in

the menu.

EXAMPLE :

PROC (SORT_NAMES SRTN)
 PROMPT='to sort out the list of user names';

A GCL procedure created with the same name as a system GCL command such as
CBL, will override the system command which will no longer be available.

❑

Introduction

47 A2 36UJ Rev05 1-29

KWD Command

The KWD command:

• introduces each parameter of the command
• provides

− the name of the parameter with its possible abbreviations
− type
− length
− and shape
− the condition that it should satisfy
− its default value, if any
− and a short explanatory text for display alongside the screen or serial prompt.

EXAMPLE :

KWD ORDER NAME 4
 VALUES=(ASC DESC) DEFAULT=ASC
 PROMPT='ASCending or DESCending order?';

defines a parameter named ORDER that can take values ASC or DESC, the first
being its default value.

❑

LOCAL Command

The LOCAL command defines variables that are local to the procedure.

GLOBAL Command

The GLOBAL command defines variables that pertain to the entire interactive
session. A maximum of 100 variables may be declared or referenced in the same
GCL procedure.

GCL Programmer's Manual

1-30 47 A2 36UJ Rev05

CONTROL Command

The CONTROL command specifies:

• further controls that must be satisfied for the parameters to be accepted
• the conditions under which check is made
• and the message to be issued if it fails.

EXAMPLE :

CONTROL WHEN=#EXIST(K1)
 CHECK=#NOT(#EXIST(K2))
 MSSG='K1 and K2 are mutually exclusive';

will check that two parameters K1 and K2 may not be simultaneously specified.

❑

Other Commands

Structuring commands may be used to direct the flow of control within the
procedure such as:

• IF
• ELSE
• ENDIF
• WHILE
• UNTIL
• GOTO.

Calling commands such as SCALL and VCALL can be activated in the procedure.

ENDPROC must be the last command in the definition and serves as a RETURN
command, if none is explicitly specified.

Introduction

47 A2 36UJ Rev05 1-31

Limits on GCL Procedures

The limits concerning a procedure are:

• The maximum length of a source statement is 1536 bytes

• the maximum number of statements allowed for one procedure is 4680

• the maximum number of KWD statements is 255

• the maximum size for a KWD parameter is one screen

• a maximum of 100 global variables can be declared in the same procedure

• the maximum size of the binary code generated by MAINTAIN_COMMAND
for a procedure is 64K, although no element of the procedure can exceed 32K.
– An example of an element is a group of executable statements or the zones

reserved for KWD and LOCAL.

• Due to the optimization done by the GCL compiler, it is not possible to compute
the size of the elements of a procedure. If, during the compilation phase, an
error message beginning with "TOO MANY" appears, you must split the
procedure into several smaller ones.

GCL Programmer's Manual

1-32 47 A2 36UJ Rev05

1.7.4 Example 1: Creating a Directive

On asynchronous links, when the terminal has not been active for some time, the
connection is automatically interrupted after timeout defined at system installation.
To define a directive that will prevent the terminal from being disconnected when
inactive, use the #KLN builtin function within a procedure. See Section 2.

The #KLN builtin has two arguments:

• n being the number of seconds that string appears until a break is issued
• and string being the message.

Its result is always the boolean 1. The following procedure will create a new
directive that will solve the problem of keeping the connection alive even when the
terminal is inactive.

PROC (KEEP_LINE,KLN)
 PROMPT='keep the line active';
LOCAL B BOOL;
LET B #KLN(60,'I am busy');
ENDPROC;

Once compiled and stored in the H_NOCTX domain of a suitable library, the KLN
directive becomes available for use at system level:

• within any processor
• or as a directive by prefixing it with the directive identifier:

 $$KLN

An optional parameter allows further control over the frequency at which the
message is issued.

PROC (KEEP_LINE KLN)
 PROMPT='keep the line active';
KWD (FREQUENCY FREQ)
 DEC 3 VALUES=>0
 PROMPT='frequency, in seconds';
LOCAL B BOOL;
IF #NOT(#EXIST(FREQ));
 LET FREQ 60;
ENDIF;
LET B #KLN(%FREQ,'I am busy');
ENDPROC;

Introduction

47 A2 36UJ Rev05 1-33

In the above example:

• the KWD command introduces the characteristics of the parameter DEC 3 that
is 3 positive decimals

• the three commands starting with the IF command assign a default value to the
parameter when it is not supplied

• the LET command refers to the value of the parameter as an argument of the
builtin #KLN.

• the new KLN directive may then be used as:

 $$KLN meaning 60 seconds
 $$KLN 30
or $$KLN FREQ=30

Introducing the following command allows further defining a second parameter to
change the busy message:

KWD (MESSAGE MSSG)
 NUMVAL=(1,1)
 DEFAULT='I am busy'
 PROMPT='Message to be issued';

and changing the last but one command to:

LET B #KLN(%FREQ,%MSSG);

GCL Programmer's Manual

1-34 47 A2 36UJ Rev05

1.7.5 Example 2: Creating a new IOF Command

The next example illustrates how a new command can be created to compile and
link a named COBOL source program. This command belongs to the IOF domain
and must be therefore stored in a suitable binary library in that domain.

PROC (COMPILE_LINK CLC)
 PROMPT='Compile and link';
KWD PROG NAME 32 NUMVAL=(1,1)
 PROMPT='name of the program';
COBOL %PROG;
LINK %PROG;
ENDPROC;

NUMVAL=(1,1) in the KWD command indicates that the parameter is mandatory.

The above command can be activated as:

 CLC PROG=X
or CLC X

Linking will proceed even if the compilation has failed. This can be avoided by
entering the following three lines after the COBOL command:

IF #GE(#SEV,3);
 ABORT 'Compilation fails';
ENDIF;

which will abort the procedure with a suitable message, if the severity level of the
compilation is 3 or more.

The above command covers the case when only one program is to be linked in the
load module. The next example shows several source programs to be linked in a
single load module, the first program named being the main program:

PROC (COMPILE_LINK CLC)
 PROMPT='Compile and link';
KWD PROG NAME 32 NUMVAL=(1,16)
 PROMPT='Programs (first is main)';
COBOL %PROG;
IF #GE(#SEV,3);
 ABORT 'Compilation fails';
ENDIF;
LINK #ELEM(%PROG,1);
ENDPROC;

Introduction

47 A2 36UJ Rev05 1-35

In this example:

• NUMVAL=(1,16) declares PROG as accepting up to 16 names

• the COBOL command compiles all source programs, the first one provided as
the argument of the LINK command through the #ELEM builtin.

An alternative would be to compile and link several source programs into the same
number of load modules.

PROC CLS
 PROMPT='Compile and link several programs';
KWD PROG NAME 32 NUMVAL=(1,16)
 PROMPT='Program names';
LOCAL LN NAME 32;
UNLIST LN %PROG;
 COBOL %LN;
 IF #GE(#SEV,3);
 LET # #CAT('Compilation of ', %LN,' failed');
 ELSE;
 LINK %LN;
 ENDIF;
ENDUNLIST;
ENDPROC;

In this example:

• the UNLIST command performs the following:
− extracts each name of the list PROG
− assigns it to the local variable LN
− and iterates the processing that follows up to the ENDUNLIST command, for

each element in the list.

• if one of the compilations fails, a message is issued and the next element of the
list is processed

• if the command is to cease executing if a compilation fails, the corresponding
command would have to be changed to:

 ABORT #CAT('Compilation of ', %LN, ' failed');

GCL Programmer's Manual

1-36 47 A2 36UJ Rev05

1.8 Absentee Jobs

The submission of system-level commands for execution in batch, in parallel with
the interactive session is described in the IOF Terminal User's Reference Manual.
Commands that can be so submitted are not restricted to the system-supplied ones.
User-defined commands in the IOF domain can also be submitted such as:

EJ PROC=CLS VALUES=MYPG;

EJ PROC=CLS VALUES=(PROG=(X1,X2,X3));

Search rules also apply in that case. When the parameter LIB is not specified in
the EJ directive, commands are searched for in the binary input libraries defined by
the MWINLIB BIN command.

It is recommended that the default binary output library be defined as being also
the first one of the binary input libraries.

Thus commands created by use of MAINTAIN_COMMAND become immediately
available for interactive absentee execution.

MWLIB BIN .MYBLIB;
MWINLIB BIN (.MYBLIB, others...);

When absentee mode is used, the cataloged binary input libraries must be
cataloged:

• either in an auto-attachable catalog

• or in the SYS.CATALOG or SITE.CATALOG.

Constraints:

When absentee mode is used, the switch number 2 cannot be used in user
commands as it is reserved for the system.

Introduction

47 A2 36UJ Rev05 1-37

1.9 SYS.SPOOL Files

1.9.1 Purpose of SYS.SPOOL Files

SYS.SPOOL files are GCL work files containing:

• the Global Variables and System Variables for each user
• and the binary code of the GCL commands copies of which are generated by the

MAINTAIN_COMMAND processor.

1.9.2 Use of SYS.SPOOL Files

A broad definition of code and variables can be summarized as follows:

• the binary code of GCL commands can be divided into two categories:
− the code shared by all users of the system
− and the private code of each user

• while the Global Variables and the System Variables are private to each user.

Shared Code:

Shared Code corresponds to commands of pre-initialized domains regularly used
by GCOS 7:

• IOF containing the commands to start various processors
• H_NOCTX containing those commands accessible at all levels
• MAIN containing those commands available only to the Main Operator
• BREAK domain commands
• and those domains specified by the command SPOOL.

The shared code is loaded from system library SYS.HBINLIB into each of the
SYS.SPOOL files during every RESTORE of the system. This code is preserved
in the SYS.SPOOL files. It is reloaded:

• at RESTORE
• if command SPOOL is specified at RESTART
• if a command of a pre-initialized domain is modified in SYS.HBINLIB and if no

GCL batch job is restarted at a checkpoint or at the beginning of a step.

GCL Programmer's Manual

1-38 47 A2 36UJ Rev05

User's Private Code:

User's Private Code is that of commands in the user's private libraries specified
within the search rules of command MWINLIB BIN. This code is loaded:

• either by MWINLIB BIN for domains IOF and H_NOCTX
• or by INITGCL.

It is retained:

• until the end of the IOF session
• on termination of the job
• or until execution of the next MWINLIB BIN command.

If a command of a domain is modified in a library other than SYS.HBINLIB, the
code of the command will become accessible on leaving
MAINTAIN_COMMAND. The exception is H_NOCTX, where a new MWINLIB
BIN command must be executed to validate the code.

Global and System Variables:

Global and System Variables are contained in a member created for and assigned to
each user in the SYS.SPOOL file on the first use of GCL. This member is
retained:

• until the end of the IOF session
• or termination of the job.

1.9.3 Number of SYS.SPOOL Files

A SYS.SPOOL file may be used by a maximum of 25 users. However, where
possible, the recommended ratio is one SYS.SPOOL file to every 10 users. The
maximum number of SYS.SPOOL files is 10.

Introduction

47 A2 36UJ Rev05 1-39

1.9.4 Size of SYS.SPOOL Files

The size of SYS.SPOOL files depends on:

• the number of users connected
• the number of different processors used
• the stipulation of search rules
• and the number of global and system variables used.

Because of these factors, it is difficult to gauge an accurate size. The
DISPLAY_GCL_INFO directive displays the size and contents of each
SYS.SPOOL file.

1.9.5 Access Rights

All users must be authorized READ and WRITE access to the SYS.SPOOL files.

1.9.6 GCL Commands Applicable to SYS.SPOOL Files

The following GCL commands are available:

• the command SPOOL at ISL:
− provides a list of domains to be pre-initialized as well as the implicit list of

domains
− and specifies the size and use of GCL cache.

• the commands reserved for the Main Operator are:
− DISPLAY_GCL_CACHE
− HOLD_GCL_CACHE
− and RELEASE_GCL_CACHE.

• the command DISPLAY_GCL_INFO which displays for each SYS.SPOOL file:
− its size
− its contents
− and the percentage of space used.

GCL Programmer's Manual

1-40 47 A2 36UJ Rev05

❑

47 A2 36UJ Rev05 2-1

 2. GCL Basic Language

2.1 GCL Basic Commands

Basic GCL commands cannot be redefined. They are used for defining new
commands inside a GCL procedure. Other commands can be specified outside, as
well as inside, a GCL procedure.

The BASIC GCL commands are:

ABORT
CASE
CASEOF
CHAIN
CONTROL
ELSE
ENDCASEOF
ENDIF
ENDPROC
ENDUNLIST

ENDUNTIL
ENDWHILE
GOTO
IF
KWD
LABEL
LOCAL
OTHER (OTHERWISE)
OTHERWISE
PROC

RETRY
RETURN
SCALL
SYSTEM
UNLIST
UNTIL
VCALL
VCHAIN
WHILE

GCL Programmer's Manual

2-2 47 A2 36UJ Rev05

The basic commands are categorized as follows:

Declarative
 CONTROL
 ENDPROC
 KWD
 LABEL
 LOCAL
 PROC

Linkage
 ABORT
 CHAIN
 RETRY
 RETURN
 SCALL
 SYSTEM
 VCALL
 VCHAIN

Conditional
 CASE
 CASEOF
 ELSE
 ENDCASEOF
 ENDIF
 ENDUNLIST
 ENDUNTIL
 ENDWHILE
 IF
 GOTO
 OTHER
 OTHERWISE
 UNLIST
 UNTIL
 WHILE

When the command entered is not a basic GCL command, an implicit "CALL" is
generated.

Declarative commands introduce the objects such as variables, parameters and
labels that are handled by procedures.

Conditional commands direct the flow of control such as jumps, loops and choices
through the body of the procedure.

Linkage commands define the relations of the current procedure to other
procedures that it can use.

A GLOBAL directive is considered a declarative command inside a GCL
procedure as a LOCAL basic GCL command. This means that the declared
variable is known at command call, wherever the GLOBAL statement appears in
the GCL procedure. So the sequence:

PROC NEWCOM;
DLGB;
GLOBAL NEWVAR CHAR 10;
LET NEWVAR #;
ENDPROC;

leads to error "VARIABLE NEWVAR NOT DECLARED" at execution.

GCL Basic Language

47 A2 36UJ Rev05 2-3

This means too that LOCAL and GLOBAL variables must be declared before
executing a command that references them. So the sequence:

PROC COM1; PROC COM2;
CALL COM2; GLOBAL NEWVAR;
LET # %NEWVAR; LET NEWVAR #;
ENDPROC; ENDPROC;

also leads to error "VARIABLE NEWVAR NOT DECLARED" at execution of the
CALL.

A block is a set of commands enclosed within:

• CASEOF...ENDCASEOF
• IF...ENDIF
• PROC...ENDPROC
• UNLIST...ENDUNLIST
• UNTIL...ENDUNTIL
• WHILE...ENDWHILE.

Blocks, except PROC...ENDPROC, may be nested as parts of other blocks. In
general, wherever a single command is allowed, a whole block may be substituted
for that command. Since the block contains an integral number of other blocks,
blocks may not overlap. Examples follow:

 +----- +-----
 | IF | IF
 | |
 | +---- |
 | | IF +--| |
 | | | |
 | | +---- | |
 | | | WHILE | | WHILE
 | | | | |
 | | | ENDWHILE; | | ENDIF;
 | | +---- | +-----
 | | |
 | | ENDIF; |
 | +---- |
 | | ENDWHILE;
 | ENDIF; |
 +---- +----

 valid nesting invalid nesting

When a command is executing, all blocks that contain the command are active.
Transferring control from within an active block to an inactive one is not allowed.

GCL Programmer's Manual

2-4 47 A2 36UJ Rev05

Commands within a procedure:

• must end with a semicolon
• may expand on more than one line
• may not share the same line with another command or with part of it (no multi-

statement lines)

irrespective of the current setting of the format (line or free). All other rules that
pertain to GCL commands also apply to the GCL basic commands.

Before a GCL procedure can be used, it must be compiled by means of the
MAINTAIN_COMMAND (MNCMD) processor whose commands are described
in Section 3. Examples of procedures, and general hints may be found in
Paragraph "Creating new GCL Commands".

GCL Basic Language

47 A2 36UJ Rev05 2-5

2.1.1 ABORT

Purpose:

To abort the execution of the procedure. If the procedure is called by a sequence of
procedure calls, all of the calling procedures abort. A new command is then
requested from the input stream or from the user's terminal. A message can be
specified to report the abort of the procedure.

Syntax:

ABORT

 [MESSAGE= char78]

 [{ SEVERITY | SEV }= dec1]

Parameters:

MESSAGE the text of a message to be displayed before control is
returned.

SEVERITY the value from 0 through 4, to be assigned to the
System Variable #SEV on completion of the
command.

Default: #SEV is left unchanged

Constraints:

None

Examples:

ABORT; no message issued

ABORT MESSAGE='invalid reply'; literal message

ABORT %ABTMESS; message is a variable

ABORT #CAT('INVALID LENGTH: MUST BE LESS THAN ',%MAXLGTH);

 message is an expression

GCL Programmer's Manual

2-6 47 A2 36UJ Rev05

2.1.2 CASE

Purpose:

Denotes the beginning of a clause consisting of one or more commands in a
CASEOF block, and ending with:

• another clause introduced by a new CASE
• an OTHERWISE command
• or an ENDCASEOF command.

Syntax:

CASE

 EXPRESSION=(expression [expression]...)

Parameters:

EXPRESSION list of up to 32 expressions. CASE is executed if the
value of one of the expressions matches the value of
the expression specified in the CASEOF command:
− a literal of any type
− a variable, either user-defined or system
− an expression of one or more builtin functions.

Constraints:

• CASE must be included within a CASEOF block.
• Once CASE has been executed, control passes to the command following

ENDCASEOF.
• If no match is found among the CASE expressions, OTHERWISE is executed.

If no OTHERWISE is specified and no match is found, the procedure aborts
with the appropriate error diagnostic.

• The comparison between the result of the expression specified in CASE and that
specified in CASEOF is a comparison of character types. For a comparison of
decimal type, use the builtin #CVDEC on the results obtained after removing
non-significant leading zeroes that can cause a faulty comparison.

GCL Basic Language

47 A2 36UJ Rev05 2-7

Examples:

CASE -1; matches if CASEOF expresssion=-1

CASE (1,2,3,100); matches if CASEOF expresssion=1, 2, 3 or 100

CASE #PLUS(%X,%Y); matches if CASEOF expresssion=%X + %Y

CASE (0,#MINUS(#PL,%RNG));
matches:
− CASEOF expresssion=0
− CASEOF expresssion=#PL - %RNG}

GCL Programmer's Manual

2-8 47 A2 36UJ Rev05

2.1.3 CASEOF

Purpose:

To head a CASEOF block, several of which can be nested. Depending on the
expression the next command to be executed, is:

• either CASE
• or OTHERWISE.

Syntax:

CASEOF

 EXPRESSION= expression

Parameters:

EXPRESSION the expression must be scalar and may be:
− a literal value of any type
− a variable, either user-defined or system
− an expression of one or more builtin functions.

Constraints:

• CASEOF must be matched by ENDCASEOF to denote the end of the block

• CASEOF can only be followed by:
− CASE
− or OTHERWISE
− or ENDCASEOF.

• No other command may appear immediately after the CASEOF.

Example:

CASEOF %I;

 CASE 1; if %I=1 execute the following command(s)
 LET VAR 3;

 CASE (3, 4, 5); if %I=3, 4 or 5 execute the following command(s)
 LET VAR 9;

 OTHERWISE; otherwise execute the following command(s)
 LET VAR 0;
ENDCASEOF;

GCL Basic Language

47 A2 36UJ Rev05 2-9

2.1.4 CHAIN

Purpose:

Activates the named procedure by continuing from the procedure currently
executing. When the chained procedure terminates, control passes to the command
following the one that initiated the procedure containing CHAIN.

Syntax:

CHAIN

 COMMAND=command-name31 [parameter-reference]...

Parameters:

COMMAND the name of the command to be executed. This must
not be an expression; it must be a literal name value.

parameter-reference Keyword, positional parameter or self-identifying
value notation to be passed to the command.

See the IOF Terminal User's Reference Manual.

Constraints:

• All parameters specified must agree in type, number, length and value with their
specifications in the body of the command definition.

• command-name must refer to a command definition which must be:
− in the terminal user's search path, see

Section 1 of this manual
and the IOF Terminal User's Reference Manual

− accessible from the user's current environment, see the IOF Terminal User's
Reference Manual.

GCL Programmer's Manual

2-10 47 A2 36UJ Rev05

Example:

 PROC P; +-------> PROC Q; +------> PROC R;
 . | . | .
 . | . | .
 . | . | .
 CALL Q; ------+ . | .
 CHAIN R; ------+ .
 . RETURN; ------+
 COMMAND 2 <------+ . . |
 . | . . |
 . | . . |
 . | ENDPROC; ENDPROC; |
 ENDPROC; | |
 +--+

GCL Basic Language

47 A2 36UJ Rev05 2-11

2.1.5 CONTROL

Purpose:

Specifies global checks to be performed on procedure parameters or other variables
before execution of the procedure starts.

Syntax:

CONTROL

 CHECK=(bool [bool]...)

 { MSSG }
 { }= char78
 { MSG }
 [WHEN=(bool [bool]...)]

Parameters:

CHECK Lists up to 32 checks to be performed:
− succeeds if all the expressions are true (=1)
− fails if any one of the expressions is not true (=0).

MSSG Message to be displayed if check fails.

WHEN Lists up to 32 conditions for which checking is done:
− if all conditions are true (=1), CHECK is processed
− if one is false (=0), the rest of CONTROL is ignored

and the next command is processed.

Constraints:

• All checks specified in the KWD statements are verified before the procedure
executes.

• The check fails if the condition in CHECK is not 1, resulting in the following:
− the procedure aborts
− and the message specified in MSSG is displayed.

• In case of an UNLOCKED procedure, CONTROL messages can be prefixed by
proc-name/line-number. This prefix is displayed when:
− the terminal works in 'visual mode' (FORMS supported) and DEBUG mode is

set (in this case the message can be truncated)
− the terminal works in 'serial mode' (like MAIN console).

In both cases the line number given in the prefix has no meaning.

GCL Programmer's Manual

2-12 47 A2 36UJ Rev05

Examples:

 CONTROL WHEN=#EXIST(COMMAND)
 CHECK=#NOT(#EXIST(COMFILE))
 MSSG='COMMAND AND COMFILE ARE MUTUALLY EXCLUSIVE';

• if COMMAND exists but not COMFILE, execute the command

• if both COMMAND and COMFILE exist, issue message and cancel execution.

 CONTROL CHECK=#GT(%MAXVAL,%MINVAL)
 MSSG='MAXVAL MUST BE GREATER THAN MINVAL';

• if MAXVAL is greater than MINVAL, execute the command

• if MAXVAL is less than or equal to MINVAL, issue message and abort
execution.

GCL Basic Language

47 A2 36UJ Rev05 2-13

2.1.6 ELSE

Purpose:

Denotes an alternative in an IF block.

Syntax:

ELSE

Parameters:

None

Constraints:

• The conditional expression in IF command is evaluated as follows:
− if =1, the commands following IF execute but those following ELSE are

skipped
− if =0, control is transferred to the command following ELSE, if any.

• ELSE must be within an IF block.

Examples:

IF #EQ(%A,%B);
 IF #EQ(%A,%C);

 LET X %Y; command to be executed if %A=%B=%C
 ELSE;

 LET X %Z; command to be executed if %A=%B and %A^=%C
 ENDIF;
ENDIF;

IF #EQ(%A,%B);
 IF #EQ(%A,%C);

 LET X %Y; command to be executed if %A=%B=%C
 ENDIF;
ELSE;

 LET X %Z; command to be executed if %A^=%B
ENDIF;

GCL Programmer's Manual

2-14 47 A2 36UJ Rev05

2.1.7 ENDCASEOF

Purpose:

Denotes the end of a CASEOF block.

Syntax:

ENDCASEOF

Parameters:

None.

Constraints:

ENDCASEOF must match its corresponding CASEOF that heads the block.

Example:

CASEOF %KIND;

 CASE AVERAGE; if %KIND=AVERAGE execute command(s) following
 CALL AVERAGE;

 CASE STATISTIC; if %KIND=STATISTIC execute command(s) following
 CALL STATISTIC;

 CASE CHECK; if %KIND=CHECK execute command(s) following
 CALL CHECK;

 OTHER; otherwise execute command(s) following
 CALL ERROR;
ENDCASEOF;

GCL Basic Language

47 A2 36UJ Rev05 2-15

2.1.8 ENDIF

Purpose:

Denotes the end of an IF block.

Syntax:

ENDIF

Parameters:

None.

Constraints:

ENDIF must match its corresponding IF that heads the block.

Example:

IF #EQ(%K,TRUE);

 LET # TRUE; command to be executed if %K=TRUE
ELSE;

 LET # FALSE; command to be executed if %K is not=TRUE
ENDIF;

GCL Programmer's Manual

2-16 47 A2 36UJ Rev05

2.1.9 ENDPROC

Purpose:

Denotes the end of a procedure.

Syntax:

ENDPROC

Parameters:

None

Constraints:

Each procedure must begin with PROC and end with ENDPROC.

Example:

PROC P;
 . }

 . } commands that define procedure P
 . }
ENDPROC;

GCL Basic Language

47 A2 36UJ Rev05 2-17

2.1.10 ENDUNLIST

Purpose:

Denotes the end of an UNLIST block.

Syntax:

ENDUNLIST

Parameters:

None

Constraints:

ENDUNLIST must match UNLIST that heads the block.

Example:

UNLIST ITEM %LIST;
 . }

 . } sequence of commands to be repeatedly executed until all
 . } elements of LIST have been supplied to variable ITEM
 . }
ENDUNLIST;

GCL Programmer's Manual

2-18 47 A2 36UJ Rev05

2.1.11 ENDUNTIL

Purpose:

Denotes the end of an UNTIL block.

Syntax:

ENDUNTIL

Parameters:

None

Constraints:

ENDUNTIL must match its corresponding UNTIL that heads the block.

Example:

UNTIL #OR (#LT(%A,0), #EQ(%S, STOP));
 . }

 . } sequence of commands to be repeatedly
 . } executed until %A<0 or %S=STOP
 . }
ENDUNTIL;

GCL Basic Language

47 A2 36UJ Rev05 2-19

2.1.12 ENDWHILE

Purpose:

Denotes the end of a WHILE block.

Syntax:

ENDWHILE

Parameters:

None.

Constraints:

ENDWHILE must match its corresponding WHILE that heads the block.

Example:

WHILE #OR (#EQ(%I,0), #EQ(%I,1));
 . }

 . } sequence of commands to be repeatedly
 . } executed while %I=0 or 1
 . }
ENDWHILE;

GCL Programmer's Manual

2-20 47 A2 36UJ Rev05

2.1.13 GOTO

Purpose:

Modifies the flow of execution by branching to a label defined by a LABEL
command.

Syntax:

GOTO

 LABEL= label-name31

Parameter:

LABEL Must be a name literal: label to branch to defined by a
LABEL command. Expressions are not allowed.

Constraints:

The label must be unique within the procedure defined by LABEL in:

• either the same active block
• or an active outer block which includes the current block.

GCL Basic Language

47 A2 36UJ Rev05 2-21

Examples:

GOTO ERROR; branch to ERROR

GOTO SCAN_INPUT; branch to SCAN_INPUT

GOTO END_OF_PROCESS; branch to END_OF_PROCESS

 +----- +-----
 | |
 | +---- |----
 | | | |
 | | | |
 | | GOTO --+--+ | | GOTO ---+
 | | | | | | |
 | | | | | | |
 | | <--+ | | +---- |
 | +---- | | +---- |
 | | | | |
 | | | | <---
 | | | |
 | <-----+ | +----
 | |
 +----- +-----

 valid branches invalid branches

GCL Programmer's Manual

2-22 47 A2 36UJ Rev05

2.1.14 IF

Purpose:

Tests the value of a specified expression in an IF block to control the flow of
execution according to the result of the test. IF blocks can be nested.

Syntax:

IF CONDITION=(bool [bool]...)

Parameter:

CONDITION Lists up to 32 conditions to be checked:
− the expression is true if all conditions =1
− otherwise it is false.

Constraints:

• Conditions are evaluated as follows:

− if all conditions =1:
. commands following IF are executed
. but those following ELSE if specified, are skipped

− if one condition =0, control passes to:
. either the command following ELSE if specified
. or the command following ENDIF if ELSE is omitted.

• IF must be matched by ENDIF to denote the end of the IF block.

• ELSE can optionally be included in the block.

GCL Basic Language

47 A2 36UJ Rev05 2-23

Examples:

IF #EQ(%A,%B)
 . }

 . } commands to be executed if %A = %B
 . }
ENDIF;
 . }

 . } commands to be executed whether %A=%B or not
 . }
 .
IF #GT(%C,%D);
 . }

 . } commands to be executed if %C>%D
 . }
ELSE;
 . }

 . } commands to be executed if %C<=%D
 . }
ENDIF;

GCL Programmer's Manual

2-24 47 A2 36UJ Rev05

2.1.15 KWD

Purpose:

Defines the name and characteristics of a keyword being a procedure argument.

Syntax:

KWD

 NAME=(name31 [name31]...)

 [{ CHAR }]
 [TYPE={ BOOL | DEC | FILE | FSET | HEXA | LIB }]
 [{ NAME | OUTPUT | RFILE | STAR | VOLUME }]

 [LENGTH= dec3]

 [NUMVAL=(dec2 [dec2])]

 [DEFAULT=(value78 [value78]...)]

 [VALUES=(condition [condition]...)]

 [PROMPT= char40]

 [NOTE=(char78 [char78 [char78]])]

 [HELP= name30]

 [{ MSG | MSSG }= char78]

 [ASK= dec2]

 [CONCEAL= bool]

 [{ DLGTH | DISPLAY_LENGTH }= dec3]

GCL Basic Language

47 A2 36UJ Rev05 2-25

Parameters:

NAME Lists up to 32 names:
− the first being the main name for the keyword
− the following being aliases.

The keyword can be referred to by its name or alias.

TYPE Type of variable. See Paragraph "Types".

Default: CHAR (plain character string)

LENGTH Maximum length of each element of the variable.
Default and maximum applicable values depend on the
type of the variable being defined.

Type Maximum
Length

Default
Length

CHAR 255 80
BOOL 1 1
DEC 31 31
FILE 255 44
FSET 255 80
HEXA 8 8

LIB 255 44
NAME 44 31

OUTPUT 255 80
RFILE 255 80
STAR 88 31

VOLUME 255 80

NUMVAL Pair of numbers denoting minimum and maximum
number of variables, where max => min and dec2 <=
64. When only one number is provided, both the
maximum and minimum are set to that value.
Default: (min=0,max=1)

DEFAULT Lists up to 64 values defining the initial value of the
variable as any expression, including list expressions
and literals.

Variables referenced in such expressions are:
− either System Variables
− GLOBAL Variables or KWDs in calling procedure

context.

GCL Programmer's Manual

2-26 47 A2 36UJ Rev05

DEFAULTs must be consistent with the attributes
specified in TYPE, LENGTH, NUMVAL and
VALUES.

Default: Value is initially undefined and trying to use it
causes an error. Errors in computing dynamic defaults
do not affect execution of the procedure and no
message appears.

VALUES Lists up to 32 conditions that values assigned to the
variable must match. At least one of the conditions
must be satisfied: an OR is performed on the
conditions and the value assigned. Conditions must be
consistent with the TYPE and LENGTH specified for
the variable.

Default: Values compatible with the variable TYPE
and LENGTH are assigned. The conditions applying
to individual elements of the variable are summarized
in the following table. Different types of conditions
may appear in the same list.

GCL Basic Language

47 A2 36UJ Rev05 2-27

Example:
VALUES=(&9 * $/) means applies to a variable
which starts with a digit, or is an asterisk or contains a
slash.

Type of Condition Form Examples
discrete value value A

123
*

relational, see Note {> }value
{< }value
{>=}value
{<=}value
{= }value

>2
<32
>=0

<=XYZ
=0

range, see Note {> } {> }
value{ }*{ }value

{>=} {>=}

{< } {< }
value{ }*{ }value

{<=} {<=}

100>*>=10
0>*>=-20

A<=*<H
0<*<=99
A<=*<=Z

contains $value $XYZ
$.

$',' contains a comma
starts with /value /AXY

/' ' starts with space
/.

starts with digit &9 &9
starts with letter &A &A

alphanumeric start &X &X
not ^any of above ^=*

^$XYZ
^&9

NOTE:
Non-numeric values are compared by their EBCDIC collating sequences.

PROMPT Prompt for user in menu mode to enter a value for the
associated variable and is displayed by the command:

LET variable-name #

where value read from terminal is assigned to the
variable.

GCL Programmer's Manual

2-28 47 A2 36UJ Rev05

Example:
GLOBAL X DEC 3 PROMPT='Your age?'

LET X #
Your age?

NOTE Lists up to 3 lines of text to be displayed before the
prompt.

Default: Only the prompt appears.

HELP Name of member in SITE.HELP library storing Help
text to give the user information on the keyword.

Helps are created through the CREATE_HELP_TEXT
utility.

MSSG Error message to be displayed if a value inconsistent
with the TYPE, NUMVAL and VALUES, is entered.

Default: Standard system error message

ASK Number of fields to be prompted:
− maximum value is 64
− if ASK=0, the keyword is not prompted.

NUMVALmin <= ASK <= NUMVAL max

Default: NUMVAL max

CONCEAL Determines if information keyed in is displayed:
 =1 Conceal input
 =0 Default: Display input.

DISPLAY_LENGTH Length reserved on the screen for a value or values in a
list. The user can extend this field by entering #CC as
the last non-blank character of the field.

Default: LENGTH

NOTES:
Keywords with NUMVAL min >0 are called, mandatory keywords.

Keywords with NUMVAL min =0 and ASK = 1 are called, optional keywords.

Keywords with NUMVAL min =0 and ASK = 0 are called, optional hidden
keywords.

GCL Basic Language

47 A2 36UJ Rev05 2-29

Constraints:

• Restrictions on values are:
− Each keyword is treated as a Local Variable within the procedure in which it

is defined.
− A keyword can be referenced positionally, namely, %1, %2, %3...:

IF #EQ(%2,20) tests if the second keyword equals 20.
− Any value subsequently assigned to the keyword must be compatible with the

values specified in the TYPE, LENGTH, NUMVAL and VALUES.

• During a session, more than one keyword with the same name can be active:
− only the most local one accessed
− the others are masked for the duration of the procedures redefining them with

the exception of the SCALL command.

• Restrictions on prompts and displays are:
− DISPLAY_LENGTH must be less than or equal to the explicit or implicit

LENGTH.
− The number of fields prompted is specified by ASK and cannot exceed one

screen.

• Restrictions on keywords declaration order:
− mandatory keywords must be declared first.
− optional keywords must be declared next.
− optional hidden keywords must be declared at the end.

GCL Programmer's Manual

2-30 47 A2 36UJ Rev05

Examples:

KWD (PRINTING-WIDTH,PW) DEC; decimal with two names

KWD COUNT DEC 3 VALUES=>0; decimal up to three positive digits

KWD LIST NAME 20 each name having up to 20 characters
 NUMVAL=(1,30) list of one to 30 names
 VALUES=&A; and beginning with a letter

KWD REPLY NAME 3

 VALUES=(YES NO); variable to take values only YES
 and NO

KWD C; defaults to string of up to 80 characters

KWD B BOOL; boolean variable

KWD D DEC VALUES=(0 10<=*<=99); variable 0 or decimal from 10
 through 99

KWD PAGES DEC LENGTH=2

 DEFAULT=1 VALUES=1<=*<99 if decimal variable not between 1
 PROMPT='Number of Pages' and 98 (default 1), issue error message
 MSSG='Invalid number of Pages';

KWD CLASS LENGTH=5 DEFAULT=ALL character variable list
 NUMVAL=(0,8) with default value ALL and
 NOTE:=('BUILTIN CLASS:', three lines of text
 'ALL RELAT BOOL CHAR', before the keyword PROMPT
 'LIST OBMGT IS_IT ARITH')
 PROMPT='SELECT ONE OF 8 CLASSES';

KWD KIND NUMVAL=(3,15)

 HELP=HELP-KIND help in SYS.HELP or SITE.HELP
 ASK=3; character variable list of 3 elements

KWD PASSWORD LENGTH=3 CONCEAL; character variable with attribute
 conceal

GCL Basic Language

47 A2 36UJ Rev05 2-31

2.1.16 LABEL

Purpose:

Defines a label referred to in a GOTO command.

Syntax:

LABEL

 LABEL = label_name_31

Parameter:

LABEL Must be a name literal value: Defines the label used to
refer to the command following. An expression is not
allowed.

Constraints:

The label name must be unique within the procedure in which it is defined.

Example:

IF #EXIST (NM);
 GOTO RTRY;
 .
 .
 .
LABEL RTRY;
RETRY MSSG='Name specified already exists: reenter name';

GCL Programmer's Manual

2-32 47 A2 36UJ Rev05

2.1.17 LOCAL

Purpose:

Defines a local GCL variable.

Syntax:

LOCAL

 NAME= name31

 [{ CHAR }]
 [TYPE={ BOOL | DEC | FILE | FSET | HEXA | LIB }]
 [{ NAME | OUTPUT | RFILE | STAR | VOLUME }]

 [LENGTH= dec3]

 [NUMVAL=(dec2 [dec2])]

 [DEFAULT=(value78 [value78]...)]

 [VALUES=(condition [condition]...)]

 [PROMPT= char40]

GCL Basic Language

47 A2 36UJ Rev05 2-33

Parameters:

NAME Name of the local variable

TYPE Type of variable. See Paragraph "Types".

LENGTH Maximum length of each element of the variable.

Default and maximum applicable values depend on the
type of the variable being defined.

Type Maximum
Length

Default
Length

CHAR 255 80
BOOL 1 1
DEC 31 31
FILE 255 44
FSET 255 80
HEXA 8 8

LIB 255 44
NAME 44 31

OUTPUT 255 80
RFILE 255 80
STAR 88 31

VOLUME 255 80

NUMVAL Pair of numbers denoting the minimum and maximum
number of variables, where max => min and dec2 <=
64.

When only one number is provided, both the
maximum and minimum are set to that value.

Default: (min=0,max=1)

DEFAULT Lists up to 64 values defining initial value of variable
as any expression, including list expressions and
literals.

Variables referenced in such expressions are:
− either System Variables
− GLOBAL Variables or KWDs in calling procedure

context.

DEFAULTs must be consistent with the attributes
specified in TYPE, LENGTH, NUMVAL and
VALUES.

GCL Programmer's Manual

2-34 47 A2 36UJ Rev05

Default: Value is initially undefined and trying to use it
causes an error. Errors in computing dynamic defaults
do not affect execution of the procedure and no
message appears.

PROMPT Prompt for user in menu mode to enter a value for the
associated variable and is displayed by the command:

LET variable-name #

Example:

GLOBAL X DEC 3 PROMPT='Your age?'
LET X #
Your age?

VALUES Lists up to 32 conditions that values assigned to the
variable must match. At least one of the conditions
must be satisfied: an OR is performed on the
conditions and the value assigned. Conditions must be
consistent with the TYPE and LENGTH specified for
the variable.

Default: Values compatible with the variable TYPE
and LENGTH are assigned. The conditions applying
to individual elements of the variable are summarized
in the following table. Different types of conditions
may appear in the same list.

GCL Basic Language

47 A2 36UJ Rev05 2-35

Example:

VALUES=(&9 * $/) means applies to a variable
which starts with a digit, or is an asterisk or contains a
slash.

Type of Condition Form Examples
discrete value value A

123
*

relational, see Note {> }value
{< }value
{>=}value
{<=}value
{= }value

>2
<32
>=0

<=XYZ
=0

range, see Note {> } {> }
value{ }*{ }value

{>=} {>=}

{< } {< }
value{ }*{ }value

{<=} {<=}

100>*>=10
0>*>=-20

A<=*<H
0<*<=99
A<=*<=Z

contains $value $XYZ
$.

$',' contains a comma
starts with /value /AXY

/' ' starts with space
/.

starts with digit &9 &9
starts with letter &A &A

alphanumeric start &X &X
not ^any of above ^=*

^$XYZ
^&9

NOTE:
Non-numeric values are compared by their EBCDIC collating sequences.

GCL Programmer's Manual

2-36 47 A2 36UJ Rev05

Constraints:

• Expressions are not allowed for parameters in LOCAL. Only literal values can
be assigned.

• During a session, more than one keyword with the same name can be active:

− only the most local one accessed
− the others are masked for the duration of the procedures redefining them.

Examples:

LOCAL COUNT DEC 3 decimal up to three positive digits
 VALUES=>0;

LOCAL LIST NAME 20 each name up to 20 characters
 NUMVAL=(1,30) list of one to 30 names
 VALUES=&A; beginning with a letter

LOCAL REPLY NAME 3

 VALUES=(YES NO); variable taking only YES or NO

LOCAL C; defaults to string of up to 80 characters

LOCAL B BOOL; define a boolean variable

LOCAL D DEC

 VALUES=(0 10<=*<=99); variable 0 or decimal from 10 through 99

LOCAL DELTA DEC DEFAULT=1515; decimal with initial value 1515

GCL Basic Language

47 A2 36UJ Rev05 2-37

2.1.18 OTHERWISE (OTHER)

Purpose:

Denotes the beginning of an OTHERWISE clause in a CASEOF block. If
CASEOF values do not match any CASE values, OTHERWISE is executed.

Syntax:

{ OTHERWISE }
{ }
{ OTHER }

Parameters:

None.

Constraints:

Restrictions on positioning and processing:

• OTHERWISE must be within a CASEOF block and must come after all CASEs

• If OTHERWISE is omitted, and no match is found among CASE expressions,
the procedure aborts with the appropriate error diagnostic.

Examples:

CASEOF %I;

 CASE (1,2,3) if %I=1, 2 or 3 execute following command(s)
 LET VAR 1;

 OTHER; otherwise execute following command(s)
 LET VAR 0;
ENDCASEOF;

CASEOF %I;

 CASE (1,2,3); if %I=1, 2 or 3 execute following command
 LET VAR 1;

ENDCASEOF; OTHER absent: procedure aborts if
 %I not=(1,2,3)

GCL Programmer's Manual

2-38 47 A2 36UJ Rev05

2.1.19 PROC

Purpose:

Heads a procedure definition and defines its characteristics.

Syntax:

PROC

 NAME=(name31 [name31]...)

 [PROMPT= char40]

 [HELP= name31]

 [{ PRTY | PRIORITY }={ 0 | dec3 }]

 [ACCESS={ -1 | (dec3 [dec3]...)}]

 [HIDE={ 0 | (dec3 [dec3]...)}]

 [OPACC=(dec2 [dec2]...)]

 [OPHID={ 0 | (dec2 [dec2]...)}]

 [LOCK={ 0 | bool }]

 [LIMITED_ACCESS={ 0 | bool }]

GCL Basic Language

47 A2 36UJ Rev05 2-39

Parameters:

NAME Lists up to 32 names by which the procedure is
referenced:
− the first is the main name for the procedure
− the following are aliases.

Names of GCL basic commands must not be used,
namely:

- ABORT - ENDUNTIL - RETRY
- CASE - ENDWHILE - RETURN
- CASEOF - GOTO - SCALL
- CHAIN - IF - SYSTEM
- CONTROL - LABEL - UNLIST
- ELSE - KWD - UNTIL
- ENDCASEOF - LOCAL - VCALL
- ENDIF - OTHER - VCHAIN
- ENDPROC - OTHERWISE - WHILE
- ENDUNLIST - PROC

A GCL procedure created with the same name as a
system GCL command such as CBL, will override the
system command which will no longer be available.

PROMPT Prompt displayed with command name when user
requests list of commands for the domain containing
the command.

HELP Name of member stored in SITE.HELP library
containing help texts for the command generated by
the CREATE_HELP_TEXT utility.

ACCESS Lists up to 32 families to which the command belongs,
each family identified from 1 through 256.

Default: -1, all families have access to the command.

HIDE Lists up to 32 families from which the command is to
be hidden, each family identified from 1 through 256:

 =-1 Hide the command from all the families to which it
belongs.

 =0 Default: Command is unhidden and prompted for all
families.

GCL Programmer's Manual

2-40 47 A2 36UJ Rev05

OPACC Each value specified in OPACC must also be specified
in OPHID: Lists up to 8 categories of users who have
access to the command. The categories are specified
through catalog rights listed below:

 1 Main Operator (default for domain MAIN)
 4 GCL (default for domains other than MAIN)
 5 All IOF Users
 6 Station Operator

− OPACC is a second level of access control operating
on families specified by ACCESS

− OPACC can only impose further restrictions in not
granting more access rights than specified in
ACCESS.

If list of values is specified, user's project must have at
least one of the access rights in the list to use
command.

OPHID Each value specified in OPHID must also be specified
in OPACC: Lists up to 8 categories of users from
whom the command is to be hidden. The categories
are specified through catalog rights listed for OPACC.

 =-1 Equivalent to OPHID=(1,4,5,6) : Command is
available but hidden from all categories.

 =0 Default: Command is unhidden for all categories in
OPACC.

PRIORITY Order in which command names are displayed in list
of commands for domain. Maximum is 255, lowest
priority.
Default: 0, highest priority

LOCK Determines user's access to procedure:

 =1 User cannot list or modify procedure definition. Error
messages do not refer to individual lines of locked
procedure.

 =0 Default: Procedure is not locked.

Values of CONFIG parameters GCLKPROJ and
GCLKSADM determine who can modify a procedure
or the value of LOCK:

GCL Basic Language

47 A2 36UJ Rev05 2-41

 GCLKPROJ

 =NO Only the user who compiled the procedure can:
− access the source and modify the value of LOCK
− and delete the procedure.

 =YES All users belonging to the same project have the same
rights as user who compiled the procedure.

 GCLKSADM

 =NO Users of project SYSADMIN have no special rights to
procedures that have the attribute LOCK.

 =YES Users of project SYSADMIN have the same rights as
the user who compiled the procedures.

LIMITED_ACCESS Determines how the procedure is called. There is no
link between attribute LIMITED_ACCESS and
environments. A command having this attribute is not
directly accessible for all projects, except
SYSADMIN.

Values:

 =0 (default) the procedure can be called directly.

 =1 the procedure can only be called by another procedure
or by a user of project SYSADMIN.

Constraints:

• Each procedure begins with PROC and ends with ENDPROC.

• Only literal values can be specified in PROC; expressions are not allowed.

GCL Programmer's Manual

2-42 47 A2 36UJ Rev05

Examples:

PROC P;

PROC NAME=(CREATE_PROJECT,CRP)
 PROMPT='create a project and its attributes'
 HELP=H_DCT_CRP
 LOCK;

PROC (DELETE_LM,DLM)
 PROMPT='Delete an LM library'
 HELP=HLP_DLM
 ACCESS=(1,4,5,200);

PROC DNP
 PROMPT='Define New Password'
 ACCESS=(1,4,200)
 HIDE=(1,4);

PROC (CHANGE_UN,CUN)
 PROMPT='Change User Name'
 ACCESS=(4,24,25,200)
 OPACC=(1,4,6);

PROC ALCIS
 PROMPT='Allocate an Indexed Sequential file'
 ACCESS=(4,24,25,200)
 OPACC=(1,4,6)
 OPHID=(5,6);

PROC G
 PROMPT='Command displayed with a lower priority'
 PRTY=100;

GCL Basic Language

47 A2 36UJ Rev05 2-43

2.1.20 RETRY

Purpose:

Retries executing the procedure in which it appears by:

• passing control to
− either the procedure specified
− or the beginning of the outermost procedure initiating the current procedure

• and re-prompting the parameters to be reentered by the user for retry.

Syntax:

RETRY

 [MESSAGE= char78]

 [{ SEV | SEVERITY }= dec1]

 [{ PROC | PROCEDURE }= name31]

 [HIGHLIGHT=(name31[. dec2][name31[. dec2]]...)]

Parameters:

MESSAGE Any valid character expression: Message to be
displayed when control is returned.

SEVERITY Value from 0 through 4 to be assigned to System
Variable #SEV when the command is handled like an
ABORT command.
Default: #SEV is left unchanged.

PROCEDURE Name of procedure to which control passes. Control
passes to the first command of:
− either current procedure
− or procedure in the active stack.
Control passes to the outermost procedure that initiated
the current procedure when:
− parameter is omitted
− or procedure does not match one in the stack.

GCL Programmer's Manual

2-44 47 A2 36UJ Rev05

HIGHLIGHT Keywords to be highlighted as prompts on re-
prompting. When keyword is a list, the rank of the
element in the list can be specified in the format
keyword.rank.
(Up to 64 keyword names can be specified in this list.)

Constraints:

If the user cannot intervene such as when commands are being read from a file,
RETRY is treated as ABORT.

Examples:

RETRY; no message

RETRY MESSAGE='Invalid character in string S'; literal message

RETRY %RTYMESS; variable message

RETRY #CAT('INVALID VALUE IN GLOBAL G->',%G); message is
 expression

GCL Basic Language

47 A2 36UJ Rev05 2-45

2.1.21 RETURN

Purpose:

Terminates the execution of the procedure in which it appears to return control to
the calling procedure.

Syntax:

RETURN

Parameters:

None.

Constraints:

• Transfer of control depends on how the procedure was activated:

− if by CALL, VCALL or SCALL, control passes to next command
− if by CHAIN or VCHAIN, control passes to command following that which

activated the procedure.

• ENDPROC is treated as a RETURN when reached in the flow of execution.

Examples:

 . +-----> P1 +-----> P2 . +-----> P1 +-----> P2
 . | . | . . | . | .
 . | . | . . | . | .
 . | . | . . | . | .
 . | . | . . | . | .
CALL P1 CALL P2 RETURN CALL P1 CHAIN P2 RETURN
 . . | . |
 . <------+ . <--+ | . <------+ |
 . | . | | . | |
 . | . | | . | |
 . | . +---+ . | |
 . | . . | |
 . +----- RETURN . +----------------+

GCL Programmer's Manual

2-46 47 A2 36UJ Rev05

2.1.22 SCALL

Purpose:

Scans a string of characters as the set of parameter values to be passed to the
specified procedure. If the set is illegal or invalid, prompts the user for correction.

Syntax:

SCALL

 COMMAND=name31

 [STRING= char250]

Parameters:

COMMAND Name of the procedure to be activated.
Unlike CALL and VCALL, this can be a name
expression yielding a value denoting the name of an
existing command.

STRING String of characters possibly an expression, denoting
the parameter values when calling the procedure.

Constraints:

• Restrictions on command function:
− if STRING denotes a valid parameter set, SCALL behaves like CALL
− if not, it behaves like VCALL.

• Keywords of calling procedure redefined with the same names, TYPEs,
LENGTHs and NUMVALs as the called procedure are assigned initial values of
corresponding parameters of the called procedure.

Example:

LET PN MYPROC; LET ST 'P1=2 P2=4'; SCALL %PN %ST;

is equivalent to:

CALL MYPROC P1=2 P2=4 or VCALL MYPROC P1=2 P2=4

depending on whether P1=2 and P2=4 are valid parameters for MYPROC

GCL Basic Language

47 A2 36UJ Rev05 2-47

2.1.23 SYSTEM

Purpose:

Passes a string to the calling processor.

Syntax:

SYSTEM

 STRING= char250

Parameter:

STRING All references to variable or system variable or builtin
is replaced by the corresponding value before result is
passed to the calling processor.

Constraints:

Only allowed in user-specific domains.

Examples:

SYSTEM %A; value of %A is passed

SYSTEM #CAT('DEL_',%1,';'); result of expression is passed

SYSTEM 'OPTIONS=' %A ';'; value passed if %A=YNY is:
 OPTIONS=YNY;

GCL Programmer's Manual

2-48 47 A2 36UJ Rev05

2.1.24 UNLIST

Purpose:

A sequence of commands between UNLIST and ENDUNLIST is executed for each
element in the specified list. At each execution, the scalar variable is given the
value of the next element in the list, starting with the first. UNLIST blocks can be
nested.

Syntax:

UNLIST

 SCALAR= name31

 LIST= list-expression

Parameters:

SCALAR Any name expression: the name of scalar variable to
control the loop.

LIST List expression of up to 64 elements to be UNLISTed.

Constraints:

• UNLIST must be matched by its corresponding ENDUNLIST denoting end of
block.

• Restrictions on values:
− if list is empty, the block is not executed
− if values in list within the block are modified, results are unpredictable.

• Restrictions on scalar variable:
− when all list elements have been supplied to the scalar variable, the UNLIST

loop terminates and the command following ENDUNLIST is executed
− SCALAR and LIST must be of compatible TYPEs, LENGTHs and VALUEs,

so that all elements of LIST can be assigned to SCALAR.

GCL Basic Language

47 A2 36UJ Rev05 2-49

Examples:

UNLIST CURRENT %PROGRAM_LIST;
 COBOL SOURCE=%CURRENT;

ENDUNLIST; perform loop for all elements of
 PROGRAM_LIST

UNLIST I #INDEX_SET(30);
 .
 .
 .

ENDUNLIST; perform loop for I=1 through 30

GCL Programmer's Manual

2-50 47 A2 36UJ Rev05

2.1.25 UNTIL

Purpose:

A sequence of commands in the UNTIL block is repeatedly executed until the
conditional expression =1. UNTIL blocks can be nested.

Syntax:

UNTIL

 CONDITION=(bool [bool]...)

Parameter:

CONDITION List of up to 32 conditions to be checked. The
expression is true if all conditions =1.

Constraints:

• UNTIL must be matched by its corresponding ENDUNTIL denoting end of
block.

• If all conditional expressions =1 when UNTIL is encountered:
− the UNTIL block is not executed
− and execution proceeds with the command following ENDUNTIL.

Example:

UNTIL #EQ(%CNT,10);
 . }

 . } sequence of statements to be repeatedly executed until %CNT=10
 . }
 .
ENDUNTIL;

GCL Basic Language

47 A2 36UJ Rev05 2-51

2.1.26 VCALL

Purpose:

Verbose CALL: executes the named procedure with display of specified parameters
for the user to confirm or modify.

Syntax:

VCALL

 COMMAND=command-name31

 [parameter-reference]...

Parameters:

COMMAND Must be a name literal value: the name of the
command whose execution is requested. An
expression is not allowed.

parameter-reference Keyword, positional parameter or self-identifying
value notation to be passed to the command.

See the IOF Terminal User's Reference Manual.

Constraints:

• The difference between VCALL and CALL is that before execution, VCALL
displays the parameters being passed for the user to accept, reject or modify.

• Parameter values displayed comprise defaults and those explicitly specified.

• If the user cannot intervene such as when commands are being read from a file,
VCALL is identical to CALL.

Examples:

VCALL MYPROC; MYPROC procedure, no parameters

VCALL AVERAGE %LIST; AVERAGE procedure with one parameter %LIST

GCL Programmer's Manual

2-52 47 A2 36UJ Rev05

2.1.27 VCHAIN

Purpose:

Verbose CHAIN: executes the named procedure displaying the specified
parameters for the user to confirm or modify. VCHAIN replaces the current
procedure with this new one.

Syntax:

VCHAIN

 COMMAND= command-name31

 [parameter-reference]...

Parameters:

COMMAND Must be a name literal value: the name of the
command whose execution is requested. An
expression is not allowed.

parameter-reference Keyword, positional parameter or self-identifying
value notation to be passed to the command.

See the IOF Terminal User's Reference Manual.

Constraints:

• The difference between CHAIN and VCHAIN is that before execution,
VCHAIN displays all parameters being passed for the user to accept, reject or
modify.

• Values displayed comprise defaults and those explicitly specified.

• If user cannot intervene such as when commands are being read from a file,
VCHAIN is identical to CHAIN.

• The chained procedure replaces the current one, so on return, control passes not
to the procedure containing VCHAIN, but to the command following.

Examples:

VCHAIN P1; procedure P1 with no parameters

VCHAIN LISTER LGT=%L1; LISTER procedure with one parameter LGT=%L1

GCL Basic Language

47 A2 36UJ Rev05 2-53

2.1.28 WHILE

Purpose:

The sequence of commands in the block is repeatedly executed for as long as the
conditional expression is WHILE =1. WHILE blocks can be nested.

Syntax:

WHILE

 CONDITION=(bool [bool]...)

Parameter:

CONDITION List of up to 32 conditions to be checked. The
expression is true if all conditions =1.

Constraints:

• WHILE must be matched by its corresponding ENDWHILE denoting end of
block.

• If one of conditional expressions =0 when WHILE is encountered:
− the WHILE block is not executed
− and execution proceeds with the command following ENDWHILE.

Example:

WHILE #LT (%A,%CNT);
 . }

 . } sequence of commands to be repeatedly executed while %A<%CNT
 . }
 .
ENDWHILE;

GCL Programmer's Manual

2-54 47 A2 36UJ Rev05

2.2 System Variables

System variable names begin with the special character #. They can be used in
expressions like any other user-defined variable. The only difference is that
assigning a value to a system variable, in addition to modifying its current value,
will also alter some characteristics of the user operating environment.

System variables are parameters through which the system supports the user's
session. By altering their values, the user can tailor system behavior to his own
requirements. The set of all system variables constitutes the user's profile listing
the user's requirements and performance characteristics. The DISPLAY_PROFILE
(DP) directive can be used to display part or all of this user profile.

System variables have the same characteristics as other variables such as:
• type
• shape
• and length.

They may be undefined. The normal rules for the assigning values to a variable
also apply to system variables. Some system variables but not all, have a default
value being an initial value set at the beginning of the session but can be changed
later.

This Section lists all available system variables with:
• their meanings
• applicable values
• and effects on the environment.

NOTE:
The following system variables cannot be used in batch:

 #AUTOLF #EXPTABS #PL #TABS
 #CC #INVCHAR #PROMPT #WSTATION
 #CSET #PAGEMODE #PW #ZOK
 #DI #PAGETOP #ROLL

The system variable # can be used in batch mode only in the context "LET #
expression" but not in the context "LET V #".

GCL Basic Language

47 A2 36UJ Rev05 2-55

Description of System Variables

System variables are listed in alphabetical order. Each system variable is described
under the following headings:

1. Meaning: The function of the system variable.

2. Type: The type of the system variable:
− char any character string
− bool a boolean value being 0 or 1
− lib a library reference
− dec a decimal value
− name a name value.

3. Shape: The form of the system variable, expressed as:
− a minimum number of elements
− a maximum number of elements.

Values that a shape can take are:
− (1,1) denotes a scalar that must be initialized
− (0,1) denotes a scalar that may be initialized
− (0,3) denotes a list of zero to three elements
− (32,32) a list of exactly 32 elements.

4. Length: The maximum length of any single element.

5. Default value: The value of the variable at the beginning of the session. An
undefined or uninitialized variable is:
− considered empty
− and denoted by ().

6. Constraints: The conditions values must satisfy for assignment to system
variable.

7. Effect: The result of assigning a value to system variable.

8. Level of assignment:
Some system variables may be modified in all contexts, others may be
modified only when at system level. System variables may appear anywhere,
except on the left side of a LET directive in all contexts.

9. Alternate statement:
Some system variables can be modified by means of specific directives or
commands. Directive DISPLAY_PROFILE (DP) displays the values of most
system variables, in addition to some other general purpose information.
These directives and commands are described in the IOF Terminal User's
Reference Manual.

GCL Programmer's Manual

2-56 47 A2 36UJ Rev05

2.2.1 #: Terminal Line

Meaning: Symbolic representation of the user's terminal.
Type: char
Shape: (1,1)
Length: 255
Default value: none
Constraints: none
Effect: The formatted value assigned to # is displayed on the

output device (IOF terminal, or SYSOUT or PRTFILE
in batch).
In IOF: when # is used in an expression, its value is
the string of characters read from the terminal. The
prompt for the string is #?. However, with a construct
like:
LET A #
where the value read from the terminal is assigned to
variable A, the prompt issued is that of variable A, if
any.
In Batch: # may not be used in the context
'LET A #' .

Level of assignment: any
Alternate statement: none

2.2.2 #AUTOLF: Auto Line Feed

Meaning: If 1: line feed is generated by pressing return or
transmit
If 0: line feed is generated by the system.

Type: bool
Shape: (1,1)
Length: 1
Default value: As specified in the network generation.
Constraints: none
Effect: #AUTOLF is assigned a value when the NETGEN

option does not match the actual terminal setting.
Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

GCL Basic Language

47 A2 36UJ Rev05 2-57

2.2.3 #BINLIB: Binary Input Libraries

Meaning: Current binary library search path. See the IOF
Terminal User's Reference Manual.

Type: lib
Shape (see Note 1): (0,3) or (0,15)
Length: 190
Default value: () empty
Constraints: The shape depends on the configuration parameter

GCL15BIN.
Effect: Modifying #BINLIB redefines the search rules for

accessing command definitions and object forms.
Level of assignment: system level
Alternate statement: MWINLIB

NOTES:
1. For more information about shape, see Paragraph "Domains, Libraries,

and Search Rules".

2. #BINLIB can support up to 3 or 15 Binlibs depending on the GCL15BIN
parameter.

2.2.4 #BLIB: Binary Output Library

Meaning: Current binary output library. See the IOF Terminal
User's Reference Manual.

Type: lib
Shape: (0,1)
Length: 190
Default value: () empty
Constraints: none
Effect: Modifying #BLIB redefines the default binary output

library used by processors such as
MAINTAIN_LIBRARY, MAINTAIN_COMMAND
and MAINTAIN_FORM. It also affects the search
rules for object forms.

Level of assignment: system level
Alternate statement: MWLIB

GCL Programmer's Manual

2-58 47 A2 36UJ Rev05

2.2.5 #BRKPMODE: Break Processing Mode

For more information, see paragraph "Break Processing".

2.2.6 #BRK: Break

For more information, see paragraph "Break Processing".

2.2.7 #CC: Continuation Character

Meaning: Character indicating that input continues on the next
line.

Type: char
Shape: (1,1)
Length: 1
Default value: - (minus)
Constraints: none
Effect: Any character can be assigned to #CC to become the

new symbol for denoting input continuation when
entering a multi-line command in line format. If the
value blank () is assigned to #CC, then it is as if there
were no continuation character. See the IOF Terminal
User's Reference Manual.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

2.2.8 #CINLIB: Compile Unit (CU) Input Libraries

Meaning: Current CU (Compile Unit) search path. See the IOF
Terminal User's Reference Manual.

Type: lib
Shape: (0,3)
Length: 190
Default value: () empty
Constraints: none
Effect: Modifying #CINLIB redefines search path in which

LINK_PG searches for CUs to link into a Load or
Sharable Module.

Level of assignment: system level
Alternate statement: MWINLIB

GCL Basic Language

47 A2 36UJ Rev05 2-59

2.2.9 #CLIB: Compile Unit (CU) Output Library

Meaning: Current CU (Compile Unit) output library. See the
IOF Terminal User's Reference Manual.

Type: lib
Shape: (0,1)
Length: 190
Default value: () empty
Constraints: none
Effect: Modifying #CLIB redefines the default CU library in

which compilers store their outputs, and from which
LINK_PG retrieves CU to link into a Load or Sharable
Module.

Level of assignment: system level
Alternate statement: MWLIB

2.2.10 #CSET: character set

Meaning: Character set (0 through 7) for coding terminal
characters.

Type: dec
Shape: (1,1)
Length: 1
Default value: 1
Constraints: - 0 for code C101 (EBCDIC)

- 1 for PLW (Pluri Lingual West) or C127
- 2 for APL
- 3 for code C114 (Arabic character set)
- 4 for code C118 (Greek character set)
- 5 for code C113 (Cyrillic character set)
- 6 for code C094 (Chinese character set)
- 7 for PLE (Pluri Lingual East).

Effect: Refer to the IOF Programmer's Manual.
Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

GCL Programmer's Manual

2-60 47 A2 36UJ Rev05

2.2.11 #DEBUG: Debug GCL Procedures

Meaning: Displays each line executed in unlocked GCL
procedures.

Type: bool
Shape: (1,1)
Length: 1
Default value: 0
Constraints: none
Effect: #DEBUG=1: The line executed is displayed with

evaluated variables prefixed by procedure name and
line number. In batch, a missing procedure name is
replaced by the RON.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

2.2.12 #DI: Directive Identifier

Meaning: String of characters used to force directives. See the
IOF Terminal User's Reference Manual.

Type: char
Shape: (1,1)
Length: 3
Default value: $$
Constraints: none
Effect: Assigning a new value to #DI redefines the prefix used

for forcing directives. Assigning an empty string ('')
means that directives cannot be forced.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

GCL Basic Language

47 A2 36UJ Rev05 2-61

2.2.13 #EDITCTL: Text Editor Controls

Meaning: Characters to be used as substitutes for ^ $ and [in
Text Editor, Full Screen Editor and SCANNER.

Type: char
Shape: (3,3)
Length: 1
Default value: (̂ $ [)
Constraints: Each element must be exactly length 1 (no empty

string allowed).
Effect: #EDITCTL redefines the three editing control

characters:
^ for the first line or beginning of line, in a regular
 expression
$ for the last line, or end of line, in a regular
 expression
[for introducing an escape sequence.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

2.2.14 #ENVT: Working Environment

Meaning: Current working environment. See Section the IOF
Terminal User's Reference Manual.

Type: char
Shape: (1,1)
Length: 12
Default value: Project's default environment as set in the system

catalog.
Constraints: Value must be either a name or blanks; name must be

that of an environment that is accessible to the project.
Effect: See Section the IOF Terminal User's Reference

Manual.
Level of assignment: system level
Alternate statement: MWENVT

GCL Programmer's Manual

2-62 47 A2 36UJ Rev05

2.2.15 #EXPTABS: Expand Tabulations

Meaning: Expands the tabulation characters into spaces.
Type: bool
Shape: (1,1)
Length: 1
Default value: 1
Constraints: none
Effect: When #EXPTABS is 1, all tabulation characters keyed

in are replaced by an appropriate number of spaces, as
defined by the #TABS system variable. When
#EXPTABS is 0, tabulation characters are transmitted
as they are.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

2.2.16 #FORMLANG: MAINTAIN_FORM Generation Language

Meaning: Programming language for which MAINTAIN_FORM
generates data structures or declaratives. See IOF
Programmer's Manual.

Type: name
Shape: (1,1)
Length: 12
Default value: COBOL
Constraints: Acceptable values are COBOL, GPL, RPG2 and CL

(for C Language).
Effect: See IOF Programmer's Manual.
Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

GCL Basic Language

47 A2 36UJ Rev05 2-63

2.2.17 #GCLFORM: GCL Format

Meaning: GCL format (line or free).
Type: dec
Shape: (1,1)
Length: 1
Default value: 0
Constraints: Values are 0 and 1 for free format and line format

respectively. No other values are allowed.
Effect: If #GCLFORM is 0: all commands must end with a

semicolon.
If #GCLFORM is 1: the end of line acts as a command
terminator.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

2.2.18 #INVCHAR: Invalid Character Representation

Meaning: Character to be used to represent characters that cannot
be displayed on the terminal such as control codes.

Type: char
Shape: (1,1)
Length: 1
Default value: . (period)
Constraints: none.
Effect: Modifying #INVCHAR results in redefining the

representation for invalid characters. If #INVCHAR is
assigned the empty string (''), invalid characters are left
unchanged.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

GCL Programmer's Manual

2-64 47 A2 36UJ Rev05

2.2.19 #JCLCOMP: JCL Compatibility Mode

Meaning: Compatibility option with JCL (Job Control
Language).

Type: dec
Shape: (1,1)
Length: 1
Default value: 0
Constraints: Values may only be 0 or 2.
Effect: If #JCLCOMP is 0: only GCL is accepted as the

command language.
If #JCLCOMP is 2: only JCL is accepted at system
level; certain facilities are unavailable.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

2.2.20 #JOBLANG: Default Command Language for Batch Jobs

Meaning: Default Command Language used in the commands
EJR and RUN_JOB when submitting Batch Jobs.

Type: name
Shape: (1,1)
Length: 3
Default value: none
Constraints: Values may only be JCL or GCL
Effect: When executing EJR or RUN_JOB, the contents of the

variable #JOBLANG, if any, is used as default value of
the JOBLANG parameter of EJR or RUN_JOB.

GCL Basic Language

47 A2 36UJ Rev05 2-65

2.2.21 #LANG: National Language

Meaning: Terminal user's national language.
Type: dec
Shape: (1,1)
Length: 1
Default value: 0
Constraints: none
Effect: #LANG is used to specify the user's national language

in which, for example, Help texts are displayed. Value
0 always refers to the English language. Other values,
in the range 1 through 9, have installation-defined
meanings.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

2.2.22 #LINLIB: Load Module (LM) Input Libraries

Meaning: Current Load Module search path. See the IOF
Terminal User's Reference Manual.

Type: lib
Shape: (0,3)
Length: 190
Default value: () empty
Constraints: none
Effect: Modifying #LINLIB redefines the Load Module

search path used by MAINTAIN_LIBRARY.
Level of assignment: system level
Alternate statement: MWINLIB

GCL Programmer's Manual

2-66 47 A2 36UJ Rev05

2.2.23 #LLIB: Load Module (LM) Output Library

Meaning: Current Load Module output library. See the IOF
Terminal User's Reference Manual.

Type: lib
Shape: (0,1)
Length: 190
Default value: () empty
Constraints: none
Effect: Modifying #LLIB redefines the default Load Module

library, where LINK_PG stores executable modules,
and from which these modules are loaded for
execution by EXEC_PG.

Level of assignment: system level
Alternate statement: MWLIB

2.2.24 #MENU: Dialog Through Menus and Prompts

Meaning: Whether menus and prompts are to be displayed.
Type: bool
Shape: (1,1)
Length: 1
Default value: 1
Constraints: none
Effect: If #MENU is 1: menus and prompts are displayed on

explicit request or when an invalid command is
entered.
If #MENU is 0 and #NOVICE is 0: menus and
prompts are never displayed, even if explicitly
requested.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

GCL Basic Language

47 A2 36UJ Rev05 2-67

2.2.25 #NO: negative Replies

Meaning: "no" in reply to questions from the system.
Type: name
Shape: (1,3)
Length: 8
Default value: (NO, N, 0)
Constraints: none
Effect: System variable #NO accepts up to three names that

are taken to mean "NO" in reply to questions such as
"Do you want to save ?".

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

2.2.26 #NOVICE: Novice Mode

Meaning: Specify whether the terminal user is a novice user or
not.

Type: bool
Shape: (1,1)
Length: 1
Default value: 1
Constraints: none
Effect: #NOVICE=1 and terminal operating in formatted

mode: displays a menu when the system expects a
command input.
#NOVICE=0 or terminal does not support formatted
mode: commands are prompted by single letter
followed by colon:
 S: for system level
 C: for MAINTAIN_LIBRARY commands.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

GCL Programmer's Manual

2-68 47 A2 36UJ Rev05

2.2.27 #PAGEMODE: Page Mode

Meaning: Defines action when the screen is filled or at the end of
page.

Type: bool
Shape: (1,1)
Length: 1
Default value: terminal-dependent
Constraints: none
Effect: #PAGEMODE=1: For a video terminal, +++ appears

when display fills the bottom of the screen to prompt
the user. For a printer, performs form feed at the end
of each page.
#PAGEMODE=0 and #ROLL=0: Automatically skips
to the top of screen; applies only for terminals
connected over low speed communication lines.
#PAGEMODE=0 and #ROLL=1: Scrolls up data by
one line.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

2.2.28 #PAGETOP: Page Top

Meaning: In interactive mode, specifies whether or not a "top of
page" will be generated by many of the GCL
commands of files or volumes management before, the
display of the profile contents, or not.

Type: bool
Shape: (1,1)
Length: 1
Default value: 1
Constraints: none
Effect: #PAGETOP=1: The jump is automatically generated

on the screen before the display of the profile contents;
this was the normal behavior provided by many of the
IOF files and volumes management commands in the
previous releases of GCOS 7.
#PAGETOP=0: No jump is generated; on the screen,
the profile contents are displayed directly after the
"transmit" which has launched the command.

Level of assignment: any
Alternative statement: MODIFY_PROFILE (MDP)

GCL Basic Language

47 A2 36UJ Rev05 2-69

2.2.29 #PL: Page Length

Meaning: Number of lines per screen or page (for a printer).
Type: dec
Shape: (1,1)
Length: 3
Default value: terminal-dependent
Constraints: 10 < page length <= terminal's actual page length.
Effect: #PL specifies the number of lines before form feed or

some other action is performed. See #PAGEMODE
and #ROLL.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

2.2.30 #PROMPT: Prompting on the Terminal

Meaning: Whether prompts are used when an error message is
displayed in IOF.

Type: bool
Shape: (1,1)
Length: 1
Default value: 1
Constraints: none
Effect: #PROMPT=1: The prompt of the command is

displayed when an error occurs.
#PROMPT=0: The error is displayed without
prompting the erroneous command.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MP)

2.2.31 #PRTLIB: Printout Library

Meaning: Current listing output library. See the IOF Terminal
User's Reference Manual.

Type: lib
Shape: (0,1)
Length: 190
Default value: () empty
Constraints: none
Effect: Modifying #PRTLIB redefines the default listing

output library where compilers and other processors
store their reports.

Level of assignment: system level
Alternate statement: MPRTLIB

GCL Programmer's Manual

2-70 47 A2 36UJ Rev05

2.2.32 #PW: Printing Width

Meaning: Maximum number of characters per line.
Type: dec
Shape: (1,1)
Length: 3
Default value: terminal-dependent
Constraints: Values must be greater than 39 and less than or equal

to the physical width of the terminal.
Effect: Modifying #PW redefines the portion of the screen in

which lines are displayed. Overlength lines are folded
and an appropriate character (-) indicates that folding
has occurred.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

2.2.33 #ROLL: Roll Mode

Meaning: Selects roll mode (#ROLL=1) or wrap mode
(#ROLL=0).

Type: bool
Shape: (1,1)
Length: 1
Default value: As specified at NETGEN.
Constraints: none
Effect: For VIP7804, the system may select roll/wrap, so

setting #ROLL also sets the terminal mode. #ROLL is
used when NETGEN options do not match the actual
terminal setting.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

GCL Basic Language

47 A2 36UJ Rev05 2-71

2.2.34 #SEV: Severity

Meaning: Session severity level. See #STATUS.
Type: dec
Shape: (1,1)
Length: 1
Default value: 0
Constraints: Value may only be 0, 1, 2, 3 or 4
Effect: Modifying #SEV alters the session severity level and

the system variable #STATUS:
 #SEV #STATUS Meaning
 0 --> 0 normal completion
 1 --> 100 warning
 2 --> 1000 error
 3 --> 10000 severe error
 4 --> 20000 fatal error

Level of assignment: any
Alternate statement: none

2.2.35 #SINLIB: Source Language (SL) Input Libraries

Meaning: Current Source Language library search path. See the
IOF Terminal User's Reference Manual.

Type: lib
Shape: (0,3)
Length: 190
Default value: () empty
Constraints: none
Effect: Modifying #SINLIB redefines SL library search path

used by MAINTAIN_LIBRARY, the Text Editor and
Full Screen Editor, and compilers and processors.

Level of assignment: system level
Alternate statement: MWINLIB

GCL Programmer's Manual

2-72 47 A2 36UJ Rev05

2.2.36 #SLIB: Source Language (SL) Output Library

Meaning: Current value of the Source Language output library.
See the IOF Terminal User's Reference Manual.

Type: lib
Shape: (0,1)
Length: 190
Default value: () empty
Constraints: none
Effect: Modifying #SLIB redefines default SL library for

storing the output of the Text Editor, Full Screen
Editor and processors.

Level of assignment: system level
Alternate statement: MWLIB

2.2.37 #STATUS: Session Status

Meaning: Session completion status. See #SEV.
Type: dec
Shape: (1,1)
Length: 5
Default value: 0
Constraints: Value must be positive and less than 32768
Effect: Modifying #STATUS alters the session completion

status and the system variable #SEV:
 #STATUS #SEV Meaning
 0-99 --> 0 normal completion
 100-999 --> 1 warning
 1000-9999 --> 2 error
 10000-19999 --> 3 severe error
 20000-32767 --> 4 fatal error

Level of assignment: any
Alternate statement: none

GCL Basic Language

47 A2 36UJ Rev05 2-73

2.2.38 #SWITCHES: Program Switches

Meaning: Program switches that can be tested and set.
Type: bool
Shape: (32,32)
Length: 1
Default value: all 0
Constraints: The program switches are numbered from 0 to 31. The

elements of #SWITCHES are numbered from 1 to 32.
This shift must be taken into account in the
programming. E.g.:
#ELEM(SWITCHES,4) refers to switch number 3.

Effect: #SWITCHES facilitates conveying 32 binary pieces of
information to a program, for exchanging information
between programs or between GCL and programs.

Level of assignment: any
Alternate statement: none

2.2.39 #TABS: Tabulation Stops

Meaning: Positions of tabulation stops on the terminal, expressed
in columns starting with 1 for the leftmost character
position.

Type: dec
Shape: (0,16)
Length: 3
Default value: () empty
Constraints: Each element must be positive and less than or equal

to the physical width of the terminal. #TABS cannot
be assigned a value if the terminal has no facility for
tabulation stops.

Effect: Assigning values to #TABS redefines positions of
tabulation stops. Values are also used for the number
of spaces to be substituted for tabulation characters
when #EXPTABS is 1.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

GCL Programmer's Manual

2-74 47 A2 36UJ Rev05

2.2.40 #TRACE: Trace GCL Procedure Execution

Meaning: Request a trace of the GCL procedure calls.
Type: bool
Shape: (1,1)
Length: 1
Default value: 0
Constraints: none
Effect: #TRACE=1: all CALLs, CHAINs, VCALLs,

VCHAINs and SCALLs executed in an unlocked
procedure and referencing a locked procedure are
listed with their parameters.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

2.2.41 #WD: Working Directory

Meaning: Working directory. See the IOF Terminal User's
Reference Manual.

Type: char
Shape: (0,1)
Length: 32
Default value: Name of the user's project if it is also the name of a

directory; otherwise empty () .
Constraints: The value assigned must yield the name of a valid

directory.
Effect: See the IOF Terminal User's Reference Manual.
Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

GCL Basic Language

47 A2 36UJ Rev05 2-75

2.2.42 #WSTATION: Working Station

Meaning: Name of the logical station to which the user's session
is attached by default. See the IOF Terminal User's
Reference Manual.

Type: char
Shape: (1,1)
Length: 8
Default value: Name of the station specified at logon or its default

value.
Constraints: Assigned value must be the name of an accessible

station, or blank to denote the log-on default.
Effect: See the IOF Terminal User's Reference Manual.
Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

2.2.43 #XINLIB: Sharable Module (SM) Input Libraries

Meaning: Current Sharable Module search path. See the IOF
Terminal User's Reference Manual.

Type: lib
Shape: (0,3)
Length: 190
Default value: () empty
Constraints: none
Effect: Modifying #XINLIB redefines the Sharable Module

search path used by MAINTAIN_LIBRARY.
Level of assignment: system level
Alternate statement: MWINLIB

2.2.44 #XLIB: Sharable Module (SM) Output Library

Meaning: Current Sharable Module output library. See the IOF
Terminal User's Reference Manual.

Type: lib
Shape: (0,1)
Length: 190
Default value: () empty
Constraints: none
Effect: Modifying #XLIB redefines the default Sharable

Module library where LINK_PG stores TPRs that are
executable under TDS.

Level of assignment: system level
Alternate statement: MWLIB

GCL Programmer's Manual

2-76 47 A2 36UJ Rev05

2.2.45 #YES: Positive Replies

Meaning: "yes" in reply to questions from the system.
Type: name
Shape: (1,3)
Length: 8
Default value: (YES,Y,1)
Constraints: none
Effect: System variable #YES accepts up to three names that

are taken to mean "YES" in reply to questions such as
"Do you want to save?".

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

2.2.46 #ZOK: Busy Message

Meaning: Request a busy prompt when the terminal receives no
message.

Type: bool
Shape: (1,1)
Length: 1
Default value: 1
Constraints: none
Effect: #ZOK=1: the system issues a busy message every

minute if it works for the terminal user but has no
message to send.
#ZOK=0: no busy message is issued.

Level of assignment: any
Alternate statement: MODIFY_PROFILE (MDP)

GCL Basic Language

47 A2 36UJ Rev05 2-77

2.3 Builtin Functions

GCL builtin functions provide a means for obtaining information on the system
status, for querying the execution environment, or for manipulating GCL objects.

The names of builtins all begin with the special character #. They may have zero,
one, two, three, or more arguments, which may in turn be expressions. The
arguments are enclosed in parentheses after the name of the builtin. For example:

#PLUS(3,5) --> 8
#PLUS(#TIMES(2,2),3) --> 7
#PLUS(#TIMES(3,6),#TIMES(3,3)) --> 27

A builtin can be used in place of a literal or a variable provided that the result of
the builtin is of a type acceptable in the context where it is used. For example, the
builtin #PLUS gives a numeric result and therefore, can only be used where a
numeric value is acceptable.

Conversely, the arguments of a builtin must also match certain type requirements.
For example, the arguments of builtin #PLUS must be numeric.

NOTES:
1. The following builtins cannot be used in batch:

#KLN
#L

#MASTER
#QUERY

#READ
#READL

#TERMID
#TTYPE

2. These builtins may be read as any system variable in COBOL or GPL
programs.

#BILLING
#CPU
#DATE
#ELAPSED
#EXTDATE

#LSYS
#MDAY
#MODE
#PROJECT

#RON
#TERMID
#TIME
#TTYPE

#USERID
#WDAY
#YDAY
#FW

This Section lists builtin functions under the following information:

Purpose: the object of the builtin and its effect

Arguments: the types of the arguments, if any

Result: the type of the result

Constraints: constraints on the values of the arguments or on the
result, if any

Examples: annotated examples of how to use the builtin.

GCL Programmer's Manual

2-78 47 A2 36UJ Rev05

Most builtins operate on scalars, and produce scalar results. When arguments or
results can be lists, "list" is fixed to the end of type. "Any" means any type.
Limited implicit conversions are available, as with the LET directive.

Builtins are classified under the following functions:

- arithmetic
- relational
- boolean
- character handling

- terminal handling
- list handling
- object management
- context handling

- "Is it ?"
- conversion
- file handling.

Acceptable values for arguments are:

BOOL Boolean value 0 or 1
Expressions of type bool; bool literals

CHAR Character string, quoted or unquoted
Any expression; any literal

DEC Decimal value, signed or unsigned
Expressions of types bool or dec; dec literals

FILE File for example, A.B.FILE or A.B.MYLIB..SF
Expressions of types file or lib; file literals

FSET Fileset for example, A.*.B
Expressions of types file, lib or fset; fset literals

HEXA Hexadecimal value for example, A23F
Expressions of type hexa; hexa literals

LIB Library for example, A.B.MYLIB
Expressions of type lib; lib literals

NAME Name for example, JOE, A-B, MYPG
Expressions of type name; name literals

OUTPUT Output for example, X123:2:1
Expressions of type output; output literals

RFILE Remote File for example, $LYON:A.B.C
Expressions of types file, lib, rfile; rfile literals

STAR Star-Name for example, A*B
Expressions of types name or star; star literals

VOLUME Volume for example, VOL2:MS/D500
Expressions of type volume; volume literals

Other combinations will result in a TYPE ERROR.

GCL Basic Language

47 A2 36UJ Rev05 2-79

2.3.1 Arithmetic Builtins

2.3.1.1 #ABS

Purpose: Computes the absolute value of the argument.
Arguments: dec
Result: dec
Constraints: none
Examples: #ABS(-3) --> 3

#ABS(0) --> 0
#ABS(5) --> 5

2.3.1.2 #DIVIDE

Purpose: Computes the integral quotient of the two arguments.
Arguments: (dec, dec)
Result: dec
Constraints: The second argument must be non-zero.
Examples: #DIVIDE(18, 6) --> 3

#DIVIDE(-7, 2) --> -3
#DIVIDE(-4, -2) --> 2

2.3.1.3 #MAX

Purpose: Computes the arithmetically largest value among
arguments.

Arguments: (dec, dec[, dec]...)
Result: dec
Constraints: none
Examples: #MAX(6, 4) --> 6

#MAX(-7, 4, 6) --> 6
#MAX(-12, -15, -7) --> -7

GCL Programmer's Manual

2-80 47 A2 36UJ Rev05

2.3.1.4 #MIN

Purpose: Computes the arithmetically smallest value among
arguments.

Arguments: (dec, dec[, dec]...)
Result: dec
Constraints: none
Examples: #MIN(6, 4) --> 4

#MIN(-7, 4, 6) --> -7
#MIN(-12, -15, -7) --> -15

2.3.1.5 #MINUS

Purpose: Computes the value of arg1 minus arg2.
Arguments: (dec, dec)
Result: dec
Constraints: The result may not exceed 32 digits in length.
Examples: #MINUS(82, 31) --> 51

#MINUS(-12, 7) --> -19
#MINUS(6, -3) --> 9

2.3.1.6 #MOD

Purpose: Computes value of arg1 modulo arg2 expressed as:
res = arg1 - floor(arg1/arg2)*arg2

Arguments: (dec, dec)
Result: dec
Constraints: The second argument must be non-zero.
Examples: #MOD(7, 2) --> 1

#MOD(7, -2) --> -1
#MOD(-7, 2) --> 1
#MOD(-7, -2) --> -1

2.3.1.7 #PLUS

Purpose: Computes the sum of all arguments.
Arguments: (dec, dec[, dec]...)
Result: dec
Constraints: The result may not exceed 32 digits in length.
Examples: #PLUS(6, 3) --> 9

#PLUS(12, -16, 3) --> -1
#PLUS(6, 8, -1, -7) --> 6

GCL Basic Language

47 A2 36UJ Rev05 2-81

2.3.1.8 #SIGNUM

Purpose: Computes the arithmetic sign of the argument
(-1 if negative, 0 if zero, 1 if positive).

Arguments: dec
Result: dec
Constraints: none
Examples: #SIGNUM(-7) --> -1

#SIGNUM(0) --> 0
#SIGNUM(6) --> 1

2.3.1.9 #TIMES

Purpose: Computes the product of all arguments.
Arguments: (dec, dec[, dec]...)
Result: dec
Constraints: The result may not exceed 32 digits in length.
Examples: #TIMES(2, 7) --> 14

#TIMES(6, 2, -3) --> -36
#TIMES(4, 2, 3, 5) --> 120

GCL Programmer's Manual

2-82 47 A2 36UJ Rev05

2.3.2 Relational Builtins

Relational builtins compare the values of their two arguments and yield a boolean
value denoting whether or not the relation is true.

Values to be compared are:
• either numeric being decimal or literal values denoting decimals, in which case,

an arithmetic comparison is performed
• or non-numeric being character representations, in which case, a character

comparison is performed in the EBCDIC collating sequence where the shorter of
the two strings is padded with trailing spaces to equalize the lengths.

2.3.2.1 #EQ

Purpose: Returns 1 if both arguments are equal: returns 0
otherwise.

Arguments: (any, any)
Result: bool
Constraints: none
Examples: #EQ(02, +2) --> 1

#EQ(AC, 'ac') --> 0
#EQ('', ' ') --> 1
#EQ('AB', 'AB ') --> 1

2.3.2.2 #GE

Purpose: Returns 1 if arg1 is greater than or equal to arg2;
returns 0 otherwise.

Arguments: (any, any)
Result: bool
Constraints: none
Examples: #GE(02, +2) --> 1

#GE(ABC, DEF) --> 0
#GE(AA, A) --> 1

GCL Basic Language

47 A2 36UJ Rev05 2-83

2.3.2.3 #GT

Purpose: Returns 1 if arg1 is greater than arg2; returns 0
otherwise.

Arguments: (any, any)
Result: bool
Constraints: none
Examples: #GT(2, 02) --> 0

#GT(A, AB) --> 0
#GT(BC, B) --> 1

2.3.2.4 #LE

Purpose: Returns 1 if arg1 is less than or equal to arg2; returns 0
otherwise.

Arguments: (any, any)
Result: bool
Constraints: none
Examples: #LE(2, 02) --> 1

#LE(A, AB) --> 1
#LE(BC, B) --> 0

2.3.2.5 #LT

Purpose: Returns 1 if arg1 is less than arg2; returns 0 otherwise.
Arguments: (any, any)
Result: bool
Constraints: none
Examples: #LT(2, 02) --> 0

#LT(A, AB) --> 1
#LT(BC, B) --> 0

2.3.2.6 #NE

Purpose: Returns 1 if arg1 is not equal to arg2; returns 0
otherwise.

Arguments: (any, any)
Result: bool
Constraints: none
Examples: #NE(2, 02) --> 0

#NE(A, AB) --> 1
#NE(AB, 'ab') --> 1

GCL Programmer's Manual

2-84 47 A2 36UJ Rev05

2.3.3 Boolean Builtins

2.3.3.1 #AND

Purpose: Performs AND on the arguments.
Arguments: (bool, bool [, bool]...)
Result: bool
Constraints: none
Examples: %A %B #AND(%A, %B)

 0 0 0
 0 1 0
 1 0 0
 1 1 1

2.3.3.2 #NAND

Purpose: Negates AND on the arguments.
Arguments: (bool, bool)
Result: bool
Constraints: none
Examples: %A %B #NAND(%A,%B)

 0 0 1
 0 1 1
 1 0 1
 1 1 0

2.3.3.3 #NOR

Purpose: Negates OR on the arguments.
Arguments: (bool, bool)
Result: bool
Constraints: none
Examples: %A %B #NOR(%A, %B)

 0 0 1
 0 1 0
 1 0 0
 1 1 0

GCL Basic Language

47 A2 36UJ Rev05 2-85

2.3.3.4 #NOT

Purpose: Negates the argument.
Argument: bool
Result: bool
Constraints: none
Examples: %A #NOT(%A)

 0 1
 1 0

2.3.3.5 #OR

Purpose: Performs OR on the arguments.
Arguments: (bool, bool [, bool]...)
Result: bool
Constraints: none
Examples: %A %B #OR(%A, %B)

 0 0 0
 0 1 1
 1 0 1
 1 1 1

2.3.3.6 #XOR

Purpose: Performs exclusive OR on the arguments.
Arguments: (bool, bool)
Result: bool
Constraints: none
Examples: %A %B #XOR(%A, %B)

 0 0 0
 0 1 1
 1 0 1
 1 1 0

GCL Programmer's Manual

2-86 47 A2 36UJ Rev05

2.3.4 Character Handling Builtins

2.3.4.1 #CAT

Purpose: Concatenates the arguments into a single string.
Arguments: (char, char [, char]...)
Result: char
Constraints: The length of the resulting string must not exceed 255.
Examples: #CAT(A, BC) --> ABC

#CAT('Hello Boys', !) --> Hello Boys!
#CAT(A, BC, DEF, G) --> ABCDEFG
#CAT(AB, '', CD) --> ABCD

2.3.4.2 #CTN

Purpose: Returns 1 if arg1 contains arg2; returns 0 otherwise.
Arguments: (char, char)
Result: bool
Constraints: none
Examples: #CTN(ABCDE, BC) --> 1

#CTN(ABCDE, BD) --> 0
#CTN(ABCDE, DEF) --> 0

2.3.4.3 #INDEX

Purpose: If arg2 is contained in arg1, returns the rank of the
character at which it starts; otherwise returns 0.

Arguments: (char, char)
Result: dec
Constraints: none
Examples: #INDEX(ABCDEF, DE) --> 4

#INDEX(ABCDEF, AB) --> 1
#INDEX(ABCDEF, AC) --> 0

GCL Basic Language

47 A2 36UJ Rev05 2-87

2.3.4.4 #LC

Purpose: Converts the argument to lowercase letters.
Arguments: char
Result: char
Constraints: none
Examples: #LC('HELLO BOYS') --> hello boys

#LC(ABCDEF) --> abcdef
#LC('a*B+C') --> a*b+c

2.3.4.5 #MODIFY

Purpose: Modifies the value of arg1, replacing the substring
starting at position arg2 of length arg3, by arg4.
Returns 1 or 0 depending on whether modification is
successful or not.

Arguments: (char, dec, dec, char)
Result: bool
Constraints: arg2 > 0 and arg3 > 0 and arg3 >= length of arg4.

if arg3 > arg4, arg4 is padded with trailing spaces.
Examples: If variable V is ABCDEFG in all following examples:

#MODIFY(%V, 2, 3, XYZ)->1:

V becomes AXYZEFG
#MODIFY(%V, 2, 3, X) ->1:

V becomes AX EFG
#MODIFY(%V, 3, 3, '') ->1:

V becomes AB FG
#MODIFY(%V, 8, 4, XX) ->0:

V unchanged

2.3.4.6 #QUOTE

Purpose: Encloses a string between quotes, doubling each
contained quote.

Arguments: char
Result: char
Constraints: The length of the resulting string must not exceed 255.
Examples: #QUOTE(ABCD) --> 'ABCD'

#QUOTE('ABC''DEF') --> 'ABC''DEF'
#QUOTE('AB CD') --> 'AB CD'

GCL Programmer's Manual

2-88 47 A2 36UJ Rev05

2.3.4.7 #SUBSTITUTE

Purpose: Modifies the value of arg1, replacing the substring
starting at position arg2 of length arg3, by arg4.
Returns 1 or 0 depending on whether or not
modification is successful:
− if arg2, arg3 and the length of arg4 are all non-zero

and positive, the substring of arg1 starting at
position arg2 of length arg3, is replaced by string
arg4.

− if arg3 is 0, arg4 is inserted into arg1 just before the
substring starting at position arg2.

− if the length of arg4 is 0 (''), the arg3 characters
starting at position arg2 are suppressed in arg1.

Arguments: (char, dec, dec, char)
Result: bool
Constraints: 0 < arg2 <= maximum length of arg1.

arg3 and arg4 cannot be simultaneously equal to 0.
Examples: If variable V is ABCDE in all following examples:

#SUBSTITUTE(%V,4,3,FGH) ->1:

V is now ABCFGH
#SUBSTITUTE(%V,1,0,'1 ')->1:

V is now '1 ABCDE'
#SUBSTITUTE(%V,2,0,X) ->1:

V is now AXBCDE
#SUBSTITUTE(%V,2,1,'') ->1:

V is now ACDE
#SUBSTITUTE(%V,10,1,'Z')->1:

V is now 'ABCDE Z'

GCL Basic Language

47 A2 36UJ Rev05 2-89

2.3.4.8 #SUBSTR

Purpose: Extracts a substring from arg1; arg2 is the position of
the first character in the substring; arg3 is the length of
the substring.

Arguments: (CHAR, DEC, [DEC])
Result: CHAR
Constraints: arg2 > 0; arg3 > 0

If arg2> length of arg 1, result is string of arg3 spaces,
where 0 < arg3 < 255.
If arg3 is not specified, the default value for arg3 is:
arg3 = length of arg1-arg2+1.
Arg3 must be specified if arg2>length of arg1.
Resulting string is padded with trailing spaces if it
exceeds the original one.

Examples: #SUBSTR(ABCDEFG, 4, 2) --> DE
#SUBSTR(ABCDEFG, 5) --> EFG

#SUBSTR(ABCDEFG, 6, 6) --> FG + 4 spaces
#SUBSTR(ABCDEFG, 5, 0) --> empty string ('')

2.3.4.9 #UC

Purpose: Converts the argument to uppercase letters.
Arguments: char
Result: char
Constraints: none
Examples: #UC('abcdef') --> ABCDEF

#UC('a+b-C') --> A+B-C
#UC('Hello Boys') --> HELLO BOYS

2.3.4.10 #UNQUOTE

Purpose: If the value of the argument is a quoted string, returns
its unquoted value; otherwise returns the argument
unchanged.

Arguments: char
Result: char
Constraints: none
Examples: #UNQUOTE('''ABC''') --> ABC

#UNQUOTE('''''''ABC''''''') --> 'ABC'
#UNQUOTE(ABC) --> ABC

GCL Programmer's Manual

2-90 47 A2 36UJ Rev05

2.3.4.11 #VERIFY

Purpose: Checks if the characters in arg1 are in the set defined
by arg2:
− Returns 1 if all arg1 characters are in arg2, or if

arg1=0
− Returns 0 if at least one character of arg1 is not in

arg2, or if arg2=0.
Arguments: (char, char)
Result: bool
Constraints: none
Examples: LET # #VERIFY(AB,XACDBE) --> 1

LET # #VERIFY('.X',XYZ) --> 0
LET # #VERIFY('',ABCD) --> 1
LET # #VERIFY(ABCD,'') --> 0

GCL Basic Language

47 A2 36UJ Rev05 2-91

2.3.5 Terminal Handling Builtins

All Terminal Handling builtins are applicable only in interactive mode. They are
meaningless if specified in batch.

2.3.5.1 #KLN

Purpose: Keeps the line busy, displaying arg2 every arg1
seconds, until a break is entered. Result is always 1.

Arguments: (dec, char)
Result: bool
Constraints: arg1 > 0
Examples: #KLN(10, 'DO NOT DISTURB PLEASE')

#KLN(60, '')

2.3.5.2 #L

Purpose: Reads elements of a list from the terminal using arg2
as a prompt and assign them to the variable whose
name is arg1. Returns 1 if the assignment is
successful.

Arguments: (name, char)
Result: bool
Constraints: Conditions for data entry are:

− the user is prompted to supply data by the prompt
defined in arg2; data can be entered in several lines.

− a semicolon marks the end of the data keyed in;
elements in a list are separated by commas or
spaces; a break or a slash in an input line cancels the
builtin.

− slashes, spaces, commas and semicolons must be
protected if supplied as data.

− data supplied must be consistent with the definition
of the variable arg1, namely type, length, values,
and minimum and maximum number of elements.

− if an error is detected, an appropriate message is
issued and the data must be reentered from the
beginning.

− an empty list is assigned with just a semicolon; this
is only possible when the first element of NUMVAL
is 0.

GCL Programmer's Manual

2-92 47 A2 36UJ Rev05

Examples: GLOBAL D DEC 8 NUMVAL=(0,8);
GLOBAL B BOOL;
LET B #L(D,'ENTER D:');
ENTER D: 6,12,14,5,7
-: 8,9;

D now contains (6, 12, 14, 5, 78, 9); B is 1 .
LET B #L(D,'ENTER D:');

ENTER D: ; D is now unassigned and B is 1 .

2.3.5.3 #MASTER

Purpose: Returns 0 if the current session is attached to a slave
terminal; returns 1 if attached to a master terminal.

Arguments: none
Result: bool
Constraints: none

2.3.5.4 #QUERY

Purpose: Asks the user the question in the argument; returns 1 if
the reply is yes. See system variable #YES in
Paragraph 2.2.40.

Arguments: char
Result: bool
Constraints: none
Examples: #QUERY('DO YOU WANT TO CONTINUE?')

#QUERY(CONTINUE?)

2.3.5.5 #READ

Purpose: Reads input from the terminal or from a subfile, if an
AI directive is active, using the argument as a prompt,
and returns its value.

Arguments: char
Result: char
Constraints: The string entered must not exceed 255 characters in

length.
Examples: #READ(OPTION?)

#READ('What is your name ?')

GCL Basic Language

47 A2 36UJ Rev05 2-93

2.3.5.6 #READL

Purpose: as for #L, but with data supplied from the active input
stream. If the data is wrong, the stream aborts.

Arguments: (name, char)
Result: bool
Constraints: see #L

GCL Programmer's Manual

2-94 47 A2 36UJ Rev05

2.3.6 List Handling Builtins

The builtins described in previously all operate on single elements or scalars. The
builtins described here operate on lists.

A list is a finite set of elements of the same type:

• when the list has one element, it is a scalar
• when it has no elements, it is empty or uninitialized
• when it has more than one element, it is a true list.

A list is declared:

• by the NUMVAL parameter specifying a range bounded by a minimum and a
maximum number of elements, each up to 64

• in the GLOBAL, LOCAL and KWD commands defining the name of a variable.

EXAMPLE :

GLOBAL V DEC 3 NUMVAL=(2,5) declares V as a list of 2 to 5 elements,
 each element having a length of 3 decimals

LET V (3,5,7) V now contains three elements
LET V (12,37) V now contains two elements

LET V 12

LET V (1,2,3,4,5,6) erroneous because the complete number of
 elements has not been assigned
❑

2.3.6.1 #ELEM

Purpose: Extracts the element whose position is arg2 in the arg1
list.

Arguments: (any-list, dec)
Result: same type as arg1
Constraints: 0 < arg2 <=number of elements in arg1.
Examples: LET V (6, 7, 12, 18)

#ELEM(%V, 4) --> 18
#ELEM(%V, 2) --> 7
#ELEM(%V, 1) --> 6

GCL Basic Language

47 A2 36UJ Rev05 2-95

2.3.6.2 #FMT

Purpose: Returns the string of characters that is the formatted
representation for its argument.

Arguments: any-list
Result: char
Constraints: The result may not exceed 255 characters in length.
Examples: LET V (6, 7, 8, 9, 10)

#FMT(%V) --> (6 7 8 9 10)
LET X ('Hello Boys', 'John')
#FMT(%X) --> ('Hello Boys' 'John')

2.3.6.3 #INDEX_SET

Purpose: Returns a list of the first n consecutive integers.
Arguments: dec
Result: dec-list
Constraints: 0<argument<=64
Examples: #INDEX_SET(3) --> (1, 2, 3)

#INDEX_SET(6) --> (1, 2, 3, 4, 5, 6)
LET V 5
#INDEX_SET(%V) --> (1, 2, 3, 4, 5)

2.3.6.4 #LCOUNT

Purpose: Returns the number of times the element arg2 is equal
to an element of arg1 list. The comparison rules are
the same as those for relational builtins.

Arguments: (any-list, any)
Result: dec (0<=result<=64)
Constraints: none
Examples: LET V (A B C D A B A)

#LCOUNT(%V,A) --> 3
#LCOUNT(%V,D) --> 1
#LCOUNT(%V,Z) --> 0

GCL Programmer's Manual

2-96 47 A2 36UJ Rev05

2.3.6.5 #LCTN

Purpose: Returns 1 if the arg1 list has an element equal to arg2;
0 if otherwise. Comparison rules are as for relational
builtins.

Arguments: (any-list, any)
Result: bool
Constraints: none
Examples: LET V (2, 3, 5, 7, 9)

#LCTN(%V, 3) --> 1
#LCTN(%V, 4) --> 0

2.3.6.6 #LINDEX

Purpose: If the first argument list contains at least one element
equal to arg2, returns the rank of its first occurrence;
otherwise returns 0. Comparison rules are as for
relational builtins.

Arguments: (any-list, any)
Result: dec
Constraints: none
Examples: LET V (2, 4, 6, 8, 10)

#LINDEX(%V, 6) --> 3
#LINDEX(%V, 10) --> 5
#LINDEX(%V, 3) --> 0

2.3.6.7 #LLENGTH

Purpose: Returns current number of elements in the argument
list.

Arguments: any-list
Result: dec
Constraints: none
Examples: LET V (2, 4, 6, 8)

#LLENGTH(%V) --> 4
LET V 3
#LLENGTH(%V) --> 1
LET V ()
#LLENGTH(%V) --> 0

GCL Basic Language

47 A2 36UJ Rev05 2-97

2.3.6.8 #MAXLLENGTH

Purpose: Returns the maximum elements of the list. If argument
is an expression or literal value, returns the current
number.

Arguments: any-list
Result: dec
Constraints: none
Examples: GLOBAL V DEC 3 NUMVAL=(2, 5)

#MAXLLENGTH(%V) --> 5
#MAXLLENGTH(3) --> 1
#MAXLLENGTH(#INDEX_SET(3)) --> 3

2.3.6.9 #MINLLENGTH

Purpose: Returns minimum number of elements of the list. If
argument is an expression or literal value, returns the
current number.

Arguments: any-list
Result: dec
Constraints: none
Examples: GLOBAL V DEC 3 NUMVAL=(2, 5)

#MINLLENGTH(%V) --> 2
#MINLLENGTH(6) --> 1
#MINLLENGTH(#INDEX_SET(6)) --> 6

2.3.6.10 #REPLACE

Purpose: Replaces the arg2th element of the list whose name is
arg1 with arg3. Returns 1 if successfully replaced, 0 if
otherwise.

Arguments: (name, dec, any)
Result: bool
Constraints: arg3 must be of type and value compatible with arg1.
Examples: GLOBAL V DEC 3 NUMVAL=(2, 5)

LET V (1, 2, 3, 4, 5)

#REPLACE(V, 4, 7) ->1: V is now
(1, 2, 3, 7, 5)

#REPLACE(V, 6, 8) ->0: V unchanged

GCL Programmer's Manual

2-98 47 A2 36UJ Rev05

2.3.6.11 #STRING

Purpose: Concatenates all the elements of the argument lists in
new list.

Arguments: (any-list, any-list [any-list]...)
Result: a list of the same type as the arguments.
Constraints: All arguments must be of the same type; the resulting

list may not have more than 32 elements.
Examples: GLOBAL V1 DEC 3 NUMVAL=(2,5)

GLOBAL V2 DEC 4 NUMVAL=(0,4)
LET V1 (1,2,3)
LET V2 (22,23,24,25)
#STRING(%V1,%V2) ->(1,2,3,22,23,
 24,25)
#STRING(%V1,%V2,%V1)->(1,2,3,22,23,
 24,25,1,2,3)
LET V2 ()
#STRING(%V1,%V2,%V1)->(1,2,3,1,2,3)

2.3.6.12 #STRIP

Purpose: Deletes the arg2 first (if arg2 > 0) or arg2 last (if arg2
< 0) elements of the arg1 list.

Arguments: (any-list, dec)
Result: a list with the same type as arg1.
Constraints: none
Examples: GLOBAL V DEC 3 NUMVAL=(2, 5)

LET V (2, 4, 6, 8, 10)
#STRIP(%V, 2) --> (6, 8, 10)
#STRIP(%V, -3) --> (2, 4)
#STRIP(%V, 0) --> (2, 4, 6, 8, 10)
#STRIP(%V, 6) --> ()

GCL Basic Language

47 A2 36UJ Rev05 2-99

2.3.7 Object Management Builtins

2.3.7.1 #CHECKSTAR

Purpose: Returns 1 if arg2 name matches arg1 star-name; 0 if
not.

Arguments: (star, name)
Result: bool
Constraints: none
Examples: #CHECKSTAR(A*B, AXXXB) --> 1

#CHECKSTAR(A*B, ABD) --> 0
#CHECKSTAR(A*$>AI, AJBC) --> 1
#CHECKSTAR(A*$>AI, AHX) --> 0

2.3.7.2 #DROP

Purpose: Deletes the existing global variable whose name is the
argument. Returns 1 if delete is successful; 0 if
otherwise.

Arguments: name
Result: bool
Constraints: none
Examples: #DROP(V1) deletes V1 -> 1 if it existed

variable 0 otherwise
#DROP(%NAMEdeletes V2 -> 1 if it existed

variable 0 otherwise

2.3.7.3 #DROPGB

Purpose: Deletes all global variables and returns the number
deleted.

Arguments: none
Result: dec
Constraints: none

GCL Programmer's Manual

2-100 47 A2 36UJ Rev05

2.3.7.4 #EXIST

Purpose: Returns 1 if the variable whose name is the argument
both exists and has a value (that is, has one or more
elements).

Arguments: name
Result: bool
Constraints: none
Examples: #EXIST(V) --> 1 if V both exists and has

 a value
 --> 0 if V non-existent or
 uninitialized
LET NAME V2

#EXIST(%NAME) --> 1 if V2 both exists and has
 a value
 --> 0 if V2 non-existent or
 uninitialized

2.3.7.5 #LENGTH

Purpose: Returns the length in number of characters of the
argument.

Arguments: any
Result: dec
Constraints: none
Examples: #LENGTH(1234) --> 4

#LENGTH('Hello Boys') --> 10
#LENGTH('') --> 0

2.3.7.6 #LISTGB

Purpose: Lists the names and characteristics of all existing
global variables. Returns the number of global
variables.

Arguments: none
Result: dec
Constraints: none

GCL Basic Language

47 A2 36UJ Rev05 2-101

2.3.7.7 #MLENGTH

Purpose: Returns the maximum length of the argument. If the
argument is an expression or a literal, returns its
current value.

Arguments: any
Result: dec
Constraints: none
Examples: GLOBAL C CHAR 20

LET C 'Hello Boys'
#MLENGTH(%C) --> 20
#MLENGTH(1234) --> 4

2.3.7.8 #NEXIST

Purpose: Returns 1 if the variable whose name is the argument
either does not exist or is empty.

Arguments: name
Result: bool
Constraints: none
Examples: #NEXIST(V) --> 1 if V non-existent or empty

 --> 0 if V both exists and has
 a value
LET NAME V2

#NEXIST(%NAME)--> 0 if V2 both exists and has
 a value
 --> 1 if V2 non-existent or empty

2.3.7.9 #VALUE

Purpose: Returns the value of the variable whose name is the
argument.

Arguments: name
Result: type undefined (depends on usage context)
Constraints: none
Examples: LET V 1234

#VALUE(V) --> 1234
LET NAME V
#VALUE(NAME) --> V
#VALUE(%NAME) --> 1234

GCL Programmer's Manual

2-102 47 A2 36UJ Rev05

2.3.8 Context Handling Builtins

All Context Handling builtins:

• may be read as any system variable in COBOL or GPL programs. The
exceptions are #DOMAINID and #WAIT which do not apply.

• can be used in both interactive and batch modes. The exceptions are #TERMID
and #TTYPE which cannot be used in batch.

2.3.8.1 #BILLING

Purpose: Returns the billing of the current session.
Arguments: none
Result: name
Constraints: none

2.3.8.2 #CPU

Purpose: Returns the central processor time consumed in
milliseconds since the beginning of the session.

Arguments: none
Result: dec
Constraints: none

2.3.8.3 #DATE

Purpose: Returns the date as a character string in the form
yy/mm/dd.

Arguments: none
Result: char
Constraints: none

2.3.8.4 #DOMAINID

Purpose: Returns the name of the current GCL domain.
Arguments: none
Result: name of the current GCL domain
Constraints: none
Example: if in MAINTAIN_LIBRARY SL at "C:" level

#DOMAINID --> LIBMAINT_SL

GCL Basic Language

47 A2 36UJ Rev05 2-103

2.3.8.5 #ELAPSED

Purpose: Returns the time elapsed since the beginning of the
session expressed in milliseconds.

Arguments: none
Result: dec
Constraints: none

2.3.8.6 #EXTDATE

Purpose: Returns the date as a character string in the form
yyyy/mm/dd.

Arguments: none
Result: char
Constraints: none

2.3.8.7 #FW

Purpose: Returns the fiscal week corresponding to a given date.
Arguments: char10 = date in the format [YY]YY/MM/DD or

[YY]YY.MM.DD
Result: dec4 = fiscal week in the format YYWW
Constraints: none
Examples: if today is 15 December 1993

#FW (#DATE) --> 9350
#FW (#EXTDATE) --> 9350
#FW (94/01/02) --> 9352
#FW (2000/02/29) --> 0009

2.3.8.8 #LSYS

Purpose: Returns the local System Name to which the user is
connected either after the log-on mechanism or after
the CONNECT_APPLICATION command.

Arguments: none
Result: char8
Constraints: none
Examples: $*$CN IOFBP50

LET # #LSYS --> BP50
CN BP60
LET # #LSYS --> BP60

GCL Programmer's Manual

2-104 47 A2 36UJ Rev05

2.3.8.9 #MDAY

Purpose: Returns the rank of the current day in the month.
Arguments: none
Result: dec
Constraints: none
Example: if today is 24 May 1992

#MDAY --> 24

2.3.8.10 #MODE

Purpose: Returns 1 if used in an interactive session; returns 0
otherwise.

Arguments: none
Result: bool
Constraints: none

2.3.8.11 #PROJECT

Purpose: Returns the project of the current session.
Arguments: none
Result: name
Constraints: none

2.3.8.12 #RON

Purpose: Returns RON (Run Occurrence Number) of current
session.

Arguments: none
Result: dec
Constraints: none

2.3.8.13 #TERMID

Purpose: Returns the identification of the terminal.
Arguments: none
Result: char12 (Form: NODE char4 TERMINAL-NAME

char8)
Constraints: The result is meaningless if terminal is switched.
Example: #TERMID --> BP06V6C3

GCL Basic Language

47 A2 36UJ Rev05 2-105

2.3.8.14 #TIME

Purpose: Returns time of day as character string in format
hh:mm:ss.

Arguments: none
Result: char
Constraints: none

2.3.8.15 #TTYPE

Purpose: Returns the terminal type.
Arguments: none
Result: name
Constraints: none

2.3.8.16 #USERID

Purpose: Returns the user's name.
Arguments: none
Result: name
Constraints: none

2.3.8.17 #WAIT

Purpose: Wait arg1 seconds before resuming processing.
Returns 1 if no interrupt (break) occurs during arg1
seconds; 0 if an interrupt occurs.

Arguments: dec
Result: bool
Constraints: arg1 > 0

2.3.8.18 #WDAY

Purpose: Returns rank of day in week (Monday is 1;
Sunday is 7).

Arguments: none
Result: dec
Constraints: none
Example: if today is Thursday 17 September 1992

#WDAY --> 4

GCL Programmer's Manual

2-106 47 A2 36UJ Rev05

2.3.8.19 #YDAY

Purpose: Returns the rank of the current day in the year.
Arguments: none
Result: dec
Constraints: none
Example: if today is 28 December 1992

#YDAY --> 363

GCL Basic Language

47 A2 36UJ Rev05 2-107

2.3.9 "Is it?" Builtins

The "Is it?" Builtins check only the value of the argument, which must be
converted if necessary to the appropriate type before use.

EXAMPLE :

GB C CHAR 10;
LET C 31;
LET # #ISITDEC(%C); --> 1
LET # #TIMES(3,#CVDEC(%C));

❑

2.3.9.1 #ISITBOOL

Purpose: Returns 1 if the argument is boolean; 0 if otherwise.
Arguments: char
Result: bool
Constraints: none
Examples: #ISITBOOL(0) --> 1

#ISITBOOL(ABC) --> 0

2.3.9.2 #ISITDATE

Purpose: Returns 1 if the date given in the format
[YY]YY/MM/DD or [YY]YY.MM.DD is correct; 0 if
otherwise.

Arguments: char10
Result: bool
Constraints: none
Examples: #ISITDATE (93/12/10) --> 1

#ISITDATE (93/02/29) --> 0
#ISITDATE (2001/12/31) --> 1
#ISITDATE (1993/0A/01) --> 0

2.3.9.3 #ISITDEC

Purpose: Returns 1 if the argument is numeric; returns 0
otherwise.

Arguments: char
Result: bool
Constraints: none
Examples: #ISITDEC(ABC) --> 0

#ISITDEC(-1234) --> 1

GCL Programmer's Manual

2-108 47 A2 36UJ Rev05

2.3.9.4 #ISITFILE

Purpose: Returns 1 if the argument is a file; returns 0 otherwise.
Arguments: char
Result: bool
Constraints: none
Examples: #ISITFILE(a/b/c) --> 0

#ISITFILE(A.B.C..S) --> 1

2.3.9.5 #ISITFSET

Purpose: Returns 1 if the argument is a fileset; returns 0
otherwise.

Arguments: char
Result: bool
Constraints: none
Examples: #ISITFSET(A.**) --> 1

#ISITFSET(A/B) --> 0

2.3.9.6 #ISITHEXA

Purpose: Returns 1 if the argument is hexadecimal; 0 if
otherwise.

Arguments: char
Result: bool
Constraints: length of the argument must be even and < or = 8.
Examples: #ISITHEXA(AB2F) --> 1

#ISITHEXA(123H) --> 0

2.3.9.7 #ISITLIB

Purpose: Returns 1 if the argument is a library; returns 0
otherwise.

Arguments: char
Result: bool
Constraints: none
Examples: #ISITLIB(A.B.C) --> 1

#ISITLIB(A.B.C..D) --> 0

GCL Basic Language

47 A2 36UJ Rev05 2-109

2.3.9.8 #ISITNAME

Purpose: Returns 1 if the argument is a name; returns 0
otherwise.

Arguments: char
Result: bool
Constraints: none
Examples: #ISITNAME(ABCD) --> 1

#ISITNAME(A.B.C) --> 0

2.3.9.9 #ISITOUTPUT

Purpose: Returns 1 if the argument is an output; returns 0
otherwise.

Arguments: char
Result: bool
Constraints: none
Examples: #ISITOUTPUT(X234:2:3) --> 1

#ISITOUTPUT(X22/7) --> 0

2.3.9.10 #ISITRFILE

Purpose: Returns 1 if the argument is a remote file; 0 if
otherwise.

Arguments: char
Result: bool
Constraints: none
Examples: #ISITRFILE($HERE:A.B.C) --> 1

#ISITRFILE(X234/789) --> 0

2.3.9.11 #ISITSTAR

Purpose: Returns 1 if the argument is a star-name; 0 if
otherwise.

Arguments: char
Result: bool
Constraints: none
Examples: #ISITSTAR(AB*CD$>ABK) --> 1

#ISITSTAR(A.B.C) --> 0

GCL Programmer's Manual

2-110 47 A2 36UJ Rev05

2.3.9.12 #ISITTIME

Purpose: Returns 1 if the time given in the format HH.MM or
HH:MM (H for hour, M for minutes) is correct; 0 if
otherwise.

Arguments: char-5
Result: bool
Constraints: none
Examples: #ISITTIME(09.24) --> 1

#ISITTIME(24:00) --> 0

2.3.9.13 #ISITVOLUME

Purpose: Returns 1 if the argument is a volume; 0 if otherwise.
Arguments: char
Result: bool
Constraints: none
Examples: #ISITVOLUME(A.B.C) --> 0

#ISITVOLUME(K181:MS/D500) --> 1

GCL Basic Language

47 A2 36UJ Rev05 2-111

2.3.10 Conversion Builtins

2.3.10.1 #BINTODEC

Purpose: Converts the argument to type dec.
Arguments: char4
Result: dec
Constraints: None.

2.3.10.2 #BYTE

Purpose: Converts the argument to its binary value; the result is
a character string of length 1.

Arguments: dec
Result: char1
Constraints: Ranges from 0 through 255. Binary values may be

passed to processors as options but not as arguments of
a GCL procedure. See Paragraph "SYSTEM".

2.3.10.3 #CVBOOL

Purpose: Converts the argument to type bool.
Arguments: char
Result: bool
Constraints: The argument must be valid for a boolean value.

GCL Programmer's Manual

2-112 47 A2 36UJ Rev05

2.3.10.4 #CVDATDEC

Purpose: Converts a date in the Gregorian calendar from the
standard date form YYYY/MM/DD or reduced date
form YY/MM/DD to a decimal date form.

Arguments: char10=date in the format YYYY/MM/DD or
YY/MM/DD

Result: dec6=rank of day, from the referenced date December
31, 1600

Constraints: none
Examples: #CVDATDEC(1995/09/01) --> 144149

#CVDATDEC(#DATE) --> 144149
(where #DATE=95/09/01)
#CVDATDEC(2000/02/29) --> 145791
#CVDATEC (#EXTDATE) --> 145791
(where #extdate = 2000/02/29)
#CVDATDEC 2000/02/29 --> 145791
#CVDATDEC(00/02/29) --> 145791

Date: When the form YY/MM/DD is used, the century part
of the date is set to 20, except when YY is greater than
or equal to 61, then it is set to 19.

2.3.10.5 #CVDEC

Purpose: Converts the argument to type dec.
Arguments: char
Result: dec
Constraints: The argument must be valid for a numeric value.

2.3.10.6 #CVDECDAT

Purpose: Converts a date in the Gregorian calendar from the
decimal date form to the standard date form
YYYY/MM/DD.
The reference date is December 31, 1600.

Arguments: dec6=rank of day, from the reference date.
Result: char10=date in the format YYYY/MM/DD.
Constraints: none.
Examples: #CVDECDAT(144149) --> 1995/09/01

#CVDECDAT(145791) --> 2000/02/29

GCL Basic Language

47 A2 36UJ Rev05 2-113

2.3.10.7 #CVFILE

Purpose: Converts the argument to type file.
Arguments: char
Result: file
Constraints: The argument must be valid for a file.

2.3.10.8 #CVFSET

Purpose: Converts the argument to type fset.
Arguments: char
Result: fset
Constraints: The argument must be valid for a fileset.

2.3.10.9 #CVHEXA

Purpose: Converts the argument to type hexa.
Arguments: char
Result: hexa
Constraints: The argument must be valid for a hexadecimal value.

2.3.10.10 #CVLIB

Purpose: Converts the argument to type lib.
Arguments: char
Result: lib
Constraints: The argument must be valid for a library.

2.3.10.11 #CVNAME

Purpose: Converts the argument to type name.
Arguments: char
Result: name
Constraints: The argument must be valid for a name.

2.3.10.12 #CVOUTPUT

Purpose: Converts the argument to type output.
Arguments: char
Result: output
Constraints: The argument must be valid for an output.

GCL Programmer's Manual

2-114 47 A2 36UJ Rev05

2.3.10.13 #CVRFILE

Purpose: Converts the argument to type rfile.
Arguments: char
Result: file
Constraints: The argument must be valid for a remote file.

2.3.10.14 #CVSTAR

Purpose: Converts the argument to type star.
Arguments: char
Result: star
Constraints: The argument must be valid for a star-name.

2.3.10.15 #CVVOLUME

Purpose: Converts the argument to type volume.
Arguments: char
Result: volume
Constraints: The argument must be valid for a volume.

2.3.10.16 #DECTOHEXA

Purpose: Converts a decimal value to its hexadecimal
representation.

Arguments: dec
Result: hexa
Constraints: none
Examples: #DECTOHEXA(123) --> 7B

#DECTOHEXA(6348) --> 18CC

2.3.10.17 #FB15

Purpose: Converts the argument to its binary value; the result is
a character string of length 2.

Arguments: dec
Result: char2
Constraints: Ranges from -32768 through +32767. Binary values

may be passed to processors as options but not as
arguments of a GCL procedure. See Paragraph
"SYSTEM".

GCL Basic Language

47 A2 36UJ Rev05 2-115

2.3.10.18 #FB31

Purpose: Converts the argument to its binary value; the result is
a character string of length 4.

Arguments: dec
Result: char4
Constraints: Ranges from -2147483648 through +2147483647.

Binary values may be passed to processors as options
but not as arguments of a GCL procedure. See
Paragraph "SYSTEM".

2.3.10.19 #HEXATODEC

Purpose: Converts a hexadecimal value to its decimal
representation.

Arguments: hexa
Result: dec
Constraints: none
Examples: #HEXATODEC(7B) --> 123

#HEXATODEC(18CC) --> 6348

2.3.10.20 #RJD

Purpose: Right justifies the decimal number arg1 by inserting
leading zeros so that the resulting length is arg2.

Arguments: (dec, dec)
Result: dec
Constraints: number of significant digits of arg1 <= arg2 <= 31
Examples: #RJD(123,6) --> 000123

#RJD(3,7) --> 0000003

GCL Programmer's Manual

2-116 47 A2 36UJ Rev05

2.3.11 File Handling Builtins

2.3.11.1 #EFN

Purpose: Extracts the external file name from a file description.
Arguments: file
Result: file
Constraints: none
Examples: if #WD is A.B.

#EFN(.C) --> A.B.C
#EFN(F234:K100:MS/D500) --> F234

2.3.11.2 #EXPANDPATH

Purpose: Expands file name its full path name using working
directory.

Arguments: file
Result: file
Constraints: none
Examples: if #WD is A.B

#EXPANDPATH(.D) --> A.B.D
#EXPANDPATH(<H.I.J) --> A.H.I.J
#EXPANDPATH(A.B.C) --> A.B.C
#EXPANDPATH(A:T:MS/D500) --> A:T:MS/D500

2.3.11.3 #FSITE

Purpose: Extracts the name of the site from a remote file
description.

Arguments: rfile
Result: char
Constraints: none
Examples: #FSITE($HERE:A.B.C) --> HERE

#FSITE(C.D.E) --> ''

2.3.11.4 #SUBFILE

Purpose: Extracts the name of the subfile from a file description.
Arguments: file
Result: char
Constraints: none
Examples: #SUBFILE(A.B..SF) --> SF

#SUBFILE(A.B.C.D) --> ''

47 A2 36UJ Rev05 3-1

 3. Command Management

GCL procedures are defined by basic commands. These procedures are then
submitted to the MAINTAIN_COMMAND (MNCMD) processor for compilation
to be executable.

MAINTAIN_COMMAND also has other functions such as creating, updating,
storing and retrieving such procedures. The ON_ERROR command specifies
whether MAINTAIN_COMMAND is to abort or to continue execution of
commands if a Severity 3 occurs.

3.1 Creating Procedures

A procedure is created in one of two ways:

• The CREATE command allows entering a procedure into the workspace. Each
line is compiled as it is entered in incremental compilation. The SAVE
command then stores the procedure in a binary library.

• The Full Screen Editor or the Text Editor allows entering a source procedure and
storing it in a source language library. The COMPILE command then compiles
the procedure in non-incremental (bulk) compilation and stores it in a binary
library.

GCL Programmer's Manual

3-2 47 A2 36UJ Rev05

3.2 Binary and Source Libraries, Workspace

Compiled procedures are stored in a binary (BIN) library. Source procedures are
stored in a source language (SL) library. Commands BINLIB and SLLIB are used
to assign these libraries. For incremental compilation, a BIN library is always
required but not an SL library.

The workspace is an area in which to create and edit a procedure. Commands
which operate on the workspace are:

CREATE create a procedure in the workspace

LOAD load a procedure from the binary library into the
workspace

RESEQUENCE renumber the lines in the workspace

APPEND add lines at the end of the workspace

LEDIT modify a procedure in the workspace

CLEAR clear the contents of the workspace.

3.3 Updating Procedures

The tools for modifying a procedure are:

• the Line Editor (LEDIT): a relatively simple editor which operates on the
contents of the workspace.

• the Full Screen Editor (FSE): a powerful editor which operates on an SL library
member and which can only be used from a terminal with full-screen facilities.

• the Text Editor (EDIT): a powerful editor which operates on an SL library
member and which can be used at any terminal.

Command Management

47 A2 36UJ Rev05 3-3

3.4 Library Management

The following commands maintain libraries of command definitions:

• SAVE store contents of workspace in the BIN library

• RESAVE replace procedure in the BIN library with contents of
workspace

• COPY copy procedure(s) from one domain to another

• DELETE delete procedure(s) from the BIN library

• MODIFY_LOCK lock/unlock procedures of a domain in the BIN library

• COUNT_ENTRIES count procedure names, aliases and prompts of a
domain in the BIN library

• LIST display names of procedures in domain

• PRINT display contents of procedure(s)

• STATUS display current libraries and other status information

• COMPILE compile procedure(s) from source text(s)

• DECOMPILE create source text(s) from compiled procedure(s)

• DOMAIN specify the current domain

• DISPLAY display format of command(s)

• DISPLAY_SCREEN display screens attached to a procedure.

• MERGE merge two existing domains into a single one.

GCL Programmer's Manual

3-4 47 A2 36UJ Rev05

3.5 Domains

A domain is a set of commands (compiled procedures) available at a certain level
of processing.

EXAMPLES :

Domain IOF System level
Domain LIBMAINT_SL Processor level
Domain FSE Processor level

❑

All the commands of a domain are kept in the same subfile in a binary library. The
subfile name is identical to the domain name. User created commands can be
either additions to an existing domain or belong to a new user domain.

3.5.1 Definition of Domains

A domain is a set of compiled commands or procedures stored in a BIN library
member. Commands of a domain specifically belong and pertain to a particular
processor.

EXAMPLES OF DOMAINS :

• MAINTAIN_LIBRARY SL commands
• commands of MAINTAIN_COMMAND
• all commands accessible at system level.

❑

Command Management

47 A2 36UJ Rev05 3-5

3.5.2 Protection of Domains

MAINTAIN_COMMAND does not overwrite an existing domain. It updates the
domain by:

• creating a temporary member named CMDMGT_member and writing the records
to it

• deleting the previous version of the member
• and giving the name of the previous version to the temporary member.

If MAINTAIN_COMMAND is prevented by job abort or system crash from
completing writing successfully, the previous version of the domain still exists in
the library.

Even if this procedure were further disrupted, the user can always recover the
member under its temporary name. Enough space must therefore be reserved in the
library to hold both previous and current versions of the domain. To be on the safe
side, provide enough space for all the domains plus extra space to hold the largest
of them.

3.5.3 Adding to an Existing Domain

Creating new GCL procedures and storing them in an existing domain provides a
new operability to existing features of a domain such as concatenating procedures.

Domains which are associated with the system or system processors are all held in
the SYS.HBINLIB library. They are known as standard domains. A list of
standard domains where it may be useful to add new commands is given overleaf.

GCL Programmer's Manual

3-6 47 A2 36UJ Rev05

3.5.4 Standard Domains

Commands Standard Domains

System Level Commands
Directives

Main Operator Commands

IOF
H_NOCTX

MAIN
CREATE _FILE

CREATE_FILESET
CREATE_BFAS_NONE
CREATE_BFAS_SEQ
CREATE_LIBRARY

CREATE_LIBRARY_FBO
CREATE_UFAS_INDEXED

CREATE_UFAS_INDEXED_FBO
CREATE_UFAS_RANDOM
CREATE_UFAS_SEQ_REL

CREATE_UFAS_SEQ_REL_FBO
CRPMM

(under MAINTAIN_SYSTEM processor) CREATE_PMM_FUNCTION
CREATE_COMPLEX_GENERATION

(in MAIN domain) CXGEN
CREATE_NETGEN
(in MAIN domain) NG

CREATE_SYSTEM_FILE
(under GIUF processor)

TL_DAT
TL_DSA
TL_FW

TL_GCOS
TL_GSF

TL_OLTD
TL_SESSION

Fileset Utilities in driven mode DMU_FILESET
DEBUG PCF
DPAN DPAN

DPANCRTR
DPANPDTR

EDIT EDIT
ENTER_GIUF GIUF
ENTER_RMOS RMOS

FSE (system level) F_S_E
FSE (under the LIBMAINT_SL processor) FSE

Expression "$*$BRK" (break) H_BREAK
CREATE (under CMDMGT processor) H_GCL

IQS IQS
MAINTAIN_AUDIT7 AUDIT7

MAINTAIN_CATALOG CATMAINT

Command Management

47 A2 36UJ Rev05 3-7

Commands Standard Domains

MAINTAIN_COMMAND CMDMGT
MAINTAIN_DATA_DESCRIPTION MAINTAIN_DATA_DESCRIPTION

MAINTAIN_FILE MAINTAIN_FILE
MAINTAIN_FILE_FBO

MAINTAIN_FORM FORMGEN
MAINTAIN_JAS MAINTAIN_JAS

MAINTAIN_LIBRARY BIN LIBMAINT_BIN
MAINTAIN_LIBRARY CU LIBMAINT_CU
MAINTAIN_LIBRARY LM LIBMAINT_LM
MAINTAIN_LIBRARY SL LIBMAINT_SL
MAINTAIN_LIBRARY SM LIBMAINT_SM

MAINTAIN_MFT MNMFTM
MAINTAIN_MIGRATION MAINTAIN_MIGRATION

MAINTAIN_STORAGE_MANAGER
(in full VOLSET FACILITY/QUOTAS

context) alias MAINTAIN_QUOTA

MNSTM_HPS

MAINTAIN_STORAGE_MANAGER
in basic VOLSET FACILITY context

MNSTM_AP

MAINTAIN_SYSTEM MAINTAIN_SYSTEM
MNSYSLM

(under MAINTAIN_SYSTEM processor)
MAINTAIN_SYSTEM_LM

MNSYSSM
(under MAINTAIN_SYSTEM processor)

MAINTAIN_SYSTEM_SM

MNTZS
(under MAINTAIN_SYSTEM processor)

MAINTAIN_TTYPEO_SET

MAINTAIN_EXTENDED_BACKUP MNXBUP
MAINTAIN_VOLUME MAINTAIN_VOLUME

MAINTAIN_VOLUME_FBO
MODIFY_PMM

(under MAINTAIN_PMM processor)
MODIFY_PMM

Maintain_system update commands MODIFY_SYSTEM_UNIT
PREPARE_TAPESET PREPARE_TAPESET

MODIFY
(under MAINTAIN_LIBRARY processor)

UPDATE

SCANNER SCANNER
SCAN_VCAM_TRACE SCAN_VCAM_TRACE

NOTE:
adding private commands or changing access (with MDA command of
MAINTAIN_COMMAND processor) on the commands of the H_GCL domain
can create garbage in the system.

GCL Programmer's Manual

3-8 47 A2 36UJ Rev05

3.5.5 Creating a New Command

Creating a new command in a standard domain allows personalizing a set of
commands. A set of frequently used commands can be set up for the user's
convenience and called by a simple name. For instance, a user-defined command
named MY_COBOL that calls the standard COBOL command but with pre-
defined values. These pre-defined values might include compiler options and/or
libraries to be used.

An example is a user procedure that:
• chains the COBOL and LINKER steps for a given source program:

− the only parameter of the command being the program name
− the procedure named COBOL-LINK

• and is processed as follows:
A either loaded into a member of an SL library using EDIT to be compiled by

MAINTAIN_COMMAND
B or created directly using the CREATE command within

MAINTAIN_COMMAND and saved.

Method A:

 C: EDIT;
 R: A
 I: PROC COBOL-LINK PROMPT='GCL EXAMPLE' ACCESS=-1
 HIDE=0 OPACC=4 OPHID=0 LOCK=0;
 I: KWD PRG_NAME TYPE=NAME LENGTH=31 NUMVAL=(1,5) ASK=3
 CONCEAL=0;
 I: LOCAL PRG_NAME 31;
 I: UNLIST PRG %PRG_NAME;
 I: COBOL %PRG XREF MAP LEVEL=NSTD;
 I: IF #GT(#SEV,2);
 I: LET # #CAT('COMPILATION OF PROGRAM ',%PRG,' ABORTED');
 I: ELSE;
 I: LINKER %PRG;
 I: ENDIF;
 I: ENDUNLIST;
 I: ENDPROC;
 I: /
 R: W(CMD)COBOL-LINK
 C: /
 .
 .
 .
 S: MAINTAIN_COMMAND;
 >>>14:55 CMDMGT...
 C: SLLIB MYOWN.SL4;
 C: BINLIB MYOWN.BIN5;
 C: DOMAIN IOF;
 C: COMPILE COBOL-LINK;

Command Management

47 A2 36UJ Rev05 3-9

Method B:

 S: MAINTAIN_COMMAND;
 >>>15:12 CMDMGT...
 C: DOMAIN IOF;
 C: BINLIB MYOWN.BIN5;
 C: CREATE;
 10: PROC COBOL-LINK PROMPT='GCL EXAMPLE' ACCESS=-1
 HIDE=0 OPACC=4 OPHID=0 LOCK=0;
 20: KWD PRG_NAME TYPE=NAME LENGTH=31 NUMVAL=(1,5) ASK=3
 CONCEAL=0;
 30: LOCAL PRG_NAME 31;
 40: UNLIST PRG %PRG_NAME;
 50: COBOL %PRG XREF MAP LEVEL=NSTD;
 60: IF #GT(#SEV,2);
 70: LET # #CAT('COMPILATION OF PROGRAM ',%PRG,' ABORTED');
 80: ELSE;
 90: LINKER %PRG;
 100: ENDIF;
 110: ENDUNLIST;
 120: ENDPROC;
 130: /
 C: SAVE;

Line numbers are supplied by the system. The name need not be supplied as this is
determined by the PROC statement.

Such a procedure belongs to a standard domain and cannot contain a SYSTEM
command. System calls are performed using the CALL command (CALL COBOL
or simply COBOL).

GCL Programmer's Manual

3-10 47 A2 36UJ Rev05

3.5.6 Creating a User Domain

Another type of user command is that created in association with a user program.
The user creates an interactive program which dialogs through the terminal using a
specific set of commands. This set of commands is a user domain which is
identified by a name given in the program.

An example of creating a new user domain using the DOMAIN command within
the MAINTAIN_COMMAND processor is as follows:

S: MAINTAIN_COMMAND;
>>>16:25 CMDMGT
 C: DOMAIN MYOWN1;
 C: BINLIB MYOWN.BIN5;
 C: CREATE;
 10: PROC;
 20: .
 .
 .
 130: ENDPROC;
 140: /
 C: SAVE;

The domain MYOWN1 will be created when the first procedure is saved in it.

Command Management

47 A2 36UJ Rev05 3-11

3.6 Libraries

Two kinds of binary libraries exist:

• The system library SYS.HBINLIB contains all the standard commands of all
standard domains. These standard commands are available to all users with
adequate access and operator rights established in the environment.
SYS.HBINLIB belongs implicitly to the library search path of all users.

• Private libraries containing user-defined commands are explicitly declared in the
user's binary search path using the MWINLIB command with the BIN option.

Different versions of the same procedure may be stored in different BIN libraries:

• at execution time, the system executes the first one it finds with the name
specified in the domain concerned

• the search is done according to the current BIN library search path.

Consequently, changing the BIN library search path can change the version of a
procedure executed in cases where identically named procedures exist in
different libraries.

GCL Programmer's Manual

3-12 47 A2 36UJ Rev05

3.7 Access Restrictions

3.7.1 Environments

In defining an environment, it is possible to restrict commands to certain classes of
users and also make commands transparent to certain classes of users.

An environment defines a set of commands which are accessible to a certain
project regardless of the domain to which the commands belong. The menu of a
user working under a certain project presents the visible part of the user's current
environment.

The System Administrator defines and personalizes the environments of users at
the installation. However, all users who have the appropriate binary library in their
binary search path, can define the PROC command without access rights with the
appropriate values for ACCESS and HIDE. See Paragraph "Proc" for the syntax of
the PROC command.

Creating and maintaining environments are treated in the System Administrator's
Manual.

3.7.2 Access Rights

The following commands manage access rights to commands:

DELETE_ENVT reserved for the System Administrator: delete an
existing environment

ENVT reserved for the System Administrator: define or
modify an environment

LIST_ACCESS list access rights of procedures of domain(s), see Note

LIST_ENVT list access rights of environment(s), see Note

LIST_PROJ list access rights of project(s), see Note

MODIFY_ACCESS reserved for the System Administrator: modify access
rights of procedures of a domain

PROJ reserved for the System Administrator: specify
project's access rights to environments

RESTORE_ACCESS reserved for the System Administrator: restore access
rights of procedures of a domain

Command Management

47 A2 36UJ Rev05 3-13

RESET reserved for the System Administrator: reset original
access rights of procedures of a domain

SAVE_ACCESS reserved for the System Administrator: save access
rights of procedures of a domain.

NOTE:
The LIST commands display information on objects specified in the command
itself and are available to all users.

GCL Programmer's Manual

3-14 47 A2 36UJ Rev05

3.8 Command Management Commands

The set of Command Management Commands are:

APPEND (AP)
BINLIB (LIB)
CLEAR (CLR)
COMPILE (COMP)
COPY (CP)
COUNT_ENTRIES
(COUNT)
CREATE (CR)
DECOMPILE (DEC)
DELETE (DL)
DELETE_ENVT
(DLENVT)
DISPLAY (D)
DISPLAY_SCREEN
(DSCRN)
DOMAIN

EDIT (ED)
ENVT
FSE
LEDIT (LED)
LIST (LS)
LIST_ACCESS (LSA)
LIST_ENVT (LSENVT)
LIST_PROJ (LSPROJ)
LOAD (LD)
MERGE
MODIFY_ACCESS (MDA)
MODIFY_LOCK (MDLK)

ON_ERROR
PRINT (PR)
PROJ
QUIT (Q)
RESAVE (RSV)
RESEQUENCE (RSQ)
RESET
RESTORE_ACCESS
(RSTA)
SAVE (SV)
SAVE_ACCESS (SVA)
SLLIB
STATUS (ST)

NOTE:
In the description of the commands, the mention SADMOPT appears.
SADMOPT is a CONFIG statement whose parameters declared at GCOS 7
system installation determine the visibility of the commands, namely:

 GCLKPROJ =NO: procedure owner is at user level of the
 procedure
=YES: procedure owner is at project level

 GCLKSADM =YES: extension of rights to SYSADMIN
=NO: no extension of rights to SYSADMIN

Command Management

47 A2 36UJ Rev05 3-15

3.8.1 APPEND (AP)

Purpose:

To add lines to a procedure definition in the workspace. The system automatically
prompts the user with the line number of the line to be entered.

Syntax:

{ APPEND }
{ }
{ AP }

 [INIT= dec6]
 [STEP={ 10 | dec6 }]

Description of Parameters:

INIT the number of the line after which the new lines are to
be added. If a line before the last line is specified in
INIT, all succeeding lines in the workspace are lost.
Default: the line number after the last line in the
workspace.

STEP the increment to be used for numbering the new lines.
Default: 10.

Constraints:

The command is processed as follows:

• each line is checked as it is entered
• if there is an error in the line, an error message appears and the same line

number is redisplayed to allow the user to correct the entry
• in novice mode, an extra prompt is displayed
• to terminate the APPEND sequence, enter / or & or [F in the first position on

the line.

GCL Programmer's Manual

3-16 47 A2 36UJ Rev05

Examples:

BINLIB BL1 assign binary library BL1

DOMAIN DMN1 current domain is DMN1

LOAD P1 load procedure P1 into workspace from BL1

AP call APPEND
 150:... }

 160:... } append new lines
 170:... }

 180:/ quit APPEND

RESAVE replace procedure P1 with new version

Command Management

47 A2 36UJ Rev05 3-17

3.8.2 BINLIB (LIB)

Purpose:

To assign a binary library:

• if a BIN library is already assigned, it is replaced by the new one specified
• if the BINLIB command is specified without a library name, the current BIN

library is deassigned.

Syntax:

{ BINLIB }
{ }
{ LIB }

 [LIBRARY= lib78]

Description of Parameter:

LIBRARY the name of a binary library
Default: the current binary library is deassigned.

Constraints:

If no binary library has been assigned, any attempt to operate on binary library
such as SAVE will cause an error.

Examples:

BINLIB BIN1 assign binary library BIN1

BINLIB deassign current binary library

GCL Programmer's Manual

3-18 47 A2 36UJ Rev05

3.8.3 CLEAR (CLR)

Purpose:

To delete the current contents of the workspace:

• the workspace is empty
• the previous contents cannot be recovered.

Syntax:

{ CLEAR }
{ }
{ CLR }

Parameters: None

Constraints: None

Example:

CLR clear workspace

Command Management

47 A2 36UJ Rev05 3-19

3.8.4 COMPILE (COMP)

Purpose:

To compile procedures from source texts in source language (SL) library members.
The compiled procedures are stored in the binary library as part of the current or
specified domain. The COMPILE command provides for non-incremental (bulk)
compilation.

Syntax:

{ COMPILE }
{ }
{ COMP }

 { PROC | PROCEDURES }= star62
 [DOMAIN= name31]
 [BRIEF={ 0 | bool }]
 [SOURCE={ 1 | bool }]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
 [OLDVERS={ 0 | bool }]

Description of Parameters:

PROCEDURES Names of the SL library members as a star-name.

DOMAIN Name of the domain.
Default: current domain defined by last DOMAIN
command.

BRIEF Extent of Reporting:
 =1 Only the lines in error are displayed
 =0 Default: All lines are displayed and next, the size of

the GCL procedure (space used in the assigned
BINLIB).
The size used in BINLIB depends on the parameter
SOURCE value, and it is given in the form:
PROCEDURE REAL SIZE (IN BYTES): 129456

GCL Programmer's Manual

3-20 47 A2 36UJ Rev05

SOURCE If source of procedures is stored in domain subfile of
BINLIB:

 =0 Not stored: so, PRINT, DECOMPILE and LOAD
commands cannot be used. Procedures of standard
domains delivered in the library SYS.HBINLIB are
compiled with SOURCE=0.

 =1 Default: Source lines are stored.

OLDVERS Maximum number of procedures or aliases for
different GCOS releases:

 =1 Maximum limited to 510 and format of the domain
subfile is the same as that for previous V3 and V5
releases.

 =0 Default: Maximum can exceed 510 fixed by GCL, in
which case, format of domain subfile differs from that
of previous releases, and will not be accepted by
previous versions of GCL and
MAINTAIN_COMMAND.

Constraints:

• COMPILE creates the new compiled procedures as part of:
− the current domain:

if the DOMAIN parameter is omitted
but specified in the DOMAIN command

− or the specified domain if the DOMAIN parameter is specified.

• Procedures are created with:
− names provided in the PROC commands that head each procedure definition
− and line numbers incrementing by 10 regardless of the line numbers used in

the source text.

• The owner of a procedure defined with LOCK depends on SADMOPT option:
− GCLKPROJ=NO: the user who compiled the procedure
− GCLKPROJ=YES: the project of the user who compiled the procedure.

• Entry proceeds as follows:
− the GCL statement in an SL member may be split into more than one source

line
− two or more GCL statements must not be present in the same source line
− a procedure containing errors or incomplete is flagged by an error message

and is not stored.

Command Management

47 A2 36UJ Rev05 3-21

• File assignment:
− BIN and SL libraries must both be assigned through BINLIB and SLLIB

commands before COMPILE is used
− the star-convention applies only to SL members of type CMD.

• Storage of the source code:
− the source code for compiled procedures with its executable code is stored in

SYS.HBINLIB
− the source code for procedures compiled in standard domains is not saved in

the binary library. See Section 10 of the GCOS 7-V6 System Administrator's
Manual for the list of standard domains.

Examples:

BINLIB BL1 assign binary library BL1

SLLIB SL1 assign source language library SL1

DOMAIN DMN current domain is DMN

COMP P2 compile text P2 and store it in domain DMN

COMP P1 BRIEF compile text P1, do not display

COMP A* compile all texts whose names begin with A

GCL Programmer's Manual

3-22 47 A2 36UJ Rev05

3.8.5 COPY (CP)

Purpose:

To copy one or more procedures of the input domain to the output domain.

Syntax:

{ COPY }
{ }
{ CP }

 { PROCEDURES } { star62 }
 { }={ }
 { PROC } {(name31 [name31]...)}

 OUTDOM=name31
 INDOM= name31
 [BRIEF={ 0 | bool }]
 [{ INLIB | IL }= lib78]
 [{ REPLACE | RPL }={ 0 | bool }]
- -
 [OLDVERS={ 0 | bool }]

Description of Parameters:

PROCEDURES Procedure(s) to be copied specified either with the
asterisk (star) convention or as a list of up to 8 names.

OUTDOM Name of the output domain

INDOM Name of the input domain

BRIEF Extent of Reporting:
 =1 Only the lines in error are displayed
 =0 Default: All lines are displayed.

INLIB Library in which the input domain is searched for.
Default: both input and output domains are in the same
library specified by the BINLIB command.

Command Management

47 A2 36UJ Rev05 3-23

REPLACE If procedure from input domain overwrites another
with the same name in the output domain.

 =1 Replace
 =0 Default: No replace.

BRIEF If names and characteristics of copied procedures are
displayed:

 =1 No display
 =0 Default: Display.

OLDVERS Maximum number of procedures or aliases for
different GCOS releases:

 =1 Maximum limited to 510 and format of domain subfile
is the same as that for previous V3 and V5 releases.

 =0 Default: Maximum can exceed 510 fixed by GCL, in
which case, format of domain subfile differs from that
of previous releases, and will not be accepted by
previous versions of GCL and
MAINTAIN_COMMAND.

Constraints:

• The output library must be assigned through the BINLIB command before
COPY is submitted.

• Domain requirements:
− both input and output domains must exist
− when INLIB is omitted, INDOM and OUTDOM must be different.

• Restrictions on procedures:
− the star convention applies only to procedure names not to aliases
− procedures locked in the output domain can only be replaced by their owners.

GCL Programmer's Manual

3-24 47 A2 36UJ Rev05

3.8.6 COUNT_ENTRIES (COUNT)

Purpose:

To count the number of procedure names, aliases and prompts of a given domain in
the current BIN library. All of the procedure and alias names are counted, even if
the procedures are hidden.

Syntax:

{ COUNT_ENTRIES }
{ }
{ COUNT }

 [{ DOMAIN | DOMAINS }= star62]

Description of Parameter:

DOMAINS Name(s) of the domain(s).
Default: current domain defined by the last DOMAIN
command.

Constraints:

The BIN library must be assigned through the BINLIB command before
COUNT_ENTRIES can be used.

Examples:

BINLIB BLIB assign binary library BLIB

COUNT_ENTRIES IOF count all procedure names, aliases and prompts
 of the IOF domain in the BIN library BLIB

Command Management

47 A2 36UJ Rev05 3-25

3.8.7 CREATE (CR)

Purpose:

To create a new procedure in the workspace. Lines are numbered automatically as
they are entered.

Syntax:

{ CREATE }
{ }
{ CR }

 [INIT={ 10 | dec6 }]
 [STEP={ 10 | dec6 }]

Description of Parameters:

INIT Line number to be assigned to the first line.
Default: 10

STEP the increment to be used for numbering each new line
entered.
Default: 10

Constraints:

The command is processed as follows:
• each line is checked as it is entered
• if there is an error in the line, an error message appears and the same line

number is redisplayed to allow the user to correct the entry
• in novice mode, an extra prompt is displayed
• to terminate the APPEND sequence, enter / or & or [F in the first position on

the line.

GCL Programmer's Manual

3-26 47 A2 36UJ Rev05

Examples:

BINLIB BLIB1 assign binary library BLIB1

DOMAIN DMN1 current domain is DMN1

CR
 10:PROC P1...
 20:... }

 30:... } new procedure definition
 40:... }

 50:/ leave CREATE

SAVE store workspace (procedure P1) in current domain

Command Management

47 A2 36UJ Rev05 3-27

3.8.8 DECOMPILE (DEC)

Purpose:

To decompile procedures from the binary library. The source texts produced by
DECOMPILE are stored as source language (SL) library members in the library
assigned by the SLLIB command.

Syntax:

{ DECOMPILE }
{ }
{ DEC }

 { PROC | PROCEDURES }= star62
 [DOMAIN= name31]
 [{ REPLACE | RPL }={ 0 | bool }]
 [PREFIX= name6]
- -
 [COMPACT={ 0 | bool }]

Description of Parameters:

PROCEDURES Names of the procedures as a star-name.

DOMAIN Name of the domain to which the procedures belong.
Default: current domain defined in last DOMAIN
command.

REPLACE Allows members being created in the SL library to
replace (overwrite) existing members with the same
names.

PREFIX Prefix used when creating the SL library members.
Default: Names of members are those of decompiled
procedures.

GCL Programmer's Manual

3-28 47 A2 36UJ Rev05

COMPACT How source statements are handled:

 =1 Source statements split into more than one line, will be
grouped together as a single record up to 255
characters.

 =0 Default: Each source line is written as a separate
record in the SL library.

Constraints:

• Restrictions on decompilation:
− A procedure compiled with SOURCE=0 in the COMPILE, SAVE or

RESAVE commands cannot be decompiled
− A locked procedure can be decompiled by:

 only its owner (User or Project)
 or a user of the SYSADMIN project.

• Restrictions on DECOMPILE:
− BIN and SL libraries must both be assigned through BINLIB and SLLIB

commands before DECOMPILE is used
− DECOMPILE cannot be used on procedures compiled in standard domains

since their source code is not saved in SYS.HBINLIB. See Section 10 of the
GCOS 7-V6 System Administrator's Manual for the list of standard domains.

− if a member of the same name exists in the SL library and is not type CMD,
an error is returned and no member is created

− if the member is type CMD, it is overwritten if REPLACE=1; otherwise a
message is issued and no member is created.

• DECOMPILE creates new SL members:
− in the SL library specified by the SLLIB command
− with names of the corresponding procedure headed by prefix and

truncated, if necessary, to 31 characters.
− in which the new source texts are given the same line numbers as those used

in the compiled texts (those obtained using the PRINT command of
MNCMD).

Examples:

BINLIB BL1 assign binary library BL1

SLLIB SL1 assign source language library SL1

DOMAIN D current domain is D

DEC P1 decompile procedure P1, store source in SL1

Command Management

47 A2 36UJ Rev05 3-29

3.8.9 DELETE (DL)

Purpose:

To delete one or more procedures of a domain in the current binary library.

Syntax:

{ DELETE }
{ }
{ DL }

 { PROCEDURES } { star62 }
 { }={ }
 { PROC } {(name31 [name31]...)}

 [DOMAIN= name31]
 [BRIEF={ 0 | bool }]

Description of Parameters:

PROCEDURES Star-name or list of up to eight procedure names.

DOMAIN Name of the domain.
Default: current domain defined in last DOMAIN
command.

BRIEF If names and characteristics of deleted procedures are
displayed:

 =1 No display
 =0 Default: Display.

Constraints:

• The BIN library in which the domain is stored must be assigned before using
DELETE; use the BINLIB command to assign it.

• A locked procedure can be deleted only by the User or Project that set the lock,
or by a user of project SYSADMIN if the CONFIG SADMOPT statement has
GCLKSADM=YES.

• Star-name applies only to procedure names, not to aliases.

GCL Programmer's Manual

3-30 47 A2 36UJ Rev05

Examples:

BINLIB BL1 assign binary library BL1

DOMAIN D current domain is D

DL P1 delete procedure P1 in domain D

DL * DMN delete all procedures in domain DMN

DL ^P* delete all procedures whose names do not begin with P

Command Management

47 A2 36UJ Rev05 3-31

3.8.10 DELETE_ENVT (DLENVT)

Purpose:

Reserved for the System Administrator: To delete an existing environment. If this
environment is not the default environment, then DELETE_ENVT deletes all
relations between the environment and all attached projects.

Syntax:

{ DELETE_ENVT }
{ }
{ DLENVT }

 ENVIRONMENT= name12

Description of Parameter:

ENVIRONMENT Name of environment.

Constraints:

• The specified environment must exist.

• It is not deleted if it is the default environment for a project. To delete it, use the
PROJ Command.

Example:

DLENVT ENVT1 delete environment ENVT1

GCL Programmer's Manual

3-32 47 A2 36UJ Rev05

3.8.11 DISPLAY (D)

Purpose:

To display the syntax of one or more procedures.

Syntax:

{ DISPLAY }
{ }
{ D }

 { PROCEDURES } { star62 }
 { }={ }
 { PROC } {(name31 [name31]...)}

 [DOMAIN= name31]

Description of Parameters:

PROCEDURES Star-name or list of up to eight procedure names.

DOMAIN Name of domain.
Default: current domain defined in last DOMAIN
command.

Constraints:

The BIN library in which the domain is stored must be assigned before using
DISPLAY; use the BINLIB command to assign it.

Examples:

BINLIB BL1 assign binary library BL1

DOMAIN D current domain is D

D X* display syntax of procedures beginning with X* in domain D

Command Management

47 A2 36UJ Rev05 3-33

3.8.12 DISPLAY_SCREEN (DSCRN)

Purpose:

To display screens attached to a GCL procedure without leaving MNCMD.

The characteristics and the rules for the display of the screens are similar to those
in interactive mode menu.

The command process execution is the same as the one executed when proc_name
followed by the "?" character is entered at prompting level of a processor, but the
execution stops after the display of the screens.

This command is used as a tool to debug the screens look (Keywords order,
prompts and notes choice).

Syntax:

{ DISPLAY_SCREEN }
{ DSCREEN }
{ DSCRN }
 { PROCEDURE | PROC } = name31
 [DOMAIN = name31]

Parameters:

PROCEDURE Name or alias of the procedure for which the screens
will be displayed.(NB: the procedure is not executed).

DOMAIN Name of the domain. Default: current domain defined
by last DOMAIN command.

Constraints:

• Restrictions on displaying_screen:

− a procedure compiled with SOURCE = 0 in the COMPILE, SAVE or
RESAVE cannot be displayed.

− a locked procedure can be displayed only by:

its owner (User or Project)

or a user under SYSADMIN project if GCLKSADM = YES appears in
SADMOPT.

GCL Programmer's Manual

3-34 47 A2 36UJ Rev05

− a procedure can be displayed only if the parameters of the statement PROC
allows the access and execution of the procedure for an IOF user:

OPACC: contains at least the value 5.

OPHID: the procedure is not hidden.

LIMITED_ACCESS = 0: the procedure can be called directly.

• Restrictions on DISPLAY_SCREEN:

− the procedure must exist in the specified or current domain.

− the BIN library must be assigned through BINLIB command before
DISPLAY_SCREEN is used and must be included in the GCL search path.

− DISPLAY_SCREEN cannot be used on procedures compiled in standard
domains since their source code is not saved in SYS.HBINLIB.

− COMFILE and PRTFILE of MNCMD must not be specified when
DISPLAY_SCREEN is used.

− DISPLAY_SCREEN cannot be used in BATCH mode.

− DISPLAY_SCREEN command is provided as a tool to help the user during
the development phase. If more than one user uses this command to display
the same procedure on a same BINLIB, at the same time, some error
messages may occur.

To suppress most of the constraints in the use of DISPLAY_SCREEN command,
we recommended to set the right values of OPACC, OPHID and
LIMITED_ACCESS only at the end of the development phase.

Example:

BINLIB BLIB1 assign binary library BLIBL1

DOMAIN MYDMN specify domain MYDMN

DSCRN MYPROC display the screens of MYPROC

Command Management

47 A2 36UJ Rev05 3-35

3.8.13 DOMAIN

Purpose:

To define the current domain. A domain is a set of related compiled procedures
stored in the binary library. In the library, the domain is a member and the
procedures are stored as sets of consecutive records within the member.

Syntax:

DOMAIN

 DOMAIN= name31

Description of Parameter:

DOMAIN Name of existing domain or a domain to be created.

Constraints:

None

Examples:

BINLIB BL1 assign binary library BL1

SLLIB SL1 assign source language library SL1

DOMAIN AA current domain is AA

COMPILE P1 compile source procedure P1, store in domain AA of
BL1

DOMAIN BB change current domain to domain BB

LOAD P1 load procedure P1 of domain BB in BL1 into
workspace

GCL Programmer's Manual

3-36 47 A2 36UJ Rev05

3.8.14 EDIT (ED)

Purpose:

To call the Text Editor, by means of which one can create or modify a source text
in the source language (SL) library.

Syntax:

{ EDIT }
{ }
{ ED }

Description of Parameters:

None

Constraints:

• The Text Editor can only be used on a source language (SL) library member
assigned through the SLLIB command.

• To use the Text Editor on a compiled procedure in a BIN library:
− first use the DECOMPILE command to convert the procedure to source text
− store it as an SL library member
− after the Text Editor session, create a new version of the procedure in the BIN

library through the COMPILE command.

The Text Editor is described in the Text Editor User's Guide.

Command Management

47 A2 36UJ Rev05 3-37

Examples:

BINLIB BLIB assign binary library BLIB

SLLIB SLIB assign source language library SLIB

DOMAIN D1 current domain is D1

DECOMPILE MYPROC decompile MYPROC from domain D, store text in SLIB

EDIT call Text Editor
 . }

 . } sequence of Text Editor requests
 . }

COMPILE MYPROC compile new version of MYPROC, store it in domain D1

GCL Programmer's Manual

3-38 47 A2 36UJ Rev05

3.8.15 ENVT

Purpose:

To create a new environment (or modify an existing one) by defining the families
to which the environment has access. ENVT can be used only by the System
Administrator.

Syntax:

ENVT

 ENVIRONMENT= name12

 FAMILIES=(dec3 [- dec3]...[dec3 [- dec3])

 [MODE={ CR | ADD | DL }]

Description of Parameters:

ENVIRONMENT Name of environment being defined or modified.

FAMILIES List of up to 32 families or ranges of families to which
the environment is granted access. A family could be
defined as a set of GCL procedures. The set of
families to which a procedure belongs is defined
through the ACCESS parameter of the PROC
command. Each family ranges from 1 through 256.

 COMMAND-A <----|
 |--- FAMILY-1 <---+
 COMMAND-B | <--| |
 | |
 | <--| |<-- ENVT-1
 | |
 COMMAND-C <----| |
 |--- FAMILY-2 |<--|
 | |
 COMMAND-D | <--| |<--|
 | |
 | <--| |
 | |<-- ENVT-2
 COMMAND-E <----|--- FAMILY-3 <---|
 | |
 COMMAND-F <----| |
 |
 COMMAND-G <-------- FAMILY-4 <---|

Command Management

47 A2 36UJ Rev05 3-39

MODE How specified families are processed for the
environment:

 =ADD Add families to the current environment.
 =DL Delete families from the current environment.
 =CR Default: Create or recreate the environment for the

families.

Constraints:

None

Examples:

ENVT ENVT-1 (1,2) create environment ENVT-1 with families 1,2

ENVT ENVT-2 (2,3,4) create environment ENVT-2 with families 2,3,4

ENVT MYENV 10 create environment MYENV with family 10

ENVT AA 0 delete environment AA

ENVT BB (1,2,3) create environment BB with families 1,2,3

ENVT BB (1,2,3,4) redefine environment BB with families 1,2,3,4

ENVT BB 5 redefine environment BB with family 5

ENVT BB (10-20, 33) ADD add families 10 to 20 and 33 to environment BB

GCL Programmer's Manual

3-40 47 A2 36UJ Rev05

3.8.16 FSE

Purpose:

To call the Full Screen Editor for creating or modifying a text member in an SL
(source language) library.

Syntax:

FSE

Parameters:

None

Constraints:

FSE can only be used on an SL library member; to use it on a compiled procedure
in a BIN library:

• first convert the procedure to source text through the DECOMPILE command
• store it as an SL library member; the SL library must be assigned through the

SLLIB command before FSE can be used
• after the FSE session, recompile the edited text through the COMPILE

command.

FSE is described in the Full Screen Editor User's Guide.

Examples:

BINLIB BLIB assign binary library BLIB

SLLIB SLIB assign source language library SLIB

DOMAIN D-2 current domain is D-2

DECOMPILE MYPROC decompile MYPROC of domain D-2 and store text in SLIB

FSE call Full Screen Editor
 . }

 . } sequence of Full Screen Editor requests
 . }

COMPILE MYPROC compile MYPROC from SLIB, store it in domain D-2

Command Management

47 A2 36UJ Rev05 3-41

3.8.17 LEDIT (LED)

Purpose:

To activate the Line Editor to operate on lines in the workspace:

• Insert (or replace) lines
• Delete lines
• Print lines
• Substitute strings in lines.

Syntax:

{ LEDIT }
{ }
{ LED }

Parameters:

None

Constraints:

Insert

To insert a line, enter the line number, a colon and the command to be inserted. If a
line of that number already exists, it is replaced by the new line. Each line is
checked as it is entered (same as in CREATE).

Example:

100: GOTO ERROR;

GCL Programmer's Manual

3-42 47 A2 36UJ Rev05

Delete

To delete a line, enter the line number and the letter D. To delete more than one
line, enter a list of line numbers, separated by commas, then D. To delete a range
of lines, enter the first and last line numbers, separated by a dash, then D.

Example:

10D delete line 10

20,50,80D delete lines 20, 50, and 80

20-80D delete all lines from 20 to 80

Print

To print a line, enter the line number and the letter P. To display more than one
line, enter a list of line numbers, separated by commas, then P. To display a range
of lines, enter the first and last line numbers, separated by a dash, then P.

Example:

40P print line 40

20,50,180P print lines 20, 50, and 180

20-180P print all lines from 20 to 180

Command Management

47 A2 36UJ Rev05 3-43

Substitute

To replace an existing character string with a new character string, use the
substitute request of format: S/old-string/new-string/

The S request must be preceded by the number(s) of the lines(s) to be substituted.
Every occurrence of the old string is replaced by the new string.

Example:

10S/ABCDE/xyz/ replace xyz with ABCDE in line 10
70,150,220S/AB/xy(z)/ replace xy(z) with AB in lines 70, 150, and 220
10-80S/;/22;/ replace 22; with character ; in lines 10 through 80

If P is entered at the end of the request, the line(s) involved in the substitution are
displayed after the substitution has been done.

Example:

190-400S/CALL A/CALL BB/P

Slash (/) is the delimiter in all of the examples above, however the following
characters also serve as delimiters:

 / ! # ' % & * = [] [. + - $; > < ()

To quit the Line Editor enter / (or & or [F).

Examples:

DOMAIN DMN1 current domain is DMN1

BINLIB BL assign binary library BL

LOAD MYPROC load procedure into workspace

LED call Line Editor
I:... }

I:... } sequence of Line Editor requests
I:... }

I:/ quit Line Editor

RESAVE save edited procedure

GCL Programmer's Manual

3-44 47 A2 36UJ Rev05

3.8.18 LIST (LS)

Purpose:

To display the names of all the procedures of a given domain in the current BIN
library dates of their most recent modification and the number of their commands.

Syntax:

{ LIST }
{ }
{ LS }

 { PROCEDURES } { * }
 { }={ star62 }
 { PROC } {(name31 [name31]...)}

 [{ DOMAIN | DOMAINS }= star62]

 [{ ENVT | ENVIRONMENT }= name12]

 [OPACC=(dec1 [dec1]...)]

 [OPHID=(dec1 [dec1]...)]

 [ACCESS=(dec3 [dec3]...)]

 [HIDE=(dec3 [dec3]...)]

 [OWNER={ 0 | bool }]

Description of Parameters:

PROCEDURES Star-name or list of up to eight procedure names.
Default: All procedures in the domain.

DOMAINS Name(s) of the domain(s).
Default: the current domain.

ENVIRONMENT Restricts list to the procedures accessible under the
specified environment.

OPACC Restricts list to the procedures having one of the
specified operator rights.

OPHID Restricts list to the procedures hidden under one of the
specified operator rights.

Command Management

47 A2 36UJ Rev05 3-45

ACCESS Restricts list to the procedures belonging to one of the
specified families.

HIDE Restricts list to the procedures hidden under one of the
specified families.

OWNER If the owner of the procedure defined with LOCK is to
appear:

 =1 If the command submitter is SYSADMIN and the
CONFIG statement SADMOPT specifies:

GCLKSADM=YES: the name of the user of the
procedure is displayed. If GCLKPROJ is specified,
the user is a Project and is prefixed with * in the list.

GCLKSADM=NO: OWNER is ignored.

If the submitter is an IOF user with access to the
procedure source, the owner appears in front of the
procedure name.

 =0 Default: No owner name displayed.

Constraints:

The BIN library must be assigned through the BINLIB command before LIST can
be used.

Examples:

BINLIB BLIB assign binary library BLIB

DOMAIN D current domain is D

LS list all procedures in the current domain D

LS PR* PAYROLL list procedures of PAYROLL with names beginning with PR

GCL Programmer's Manual

3-46 47 A2 36UJ Rev05

3.8.19 LIST_ACCESS (LSA)

Purpose:

To list the access rights and priorities of the procedures of a given domain stored in
the current BIN library.

Syntax:

{ LIST_ACCESS }
{ }
{ LSA }

 [{ PROCEDURES } { * }]
 [{ }={ star62 }]
 [{ PROC } {(name31 [name31]...)}]

 [{ DOMAIN | DOMAINS }= star62]

Description of Parameters:

PROCEDURES Star-name or list of up to eight procedure names.
Default: all procedures in the domain.

DOMAINS Name(s) of the domain(s).
Default: the current domain.

Constraints:

• Access rights are listed in the form of two arrays and a status character:
"+" means that the procedure is accessible
"-" means that it is accessible but hidden
" space " means that the procedure is not accessible.

• The BIN library must be assigned through the BINLIB command before
LIST_ACCESS can be used.

Command Management

47 A2 36UJ Rev05 3-47

Examples:

BINLIB BLIB assign binary library BLIB

DOMAIN D current domain is D

LSA list access rights and priorities of all procedures in domain D

LSA ^E* D2 list access rights and priorities of all procedures
 whose names do not begin with E, for domain D2

GCL Programmer's Manual

3-48 47 A2 36UJ Rev05

3.8.20 LIST_ENVT (LSENVT)

Purpose:

To display the list of the families to which the specified environment(s) have
access.

Syntax:

{ LIST_ENVT }
{ }
{ LSENVT }

 ENVIRONMENTS=star24

Description of Parameters:

ENVIRONMENTS Single environment or a star-name for a set of
environments to be displayed with the associated
families.

Constraints:

None

Examples:

LSENVT ENV1 list all families for environment ENV1

LSENVT E* list all families for environments whose names begin with E

Command Management

47 A2 36UJ Rev05 3-49

3.8.21 LIST_PROJ (LSPROJ)

Purpose:

To list the environments to which the specified project(s) have access.

Syntax:

{ LIST_PROJ }
{ }
{ LSPROJ }

 PROJECTS= star24

Description of Parameter:

PROJECTS Single project or a star-name for a set of projects.

Constraints:

None

Examples:

LSPROJ PT1 list all environments for project PT1

LSPROJ PT* list all environments for projects whose names begin with PT

GCL Programmer's Manual

3-50 47 A2 36UJ Rev05

3.8.22 LOAD (LD)

Purpose:

To load a procedure from the BIN library into the workspace.

Syntax:

{ LOAD }
{ }
{ LD }

{ PROC | PROCEDURE }= name31
[DOMAIN= name31]

Description of Parameters:

PROC Name of the procedure.

DOMAIN Name of the domain.
Default: current domain defined by DOMAIN
command.

Constraints:

• Restrictions on loading:
− a procedure compiled with SOURCE=0 in the COMPILE, SAVE or RESAVE

commands cannot be loaded
− a locked procedure can be loaded by:

only its owner (User or Project)
or a user under SYSADMIN project if GCLKSADM=YES appears in
SADMOPT.

• Restrictions on LOAD:
− the procedure must exist in the specified or the current domain
− the BIN library must be assigned through BINLIB command before LOAD is

used
− LOAD cannot be used on procedures compiled in standard domains since

their source code is not saved in SYS.HBINLIB. See Section 10 of the
GCOS 7-V6 System Administrator's Manual for the list of standard domains.

Command Management

47 A2 36UJ Rev05 3-51

Examples:

BINLIB BLIB1 assign binary library BLIB1
DOMAIN MYDMN specify domain MYDMN

LD MYPROC load procedure MYPROC into workspace

LEDIT call the Line Editor
 . }

 . } sequence of Line Editor requests
 . }

/ leave the Line Editor
RESAVE save new version of MYPROC in BIN library BLIB1
 of domain MYDMN

GCL Programmer's Manual

3-52 47 A2 36UJ Rev05

3.8.23 MERGE

Purpose:

To merge two existing domains into a single one by selectively copying the
procedures of the input domain into the output domain:

• input domain procedures absent in the output domain are copied into it
• input domain procedures replace those of identical names in the output domain.

Syntax:

MERGE

 OUTDOM=name31
 INDOM= name31
 [{ INLIB | IL }= lib78]
- - - - - - - - - - - - - - - - - - -
 [OLDVERS={ 0 | bool }]

Description of Parameters:

OUTDOM Name of the output domain.

INDOM Name of the input domain.

INLIB Library in which the input domain is searched for.
Default: both input and output domains are in the same
library specified by the BINLIB command.

OLDVERS Maximum number of procedures or aliases for
different GCOS releases:

 =1 Maximum limited to 510 and format of domain subfile
is the same as that for previous V3 and V5 releases.

 =0 Default: Maximum can exceed 510 fixed by GCL, in
which case, format of domain subfile differs from that
of previous releases, and will not be accepted by
previous versions of GCL and
MAINTAIN_COMMAND.

Command Management

47 A2 36UJ Rev05 3-53

Constraints:

Restrictions on MERGE:

• the output library must be assigned through the command BINLIB before
MERGE can be used

• the output domain must exist in the output library
• when INLIB is omitted, INDOM and OUTDOM must be different.

Examples:

BINLIB BLIB1 assign binary library BLIB1

MERGE IOF IOF_TEMP1 copy all procedures of domain
 IOF_TEMP1 into domain IOF

MERGE IOF IOF_TEMP1 .INLIB1 same as above; IOF_TEMP1 is in
 library .INLIB1

GCL Programmer's Manual

3-54 47 A2 36UJ Rev05

3.8.24 MODIFY_ACCESS (MDA)

Purpose:

Reserved for the System Administrator: To modify the access rights or priorities of
procedures of the current BIN library.

Syntax:

{ MODIFY_ACCESS }
{ }
{ MDA }

 { PROCEDURES } { star62 }
 { }={ }
 { PROC } {(name31 [name31]...)}

 [DOMAIN= name31]
 [PRTY= dec3]
 [ACCESS=(nnn [- nnn]...[nnn [- nnn]])]
 [ACCESS_MODE={ DL | ADD | RPL }]
 [HIDE=(nnn [- nnn]...[nnn [- nnn]])]
 [HIDE_MODE={ ADD | DL | RPL }]
 [OPACC=(dec1 [dec1]...)]
 [OPACC_MODE={ DL | ADD | RPL }]
 [OPHID=(dec1 [dec1]...)]
 [OPHID_MODE={ ADD | DL | RPL }]
- -
 [NO_ACCESS=(nnn [- nnn]...[nnn [- nnn]])]
 [NO_OPACC=(dec1 [dec1]...)]
 [LIMITED_ACCESS= bool]

Description of Parameters:

PROCEDURES Star-name or list of up to eight procedure names.

DOMAIN Name of the domain.
Default: current domain defined in last DOMAIN
command

PRTY New priority for the procedure.

Command Management

47 A2 36UJ Rev05 3-55

ACCESS List of up to 32 family numbers (nnn) or ranges of
family numbers (nnn-nnn):
− to be added to or deleted from the procedure
− or to replace the current list in the procedure,

depending on the value specified by
ACCESS_MODE.

ACCESS_MODE Specifies how families nnn or family ranges nnn-nnn
in ACCESS are used:

 =ADD Add to current list of the procedure.
 =RPL Replace current list of the procedure.
 =DL Default: Delete from list of the procedure.

HIDE List of up to 32 families nnn or family ranges nnn-nnn:
− from which the procedure is hidden or no longer

hidden
− or which is to replace the current list in the

procedure, depending on the value specified by
HIDE_MODE.

HIDE_MODE Specifies how the list of families or family ranges
given in HIDE is to be processed:

 =DL Procedure is no longer to be hidden.
 =RPL Replace current list in the procedure by list given in

HIDE.
 =ADD Default: Procedure is hidden from the list given in

HIDE.

OPACC List of up to 8 operator rights:
− to be added to or deleted from the procedure
− or which are to replace the current list in the

procedure, depending on the value specified by
OPACC_MODE.

OPACC_MODE Specifies how operator rights given in OPACC are
used:

 =ADD Add operator rights to the procedure.
 =RPL Replace operator rights in the current list in the

procedure.
 =DL Default: Delete operator rights from the procedure.

OPHID List of up to 8 operator rights:
− from which the procedure is hidden or no longer

hidden
− or which is to replace the current list in the

procedure, depending on the value specified by
OPHIDE_MODE.

GCL Programmer's Manual

3-56 47 A2 36UJ Rev05

OPHIDE_MODE Specifies how operator rights given in OPHID are
used:

 =DL Procedure is no longer to be hidden for the operator
rights.

 =RPL Replace the current list in the procedure.
 =ADD Default: Procedure to be hidden for the listed operator

rights.

NO_ACCESS List of up to 32 family numbers nnn or ranges of
family numbers nnn-nnn to be suppressed in the
procedure.

HIDE List of up to 32 family numbers nnn or ranges of
family numbers nnn-nnn for which the procedure is to
be hidden.

OPHID List of up to 8 operator rights from which the
procedure is to be hidden.

NO_OPACC List of up to 8 operator rights to be suppressed for the
procedure.

LIMITED_ACCESS Determines how the procedure is called. It applies
only to users who do not belong to SYSADMIN
project. There is no link between attribute
LIMITED_ACCESS and environments. A command
having this attribute is not directly accessible for all
projects, except SYSADMIN.
Values:

 =0 Procedure may be accessed directly
 =1 Procedure must be called by another procedure.

Constraints:

• Restrictions on MODIFY_ACCESS:
− the BIN library must be assigned through the BINLIB command before

MODIFY_ACCESS can be used.
− star-name applies only to procedure names not to aliases.

• The following parameters are mutually exclusive:
− ACCESS and NO_ACCESS
− OPACC and NO_OPACC.

Command Management

47 A2 36UJ Rev05 3-57

Examples:

BINLIB BLIB assign binary library BLIB

DOMAIN D specify current domain D

MODIFY_ACCESS MYPROC NO_ACCESS=(5,6) HIDE=(1,2)

 modify access for MYPROC procedure, suppressing
 access rights for families 5 and 6, and hiding the
 procedure for families 1 and 2

MDA P PRTY=200 modify priority of procedure P

MDA E1 NO_OPACC=4 suppress operator right 4 for procedure E1

MDA E2 OPHID=4 hide operator right 4 for procedure E2

MDA P1 NO_ACCESS=(1 3 10-12) HIDE=(5 20-22)

 suppress access for families 1, 3, 10, 11, and 12;
 hide for families 5, 20, 21, and 22

GCL Programmer's Manual

3-58 47 A2 36UJ Rev05

3.8.25 MODIFY_LOCK (MDLK)

Purpose:

To lock or unlock procedures of a given domain in the current BIN library.

Syntax:

{ MODIFY_LOCK }
{ }
{ MDLK }

 { PROCEDURES } { star62 }
 { }={ }
 { PROC } {(name31 [name31]...)}

 [DOMAIN= name31]
 NEWVALUE={ LOCK | UNLOCK }

Description of Parameters:

PROCEDURES Star-name or list of up to eight procedure names.

DOMAIN Name of the domain.
Default: current domain defined in last DOMAIN
command.

NEWVALUE sets or resets locking of the specified procedure(s)
 =LOCK lock
 =UNLOCK unlock.

Constraints:

• The BIN library must be assigned through the BINLIB command
MODIFY_LOCK can be used.

• A locked procedure can be unlocked by:
− only the User or Project that set the lock
− or a user of SYSADMIN project if GCLKSADM=YES appears in the

SADMOPT.

Command Management

47 A2 36UJ Rev05 3-59

Examples:

BINLIB BLIB assign binary library BLIB

MODIFY_LOCK (CBL FOR77) DOMAIN=IOF LOCK

 lock procedures CBL and FOR77 of domain
IOF in
 BIN library BLIB

GCL Programmer's Manual

3-60 47 A2 36UJ Rev05

3.8.26 ON_ERROR

Purpose:

To specify the action of MAINTAIN_COMMAND if an error of Severity 3 occurs
during the execution of a command.

Syntax:

- -

ON_ERROR

 [ACTION={ DEFAULT | ABORT | CONTINUE | RESET }]

Description of Parameters:

ACTION the action requested when a Sev 3 error occurs:

 =ABORT MAINTAIN_COMMAND is terminated.

 =CONTINUE execution of commands continues; the next statement,
whether of the current record (line) or of the following
record (line), is executed; error is ignored.

 =RESET the Sev 3 error is released and execution of commands
continues.

 =DEFAULT Default: Execution of commands continues:
− the error is ignored
− the statements of the current record (line) are

skipped
− the statements of the following record (line) are

executed.

Constraints:

None

Command Management

47 A2 36UJ Rev05 3-61

Examples:

ON_ERROR ACTION=ABORT
if a Sev 3 error occurs, abort
MAINTAIN_COMMAND

ON_ERROR RESET if a Sev 3 error occurs, release the error indicator and
continue execution of commands

GCL Programmer's Manual

3-62 47 A2 36UJ Rev05

3.8.27 PRINT (PR)

Purpose:

To print one or more procedures of a given domain stored in the current BIN
library. PRINT operates only on compiled procedures stored in the current BIN
library. To print all or part of the workspace, use the P request of the Line Editor
(LEDIT) command.

Syntax:

{ PRINT }
{ }
{ PR }

 { PROCEDURES } { star62 }
 { }={ }
 { PROC } {(name31 [name31]...)}

 [DOMAIN= name31]

Description of Parameters:

PROCEDURES Star-name or list of up to eight procedure names.

DOMAIN Name of the Domain.
Default: current domain defined in last DOMAIN
command.

Constraints:

• Restrictions on printing:
− a procedure compiled with SOURCE=0 in the COMPILE, SAVE or RESAVE

commands cannot be printed
− a locked procedure can be printed by:

only its owner (User or Project)
or a user of SYSADMIN project if GCLKSADM=YES appears in SADMOPT.

• Restrictions on PRINT:
− the BIN library must be assigned through BINLIB command before PRINT is

used
− PRINT cannot be used on procedures compiled in standard domains since

their source code is not saved in SYS.HBINLIB. See Section 10 of the
GCOS 7-V6 System Administrator's Manual for the list of standard domains.

Command Management

47 A2 36UJ Rev05 3-63

Examples:

BINLIB BLIB assign binary library BLIB

DOMAIN D specify current domain D

PR P1 print procedure P1, current domain D

PR A1 AA print procedure A1, domain AA

PR * DMN1 print all procedures in domain DMN1

GCL Programmer's Manual

3-64 47 A2 36UJ Rev05

3.8.28 PROJ

Purpose:

Reserved for the System Administrator: To specify the environment(s) to which a
project has access.

Syntax:

PROJ PROJECT= name12

 ENVIRONMENTS=(name12 [name12]...)

 [MODE={ CR | ADD | DL }]

Description of Parameters:

PROJECT Name of project accessing the environment(s).

ENVIRONMENTS List of up to 32 names of environments to which the
project is to have access or no longer have access if
MODE=DL. The first name in the list is the default
environment for the project.

ENVIRONMENTS=0: Not allowed if MODE=ADD or
DL, specifies an environment which allows access to
all families.

MODE Defines how access rights are to be processed:
 =ADD Adds new access rights to the project.
 =DL Suppresses access rights attached to the project.
 =CR Default: Defines or redefines the project's access

rights.

Command Management

47 A2 36UJ Rev05 3-65

Constraints:

The environment(s) must exist before they can be specified in PROJ. To create an
environment, use ENVT. The general project structure is as follows:

USER PROJECT ENVIRONMENT
default default

Examples:

PROJ PR1 (ENV1, ENV2, ENV3) project PR1 has access to ENV1
 (default), ENV2, ENV3

PROJ AA E1 project AA has access to environment E1

PROJ P3 0 project P3 has access to all families

GCL Programmer's Manual

3-66 47 A2 36UJ Rev05

3.8.29 QUIT (Q)

Purpose:

To leave the Command Management processor.

Syntax:

{ QUIT }
{ }
{ Q }

Parameters:

None

Constraints:

If the contents of the workspace have been modified since loaded, and no SAVE or
RESAVE has been made, the system asks whether the user wants to save what has
been edited. Reply YES or NO as appropriate.

Example:

QUIT or Q leave MAINTAIN_COMMAND

Command Management

47 A2 36UJ Rev05 3-67

3.8.30 RESAVE (RSV)

Purpose:

To replace an existing procedure in the BIN library with the contents of the
workspace:

• the new procedure is created with the same name as the old one
• if no procedure of that name exists, RESAVE creates a new one.

Syntax:

{ RESAVE }
{ }
{ RSV }

 [FORCE={ 0 | bool }]

 [DOMAIN= name31]

 [SOURCE={ 1 | bool }]

- - - - - - - - - - - - - - - - - - -

 [OLDVERS={ 0 | bool }]

Description of Parameters:

FORCE An incomplete or erroneous procedure saved using
FORCE is not executable; it can only be further edited
and resaved.

 =1 Save the procedure even if it is incomplete or contains
errors

 =0 Discard the procedure.

DOMAIN Default: current domain defined by last DOMAIN
command.

GCL Programmer's Manual

3-68 47 A2 36UJ Rev05

SOURCE If source of procedures is stored in domain subfile of
BINLIB:

 =0 Not stored: so, PRINT, DECOMPILE and LOAD
commands cannot be used. Procedures of standard
domains delivered in the library SYS.HBINLIB are
compiled with SOURCE=0.

 =1 Default: Source lines are stored.

OLDVERS Maximum number of procedures or aliases for
different GCOS releases:

 =1 Maximum limited to 510 and format of domain subfile
is the same as that for previous V3 and V5 releases.

 =0 Default: Maximum can exceed 510 fixed by GCL, in
which case, format of domain subfile differs from that
of previous releases, and will not be accepted by
previous versions of GCL and
MAINTAIN_COMMAND.

Constraints:

• Restrictions on RESAVE:
− if FORCE is omitted, incomplete or erroneous procedures are discarded
− the BIN library must be assigned through the BINLIB command before

RESAVE can be used.

• RESAVE creates a new procedure as part of:
− the specified domain if DOMAIN parameter is specified
− the current domain if DOMAIN is omitted.

• The owner of a procedure defined with LOCK depends on SADMOPT options:
− GCLKPROJ=NO: the user who compiled the procedure
− GCLKPROJ=YES: the project of the user who compiled the procedure.

• Storage of the source code:
− the source code for compiled procedures with its executable code is stored in

SYS.HBINLIB
− the source code for procedures compiled in standard domains is not saved in

the binary library. See Section 10 of the GCOS 7-V6 System Administrator's
Manual for the list of standard domains.

Command Management

47 A2 36UJ Rev05 3-69

Examples:

BINLIB BL1 assign binary library BL1

DOMAIN DMN current domain is DMN

LD P1 load procedure P1 into workspace

LEDIT call the Line Editor
 . }

 . } sequence of Line Editor requests
 . }

/ leave the Line Editor

RSV resave procedure P1 in BIN library BL1

GCL Programmer's Manual

3-70 47 A2 36UJ Rev05

3.8.31 RESEQUENCE (RSQ)

Purpose:

To renumber the lines in the workspace.

Syntax:

{ RESEQUENCE }
{ }
{ RSQ }

 [INIT={ 10 | dec6 }]

 [STEP={ 10 | dec6 }]

Description of Parameters:

INIT Number to be assigned to the first line.
Default: 10

STEP Increment to be used for numbering each new line.
Default: 10

Constraints:

None

Examples:

RSQ lines are numbered in tens

RSQ 100 lines are numbered in tens from 100

RSQ 100 20 lines are numbered in twenties from 100

Command Management

47 A2 36UJ Rev05 3-71

3.8.32 RESET

Purpose:

Reserved for the System Administrator: To reset the original access rights and
priorities of procedures in the current domain stored in the current BIN library.

Syntax:

RESET

 { PROCEDURES } { star62 }
 { }={ }
 { PROC } {(name31 [name31]...)}

 [DOMAIN= name31]

Description of Parameters:

PROCEDURES Star-name or list of up to eight procedure names.

DOMAIN Name of the domain.
Default: current domain defined by DOMAIN
command.

Constraints:

• The BIN library must be assigned through the BINLIB command RESET can be
used

• Star-name applies only to procedure names not to aliases.

Examples:

BINLIB BLIB assign binary library BLIB

DOMAIN D specify the current domain D

RESET DC* reset rights and priorities for procedures
 whose names begin with DC

RESET * reset access rights and priorities for all procedures

GCL Programmer's Manual

3-72 47 A2 36UJ Rev05

3.8.33 RESTORE_ACCESS (RSTA)

Purpose:

Reserved for the System Administrator and restricted to users of the SYSADMIN
project: To restore the access rights previously saved in an SL library member by
SAVE_ACCESS, of all procedures of a domain.

Syntax:

{ RESTORE_ACCESS }
{ }
{ RSTA }

 { star62 }
 DOMAINS={ }
 {(name31 [name31]...)}

 [PREFIX= name6]
 [LIST={ NEW | ALL | NO }]

Description of Parameters:

DOMAINS Star-name or list of up to eight domain names.

PREFIX Prefix used when creating the SL library members.

LIST Specifies the information to be listed:
 =ALL List all procedures of the domain and indicate for each

procedure if access rights have been restored.
 =NO No list produced.
 =NEW Default: List all new procedures in the domain that

did not exist on last SAVE_ACCESS.

Constraints:

BIN and SL libraries must both be assigned through BINLIB and SLLIB
commands before RESTORE_ACCESS can be used.

Command Management

47 A2 36UJ Rev05 3-73

Examples:

BINLIB BL1 assign binary library BL1

SLLIB SL1 assign source library SL1

RESTORE_ACCESS (IOF,H_NOCTX) PREFIX=JUNE24

 restore access rights of domains IOF and
 H_NOCTX saved with command SAVE_ACCESS
 under the names JUNE24IOF and JUNE24H_NOCTX

GCL Programmer's Manual

3-74 47 A2 36UJ Rev05

3.8.34 SAVE (SV)

Purpose:

To store the contents of the workspace as a compiled procedure in the current BIN
library. The compiled procedure is given the procedure name specified in the
PROC command which heads the procedure.

Syntax:

{ SAVE }
{ }
{ SV }

 [FORCE={ 0 | bool }]

 [DOMAIN= name31]

 [SOURCE={ 1 | bool }]

- - - - - - - - - - - - - - - - - - -

 [OLDVERS={ 0 | bool }]

Description of Parameters:

FORCE An incomplete or erroneous procedure saved using
FORCE is not executable; it can only be further edited
and resaved.

 =1 Save the procedure even if it is incomplete or contains
errors.

 =0 Discard the procedure.

DOMAIN Default: current domain defined by last DOMAIN
command.

Command Management

47 A2 36UJ Rev05 3-75

SOURCE If source of procedures is stored in domain subfile of
BINLIB:

 =0 Not stored: so, PRINT, DECOMPILE and LOAD
commands cannot be used. Procedures of standard
domains delivered in the library SYS.HBINLIB are
compiled with SOURCE=0.

 =1 Default: Source lines are stored.

OLDVERS Maximum number of procedures or aliases for
different GCOS releases:

 =1 Maximum limited to 510 and format of domain subfile
is the same as that for previous V3 and V5 releases.

 =0 Default: Maximum can exceed 510 fixed by GCL, in
which case, format of domain subfile differs from that
of previous releases, and will not be accepted by
previous versions of GCL and
MAINTAIN_COMMAND.

Constraints:

See RESAVE.

Examples:

BINLIB BL1 assign binary library BL1

DOMAIN DMN current domain is DMN

CREATE create new procedure
 10:PROC P1 ...
 20:...
 30:...
 40:/

SV save procedure P1 in domain DMN of BIN library BL1

GCL Programmer's Manual

3-76 47 A2 36UJ Rev05

3.8.35 SAVE_ACCESS (SVA)

Purpose:

Restricted to users of the SYSADMIN project: To save the access rights of all
procedures of a domain in a member of an SL library

• defined by parameters of the basic GCL command PROC:

 ACCESS
 HIDE

LIMITED_ACCESS
LOCK

OPACC
PRIORITY

• and possibly modified by the commands MODIFY_ACCESS or
MODIFY_LOCK.

Syntax:

{ SAVE_ACCESS }
{ }
{ SVA }

 { star62 }
 DOMAINS={ }
 {(name31 [name31]...)}

 [PREFIX= name6]
 [REPLACE={ 0 | bool }]

Description of Parameters:

DOMAINS Star-name or as list of up to eight domain names.

PREFIX Prefix used when creating the SL library members.
When omitted, names of members are those of
domains.

REPLACE Specifies if members being created overwrite those
with the identical names in the SL library:

 =1 Overwrite
 =0 (default) No overwrite.

Command Management

47 A2 36UJ Rev05 3-77

Constraints:

• Restrictions on SAVE_ACCESS:
− BIN and SL libraries must both be assigned through BINLIB and SLLIB

commands before SAVE_ACCESS is used.
− if a member of the same name exists in the SL library and is not type CMD,

an error is returned and no member is created
− if the member is type CMD, it is overwritten if REPLACE=1; otherwise a

message is issued and no member is created.

• SAVE_ACCESS creates new SL members:
− in the SL library specified by the SLLIB command
− with names of the corresponding domain headed by prefix and truncated, if

necessary, to 31 characters:

Examples:

BINLIB BL1 assign binary library BL1

SLLIB SL1 assign source library SL1

SAVE_ACCESS (IOF,H_NOCTX) PREFIX=JUNE24

 save access rights of all procedures of domains IOF
 and H_NOCTX; create SL members whose names
 are JUNE24IOF and JUNE24H_NOCTX

GCL Programmer's Manual

3-78 47 A2 36UJ Rev05

3.8.36 SLLIB

Purpose:

To assign an SL library:

• if an SL library is already assigned, it is replaced by the library specified in
SLLIB

• if the SLLIB command is specified without a library name, the current SL
library is deassigned.

Syntax:

SLLIB

 [LIBRARY= lib78]

Description of Parameter:

LIBRARY Name of an SL library.
Default: the current SL library.

Constraints:

If no SL library is assigned, any attempt to perform an operation which involves an
SL library such as FSE will result in an error.

Examples:

SLLIB SLIB1 assign SL library SLIB1

SLLIB SL2:K152:MS/D500 assign uncataloged SL library

SLLIB deassign current SL library

Command Management

47 A2 36UJ Rev05 3-79

3.8.37 STATUS (ST)

Purpose:

To display information on the current context: assigned BIN and SL libraries, the
name of the current domain, the number of lines in the workspace, and the current
value of ON_ERROR.

Syntax:

{ STATUS }
{ }
{ ST }

Parameters:

None

Constraints:

None

Example:

STATUS or ST display current context
 C: ST
 SLLIB : LINT.CUR.SLLIB$CAT (BVU630:MS/B10)
 BINLIB : LINT.TEST.TBINLIB$CAT (BVU630:MS/B10)
 WORKSPACE IS EMPTY
 CURRENT DOMAIN : CMDMGT
 ON_ERROR ACTION = DEFAULT

GCL Programmer's Manual

3-80 47 A2 36UJ Rev05

❑

47 A2 36UJ Rev05 4-1

 4. Access to GCOS Files through GCL

The set of GCOS File Access commands allows:

• executing GCL directives

• and accessing GCOS 7

− UFAS sequential, relative and indexed disk files
− libraries
− and tape files.

See Paragraph "GCOS File Access Commands" for details on these GCL
commands.

4.1 Files

Each file to be accessed must have been:

• previously declared by the DECLARE_FILE command which associates:
− the efn (External File Name) of the file
− with its sfn (Symbolic File Name) given by the user

• and opened by the OPEN_FILE command which specifies whether the file is to
be read from or written to.

An sfn once assigned, cannot be assigned to another file until a RELEASE_FILE
command is executed. Further access to the file is made by simply specifying its
sfn. All other commands except EXIST_FILE, use the sfn to refer to the file.

GCL associates:

• the sfn of the file
• with its ifn (Internal File Name) which serves as the interface between GCL and

the access method.

Up to 800 files may be simultaneously declared. The file remains open:

• until a CLOSE_FILE or RELEASE_FILE command is executed
• or until job termination.

GCL Programmer's Manual

4-2 47 A2 36UJ Rev05

4.2 Command Parameters

Unless otherwise stated, input parameters may receive either a literal value or the
contents of a GCL variable. GCL variable names must be different from the
keyword names of GCL procedures.

4.3 Completion Codes

The completion codes of all command functions (except
LIST_DECLARED_FILE) are returned to the variable specified in the STATUS
parameter. This variable must be declared with TYPE=DEC and LENGTH=3,
except for the EXIST_FILE command where the declaration is TYPE=CHAR and
LENGTH=32.

Parameter STATUS is mandatory in batch mode. In interactive mode, if STATUS
is omitted, abnormal completion codes will be displayed on the user's terminal.

4.4 Address Format

For UFAS sequential and relative disk files, the address format specified in the
ADDR parameter must be the logical record number. For UFAS indexed disk files,
in direct access mode ACCMODE=D, only the key may be used. For libraries and
tape files, direct access is not authorized. The first logical record is record 1.

4.5 Temporary Files

Since most files to be accessed already exist, their organization is defined and will
be automatically retrieved. Temporary files or sequential tape files will be created
as UFAS sequential files with RECSIZE=255, CISIZE=2048, and RECFORM=FB.
Subfiles of SL libraries will be created. Dummy files are not supported.

4.6 Types of Access

The files to be processed depend on the type of access:

SEQUENTIAL For access to:
− UFAS sequential, indexed and relative disk files
− libraries
− and tape files.

DIRECT For UFAS sequential, indexed and relative disk files.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-3

4.7 Access Requirements

UFAS disk files, libraries, and tape files have specific access requirements:

UFAS Sequential and Relative Disk Files

Records can be accessed sequentially or directly by using the record address. The
record address is the logical record number of the record in the file. However, for
UFAS sequential disk files, direct access mode is not authorized for files with
RECFORM=VB.

UFAS Indexed Disk Files

Records can be accessed sequentially or directly by using the key. The key is part
of the record, and its location and length are characteristics of the file. No two
records can have the same key. Both primary and secondary keys are supported. A
record may have up to 32767 characters. The key up to 251 characters.

When a UFAS indexed file with secondary keys is created with OUTPUT
processing mode, it must first be closed and sorted with the command "SRTIDX
filename", before being opened in UPDATE processing mode.

Libraries

The access mode must be sequential.

The commands MODIFY_RECORD and DELETE_RECORD are not authorized.
In input mode, SSF format is not returned to the user. In output mode, no SSF is
created.

For non-SL libraries, the access mode must be READ, SPREAD, or ALLREAD.
Only read operations are authorized.

Tape Files

The access mode must be sequential.

The commands POINT_RECORD, DELETE_RECORD, and MODIFY_RECORD
are not authorized.

GCL Programmer's Manual

4-4 47 A2 36UJ Rev05

4.8 Break Processing

GCOS file access commands can be used to create GCL procedures that can be
executed in batch mode or in interactive mode. The Break key or equivalent can be
used, in interactive mode to interrupt these procedures, provided the procedures
can manage the interrupts. The capability to do so is given to the GCL procedures
when they are created if required.

Two system variables are available:

#BRKPMODE (BReaK Processing MODE)

Type=char
Length=1

The #BRKPMODE variable may be set to 0 or 1 by using the following
commands:

LET #BRKPMODE={ 0 | 1 }

or

MP BRKPMODE={ 0 | 1 }

The setting of PRKPMODE determines which can and does manage the Break
interrupts:
• if 1 is specified, GCL procedures
• if 0 is specified, the GCL processor.

#BRK (BReaK)

Type=char
Length=1

#BRK may be set to 0 or 1. The value 0 indicates that no interrupt request has
been processed.

In the following example:
• the user sets and resets the #BRK variable to 0 with "LET #BRK 0."
• #BRK is set to 1 when the following series of actions occur:

1) variable #BRKPMODE has been set to 1
2) the Break key or equivalent has generated an interrupt request
3) the "???" message has been answered by "/" or "IT".

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-5

4.9 Example of Procedure Using Break Processing

The PRINT_SOURCE procedure accesses GCOS files through GCL. It prints the
contents of a sequential file in batch or interactive mode at either the "S:" or "C:"
level. It also manages Break interrupts: the variable #BRKPMODE is set to 1 at
the start of the procedure. If a Break interrupt occurs (if #BRK=1),
PRINT_SOURCE stops reading the file, closes then releases it, sets #BRKPMODE
to 0, and ends. If a GCOS file access command terminates abnormally, the
EDFERR command is used to print the error message.

COMM '**';
COMM ' PROCEDURE PRINT_SOURCE ';
COMM 'PRINT SEQUENTIAL FILES IN SOURCE FORMAT OR ';
COMM 'LIBRARY MEMBERS. RECORDS GREATER THAN 255 ';
COMM 'BYTES WILL BE TRUNCATED. ';
COMM '**';
PROC NAME=(PRINT_SOURCE,PRS)
 PROMPT='PRINT A SOURCE FILE';
KWD NAME=FILE_NAME
 TYPE=FILE
 MSSG='ERRONEOUS VALUE FOR FILE NAME'
 PROMPT='FILE TO BE PRINTED';
LOCAL ST DEC 5;
LOCAL WAZ CHAR 255;
LOCAL LG DEC 5;
LOCAL NM CHAR 15;
LET #BRKPMODE 1;
LET #BRK 0;
LET NM '';
LET # #CAT('FILE:',%FILE_NAME);
LET # '';
DCLF FIL,FILE=%FILE_NAME,ACCESS=READ,STATUS=ST;
IF #NE(%ST,0);
 EDFERR SFN=FIL,COMMAND='DCLF',ERROR=%ST
 GOTO RESET_BREAK;
ENDIF;
OPENF FIL,PMD=IN,ACCMODE=S,STATUS=ST;
IF #NE(%ST,0);
 EDFERR SFN=FIL,COMMAND='OPENF',ERROR=%ST;
 GOTO RELEASE_FILE;
ENDIF;
LABEL LOOP;
IF #EQ(#BRK,1);
 GOTO CLOSE_FILE;

GCL Programmer's Manual

4-6 47 A2 36UJ Rev05

ENDIF;
RDREC FIL,WA=WAZ,LENGTH=LG,STATUS=ST;
IF #OR(#EQ(%ST,0) #EQ(%ST,1));
 LET # #SUBSTR(%WAZ,1,%LG);
 GOTO LOOP;
ENDIF;
IF #NE(%ST,2);
 EDFERR SFN=FIL,COMMAND='RDREC',ERROR=%ST;
ENDIF;
LABEL CLOSE_FILE;
CLOSEF FIL,STATUS=ST;
LABEL RELEASE_FILE;
RLSF FIL,STATUS=ST;
LABEL RESET_BREAK;
LET #BRKPMODE 0;
LET #BRK 0;
ENDPROC;

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-7

4.10 GCOS File Access Commands

GCOS File Access commands are:

• BUILD_RECORD move a GCL variable into the buffer attached to a file.

• CLOSE_FILE close an opened file referenced by its sfn.

• DECLARE_FILE declare a file by associating an sfn with a file
description.

• DELETE_RECORD delete a record in UFAS disk files.

• EDIT_FILE_ERROR display information about the last error on a file.

• EXIST_FILE determine whether a file exists.

• LIST_DECLARED_FILE
display information about the user's declared files.

• MODIFY_RECORD overwrite a record in a UFAS disk file.

• OPEN_FILE open disk files, tape files, and libraries in the specified
mode.

• POINT_RECORD point to a specific record in a disk file.

• READ_RECORD read a record from a declared and opened file, and
store it in a buffer or GCL variable.

• RELEASE_FILE release a file referenced by its sfn.

• RETURN_DECLARED_FILE
retrieve the description of a declared file.

• SPLIT_RECORD extract a character string from an input buffer and store
it in a GCL variable.

• WRITE_RECORD get a record from a buffer or GCL variable and write it
to a file.

GCL Programmer's Manual

4-8 47 A2 36UJ Rev05

4.10.1 BUILD_RECORD (BREC)

Purpose:

Moves a GCL variable into the buffer attached to a UFAS sequential, relative, or
indexed disk file, library, or tape file.

Syntax:

{ BUILD_RECORD }
{ }
{ BREC }

 SFN = name16

 [WA = name31]

 INDEX = dec5

 [LENGTH = dec5]

 [STATUS = name31]

Parameters:

SFN the symbolic file name of the file.

WA the working area. The working area specified is the
name of a global or local GCL variable. The record is
retrieved from the variable and stored in the buffer
attached to the file. WA is mandatory if INDEX is not
equal to 0.

INDEX the rank (position) in the buffer where the first
character of the retrieved character string will be
stored. INDEX values must be in the range 0 to 32767
(the maximum record length). The first character is
character number 1. If INDEX=0, the buffer is
initialized with blanks; in this case, WA and LENGTH
are not used.

LENGTH the length of the string to be moved to the buffer. If
LENGTH is not specified and WA is specified,
LENGTH defaults to the length of the working area. If
INDEX is equal to 0, LENGTH defaults to the length
of the buffer.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-9

STATUS the name of a GCL variable that will receive the
completion code for BUILD_RECORD. The variable
must be declared with TYPE=DEC and LENGTH=3.
Completion codes for BUILD_RECORD are:

Normal:
0: Normal execution of command.

Abnormal:
256: Wrong symbolic file name.
260: File not opened.
264: Wrong processing mode.
265: System error: argument error.
266: System error: file structure not available.
270: System error: buffer pointer not available.
278: Overflow.

Constraints:

• If LENGTH is greater than the data length in WA, the buffer is padded with
blanks.

• If INDEX + LENGTH is greater than the size of the buffer, completion code 278
("Overflow") is returned and the command is not executed.

• STATUS must be used in Batch Mode.

Examples:

BREC SFN=MYFILE0002 WA=BRECWAVAR INDEX=50 LENGTH=250
 STATUS=BRECVAR
 {move string in GCL variable BRECWAVAR to buffer
 attached to MYFILE0002; string is 250 characters
 long; first character to be written to rank
 (position) 50 of buffer; GCL variable BRECVAR will
 receive completion code}

BREC SFN=MYFILE0018 INDEX=0 STATUS=BRECVAR
 {the buffer attached to MYFILE0018 will be initialized
 with blanks; GCL variable BRECVAR will receive the
 completion code}

BREC SFN=MYFILE0018 WA=BRECWAVAR INDEX=0 LENGTH=4000
 STATUS=BRECVAR
 {same as above; WA and LENGTH are ignored}

GCL Programmer's Manual

4-10 47 A2 36UJ Rev05

4.10.2 CLOSE_FILE (CLOSEF)

Purpose:

Closes an opened file referenced by its symbolic file name (SFN).

Syntax:

{ CLOSE_FILE }
{ }
{ CLOSEF }

 { (name16 [name16] ...) }
 SFN = { }
 { star36 }

 [STATUS = name31]

Parameters:

SFN a symbolic file name, a list of up to 6 SFNs, or a name
using the star convention.

STATUS the name of a GCL variable that will receive the
completion code for CLOSE_FILE. The variable must
be declared with TYPE=DEC and LENGTH=3.
Completion codes for CLOSE_FILE are:

Normal:
0: Normal execution of command.

Abnormal:
256: Wrong symbolic file name.
257: No declared file.
260: File not opened.
265: System error: argument error.
266: System error: file structure not available.
270: System error: buffer pointer not available.
300: Abnormal return code from system primitive.

Constraints:

STATUS must be used in Batch Mode.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-11

Examples:

CLOSEF SFN=(MYFILE0008,MYFILE0020) STATUS=CLOSEFVAR
 {close the files identified by SFNs MYFILE0008 and
 MYFILE0020; GCL variable CLOSEFVAR will receive the
 completion code}

CLOSEF SFN=MYFILE* STATUS=CLOSEFVAR
 {as above, but for all SFNs beginning with MYFILE}

CLOSEF * STATUS=CLOSEFVAR
 {as above, but for all user SFNs}

GCL Programmer's Manual

4-12 47 A2 36UJ Rev05

4.10.3 DECLARE_FILE (DCLF)

Purpose:

Declares UFAS sequential, relative, or indexed disk files; libraries; or sequential
tape files by associating a symbolic file name (SFN) with the file description.
Does not check whether the file exists and does not assign it.

Syntax:

{ DECLARE_FILE }
{ }
{ DCLF }

 SFN = name16

 FILE = file78

 ACCESS = { WRITE|READ|SPREAD|SPWRITE|ALLREAD|RECOVERY }

 [SHARE = { NORMAL|ONEWRITE|FREE|DIR|MONITOR }]

 [STATUS = name31]

Parameters:

SFN symbolic file name to be associated with the file. The
other commands will specify this declared SFN to
access the file.

FILE formal description of the file, according to the
following syntax:

 external_file_name[..subfile_name][:media:dvc][$attributes]

ACCESS the access mode for the program. The allowed values
are:

 = WRITE allows input, output, append, and update modes. This
is the default value (see Constraints) .

 = READ allows input mode only.

 = SPREAD same as READ, but additionally the current program
has exclusive file control, regardless of the SHARE
value.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-13

 = SPWRITE same as WRITE, but additionally the current program
has exclusive file control, regardless of the SHARE
value.

 = ALLREAD no output allowed; only simultaneous input

 = RECOVERY applies only to cataloged files. The program has
exclusive access for file recovery purposes.

SHARE the maximum allowable level of concurrent file access:

 = NORMAL one writer or several readers.

 = ONEWRITE one writer and several readers.

 = FREE no restriction on access.

 = DIR applies only to libraries. Each member can be
concurrently accessed by several readers or one writer.

 = MONITOR several readers. The accesses to the files are checked
and synchronized when necessary by GAC (General
Access Control)

For a library file, cataloged or uncataloged, when the subfile name is specified, the
default value for SHARE is DIR. If the file is not a library file, the default value
for SHARE is NORMAL (see Constraints).

The sharing of a file becomes effective once the file is assigned. A file processed
by GCL is:

• assigned by the command OPEN_FILE.

• deassigned explicitly by commands CLOSE_FILE and RELEASE_FILE, or
implicitly at the end of a step or at the end of a job. When a file is deassigned at
the end of a step, it remains deassigned until the next command that accesses the
file (READ_RECORD, WRITE_RECORD, etc.) is executed.

GCL Programmer's Manual

4-14 47 A2 36UJ Rev05

Example:

S: DCLF F1... +----------------------------+
S: | F1 not assigned |
S: OPENF F1... +----------------------------+
S: | |
S: | F1 assigned |
S: | |
S: CLOSEF F1... +----------------------------+
S: | F1 deassigned |
S: OPENF F1... +----------------------------+
S: | F1 assigned |
S: MNLIB SL... +----------------------------|
C: | F1 deassigned |
C: RDREC F1... +----------------------------|
C: | F1 assigned |
C: / +----------------------------+
S: | F1 deassigned |
S: +----------------------------+

STATUS the name of a GCL variable that will receive the
completion code for DECLARE_FILE. The variable
must be declared with TYPE=DEC and LENGTH=3.
Completion codes for DECLARE_FILE are:

Normal:
0: Normal execution of command.

Abnormal:
256: Wrong symbolic file name.
265: System error: argument error.
266: System error: file structure not available.
267: Declared files table overflow.
272: System error: semaphore for file not available.
282: Functionality not available now.
300: Abnormal return code from system primitive.

Constraints:

• For cataloged files, the default values for parameters ACCESS and SHARE can
be specified in the catalog. When this is the case, both the default values for
DECLARE_FILE and those values given explicitly are either ignored or
interpreted in a particular way, according to the method of access. The effective
values of ACCESS and SHARE are discussed in the Data Management Utilities
User's Guide.

• SHARE=MONITOR may be used only if ACCESS=READ or SPREAD or
ALLREAD.

• STATUS must be used in Batch Mode.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-15

Examples:

DCLF SFN=MYFILE0003 FILE=TESTFILE$RES ACCESS=READ
 SHARE=NORMAL STATUS=DCLFVAR
 {declare resident file TESTFILE with SFN MYFILE0003;
 access input only; maximum level concurrent access is
 one writer or several readers; DCLFVAR will receive
 completion code}

DCLF SFN=MYFILE0014 FILE=CHECKFILE:VOL5:MS/D500 SHARE=ONEWRITE
 STATUS=DCLFVAR
 {declare file CHECKFILE with SFN MYFILE0014; ACCESS
 defaults to WRITE; SHARE specifies one writer and
 several readers; DCLFVAR will receive the completion
 code}

GCL Programmer's Manual

4-16 47 A2 36UJ Rev05

4.10.4 DELETE_RECORD (DLREC)

Purpose:

Deletes a record in UFAS disk files.

Syntax:

{ DELETE_RECORD }
{ }
{ DLREC }

 SFN = name16

 [KEY = char251]

 [ADDR = dec10]

 [STATUS = name31]

 [HEXA_KEY = char252]

Parameters:

SFN the symbolic file name of the file.

KEY key value of the record to be deleted. If no record
exists with the given key value, an error occurs. KEY
is used with UFAS indexed disk files only; these files
must be opened in direct access mode
(ACCMODE=D).

ADDR for UFAS relative disk files, the address of the record
to be deleted. The file must be opened in direct access
mode (ACCMODE=D).

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-17

STATUS the name of a GCL variable that will receive the
completion code for DELETE_RECORD. The
variable must be declared with TYPE=DEC and
LENGTH=3.

Completion codes for DELETE_RECORD are:

Normal:
0: Normal execution of command.

Abnormal:
256: Wrong symbolic file name.
260: File not opened.
261: No current record.
264: Wrong processing mode.
265: System error: argument error.
266: System error: file structure not available.
270: System error: buffer pointer not available.
273: Wrong parameter (FIRST, KEY, HEXA_KEY or
 ADDR) for this organization.
279: Unauthorized command for this type of file.
280: Wrong access mode.
281: ADDR or FIRST unauthorized.
300: Abnormal return code from system primitive.

HEXA_KEY key value in hexadecimal of the record to be deleted.
If no record exists with the given key value, an error
occurs. HEXA_KEY is used with UFAS indexed disk
files only; these files must be opened in direct access
mode (ACCMODE=D).

GCL Programmer's Manual

4-18 47 A2 36UJ Rev05

Constraints:

• The file must be opened in UP (update) processing mode.

• KEY, HEXA_KEY and ADDR are mutually exclusive.

• UFAS Sequential Disk Files

The last issued command must have been a successful READ_RECORD. The
record retrieved by READ_RECORD is deleted. KEY, HEXA_KEY and
ADDR are not allowed.

• UFAS Relative Disk Files

If ADDR is specified, DELETE_RECORD deletes the record whose direct
address is given. If ADDR is not specified, the last issued command must have
been a successful READ_RECORD; the record retrieved by READ_RECORD
is deleted; the current record pointer is unchanged. (There is no new current
record.)

• UFAS Indexed Disk Files

If KEY or HEXA_KEY is specified, DELETE_RECORD deletes the record
whose key is given. Only the primary key may be used, even though the file
may have been declared as indexed with a secondary key. If neither KEY nor
HEXA_KEY is specified, the last issued command must have been a successful
READ_RECORD; the record retrieved by READ_RECORD is deleted; the
current record pointer is unchanged (no new current record).

Maximum key length when using HEXA_KEY is 126 bytes.

• Libraries and Tape Files

DELETE_RECORD is not authorized.

• STATUS must be used in Batch Mode.

Examples:

DLREC SFN=MYFILE0002 ADDR=874 STATUS=DLRECVAR
 {delete record at address 874 in UFAS relative disk
 file identified by SFN MYFILE0002; GCL variable
 DLRECVAR will receive the completion code}

DLREC SFN=MYFILE0020 KEY=4007832215 STATUS=DLRECVAR
 {delete the record whose key is 4007832215 in UFAS
 indexed disk file identified by SFN MYFILE0020; GCL
 variable DLRECVAR will receive the completion code}

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-19

4.10.5 EDIT_FILE_ERROR (EDFERR)

Purpose:

Returns information on the last error that has occurred on a file. The information is
displayed on the active output device (user's terminal or SYSOUT), or, if the WA
parameter is specified, is placed in the working area. This command cannot be
used after the commands EXIST_FILE, LIST_DECLARED_FILE,
RETURN_DECLARED_FILE, and EDIT_FILE_ERROR.

Syntax:

{ EDIT_FILE_ERROR }
{ }
{ EDFERR }

 [SFN = name16]

 [COMMAND = char10]

 [ERROR = dec3]

 [WA = name31]

 [STATUS = name31]

Parameters:

SFN the symbolic file name of the file. If SFN is specified,
EDFERR will return the symbolic file name. If both
SFN and ERROR are specified, the SFN and the edited
form of the given ERROR value are displayed on the
active output device (user's terminal or SYSOUT). If
SFN is specified and ERROR is not specified,
EDFERR returns the SFN and the completion code (in
edited format) associated with the last command
applied to the file.

COMMAND specifies a message provided by the user. This
message will be displayed on the active output device.

GCL Programmer's Manual

4-20 47 A2 36UJ Rev05

ERROR specifies a completion code. When ERROR is present,
EDFERR will return the literal corresponding to the
given completion code. If, for example, ERROR=300
and SFN are specified, EDFERR will return the SFN
and the G4 value in edited format. The following G4
value is in edited format:

RC=98051813 -> GCL 5, CDERR

WA the working area. WA is the name of a local or global
GCL variable, declared with TYPE=CHAR and
LENGTH=126. If specified, WA will contain a
character string that is the concatenation of all strings
returned to the working area. This character string
stored in WA will have the following format, with
blanks present when information is not supplied:

 SFN COMMAND ERROR G4
 (edited format) (edited format)
 --- --------- --------------- ---------------
16 chars 10 chars 70 chars 30 chars

If WA is not specified, the information will be
displayed on the active output device (user's terminal
or SYSOUT).

STATUS the name of a GCL variable that will receive the
completion code for EDIT_FILE_ERROR. The
variable must be declared with TYPE=DEC and
LENGTH=3. Completion codes for
EDIT_FILE_ERROR are:

Normal:
0: Normal execution of command.

Abnormal:
256: Wrong symbolic file name.
265: System error: argument error.
266: System error: file structure not available.

Constraints:

EDFERR cannot be used after commands EXIST_FILE,
LIST_DECLARED_FILE, RETURN_DECLARED_FILE, and
EDIT_FILE_ERROR.

STATUS must be used in Batch Mode.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-21

Examples:

EDFERR SFN=MYFILE0008 COMMAND=WRREC_ERR ERROR=300
 STATUS=EDFERRVAR
 {SFN, G4 value in edited format, and "WRREC_ERR"
 message will be displayed on the active output
 device; GCL variable EDFERRVAR will receive the
 completion code for EDFERR}

EDFERR ERROR=256 WA=EDFERRWAVAR STATUS=EDFERRVAR
 {literal corresponding to completion code 256 will be
 written to the working area EDFERRWAVAR; variable
 EDFERRVAR will receive the completion code for EDFERR}

GCL Programmer's Manual

4-22 47 A2 36UJ Rev05

4.10.6 EXIST_FILE (EXISTF)

Purpose:

Determines whether a file exists.

Syntax:

{ EXIST_FILE }
{ }
{ EXISTF }

 FILE = file78

 [STATUS = name31]

Parameters:

FILE the file description of the file, using the GCL syntax:

 external_file_name[..subfile_name][:media:dvc][$attributes]

STATUS the name of a GCL variable that will receive the result
of the command. The variable must be declared with
TYPE=CHAR and LENGTH=32. The result of
EXIST_FILE is:

 Byte 1 Bytes 2-32 State
 ------ ---------- -----
 0 Spaces The file does not exist.

 1 Spaces The file exists.

 2 Abnormal return code Unknown state.
 in edited format.

Constraints:

STATUS must be used in Batch Mode.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-23

Examples:

EXISTF FILE=TESTFILE$RES STATUS=EXISTFVAR
 {EXISTF determines whether resident file TESTFILE
 exists, and writes the result to GCL variable
 EXISTFVAR}

EXISTF FILE=TESTFILE..SUBTEST2:VOL1:MS/D500 STATUS=EXISTFVAR
 {EXISTF determines whether subfile SUBTEST2 of file
 TESTFILE exists, and writes the result to EXISTFVAR}

GCL Programmer's Manual

4-24 47 A2 36UJ Rev05

4.10.7 LIST_DECLARED_FILE (LSDCLF)

Purpose:

Displays information about declared user files. This information is displayed on
the active output device, either the user's terminal or SYSOUT.

Syntax:

{ LIST_DECLARED_FILE }
{ }
{ LSDCLF }

 { (name16 [name16] ...) }
 [SFN = { star36 }]
 { * }

 [FILE = bool]

 [IFN = bool]

 [STATE = bool]

 [ORG = bool]

 [PMD = bool]

 [ACCMODE = bool]

Parameters:

SFN a symbolic file name, a list of up to 6 SFNs, a name
using the star convention, or a " * " (default) for all
SFNs.

FILE the file description to be displayed. If FILE=1, the
description is displayed; if FILE=0, it is not displayed.

IFN specifies whether the Internal File Name is to be
displayed. If IFN=1, the IFN is displayed; if IFN=0, it
is not displayed.

STATE specifies whether the file state (OPENED, CLOSED,
or UNKNOWN) is to be displayed. If STATE=1, the
file state is displayed; if STATE=0, it is not displayed.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-25

ORG specifies whether the file organization
(SEQUENTIAL, INDEXED, RELATIVE, QUEUED,
or NONE) is to be displayed. (QUEUED is for
libraries.) If ORG=1, the organization is displayed; if
ORG=0, it is not displayed.

PMD specifies whether the processing mode (INPUT,
OUTPUT, APPEND, UPDATE, or NONE) is to be
displayed. If PMD=1, the processing mode is to be
displayed; if PMD=0, it is not displayed.

ACCMODE specifies whether the access mode (SEQUENTIAL,
DIRECT, or NONE) is to be displayed. If
ACCMODE=1, the access mode is displayed; if
ACCMODE=0, it is not displayed.

Constraints:

• If only SFN is specified, then all information about the files is displayed.
• If SFN and at least one other parameter are specified, all other unspecified

parameters are ignored.
• Completion codes for LIST_DECLARED_FILE are the following:

Normal:
0: Normal execution of command.

Abnormal:
257: No declared file.
265: System error: argument error.
266: System error: file structure not available.

Examples:

LSDCLF SFN=(MYFILE0002,MYFILE0009) IFN=1 ORG=1 ACCMODE=1
 {displays for the files identified by SFNs MYFILE0002
 and MYFILE0009 the IFNs, file organizations, and
 access modes}

LSDCLF SFN=MYFILE* FILE STATE PMD
 {displays for all files whose SFNs begin with MYFILE
 the file descriptions, file states, and processing
 modes}

LSDCLF {the SFN parameter defaults to all SFNs; since no
 optional parameter is specified, all information
 for all files is displayed}

GCL Programmer's Manual

4-26 47 A2 36UJ Rev05

4.10.8 MODIFY_RECORD (MDREC)

Purpose:

Modifies (overwrites) a record in a UFAS disk file. The file must be opened in UP
(update) processing mode. This command is not authorized for libraries or tape
files.

Syntax:

{ MODIFY_RECORD }
{ }
{ MDREC }

 SFN = name16

 [KEY = char251]

 [ADDR = dec10]

 [WA = name31]

 [LENGTH = dec5]

 [STATUS = name31]

 [HEXA_KEY = char252]

Parameters:

SFN the symbolic file name of the file.

KEY the key value of the record to be modified. If no
record exists with the given key value, an error occurs.
KEY is used with UFAS indexed disk files only; these
files must be opened in direct access mode
(ACCMODE=D).

ADDR the record address of the record to be modified for
UFAS relative disk files. The file must be opened in
direct access mode (ACCMODE=D).

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-27

WA the working area. The working area specified is the
name of a global or local GCL variable. If WA is
specified, the record is taken from the variable and
written to the file. If WA is not specified, the record is
taken from the buffer attached to the file; in this case,
the contents of the buffer must have been previously
initialized, using the BUILD_RECORD command.

LENGTH the length of the record to be modified. The length of
the new record must be the same as the length of the
old one. The default value is the maximum record size
of the file.

STATUS the name of a GCL variable that will receive the
completion code for MODIFY_RECORD. The
variable must be declared with TYPE=DEC and
LENGTH=3. Completion codes for
MODIFY_RECORD are:

Normal:
0: Normal execution of command.
4: Synonym.

Abnormal:
256: Wrong symbolic file name.
260: File not opened.
261: No current record.
262: Data length error.
264: Wrong processing mode.
265: System error: argument error.
266: System error: file structure not available.
270: System error: buffer pointer not available.
273: Wrong parameter (FIRST, KEY, HEXA_KEY, or
 ADDR) for this organization.
275: Attempt to change existing record key.
276: Duplicate secondary key.
279: Unauthorized command for this type of file.
280: Wrong access mode.
281: ADDR or FIRST unauthorized.
300: Abnormal return code from system primitive.

HEXA_KEY key value in hexadecimal of the record to be modified.
If no record exists with the given key value, an error
occurs. HEXA_KEY is used with UFAS indexed disk
files only; these files must be opened in direct access
mode (ACCMODE=D).

GCL Programmer's Manual

4-28 47 A2 36UJ Rev05

Constraints:

• The file must be opened in UP (update) processing mode.

• The length of the new record must be the same as the length of the old one.

• KEY, HEXA_KEY and ADDR are mutually exclusive.

• UFAS Sequential Disk Files.

The last issued command must have been a successful READ_RECORD. The
record retrieved by READ_RECORD is replaced by the new record. KEY,
HEXA_KEY and ADDR are not authorized.

• UFAS Relative Disk Files

If ADDR is specified (and ACCMODE=D), MDREC modifies and replaces the
record whose direct record address is given by ADDR. The new record becomes
the current record. If ADDR is not specified (and ACCMODE=S or
ACCMODE=D), the last issued command must have been a successful
READ_RECORD; the record retrieved by READ_RECORD is replaced by the
new record; the new record becomes the current record.

• UFAS Indexed Disk Files

If KEY or HEXA_KEY is specified, MDREC modifies and replaces the record
whose key is given. The key value of the new record must be the same as the
key value of the old record. If neither KEY nor HEXA_KEY is specified, the
last command must have been a successful READ_RECORD; the record
retrieved by READ_RECORD is replaced by the new record; the new record
becomes the current record. Again, the key value of the new record must be the
same as the key value of the old record.

The secondary key within the record being written can be different from that of
the record being replaced. If an invalid duplicate value of a modified secondary
key is found, a DUPLICATE SECONDARY KEY completion code is sent and
the record is not replaced. If the duplicate value is allowed, a SYNONYM
completion code is sent and the record is replaced. The order of sequential
retrieval of such a record, using a modified secondary key as a reference, is the
order in which it was delivered to UFAS. The new record becomes the current
record.

• Libraries and Tape Files

MODIFY_RECORD is not authorized.

• STATUS must be used in Batch Mode.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-29

Examples:

MDREC SFN=MYFILE0009 ADDR=874 WA=MDRECWAVAR LENGTH=250
 STATUS=MDRECVAR
 {modify the record at address 874 in UFAS relative
 file identified by SFN MYFILE0009; new record is
 retrieved from GCL variable MDRECWAVAR; write record
 of 250 characters to file; GCL variable MDRECVAR will
 receive the completion code}

MDREC SFN=MYFILE0002 KEY=4007832215 WA=MDRECWAVAR LENGTH=4000
 STATUS=MDRECVAR
 {modify record whose KEY is 4007832215 in UFAS indexed
 file identified by SFN MYFILE0002; new record is
 retrieved from GCL variable MDRECWAVAR; write record
 of 4000 characters to the file; completion code to
 MDRECVAR}

GCL Programmer's Manual

4-30 47 A2 36UJ Rev05

4.10.9 OPEN_FILE (OPENF)

Purpose:

Opens sequential, relative, or indexed disk files, and sequential library and tape
files in the specified mode. An opened file can be read, written to, or modified
(except for tapes and libraries, which cannot be modified) until it is closed by a
CLOSE_FILE or RELEASE_FILE command, or the job terminates.

Syntax:

{ OPEN_FILE }
{ }
{ OPENF }

 SFN = name16

 PMD = { IN | OU | AP | UP }

 ACCMODE = { S | D }

 [STATUS = name31]

 [BPB = dec3]

Parameters:

SFN the symbolic file name of the file.

PMD the processing mode. The following types of access
are allowed:

 = IN Read access.

 = OU Write access.

 = AP Append access: append (write) to the end of file. AP
may not be used with UFAS relative and indexed files.

 = UP Read and write access. Modification of a record. UP
may not be used with libraries and tape files.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-31

The following series of tables shows the authorized GCL commands according to
PMD value:

 UFAS Sequential Disk Files

 Processing Mode (PMD)
 IN OU AP UP
 -- -- -- --

 READ_RECORD X X
 WRITE_RECORD X X
 MODIFY_RECORD X
 DELETE_RECORD X
 POINT_RECORD X (*) X

* (Allowed only if RECFORM=F or FB.)

 UFAS Relative Disk Files

 Processing Mode (PMD)
 IN OU AP UP
 -- -- -- --

 READ_RECORD X X
 WRITE_RECORD X X (*)
 MODIFY_RECORD X
 DELETE_RECORD X
 POINT_RECORD X X

* (Allowed in UP only if ACCMODE=D was specified in OPENF.)

 UFAS Indexed Disk Files

 Processing Mode (PMD)
 IN OU AP UP
 -- -- -- --

 READ_RECORD X X
 WRITE_RECORD X X (*)
 MODIFY_RECORD X
 DELETE_RECORD X
 POINT_RECORD X X

* (Allowed in UP only if ACCMODE=D was specified in OPENF.)

GCL Programmer's Manual

4-32 47 A2 36UJ Rev05

 Libraries

 Processing Mode (PMD)
 IN OU AP UP
 -- -- -- --

READ_RECORD X
WRITE_RECORD X X
POINT_RECORD X

 Tape Files

 Processing Mode (PMD)
 IN OU AP UP
 -- -- -- --

READ_RECORD X
WRITE_RECORD X X

ACCMODE the access mode. Two access modes are allowed:

 = S (Sequential) Records are accessed sequentially. In a sequential file,
access is according to physical sequence. In a relative
file, access is according to record number sequence. In
an indexed file, access is by key sequence.

 = D (Direct) Records are accessed directly, by key or by address.

STATUS the name of a GCL variable that will receive the
completion code for OPEN_FILE. The variable must
be declared with TYPE=DEC and LENGTH=3.
Completion codes for OPEN_FILE are:

Normal:
0: Normal execution of command.

Abnormal:
256: Wrong symbolic file name.
258: Unknown external file name or subfile name.
259: File or subfile already opened.
263: File is in an unstable state.
264: Wrong processing mode.
265: System error: argument error.
266: System error: file structure not available.
268: Wrong organization.
280: Wrong access mode.
283: File busy.
300: Abnormal return code from system primitive.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-33

BPB (Blocks Per Buffer) meaningful for UFAS files.
Indicates the number of CIs to be read in one I/O
operation.

Constraints:

• Libraries and tape files must be opened in sequential access mode.
• When files are opened with IN or UP processing mode, the current record will

be the first record of the file. If the file is empty, the next READ_RECORD will
return a DATALIM completion code.

• UP processing mode may not be used with libraries or tape files.
• When the value for SHARE is MONITOR, the only authorized processing mode

is IN.
• STATUS must be used in Batch Mode.

Examples:

OPENF SFN=MYFILE0002 PMD=IN ACCMODE=S STATUS=OPENFVAR
 {open file identified by SFN MYFILE0002 in input
 processing mode and sequential access mode; GCL
 variable OPENFVAR will receive the completion
 code}

OPENF SFN=MYFILE0018 PMD=UP ACCMODE=D STATUS=OPENFVAR
 {open file identified by SFN MYFILE0018 in update
 processing mode and direct access mode; GCL
 variable OPENFVAR will receive the completion
 code}

GCL Programmer's Manual

4-34 47 A2 36UJ Rev05

4.10.10 POINT_RECORD (PTREC)

Purpose:

Points to a record in a disk file. This command cannot be used with tape files.

Syntax:

{ POINT_RECORD }
{ }
{ PTREC }

 SFN = name16

 [ADDR = dec10]

 [KEY = char251]

 [KEYLOC = dec5]

 [KEYSIZE = dec3]

 [FIRST = bool]

 [COND = { EQ | GE | GT }]

 [STATUS = name31]

 [HEXA_KEY = char252]

Parameters:

SFN the symbolic file name of the file.

ADDR the address of a record in the file. This direct address
and the comparison condition supplied by the COND
parameter are used to locate the record to be pointed
to. The address of the first record is 1. ADDR cannot
be used with libraries and UFAS indexed disk files.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-35

KEY the key value of the record to be pointed to. The key
value and the comparison condition supplied by the
COND parameter are used to locate the record to be
pointed to. This record is the first record that satisfies
the comparison condition. KEY is used with UFAS
indexed disk files only; these files must be opened in
direct access mode (ACCMODE=D).

KEYLOC the key offset from the beginning of the record. The
first byte is byte 0. When KEYLOC is omitted, the
reference key is the primary key. This parameter is
used with UFAS indexed disk files and only has
meaning when KEY or HEXA_KEY is present.
KEYLOCK can take a value in the range 0 to 32766.

KEYSIZE the length in bytes of the partial key. The partial key is
the leftmost part of the complete key specified by the
KEY parameter. When KEYSIZE is present, the
partial key is used in the comparison defined by the
COND parameter. The default value is the length of
the complete key. KEYSIZE is used with UFAS
indexed disk files and only has meaning when KEY or
HEXA_KEY is present.
KEYSIZE can take a value in the range 1 to 251.

FIRST identifies the record pointed to as the first record of the
file. FIRST cannot be used with UFAS indexed disk
files. Libraries must be opened in sequential access
mode (ACCMODE=S); only the FIRST parameter
may be specified.

COND the comparison conditions for sequential, relative, and
indexed disk files. These conditions are the following:

 = EQ the key of the current record is equal to KEY or
HEXA_KEY, or the direct record address is equal to
ADDR. This is the default value.

 = GE the key of the current record is greater than or equal to
KEY or HEXA_KEY, or the direct record address is
greater than or equal to ADDR.

 = GT the key of the current record is greater than KEY or
HEXA_KEY, or the direct record address is greater
than ADDR

GCL Programmer's Manual

4-36 47 A2 36UJ Rev05

STATUS the name of a GCL variable that will receive the
completion code for POINT_RECORD. The variable
must be declared with TYPE=DEC and LENGTH=3.
Completion codes for POINT_RECORD are:

Normal:
0: Normal execution of command.

Abnormal:
256: Wrong symbolic file name.
260: File not opened.
261: No current record.
264: Wrong processing mode.
265: System error: argument error.
266: System error: file structure not available.
273: Wrong parameter (FIRST, KEY, HEXA_KEY or
 ADDR) for this organization
277: Key length error.
279: Unauthorized command for this type of file.
280: Wrong access mode.
281: ADDR or FIRST unauthorized.
300: Abnormal return code from system primitive.

HEXA_KEY the key value in hexadecimal of the record to be
pointed to. The key value and the comparison
condition supplied by the COND parameter are used to
locate the record to be pointed to. This record is the
first record that satisfies the comparison condition. If
no record exists with the given key value, an error
occurs. HEXA_KEY is used with UFAS indexed disk
files only; these files must be opened in direct access
mode (ACCMODE=D).

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-37

Constraints:

• ADDR, KEY, HEXA_KEY and FIRST are mutually exclusive. One of them
must be specified.

• After an unsuccessful PTREC, the current record pointer is undefined.
• A file must be opened either in IN (input) or UP (update) processing mode;

however, libraries must always be opened in IN mode and in sequential access
mode (ACCMODE=S).

• For libraries, only the FIRST and STATUS parameters may be specified.
• For UFAS sequential and relative files, the record pointed to is the logical record

at the given address. If no such record is found, an abnormal completion code is
sent and there is no current record.

• For UFAS indexed files, the record pointed to is the first record whose key
satisfies the conditions of comparison. FIRST and ADDR are not authorized.

• PTREC may not be used with tape files and sequential files with RECFORM=V
or VB.

• KEYLOCK and KEYSIZE must be used with KEY.
• COND must be used with KEY or ADDR.
• STATUS must be used in Batch Mode.

Examples:

PTREC SFN=MYFILE0009 ADDR=874 COND=GT STATUS=PTRECVAR
 {PTREC will get a successful comparison at the first
 direct record address greater than 874, and point to
 that record in the file identified by SFN MYFILE0009;
 GCL variable PTRECVAR will receive the completion code}

PTREC SFN=MYFILE0020 KEY=4007832215 KEYLOC=250 KEYSIZE=6
 COND=EQ STATUS=PTRECVAR
 {PTREC will point to the first record whose leftmost
 6 bytes are equal to 400783; key begins at byte 250 of
 the record; file is identified by SFN MYFILE0020; GCL
 variable PTRECVAR will receive the completion code}

GCL Programmer's Manual

4-38 47 A2 36UJ Rev05

4.10.11 READ_RECORD (RDREC)

Purpose:

Reads a record from a previously declared and opened file, and stores it in a buffer
or a GCL variable (the working area WA).

Syntax:

{ READ_RECORD }
{ }
{ RDREC }

 SFN = name16

 [ADDR = dec10]

 [KEY = char251]

 [KEYLOC = dec5]

 [FIRST = bool]

 [WA = name31]

 [LENGTH = name31]

 [STATUS = name31]

 [HEXA_KEY = char252]

Parameters:

SFN the symbolic file name of the file.

ADDR the address of the record to be read for UFAS
sequential and relative disk files. ADDR is not
allowed for libraries or UFAS indexed disk files. The
file must be opened in direct access mode
(ACCMODE=D). The address of the first record is 1.

KEY the key value of the record to be read. If no record
exists with the given key value, an error occurs. KEY
is used with UFAS indexed disk files only; these files
must be opened in direct access mode
(ACCMODE=D).

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-39

KEYLOC the key offset from the beginning of the record for
UFAS indexed disk files. The first byte is byte 0.
KEYLOC only has meaning when KEY or
HEXA_KEY is present. If KEYLOC is omitted, the
reference key is the primary key.

FIRST specifies that the read record is the first record of the
file. FIRST is not authorized with UFAS indexed disk
files.

WA the working area. The working area specified is the
name of a local or global GCL variable. The read
record is stored in this variable. Records longer than
the length of the variable are truncated. If WA is not
specified, the read record is stored in a buffer attached
to the file. In this case, the SPLIT_RECORD
command can be used to move the record to a GCL
variable.

LENGTH the name of a GCL variable, declared with
TYPE=DEC and LENGTH=5, that will receive the
length of the read record (except when the completion
code is abnormal).

STATUS the name of a GCL variable that will receive the
completion code for READ_RECORD. The variable
must be declared with TYPE=DEC and LENGTH=3.
Completion codes for READ_RECORD are:

Normal:
0: Normal execution of command.
1: Truncation of record.
2: Datalim.
4: Synonym.

Abnormal:
256: Wrong symbolic file name.
260: File not opened.
261: No current record.
264: Wrong processing mode.
265: System error: argument error.
266: System error: file structure not available.
270: System error: buffer pointer not available.
273: Wrong parameter (FIRST, KEY, HEXA_KEY or
 ADDR) for this organization.
280: Wrong access mode.
300: Abnormal return code from system primitive.

GCL Programmer's Manual

4-40 47 A2 36UJ Rev05

HEXA_KEY key value in hexadecimal of the record to be read. If
no record exists with the given key value, an error
occurs. HEXA_KEY is used with UFAS indexed disk
files only; these files must be opened in direct access
mode (ACCMODE=D).

Constraints:

• KEY, HEXA_KEY, ADDR, and FIRST are mutually exclusive.

• KEYLOCK must be used with KEY or HEXA_KEY.

• Files must be opened in IN (input) or UP (update) processing mode; however,
libraries and tape files must be opened in IN mode only.

• For all types of files, the record read by READ_RECORD done either in
sequential access mode (ACCMODE=S) or in direct access mode
(ACCMODE=D) with records read sequentially is determined as follows:

− if the previous command was POINT_RECORD or OPEN_FILE, the current
record is retrieved.

− if the record searched for has been deleted, the current record is the next
record in the file and it is retrieved.

− if the previous command was READ_RECORD, the current record is the next
record in the file and it is retrieved.

− if there is no current record in the file, READ_RECORD is unsuccessful.

− if there is no next record in the file, the DATALIM completion code is
returned and READ_RECORD is unsuccessful.

• After an unsuccessful READ_RECORD, a sequential READ_RECORD must
not be issued until one of the following has occurred:

− a successful CLOSE_FILE, followed by a successful OPEN_FILE for that
file.

− a successful POINT_RECORD for that file.

− a successful direct READ_RECORD for that file.

• For UFAS disk files, the record read by READ_RECORD done in direct access
mode (ACCMODE=D) with records read directly is determined as follows:

− the current record is the one whose direct record address is given by the
ADDR, KEY or HEXA_KEY parameter; this record is read.

− if the file contains no such record, a NO CURRENT RECORD completion
code is returned and READ_RECORD is unsuccessful.

• STATUS must be used in Batch Mode.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-41

Examples:

RDREC SFN=MYFILE0020 KEY=4007832215 KEYLOC=250
 LENGTH=RDRECLNGVAR STATUS=RDRECVAR
 {read record from file identified by SFN MYFILE0020
 and store in buffer attached to file; GCL variable
 RDRECLNGVAR will receive length of record; record key
 is 4007832215 and key offset is 250; completion code
 will be written to RDRECVAR}

RDREC SFN=MYFILE0007 FIRST WA=RDRECWAVAR LENGTH=RDRECLNGVAR
 STATUS=RDRECVAR
 {read record from file identified by SFN MYFILE0007;
 record is first record of file; store record in
 RDRECWAVA; store its length in RDRECLNGVAR; completion
 code is written to RDRECVAR}

RDREC SFN=MYFILE0008 ADDR=874 WA=RDRECWAVAR
 LENGTH=RDRECLNGVAR STATUS=RDRECVAR
 {read record from file identified by SFN MYFILE0008
 and store it in GCL variable RDRECWAVAR, the working
 area; record address is 874; GCL variable RDRECLNGVAR
 will receive length of record; GCL variable RDRECVAR
 will receive the completion code}

GCL Programmer's Manual

4-42 47 A2 36UJ Rev05

4.10.12 RELEASE_FILE (RLSF)

Purpose:

Releases a file referenced by its symbolic file name (SFN).

Syntax:

{ RELEASE_FILE }
{ }
{ RLSF }

 { (name16 [name16] ...) }
 SFN = { }
 { star36 }

 [STATUS = name31]

Parameters:

SFN a symbolic file name, a list of up to 6 SFNs, or a name
using the star convention.

STATUS the name of a GCL variable that will receive the
completion code for RELEASE_FILE. The variable
must be declared with TYPE=DEC and LENGTH=3.
Completion codes for RELEASE_FILE are:

Normal:
0: Normal execution of command.

Abnormal:
256: Wrong symbolic file name.
257: No declared file.
265: System error: argument error.
266: System error: file structure not available.
272: System error: semaphore for file not available.
300: Abnormal return code from system primitive.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-43

Constraints:

• If RELEASE_FILE is unsuccessful, the file remains declared and the completion
code can be accessed through the EDIT_FILE_ERROR command.

• If RELEASE_FILE is successful, the file is deassigned and the SFN can be used
to declare another file.

• STATUS must be used in Batch Mode.

Examples:

RLSF SFN=MYFILE0002 STATUS=RLSFVAR
 {release the file identified by SFN MYFILE0002; GCL
 variable RLSFVAR will receive the completion code}

RLSF SFN=(MYFILE0002,MYFILE0020,MYFILE0021) STATUS=RLSFVAR
 {as above for files identified by SFNs MYFILE0002,
 MYFILE0020, and MYFILE0021}

RLSF * STATUS=RLSFVAR
 {as above, but for all user SFNs}

RLSF SFN=MYFILE* STATUS=RLSFVAR
 {as above, but for all SFNs beginning with MYFILE}

GCL Programmer's Manual

4-44 47 A2 36UJ Rev05

4.10.13 RETURN_DECLARED_FILE (RTDCLF)

Purpose:

Retrieves the description of a declared file.

Syntax:

{ RETURN_DECLARED_FILE }
{ }
{ RTDCLF }

 SFN = name16

 [FILE = name31]

 [SHARE = name31]

 [ACCESS = name31]

 [STATE = name31]

 [STATUS = name31]

Parameters:

SFN the symbolic file name of the file.

FILE the name of a local or global GCL variable, declared
with TYPE=CHAR and LENGTH=78, that will
receive the external file description.

SHARE the name of a local or global GCL variable, declared
with TYPE=CHAR and LENGTH=8, that will receive
a value identifying the maximum allowable level of
concurrent access. Possible values are:

 = NORMAL one writer or several readers.

 = ONEWRITE one writer and several readers.

 = FREE no restriction on access.

 = DIR applies only to libraries. Each member can be
concurrently accessed by several readers or one writer.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-45

 = MONITOR several readers. The accesses to the files are checked
and synchronized when necessary by GAC (General
Access Control)

ACCESS the name of a local or global GCL variable, declared
with TYPE=CHAR and LENGTH=8, that will receive
a value identifying the access mode. Possible values
are:

 = WRITE allows input, output, append, and update modes.

 = READ allows input mode only.

 = SPREAD same as READ, but additionally the current program
has exclusive file control, regardless of the SHARE
value.

 = SPWRITE same as WRITE, but additionally the current program
has exclusive file control, regardless of the SHARE
value.

 = ALLREAD no output allowed; only simultaneous input

 = RECOVERY applies only to cataloged files. The program has
exclusive access for file recovery purposes.

STATE the name of a local or GCL variable, declared with
TYPE=CHAR and LENGTH=7, that will receive a
value identifying the state of the file: OPENED,
CLOSED, or UNKNOWN.

STATUS the name of a GCL variable that will receive the
completion code for RETURN_DECLARED_FILE.
The variable must be declared with TYPE=DEC and
LENGTH=3. Completion codes for
RETURN_DECLARED_FILE are:

Normal:
0: Normal execution of command.

Abnormal:
256: Wrong symbolic file name.
265: System error: argument error.
266: System error: file structure not available.

GCL Programmer's Manual

4-46 47 A2 36UJ Rev05

Constraints:

At least one of the parameters, FILE, SHARE, ACCESS, or STATE, must be
specified.

STATUS must be used in Batch Mode.

Examples:

RTDCLF SFN=MYFILE0002 FILE=RTDCLFFILVAR STATUS=RTDCLFVAR
 {external file description of the file identified
 by SFN MYFILE0002 will be written to GCL variable
 RTDCLFFILVAR; GCL variable RTDCLFVAR will receive
 the completion code}

RTDCLF SFN=MYFILE0020 SHARE=RTDCLFSHVAR STATUS=RTDCLFVAR
 {a value giving the maximum allowable level of
 concurrent file access will be written to GCL
 variable RTDCLFSHVAR; file is identified by SFN
 MYFILE0020; GCL variable RTDCLFVAR will receive
 the completion code}

RTDCLF SFN=MYFILE0009 FILE=RTDCLFFILVAR ACCESS=RTDCLFACCVAR
 STATE=RTDCLFSTVAR STATUS=RTDCLFVAR
 {FILE and STATUS as above, but for MYFILE0009;
 access mode will be written to GCL variable
 RTDCLFACCVAR; file state will be written to GCL
 variable RTDCLFSTVAR; completion code to
 RTDCLFVAR}

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-47

4.10.14 SPLIT_RECORD (SPREC)

Purpose:

Takes a character string from the input buffer of a file and stores it in a GCL
variable (the working area WA). The file must be opened in IN (input) or UP
(update) processing mode.

Syntax:

{ SPLIT_RECORD }
{ }
{ SPREC }

 SFN = name16

 WA = name31

 INDEX = dec5

 LENGTH = dec3

 [STATUS = name31]

Parameters:

SFN the symbolic file name of the file.

WA the working area. The working area specified is the
name of a local or global GCL variable. The character
string taken from the input buffer is stored in this
variable.

INDEX the rank (position) in the input buffer of the first
character of the character string to be moved to the
GCL variable WA. The value supplied by INDEX
must be in the range 1 to 32767, which is the
maximum record length.

LENGTH the length of the character string to be taken from the
input buffer. The value must be in the range 1 to 255,
which is the maximum length of a GCL variable.

GCL Programmer's Manual

4-48 47 A2 36UJ Rev05

STATUS the name of a GCL variable that will receive the
completion code for SPLIT_RECORD. The variable
must be declared with TYPE=DEC and LENGTH=3.
Completion codes for SPLIT_RECORD are:

Normal:
0: Normal execution of command.
1: Truncation of record.

Abnormal:
256: Wrong symbolic file name.
260: File not opened.
264: Wrong processing mode.
265: System error: argument error.
266: System error: file structure not available.
270: System error: buffer pointer not available.

Constraints:

If INDEX + LENGTH is greater than the length of the input buffer, the receiving
area will be padded with blanks.

STATUS must be used in Batch Mode.

Examples:

SPREC SFN=MYFILE0002 WA=SPRECWAVAR INDEX=50 LENGTH=40
 STATUS=SPRECVAR
 {character string is taken from the input buffer of
 the file identified by SFN MYFILE0002 and stored in
 GCL variable SPRECWAVAR; string is 40 characters
 long; first character of string is at rank 50 in
 buffer; GCL variable SPRECVAR will receive the
 completion code}

SPREC SFN=MYFILE0020 WA=SPRECWAVAR INDEX=900 LENGTH=200
 STATUS=SPRECVAR
 {as above, with SFN MYFILE0020; character string
 200 characters long; first character of string
 at rank 900 in the buffer; completion code to GCL
 variable SPRECVAR}

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-49

4.10.15 WRITE_RECORD (WRREC)

Purpose:

Retrieves a record from a buffer or GCL variable, and writes it to a file.

Syntax:

{ WRITE_RECORD }
{ }
{ WRREC }

 SFN = name16

 [ADDR = dec10]

 [WA = name31]

 [LENGTH = dec5]

 [STATUS = name31]

Parameters:

SFN the symbolic file name of the file.

ADDR the address of the record to be written for UFAS
relative files. The record is written to this address.
The file must be opened in direct access mode
(ACCMODE=D).

WA the working area. The working area specified is the
name of a local or global GCL variable. If WA is
specified, the record is taken from the named variable
and written to the file. If WA is not specified, the
record is taken from the buffer attached to the file; in
this case, the contents of the buffer must have been
previously initialized, using the BUILD_RECORD
command.

GCL Programmer's Manual

4-50 47 A2 36UJ Rev05

LENGTH the length of the record to be written to the file. When
LENGTH is not specified, the length of the record
defaults to the length of WA, the working area. When
both LENGTH and WA are not specified, the length
defaults to the length of the record in the buffer
attached to the file.

STATUS the name of a GCL variable that will receive the
completion code for WRITE_RECORD. The variable
must be declared with TYPE=DEC and LENGTH=3.
Completion codes for WRITE_RECORD are:

Normal:
0: Normal execution of command.
4: Synonym.

Abnormal:
256: Wrong symbolic file name.
260: File not opened.
262: Data length error.
264: Wrong processing mode.
265: System error: argument error.
266: System error: file structure not available.
269: Duplicate record.
270: System error: buffer pointer not available.
273: Wrong parameter (FIRST, KEY, or ADDR)
 for this organization.
274: Record key is lower than that of previous record.
278: Overflow.
280: Wrong access mode.
281: ADDR or FIRST unauthorized.
300: Abnormal return code from system primitive.

Access to GCOS Files through GCL

47 A2 36UJ Rev05 4-51

Constraints:

• The current record pointer is not modified by execution of WRREC.

• UFAS Sequential Disk Files

must be opened in OU (output) or AP (append) processing mode with
ACCMODE=S.
ADDR is not authorized.

• UFAS Relative Disk Files

if ADDR is used, file must be opened in OU or UP processing mode with
ACCMODE=D. If ADDR is not used, file must be opened in OU mode with
ACCMODE=S.

when the file is opened in OU mode, records are written to the file as follows:
− if ACCMODE=S, the first record written will have address 1; subsequent

records will have addresses 2, 3, 4, etc.
− if ACCMODE=D, the ADDR parameter must provide a direct record address.

The record is written to this address.

when the file is opened in UP mode and ACCMODE=D, ADDR must provide a
direct record address. The record is written to this address, which must not
already contain an active record.

• UFAS Indexed Disk Files

for sequential access, the file must be opened in OU processing mode with
ACCMODE=S.

for direct access, the file must be opened in OU or UP mode with
ACCMODE=D.

if OU mode is specified, records must be written in ascending key value order.

if UP mode is specified, records may be written in any order.

ADDR is not authorized.

• Libraries

WRREC is authorized for SL libraries only.

the library must be opened in OU or AP processing mode with ACCMODE=S.

SSF format is not handled.

ADDR is not authorized.

• Tape Files

the file must be opened in OU or AP processing mode with ACCMODE=S.

ADDR is not authorized.

• STATUS must be used in Batch Mode.

GCL Programmer's Manual

4-52 47 A2 36UJ Rev05

Examples:

WRREC SFN=MYFILE0002 ADDR=874 WA=WRRECWAVAR LENGTH=250
 STATUS=WRRECVAR
 {record is retrieved from GCL variable WRRECWAVAR;
 written to file identified by SFN MYFILE0002;
 record length is 250 characters; record address
 is 874; GCL variable WRRECVAR will receive the
 completion code}

WRREC SFN=MYFILE0009 ADDR=11449 STATUS=WRRECVAR
 {record is retrieved from a buffer attached to the
 file and written to the file identified by SFN
 MYFILE0009; buffer has already been initialized by
 BUILD_RECORD; record length defaults to length of
 record in buffer; completion code to WRRECVAR}

WRREC SFN=MYFILE0020 WA=WRRECWAVAR LENGTH=1800
 STATUS=WRRECVAR
 {record is retrieved from GCL variable WRRECWAVAR
 and written to the file identified by SFN
 MYFILE0020; record length is 1800 characters;
 completion code to WRRECVAR; if a UFAS indexed
 file is assumed, ADDR cannot be used}

47 A2 36UJ Rev05 5-1

 5. GCL Batch Job

5.1 Overview

5.1.1 GCL Job Statements

A GCL batch job description consists of statements and data records.

The statements that may be used are:

• Input Reader statements

• and GCL statements being
− System Level commands
− Directives
− and GCL basic commands.

Input Reader statements begin by a '$' character and end by a semi colon character.
The '$' character must be the first character (other than blank) of the line. These
statements may be split into more than one source line. More than one such
statement cannot be entered on the same line.

System Level commands, directives and GCL basic commands may be split into
more than one source line. Each statement must be terminated by a semicolon.
More than one command can be entered on the same line; in this case, each
command is separated from the preceding one by a semicolon as follows:

 command-1; beginning-of-command-2

 remainder-of_command-2;command-3;

Data records contain either data or commands specific to a processor. These
records are enclosed between $INPUT and $ENDINPUT statements.

GCL Programmer's Manual

5-2 47 A2 36UJ Rev05

EXAMPLE OF A GCL BATCH JOB:

$JOB LKSM13,CLASS=L,JOBLANG=GCL;
$OPTIONS PRTFILE=GCL.PRTLIB..H_SM13_JOBOUT;
MO #CAT (X,#RON) CLASS=A;
COMM '**';
COMM '* *';
COMM '* THIS JOB LINKS H_GCL *';
COMM '* *';
COMM '**';
KWD NAME=CULIB TYPE=LIB DEFAULT=GCL.CULIB;
KWD NAME=SMLIB TYPE=LIB DEFAULT=GCL.SMLIB;
KWD NAME=LISTING TYPE=LIB DEFAULT=GCL.PRTLIB;
KWD NAME=SYSTEM TYPE=LIB DEFAULT=GCL.SYSTEM;
KWD NAME=MOVE TYPE=BOOL DEFAULT=1;
COMM '**';
COMM '* *';
COMM '* DELETE MAPS *';
COMM '* *';
COMM '**';
ON_ERROR CONTINUE;
MNLIB SL LIB=%LISTING,
 PRTFILE=DUMMY,
 COMFILE=*L1;
$INPUT L1;
 .

 . Commands of MNLIB
 .
$ENDINPUT;
COMM '**';
COMM '* *';
COMM '* LINK H_GCL *';
COMM '* *';
COMM '**';
LINK_PG H_GCL,
 LIB=%SMLIB,
 PRTFILE=#CAT (%LISTING,'..H_SM13_MAP'),
 COMFILE=*L2;
$INPUT L2;
 .

GCL Batch Job

47 A2 36UJ Rev05 5-3

 . Commands of LINK_PG
 .
$ENDINPUT;
IF #GE (#SEV,3);
 GOTO PRINT;
ENDIF;
SET_VALUES SML=%SMLIB;
IF %MOVE;
 MNSYS COMFILE=*L3,OS=%SYSTEM,
 PRTFILE=#CAT (%LISTING,'..H_SM13_MOVE_LKU');
ENDIF;
$INPUT L3,JVALUES;
SM;
IL1 &SML;
MOVE H_SM13 IL1 UNIT=H_GCL;
$ENDINPUT;
LABEL PRINT;
MNLIB SL COMMAND='PRINT
(h_sm13_jobout,h_sm13_map),ASIS;',lib=%listing;
$ENDJOB;

❑

5.1.2 Job Submission

The end user can submit a GCL job to GCOS 7 from a file by using:

• the EJR directive
• the system-level command RUN_JOB
• and the programmatic interfaces.

An executing GCL batch job can submit another GCL job through EJR or
RUN_JOB.

The job submitted must be specified as containing GCL statements at the following
levels:

• $JOB Statement using the parameter JOBLANG=GCL
• EJR or RUN_JOB using the parameter JOBLANG=GCL
• Program Interface using the field JOBLANG
• User level the variable JOBLANG in the User Profile specifying

the default value of the parameter JOBLANG of the
EJR directive and RUN_JOB system-level command.

GCL Programmer's Manual

5-4 47 A2 36UJ Rev05

5.1.3 Job Translation and Execution

After introduction by the Input Reader, the job is scheduled and execution starts.

The execution phase begins with the step H_BATCH which:

• displays startups
• compiles and displays GCL statements, the binary code resulting from the

compilation remaining in memory
• executes startups
• and executes the GCL statements, being the binary code previously produced.

The GCL statements, if requested, and error messages are displayed in the Job
Sysout.

GCL Batch Job

47 A2 36UJ Rev05 5-5

5.2 Input Reader Statements

The Input Reader statements are

• $JOB
• $ENDJOB
• $INPUT
• $ENDINPUT
• $SWINPUT
• $SENDCONS
• and $OPTIONS.

The Input Reader statements are not parameterizable (neither values, nor GCL
expressions).

Only the commands and parameters usable in GCL batch are described.

GCL Programmer's Manual

5-6 47 A2 36UJ Rev05

5.2.1 $JOB

Purpose:

$JOB, if used, must be the first in a job description to mark the beginning of a job
enclosure to identify the job. $JOB and $ENDJOB are not needed if only one job
is submitted. The statement is recognized by the Stream Reader which stores the
job description statements in the backing store.

If a valid site catalog exists, values specified in $JOB for USER, PROJECT and
BILLING must correspond exactly with the entries in the site catalog.

Syntax:

$JOB job-name

 [USER= user-name]
 [PROJECT= project-name]
 [BILLING= billing-name]
 [NSTARTUP]

 [{ SOURCE }]
 [LIST={ NO }]
 [{ ALL }]

 [{ NORMAL }]
 [JOR={ ABORT }]
 [{ NO }]

 [CLASS= identifier2]
 [HOLD= digits2]
 [HOLDOUT]
 [PRIORITY= digit1]
 [REPEAT]
 [HOST= name4]
 [JOBLANG={ JCL | GCL }]

GCL Batch Job

47 A2 36UJ Rev05 5-7

Parameters:

job-name Mandatory: Up to 8 alphanumeric, hyphen and
underscore characters, the first being alphanumeric.
Job-name must appear in the same record as the $JOB
statement. The job is known to the system by its RON.

If there is no $JOB, the job-name is the member-name
or external-file-name. If the name exceeds 8
characters only the first 8 characters are used.

USER Up to twelve alphanumeric, hyphen and underscore
characters, the first being alphanumeric.

If Access Rights have been implemented, USER
values may be restricted depending on the submitter:
− for the main or station operator, any USER value is

valid
− for a batch or IOF user, USER must be the

submitter.

PROJECT User's project up to 12 alphanumeric, hyphen and
underscore characters, the first being alphanumeric.

PROJECT is mandatory in $JOB if there no default is
specified in the SITE.CATALOG.

BILLING Used for accounting and control of the current
PROJECT, up to 12 alphanumeric, hyphen and
underscore characters, the first being alphanumeric.

If BILLING is omitted and no default in the
SITE.CATALOG is associated with the current project,
PROJECT appears for BILLING in the JOR banner.

BILLING is mandatory in $JOB if there no default is
specified in the SITE.CATALOG.

GCL Programmer's Manual

5-8 47 A2 36UJ Rev05

NSTARTUP Startup sequences are logically inserted after $JOB if
they exist in the startup source library
SITE.STARTUP. They may contain all system level
commands and directives executable in batch mode.
In Batch, both a mandatory and an optional start-up
sequence may be attached to a project in the catalog.
For GCL batch jobs, available startups are:

a. SITE_GCL_B
b. project_GCL_B
c. project_user_GCL_B

Rules for Implementing Startup Sequences are:

1. a, b and c can be mandatory.
2. Only b and c are optional.
3. Mandatory startup executes before the optional one.
4. Optional startup can be inhibited by specifying:

- NSTARTUP in $JOB
- STARTUP=0 in EJR or RUN_JOB
- or STARTUP of the input programmatic structure.

5. If PROJECT=SYSADMIN and NSTARTUP are
specified, all startups are inhibited.

LIST Lists the type of information on the GCL in the JOR.
If Access Rights have been implemented and the user
does not have the right to READ the file(s) to be
printed, LIST is ignored.

 =ALL - the source GCL
− expansions of GCL sequences entered on

$SWINPUT
− startup sequences and error messages.

 =No stream reader statements and comments
and error messages.

 =SOURCE Default:
− the source GCL and inserted Stream Reader

statements
− records inserted using $SWINPUT with CONSOLE
− and error messages.

GCL Batch Job

47 A2 36UJ Rev05 5-9

JOR Determines when the JOR is to be produced:

 =ABORT Prints the JOR only if the job aborts.
 =NO The JOR is not printed.
 =NORMAL Default: The JOR is printed.

CLASS Job class defining:

− the default scheduling
− the execution priority
− and the maximum multiprogramming level.

The job is attached to one of the following job classes:

− 16 job classes defined by single letter from A
through P

− 416job classes of two letters from AA through PZ.

The operator can suspend and reactivate a given class
for flexible and efficient use of machine resources.
Job class selects jobs and manages the serial execution
of jobs.

Up to 26 classes attached to a project. The PROJECT
in the SITE.CATALOG may restrict the class of a job
by its:

− batch default class
− and IOF default class.

A job submitted with a job class that either does not
exist or is not accessible to the project is launched in
class P.

HOLD Prevents the job from being scheduled for execution
until the submitter or operator:

− issues a RELEASE_JOB (RJ) command
− or suppresses HOLD in the RJ command.

A value specified with HOLD becomes the hold count
for the job and decrements by 1 each time RJ is issued.
The job is then available for scheduling once the hold
count reaches zero. HOLD may be forced to 0 if RJ
STRONG is issued.

HOLDOUT Retains output files produced by the job until released
by a RELEASE_OUTPUT (RO) command.

GCL Programmer's Manual

5-10 47 A2 36UJ Rev05

PRIORITY Scheduling priority between 0 (highest) and 7 (lowest).
Jobs are scheduled according to this priority.

The scheduling priority of a job may be restricted by
its PROJECT in the SITE.CATALOG. If the specified
priority exceeds the maximum value allowed for its
PROJECT, the maximum is used instead and a
warning is issued.

Within a specified priority, jobs are scheduled on a
first-in-first-out (FIFO) basis.

A job will not be scheduled if the maximum number of
jobs in the same class is already scheduled.

Default: depends on CLASS

REPEAT Specifies that the job may be repeated from its
beginning after a warm restart.

If REPEAT is omitted, the entire job cannot be
repeated.

HOST Up to 4 alphanumeric characters identifying a DPS
7/7000 site on which the job is to run, if different from
the site where the GCL is entered or stored.

Example:

$JOBDMJOB,USER=DJM,PROJECT=MECTP,
HOST=BP3C;

DMJOB will be transferred to and executed on BP3C.

JOBLANG Identifies the Command Language used for the JOB
description:

 =GCL GCOS Command Language. If not loaded, the default
JCL is used.

 =JCL Default: JOB Control Language

If GCL, it is recommended to specify the JOBLANG
in $JOB because the JOBLANG parameter of the EJR
command is ignored in case of INFILE=remote-file or
if HOST is specified in the EJR command.

EXPVAL Meaningful only with JOBLANG=JCL: Specifies that
the values in the JCL are to be expanded in the JOR.

GCL Batch Job

47 A2 36UJ Rev05 5-11

5.2.2 $ENDJOB

Purpose:

$ENDJOB must appear as the last statement of a job which starts with $JOB to
terminate the job enclosure. The Stream Reader recognizes the statement to closes
the file containing the source GCL statements (see $JOB).

Jobs submitted with the directive EJR do not necessarily require $JOB. If $JOB is
omitted, $ENDJOB must also be omitted.

If $ENDJOB is required but omitted, the job aborts.

Syntax:

$ENDJOB;

Parameters:

None.

GCL Programmer's Manual

5-12 47 A2 36UJ Rev05

5.2.3 $INPUT

Purpose:

Opens an input enclosure and names the SYSIN subfile into which the records of
the enclosure are stored.

Syntax:

$INPUT input-enclosure-name

 [{ DATA }]
 [{ DATASSF }]
 [{ COBOL }]
 [TYPE={ COBOLX }]
 [{ FORTRAN }]
 [{ GCL }]
 [{ GPL }]
 [{ JCL }]

 [FORMAT=(digit3,digit3,digit3,digit3)]

 [{ ENDINPUT }]
 [END={ DOLLAR }]
 [{ MATCH }]
 [{ ' string8 ' }]

 [ENDCHAR=' char1 ']
 [CONTCHAR=' char1 ']
 [PRINT]
 [CKSTAT]
 [JVALUES]

GCL Batch Job

47 A2 36UJ Rev05 5-13

Parameters:

input-enclosure-name Mandatory: Name of SYSIN subfile unique within a
job containing the records of the input enclosure. Up
to 16 alphanumeric, hyphen and underscore characters.

TYPE Type defining format of input enclosure records.
FORTRAN, JCL, COBOLX, GPL and GCL (and their
implicit formats) are treated in the Library
Maintenance Reference Manual.

 =DATA Default: if TYPE and FORMAT are omitted. Enter
data without modifying the input format and without
adding a header to each input record. Used for
COBOL or FORTRAN source statements.

 =COBOL Add an SSF header to each input record for automatic
processing by the system. Used for COBOL source
program.

 =DATASSF Default: if FORMAT specified but not TYPE. Add an
SSF header to each input record for automatic
processing by the system. Each data record is
numbered in the SSF header from 10 and incremented
by 10's. An SSF control record is placed at the
beginning of the SYSIN subfile.

This value applies when:

− data input to a COBOL object program is
ACCEPTED from SYSIN

− and FORTRAN source statements are entered.

FORMAT Format of input records:

− if FORMAT is specified, TYPE must be other than
DATA for output records

− if FORMAT is omitted, the default is the format
corresponding to TYPE. See the Library
Maintenance Reference Manual.

GCL Programmer's Manual

5-14 47 A2 36UJ Rev05

The 4 values digit3 in FORMAT denote the
respective locations in the input record of:

1 the first digit of the line number, where the first
 location is 1 and leading blanks are considered zeros
2 the last digit of the line number

 For 1 and 2, if 0 is specified, no line numbers are
 given.

3 the first text character
4 the last text character.

END Indicates to the input reader how the input enclosure is
terminated:

 =DOLLAR Next input record with dollar sign ($) in column 1.
The record is analyzed as a record outside an input
enclosure.

 =MATCH First $ENDINPUT statement declaring input-
enclosure-name.
A complete input enclosure is contained between this
$INPUT and its matching $ENDINPUT.

 = string8 First record starting with this string which must be
EBCDIC. This terminator record is not treated as one
of the input enclosure data records.

 =ENDINPUT Default: Next $ENDINPUT.

ENDCHAR Applicable only to input enclosure records of type
DATA or DATASSF. Used where each record contains
a specific character as its last non-blank character to
define this character. May be enclosed in single quotes
for protection.

A space as a last character must be protected. The
endchar character and all trailing blanks are removed
from the input enclosure records.

GCL Batch Job

47 A2 36UJ Rev05 5-15

If ENDCHAR is specified, the last record must contain
the specified character:

− records without the last character are concatenated
to the next record up to a maximum of 256
characters

− until a record with the specified character in the last
non-blank position is encountered signifying the end
of record.

Examples of ENDCHAR:

In the examples, the letter b represents a blank
character.

Example 1:

ENDCHAR=Q

record input (80 characters):
1234Q5678Qbb9bQbbb............b

record stored (14 characters):
1234Q5678Qbb9b

Example 2:

ENDCHAR='b'

record input (80 characters):
bVENIbVIDIb VICIbbbb

record stored (15 characters):
bVENIbVIDIb VICI

Example 3:

ENDCHAR=/

records input (80 characters):
AAAbbb.................b
BBB/bbbb
CCCbbb.................b
DDD/bbb................b
EEE/bbbb

records stored:
AAAbbb..................b BBB (83 characters)
CCCbbb..................b DDD (83 characters)
EEE . (3 characters)

GCL Programmer's Manual

5-16 47 A2 36UJ Rev05

CONTCHAR Applicable only to records of type DATA or DATASSF
type: The continuation-character optionally protected
by single quotes. A record formed by CONTCHAR
must not exceed 255 characters.

The specified character in the last non-blank character
position in each input record, is deleted together with
all trailing blanks, and the record is concatenated to the
one following.

Examples of CONTCHAR:

In the example, the letter b represents a blank
character.

CONTCHAR=-

records input:
ABCDE-FFF-bbb AXZ-bbbb
12345-678-bbb 999bbbb
-XYZbbbb

records stored:
ABCDE-FFF-bbb AXZ12345-678-
bbb999bbbb
-XYZbbbb

Examples of both ENDCHAR and CONTCHAR:

ENDCHAR and CONTCHAR may be combined in the
same $INPUT statement, provided a different
character is specified for each one.

In the examples, the b represents a blank character.

Example 1:

CONTCHAR=-, ENDCHAR=9

records input:
ABCD9b-b XZ-bbbb
XZZZ9b-b AB-9bbbb

record stored:
ABCD9b-b XZXZZZ9b-b AB-

GCL Batch Job

47 A2 36UJ Rev05 5-17

Example 2:

Consider the input enclosure of 80 characters per
record:

$INPUT XXXX, CONTCHAR=+, ENDCHAR=/;
AAAbbb..............b
BBB/bbbb
CCCbbb..............b
DDD+bbb.............b
EEE/bbbb
FFFbbb..............b
GGG+bbb.............b
HHH/bbb.............b
$ENDINPUT;

The following records are stored:

AAAbbb................b BBB (83 characters)
CCCbbb................b DDDEEE (86 characters)
FFFbbb................b GGGHHH (86 characters)

If the result of using ENDCHAR and/or CONTCHAR
is a record of length zero, the record is ignored.

PRINT Prints the contents of the input enclosure in the
translation part of the JOR when the job is introduced.
Up to 200 input records per job.

CKSTAT Requests the Stream Reader:

− to check each input enclosure record for a
$SWINPUT

− and if found, to interpret and execute it.

JVALUES Applies only to input records of type DATA or
DATASSF: Specifies that:

− the input enclosure contains parameter references
− and at execution time, the system uses a version

updated by the substituting parameter values
applicable at job level.

GCL Programmer's Manual

5-18 47 A2 36UJ Rev05

Example of JVALUES:

$JOB MYJOB, USER=SMITH,
PROJECT=Q141;

SET_VALUES IOF, MYPROC_IOF;
MNCMD MYBINLIB COMFILE=*MYFILE;

$INPUT MYFILE JVALUES;

list of commands of MAINTAIN_COMMAND
processor
 ...
 DOMAIN &1;
 COMPILE &2;
 ...

$ENDINPUT;

$ENDJOB;

In the example, the input enclosure MYFILE contains
a set of commands for the MAINTAIN_COMMAND
processor and ends with a $ENDINPUT statement.

Constraints:

Function of Statement

$INPUT with its corresponding $ENDINPUT are boundary statements of an input
enclosure containing a job description which can be:

• either data input to a user program or system utility

• or a source program of processor-specific commands to be submitted for
compilation, see TYPE.

The Stream Reader recognizes $INPUT to open an input enclosure and to name the
SYSIN subfile into which the records of the enclosure are to be stored.

Data read in is stored in a temporary subfile of the SYSIN system file. Each
SYSIN subfile is identified by its input-enclosure-name specified in $INPUT.

An input enclosure may be placed anywhere other than in a step enclosure and may
be made available to any number of steps in a job.

Comments and Restrictions

GCL Batch Job

47 A2 36UJ Rev05 5-19

An Input-enclosure-name can be referenced in two ways in GCL batch mode:

• with the EXECUTE_GCL directive

• using the COMFILE parameter of the system processor's commands

EXAMPLE 1:

$JOB IE-5 JOBLANG = GCL;
COMM ' Test an Input Enclosure used by ';
COMM ' EXECUTE_GCL with a parameter defined by the ';
COMM ' parameter VALUES of EXECUTE_GCL ';
$OPTIONS PRTFILE = LINT.BATCH.TESTRES..T_IE_5;
EXECUTE_GCL INFILE = *IE_5 VALUES = (SFN = T_IE_5) LIST;
$INPUT IE_5;
KWD SFN NAME;
MNLIB SL
 LIB = LINT.BATCH.TESTSL
 PRTFILE = #CAT ('LINT.BATCH.TESTRES..', %SFN)
 COMMAND = #CAT ('PRINT', %SFN) ;
$ENDINPUT ;
$ENDJOB ;

❑

EXAMPLE 2:

$JOB MYJOB, USER = PILLET, PROJECT = FUEL ;
SET_VALUES MEMBER1, MEMBER2 ;
MNLIB SL MYSLLIB COMFILE = *ENCLOSE ;
$INPUT ENCLOSE JVALUES ;
.....
 List of commands of MAINTAIN_LIBRARY processor ;
.....
 COMPARE &1 &2 ;
.....
$ENDINPUT ;
$ENDJOB ;

❑

GCL Programmer's Manual

5-20 47 A2 36UJ Rev05

Input enclosure Parameter Substitution

Input enclosure parameter substitution allows generating several input enclosures
from a single definition comprising data records between $INPUT and
$ENDINPUT.

An input enclosure can contain parameter references in the form "&string" defined
in the current job description within one or more SET_VALUES or
MODIFY_VALUES. Substitution occurs if and only if JVALUES is specified in
the associated $INPUT.

Each time the input enclosure is referenced during GCL execution, a new version
of the input enclosure is created where each parameter referenced is replaced by
the value associated with it.

Restrictions

Parameters are substituted only within input enclosures of type DATA or
DATASSF.

Parameters cannot be substituted within input enclosures referenced by the
EXECUTE_GCL directive.

Protection from Parameter Substitution

A contiguous sequence of records in an input enclosure can be protected from
substitution as follows:

• a record containing the five characters //BOD (starting in column 1) must
precede the first record to be protected

• followed by a record containing the five characters //EOD in the first 5 columns
must follow the last record to be protected.

Each time a version of the input enclosure is created, these two delimiting records
are removed from the sequence and no parameter substitution occurs.

This function is useful if an input enclosure contains MAINTAIN_LIBRARY
editing statements, where & characters are not to be interpreted as parameter
references. For details of the MAINTAIN_LIBRARY editing facilities, see the
Text Editor User's Guide.

Order of Application of Parameters

GCL Batch Job

47 A2 36UJ Rev05 5-21

The parameters of $INPUT are applied in the order in the following order:

1) CKSTAT If CKSTAT is specified, the $SWINPUT function is
applied first, except where following have been
specified:
1) END=DOLLAR
2) END='$SWINPUT' (END='$SWI')

in which case a $SWINPUT encountered in the input
enclosure is interpreted as the end of the input
enclosure and not as a $SWINPUT statement.

In 2, $SWINPUT ($SWI) can be applied first if it and
its parameters appear in the same record.

Example:

$INPUT XXXX END='$SWINPUT';
$SWINPUT FILE-A;
is treated as a $SWINPUT statement and not as the
end of the input enclosure.

However,
$INPUT XXXX END='$SWINPUT';
$SWINPUT
FILE-A;
is treated as the end of the input enclosure and not as a
$SWINPUT statement.

2) CONTCHAR and/or ENDCHAR

3) FORMAT

And only lastly by:

4) parameters of the input-enclosure.

GCL Programmer's Manual

5-22 47 A2 36UJ Rev05

5.2.4 $ENDINPUT

Purpose:

$ENDINPUT marks the end of an input enclosure introduced by $INPUT. When
the statement is encountered by the stream reader, the SYSIN subfile containing the
input enclosure records is closed.

Syntax:

$ENDINPUT [input-enclosure-name];

Parameter:

input-enclosure-name Meaningful only if END=MATCH was declared in the
$INPUT statement corresponding to this $ENDINPUT
statement:

If both input-enclosure-names match, the
$ENDINPUT is considered to be the closing statement
of the input enclosure.

$ENDINPUT is treated as data contained in the current
input enclosure if its input-enclosure-name does not
match that specified in a previous $INPUT statement.

GCL Batch Job

47 A2 36UJ Rev05 5-23

5.2.5 $SWINPUT

Purpose:

$SWINPUT names the file to which the input stream is to switch from the current
stream or file. The effect is equivalent to:

• removing the $SWINPUT statement from the stream of the Stream Reader
• and replacing it with the contents of the file which it references.

Instead of referencing a file, a $SWINPUT may refer to CONSOLE input in which
case the console becomes the submitter.

$SWINPUT can appear anywhere within a job-enclosure or an input-enclosure. If
a $SWINPUT appears within an input-enclosure, CKSTAT must be specified in
$INPUT. When the file to which the input has been switched reaches its end-of-
file, the Stream Reader reverts to the stream containing the $SWINPUT.

$SWINPUT may also be embedded in a GCL statement.

The restrictions on using this statement are:

• $SWINPUT must not be embedded in a Stream Reader statement, namely:
− $JOB and its associated $ENDJOB
− $INPUT and its associated $ENDINPUT
− and another $SWINPUT.

• The file referred to by $SWINPUT must not contain a $ENDJOB statement.
• Although any number of $SWINPUT statements may appear in a stream, the

level of nesting cannot exceed 3.

GCL Programmer's Manual

5-24 47 A2 36UJ Rev05

Syntax:

$SWINPUT

 {[INFILE=] sequential-input-file-description }
 { }
 { member-name [INLIB=] input-library-description }
 { }
 { {' string105 '[ANSWERS=(' string105 '[' string105 ']...)]}}
 { CONSOLE={ }}
 { {' string105 '[' string105 '] END=' string8 ' }}

Description of Parameters:

The only mandatory parameter is that which declares the file to which the input
stream is to be switched:

sequential-input-file-description
Optionally prefixed by INFILE= to reference a
sequential file in the GCL format, whose contents
replace the $SWINPUT statement in the input stream.

input-library-description
Optionally prefixed by INLIB= to reference an input-
library in the GCL format from which a member will
be selected. The contents of member-name replaces
the $SWINPUT statement in the input stream.

CONSOLE Switch input to the console in the one of the following
ways:

 ANSWERS= 'string 105' preceding ANSWERS specifies the
prompt sent to the console to solicit the desired input.
ANSWERS='string 105' defines the possible valid
inputs. After three unsuccessful attempts to enter a
valid reply, the job aborts. The first valid reply
constitutes the only switched input and is inserted in
the input stream in place of $SWINPUT. If
ANSWERS and the valid replies are not specified, any
reply up to one record length is accepted.

GCL Batch Job

47 A2 36UJ Rev05 5-25

 END= Several lines of input are expected from the console:
− the first 'string 105' is the initial prompt sent

to the console to solicit the first line of input
− the second 'string 105' is the next prompt sent

to the console to solicit the next and subsequent
lines of input.

If the second string is missing, it defaults to the first
string. Both are positional parameters.

END='string 105' indicates the end of the input.
Replies are not restricted to valid responses as for
ANSWERS and form the switched input data replacing
the $SWINPUT in the original stream.

GCL Programmer's Manual

5-26 47 A2 36UJ Rev05

5.2.6 $SENDCONS

Purpose:

$SENDCONS displays a message on the operator's console when the Job is
introduced.

Syntax:

$SENDCONS 'string105 ';

Parameter:

string105 Message up to 105 characters.

GCL Batch Job

47 A2 36UJ Rev05 5-27

5.2.7 $OPTIONS

Purpose:

$OPTIONS is used only with GCL Batch Jobs to specify permanent options of the
H_BATCH processor. The option PRTFILE specified at job submission time
(in commands EJR or RUN_JOB) overrides the option PRTFILE specified in
$OPTIONS.

Syntax:

$OPTIONS

 [PRTFILE= file-78]
 [REPEAT]

 [{ NONE }]
 [JOURNAL={ AFTER }]
 [{ BEFORE }]
 [{ BOTH }]

 [{ NO }]
 [{ ALL }]
 [DUMP={ DATA }]
 [{ PALL }]
 [{ PDATA }]

Parameters:

PRTFILE Name of the report file of H_BATCH processor. When
omitted:
− the default is that specified at job submission time
− the report is displayed in the SYS.OUT file.

REPEAT Determines how the step H_BATCH is to proceed on
step abort or after a system crash:

 =1 the step H_BATCH is repeated.
 =0 no repeat.

GCL Programmer's Manual

5-28 47 A2 36UJ Rev05

JOURNAL Applicable to the files accessed at system level using
the GCL commands. See Section 4. Must be specified
when at least one of the cataloged files processed
through GCL commands has other than
JOURNAL=NO in the catalog:

 =BEFORE if the files have JOURNAL=BEFORE or JOURNAL=NO

 =AFTER if the files have JOURNAL=AFTER or JOURNAL=NO

 =BOTH if the files have JOURNAL=BOTH, =AFTER and
=BEFORE

 =NO Default: if all files have JOURNAL=NO.

Refer to the File Recovery Facilities User's Guide for recovery of files.

DUMP Specifies if a dump listing is to be produced on
abnormal program termination, and the form of its
contents:

 =ALL all program segments
 =DATA only data segments
 =PALL only private segments
 =PDATA only private data segments
 =NO Default: no dump listing.

GCL Batch Job

47 A2 36UJ Rev05 5-29

5.3 System Level Commands

The System-level commands may be executed in batch mode.

For details of syntax, refer to IOF Terminal User's Reference Manual Part 2,
Sections 3 through 7.

5.4 Directives

The directives that can be used in a GCL job, may be executed in batch mode.

For details of syntax, refer to IOF Terminal User's Reference Manual Part 3,
Section 2.

5.5 GCL Basic Commands

See Section 2.

GCL Programmer's Manual

5-30 47 A2 36UJ Rev05

5.6 Parameterization

5.6.1 Parameterization of GCL Statements

It is done by the KEYWORDs of the GCL sequence. The value of each keyword
parameter can be passed to the GCL sequence in the VALUES parameter of EJR or
RUN_JOB, or in the field VALUES_DESCRIPTION if programmatic interface is
used.

EXAMPLE :

$JOB TEST JOBLANG=GCL;
 KWD X DEC 3;
 KWD Y DEC 3;
 LET # #PLUS (%X, %Y);
$ENDJOB;

This job can be submitted by command:

EJR INFILE=MY_JOB VALUES=(X=2, Y=5);

or

EJR INFILE=MY_JOB VALUES=(2,5);

It is the only way to parameterize the GCL statements.

❑

GCL Batch Job

47 A2 36UJ Rev05 5-31

5.6.2 Parameterization of Input Enclosures

The Input Enclosures may contain:

• data or processor specific commands:

In this case the Input Enclosures can be parameterized with values set by
SET_VALUES and MODIFY_VALUES statements.

Values are referenced symbolically preceded by an '&' sign in the
SET_VALUES statement by:
− a positional parameter
− or by the keyword specified.

The parameterization by values is allowed only in Input Enclosures.

The values are modified each time a command SET_VALUES or
MODIFY_VALUES is executed.

The parameterization by values is done at execution time each time an Input
Enclosure is referenced by a processor.

The parameterization of processor-specific commands may also be done with
Global Variables. The parameterization with Global Variables is done when the
command is executed.

• GCL statements to be executed using the directive EXECUTE_GCL.

In this case the parameterization of Input Enclosures with SET_VALUES and
MODIFY_VALUES is not allowed. Only parameterization by Global Variables
may be used.

GCL Programmer's Manual

5-32 47 A2 36UJ Rev05

5.6.3 Example of Parameterization

The parameterization of the Input Enclosure IE is done by SET_VALUES and by
Global Variables:

$JOB TEST_IE JOBLANG=GCL;
$OPTIONS PRTFILE=GCL.PRTLIB..TEST_IE;
KWD MEMBER_NAME NAME 31;
SET_VALUES SF1=%MEMBER_NAME;
GLOBAL SF2 NAME 31;
LET SF2 %MEMBER_NAME;
MNLIB SL COMFILE=*IE
 LIB=GCL.TESTSL
 PRTFILE=GCL.PRTLIB..TEST_IE;
$INPUT IE JVALUES;
 PRINT &SF1;
 PRINT %SF2;
$ENDINPUT;
$ENDJOB;

GCL Batch Job

47 A2 36UJ Rev05 5-33

5.7 Chaining of Commands

GCL commands are normally executed in sequence. Several GCL basic
commands such as IF, WHILE, CASEOF and GOTO allow modifying sequential
chaining. In the case of Severity 3 or 4 error occurring during the execution of a
processor or of a directive between steps, the chaining of commands can be
controlled through the ON_ERROR command.

The user can, for example, decide if a Severity 3 or 4 error should occur, for the
Job:

• either to terminate by specifying:
ON_ERROR ACTION=ABORT;

• or to continue by specifying:
ON_ERROR ACTION=CONTINUE;

In the latter case, the user can nevertheless control the chaining of the commands to
execute by testing the severity of the error by using the IF command, for example:
IF #GE(#SEV,3);
GOTO label;
ENDIF;

Note that the severity is not reset to 0 when the step H_BATCH is executed.
Therefore, if the user's step is aborted with a severity 3, H_BATCH will execute
normally but will terminate with an abort severity 3, showing the last return codes.

GCL Programmer's Manual

5-34 47 A2 36UJ Rev05

5.8 Recoveries

Checkpoint and Restart facilities are available for jobs executed in batch mode.

Checkpoint is activated by the REPEAT parameter of:

• the $JOB command for the whole job or at the submission time
• the commands EXEC_PG or STEP for user programs
• the $OPTIONS statement for the system processor H_BATCH.

Checkpoint and Restart are complemented by the Journal files. BEFORE and/or
AFTER Journals are used for files processed:

• by user programs
• and at System level by the GCL commands described in the GCOS File Access

Commands of Section 4. In this case the BEFORE and AFTER Journal are
activated by the parameter JOURNAL of the $OPTIONS statement.

The rules are the same as for JCL mode. For a complete discussion, please refer to
the manual GCOS 7 File Recovery Facilities User's Guide.

When the whole job is restarted, all the private data attached to the job such as
Global Variables and Values, and parameterized Input Enclosures are deleted. The
System Variables are reset to their initial value.

When the job is restarted at the beginning of a step or at a Checkpoint, the private
data attached to the job, namely, Global Variables, System Variables and Values,
are set to the value saved by Checkpoint at the beginning of the step or at
Checkpoint. The parameterized Input Enclosures are still valid.

GCL Batch Jobs may be restarted after a System Restart WARM without
RESTORE if:

• the Sharable Module H_SM13 has not been loaded through the LOADSM
command

• the system files SYS.SPOOLi have not been re-initialized through the SPOOL
command.

GCL Batch Job

47 A2 36UJ Rev05 5-35

5.9 Reports

5.9.1 Job Occurrence Report (JOR)

A GCL batch job report is not unlike any other job report except when H_BATCH
executes in the termination phase of a user step. In this case, the user step report
contains information on both executions: the user step execution and H_BATCH
execution.

In the following example, the job report contains:

• directives
• a user step (MAINTAIN_LIBRARY) and its directives.

EXAMPLE :

JOBID=1STEP USER=MARGULIS PROJECT=LINT BILLING=LINT--V6 RON=X1279

--

14:22:07 JOB INTRODUCED FROM DEC 14, 1993
 1STEP LINT.GB.SL BFU033

--

13:22:09 START OF TRANSLATION
 $JOB 1STEP JOBLANG=GCL LIST=ALL;
 $ENDJOB;
 RECORD COUNT: 7

13:22:09 END OF TRANSLATION

--

13:22:09 JOB EXECUTION LISTING DEC 14, 1993

 STEP 1
 LOAD MODULE=H_BATCH (18:03 OCT 28, 1993) PREINITIALIZED
 LIBRARY=SYS.HLMLIB
13:22:10 STEP STARTED XPRTY=9 (DEC 14, 1993)
 TASK MAIN PGID=000C PRID=00 COMPLETED
 SYSBKST ON S1F6B1: NB OF IO REQUESTS=0
 SYSPVMF ON S1F6B1: NB OF IO REQUESTS=29
 SYSLIB ON S1F6B1: NB OF IO REQUESTS=114
 SYSBKST* ON S1F6B1: NB OF IO REQUESTS=3
 H_GCL_ST ON S1F6B1: NB OF IO REQUESTS=4
 UFILE ON S1F6B1: NB OF IO REQUESTS=1
 BRD_BIN1 ON BVU0E5: NB OF IO REQUESTS=100
 H_GCL_B ON S1F6B1: NB OF IO REQUESTS=4
 CPU 0.070 PROG MISSING PAGES 102
 LINES 41 LIMIT NOLIM BACKING STORE 0
 LOCKED 143360
 CARDS 09 LIMIT NOLIM BUFFER SIZE 110592 CPSIZE 4096

GCL Programmer's Manual

5-36 47 A2 36UJ Rev05

13:22:24 STEP COMPLETED (DEC 14, 1993)

 JUMP CONTINUE
 STEP 2
 LOAD MODULE=H_LIBMAINT (18:02 MAR 19,1992) PREINITIALIZED
 LIBRARY=SYS.HLMLIB
13:22:25 STEP STARTED XPRTY=9 (DEC 14, 1993)
 TASK MAIN PGID=000C PRID=00 COMPLETED
13:22:30 USER STEP COMPLETED (DEC 14, 1993)
 TASK H_BATCH PGID=000C PRID=00 COMPLETED
 SYSBKST ON S1F6B1: NB OF IO REQUESTS=0
 SYSPVMF ON S1F6B1: NB OF IO REQUESTS=29
 SYSLIB ON S1F6B1: NB OF IO REQUESTS=16
 SYSBKST* ON S1F6B1: NB OF IO REQUESTS=0
 BRD_BIN1 ON BVU0E5: NB OF IO REQUESTS=7
 BRD_BSYS ON S1F6B1: NB OF IO REQUESTS=16
 LIB ON BVU0E5: NB OF REQUESTS=52
 H_PR ON S1F6B1: NB OF REQUESTS=4
 H_GCL_B ON S1F6B1: NB OF IO REQUESTS=4
 CPU 0.036 PROG MISSING PAGES 27 STACKOV 3
 ELAPSED 0.111 SYS MISSING PAGES 1
 LINES 51 LIMIT NOLIM BACKING STORE 0 LOCKED 155648
 CARDS 0 LIMIT NOLIM BUFFER SIZE 122880 CPSIZE 4096

13:22:32 STEP COMPLETED (DEC 14, 1993)

 START 13:22:09 (DEC 14, 1993) LINES 92
 STOP 13:22:33 (DEC 14, 1003) CARDS 0
 CPU 0.106
 ELAPSE 0.403

13:22:33 RESULT JOB COMPLETED

❑

In the Translation phase, only Input Reader statements and the contents of Input
Enclosures, if requested, are listed.

The Step reports contains two steps: an H_BATCH step report and an
H_LIBMAINT step report. The example is in fact the report of the user step and
the report of the execution of the H_BATCH task, both tasks being executed in the
same step.

The information on the number of IOs, CPU, elapsed time, lines and cards that
appear between the messages USER STEP COMPLETED and STEP
COMPLETED apply to both tasks.

GCL Batch Job

47 A2 36UJ Rev05 5-37

5.9.2 H_BATCH Report

When an error occurs during the execution of a GCL command, two kinds of error
messages can be printed in the H_BATCH report depending on the erroneous
procedure:

• The procedure containing the error is not locked. In this case, the error message
will be prefixed by the procedure name (see example 1).

• The procedure that containing the error is locked. In this case, the error message
will be prefixed by the initial calling procedure in the job and its associated line
number in the report (see example 2).

In both examples, the error occurs in the procedure P3.

EXAMPLE 1:

DESIGN:
$job job_doc joblang = GCL holdout;
mwinlib bin agtr.br.binlib;
let # 'begin job';
P1;
let # 'end job';
$endjob;

proc P1 lock = 0; +-->proc P2 lock = 1; +-->proc P3 lock = 0;
 | |
 | |
call P2;------------+ call P3; -----------+ let # %G;

endproc; endproc; endproc;

REPORT:
**
**** GCOS 7 ****
**** BATCH ****
**** ****
**** VERSION: 01.00 DATED: NOV 15, 1993 ****
**

15:35:32 START EXECUTION

 1: mwinlib bin agtr.br.binlib;
 2: let # 'begin job';
 3: P1;
 4: let # 'end job';
 begin job
***P3: VARIABLE G HAS NOT BEEN DECLARED
B*A*T*C*H*********

❑

GCL Programmer's Manual

5-38 47 A2 36UJ Rev05

EXAMPLE 2:

DESIGN:

$job job_doc joblang = GCL holdout;
mwinlib bin agtr.br.binlib;
let # 'begin job';
P1;
let # 'end job';
$endjob;

proc P1 lock = 0; +-->proc P2 lock = 1; +-->proc P3 lock = 1;
 | |
 | |
call P2;------------+ call P3; -----------+ let # %G;

endproc; endproc; endproc;

REPORT:

**
**** GCOS 7 ****
**** BATCH ****
**** ****
**** VERSION: 01.00 DATED: NOV 15, 1993 ****
**

15:35:32 START EXECUTION

 1: mwinlib bin agtr.br.binlib;
 2: let # 'begin job';
 3: P1;
 4: let # 'end job';
 begin job
***P1/3: VARIABLE G HAS NOT BEEN DECLARED
B*A*T*C*H*********

❑

47 A2 36UJ Rev05 6-1

 6. Debugging

6.1 GCL Job Debugging

Like any other kind of program development, writing GCL procedures may require
some form of debugging. For that purpose, two system variables are provided:

• #TRACE (boolean)
when 1, execution of all standard supplied commands will be listed on the
terminal.

• #DEBUG (boolean)
when 1, each line executed within a procedure has its number displayed along
with the name of the procedure before the line is executed.

The GCL debugging options TRACE and DEBUG (see MODIFY_PROFILE
directive) are available in batch mode. When the option DEBUG is active, each
executed line is printed after variables evaluation in the Job-Out subfile of the
system file SYS.OUT.

These debugging options can be specified at job submission by parameters
TRACE_GCL and DEBUG_GCL of the directive EJR or the system level
command RUN_JOB.

Both system variables may be used simultaneously and may be set from outside or
from inside the procedure being debugged. They are part of the user's profile and
may be set by use of the MODIFY_PROFILE (MDP) directive:

MDP TRACE DEBUG

In order to ease debugging, each time an error is found during execution of a
procedure, the diagnostics report the line number and name of the procedure where
the error occurred. If the error is caused by some erroneous argument being
supplied to a builtin function, the name of the builtin function is also reported.

The above will be sufficient in most debugging situations. If this proves
insufficient, use the DUMP command at the suspected critical points in the
procedure.

GCL Programmer's Manual

6-2 47 A2 36UJ Rev05

6.2 DUMP

The command DUMP may be used to display the value of variables specified by
their name in the command. The variables that can be displayed are the local
variables, the keywords and the global variables. The result of a GCL expression
can also be displayed by the command DUMP.

The command DUMP is executed only when the system variable #TRACE of the
User Profile is equal to 1. The command DUMP can also be conditionally
executed according to the value of a boolean expression that can be specified by
the parameter IF of the command.

Debugging

47 A2 36UJ Rev05 6-3

6.3 Example of Debugging

S: MP TRACE DEBUG
S: EXGCL GCLTEST LIB=COMMON.SLLIB LIST
1:Proc TEST;
2:Local AUTO char 80;
3:Local D dec 3;
4:Let AUTO abcdefg;
5:Let AUTO #cat (%AUTO,'*',#date,#cat (123,x));
6:Dump AUTO;
7:If #eq (%AUTO,XYZ);
8: Let # TRUE;
9:Else;
10: Let # FALSE;
11:Endif;
12:Let D 1;
13:While #lt (%D,3);
14: Let D #plus (%D,1);
15:Endwhile;
16:Endproc;
+++TEST/4 LET AUTO ABCDEFG
+++TEST/5 LET AUTO #CAT(ABCDEFG<%AUTO>,'*',#DATE,#CAT(123,X))
---TEST/6 DUMP VARIABLES=AUTO;
Variable AUTO:
ABCDEFG*93/12/14123X
+++
+++TEST/7 IF #EQ('ABCDEFG*93/12/14123X'<%AUTO>,XYZ)
+++TEST/10 LET # FALSE
FALSE
+++TEST/12 LET D 1
+++TEST/13 WHILE #LT(1<%D>,3)
+++TEST/14 LET D #PLUS(1<%D>,1)
+++TEST/13 WHILE #LT(2<%D>,3)
+++TEST/14 LET D #PLUS(2<%D>,1)
+++TEST/13 WHILE #LT(3<%D>,3)
+++TEST/16 RETURN

GCL Programmer's Manual

6-4 47 A2 36UJ Rev05

❑

47 A2 36UJ Rev05 7-1

 7. Programmatic Interface

7.1 GCL Interface

The user accesses GCL facilities by activating the GCL translator from within the
application. Primitives in both GPL and COBOL provide this interface by:

• reading commands from a terminal
• and activating the GCL procedures in a domain.

A domain is a group of commands or procedures which are either user or system
defined. A command name is known in a domain if and only if a GCL procedure
with that name has been compiled and stored in that domain.

EXAMPLE :

Command name GCL procedure

COBOL PROC COBOL

❑

Commands are read from the terminal. In screen mode, the user is asked to select a
command from those available. For a serial printer, the user must explicitly enter
the command name, which is rejected if the command is not in the current domain.

The command read from a terminal starts the associated procedure by:

• setting system variables such as printer width (#PW) and national language
(#LANG)

• activating built-in functions
• then returning the text to the caller via the SYSTEM command.

The SYSTEM command passes a text string to the calling processor which may:

• either stop activity
• or issue another read primitive to resume executing the current procedure, before

asking for a new command.

GCL Programmer's Manual

7-2 47 A2 36UJ Rev05

GCL returns the internal domain name to the calling processor. The domain is
referenced by this internal domain name in subsequent calls to the primitives. A
single processor can thus access several domains simultaneously.

7.1.1 Primitives

The five primitives in the order of their function are:

• GCLINIT
• GCLREAD
• GCLTERM
• GCLABORT
• GCLRETRY.

The return given by each primitive is described in terms of:

• its normal execution such as text output in read
• system status such as DATALIM when no further commands are to be processed
• and error codes where the primitive fails to complete.

7.1.1.1 GCLINIT

Purpose:

To initialize the GCL interpreter for a new domain to distinguish similarly named
commands belonging to different processors (domains). A domain uniquely
identifies the calling processor.

GCL
initialize

domain name

prefix

internal domain
name

error code

GCLINIT needs as input the name of the domain and a prefix to be associated with
the domain. The prefix is a 1-character prompt used to request input from the
terminal. In response to this prompt, the terminal user may enter any command of
the domain concerned.

The primitive returns a code which denotes a normal or abnormal initialization
phase and an internal identification for the domain. This identification must be
supplied each time another primitive refers to this domain.

Programmatic Interface

47 A2 36UJ Rev05 7-3

Syntax:

GPL: $H_INITGCL DOMAIN=i_char31 INTDOM=o_ptr PREFIX=i_char1;

COBOL: CALL "CGCLINIT" USING DOMAIN,PREFIX,INTDOM,SUP,SUPP
 ,ERROR-RC.

COBOL: CALL "CGCLINITE" USING DOMAIN,PREFIX,INTDOM,COMFILE
 ,PRTFILE,ERROR-RC,ECHO.

Parameters:

DOMAIN Name of the Domain:
GPL: i_char31
COBOL: PIC X(31)

INTDOM Pointer to Internal domain name:
GPL: o_ptr
COBOL: COMP-2

PREFIX Prompt to request input at the terminal:
GPL: i_char1
COBOL: PIC X(1)

COMFILE Internal File Name for COMFILE:
COBOL: COMP-2 (or zero's)

PRTFILE Internal File Name for PRTFILE:
COBOL: COMP-2 (or zero's)

SUP not currently used:
COBOL: PIC X(8)

SUPP not currently used:
COBOL: PIC X(8)

ERROR-RC Error Code:
COBOL: COMP-2

ECHO COBOL: PIC X(1)

="Y" Display menu of command when error message is
issued

="N" No echo: only error messages appear at the terminal.

GCL Programmer's Manual

7-4 47 A2 36UJ Rev05

Return Codes:

Normal DONE

Abnormal OBJUNKN: domain unknown or empty
ARGERR: argument error
Plus other abnormal system return codes.

Error Codes (COBOL):

 0 normal execution of primitive
259 domain unknown or empty
261 I/O error, details in GR4
262 other error, details in GR4
263 unbundling error
264 argument error
300 GCL error, details in GR4

Programmatic Interface

47 A2 36UJ Rev05 7-5

7.1.1.2 GCLTERM

Purpose:

To terminate the activity of the GCL interpreter on the current domain.

GCL
terminate

internal domain
name

error code

When a calling processor has no further use for the GCL interpreter for a domain, it
specifies GCLTERM for that domain. The internal domain name must be supplied.
A code is returned to indicate the status of the termination.

Syntax:

GPL: $H_TERMGCL INTDOM=i_ptr;

COBOL: CALL "CGCLTERM" USING INTDOM,ERROR-RC.

Parameters:

INTDOM Pointer to Internal domain name:
GPL: i_ptr
COBOL: COMP-2

ERROR-RC Error Code:
COBOL: COMP-2

Return Codes:

Normal DONE

Abnormal NOMATCH: wrong internal domain name
ARGERR: argument error

Error Codes (COBOL):

 0 normal execution of primitive
256 wrong internal domain name
264 argument error

GCL Programmer's Manual

7-6 47 A2 36UJ Rev05

7.1.1.3 GCLREAD

Purpose:

To request translation of commands read in from the terminal or the COMFILE
when specified, to activate the associated procedures.

GCL
read

internal domain
name

length

output string
length

error code

GCLREAD will continue reading and translating commands until it encounters a
SYSTEM command:

• and the value of the PROMPT parameter of the MODIFY_PROFILE command
is 1 (default)

• or an error is detected and the value of the PROMPT parameter of the
MODIFY_PROFILE command is 0.

If the user requests the end of the current domain activity (end of current action),
the IGNORE return code is issued. The calling processor is then supposed to
terminate its activity. The text returned to the caller is delivered into the area
provided for output.

Syntax:

GPL: $H_READGCL INTDOM=i_ptr OUTLEN=b_fb31 OUTAREA=o_charn;

COBOL: CALL "CGCLREAD" USING INTDOM,OUTLEN,OUTAREA,ERROR-RC.

Parameters:

INTDOM Pointer to Internal domain name:
GPL: i_ptr
COBOL: COMP-2

OUTLEN Max length of returned data in input; actual length in
output:
GPL: b_fb31
COBOL: COMP-2

Programmatic Interface

47 A2 36UJ Rev05 7-7

OUTAREA Area where the text produced by SYSTEM is returned:
GPL: o_charn
COBOL: PIC X(n)

ERROR-RC Error Code:
COBOL: COMP-2

Return Codes:

Normal DONE
TRUNC: truncation
IGNORE: end of current action

Abnormal NOMATCH: wrong internal domain name
JCLERR: syntax error
CDERR: GCL procedure aborted
ARGERR: argument error
Plus other abnormal system return codes.

Error Codes (COBOL):

 0 normal execution of primitive
 1 truncation
 2 ignore (end of current action)
256 wrong internal domain name
257 syntax error
260 GCL procedure aborted
261 I/O error, details in GR4
262 other error, details in GR4
264 argument error

GCL Programmer's Manual

7-8 47 A2 36UJ Rev05

7.1.1.4 GCLABORT

Purpose:

To force an external abort of a current procedure execution with an optional error
diagnostic.

The next GCLREAD reads a new command line from the input stream and
discards any pending SYSTEM and unprocessed commands on the current line.

GCL
abort

internal domain
name

[message] error code

The message, if present, is output on the terminal. The internal domain name must
be provided in input. A status code is returned.

Syntax:

GPL: $H_ABTGCL INTDOM=i_ptr [MSG=i_char78 LENGTH=i_fb15];

COBOL: CALL "CGCLABORT" USING INTDOM,ADDRESS OF MSG,FLAG
 ,ERROR-RC.

Parameters:

INTDOM Pointer to Internal domain name:
GPL: i_ptr
COBOL: COMP-2

MSG Message text:
GPL: MSG=i_char78

LENGTH Actual message length:
GPL: LENGTH=i_fb15

ADDRESS OF MSG Length and Text of message:
COBOL: 01 MSG.
 02 MSG_LENGTH COMP-1.
 02 MSG_TEXT PIC X(78).

Programmatic Interface

47 A2 36UJ Rev05 7-9

FLAG Type of action:
 =0 abort
 =1 retry

COBOL: COMP-1

ERROR-RC Error code:
COBOL: COMP-2

Return Codes:

Normal DONE

Abnormal NOMATCH: wrong internal domain name
ARGERR: argument error
Plus other abnormal system return codes.

Error Codes (COBOL):

 0 normal execution of primitive
256 wrong internal domain name
261 I/O error, details in GR4
264 argument error

NOTE:
The routine CGCLABORT will cause an abort (if FLAG=0) or a retry.

ADDRESS OF MSG is accepted only if the program is compiled with option
LEVEL=NSTD in the COBOL command.

GCL Programmer's Manual

7-10 47 A2 36UJ Rev05

7.1.1.5 GCLRETRY

Purpose:

To cancel the execution of a command with an optional error diagnostic and give
the user an opportunity to resupply or modify the currently processed command.

Retry is performed only when input is from a terminal and menu mode is set
whereby keywords for which values are invalid, are prompted again. Otherwise
the function is like GCLABORT.

GCL
retry

internal domain
name

[message] error code

Syntax:

GPL: $H_RETRYGCL INTDOM=i_ptr [MSG=i_char78 LENGTH=i_fb15];

COBOL: CALL "CGCLABORT" USING INTDOM,ADDRESS OF MSG,FLAG
 ,ERROR-RC.

Parameters:

INTDOM Pointer to Internal domain name:
GPL: i_ptr
COBOL: COMP-2

MSG Message text:
GPL: MSG=i_char78

LENGTH Actual message length:
GPL: LENGTH=i_fb15

ADDRESS OF MSG Length and Text of message:
COBOL: 01 MSG.
 02 MSG_LENGTH COMP-1.
 02 MSG_TEXT PIC X(78).

Programmatic Interface

47 A2 36UJ Rev05 7-11

FLAG Type of action:
 =0 abort
 =1 retry

COBOL: COMP-1

ERROR-RC Error code: COBOL: COMP-2

Return Codes:

Normal DONE

Abnormal NOMATCH: wrong internal domain name
ARGERR: argument error
Plus other abnormal system return codes.

Error Codes (COBOL):

 0 normal execution of primitive
256 wrong internal domain name
261 I/O error, details in GR4
264 argument error

NOTE:
The routine CGCLABORT will cause an abort or a retry (if FLAG=1).

ADDRESS OF MSG is accepted only if the program is compiled with option
LEVEL=NSTD in the COBOL command.

GCL Programmer's Manual

7-12 47 A2 36UJ Rev05

7.1.2 Primitives in Schematic Program

The relationship among GCL primitives, terminal activity and GCL procedure
execution can be summarized as follows:

GCL GCL GCL Text returned
Primitives Commands Procedures to Calling
 Processor

 GCLINIT
 |
 |
 |
+-->|
| |
|GCLREAD------->|
| | |
+-->| |COBOL------>|
 | | | PROC COBOL;
 | | |

 | | | SYSTEM 'C1,...C9'; C1,...C9
 | | |
 | | | ENDPROC;
 | | |
 | |LINKGO---->|
 | | | PROC LINKGO;
 | | |

 | | | SYSTEM 'L1,...L8'; L1,...L8
 | | | SYSTEM 'S1,S2'; S1,S2
 | | |
 | | | ENDPROC;
 |
 |
 GCLTERM

A domain is initialized and named by GCLINIT.

When calling GCLREAD, supply the internal domain name and receive a return
code and a text with its length.

GCLREAD accesses, analyzes and translates a command. In the above example, it
leads to execution of the procedure COBOL.

The first SYSTEM encountered suspends execution and GCLREAD returns the text
C1,..C9 to the caller.

Then at the next GCLREAD, processing is resumed.

Upon encountering the ENDPROC command:

• the next user-defined command LINKGO is read in
• and the procedure LINKGO is activated.

Programmatic Interface

47 A2 36UJ Rev05 7-13

7.2 Interface Between Program and Procedure

7.2.1 Domain

The domain name specified in the GCLINIT primitive must be the name of the
domain subfile contained in a binary library. This subfile is created when the first
procedure of a domain is created using the DOMAIN, BINLIB and CREATE
commands of MAINTAIN_COMMAND.

At execution, the domain subfile is sought in the binary search path. If the caller
has not specified the binary library, then the GCLINIT primitive returns an error
code, DOMAIN UNKNOWN.

7.2.2 SYSTEM Command

A SYSTEM command associates a GCL procedure of an initialized domain with a
user program. Generally, a procedure will contain one SYSTEM command.
Nothing prevents defining a procedure that contains none, or several SYSTEM
commands. The next prompt appears after exiting from the procedure currently at
the bottom of the GCL stack.

The argument of the SYSTEM command is a character string which is sent to the
program in response to the GCLREAD primitive.

The user program makes no further checks:

• after the syntax of the command inside the procedure has been analyzed
• and if the string passed through the SYSTEM command is a coded string.

The same program can initialize several domains with different names, allowing
domain nesting.

GCL Programmer's Manual

7-14 47 A2 36UJ Rev05

7.3 Programming Rules

The main operations for creating and testing an interactive program using GCL
facilities are as follows:

1. Create the interactive program using READVAR and MODVAR primitives to
pass parameters or to help debugging.

2. Create the GCL command EXEC_PG to invoke the program. This command
procedure belongs to the IOF domain in the user or project private BIN
library. Use the OPTIONS keyword of the EXEC_PG command or global
variables to pass parameters to the procedure.

3. Create the commands of the processor domain. This domain must be stored
in the private binary library. The QUIT command must be created. The entry
"/" returns an IGNORE code to the calling GCLREAD primitive.

4. Place the binary library containing the procedures (created in Steps 2 and 3) in
the binary search path, using the MWINLIB BIN command. The procedures
are then available.

5. Invoke the processor with the command created in step 2.

6. Debugging is performed with:

− the PCF facility for the user program
− the DEBUG and TRACE system variables for the GCL procedures.

7. After debugging, delete the DEBUG option from the EXEC_PG command
and remove trace functions in the program using variables. Lock the
procedures if no further modification is desired.

Programmatic Interface

47 A2 36UJ Rev05 7-15

7.4 Example of Application

The following example shows how to create an interactive COBOL program which
dialogs with the terminal using the GCL facility, the entities defined being:

• a COBOL program BANK
• a procedure BANK in the domain IOF that calls the preceding program
• a domain BANK containing three procedures activated by the program.

The user-defined domain BANK contains three commands; CREDIT, DEBIT and
BALANCE. Associated with each command there is a section of the COBOL
program to the processing necessary to handle the operation concerned.

The components of the application are shown as follows:

BalanceDebitCredit

 BANK

1. Credit
2. Debit
3. Balance

The following three types of operation are handled by the application:

• CREDIT to credit an amount to an account.
• DEBIT to debit an amount to an account.
• BALANCE to display the balance of an account.

Detailed processing for each operation is done in the COBOL program is shown
overleaf.

The user-defined GCL domain BANK contains a command for each operation.
The COBOL program activates this domain (by means of the CGCLINIT
command). The program reads the operation entered by the user by means of the
CGCLREAD statement.

GCL Programmer's Manual

7-16 47 A2 36UJ Rev05

To select an operation, the user selects the appropriate command from the BANK
domain level menu (menu mode) or enters the command's name (non-menu mode).
The command chosen and its parameter value(s) are transmitted to the COBOL
program.

The Flowchart of the Application is as follows:

string

no

yes

no

yes

START

$H_INITGCL

OK?

BANK

Credit
Debit
Balance$H_READGCL

SYSTEM

processing

OK?

$H_TERMGCL

STOP

Programmatic Interface

47 A2 36UJ Rev05 7-17

7.4.1 Programming in COBOL

 IDENTIFICATION DIVISION.
 PROGRAM-ID. BANK.
**
* * THE MAIN AIM OF THIS PROGRAM IS TO ILLUSTRATE * *
* * THE GCL PROGRAMMATIC INTERFACES USED FROM * *
* * A COBOL PROGRAM * *
**
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. LEVEL-64.
 OBJECT-COMPUTER. LEVEL-64.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT BANK ASSIGN TO BANK.
 DATA DIVISION.
 FILE SECTION.
 FD BANK LABEL RECORD STANDARD.
 01 BANK-REC.
 02 FILLER PIC X(200).
 WORKING-STORAGE SECTION.
 01 DOMAIN PIC X(31) VALUE "BANK".
 01 INT-DOM COMP-2.
 01 SUP PIC X(8).
 01 SUPP PIC X(8).
 01 PREFIX PIC X VALUE "C".
 01 ERROR-RC COMP-2.
 01 OUTLG COMP-2.
 01 BANK-FLD.
 02 BANK-CODE PIC X.
 02 CTVAR PIC X(15).
 01 BANK-CREDIT.
 02 BANK-ID-C PIC X(3).
 02 AMOUNT-C PIC 9(10).
 01 BANK-DEBIT.
 02 BANK-ID-D PIC X(3).
 02 AMOUNT-D PIC 9(10).
 01 BANK-BALANCE PIC X(3).

 PROCEDURE DIVISION.
 PROC-BEGIN.
 OPEN I-O BANK.
 CALL "CGCLINIT" USING DOMAIN PREFIX INT-DOM SUP SUPP
 ERROR-RC.
 IF ERROR-RC NOT = 0 DISPLAY CONVERSION
 "INIT DOMAIN BANK MANAGEMENT NOT SUCCESSFUL ERROR-RC : "
 ERROR-RC UPON TERMINAL GO TO END-PRG.

GCL Programmer's Manual

7-18 47 A2 36UJ Rev05

 INPUT-BANK-MANAGEMENT.
 MOVE 16 TO OUTLG. MOVE SPACE TO BANK-FLD.
 CALL "CGCLREAD" USING INT-DOM OUTLG BANK-FLD ERROR-RC.
 IF ERROR-RC = 2 GO TO USER-END-PRG.
 IF ERROR-RC NOT = 0
 DISPLAY CONVERSION
 "READ DOMAIN BANK NOT SUCCESSFUL ERROR-RC : "
 ERROR-RC UPON TERMINAL GO TO READ-END-PRG.
 IF BANK-CODE = "C" UNSTRING CTVAR DELIMITED BY "/"
 INTO BANK-ID-C AMOUNT-C
 DISPLAY "CREDIT THE ACCOUNT OF BANK: " BANK-ID-C UPON TERMINAL
*
* **** SPECIFIC TREATMENT OF THE CREDIT ****
* The statements needed to do this
* are not shown as they are not
* dependent on the fact that a GCL
* interface is being used.
*
 GO TO INPUT-BANK-MANAGEMENT.
 IF BANK-CODE = "D" UNSTRING CTVAR DELIMITED BY "/"
 INTO BANK-ID-D AMOUNT-D
 DISPLAY "DEBIT THE ACCOUNT OF BANK: " BANK-ID-D UPON TERMINAL

* **** SPECIFIC TREATMENT OF THE DEBIT ****
* These statements are not shown.
* see comments under CREDIT above.
*
 GO TO INPUT-BANK-MANAGEMENT.
 MOVE CTVAR TO BANK-BALANCE.
*
* **** SPECIFIC TREATMENT OF THE BALANCE *****
* These statements are not shown.
* See comments under CREDIT above.
*
 GO TO INPUT-BANK-MANAGEMENT.
 USER-END-PRG.
 DISPLAY "END EXECUTION ASKED BY USER" UPON TERMINAL.
 READ-END-PRG.
 CALL "CGCLTERM" USING INT-DOM ERROR-RC.
 CLOSE BANK.
 END-PRG.
 STOP RUN.

Programmatic Interface

47 A2 36UJ Rev05 7-19

The CALL "CGCLINIT" USING statement in the COBOL program initiates the
user-defined domain named BANK.

The CALL "CGCLREAD" USING statement reads the command (and its
parameters) entered by the user. The COBOL program tests to see which type of
operation (CREDIT, DEBIT, or BALANCE) has been entered and a branch is
made to the appropriate part of the program to do the processing. The statements
to do this processing are not shown since they are not dependent on the fact that a
GCL interface is being used.

While in the GCL part of the application, all the facilities of GCL are available.
Thus for example, Help texts can be requested for each command (operation) and
parameter (assuming that these have been written), controls on the values supplied
can be made, error messages can be issued and retries can be done, as for any other
GCL procedure. Thus the full power of GCL can be used in association with the
COBOL program to create the application desired.

The loop on "CGCLREAD" continues until the user indicates that there are no
more operations (by entering a /, instead of a command).

GCL Programmer's Manual

7-20 47 A2 36UJ Rev05

7.4.2 GCL Procedure BANK of IOF Domain

 GCL COMMANDS

-> ACTIVATION OF THE BANK APPLICATION

IOF (MAY 7, 1986 13:20)
 BANK 05/06/86 13:34 STMTS= 3

10:PROC (BANK B) PROMPT='BANK APPLICATION' HELP=BANK_HELP;
20:EXEC_PG BANK MYOWN.LMLIB FILE1=BANK MYOWN.BANK;
30:ENDPROC;

The three commands of the BANK domain are shown below.

7.4.3 GCL Procedures BALANCE, DEBIT and CREDIT

-> BANK APPLICATION

BANK (MAY 07, 1986 17:10)
 BALANCE 05/06/86 15:44 STMTS= 4

10:PROC (BALANCE B) PROMPT=('BALANCE THE ACCOUNT');
20:KWD BANK TYPE=NAME NUMVAL=(1,1) LENGTH=3 VALUES=(BNP SG CA);
30:SYSTEM #CAT(B,%BANK);
40:ENDPROC;

 DEBIT 05/06/86 16:49 STMTS= 5

10:PROC (DEBIT D) PROMPT=('DEBIT THE ACCOUNT');
20:KWD BANK TYPE=NAME NUMVAL=(1,1) LENGTH=3 VALUES=(BNP SG CA);
30:KWD AMOUNT TYPE=DEC NUMVAL=(1,1) LENGTH=10 VALUES=>0 CONCEAL;
40:SYSTEM #CAT(D,%BANK,/,%AMOUNT,/);
50:ENDPROC;

 CREDIT 05/06/86 16:54 STMTS= 5

10:PROC (CREDIT C) PROMPT=('CREDIT THE ACCOUNT');
20:KWD BANK TYPE=NAME NUMVAL=(1,1) LENGTH=3 VALUES=(BNP SG CA);
30:KWD AMOUNT TYPE=DEC NUMVAL=(1,1) LENGTH=10 VALUES=>0 CONCEAL;
40:SYSTEM #CAT(C,%BANK,/,%AMOUNT,/);
50:ENDPROC;

Programmatic Interface

47 A2 36UJ Rev05 7-21

7.4.4 Equivalent Programming in GPL

BANK: PROC;

DCL INTDOM PTR;
DCL TEXT CHAR(256);
DCL TEXT_LG FB31;

DCL 1 CMD DEF TEXT,
 2 COMMAND CHAR(1),
 2 BANK CHAR(3),
 2 AMOUNT CHAR(10);

 $H_INITGCL DOMAIN="BANK" INTDOM=INTDOM PREFIX="B";
 IF $H_TESTRC ABNORMAL;
 THEN
 /* INIT ERROR */
 RETURN;

 DO FOREVER;
 TEXT_LG = MEASURE (TEXT);
 $H_READGCL INTDOM=INTDOM OUTLEN=TEXT_LG OUTAREA=TEXT;
 IF $H_TESTRC IGNORE; THEN DO;
 $H_TERMGCL INTDOM=INTDOM;
 IF $H_TESTRC ABNORMAL;
 THEN
 /* TERM ERROR */
 END;
 RETURN;
 IF $H_TESTRC NORMAL; THEN DO;
 SELECT (COMMAND);
 WHEN ("C") DO;
 /* PROCESSING OF CREDIT COMMAND */
 END;
 WHEN ("D") DO;
 /* PROCESSING OF DEBIT COMMAND */
 END;
 WHEN ("B") DO;
 /* PROCESSING OF BALANCE COMMAND*/
 END;
 END;
 END;

 ELSE
 /* READ ERROR */
 RETURN;

 END;

END BANK;

GCL Programmer's Manual

7-22 47 A2 36UJ Rev05

7.5 Help Text Handling

Together with the GCL interface described in Section 3 of this manual, a set of
primitives is provided to permit communication between an interactive program
and other GCL facilities.

Some of them, such as Help invocation or GCL variable management, can be used
from inside a program which does not use the GCL interface. These primitives are
given in COBOL, FORTRAN and GPL.

Others help the programmer in analyzing complex structures such as file literals,
fileset literals, or star names. These features are normally used with the GCL
interface, in order to decode strings returned in response to a GCLREAD request.
These primitives are given in GPL.

7.5.1 Definition of a Help Text

A Help text is an explanatory text available on-line to help the user in using the
system or in understanding a particular concept. Since the system knows the
context in which a user is operating, the text displayed is as specific as possible to
this context.

The system supports Help texts written in up to 10 languages. The version
displayed is determined by the value of the system variable #LANG in the user's
profile. If the text requested is not available in the national language, then the
English version is displayed instead.

Help texts may be classified as falling in one of the following four categories:

1. Domain level.

2. Command level.

3. Parameter level.

4. Other.

A domain level Help text is associated with a domain of the system such as
LIBMAINT and FORMGEN, and provides general information on the rules that
pertain to that domain. The name of such a Help text is the name of the domain. A
list of the standard domains delivered with the system is given in Section 5.

A command level Help text is associated with a command. It provides information
on the use and purpose of the command. Its name is provided by the HELP
parameter of the PROC statement in the GCL procedure which defines the
command.

Programmatic Interface

47 A2 36UJ Rev05 7-23

EXAMPLE :

PROC COPY
 HELP=EXPLAIN_COPY;

❑

The command level Help text is called EXPLAIN_COPY.

A parameter level Help text associated with a parameter of a command explains its
use and purpose, and gives its possible values. Its name is provided by the HELP
parameter of the KWD statement in the GCL procedure which defines the
command.

EXAMPLE :

KWD ORDER
 TYPE=NAME
 VALUES=(ASC,DESC)
 DEFAULT=ASC,
 HELP=EXPL_SORTORDER;

❑

The parameter level Help text associated with ORDER is called
EXPL_SORTORDER.

Help texts with user-defined names may be defined for other categories.

GCL Programmer's Manual

7-24 47 A2 36UJ Rev05

7.5.2 Requesting a Help Text

Requesting a Help text depends on the level of the Help text and on whether the
terminal is serial or full screen.

A Domain level Help text can be requested only when the domain level menu is
displayed on a screen terminal. Request the Help text either by entering a question
mark (?) in the selection field, or by pressing a "Help" function key if available.
The selection field is indicated by "-->: __" in the lower right-hand corner of the
domain level menu. A domain level Help text provides an abridged user manual
for the domain.

A Command level Help text is requested by entering a question mark (?):

• either immediately followed by a command name, for example, ?BUILD_FILE

• or in the control field when a command level menu appears, or by pressing a
"Help" function key. The control field is indicated by "-->: __" in the top right-
hand corner of the command level menu.

A command level Help text provides a brief description of the function(s) of the
command, a list of its parameters (in most cases), and one or more examples.

A parameter level Help text is requested by entering a question mark (?) instead of
a value for a parameter that is being prompted. It explains the purpose of the
parameter, its relation to other parameters, and gives examples of possible values.

It is recommended that user-defined Help texts can also be requested by entering a
question mark (?) in a specific field, or by pressing a "Help" function key.

Programmatic Interface

47 A2 36UJ Rev05 7-25

7.5.3 Help Operations

A Help text is always presented as a series of screens. Once a screen is displayed,
an action is requested from the user through a prompt (+++). Choose one of the
following:

• Return to the place where the Help text was requested by:
− typing a slash (/),
− pressing a "Break" or "End-of-current-action" function key,
− or asking for the next screen (see below) when the screen being displayed is

the last one.

• Display the preceding screen, by typing a "<" character, or by pressing a
"Backwards" function key.

• Display the following screen by entering one of the following:
− a carriage return (serial terminals), or transmit (screen terminals)
− a greater-than character (>)
− a "Forwards" function key
− any other string of characters that is not a single slash or a single less-than

character.

• Ask for Help by entering a question mark (?).

• Call the bug/remark report mechanism by typing an asterisk (*).

GCL Programmer's Manual

7-26 47 A2 36UJ Rev05

7.5.4 Conventions

All Help texts are stored in two source language (SL) libraries:

• SYS.HELP for help texts associated to the standard domains.

• SITE.HELP for help texts created by users. All Help Texts have the same
presentation.

Since the same Help text may exist in different national languages, the following
convention defines the version corresponding to the user's declared national
language:

• Names of subfiles in SYS.HELP and SITE.HELP are those of the Help texts
suffixed by a digit from 0 through 9, 0 being English, 1 through 9 being alternate
national languages available on the site.

• When help is requested, the national version declared in the system variable
#LANG appears. If #LANG is omitted, English is the default.

Except when creating a Help text (see below), do not specify the suffix of a Help
text. For example, the GCL procedure description header,

PROC COPY HELP=COPY;

implicitly refers to text subfile COPY0 for English, to COPY1 for the next
language alternative and so forth.

Programmatic Interface

47 A2 36UJ Rev05 7-27

7.5.5 CREATE_HELP_TEXT: CRHELP

This processor facilitates the creation of user-defined Help texts in the library
SITE.HELP.

The source form of new Help texts are written using FSE or EDIT. The first line of
the source text must contain the control HELP and the title of the text:

.HELP 'title of Help text';
'body of Help text'

This title will be repeated at the top of each screen of composed text.

For the desired layout of the composed text, insert formatting controls within the
source text. These formatting controls are discussed below.

Compose the source text using the system command CREATE_HELP_TEXT
(CRHELP). This command places the composed text in the SITE.HELP library.

Syntax:

CRHELP MEMBERS = {member-name star-name}

 [LANG = language code]

 [INLIB = input-library-description];

Parameters:

MEMBERS (list of) source texts to compose.

LANG the language as defined in GCL. The default is 0,
which means English. The languages corresponding to
the other values are installation-dependent.

INLIB library containing source texts.
Default: Current value of system variable #SLIB.

GCL Programmer's Manual

7-28 47 A2 36UJ Rev05

7.5.6 Formatting Controls

Insert formatting controls (or commands) in the source Help texts for the desired
layout. These controls start with a period (.) character in the first position of a line.
Several controls can be placed on the same line, but in this case they must be
separated by semicolons (;).

Some of the formatting controls are:

.help 'mine' This specifies that the Help's title is 'mine'. It ensures
that the title and page (or screen) number appears on
each page (or screen). Enter the .help control on the
first line of a source Help text.

.spb 1 This starts a new paragraph after skipping 1 line. 1
after .spb can be omitted (.spb is equivalent to .spb 1).

.spb2 This starts a new paragraph after skipping 2 lines.

.brp This forces a page break. The text following will start
on a new screen.

.inl 5 This indents the text 5 positions from the left. This
indentation continues until canceled by another .inl.

.unl 3 This "un-indents" text 3 positions to the left. In
contrast to .inl, .unl is effective only for the text line
immediately following it.

.fif This turns off fill mode. The text that follows is left as
is until this control is canceled by a .fin control.

.fin This cancels a preceding .fif control.

Programmatic Interface

47 A2 36UJ Rev05 7-29

7.5.7 Examples of Help Texts

7.5.7.1 Source Text

The following is an example of a source Help text (that is, with the formatting
controls still included).

.help 'a sample source text'
This is the first line.
.spb 1
This is a new paragraph.
The text of a single sentence can be split over several lines.
.spb
This is the same as specifying .spb 1.
.spb 2
Do not start a line with a space (or blank) character.
To indent the text from the left, use the .inl control.
.spb 3
Start a new paragraph after skipping 3 lines.
.brp
Start a new paragraph on a new page (screen).
.spb
.inl 8
.unl 3
Start indentation (from the left) at position 9.
So there will be 8 spaces at the start of each line.
However, the line immediately following the .unl is "un-indented" 3 positions to
the left.
.spb 1
.unl 6
This line in "un-indented" 6 positions.
.spb 1
The .inl is effective until canceled.
.spb 1
.inl 0
The .inl 0 resets the left hand margin, that is, it stops the indentation from the left.
.spb 1
.fif
The .fif means that the following
text is not composed, that is, it is
left as is.
.spb 2
.fin

GCL Programmer's Manual

7-30 47 A2 36UJ Rev05

Use the .fin control to cancel the .fif control.
.spb
Example:
.spb 1
.inl 25
.unl 20
SYNTAX ON THE LEFT The explanation can be placed on the right hand side.
If necessary, this explanation can continue on several lines.
The .inl and .unl controls ensure that the layout will be as desired.

Programmatic Interface

47 A2 36UJ Rev05 7-31

7.5.7.2 Composed Text

Compose the source text as follows:

CREATE_HELP_TEXT MEMBERS=MYTEXT LANG=0 INLIB=MY.SL1;

where MYTEXT is the name of the text.

The composed Help text obtained from the source text presented above is shown
below. Note that the line length of this manual is 68 characters whereas the line
length of a Help text displayed on a screen terminal is usually 78 characters. The
text presented below is based on a line length of 68 characters.

Typing in the above source text and displaying it on a screen terminal, gives a
presentation slightly different due to the 10 character difference in line length.

The composed version of this Help text is given below.

1/3 A SAMPLE SOURCE TEXT

This is the first line.

This is a new paragraph. The text of a single sentence can be split over several
lines.

This is the same as specifying .spb 1.

Do not start a line with a space (or blank) character. To indent the text from the
left, use the .inl control.

Start a new paragraph after skipping 3 lines.

2/3 A SAMPLE SOURCE TEXT

Start a new paragraph on a new page (screen).

Start indentation (from the left) at position 9. So there will be 8 spaces at the start
of each line. However, the line immediately following the .unl is "un-indented" 3
positions to the left.

This line in "un-indented" 6 positions.

The .inl is effective until canceled.

The .inl 0 resets the left hand margin, that is, it stops the indentation from the left.

The .fif means that the following text is not composed, that is, it is left as is.

3/3 A SAMPLE SOURCE TEXT

Use the .fin control to cancel the .fif control.

GCL Programmer's Manual

7-32 47 A2 36UJ Rev05

EXAMPLE :

SYNTAX ON THE LEFT The explanation can be placed on the right hand side.
If necessary, this explanation can continue on several
lines. The .inl and .unl controls ensure that the layout
will be as desired.

❑

Note the use of the .inl and .unl controls to place the syntax of an example on the
left-hand side of the text and the associated explanatory text on the right-hand side.

The explanatory text can extend as long as needed.

The rest of this section consists of an example of a domain level Help text,
followed by an example of a command level Help text, and ending with an
example of a parameter level Help text.

Programmatic Interface

47 A2 36UJ Rev05 7-33

7.5.7.3 Domain Level Help Text

The following is an example of a domain level Help text.

1/2 FULL SCREEN EDITOR

You are now in the domain of the Full Screen Editor (FSE); a powerful editor with
which you can create and modify source texts in source libraries using predefined
applications (defined by ADL). FSE has two modes of operation: an input mode
and an edit mode.

In input mode you enter complete records that are used to build up a new text unit
to be inserted in an existing member or used to replace existing lines. You may
define the format of the records you enter, the way they are to be prompted on the
screen, and the order in which they are to be transmitted to the calling program
(selective sequence), in an application.

In edit mode you may specify the actions to be performed on an existing text.
These actions are available through edit requests that you enter in a predefined
field on the screen. The results of the requested actions appear immediately on the
screen, where you may check to see if they have had the desired effect.

2/2 FULL SCREEN EDITOR

FSE can operate on up to four source libraries at a time; one is the output library,
the others are input libraries. FSE commands that read members from the libraries
operate on the input and the output libraries; whereas FSE commands that modify a
library operate only on the output library.

You can assign the input libraries before entering FSE by the GCL command
MWINLIB, or you can assign them within FSE by the commands INLIB1,
INLIB2, and INLIB3. You can assign the output library before entering FSE by
the GCL command MWLIB or by the keyword LIB of the FSE statement, or you
can assign it within FSE by the LIB command.

Libraries are referred to in FSE by their symbolic names: LIB, INLIB1, INLIB2,
and INLIB3. If you refer to a library that has not been assigned, an error message
is displayed.

GCL Programmer's Manual

7-34 47 A2 36UJ Rev05

7.5.7.4 Command Level Help Text

The following is an example of a command level Help text.

1/3 LINK AN EXECUTABLE MODULE

The LINK PG (abbreviation LK) command is used to create an executable load
module (or sharable module) from a set of one or more compile units.

The LM parameter specifies the name of the resulting load module (or sharable
module).

The SM parameter indicates whether a load module or a sharable module is to be
produced.

The INLIB parameter specifies the input library which contains the compile unit(s)
to be linked.

The COMFILE parameter specifies the file which contains the commands to
control the execution of LINK_PG.

2/3 LINK AN EXECUTABLE MODULE

The COMMAND parameter is used to specify directly a set of commands to
control the execution of LINK_PG.

The ENTRY parameter specifies the entry point of the load module.

The LIB parameter specifies the library in which the load module or sharable
module produced by LINK_PG is to be stored.

The PRTLIB parameter specifies the library which is to contain the listing(s).

For more details, see the LINKER User's Guide.

Examples are given on the next screen.

3/3 LINK AN EXECUTABLE MODULE

Examples:

LINK LM=LMOD1; Create the load module LMOD1.

LINK LM=PRTEST LIB=P1.LM3 COMFILE=P1.B1..CF;

Create the load module PRTEST, store it in the LM library P1.LM3. The command
file is the member CF of the SL library P1.B1.

Programmatic Interface

47 A2 36UJ Rev05 7-35

7.5.7.5 Parameter Level Help Text

The following is an example of a parameter level Help text.

1/1 EXPIRY DATE

The EXPDATE parameter specifies the expiry date of the file.

Specify it in one of the following forms:

 yy/mm/dd that is, year/month/day
 yy/ddd that is, year/day
 ddd that is, days (after today)

The default is that the expiry date is the same as today's date.

EXAMPLES :

 89/12/31 31 December 1989

 89/138 18 May 1989 (that is, the 138th day of
 1989).

 138 138 days after today.

❑

GCL Programmer's Manual

7-36 47 A2 36UJ Rev05

7.5.8 HELP Primitive

Purpose:

To display a Help text.

Syntax:

GPL: $H_HELP i_char32;

COBOL: CALL "CHELP" USING NAME, ERROR-RC.

FORTRAN: CALL FHELP (NAME,ERROR)

Parameters:

NAME Name of Help text, excluding the national language
suffix:
GPL: i_char32
COBOL: PIC X(32)
FORTRAN: CHAR*32

ERROR or ERROR-RC COBOL: COMP-2
FORTRAN: INTEGER

Return Codes:

Normal DONE

Abnormal SFNUNKN: subfile unknown: Help text does not exist
Plus all return codes for the file containing Help texts
and for the Terminal Access Method.

Error Codes (COBOL and FORTRAN):

 0 function performed correctly
256 no Help text found
257 system error

Programmatic Interface

47 A2 36UJ Rev05 7-37

EXAMPLE (GPL):

RECEV:
 CALL H_FRMRECV;
 IF $FRM FIELD 1; = "/" THEN GOTO ENDDELETE;
 IF $FRM FIELD 1; = "?" THEN DO;
 $H_HELP "H_FSE RENUMBER";
 $FRM SELECT NONE;
 $FRM SELECT 1;
 $FRM FIELD 1; = " ";
 GOTO RETRY;
END.

❑

GCL Programmer's Manual

7-38 47 A2 36UJ Rev05

7.6 Managing GCL Variables

7.6.1 Global Variables

GCL global variables are declared in the GLOBAL GCL command and remain
accessible during a session, unless a DELETE GLOBAL command is executed for
the variable.

Global variables are referred to by name. They are defined and used in GCL
commands, or in external calls from programs written in one of these languages:
COBOL, FORTRAN and GPL. GCL global variables thus allow communication
between two GCL procedures, or between a GCL procedure and a program, or
between two programs.

7.6.2 System Variables

System variable names are prefixed with a #. They determine the visibility that the
programmer has of the system such as Printing Width (PW) and National Language
(LANG). They are listed and presented in the IOF Terminal User's Reference
Manual.

Any user may read or change these values. Setting a new value results in a new
operating environment. For example, if LANG is modified, Help texts and error
diagnostics will be displayed in the specified language instead of in English.

7.6.3 GCL Variable Primitives

Two functions are provided for using Global and System Variables:

• READVAR accesses a global or system variable, and processes the following
builtins as system variables:

 #BILLING #LSYS #RON #USERID
 #CPU #MDAY #TERMID #WDAY
 #DATE #MODE #TIME #YDAY
 #ELAPSED #PROJECT #TTYPE #FW
 #EXTDATE

• MODVAR modifies a global or system variable.

All global variables and system variables are lists. A scalar value is a particular
case of a list with only one element. READVAR and MODVAR access only one
element in the list which is selected through an index denoting its rank. Both these
primitives require an index value as well as the name of the global or system
variable to be accessed.

Programmatic Interface

47 A2 36UJ Rev05 7-39

7.6.3.1 READVAR

Purpose:

To access a global or system variable.

Syntax:

GPL: $H_READVAR i_char31 [,INDEX=i_fb31],
 OUTLEN=b_fb31,OUTAREA=o_charn;

COBOL: CALL "CREADVAR" USING NAME,INDEX-ID,OUTLEN,OUTAREA
 ,ERROR-RC.

FORTRAN: CALL FREADVAR (NAME,INDEX,OUTLEN,OUTAREA,ERROR)

Parameters:

NAME Type of variable:
− system variable if it begins with # such as #MENU
− otherwise, global variable such as MY_GLOBAL.
GPL: i_char31
COBOL: PIC X(31)
FORTRAN: CHARACTER*31

INDEX or INDEX-ID Index of element in list; scalar variable has only one
element:
GPL: i_fb31
FORTRAN: INTEGER
COBOL: COMP-2

OUTLEN Length of output area in input or data read <= 255 in
output:
GPL: b_fb31
COBOL: COMP-2
FORTRAN: INTEGER

OUTAREA Field to receive the value of the variable, left justified.
GPL: o_charn
COBOL: PIC X(n)
FORTRAN: CHARACTER*n

ERROR or ERROR-RC COBOL: COMP-2
FORTRAN: INTEGER

GCL Programmer's Manual

7-40 47 A2 36UJ Rev05

Return Codes:

Normal DONE: function performed correctly
TRUNC: truncation (output area too short)

Abnormal ARGERR: argument error: some argument is wrong
INDERR: invalid index or empty variable
LNERR: length error - length exceeds maximum
 allowed
NAMEERR: variable name unknown
RESNAV: result not available: global table not
 accessible
UNCNAV: function not available in batch mode

Error Codes (COBOL and FORTRAN):

 0 function performed correctly
 1 truncation due to insufficient output area
119 function not available in batch
256 variable name unknown
257 invalid index
258 empty variable
259 length erroneous
264 argument error
300 system error

EXAMPLE (GPL):

$H_READVAR '"#GCLFORM"', OUTLEN = 1,
OUTAREA = GCLFORM;

❑

Programmatic Interface

47 A2 36UJ Rev05 7-41

7.6.3.2 MODVAR

Purpose:

To modify a global or system variable.

Syntax:

GPL: $H_MODVAR i_char31 [,INDEX=i_fb31],
 INLEN=i_fb31,INAREA=i_charn;

COBOL: CALL "CMODVAR" USING NAME,INDEX-ID,INLEN,INAREA
 ,ERROR-RC.

FORTRAN: CALL FMODVAR (NAME,INDEX,INLEN,INAREA,ERROR)

Parameters:

NAME Type of variable:
− system variable if it begins with # such as #MENU
− otherwise, global variable such as MY_GLOBAL.
GPL: i_char31
COBOL: PIC X(31)
FORTRAN: CHARACTER*31

INDEX or INDEX-ID Index of element in list; Default: 1:
GPL: i_fb31
FORTRAN: INTEGER
COBOL: COMP-2

INLEN Length of the input area <= 255.
GPL: i_fb31
COBOL: COMP-2
FORTRAN: INTEGER

INAREA Field to be written in.
GPL: i_charn
COBOL: PIC X(n)
FORTRAN: CHARACTER*n

ERROR or ERROR-RC COBOL: COMP-2
FORTRAN: INTEGER

GCL Programmer's Manual

7-42 47 A2 36UJ Rev05

Return Codes:

Normal DONE: H_MODVAR performed correctly.

Abnormal ARGERR: argument error: some argument is wrong
FUNCNAV: function not available in batch mode
INDERR: invalid index
LNERR: invalid length
NAMEERR: variable name unknown
NOMATCH: invalid value
OBJUNKN: environment not allowed
RESNAV: result not available: global table not
 accessible
TYPEERR: invalid type

Error Codes (COBOL and FORTRAN):

 0 function performed correctly
119 function not available
256 variable name unknown
257 invalid index
259 invalid length
260 invalid type
261 invalid value
264 argument error
300 system error

Programmatic Interface

47 A2 36UJ Rev05 7-43

7.7 File Literal Analysis

Some primitives analyze the GCL constructs known as file literals and volume
literals. These constructs are used to denote a file or a volume in a manner that is
both compact and easy to use.

These primitives can be used in any context where a file literal may appear, in
order to check whether it is correct and to prepare the structures required to
dynamically assign the file ($H_DFLASG).

For details on how to specify files, refer to the IOF Terminal User's Reference
Manual.

An example of the use of the H_DCANFILE and H_ANFILE macros is given in
the GPL System Primitives Reference Manual.

NOTE:
Lowercase letters are converted to uppercase unless they are within protected
strings.

GCL Programmer's Manual

7-44 47 A2 36UJ Rev05

7.7.1 File Literal

Syntax:

file-literal ::= { local-file | remote-file }

 { :string-1 }
remote-file ::= $site-name { :protected-string }
 { { /|!|̂ |>|<|. }string-2 }

Definition of Elements:

• site-name ::= name8

• string-1 ::= any combination of up to 255 characters
 excluding , ; = # % ' " ()* { } [] &
 ? and space

• protected-string ::= GCL protected string up to
 255 characters

• string-2 ::= like string-1 but limited to
 254 characters

local-file ::= can be one of the following entries:
{ cataloged-file::=

 {[$CAT[i]][$VOLSET[:name6]]}
 path-name[/g-suffix][..subfile]{ }
 {$NATIVE }

| temporary-file::=
 {[:md[/md]...:dvc] }
 path-name[..subfile]{[$RES] }$TEMPRY

 {[$VOLSET[:name6]]}

| permanent-uncataloged-file::=
 {$RES [$UNCAT] }
 { }
 { [{$UNCAT }]}
 path-name[..subfile]{ [{$MFT[i|+]}]}
 {:md[/md]...:dvc[{$NATIVE }]}
 { [{$NONE }]}
 { [{$NSTD }]}

| { * | SYSIN .. } input-enclosure-name

| { DUMMY | SYS.OUT }

| * : md[/md]...:dvc [{ $UNCAT | $NATIVE }]

| [path-name]:[md]:TN[/tbd][$UNCAT] }

Programmatic Interface

47 A2 36UJ Rev05 7-45

Definition of Elements:

• full-path-nm ::= simple name [.simple-name]...

• rel-asc-path ::= <[<]... simple-name [.simple-name]...

• rel-desc-path ::= .simple-name [.simple-name]...

• path-name ::= {full-path-nm}
 {rel-asc-path}
 {rel-desc-path}

• g-suffix ::= { { Gdigit4 } }
 { { G{+|-}digit4 }[{ Vdigit2] }
 { { G{+|-} } }
 { G name5 }
 { Vdigit2 }

• subfile ::= name31

• input-enclosure-name
 ::= name16

7.7.2 Syntax of a Volume Literal

 [$NATIVE]
 [-------]
 [$COMPACT]
md [/ md] ... :dvc []
 [$NONE]
 []
 [$NSTD]

GCL Programmer's Manual

7-46 47 A2 36UJ Rev05

7.7.3 Primitives

Two macro definitions are provided for analyzing a file literal string. The first one
($H_DCANFILE) declares a structure that is passed to the second ($H_ANFILE).
This structure is used to convey the input parameters to the primitive and to obtain
the resulting parameters.

The following is a very simple programming example that illustrates the manner in
which these two primitives are to be used:

Example of Primitive Calls:

$H_DCANFILE PREFIX='' /* declare file analysis structure */

STRING_ADDRESS=ADDR (MYZONE) /* address of zone to be analyzed */

FIRSTCHAR=1; LASTCHAR=LEN /* index of 1st & last characters */

SYNTAX_OPTION="1 /* OCL syntax is not allowed */

SUBFILE_OPTION="1" /* subfiles are allowed */

EXPANDPATH="2" /* expand the path name */

SITE_OPTION="1" /* site option is not allowed */

$H_ANFILE ANFILE /* call the analysis primitive */

IF RETURNCODE=0 THEN DO /* no error detected */

...
END

ELSE DO /* some error detected */
...
END

Programmatic Interface

47 A2 36UJ Rev05 7-47

7.7.3.1 DCANFILE

Purpose:

To declare the file analysis structure.

Syntax:

$H_DCANFILE [PREFIX=l_identifier16] [ATTRIB=l_char];

Parameters:

PREFIX Specifies a character string prefixed to the name of the
structure and to the name of each elementary item.
Default: 'H_'

ATTRIB Specifies the attributes of the structure.
Default: none

For more information, see the GPL System Primitives Reference Manual.

7.7.3.2 ANFILE

To check the description of constructs denoting a file or volume literal, analyze the
options, then return the information required to dynamically assign the file
(H_ASSIGN).

Syntax:

$H_ANFILE b_structure;

Parameter:

name Name of Structure: b_structure
− declared by the H_DCANFILE
− and contains input and output arguments for file

analysis.

Return Codes:

Normal DONE: normal execution

Abnormal ARGERR: argument error: invalid argument

GCL Programmer's Manual

7-48 47 A2 36UJ Rev05

7.8 Fileset Literal Analysis

The primitives described here are devoted to the analysis of the GCL construct
known as fileset literal.

Note that in the following, lowercase letters are treated as uppercase, unless they
are within protected strings.

7.8.1 Fileset Literal

Syntax:

Fileset-literal : :=

star-exp:md[/md...:dvc[$UNCAT]$MFT[+|i][$REF[:file-literal
 [$REF:file-literal]...]]]

star-exp [{:md[/md]...:dvc}][$UNCAT]$REF[:file-literal[$REF:file-literal]
 [{$RES}]...]]

star-exp $VOLSET[:vset-6] [$REF[:file-literal[$REF:file-literal]...]]

star-exp [{ $CAT[i] }][$ONLY:{*|md[/md...}:dvc][$REF[:file-literal
 [{ $CAT:catalog-name }] [$REF:file-literal]...]]]

star-exp [{ $CAT[i] }][$ONLY:$VOLSET[:vset-6][/vset-6]....]
 [$REF[:file-
 [{ $CAT:catalog-name }] literal[$REF:file-literal]...]]

Definition of Elements:

star-exp : := [{.|<[<]...}] {sse[.sse]...[.**[.sse]...][/suffix]
 | **[.sse]...[/suffix] }

sse : := {constant-string | [constant-string]*[constant-string]}
size max = char16
suffix : := { [{Gdigit4 }] }
 { [{G+digit4}] }
 { [{G-digit4}] [{Vdigit2}] }
 { [{G+ }] [{V* }] }
 { [{G- }] [{V** }] }
 { [{G* }] }
 { [{G** }] }
 { G_alphanum5 }

catalog-name ::=[.]simple-name [.simple-name]... [.CATALOG]
simple-name ::= alphanum16
disk-pool-name ::= char6
vset ::= volset-name6

Programmatic Interface

47 A2 36UJ Rev05 7-49

7.8.2 Primitives

Three macro definitions are provided for analyzing a fileset literal string:

• $H_DCANFST declares a structure that is passed to $H_ANFST

• $H_ANFST takes parameters from the generated structure, analyzes the fileset
literal and issues new parameters to the structure

• $H_ANFLFST applies when a file literal is embedded within the fileset literal
after $REF.

7.8.2.1 DCANFST

Purpose:

to declare and generate a Fileset structure to be used as the communication area
between a program and the ANFST or ANFLFST primitive.

Syntax:

$H_DCANFST [PREFIX=l_identifier16] [ATTRIB=l_char];

Parameters:

PREFIX Specifies a character string to be prefixed to the name
of the structure and to the name of each elementary
item.
Default: 'H_'

ATTRIB Specifies the attributes of the structure.
Default: none

For more information, see the GPL System Primitives Reference Manual.

GCL Programmer's Manual

7-50 47 A2 36UJ Rev05

7.8.2.2 ANFST

Purpose:

To analyze the fileset literal and to fill the structure generated by DCANFST.

Syntax:

$H_ANFST b_structure;

Parameter:

name Name of Structure: b_structure
− generated by H_DCANFST
− and contains input and output arguments of

H_ANFST.

Return Codes:

These are given by the RC in the H_DCANFST structure.

Programmatic Interface

47 A2 36UJ Rev05 7-51

7.8.2.3 ANFLFST

Purpose:

To analyze a File Literal inside a Fileset literal.

Syntax:

$H_ANFLFST b_structure1 FILE_STRUCT=b_structure2;

Parameters:

name Name of Structure: b_structure1
− declared by H_DCANFST
− filled by H_ANFST
− and used by H_ANFLFST in input and output.

FILE_STRUCT Name of Structure: b_structure2
− declared by H_DCANFILE for use by H_ANFLFST

in input
− and initialized as required for H_ANFILE.

The string address, beginning and end index are to be
found in the substructure FLREF of H_DCANFST.

Return Codes:

These are given by the RC in the H_DCANFST structure.

If RC=-1, another $REF:file_literal has been found. Repeated calls are made to
H_ANFLFST to analyze the remaining file literal, until RC is different from -1.

Output of $H_ANFLFST is to the $H_DCANFST structure.

GCL Programmer's Manual

7-52 47 A2 36UJ Rev05

7.9 Star Convention Analysis Primitives

The star convention is a syntactical device that may be used to denote a set of
names in an abbreviated manner.

Syntax of the Star Convention:

 { single-name } {[$>lower-value] [$<upper-value]}
[̂] { } { }
 { star-name } {[$<upper-value] [$>lower-value]}

where:

• single-name is any combination of up to 31 characters from the set {A-Z 0-9 -}
• star-name is any combination of characters from the set {A-Z 0-9 - *}
• upper-value is a single-name
• lower-value is a single-name.

The star convention acts as a pattern in which the star * may match any occurrence
(including none) of any characters. The upper and lower values delimit the
inclusive range within which the matching names must fall.

7.9.1 Primitives

Three primitives are provided for analysis of the star convention:

• $H_DCANSTAR declares a data structure to be used as an argument for the
$H_ANSTAR and $H_CHKSTAR

• $H_ANSTAR analyses whether a given string of characters is a valid construct
for a star convention and fills in fields of the data structure for use by
$H_CHKSTAR

• $H_CHKSTAR checks whether a given name matches the star convention of the
data structure used by $H_ANSTAR.

Programmatic Interface

47 A2 36UJ Rev05 7-53

7.9.1.1 DCANSTAR

Purpose:

To declare and generate a STAR convention structure to be is filled by
H_ANSTAR and used by H_CHKSTAR.

Syntax:

$H_DCANSTAR [PREFIX=l_identifier16] [ATTRIB=l_char];

Parameters:

PREFIX Character string: l_identifier16
− to be prefixed to the name of the structure
− and to the name of each elementary item.
Default: 'H_ '

ATTRIB Attributes of the structure: l_char
Default: none

For more information, see the GPL System Primitives Reference Manual.

GCL Programmer's Manual

7-54 47 A2 36UJ Rev05

7.9.1.2 ANSTAR

Purpose:

To analyze a STAR convention and fill the structure generated by H_DCANSTAR.

Syntax:

$H_ANSTAR i_char63, OSTRUCT=o_structure;

Parameters:

string String containing the star convention: i_char63
Example: *NST*$>CA$<PRS

OSTRUCT Name of the Structure: o_structure
− generated by H_DCANSTAR
− and filled by H_ANSTAR:

SINGLENAME:
− "Y" the i_char63 contains a single-name
− "N" the i_char63 contains a valid star

convention.

NOT:
− "Y" first character of i_char63 was character ^
− "N" first character of i_char63 was not character

^.

ERRORINDEX: index of erroneous character in
i_char63
− NAME: star name
− FIRST: lower-value or "00000000..."H
− LAST: upper-value or "FFFFFFFF..."H

Return Codes:

Normal DONE

Abnormal ARGERR: Wrong star string syntax -ERRORINDEX
 shows position of wrong character.

Programmatic Interface

47 A2 36UJ Rev05 7-55

7.9.1.3 CHKSTAR

Purpose:

To check if a name (STAR convention) matches a given star convention. For
example, if INSTANT matches the *NST*$>CA$<PRS star convention.

Syntax:

$H_CHKSTAR i_char31 ISTRUCT=i_structure;

Parameters:

string String containing the name to be checked:
i_char31

ISTRUCT Name of the Structure: i_structure
− declared by H_DCANSTAR
− and filled in by H_ANSTAR.

Return Codes:

Normal DONE

Abnormal NOMATCH: name does not match
ARGERR: argument error

GCL Programmer's Manual

7-56 47 A2 36UJ Rev05

7.10 Job Submission

The Input Reader provides interfaces for SYNCHRONOUS or
ASYNCHRONOUS submission of jobs for programs written in: GPL and
COBOL.

7.10.1 Synchronous Job Submission

Syntax:

GPL: $H_RUN JOBDESC_PTR=I_JOBDESC_PTR RESULT_PTR =
IO_RESULT_PTR;

RETURN CODE G4:

DONE No error occurs at job introduction.
ARGERR invalid job description structure and/or invalid

result structure (see $H_DCJOBDESC,
$H_DCEJRRUNOUT).

OPTERR errors found in the job description.

COBOL: CALL “H_IN_UEJR” USING JOB-DESCRIPTION RESULT.

7.10.2 Asynchronous Job Submission

Syntax:

GPL: $H_SUBMIT JOBDESC_PTR=I_JOBDESC_PTR
RESULT_PTR=IO_RESULT_PTR;

RETURN CODE G4:

DONE No error occurs at job introduction.
ARGERR invalid job description structure and/or invalid

result structure (see $H_DCJOBDESC,
$H_DCEJRRUNOUT).

OPTERR errors found in the job description.

COBOL: CALL "H_IN_UEJR" USING JOB-DESCRIPTION RESULT.

Programmatic Interface

47 A2 36UJ Rev05 7-57

7.10.3 Description of Parameters

I_JOBDESC_PTR Pointer to an input structure JOB_DESCRIPTION
declared by $H_DCJOBDESC (GPL macro).

IO_RESULT_PTR Pointer to an input-output structure RESULT declared
by $H_DCEJRRUNOUT (GPL macro).

JOB_DESCRIPTION Input data structure that contains the set of parameters
applicable to the submitted job. All parameters must
be initialized. Blank values mean default values.

This structure is declared by the macro
$H_DCEJRRUNOUT in GPL language.

RESULT Input-output data structure that contains the result of
the job submission. The input parameters are the size
of the structure, and the number of errors. The size
parameter must be at least the size of the structure.
The error number parameter must be initialized to
zero. The structure is declared by the macro
$H_DCEJRRUNOUT in GPL language.

For a description of H_DCJOBDESC and H_DCEJRRUNOUT, see the GPL
System Primitives Reference Manual.

GCL Programmer's Manual

7-58 47 A2 36UJ Rev05

7.10.4 Information About the Launched Job

Syntax:

GPL: $H_JOBINFO JOBSTRUCT=b_jobstruct;

RETURN CODE G4:

DONE Function is correct.
ARGERR Invalid argument REQID.
NOMATCH The job has not yet been launched or is no longer

known to the system.
SYSOVLD Overflow on a system table.

COBOL: CALL "H_CBL_UJOBINFO" USING JOBSTRUCT.

Comments:

The CALL “H_CBL_UJOBINFO” can follow either a CALL “H_IN_ISUBMIT”
or a CALL “H_IN_UEJR”.

Description of Parameters:

JOBSTRUCT Input/output structure declared by H_DCJOBINFO
(GPL primitive). In input, only REQID is filled by the
REQID-RON(1) of H_DCEJRRUNOUT (GPL
macro). All other fields of this structure are filled by
the H_JOBINFO primitive.

For a description of H_DCJOBINFO and H_DCEJRRUNOUT, see the GPL
System Primitives Reference Manual. The significance of all fields of
H_DCJOBINFO are given in this manual.

Programmatic Interface

47 A2 36UJ Rev05 7-59

7.10.5 COBOL Equivalents

The COBOL equivalents for GPL values are:

GPL values COBOL values
CHAR(nn) PIC X(nn)
FIXED BIN(15) COMP-1
FIXED BIN(31) COMP-2

Example: declarations equivalent to $H_DCJOBDESC and $H_DCEJRRUNOUT

*** Member JOBDESC-COB ***

 01 JD-JOB-DESCRIPTION.
 03 JD-JOB-SOURCE.
 05 JD-MEMBERS PIC X(31).
 05 JD-FILE PIC X(78).
 05 JD-SELECTION-FLAG PIC X.
 05 JD-JOBS-SELECTION.
 07 JD-JOB-ID1 PIC X(8).
 07 JD-JOB-ID2 PIC X(8).
 05 FILLER PIC X(18).
 03 JD-JOB-ATTRIBUTES.
 05 JD-JOBLANG PIC X.
 05 JD-HOLDOUT PIC X.
 05 JD-HOLD PIC X.
 05 JD-JOR PIC X.
 05 JD-LIST PIC X.
 05 JD-JOBCLASS PIC X(2).
 05 JD-PRIORITY PIC X.
 05 JD-STARTUP PIC X.
 05 JD-REPEAT PIC X.
 05 JD-DELETE PIC X.
 05 JD-HOST PIC X(4).
 05 JD-SWITCH.
 07 JD-PASS PIC X.
 07 JD-SWITCHES PIC X(32).
 05 JD-EXPVAL PIC X.
 05 JD-NOMESSIOF PIC X.
 05 FILLER PIC X(14).
 03 JD-JOB-SUBMITTER.
 05 JD-COMMIT PIC X.
 05 JD-COMMITMENT-ID.
 07 JD-PROCESSOR-ID PIC X(4).
 07 JD-COMMIT-ID COMP-2.
 07 JD-TPR-ID COMP-1.

GCL Programmer's Manual

7-60 47 A2 36UJ Rev05

 05 JD-SUBMITTER-ID.
 07 JD-USER PIC X(12).
 07 JD-PROJECT PIC X(12).
 07 JD-BILLING PIC X(12).
 07 FILLER PIC X(12).
 05 FILLER PIC X(22).
 03 JD-JOB-OUTPUTS.
 05 JD-DESTINATION.
 07 JD-PRIMARY-STATION PIC X(8).
 07 JD-SECONDARY-STATION PIC X(8).
 05 JD-BANNER PIC X.
 05 JD-BANINF.
 07 JD-BANINF1 PIC X(12).
 07 JD-BANINF2 PIC X(12).
 07 JD-BANINF3 PIC X(12).
 07 JD-BANINF4 PIC X(12).
 05 FILLER PIC X(15).
 03 JD-GCL-ARGUMENTS.
 05 JD-DEBUG-GCL PIC X.
 05 JD-TRACE-GCL PIC X.
 05 JD-SEV PIC X.
 05 FILLER PIC X(12).
 05 JD-H-BATCH-OPTIONS.
 07 FILLER PIC X.
 07 JD-REPEAT-STEP PIC X.
 07 JD-JOURNAL PIC X.
 07 JD-DUMP PIC X.
 07 JD-PRIVATE-DUMP PIC X.
 07 FILLER PIC X(14).
 07 JD-PRTFILE PIC X(78).
 05 FILLER PIC X(16).
 03 JD-OTHERS.
 05 FILLER PIC X(32).
 03 JD-VALUES-DESCRIPTION.
 05 JD-VALUES-LENGTH COMP-1.
 05 JD-VALUES-STRING PIC X(3000).

Programmatic Interface

47 A2 36UJ Rev05 7-61

Comments

MEMBERS Name of the subfiles of FILE containing the GCL/JCL
jobs to be submitted. A set of subfile can be specified
using star convention name.

FILE Mandatory parameter: name of the library or
sequential file or remote file that contains the
submitted jobs. It is a GCL file literal.

SELECTION_FLAG Determines job selection:
= "1" a sequence of jobs will be selected from
 JOB_ID1 through JOB_ID2.
= "0" or " " Defaults: no job selection:

JOB_ID1 Determines first job selected:
if the name does not exist or if JOB_ID1=" ", every job
selected up to JOB_ID2.
otherwise the first selected job is JOB_ID1.

JOB_ID2 Determines last job selected:
if the name does not exist or if JOB_ID2=" ", jobs are
selected from to JOB_ID1.
otherwise the JOB_ID2 is the last job selected.

JOBLANG Submitted job language:
= "G" GCL
= "J" JCL
= " " Language depends on parameter JOBLANG of
 the $JOB card.

HOLDOUT How output is processed:
= "1" outputs produced by the jobs are held until
 released by the RELEASE_OUTPUT directive.
= "0" or " " Defaults: output are printed.

HOLD How job is processed:
= "1" job is held until released by the RELEASE_JOB
 directive.
= "0" or " " Defaults: job is eligible for execution.

JOR if and how JOR is produced:
= "A" a JOR is produced when the job aborts
= "N" no JOR produced
= "Y" or " " defaults: JOR is produced on job
 termination.

GCL Programmer's Manual

7-62 47 A2 36UJ Rev05

LIST Information types to appear in the JOR:
= "A" Information 1, 2, 3, 4, 5, 6 and 7
= "N" Information 2, 6 and 7
= "S" or " " Defaults: Information 1, 2, 3 and 7

Information types:
1 sources of GCL/JCL
2 input reader statements
3 records inserted using $SWINPUT with CONSOLE
4 statements got from $INVOKE/$SWINPUT
5 startup
6 comments
7 error messages

JOBCLASS Class of submitted jobs:
either "A" through "P" or "AA" through "PZ"

PRIORITY Priority of the submitted jobs:
ranging from"0" through "7"
the highest priority being "0", the lowest "7"
= for default priority.

STARTUP Determines if startup is to be executed:
= "0" Do not execute optional startup
= "1" or " " Defaults: execute the startup sequence
 from SITE.STARTUP.

REPEAT Determines if job is to be repeated:
= "1" repeat the job if it is canceled, or if there is a
 system failure or abort.
= "0" or " " Defaults: do not repeat the job.

DELETE Applicable only if the input comes from a source
library:
= "F" after the job introduction, the subfile is deleted
= "Y" the subfile is deleted only if the job execution is
 completed
= "N" or " " Defaults: no subfile deleted.

HOST Name of the host where the job is to execute (only for
EJR/ SUBMIT). Blank value means local execution.

PASS Determines if job switches are passed:
= "1" pass spawner job SWITCHES.
= "0" or " " Defaults: no job switches passed.

Programmatic Interface

47 A2 36UJ Rev05 7-63

SWITCHES List of 32 characters as "0" or "1" passed as masks to
the spawned jobs.
Defaults: "0" (space is interpreted as "0")

EXPVAL Determines if value parameters are expanded in the
JOR:
= "1" Expand the JCL job value parameters.
= "0" or " " Defaults: no expansion of value.

NOMESSIOF Determines the destination of the messages IN,
STARTED, COMPLETED and OUTPUT
COMPLETED.
= "Y", messages sent only to the main operator and
 not to the iof submitter.
= "N" or " ", standard destination.

COMMIT Determines the submitter of the job (see
SUBMITTER_ID)
= "1" validates COMMITMENT_ID.
= "0" or " " Defaults: do not validate
 COMMITMENT_ID.

COMMITMENT_ID Meaningless if COMMIT = "0".
Commitment identity (reserved for TDS)
PROCESSOR_ID: processor identity
COMMIT_ID: COMMIT identity
TPR_ID: TPR identity

SUBMITTER_ID Submitter depending on setting of COMMIT:
COMMIT = "1" the submitter of the job (TDS)
COMMIT = "0" or " " job owner (secondary
submitter)

DESTINATION Specifies the destination of the output(s):
PRIMARY_STATION: host name
SECONDARY_STATION: station name

BANNER Determines if output banners are generated:
= "0" Do not generate the output banners
= "1" or " " Defaults: generate the output banners
 (see BANINF)

BANINF Output banners of 4 optional parameters built from
bottom to top, each parameter pushing up the previous
one.
= " " Default: Ron, Username, Jobname and Billing.

GCL Programmer's Manual

7-64 47 A2 36UJ Rev05

DEBUG_GCL Applicable only when JOBLANG=’’G’’ (Gcl)
= "1" Debug GCL procedure, equivalent to the
 directive "MODIFY_PROFILE DEBUG": each
 time a line is executed, it is displayed with
 evaluated variables, prefixed by procedure name
 and line number.
= "0" or " " Defaults: no debug

TRACE_GCL Applicable only when JOBLANG = "G" (Gcl)
= "1" equivalent to the directive
 "MODIFY_PROFILE TRACE". Traces all CALL
 statements executed on the current output device.
= "0" or " " Defaults: no trace.

SEV Severity level from 1 to 5, when the batch job aborts at
the end of the current step if:
JOBLANG="G" (gcl)
and DEFAULT is the current value for ON_ERROR.

REPEAT_STEP Applicable to step H_BATCH on abort or system
crash:
= "1" repeat the step H_BATCH
= "0" or " " Defaults: no repeat.

JOURNAL Applies to files accessed at system level by GCL
commands:
= "B" Before journal
= "A" After
= "O" both
= "N" or " " None: default value.

DUMP Applicable to H_BATCH for information to dump on
abort:
= "D" Data
= "A" All
= "N" or " " None: default value.

PRIVATE_DUMP Specifies if the dump applies only to PRIVATE
segments:
= "1" if DUMP="D": dump all Private Data Segments
 (PDATA), if DUMP="A": dump all Private
 Segments (PALL)
= "0" or " " Default: the dump is not private.

PRTFILE Report file using File literal syntax, applicable only to
the GCL job.
= " " Report appears in the standard system file
 SYS.OUT.

Programmatic Interface

47 A2 36UJ Rev05 7-65

VALUES DESCRIPTION Values passed to the spawned job in the external
format:
VALUES_LENGTH defines in bytes the length of
VALUES_STRING.
VALUES_STRING is an optional list of positional
values followed by an optional list of keyword values.
Each value is separated by either space or comma.
If there is no values specified, the values length must
be set to 0.

*** Member EJRRUNOUT-COB ***

 01 RES-RESULT.
 03 RES-SEG-SIZE COMP-2.
 03 RES-START-TIME.
 05 RES-TIME COMP-2.
 05 RES-DATE.
 07 RES-YEAR COMP-1.
 07 RES-YDAY COMP-1.
 03 RES-RETCODE COMP-2.
 03 RES-ERROR-DESC.
 05 RES-NB-ERROR COMP-1.
 05 RES-ERROR OCCURS 16.
 07 RES-CLASS COMP-1.
 07 RES-NUMBER COMP-1.
 03 RES-JOB-ENTRY-DESC.
 05 RES-NB-JOB-ENTRY COMP-1.
 05 RES-JOB-ENTRY OCCURS 16.
 07 RES-STATE COMP-1.
 07 RES-REQID-RON COMP-2.

Comments

SEG_SIZE Mandatory INPUT parameter containing the size in
bytes of the area to receive the result of the job
submitted. SEG_SIZE must be at least greater or
equal than 180 bytes.

START_TIME Contains the time in milliseconds and the date (year
and day in the year) of the first submission.

RETCODE Contains the return code issued after job submission.
If DONE, the request and/or job was successfully
introduced.

NB_ERROR Number of errors found in the job description.

GCL Programmer's Manual

7-66 47 A2 36UJ Rev05

ERROR Array of NB_ERROR (<=16) entries. Each entry
contains the class of error CLASS and its NUMBER.

NB_JOB_ENTRY Number of spawned jobs introduced or not, and is also
the number of the entries of the array JOB_ENTRY. If
the job is submitted using EJR/SUBMIT,
NB_JOB_ENTRY is set to 1 and REQID_RON
contains the Request Index.

JOB_ENTRY Array of NB_JOB_ENTRY of entries depending on
SEG_SIZE, each entry containing the result of one job
submission.

STATUS = 0 the request/job was successfully introduced.
= 1 EJR/SUBMIT: no request introduced (see
ERROR)
RUN: the submitted job is aborted.

REQID_RON EJR/SUBMIT: contains the internal request
identification that may be used in
DISPLAY_USER_REQUEST and
CANCEL_USER_REQUEST.
RUN: contains the RON of the job.

Programmatic Interface

47 A2 36UJ Rev05 7-67

7.10.6 Obtaining Error Messages from Error Numbers and Classes

Syntax:

GPL: $H_LSJDERR ERROR_PTR=I_ERROR_PTR;

COBOL: CALL "H_IN_UJDERR" USING I_ERROR_STRUCT I_LIST.

Parameters:

I_ERROR_PTR is a pointer to I_ERROR_STRUCT which contains the
number of errors followed by the error array as
declared in RESULT.

GPL Ex: DCL I_ERROR_PTR PTR;

DCL 1 I_ERROR_STRUCT,
2 NB_ERROR FIXED BIN(15),
2 ERROR(16),
3 CLASS FIXED BIN(15),
3 NUMBER FIXED BIN(15);

I_LIST is an integer equal to zero.

7.10.7 Examples

Each field of the input structure JOB_DESCRIPTION must be initialized. The
blank values mean default values.

The first field (SEG_SIZE) of the input/output structure RESULT must be
initialized to the size of the structure. If the value of NB_ERROR is negative or
greater than 16, the READER will initialize the RESULT structure.

GCL Programmer's Manual

7-68 47 A2 36UJ Rev05

7.10.7.1 Job Submitted on Local Site through GPL Program

Submit a JCL_JOB with values from the LIBRARY using the macro $H_SUBMIT
and a GCL_JOB using $H_RUN. Hold all outputs.

EJR_RUN_GPL : PROC;

$H_DCJOBDESC PREFIX = K_JD_ INIT;

$H_DCEJRRUNOUT PREFIX = K_RES_ INIT;

$H_DCJOBDESC PREFIX = L_JD_;

$H_DCEJRRUNOUT PREFIX = L_RES_;

DCL L_JDPTR PTR;

DCL L_RESPTR PTR;

BEGIN;

 L_JDPTR = ADDR(L_JD_JOB_DESCRIPTION);

 L_RESPTR = ADDR(L_RES_RESULT);

/***** Test of $;H_SUBMIT ***/

 L_RES_SEG_SIZE = MEASURE(L_RES_RESULT);

 L_RES_NB_ERROR = 0; /* ask the READER to initialize the result structure */

 L_JD_JOB_DESCRIPTION = K_JD_JOB_DESCRIPTION;

 L_JD_MEMBERS = "JCL_JOB";

 L_JD_FILE = "LIBRARY";

 L_JD_HOLDOUT = "1";

 L_JD_VALUES_LENGTH = 34;

 L_JD_VALUES_STRING = "TEST OF GPL MACRO NAME='$;H_SUBMIT'";

 $H_SUBMIT JOBDESC_PTR=L_JDPTR RESULT_PTR=L_RESPTR;

 $H_LSJDERR ERROR_PTR=ADDR(L_RES_NB_ERROR);

/***** Test of $;H_RUN ***/

 L_RES_NB_ERROR = 0; /* Reinitialize the result structure */

 L_JD_MEMBERS = " ";

 L_JD_FILE = "LIBRARY..GCL_JOB";

 L_JD_JOBLANG="G";

 L_JD_VALUES_LENGTH = 0; /* no value */

 L_JD_VALUES_STRING = " ";

 $H_RUN JOBDESC_PTR=L_JDPTR RESULT_PTR=L_RESPTR;

 $H_LSJDERR ERROR_PTR=ADDR(L_RES_NB_ERROR);

END;

END EJR_RUN_GPL;

Programmatic Interface

47 A2 36UJ Rev05 7-69

7.10.7.2 Job Submission through COBOL Interface H_IN_URUN

Submit for the user OPERATOR, on the local site, the job GCL_JOB from the
library LIBRARY. The option DEBUG_GCL is enabled. The global list of the job
is requested and the GCL job output is stored in the member RGCL_JOB of
LISLIB. No value is passed to the job. The RON of the job is edited if no errors
occur. The procedure H_IN_UJDERR will edit the error messages equivalent to
the error classes and numbers (see EJRRUNOUT-COB).

IDENTIFICATION DIVISION.

PROGRAM-ID. URUN-COB.

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY JOBDESC-COB.

COPY EJRRUNOUT-COB.

77 LIST-ALL-ERR COMP-2 VALUE 0.

PROCEDURE DIVISION .

DEBUT.

 MOVE SPACE TO JD-JOB-DESCRIPTION.

 MOVE "LIBRARY..GCL_JOB" TO JD-FILE.

 MOVE "1" TO JD-HOLDOUT.

 MOVE "y" TO JD-JOR.

 MOVE "A" TO JD-LIST.

 MOVE "010010001" TO JD-SWITCHES.

 MOVE "0" TO JD-COMMIT.

 MOVE "OPERATOR" TO JD-USER.

 MOVE "1" TO JD-DEBUG-GCL.

 MOVE "LISLIB..RGCL_JOB" TO JD-PRTFILE.

 MOVE 0 TO JD-VALUES-LENGTH.

 MOVE ZERO TO RES-RESULT.

 MOVE 180 TO RES-SEG-SIZE.

 CALL "H_IN_URUN" USING JD-JOB-DESCRIPTION RES-RESULT.

 IF RES-RETCODE = ZERO

 DISPLAY "Job introduced ==> RON:" RES-REQID-RON(1) UPON TERMINAL

 ELSE DISPLAY "No job submitted" UPON TERMINAL.

 CALL "H_IN_UJDERR" USING RES-ERROR-DESC LIST-ALL-ERR.

 STOP RUN.

GCL Programmer's Manual

7-70 47 A2 36UJ Rev05

7.10.7.3 Job Submission through COBOL Interface H_IN_UEJR

Submit on the remote site RMOT the JCL_JOB11 and JCL_JOB12 selected from
the members JCL_JOB1 and JCL_JOB2 of the library LIBRARY, for the user
JOB_OWNER. All jobs are submitted on the class C with the same values and
their outputs will be held. The request index is returned if no errors occur. Call the
procedure H_IN_UJDERR to edit the error messages equivalent to the error classes
and numbers.

JCL_JOB1: $JOB JCL_JOB11;

 $ENDJOB;

 $JOB JCL_JOB12;

 $ENDJOB;

 $JOB JCL_JOB13;

 $ENDJOB;

JCL_JOB2: $JOB JCL_JOB2;

 $ENDJOB;

IDENTIFICATION DIVISION.

PROGRAM-ID. UEJR-COB.

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY JOBDESC-COB.

COPY EJRRUNOUT-COB.

77 LIST-ALL-ERR COMP-2 VALUE 0.

PROCEDURE DIVISION .

DEBUT.

 MOVE SPACE TO JD-JOB-DESCRIPTION.

 MOVE "LIBRARY" TO JD-FILE.

 MOVE "JCL_JOB*" TO JD-MEMBERS.

 MOVE "1" TO JD-SELECTION-FLAG.

 MOVE "JCL_JOB12" TO JD-JOB-ID2.

 MOVE "1" TO JD-HOLDOUT.

 MOVE "C" TO JD-JOBCLASS.

 MOVE "RMOT" TO JD-HOST.

 MOVE "JOB_OWNER" TO JD-USER.

 MOVE "DUMMY" TO JD-PRTFILE.

 MOVE 41 TO JD-VALUES-LENGTH.

 MOVE "test of H_IN_UEJR entry PROCNAME=UEJR-COB" TO JD-VALUES-STRING.

 MOVE ZERO TO RES-RESULT.

 MOVE 180 TO RES-SEG-SIZE.

 CALL "H_IN_UEJR" USING JD-JOB-DESCRIPTION RES-RESULT.

 IF RES-RETCODE = ZERO

 DISPLAY "Request introduced ==> JON:" RES-REQID-RON(1) UPON TERMINAL

 ELSE DISPLAY "No job submitted" UPON TERMINAL.

 CALL "H_IN_UJDERR" USING RES-ERROR-DESC LIST-ALL-ERR.

 STOP RUN.

Programmatic Interface

47 A2 36UJ Rev05 7-71

7.10.8 Error Messages

Severity Class Number Message

1 00 10000 ERROR TABLE OVERFLOW:
TOO MANY ERRORS

1 00 10041 JOBLANG=GCL IS IGNORED WHEN HOST IS
SPECIFIED

1 00 10201 DEBUG_GCL IS IGNORED WHEN HOST IS
SPECIFIED

1 00 10211 TRACE_GCL IS IGNORED WHEN HOST IS
SPECIFIED

1 00 10221 SEV IS IGNORED WHEN HOST IS SPECIFIED
1 00 10241 REPEAT_STEP IS IGNORED WHEN HOST IS

SPECIFIED
1 00 10251 JOURNAL IS IGNORED WHEN HOST IS

SPECIFIED
1 00 10261 DUMP IS IGNORED WHEN HOST IS

SPECIFIED
1 00 10271 PRIVATE_DUMP IS IGNORED WHEN HOST IS

SPECIFIED
1 00 10281 PRTFILE IS IGNORED WHEN HOST IS

SPECIFIED
1 00 10042 JOBLANG=RTL IS IGNORED WHEN HOST IS

SPECIFIED
1 00 10202 DEBUG_GCL IS IGNORED WHEN HOST IS

SPECIFIED
1 00 10212 TRACE_GCL IS IGNORED WHEN HOST IS

SPECIFIED
1 00 10222 SEV IS IGNORED WHEN HOST IS SPECIFIED
1 00 10242 REPEAT_STEP IS IGNORED WHEN HOST IS

SPECIFIED
1 00 10252 JOURNAL IS IGNORED WHEN HOST IS

SPECIFIED
1 00 10262 DUMP IS IGNORED WHEN HOST IS

SPECIFIED
1 00 10272 PRIVATE_DUMP IS IGNORED WHEN HOST IS

SPECIFIED
1 00 10282 PRTFILE IS IGNORED WHEN HOST IS

SPECIFIED

GCL Programmer's Manual

7-72 47 A2 36UJ Rev05

Severity Class Number Message

3 01 00020 FILE VALUE IS NOT A FILE LITERAL
3 01 00030 SELECTION_FLAG VALUE MUST BE /0/1
3 01 00040 JOBLANG VALUE MUST BE G/J/
3 01 00050 HOLDOUT VALUE MUST BE /0/1
3 01 00060 HOLD VALUE MUST BE /0/1
3 01 00070 JOR VALUE MUST BE /Y/A/N
3 01 00080 LIST VALUE MUST BE /S/N/A
3 01 00090 CLASS VALUE MUST BE IN [A-P AA-PZ]
3 01 00100 PRIORITY VALUE MUST BE IN { ,0 TO 7}
3 01 00110 STARTUP VALUE MUST BE /1/0
3 01 00120 REPEAT VALUE MUST BE /0/1
3 01 00130 DELETE VALUE MUST BE /N/Y/F
3 01 00150 PASS VALUE MUST BE /0/1
3 01 00160 SWITCHES VALUE MUST BE /0/1
3 01 00170 COMMIT VALUE MUST BE /0/1
3 01 00180 PASSWORD VALUE MUST BE SET TO BLANK
3 01 00190 BANNER VALUE MUST BE /1/0
3 01 00200 DEBUG_GCL VALUE MUST BE /0/1
3 01 00210 TRACE_GCL VALUE MUST BE /0/1
3 01 00220 SEV VALUE MUST BE IN { ,1 TO 5}
3 01 00230 PCF VALUE MUST BE /0/1
3 01 00240 REPEAT_STEP VALUE MUST BE /0/1
3 01 00250 JOURNAL VALUE MUST BE /N/B/A/O
3 01 00260 DUMP VALUE MUST BE /N/D/A
3 01 00270 PRIVATE DUMP VALUE MUST BE /0/1
3 01 00280 PRTFILE VALUE IS NOT A FILE LITERAL
3 01 00290 ILLEGAL VALUE STRING
3 01 00300 UNKNOWN DEST: HOST NOT ATTACHED TO

WORKING PROJECT IN CATALOG
3 01 00310 UNKNOWN DEST: STATION NOT ATTACHED

TO WORKING PROJECT IN CATALOG
3 01 00320 EXPVAL VALUE MUST BE /0/1
3 01 00330 NOMESSIOF VALUE MUST BE /N/Y
3 02 00021 FILE MUST NOT BE BLANK CHARACTERS
3 02 00022 SUBFILE AND MEMBER ARE MUTUALLY

EXCLUSIVE
3 02 00131 DELETE ASKED FOR A NOT SPECIFIED

MEMBER
3 02 00141 RUN AND HOST ARE MUTUALLY

EXCLUSIVE

Programmatic Interface

47 A2 36UJ Rev05 7-73

Severity Class Number Message

3 02 00142 RUN AND REMOTE FILE ARE MUTUALLY
EXCLUSIVE

3 02 00143 JOB SUBMITTED ON SITE A,FILE ON B,HOST
ON C IS NOT ALLOWED

3 02 00181 PROTECTED SYSTEM: USER MODIFICATION
NOT ALLOWED

3 02 00191 BANINF AND BANNER=0 ARE MUTUALLY
EXCLUSIVE

3 02 00291 ILLEGAL POS/KWD VALUE LENGTH
3 02 00292 VALUE STRING TOO LONG
3 02 00293 ILLEGAL KEYWORD NAME
3 02 00294 QUOTATION MARKS DO NOT BALANCE
3 02 00295 ILLEGAL KEYWORD VALUE
3 02 00296 KEYWORD NAME APPEARS TWO OR MORE

TIMES
3 02 00321 KEYWORD NAME APPEARS TWO OR MORE

TIMES
3 03 10000 UNABLE TO GET DATE AND TIME
3 03 10110 UNABLE TO GET A REQUEST INDEX
3 03 10120 UNABLE TO GET THE USER

IDENTIFICATION FROM THE CATALOG
3 03 10130 UNABLE TO CHECK THE SECONDARY USER

FROM THE CATALOG
3 03 10140 UNABLE TO CREATE JOBSET REQUEST
3 03 10150 UNABLE TO ACCESS TO NEW OPTION

SEGMENT
3 03 10160 INPUT COMMAND VALUE IS NOT IN

{65 TO 68,81 TO 84}
3 03 10170 RESULT DESCRIPTION: JOB ENTRY TABLE

OVERFLOW
3 03 10180 RESULT DESCRIPTION: ERROR NUMBER IS

NOT POSITIVE
3 03 10190 UNABLE TO CHECK THE USER: USER

MANDATORY

GCL Programmer's Manual

7-74 47 A2 36UJ Rev05

❑

47 A2 36UJ Rev05 i-1

Index

#

system variable 2-56
#ABS builtin 2-79
#AND builtin 2-84
#AUTOLF system variable 2-56
#BILLING builtin 2-102
#BINLIB system variable 2-57
#BINTODEC builtin 2-111
#BLIB system variable 2-57
#BRK system variable 2-58, 4-4
#BRKPMODE system variable 2-58, 4-4
#BYTE builtin 2-111
#CAT builtin 2-86
#CC system variable 2-58
#CHECKSTAR builtin 2-99
#CINLIB system variable 2-58
#CLIB system variable 2-59
#CPU builtin 2-102
#CSET system variable 2-59
#CTN builtin 2-86
#CVBOOL builtin 2-111
#CVDATDEC builtin 2-112
#CVDEC builtin 2-112
#CVDECDAT builtin 2-112
#CVFILE builtin 2-113
#CVFSET builtin 2-113
#CVHEXA builtin 2-113
#CVLIB builtin 2-113
#CVNAME builtin 2-113
#CVOUTPUT builtin 2-113
#CVRFILE builtin 2-114
#CVSTAR builtin 2-114
#CVVOLUME builtin 2-114

#DATE builtin 2-102
#DEBUG system variable 2-60, 6-1
#DECTOHEXA builtin 2-114
#DI system variable 2-60
#DIVIDE builtin 2-79
#DOMAINID builtin 2-102
#DROP builtin 2-99
#DROPGB builtin 2-99
#EDITCTL system variable 2-61
#EFN builtin 2-116
#ELAPSED builtin 2-103
#ELEM builtin 2-94
#ENVT system variable 2-61
#EQ builtin 2-82
#EXIST builtin 2-100
#EXPANDPATH builtin 2-116
#EXPTABS system variable 2-62
#EXTDATE builtin 2-103
#FB15 builtin 2-114
#FB31 builtin 2-115
#FMT builtin 2-95
#FORMLANG system variable 2-62
#FSITE builtin 2-116
#FW builtin 2-103
#GCLFORM system variable 2-63
#GE builtin 2-82
#GT builtin 2-83
#HEXATODEC builtin 2-115
#INDEX builtin 2-86
#INDEX_SET builtin 2-95
#INVCHAR system variable 2-63
#ISITBOOL builtin 2-107
#ISITDATE builtin 2-107
#ISITDEC builtin 2-107
#ISITFILE builtin 2-108
#ISITFSET builtin 2-108

GCL Programmer's Manual

i-2 47 A2 36UJ Rev05

#ISITHEXA builtin 2-108
#ISITLIB builtin 2-108
#ISITNAME builtin 2-109
#ISITOUTPUT builtin 2-109
#ISITRFILE builtin 2-109
#ISITSTAR builtin 2-109
#ISITTIME builtin 2-110
#ISITVOLUME builtin 2-110
#JCLCOMP system variable 2-64
#JOBLANG system variable 2-64
#KLN builtin 2-91
#L builtin 2-91
#LANG system variable 2-65
#LC builtin 2-87
#LCOUNT builtin 2-95
#LCTN builtin 2-96
#LE builtin 2-83
#LENGTH builtin 2-100
#LINDEX builtin 2-96
#LINLIB system variable 2-65
#LISTGB builtin 2-100
#LLENGTH builtin 2-96
#LLIB system variable 2-66
#LSYS builtin 2-103
#LT builtin 2-83
#MASTER builtin 2-92
#MAX builtin 2-79
#MAXLLENGTH builtin 2-97
#MDAY builtin 2-104
#MENU system variable 2-66
#MIN builtin 2-80
#MINLLENGTH builtin 2-97
#MINUS builtin 2-80
#MLENGTH builtin 2-101
#MOD builtin 2-80
#MODE builtin 2-104
#MODIFY builtin 2-87
#NAND builtin 2-84
#NE builtin 2-83
#NEXIST builtin 2-101
#NO system variable 2-67
#NOR builtin 2-84
#NOT builtin 2-85
#NOVICE system variable 2-67
#OR builtin 2-85
#PAGEMODE system variable 2-68

#PAGETOP system variable 2-68
#PL system variable 2-69
#PLUS builtin 2-80
#PROJECT builtin 2-104
#PROMPT system variable 2-69
#PRTLIB system variable 2-69
#PW system variable 2-70
#QUERY builtin 2-92
#QUOTE builtin 2-87
#READ builtin 2-92
#READL builtin 2-93
#REPLACE builtin 2-97
#RJD builtin 2-115
#ROLL system variable 2-70
#RON builtin 2-104
#SEV system variable 2-71
#SIGNUM builtin 2-81
#SINLIB system variable 2-71
#SLIB system variable 2-72
#STATUS system variable 2-72
#STRING builtin 2-98
#STRIP builtin 2-98
#SUBFILE builtin 2-116
#SUBSTITUTE builtin 2-88
#SUBSTR builtin 2-89
#SWITCHES system variable 2-73
#TABS system variable 2-73
#TERMID builtin 2-104
#TIME builtin 2-105
#TIMES builtin 2-81
#TRACE system variable 2-74, 6-1
#TTYPE builtin 2-105
#UC builtin 2-89
#UNQUOTE builtin 2-89
#USERID builtin 2-105
#VALUE builtin 2-101
#VERIFY builtin 2-90
#WAIT builtin 2-105
#WD system variable 2-74
#WDAY builtin 2-105
#WSTATION system variable 2-75
#XINLIB system variable 2-75
#XLIB system variable 2-75
#XOR builtin 2-85
#YDAY builtin 2-106
#YES system variable 2-76
#ZOK system variable 2-76

Index

47 A2 36UJ Rev05 i-3

$

$ENDINPUT Input Reader Statement 5-22
$ENDJOB Input Reader Statement 5-11
$INPUT Input Reader Statement 5-12
$JOB Input Reader Statement 5-6
$OPTIONS Input Reader Statement 5-27
$SENDCONS Input Reader Statement 5-26
$SWINPUT Input Reader Statement 5-23

A

ABORT basic GCL command 2-5
ABS builtin 2-79
Absentee 1-36
Access to GCOS Files (GCL) 4-1
AI directive 1-19
ALTER_INPUT directive 1-19
AND builtin 2-84
ANFILE File Analysis Primitive 7-47
ANFLFST Fileset Analysis Primitive 7-51
ANFST Fileset Analysis Primitive 7-50
ANSTAR Star Analysis Primitive 7-54
AP MNCMD command 3-15
APPEND MNCMD command 3-15
Arguments of builtins 1-15
Assign value to a variable 1-9
AUTOLF system variable 2-56

B

Basic GCL commands 2-1
BILLING builtin 2-102
BINLIB MNCMD command 3-17
BINLIB system variable 2-57
BINTODEC builtin 2-111
BLIB system variable 2-57
Break processing 4-4
BREC access command 4-8
BRKPMODE system variable 2-58
BRKsystem variable 2-58
BUILD_RECORD access cmd 4-8
Builtin function 1-14, 2-77
BYTE builtin 2-111

C

CASE basic GCL command 2-6
CASEOF basic GCL command 2-8
CAT builtin 2-86
CC system variable 2-58
CHAIN basic GCL command 2-9
CHECKSTAR builtin 2-99
CHKSTAR Star Analysis Primitive 7-55
CINLIB system variable 2-58
CLEAR MNCMD command 3-18
CLIB system variable 2-59
CLOSE_FILE access command 4-10
CLOSEF access command 4-10
CLR MNCMD command 3-18
COBOL GCL interface 7-1
Command language 1-1
Command Management 1-27, 3-1
Commands

Chaining of - 5-33
COMP MNCMD command 3-19
COMPILE MNCMD command 3-19
CONTROL basic GCL command 1-30, 2-11
Conversions (explicit) 1-12
Conversions (implicit) 1-11
COPY MNCMD cmd 3-22
COUNT MNCMD command 3-24
COUNT_ENTRIES MNCMD cmd 3-24
CP MNCMD command 3-22
CPU builtin 2-102
CR MNCMD command 3-25
CREATE MNCMD command 3-25
CREATE_HELP_TEXT system

command 7-27
CRHELP system command 7-27
CSET system variable 2-59
CTN builtin 2-86
CVBOOL builtin 2-111
CVDATDEC builtin 2-112
CVDEC builtin 2-112
CVDECDAT builtin 2-112
CVFILE builtin 2-113
CVFSET builtin 2-113
CVHEXA builtin 2-113
CVLIB builtin 2-113
CVNAME builtin 2-113

GCL Programmer's Manual

i-4 47 A2 36UJ Rev05

CVOUTPUT builtin 2-113
CVRFILE builtin 2-114
CVSTAR builtin 2-114
CVVOLUME builtin 2-114

D

D MNCMD command 3-32
DATE builtin 2-102
DCANFILE File Analysis Primitive 7-47
DCANFST Fileset Analysis Primitive 7-49
DCANSTAR Star Analysis Primitive 7-53
DCLF access command 4-12
DEBUG system variable 2-60, 6-1
Debugging GCL procedures 6-1
DEC MNCMD command 3-27
DECLARE_FILE access cmd 4-12
DECOMPILE MNCMD command 3-27
DECTOHEXA builtin 2-114
DELETE MNCMD command 3-29
DELETE_ENVT MNCMD cmd 3-31
DELETE_RECORD access cmd 4-16
DI system variable 2-60
DISPLAY MNCMD command 3-32
DISPLAY_SCREEN MNCMD

command 3-33
DIVIDE builtin 2-79
DL MNCMD command 3-29
DLENVT MNCMD command 3-31
DLREC access command 4-16
domain 7-13
Domain 1-24
DOMAIN MNCMD command 3-35
DOMAINID builtin 2-102
domains 3-4
DROP builtin 2-99
DROPGB builtin 2-99
DSCRN MNCMD command 3-33
DUMP command 6-2

E

ED MNCMD command 3-36
EDFERR access command 4-19
EDIT MNCMD command 3-36
EDIT_FILE_ERROR access cmd 4-19
EDITCTL system variable 2-61
EFN builtin 2-116
ELAPSED builtin 2-103
ELEM builtin 2-94
ELSE basic GCL command 2-13
ENDCASEOF basic GCL cmd 2-14
ENDIF basic GCL command 2-15
ENDPROC basic GCL command 2-16
ENDUNDLIST basic GCL cmd 2-17
ENDUNTIL basic GCL command 2-18
ENDWHILE basic GCL command 2-19
Environment creation 3-38
environments 3-12
ENVT MNCMD command 3-38
ENVT system variable 2-61
EQ builtin 2-82
EXIST builtin 2-100
EXIST_FILE access command 4-22
EXISTF access command 4-22
EXPANDPATH builtin 2-116
Explicit conversions 1-12
Expressions 1-2, 1-14
EXPTABS system variable 2-62
EXTDATE builtin 2-103

F

FB15 builtin 2-114
FB31 builtin 2-115
File Literal 7-43
Fileset Literal 7-48
FMT builtin 2-95
FORMLANG system variable 2-62
FSE MNCMD command 3-40
FSITE builtin 2-116
FW builtin 2-103

Index

47 A2 36UJ Rev05 i-5

G

GCL access primitives 7-1
GCL batch job

example 5-2
GCL domains 3-4
GCL Job Statements 5-1

Parameterization of - 5-30
GCL Primitives

Schematic Program of - 7-12
GCL procedure 1-24, 1-28, 3-1
GCL procedure creation 3-25
GCL to access GCOS files 4-1
GCL variable primitives 7-38
GCL variables 7-38
GCLABORT Primitive 7-8
GCLFORM system variable 2-63
GCLINIT Primitive 7-2
GCLREAD Primitive 7-6
GCLRETRY Primitive 7-10
GCOS file access commands 4-7
GCOS file access through GCL 4-1
GE builtin 2-82
GLOBAL directive 1-5
Global variables 1-4
GOTO basic GCL command 2-20
GPL GCL interface 7-1
GT builtin 2-83

H

HELP primitive 7-36
help text 7-22
HEXATODEC builtin 2-115

I

IF basic GCL command 2-22
Implicit conversions 1-11
INDEX builtin 2-86
INDEX_SET builtin 2-95
Input Reader Statements 5-5
INVCHAR system variable 2-63
ISITBOOL builtin 2-107
ISITDATE builtin 2-107

ISITDEC builtin 2-107
ISITFILE builtin 2-108
ISITFSET builtin 2-108
ISITHEXA builtin 2-108
ISITLIB builtin 2-108
ISITNAME builtin 2-109
ISITOUTPUT builtin 2-109
ISITRFILE builtin 2-109
ISITSTAR builtin 2-109
ISITTIME builtin 2-110
ISITVOLUME builtin 2-110

J

JCLCOMP system variable 2-64
Job

Execution 5-4
Occurrence Report 5-35
Submission 5-3
Translation 5-4

JOBLANG system variable 2-64

K

KLN builtin 2-91
KWD basic GCL command 1-29, 2-24

L

L builtin 2-91
LABEL basic GCL command 2-31
LANG system variable 2-65
LC builtin 2-87
LCOUNT builtin 2-95
LCTN builtin 2-96
LD MNCMD command 3-50
LE builtin 2-83
LED MNCMD command 3-41
LEDIT MNCMD command 3-41
LENGTH builtin 2-100
LET directive 1-9
libraries 3-11
Libraries of command definitions 1-24
LINDEX builtin 2-96
LINLIB system variable 2-65

GCL Programmer's Manual

i-6 47 A2 36UJ Rev05

List 1-10
LIST MNCMD command 3-44
LIST_ACCESS MNCMD cmd 3-46
LIST_DECLARED_FILE acc cmd 4-24
LIST_ENVT MNCMD command 3-48
LIST_PROJ MNCMD command 3-49
LISTGB builtin 2-100
LLENGTH builtin 2-96
LLIB system variable 2-66
LOAD MNCMD command 3-50
LOCAL basic GCL command 1-29, 2-32
LS MNCMD command 3-44
LSA MNCMD command 3-46
LSDCLF access command 4-24
LSENVT MNCMD command 3-48
LSPROJ MNCMD command 3-49
LSYS builtin 2-103
LT builtin 2-83

M

MAINTAIN_COMMAND 1-24, 1-27
MAINTAIN_COMMAND cmd lang 3-1
MASTER builtin 2-92
MAX builtin 2-79
MAXLLENGTH builtin 2-97
MDA MNCMD command 3-54
MDAY builtin 2-104
MDLK MNCMD command 3-58
MDREC access command 4-26
MENU system variable 2-66
MERGE MNCMD command 3-52
MIN builtin 2-80
MINLLENGTH builtin 2-97
MINUS builtin 2-80
MLENGTH builtin 2-101
MNCMD 1-27
MOD builtin 2-80
MODE builtin 2-104
MODIFY builtin 2-87
MODIFY_ACCESS MNCMD cmd 3-54
MODIFY_LOCK MNCMD cmd 3-58
MODIFY_RECORD access cmd 4-26
MODVAR GCL variable primitive 7-41
MWINLIB BIN command 1-24

N

NAND builtin 2-84
NE builtin 2-83
NEXIST builtin 2-101
NO system variable 2-67
NOR builtin 2-84
NOT builtin 2-85
NOVICE system variable 2-67

O

Objects (GCL) 1-2
ON_ERROR MNCMD command 3-60
OPEN_FILE access command 4-30
OPENF access command 4-30
OR builtin 2-85
OTHER basic GCL command 2-37
OTHERWISE basic GCL cmd 2-37

P

PAGEMODE system variable 2-68
PAGETOP system variable 2-68
Parameterization of -

Example 5-32
GCL Job Statements: 5-30
Input Enclosures 5-31

PL system variable 2-69
PLUS builtin 2-80
POINT_RECORD access cmd 4-34
PR MNCMD command 3-62
PRINT MNCMD command 3-62
PROC basic GCL command 1-28, 2-38
PROJ MNCMD command 3-64
PROJECT builtin 2-104
PROMPT system variable 2-69
PRTLIB system variable 2-69
PTREC access command 4-34
PW system variable 2-70

Index

47 A2 36UJ Rev05 i-7

Q

Q MNCMD command 3-66
QUERY builtin 2-92
QUIT MNCMD command 3-66
QUOTE builtin 2-87

R

RDREC access command 4-38
READ builtin 2-92
READ_RECORD access cmd 4-38
Reading from the terminal 1-16
READL builtin 2-93
READVAR GCL variable primitive 7-39
Recovery 5-34
References to lists 1-12
References to variables 1-12
RELEASE_FILE access cmd 4-42
REPLACE builtin 2-97
RESAVE MNCMD command 3-67
RESEQUENCE MNCMD cmd 3-70
RESET MNCMD command 3-71
RESTORE_ACCESS MNCMD 3-72
RETRY basic GCL command 2-43
RETURN basic GCL command 2-45
RETURN_DECLARED_FILE cmd 4-44
RJD builtin 2-115
RLSF access command 4-42
ROLL system variable 2-70
RON builtin 2-104
RSQ MNCMD command 3-70
RSTA MNCMD command 3-72
RSV MNCMD command 3-67
RTDCLF access command 4-44

S

SAVE MNCMD command 3-74
SAVE_ACCESS MNCMD cmd 3-76
SCALL basic GCL command 2-46
Search rules for commands 1-24
SEV system variable 2-71
SIGNUM builtin 2-81
SINLIB system variable 2-71

SLIB system variable 2-72
SLLIB MNCMD command 3-78
SPLIT_RECORD access cmd 4-47
SPREC access command 4-47
ST MNCMD command 3-79
star convention 7-52
Startup 1-21
STATUS MNCMD command 3-79
STATUS system variable 2-72
Stored sequences 1-18
STRING builtin 2-98
STRIP builtin 2-98
SUBFILE builtin 2-116
SUBSTITUTE builtin 2-88
SUBSTR builtin 2-89
SV MNCMD command 3-74
SVA MNCMD command 3-76
SWITCHES system variable 2-73
SYS.SPOOL Files 1-37
SYSTEM basic GCL command 2-47
SYSTEM command 7-13
system variable 7-38
System variable 2-54

T

TABS system variable 2-73
TERMID builtin 2-104
TIME builtin 2-105
TIMES builtin 2-81
TRACE system variable 2-74, 6-1
TTYPE builtin 2-105
Type (of a variable) 1-11

U

UC builtin 2-89
UNLIST basic GCL command 2-48
UNQUOTE builtin 2-89
UNTIL basic GCL command 2-50
USERID builtin 2-105

GCL Programmer's Manual

i-8 47 A2 36UJ Rev05

V

VALUE builtin 2-101
Variable 1-2, 1-4
VCALL basic GCL command 2-51
VCHAIN basic GCL command 2-52
VERIFY builtin 2-90
Volume Literal 7-45

W

WAIT builtin 2-105
WD system variable 2-74
WDAY builtin 2-105
WHILE basic GCL command 2-53
WRITE_RECORD access cmd 4-49
Writing on the terminal 1-16
WRREC access command 4-49
WSTATION system variable 2-75

X

XINLIB system variable 2-75
XLIB system variable 2-75
XOR builtin 2-85

Y

YDAY builtin 2-106
YES system variable 2-76

Z

ZOK system variable 2-76

Technical publication remarks form

Title : DPS7000/XTA NOVASCALE 7000 GCL Programmer's Manual Job Control and
IOF

Reference Nº : 47 A2 36UJ 05 Date: August 1999

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please include your complete mailing address below.

NAME : Date :

COMPANY :

ADDRESS :

Please give this technical publication remarks form to your BULL representative or mail to:

Bull - Documentation Dept.

1 Rue de Provence
BP 208
38432 ECHIROLLES CEDEX
FRANCE
info@frec.bull.fr

Technical publications ordering form

To order additional publications, please fill in a copy of this form and send it via mail to:

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Phone: +33 (0) 2 41 73 72 66
FAX: +33 (0) 2 41 73 70 66
E-Mail: srv.Duplicopy@bull.net

CEDOC Reference # Designation Qty

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

[_ _] : The latest revision will be provided if no revision number is given.

NAME: Date:

COMPANY:

ADDRESS:

PHONE: FAX:

E-MAIL:

For Bull Subsidiaries:

Identification:

For Bull Affiliated Customers:

Customer Code:

For Bull Internal Customers:

Budgetary Section:

For Others: Please ask your Bull representative.

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

47 A2 36UJ 05
REFERENCE

	GCL Programmer's Manual - 47 A2 36UJ Rev05
	Preface
	Table of Contents
	1. Introduction
	1.1 Command Language
	1.1.1 Purpose of Command Language
	1.1.2 Objects
	1.1.3 Variables and Expressions

	1.2 Global Variables
	1.2.1 Declaring Global Variables
	1.2.2 Assigning Values to Variables
	1.2.3 Types
	1.2.4 References to Variables

	1.3 Expressions
	1.4 Reading and Writing Values
	1.5 Stored Sequences of GCL
	1.5.1 ALTER_INPUT Command
	1.5.2 EXECUTE_GCL Command

	1.6 STARTUP Sequences
	1.6.1 IOF Startups
	1.6.2 Batch Startups

	1.7 Creating New GCL Commands
	1.7.1 Domains, Libraries and Search Rules
	1.7.2 MAINTAIN_COMMAND
	1.7.3 GCL Procedures
	1.7.4 Example 1: Creating a Directive
	1.7.5 Example 2: Creating a new IOF Command

	1.8 Absentee Jobs
	1.9 SYS.SPOOL Files
	1.9.1 Purpose of SYS.SPOOL Files
	1.9.2 Use of SYS.SPOOL Files
	1.9.3 Number of SYS.SPOOL Files
	1.9.4 Size of SYS.SPOOL Files
	1.9.5 Access Rights
	1.9.6 GCL Commands Applicable to SYS.SPOOL Files

	2. GCL Basic Language
	2.1 GCL Basic Commands
	2.1.1 ABORT
	2.1.2 CASE
	2.1.3 CASEOF
	2.1.4 CHAIN
	2.1.5 CONTROL
	2.1.6 ELSE
	2.1.7 ENDCASEOF
	2.1.8 ENDIF
	2.1.9 ENDPROC
	2.1.10 ENDUNLIST
	2.1.11 ENDUNTIL
	2.1.12 ENDWHILE
	2.1.13 GOTO
	2.1.14 IF
	2.1.15 KWD
	2.1.16 LABEL
	2.1.17 LOCAL
	2.1.18 OTHERWISE (OTHER)
	2.1.19 PROC
	2.1.20 RETRY
	2.1.21 RETURN
	2.1.22 SCALL
	2.1.23 SYSTEM
	2.1.24 UNLIST
	2.1.25 UNTIL
	2.1.26 VCALL
	2.1.27 VCHAIN
	2.1.28 WHILE

	2.2 System Variables
	2.2.1 #:Terminal Line
	2.2.2 #AUTOLF: Auto Line Feed
	2.2.3 #BINLIB: Binary Input Libraries
	2.2.4 #BLIB: Binary Output Library
	2.2.5 #BRKPMODE: Break Processing Mode
	2.2.6 #BRK: Break
	2.2.7 #CC: Continuation Character
	2.2.8 #CINLIB: Compile Unit (CU) Input Libraries
	2.2.9 #CLIB: Compile Unit (CU) Output Library
	2.2.10 #CSET: character set
	2.2.11 #DEBUG: Debug GCL Procedures
	2.2.12 #DI: Directive Identifier
	2.2.13 #EDITCTL: Text Editor Controls
	2.2.14 #ENVT: Working Environment
	2.2.15 #EXPTABS: Expand Tabulations
	2.2.16 #FORMLANG: MAINTAIN_FORM Generation Language
	2.2.17 #GCLFORM: GCL Format
	2.2.18 #INVCHAR: Invalid Character Representation
	2.2.19 #JCLCOMP: JCL Compatibility Mode
	2.2.20 #JOBLANG: Default Command Language for Batch Jobs
	2.2.21 #LANG: National Language
	2.2.22 #LINLIB: Load Module (LM) Input Libraries
	2.2.23 #LLIB: Load Module (LM) Output Library
	2.2.24 #MENU: Dialog Through Menus and Prompts
	2.2.25 #NO: negative Replies
	2.2.26 #NOVICE: Novice Mode
	2.2.27 #PAGEMODE: Page Mode
	2.2.28 #PAGETOP: Page Top
	2.2.29 #PL: Page Length
	2.2.30 #PROMPT: Prompting on the Terminal
	2.2.31 #PRTLIB: Printout Library
	2.2.32 #PW: Printing Width
	2.2.33 #ROLL: Roll Mode
	2.2.34 #SEV: Severity
	2.2.35 #SINLIB: Source Language (SL) Input Libraries
	2.2.36 #SLIB: Source Language (SL) Output Library
	2.2.37 #STATUS: Session Status
	2.2.38 #SWITCHES: Program Switches
	2.2.39 #TABS:Tabulation Stops
	2.2.40 #TRACE:Trace GCL Procedure Execution
	2.2.41 #WD:Working Directory
	2.2.42 #WSTATION: Working Station
	2.2.43 #XINLIB: Sharable Module (SM) Input Libraries
	2.2.44 #XLIB: Sharable Module (SM) Output Library
	2.2.45 #YES: Positive Replies
	2.2.46 #ZOK: Busy Message

	2.3 Builtin Functions
	2.3.1 Arithmetic Builtins
	2.3.1.1 #ABS
	2.3.1.2 #DIVIDE
	2.3.1.3 #MAX
	2.3.1.4 #MIN
	2.3.1.5 #MINUS
	2.3.1.6 #MOD
	2.3.1.7 #PLUS
	2.3.1.8 #SIGNUM
	2.3.1.9 #TIMES

	2.3.2 Relational Builtins
	2.3.2.1 #EQ
	2.3.2.2 #GE
	2.3.2.3 #GT
	2.3.2.4 #LE
	2.3.2.5 #LT
	2.3.2.6 #NE

	2.3.3 Boolean Builtins
	2.3.3.1 #AND
	2.3.3.2 #NAND
	2.3.3.3 #NOR
	2.3.3.4 #NOT
	2.3.3.5 #OR
	2.3.3.6 #XOR

	2.3.4 Character Handling Builtins
	2.3.4.1 #CAT
	2.3.4.2 #CTN
	2.3.4.3 #INDEX
	2.3.4.4 #LC
	2.3.4.5 #MODIFY
	2.3.4.6 #QUOTE
	2.3.4.7 #SUBSTITUTE
	2.3.4.8 #SUBSTR
	2.3.4.9 #UC
	2.3.4.10 #UNQUOTE
	2.3.4.11 #VERIFY

	2.3.5 Terminal Handling Builtins
	2.3.5.1 #KLN
	2.3.5.2 #L
	2.3.5.3 #MASTER
	2.3.5.4 #QUERY
	2.3.5.5 #READ
	2.3.5.6 #READL

	2.3.6 List Handling Builtins
	2.3.6.1 #ELEM
	2.3.6.2 #FMT
	2.3.6.3 #INDEX_SET
	2.3.6.4 #LCOUNT
	2.3.6.5 #LCTN
	2.3.6.6 #LINDEX
	2.3.6.7 #LLENGTH
	2.3.6.8 #MAXLLENGTH
	2.3.6.9 #MINLLENGTH
	2.3.6.10 #REPLACE
	2.3.6.11 #STRING
	2.3.6.12 #STRIP

	2.3.7 Object Management Builtins
	2.3.7.1 #CHECKSTAR
	2.3.7.2 #DROP
	2.3.7.3 #DROPGB
	2.3.7.4 #EXIST
	2.3.7.5 #LENGTH
	2.3.7.6 #LISTGB
	2.3.7.7 #MLENGTH
	2.3.7.8 #NEXIST
	2.3.7.9 #VALUE

	2.3.8 Context Handling Builtins
	2.3.8.1 #BILLING
	2.3.8.2 #CPU
	2.3.8.3 #DATE
	2.3.8.4 #DOMAINID
	2.3.8.5 #ELAPSED
	2.3.8.6 #EXTDATE
	2.3.8.7 #FW
	2.3.8.8 #LSYS
	2.3.8.9 #MDAY
	2.3.8.10 #MODE
	2.3.8.11 #PROJECT
	2.3.8.12 #RON
	2.3.8.13 #TERMID
	2.3.8.14 #TIME
	2.3.8.15 #TTYPE
	2.3.8.16 #USERID
	2.3.8.17 #WAIT
	2.3.8.18 #WDAY
	2.3.8.19 #YDAY

	2.3.9 "Is it?" Builtins
	2.3.9.1 #ISITBOOL
	2.3.9.2 #ISITDATE
	2.3.9.3 #ISITDEC
	2.3.9.4 #ISITFILE
	2.3.9.5 #ISITFSET
	2.3.9.6 #ISITHEXA
	2.3.9.7 #ISITLIB
	2.3.9.8 #ISITNAME
	2.3.9.9 #ISITOUTPUT
	2.3.9.10 #ISITRFILE
	2.3.9.11 #ISITSTAR
	2.3.9.12 #ISITTIME
	2.3.9.13 #ISITVOLUME

	2.3.10 Conversion Builtins
	2.3.10.1 #BINTODEC
	2.3.10.2 #BYTE
	2.3.10.3 #CVBOOL
	2.3.10.4 #CVDATDEC
	2.3.10.5 #CVDEC
	2.3.10.6 #CVDECDAT
	2.3.10.7 #CVFILE
	2.3.10.8 #CVFSET
	2.3.10.9 #CVHEXA
	2.3.10.10 #CVLIB
	2.3.10.11 #CVNAME
	2.3.10.12 #CVOUTPUT
	2.3.10.13 #CVRFILE
	2.3.10.14 #CVSTAR
	2.3.10.15 #CVVOLUME
	2.3.10.16 #DECTOHEXA
	2.3.10.17 #FB15
	2.3.10.18 #FB31
	2.3.10.19 #HEXATODEC
	2.3.10.20 #RJD

	2.3.11 File Handling Builtins
	2.3.11.1 #EFN
	2.3.11.2 #EXPANDPATH
	2.3.11.3 #FSITE
	2.3.11.4 #SUBFILE

	3. Command Management
	3.1 Creating Procedures
	3.2 Binary and Source Libraries, Workspace
	3.3 Updating Procedures
	3.4 Library Management
	3.5 Domains
	3.5.1 Definition of Domains
	3.5.2 Protection of Domains
	3.5.3 Adding to an Existing Domain
	3.5.4 Standard Domains
	3.5.5 Creating a New Command
	3.5.6 Creating a User Domain

	3.6 Libraries
	3.7 Access Restrictions
	3.7.1 Environments
	3.7.2 Access Rights

	3.8 Command Management Commands
	3.8.1 APPEND (AP)
	3.8.2 BINLIB (LIB)
	3.8.3 CLEAR (CLR)
	3.8.4 COMPILE (COMP)
	3.8.5 COPY (CP)
	3.8.6 COUNT_ENTRIES (COUNT)
	3.8.7 CREATE (CR)
	3.8.8 DECOMPILE (DEC)
	3.8.9 DELETE (DL)
	3.8.10 DELETE_ENVT (DLENVT)
	3.8.11 DISPLAY (D)
	3.8.12 DISPLAY_SCREEN (DSCRN)
	3.8.13 DOMAIN
	3.8.14 EDIT (ED)
	3.8.15 ENVT
	3.8.16 FSE
	3.8.17 LEDIT (LED)
	3.8.18 LIST (LS)
	3.8.19 LIST_ACCESS (LSA)
	3.8.20 LIST_ENVT (LSENVT)
	3.8.21 LIST_PROJ (LSPROJ)
	3.8.22 LOAD (LD)
	3.8.23 MERGE
	3.8.24 MODIFY_ACCESS (MDA)
	3.8.25 MODIFY_LOCK (MDLK)
	3.8.26 ON_ERROR
	3.8.27 PRINT (PR)
	3.8.28 PROJ
	3.8.29 QUIT (Q)
	3.8.30 RESAVE (RSV)
	3.8.31 RESEQUENCE (RSQ)
	3.8.32 RESET
	3.8.33 RESTORE_ACCESS (RSTA)
	3.8.34 SAVE (SV)
	3.8.35 SAVE_ACCESS (SVA)
	3.8.36 SLLIB
	3.8.37 STATUS (ST)

	4. Access to GCOS Files through GCL
	4.1 Files
	4.2 Command Parameters
	4.3 Completion Codes
	4.4 Address Format
	4.5 Temporary Files
	4.6 Types of Access
	4.7 Access Requirements
	4.8 Break Processing
	4.9 Example of Procedure Using Break Processing
	4.10 GCOS File Access Commands
	4.10.1 BUILD_RECORD (BREC)
	4.10.2 CLOSE_FILE (CLOSEF)
	4.10.3 DECLARE_FILE (DCLF)
	4.10.4 DELETE_RECORD (DLREC)
	4.10.5 EDIT_FILE_ERROR (EDFERR)
	4.10.6 EXIST_FILE (EXISTF)
	4.10.7 LIST_DECLARED_FILE (LSDCLF)
	4.10.8 MODIFY_RECORD (MDREC)
	4.10.9 OPEN_FILE (OPENF)
	4.10.10 POINT_RECORD (PTREC)
	4.10.11 READ_RECORD (RDREC)
	4.10.12 RELEASE_FILE (RLSF)
	4.10.13 RETURN_DECLARED_FILE (RTDCLF)
	4.10.14 SPLIT_RECORD (SPREC)
	4.10.15 WRITE_RECORD (WRREC)

	5. GCL Batch Job
	5.1 Overview
	5.1.1 GCL Job Statements
	5.1.2 Job Submission
	5.1.3 Job Translation and Execution

	5.2 Input Reader Statements
	5.2.1 $JOB
	5.2.2 $ENDJOB
	5.2.3 $INPUT
	5.2.4 $ENDINPUT
	5.2.5 $SWINPUT
	5.2.6 $SENDCONS
	5.2.7 $OPTIONS

	5.3 System Level Commands
	5.4 Directives
	5.5 GCL Basic Commands
	5.6 Parameterization
	5.6.1 Parameterization of GCL Statements
	5.6.2 Parameterization of Input Enclosures
	5.6.3 Example of Parameterization

	5.7 Chaining of Commands
	5.8 Recoveries
	5.9 Reports
	5.9.1 Job Occurrence Report (JOR)
	5.9.2 H_BATCH Report

	6. Debugging
	6.1 GCL Job Debugging
	6.2 DUMP
	6.3 Example of Debugging

	7. Programmatic Interface
	7.1 GCL Interface
	7.1.1 Primitives
	7.1.1.1 GCLINIT
	7.1.1.2 GCLTERM
	7.1.1.3 GCLREAD
	7.1.1.4 GCLABORT
	7.1.1.5 GCLRETRY

	7.1.2 Primitives in Schematic Program

	7.2 Interface Between Program and Procedure
	7.2.1 Domain
	7.2.2 SYSTEM Command

	7.3 Programming Rules
	7.4 Example of Application
	7.4.1 Programming in COBOL
	7.4.2 GCL Procedure BANK of IOF Domain
	7.4.3 GCL Procedures BALANCE, DEBIT and CREDIT
	7.4.4 Equivalent Programming in GPL

	7.5 Help Text Handling
	7.5.1 Definition of a Help Text
	7.5.2 Requesting a Help Text
	7.5.3 Help Operations
	7.5.4 Conventions
	7.5.5 CREATE_HELP_TEXT: CRHELP
	7.5.6 Formatting Controls
	7.5.7 Examples of Help Texts
	7.5.7.1 Source Text
	7.5.7.2 Composed Text
	7.5.7.3 Domain Level Help Text
	7.5.7.4 Command Level Help Text
	7.5.7.5 Parameter Level Help Text

	7.5.8 HELP Primitive

	7.6 Managing GCL Variables
	7.6.1 Global Variables
	7.6.2 System Variables
	7.6.3 GCL Variable Primitives
	7.6.3.1 READVAR
	7.6.3.2 MODVAR

	7.7 File Literal Analysis
	7.7.1 File Literal
	7.7.2 Syntax of a Volume Literal
	7.7.3 Primitives
	7.7.3.1 DCANFILE
	7.7.3.2 ANFILE

	7.8 Fileset Literal Analysis
	7.8.1 Fileset Literal
	7.8.2 Primitives
	7.8.2.1 DCANFST
	7.8.2.2 ANFST
	7.8.2.3 ANFLFST

	7.9 Star Convention Analysis Primitives
	7.9.1 Primitives
	7.9.1.1 DCANSTAR
	7.9.1.2 ANSTAR
	7.9.1.3 CHKSTAR

	7.10 Job Submission
	7.10.1 Synchronous Job Submission
	7.10.2 Asynchronous Job Submission
	7.10.3 Description of Parameters
	7.10.4 Information About the Launched Job
	7.10.5 COBOL Equivalents
	7.10.6 Obtaining Error Messages from Error Numbers and Classes
	7.10.7 Examples
	7.10.7.1 Job Submitted on Local Site through GPL Program
	7.10.7.2 Job Submission through COBOL Interface H_IN_URUN
	7.10.7.3 Job Submission through COBOL Interface H_IN_UEJR

	7.10.8 Error Messages

	Index

