JCL

User’'s Guide

Job Control and IOF

REFERENCE
47 A2 12UJ 03

DPS7000/XTA
NOVASCALE 7000

DPS7000/XTA
NOVASCALE 7000

JCL

User’s Guide

Job Control and IOF

September 1999

BULL CEDOC

357 AVENUE PATTON
B.P.20845

49008 ANGERS CEDEX 01
FRANCE

REFERENCE
47 A2 12UJ 03

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not
limited to, copying, distributing, modifying, and making derivative works.

Copyright © Bull SAS 1991, 1999

Printed in France

Suggestions and criticisms concerning the form, content, and presentatioln of this
book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements
We acknowledge the right of proprietors of trademarks mentioned in this book.

®

Intel® and Itanium® are registered trademarks of Intel Corporation.

Windows® and Microsoft® software are registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Linux® is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Bull will not be liable for errors contained
herein, or for incidental or consequential damages in connection with the use of this material.

Preface

Scope and This manual provides information on the use of JCL in the GCOS 7 operating
Objectives system.
Intended This manual is intended for programmers and operators.
Readers
Structure Section 1 introduces the basic concepts of a job and its
components.
Section 2 describes the management of unit record input and
output.
Section 3 discusses the assignment and allocation of files on
various media.
Section 4 considers some general aspects of resource
management.
Section 5 deals with parameter substitution and modification of
stored JCL.
Section 6 explains how to change the order of processing of JCL
statements.
Section 7 describes the Job Occurrence Report.
Appendix A provides some notes on managing resident volumes.
Appendix B explains how the user can define parameter values

within certain JCL statements.

47 A2 12UJ Rev03 iii

JCL User's Guide

Bibliography ~ JCL Reference Manualccccooiiiiiiiiiiic e 47 A2 11UJ
Pages iii and iv of the above manual provide a list of all manuals which may
concern the JCL user.

Those directly referenced in this User's Guide are:
IOF Terminal User's Reference Manual (parts 1, 2 and 3)........... 47 A2 38/39/40UJ
System OpPerator's GUIAEccoiiiiiiiiiiiice et 47 A2 53US
System Administrator's Manual................cccccoe 47 A2 54US
Library Maintenance Reference Manual.............cccccccooiiiiiiiiiiiiieieees 47 A2 01UP
Catalog Management User's GUIdEeeeevviieeiiiiiiiiiiiiieeeee e 47 A2 35UF
Administrating the Storage Manager Administrator's Guide.................. 47 A2 36UF
Data Management Utilities User's Guideccccooeiiiiiiiieecceeee, 47 A2 26UF
Cartridge Tape Library User's Guide............cccoeeiiiiiiiiiieeeeeeee 47 A2 62UU
Error Messages and Return Codes DireCtorycoeevvvevevvevvvvvvvnnnnnnnnnns 47 A2 10UJ
Syntax The following notation conventions for JCL statement formats are used in this
Notation manual:
UPPERCASE The keyword item is coded exactly as shown.
Lower case Indicates a user-supplied parameter value.
[item] An item within square bracket is optional.
{item 1} A column of items within braces means that one value must be
{item 2} selected if the associated parameter is specified. If the parameter
{item 3} is not specified the underlined item is taken as the default value.
0 Parentheses must be coded if they enclose more than one item.
An ellipsis indicates that the preceding item may be repeated
one or more times.
iv 47 A2 12UJ Rev03

Table of Contents

1. Job Management

11

1.2

1.3

14

15

INEFOAUCTION ...t e et e e e e e s bbb et e e e e s e s anbb b e e e e e e e e s anbnnnnee
0 R o o IR 1 1T (U = SRR
1.1.2 JOD SUDMUSSION ...ttt e e e e e e e e e e eetee e e e e e e e ennes
7NN [o] o TN = o PSSR
1.21 StagesS 0f @ JOD RUN c.ocoiiiiiiieiieeeeeeeeeeee ettt
I | o o ¥ L= o =T RS
1.2.2.1 STREAM Reader
1.2.2.2 JCL TranSIAtOrc.ccoiiiiiiiiee ettt
1.2.3 KNOWN JODS LIMIt....eiiiiiiiiiiiiiieie et e e
1.2.4 INPUE STFRAIM ...ttt et e e e e e e e e s e ne e e e e e e aaenes
JOD DESCIIPLIONS. ...ttt ettt ettt e s bt e e b e e e annee s
I 200 R 1 o1 o To [1] 1T o I OO PRUR
1.3.2 STEP DESCIIPLON .cceeiiiiiiiiiieieieeeeeeeee ettt ettt ettt ettt e e e e e e e e e e e e e aaaeaaaa s
1.3.3 File ASSIGNMENT ..t
Scheduling and EXECULIONccooieiiieieie e ennnnnnnes
1.4.1 SCheduling PrOMILYccooiiiie e
L1.4.2 JOD CIASSES ...ttt e e a e e e
(= B == od 1 1o o PSPPI
1.4.4 Execution Priority (Dispatching PriOFtY)ccceeeiiiiiieiiiiiee e 1-14
Holding ANd Releasing JODS..........ooiiiiiiiiiie e 1-15
1.5.1 The HOLD Parameter..........ueeiiieiiiiiiiiieeae e e eeeiiieee e e e e eeieieee e e e e e e sneteeeeeaeeeaeneee 1-15
R 700 00t R [I SRR 1-15
R 70 O o [T I T o SRR 1-15
1.5.2 RELEASE StAlEMENT.....uuiiiiiiiiiiiiiiiiiiiiiieieieieieieees 1-17
1.5.3 Control of Interdependent JOBSeeviiiviiiiiiiiiiiieeeeeeeeeee e 1-17

47 A2 12UJ Rev03 v

JCL User's Guide

1.6 StArt UpP PrOCEAUIES. ...ttt ettt snae e sanee s 1-18
700 R B T ot g1 o (T o P PP PP T PUPPPPPPRPN 1-18
LG AN o] o] o 1o] o [P 1-18
1.6.3 Creation and MaiNtENANCE........cccceeiiiuuiiiiiee e e e ree e e e e e s eeeeeeaeeeeeanns 1-19
1.6.4 NSTARTUP Parameter.... ..ottt 1-19
1.6.5 Example of a Batch Project StartUp...........eeeeeeeeeeieeeeeeeeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeees 1-19
2. Input/Output Management
P2 N 111 (o To L8 [ox 1 o] o HO OO P PP OPPPPPPPPI
2.2 HaNdling INPUL DALAccoiiiiiiiiiiiie ettt e e e as
2.2.1 Input Enclosures - SINPUT and $ENDINPUT ..o
2.2.0.1 ENDCHAR. ...ttt ettt e
2.2.1.2 CONTCHAR ..ottt e et e e et e e e rre e e e staeea e
2.2.1.3 ENDCHAR and CONTCHAR used together.........ccccocvvveiniieeennnnenn.
2.2.2 The Use of Standard SYSIN.......cooi it
2.2.3 Permanent INPUL Fil@uuuiuiiiiiiiiiiiiiiiiiiiiiieisiiieisieesiesseeesieesreesessesssesesesssesesnne
2.2.4 Using a Permanent INPUL File ...
2.2.5 INPUE DAL TYPES ovtuuiiiiiieiieiiiiiii ettt e et e e e e et e b e e e e e e e eeabbb e e eaees
2.2.6 ReadiNg SSF INPULuuiiiiiiiiiiiiiiiiieitiieree e eeeneaeseerererererererersreaersrsrersrnnes
2.2.7 Data Enclosures-S8DATA and SENDDATAccvviiiiiiee et sreee e
2.3 Handling of Print@d OULPUL...........uiiiiiiiie e
2.3.1 The GCOS Output FaCIlitieSccoiiuiiiiiiiiiee i
2.3.2 SummMary Of FACIIILIESuuuvuruiiiiiiiiiiiiiiiieiiiiieieiririeaereeerererereeeeereeeeeressaererererane
P Y £ To 11 |V = Tod o =T 1] o PSSR SPRPR
A St R =2 o o[SRR
A A U L TP
243 The SYSOUT SEAtEMENTeeiiiiiiieeiiiiiieeet ettt e e
244 The -SYSOUT SUFIXuuutiiiiiiiie ittt e e snreeeeees
2.45 The DEFINE Parameter SYSOUTcoccuiiiiiiieiiiiiiiie et
2.4.6 Restriction 0N RECOI SIZEuuuiiiiiiiiiiiiiiiee e
2.5 Effect of the Various SYSOUt OPLIONScccueeiiiiriiieiiiiie et
2.6 Avoiding the Use of the SYSOUT Mechanism for Output Editing
2.6.1 When Use of the Mechanism is Unsuitable................cccccceiniiiiiine,
2.6.2 Overriding Rules for the SYSOUT MechanisSmccccccocevunennnniniinnnnnnnnnnnnnn.
2.7 Standard SYSOUL SUDFIES.........uiiiiiiiiiieiieeeeeeeeee et
2.7. 1 MOSE FIeQUENT USE ...cooiiiiiiiiiiitiie ettt e e e e e
2.7.2 Use of Several SYSOUT Statements for One Subfile..........ccccccviiiid
Vi 47 A2 12UJ Rev03

Table of Contents

2.8

2.9

2.10

2.11
2.12

2.13

Permanent SYSOUL FIlEScooiiiiiiiiiiie e 2-25
2.8.1 Writing to a Permanent SYSOUT File in Several Steps.......cccocovveviiieeeninnenn, 2-26
2.8.2 Partial OULPUL Of FIlESuvuiuiiiiiiiiiiiiiiiiiiiiiiiiiieiieie e eeeeeseeeeeeeeeeeerenes 2-26
2.8.3 Deallocation of a Permanent SYSOUT Fil€........coooiiiiiiiiiiiiiiieee e, 2-27
Editing and Handling Of OQULPULcooiiiiiiieeee e, 2-28
291 OULPUL EQItING ..eeeiiiiiiieeitee ettt e e 2-28
2.9.2 OUutpUt HaNAIINGuuuiuiiiiiiiiiiiiiiiiiiiiiieeeaeeieeereeeeeeeeeeeeeseereeeeeesesesssssssnssensrene 2-28
2.9.3 LINES LIMIES ..eeiiieiie ittt e et e e e e e s e e e eeeeas 2-29
2.9.4 Output Editing Parametersccooiiiiiiiiiiiieiiiiee ettt 2-29

2.9.4.1 Standard SYSOUT SUDfileS ...coeeiiiiiiiiiiee e 2-29

2.9.4.2 Edited Permanent SYSOUT FileS.......ccccccoeiiiiiiiiiiiiieiiiiieeeeeee 2-30

2.9.4.3 Unedited Permanent SYSOUT FileS.......ccccouiiiiiiiiiiiiiiiiiiiiieeeeee 2-30

2.9.4.4 Ordinary Permanent FileScccccccvvviviiiiiiiieeee e, 2-31
2.9.5 Printer CharaCteriStiCScoiiiuuriiiieeee ittt e e e 2-31
Output HandliNg Parametersuuuuuuuuuuuiuiruererireuieiererreerearrersrersrereere——————————. 2-32
2.10.1 Enqueing of Output Writer REQUESTES.........eeiiiiiiiieiiiiee e 2-32
2.10.2 Output Selection and NaMING........cocuiiiiiiiiie e 2-34
2.10.3 Production of Several COPIESuuuuuuururuiuiiiuiuieieieieininrerererererrrrrr————————. 2-35
2.10.4 OULIPULE BANNEIS.ttt e e e eae s 2-36
2.10.5 Use of the OUTVAL Statementcoooiiiiiiiiieeiieiiiiieee e 2-36
The Job Occurrence Report and the JOBOUTeeviiiiiiiiiiiiiie e 2-38
Example of the Use of Sysout and Writer in @ Job ... 2-40
2.12.1 Direct Use of the PriNterooeuiiiiiieeee e 2-42
2.12.2 Summary of QULPUL FACIITIESuuuuiiiiiiiiiii e 2-42
Summary of QULIPUL WIEEr USAQE........uuuuuiuruiiiiiiiiiiiiiiiiiiieiarireeeniernesrninnerernanrersr 2-44
2.13.1 PRTFILE, PRTDEF and PRTOUTcccoiiiiiiiiiiie et 2-44
2.13.2 OUTVAL, SYSOUT and WRITER JCL Statementscccceeeeeeeeeeveevviiieeneeenens 2-44

2.13.2.1 Difference Between SYSOUT and WRITER...........occciiieeieiiiiinnen. 2-45

2.13.2.2 Difference Between SYSOUT and DEFINE.............cccccconniiiinnnnenn, 2-45

2.13.2.3 SUMMATY TaBIE c.ccoeviieeiieieieeeeee e 2-46

3. File Assignment and Allocation

3.1
3.2

INEFOTUCTION .ot e e st e e e e e e e nr s
CAtBIOG OVEIVIEWeieiiiiiie ittt ettt e e et e s s nb et e e ebbe e e e aneee
3.2.1 SIMPIIfication Of JCLuuii e rannrane
3.2.2 GENEIALION GIOUPS ...eeiiiiitiiee ittt ettt ettt ettt e st e e s st e e e aabe e e e eeees
3.2.3 ACCESS 10 the SYSEIM ..ottt
3.2.4 Assignment of Cataloged FilesS..........ccccciiiiiiiiiiiiiiiiiiiiiieeveeve e eeeeeenes
3.2.5 Assignment of Uncataloged Files ...

47 A2 12UJ Rev03

Vii

JCL User's Guide

3.3 File Allocation and PrealloCation.............coou i 3-8
3.3.1 Temporary DiSK FllES.........eiiiiiiii e 3-8

3.3.2 Permanent DiSK FilES.........ouuiiiiiiii i 3-9
3.3.2.1 Preallocation of a Permanent Disk File.............c.ccoccoiiiiinninn, 3-10

3.3.2.2 Preallocation of Cataloged Disk Filescccccceiviiiiiiiiiieniiiieees 3-11

3.3.2.3 Allocation of a Permanent Disk Fileccccciviiiiiiiiininne, 3-11

3.3.2.4 Comparison of PREALLOC and ALLOCATE........cccccvviiieeiniieeenns 3-13

3.3.3 TAPE FIIES e 3-14

3.3.4 Tape File EXIENSION .. .o e 3-15

3.4 Use Of MUItI-VOIUME FlES ... 3-16
3.4.1 Partial PrOCESSING.......uuuuuuuuurureruuuiniuiuuntnrerenenernrrrerenerrernrerererr————————————. 3-16

3.4.2 MuUlti-vOlUME WOIK TAPES ...cceiiiiiieiiitiie ettt e 3-18

3.5 Multi-file Tape VOIUMES ... 3-20
3.5.1 Useful Parameters Of ASSIGNcooiiiiiiiiiiiie e 3-20

3.5.2 File CONCAENALIONuuiiiiieiiiitiii et e e e e e e s 3-21
3.5.2.1 Omitting Internal File Name on ASSIGN..........ccccccuvvvviiinininininininnn, 3-21

3.5.2.2 Uncataloged Tape FileScocuiiiiiiieiiiieee e 3-21

3.5.2.3 RESHICHONS...ciie i 3-22

3.6 Deallocation Of File SPACEcccoiiiiiiiiiie e 3-23
3.6.1 Uncataloged Tape File........cooiiiiiiiiii e 3-23

3.6.2 Cataloged Tape FilES...... .. eeneneernenenrernrnnes [3-23

3.6.3 Permanent DiSK FileS........cooiuuiiiiiiie e 3-23

3.7 Duplicate File and VOIUME NAMES..........uuuuuriiririerrieriieeeeereeeereeeeereeeeeererrererrrrrrerrrn 3-24
3.8 Overview of the DEFINE Statementccoooiiiiiiiiiieeiiiiiie e 3-25
3.9 GCOS OVErTdiNG RUIES......ccieiiiiiieiiieeeieeeeteeee ettt ettt a et e e e e e e e e e e e e e e e aeaaaaes 3-26
.10 PrefiXiNg .t 3-27
3.10.1 UsINg the Master DIF€CIONYuuuuuurrrieeirrrieeeieeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeerrerrereeeeee 3-27
3.10.2 Using the PREFIX State@mMentccueiiiiiiiiieiiiieee it 3-27

4. Resource Management

ot R [11 (oo [0 o 1o o T OO PP PP OPPPPPPPPI 4-1
4.2 MemOry ManAgQEIMENTceiiiiiiiie ettt ettt e e e et e e e e et b s e e e e e e s tabe e e e e e e eeesenaneeas 4-2
421 CoNCEPLIN GCOS 7 ..ottt ettt e e e st e e sbaeee e 4-2
4.2.2 Declared WOrKING SEL..........eeiiiiiiiiiiiiiee ettt sbeee e 4-2
4.3 FIlE PASSING...eeiiiiiiiieiiieie et 4-3
0 T R 9 1=~ o] 1 110 o N 4-3
4.3.2 RUIES fOr PASSEA FlES....cciiiiiiiiiieeie e 4-5
4.3.3 DeadloCk SItUALION.........ueiiiieeiiiee e 4-7
R LN 0] (=Y 111 o PO P PPPPPP 4-8

viii 47 A2 12UJ Rev03

Table of Contents

4.5 File Sharing WItNOUL GACooo ittt 4-9
4.6 File Sharing With GACee e nenaneaenesensarnrnrnrnrnrnnes 4-15
O G o1 =Y Ao] I D= 1= PPNt 4-16
0 0 R [11 o o [W ox 1o T o PO SPOUPPORPPPPPPRt 4-16
4.7.2 Uncataloged Tape FileS........oooiiiiiiiiii e 4-16
4.7.3 Cataloged Tape Files........ccooiiioiiieie i 4-17
4.7.4 Uncataloged DiSK FileScoiiiiiiiiiiiiiie et 4-17
4.7.5 Cataloged DiSK FIleS.......ueiiiiiiiiiiieee et 4-18
4.8 DeVICE MANAGEIMENTttt ittt a et e et e e e st e e s aabe e e e e anbeeeeeenes 4-19
4.8.1 Mounting of Multi-volume FileS...........o i 4-19
4.8.2 Use Of DEVICE POOISooeiiiiiiiiiiiee e 4-21
5. Maintenance of Stored JCL and Parameter Substitution

o0 R 11 (o To [8 [ox 1o o RO OO PO U P PP OPPPPPPPPI 5-1
5.2 RuUN, INVOKE, aNd EXECULEueiiiiiiiiiii e 5-3
5.3 USE OF RUN oo, 5-5
5.4 Use Of INVOKE AN EXECULE.......ouiiiiieiiiiieie ettt e e e e e e nebeeeeaae s 5-9
5.4.1 Input Enclosures Referenced from Stored JCL...........cccvvvevvivvereininiiinininininnnnns 5-10
5.4.2 Independence of INVOKEd JCL SEQUENCES..........uuuurmrmrmrmrminrerninininrninnnnnnnnnnns 5-11
5.4.3 Nested INVOKE Statementscoooiiiiiiiiiiiiiiae e siieiee e 5-17
5.4.4 Invoking or Executing INput ENCIOSUIESuuvumuiiimiiiiieiiiiiiieieiernininenrnnnnnnn 5-17
5.4.5 Difference Between INVOKE and EXECUTE..........cccooiiiiiiiiiiiieeeeeeeeii, 5-18
54,6 S$SWINPUT StatemMeNt......ccceiiiiiiieiiiiieesiiiee e ssiieee sttt e e stvee e e siae e e e sntaeaesnnreeeeaned 5-20
5.5 JCL Parameter SELHNG........coveiveeueieieeeeeteeteeete et eeee e eeeeeeeteeteeeteeteeseestesteeseesteereeneeeseaneans
5.5.1 Principles of Parameter SettiNgcooiiiiiiiiiiiieiiiiiec e 5-24
5.5.2 JCL Parameter REfEIENCESccoiiiiiiiiiiiiiiiie et 5-26
5.5.2.1 Positional REfErenCesccuvviiiiiiiiiiiii e 5-26
55.2.2 Keyword ReferenCes........oocoviiiiiiiiiiiee e 5-26
5.5.2.3 Location of Parameter References inthe JCLocccviieeeenenn. 5-28
5.5.3 Procedure Involved in Substituting Parameter Values for References............ -30
5.5.3.1 How VALUES and MODVL Work in the "DIRECT STREAM"......... 5-30
5.5.3.2 The VALUES Statementcccooiiiiiiiiiiiee e eieieee e 5-30
5.6 The MODVL SEAtEMENT.......ooiiiiiiiiiiiiiit ettt s b e 5-37

5.6.1 Parameter Setting in a Sequence Called or Initiated by INVOKE,
EXECUTE, RUN, OF SJ.... ittt e e e e e e e e e ana s 5-39
5.6.1.1 Setting the Parameterscooiiiiiiiiiiie e 5-39
5.6.1.2 The Principle of Operationccueuveeeeeeieieieeieieeieeeeeieeeeeeeeeeeeeeees 5-39

47 A2 12UJ Rev03

JCL User's Guide

5.6.2 Input Enclosure Parameter Setting...........cceveiiuerieiiiiiie e 5-42
5.6.2.1 Substitution AlQOrithmeeviiiiiiiiiiiieieeeeeeeeeeeeeeeeee e 5-43

5.6.2.2 Determining the VALUES to be Substitutedccccccuvvvivvivnnnnnns 5-44

5.6.2.3 ALJOD LEVEL..ciiiiiiiiiieec s 5-44

5.6.2.4 AtINVOKE LEVEL...coiiiiiiiiiiiiiiie ettt 5-44

5.6.25 AtEXECUTE LEVEI ccocooiiiieieeee et 5-45

5.6.2.6 Parameter Setting of Part of an Input Enclosurecccccec.... 5-47

5.7 JOD Srea@m CrEatiONcuviiiiiiiieiiiii ettt e e s e e 5-49
5.8 TNE MINIFEAIION....ccciiiiiiiiiiie et 5-50

6. Sequence Modification and Error Processing

2 R [011 {0 o [F o) 1o o PR PT PP 6-1
6.2 Error Messages and RetUrN COOESoccuuiiiiiiiiiiiiiiiie ittt 6-2
6.2.1 JCL EITOIS..ciiiiiiiiiiiiii s 6-2

6.2.2 Labeling @ JCL Statementoiiiiiiiieiieiee et 6-5

8.3 SWIICNES ... e 6-7
B4 SEALUS ...ttt e et
6.4.1 Use of Status for EXecUution ADOITceeiiiiiiiiiiiiec e 6-13

6.4.2 Setting SeVerity ValUEcooiiiiiiiiiiiie e 6-14

7. Job Occurrence Report

4% R 11 (o To 11Tt 1 o] o EO PP P T PUPPP PP 7-1
7.2 Job Occurrence Report DESCHPLIONocuuiiiiiiiiie ettt 7-3
7.2.1 OULPUL WIET BANNETISeiiiiiiiiie ettt 7-3

7.2.2 Job/Data Introduction and Translation.............ccccevevieeiniieenniin e [7-8

7.2.3 Job ExXecution REPOrt STIUCTUIE.........ceeiiiiiee ittt 7-11

7.2.4 Job Initiation and Termination MESSAgEScuuvtiiriiiiiiniiiie e 7-15

X 47 A2 12UJ Rev03

Table of Contents

A. RESIDENT Volumes

F AN R 1 (o Yo [U o3 1 0] o [P A-1
Y = L= Telo 10010 4= Lo F= 110 o A-4
A2.1 Making a Volume RESIDENToiiiiiiiiieiiiiie et A-4
A.2.2 Making a Volume NON-RESIDENTccooiiiiiiii s A-4

B. Parameter Substitution

B.1 GENEIAl CONCEPLS .. .eiiieiiiiiee ittt ettt e ettt e et e e e st b e e e st et e e e sabe e e e s abbeeeeaanneeeeanes B-1
B.2 Parameter Value RefEreNCES.coiiuiiiiiei e e e B-2
B.2.1 Positional Parameter Value References...........cccocovviiiiiie e B-2
B.2.2 Keyword Parameter Value Reference...........ccccccci B-2
B.2.3 General Rules for Parameter Value References...........cccccvviivieiiiieiciniiee e, B-3
B.3 Rules for Parameter SUbStitution ...
B.4 Parameter Substitution in INPUt ENCIOSUIES..........cccooiiiiiiii e B-5
B.5 Definition of Parameter Valuescccociiiiiiiiiiiiiii
B.5.1 Types of Defining StatemMeNtSooiiiiiiiiiiiii e
B.5.2 Mixing of Positional Parameters and Keyword Parameterscccocceeene.
B.5.3 The VALUES State€MeNT........oviiiiiiiii et B-7
B.5.4 The MODVL StatemMeENtcoiiiiiiiiiiiiiiieee e e et e e e e s e e e e e e s eeneeees B-8
B.6 Examples of Parameter Substitution with Values...............ccccoiiiiiii,
B.6.1 VALUES Statements and SUubSHItutioncccooooiiiiiiiiiii e
B.6.2 The INVOKE StatemMeNt.........ceviiiiiiiiiriiiie e B-10
B.7 Example Using EXternal ValUES...........cooiiiiiiiiiiiiiiieee et B-11
Index

47 A2 12UJ Rev03

Xi

JCL User's Guide

Figures

1-1.
1-2.
1-3.
1-4.
2-1.
2-2.
2-3.
3-1.
4-1.
4-2.
4-3.
4-4.
4-5.
5-1.
6-1.
6-2.
7-1.
7-2.
7-3.
7-4.
A-1.

Tables

2-1.
2-2.
3-1.
3-2.
4-1.
5-1.
6-1.
B-1.
B-2.

Table of Graphics

B8 o] o 0 10 1= ox o] o) X 1-2
Stages Of @ JOD RUN........uuiiiiii e ee e teeesesesesesssssesesesesnnnne 1-4
Stream Reader and JCL TranSIator.........coueo oo e e 1-7
Step Execution for a Single Step JODoooiiiiii e 1-11
Overriding Rules for SYSOUT MeChaniSm.........occuveiiiiiiiiiiiiieciieece e 2-22
B Lo o 0 11 1 11 | PPN 2-41
Summary Of QULPUL FACIITIESuuueiieiiiiiiiiiiiii e rerernrnreenee 2-43
Partial/Extensible Multi-volume ProCesSing.......c.ccccvvvviiiiiiiiieieeeeeeeee e, 3-18
File Passing With DeAdIOCKccoiuiiiiiiiiii e .|4-7
INtEr-JOD File SNAMNGooi i ..|4-9
Shared ACCESS 10 FIlE ... e e e s et e e e e e e 4-11
File Sharing EXamPple ... 4-13
Multi-volume Device Management...........ccvvviiiiiiiiii e 4-20
Example of Storing JCL in a Library Member...............cccccc . .[5-2
USE Of LET SAVE. ... 6-15
Example of the Use of LET STATUS Group Valuecccceiiiiiiiiniiiie e 6-16
Output Writer Start BanNErcoccoiiiiiiiiiii -|7-4
OULPUL WILEr ENG BANNETuuuiuiiiiiiiiieiiieiiieieteterereaeseeeeeseseseereeersrsesrererereserererrrererererane .|7-7
Job Introduction and TranSIatioN..............eeiiiiiiiiie e 7-10
Example of Job Execution Report (1/3) ..ccceee oo, 7-12
MYLIB Extended 0Nt RESDSKcoiiiiiiiiiiiiiei et e e ee e e e e e eneee A-2
SYSOUT OPLIONS ...ttt ettt ettt e et e e st et e e e sabe e e e e anbe e e e e nbeeeeaneee 2-20
Differences Between Standard and Permanent SYSOUT........cccoovvieeiiiiiiiiieeee e 2-46
File Class, Organization and media..........ccccceeeeeeieie e, . [3-2
Comparison of PREALLOC and ALLOCATE statementS.............uvvveieiereinimininininininnnn. 3-13
File Sharing REQUESTS.........cooiiieieeeeeeeeee e 4-10
Example of Storing JCL in a Library Member ... 5-6
Step Termination CONItIONS..........ueiiiiiiie e 6-12
Value Definition and SUDSHItULION ..o B-9
Substitution of External and Internal Values.............ccccooiiiiiiiiiiiiiiiiee e B-12

Xii

47 A2 12UJ Rev03

1.1

1. Job Management

Introduction

When you input work to the system, it is executed under control of GCOS (General
Comprehensive Operating Supervisor). This work, which may consist of many
separate jobs, is submitted to the system in the form of an input stream.

During a GCOS session, everything that is visible to the user is concerned with
jobs. These jobs may have been delivered as part of the GCOS software, or they
may be constructed by users. Each job has an identification, to which certain rights
are allocated.

A job consists of one or more steps, which are executed consecutively.

Job Control Language (JCL) is used to control the flow of a job in the system. A
job description consists of a sequence of JCL statements bounded by $JOB and
$ENDJOB statements.

JCL statements may be basic statements or extended statements.
Basic statements are used to describe the details of steps constructed by the user.

Extended statements are used to describe, in a single statement, a utility step
delivered with GCOS (for example, a compiler or data management utility).

This manual describes the facilities offered by Basic JCL statements. Extended
JCL statements are described in other manuals.JChdreference Manual
contains a list of Extended JCL statements (Section 5) together with the titles of
their associated manuals.

47 A2 12UJ Rev03

11

JCL User's Guide

1.1.1 Job Structure

Each user job in an input stream is delimited by JCL $JOB $ENDJOB
statements.

The system resource requirements are defined by JCL statements and enclosed by
STEP ...ENDSTEP statements.

Data in the input stream is delimited by $INPUT $ENDINPUT statements.

The structure of an input stream therefore consists of three levels of enclosure (see
Figure 1.1). Their functions are to:

» Make the job known to the system; JOB enclosure.
» Describe the handling of each step to the operating system; STEP enclosure.

 Define data input in a job stream; INPUT enclosure.

}
$JOB }
- }
- }
STEP } }
- } Step Enclosure }
ENDSTEP } }
} Job Enclosure
$INPUT } }
- }nput Enclosure }
$ENDINPUT } }
- }
- }
$SENDJOB }
}

Figure 1-1. Job Description

1-2

47 A2 12UJ Rev03

Job Management

1.1.2 Job Submission

Jobs can be submitted to the operating system in the following ways:

» From a job stream stored on disk or tape (RUN statement or the operator

commands SJ/SI).

« From a remote station, under RBF (Remote Batch Facility).

NOTE:

IOF (Interactive Operation Facility) terminal users can enter certain commands
directly to the system (that is, outside a job enclosure). In particular, an IOF
terminal user may issue a RUN statement (JCL) or an EJR statement (GCL) to
submit a stored job stream to the system. For further details, refer to the

IOF Terminal User's Manual, Part2.

47 A2 12UJ Rev03

1-3

JCL User's Guide

Introduction

(INTRODUCED)

Translation

\V /’\

(IN SCHEDULING) (HOLD)

v

Operator
Commands
or RELEASE STATEMENT

A

Y
(EXECUTING) (SUSPENDED)

Operator
Commands

Scheduling

Termination

Y

(OUTPUT)

Output processing

Figure 1-2. Stages of a Job Run

1-4 47 A2 12UJ Rev03

Job Management

1.2

121

A Job

Stages

Run

The whole life cycle of a job, as opposed to the period during which the job is
actually being executed, is called a job run. During its run a job is uniquely
identified by a number assigned to the job by the operating system, called a Run
Occurrence Number (abbreviated to "ron"). The Run Occurrence Number is a
number of up to four digits, which is always preceded by the letter X (for example
X2384, X56, and X112). Steps of a job are referenced by their physical order in
the job description, the step number.

of a Job Run

From the time it is submitted until it is output a job is known to the system in
different stages. These stages are represented in Figure 1.2. First the job is
introduced to GCOS; this means that a request is sent to GCOS to execute the job.
At this point a ron is assigned to a job (and the job is "known" to the system). The
job description is then translated into an internal format suitable for execution.
During translation the JCL is checked for syntax errors. From the time the job is
submitted to the system at an input device until the JCL is translated, the job is said
to be in an INTRODUCED state. The Input Reader supervises this stage of a job
run.

The translated JCL is used by a system component known as the Job Scheduler
which establishes the executing hierarchy for jobs currently "known" to the system.
The Job Scheduler selects the next job that is to be executed from the IN
SCHEDULING queue. The selected job enters the EXECUTING state. The
EXECUTING state is followed by the OUTPUT state during which the Output
Writer supervises the production of output onto the user-defined media.

Two other job states exist: the HOLD state and the SUSPENDED state. Jobs in the
HOLD state are removed from the scheduler queue and are ignored by the Job
Scheduler.

A job may be put in the HOLD state by use of the HOLD parameter in a $JOB
statement, or by an operator command, HOLD JOB (HJ).

A job in the HOLD state can be put IN SCHEDULING by an operator command
"RELEASE JOB (RJ)". The HOLD option can be used to delay the execution of a
job until a certain event has occurred, for example, the termination of another job.

EXECUTING jobs can be temporarily placed in the SUSPENDED state by using
the operator command HJ. This can prove useful for the quick re-scheduling and
execution of an urgent job, to handle resource conflicts between two jobs, or to
alleviate an excessive system load.

47 A2 12UJ Rev03

1-5

JCL User's Guide

The operator command "HJ ron ENDSTEP" can be used to makes the resources
allocated to an executing job available to another job. The executing job is

suspended at the end of the current step, and the resources are freed for use by the
other job.

A job in the HOLD state can be put IN SCHEDULING by the operator command
"RELEASE JOB (RJ)", or by a RELEASE statement in another job.

1-6

47 A2 12UJ Rev03

Job Management

DISKETTE
o SJcomman
RBF Sl comman

$SWINPUT

- / \ <o
=

SYSIN
SYSIN DATA STREAM
SUB FILES

DATA STREAM ENCLOSURES
$INPUT READER
$ENDINPUT

jcL $JOB
$ENDJOB

~— STEP
~—— — - ENDSTEP
~— — BACKING $INPUT

\/ v
v STORE FILE SENDINPUT
~— Rrormei —r
MAY BE TERMINATED JOB

BY $EOS SCHEDULER

STREAM READER INFORMATION

BACKING

STORE
— o
w &> | TRANSLATOR
N

TRANSLATED JCL TRANSLATOR

Figure 1-3. Stream Reader and JCL Translator

47 A2 12UJ Rev03 1-7

JCL User's Guide

1.2.2 Input Reader

The Input Reader is initialized by an operator command, or by loading a specific
diskette. The Input Reader controls the introduction of a job stream into the system
by reading, analyzing, translating and storing data and JCL for later scheduling and
execution. The input reader consists of two separate processes Stream Reader and
JCL Translator.

1.2.2.1 STREAM Reader

When the Stream Reader is requested to read an input stream it assigns the input
device and reads the first record. For each job, the JCL statements in the input
stream are stored, in source form, on a file in the backing store. For each input
enclosure the data is stored in a system file known as SYS.IN. In this way, the
Stream Reader separates input enclosures from JCL job descriptions, creating one
JCL file in backing store and one or more SYSIN subfiles for the input enclosures.
When the $ENDJOB statement is encountered, an entry is made in a queue
accessible to the Translator. The Stream Reader then repeats its activity for the
next job, until the end of the input stream is reached. At this point the end of input
stream is signaled to the Translator and the translation is initiated.

1.2.2.2 JCL Translator

When the Translator is notified by the Stream Reader that the end of an input
stream has been reached, it starts to translate the JCL statements into a format
suitable for execution by the Command Interpreter. For each JCL file produced by
the Stream Reader's activity, the Translator opens a file into which the translated
JCL statements of a job description are written. In addition, a list of all errors is
sent for later printing in the job Occurrence Report.

1.2.3 Known Jobs Limit

From the moment a job enters the system (INTRODUCED STATE) to the moment
it is about to leave the system (OUTPUT STATE), the job is said to be "known" to
the system. The maximum number of jobs that can be known to the system is set
during system configuration time. If this limit is exceeded the Stream Reader stops
further jobs from being introduced to the system.

1-8 47 A2 12UJ Rev03

Job Management

1.24 Input Stream

The $SWINPUT statement can be used to switch the Stream Reader from the
current stream to the file referenced by $SWINPUT. Logically, the result is
equivalent to the replacement of the $SWINPUT statement by the contents of the

file which it references. The file referenced must be available to the Stream
Reader.

47 A2 12UJ Rev03 1-9

JCL User's Guide

1.3 Job Descriptions

1.3.1 Introduction

The $JOB statement is the first statement of a job description, and provides
identification and administrative information, such as job name, user name, project
name and accounting identification. For example:

$JOB RTSJOB, USER = SSF,
PROJECT = SSFT, BILLING = GPO,;

If the following parameters are not specified in the $JOB statement, default values
are taken from the user profile when the job is submitted:

&JOBID Job identifier

&RON Run Occurrence Number

&USER User name

&PROJECT Project identifier

&BILLING Billing identifier

&H_DATE Current date (in format YYMMDD)

If the site catalog is available and has been validated, it contains a list of users and
associated project and billing information; and in this case only, the USER
parameter is used.

1-10

47 A2 12UJ Rev03

Job Management

<= JoB
INITIATION

STEP Vi

Initiation RESOURCE
ALLOCATION

v

STEP..... PROGRAM <
ASSIGN... LOADING

Load Modulg

|
|
|
|
|
| ENDSTEP.}.
|
|
| Library

| Y

€< — — — — — — STEP < SYSIN
EXECUTION (Input
Enclosures

Y

RESOURCE
Step RELEASE

Termination

Y

JOB
TERMINATION

v

OUTPUT
WRITER

SYSOUT
(Job
Output)

$ENDJOB

JOB
OUTPUT

O

Figure 1-4. Step Execution for a Single Step Job

The job description is always terminated by $SENDJOB, which has no parameters.

47 A2 12UJ Rev03 1-11

JCL User's Guide

1.3.2 STEP Description

The purpose of the STEP statement is to define to the system all the resources and
facilities needed to execute the load module enclosed within the STEP
.ENDSTEP statements.

1.3.3 File Assignment

The assignment of files to a step is performed using ASSIGN statements. The
ASSIGN statement relates the internal-file-name (ifn), which is the name by which
the file is known to the program, to the external-file-name (efn), which is the name
by which the file is physically identified by the system. The second function of the
statement is to allocate to the step the resources (device, volume) that are
associated with the file. The file assigned may be a permanent file (cataloged or
uncataloged) or a temporary file which exists for the duration of the step only (or
can be passed to a later step, for details, see section 3), providing work space for

the step. The most common uses of ASSIGN are:

For an input enclosure:

ASSIGN ifn, *input-enclosure-name;

For a permanent cataloged file

ASSIGN ifn, efn;

For a permanent, uncataloged file on a resident disk:
ASSIGN ifn, efn, RESIDENT;

For a permanent, uncataloged file on a non-resident disk:
- ASSIGN ifn, efn, DEVCLASS = device-class,

- MEDIA = volume-name;

For a temporary file:

ASSIGN ifn, efn, TEMPRY;

For further information, refer to section 3, File Assignment.

1-12

47 A2 12UJ Rev03

Job Management

1.4 Scheduling and Execution

GCOS gives the user a considerable amount of control over the order in which jobs
will be executed once they are known to the system. This enables you to plan for
efficient processing of workload. The following paragraphs summarize the
techniques available. For further details, seeSgrstem Operator's Guided the
System Administrator's Manual

14.1 Scheduling Priority

A job is assigned a scheduling priority, which indicates its urgency relative to other
jobs. Scheduling priorities range from 0 (highest) to 7 (lowest). The scheduler
queues the jobs according to the priority number and, for jobs of equal priority, on
a first-in, first-out basis. Jobs are selected for execution according to their order in
the queue, and the availability of the job class, until the system multiprogramming
limit is reached (see below). There is a limit applied also to the number of jobs of
the same class which may execute simultaneously (known as the job class
multiprogramming limit). At this point, the remaining jobs are left in the IN
SCHEDULING state until the termination of a job frees a multiprogramming slot.

You can specify the scheduling priority of a user job using the PRIORITY
parameter in the $JOB or in the RUN statement. If the PRIORITY parameter is not
present a default value is assigned to the job according to its job class. During
system configuration, it is possible to specify the highest priority that a job class
can have.

NOTE:
The operator command MJ (MODIFY JOB) can override any priority given by
the user, or applied by default, for the duration of the job.

1.4.2 Job Classes

You can influence the order in which jobs are executed by assigning a job class in
the $JOB statement. A user job is assigned to one of sixteen job classes, denoted
by a letter from A to P. Service jobs are assigned classes within the range Q to Z.

The class of a job may be restricted through the site catalog based on its project
identification. A project default job class may be specified for a project, and this
value is used for jobs which have no class or whose class violates the restriction
specified in the site catalog. If no default class is given in the catalog, the default
job class is P.

47 A2 12UJ Rev03 1-13

JCL User's Guide

Whenever the current system load is less than the maximum system load and the
scheduler queue contains at least one job whose class load is currently less than the
maximum, a job will be selected from the scheduler queue for execution. The
selection is based on the current order within the scheduler queue, the job classes
of the jobs already executing, and the classes of the members of the queue.

143 Step Execution

The scheduler notifies the Command Interpreter when a job has been selected for
execution. The Command Interpreter reads and initiates the appropriate system
action requested by JCL statements. Each time a STEP statement is encountered,
the Command Interpreter calls a step initiation routine which reads all of the
statements in the step enclosure and allocates the appropriate system resources (or
the step is queued until all necessary resources are available). The load module is
loaded from the load module library and step execution begins when the

ENDSTEP statement for that step is encountered.

144 Execution Priority (Dispatching Priority)

Once a job is scheduled and initiated, its various steps are executed. The
DISPATCHING PRIORITY (DPR) is used to control the amount of CPU time a
particular step can obtain, relative to other steps currently competing with it for
CPU time. The DPR is represented by n, where 0 < =n <=9 (0 = highest priority)
and can be specified using the XPRTY parameter of the STEP statement, or the
operator command MJ (Modify Job). If the XPRTY parameter is not specified, the
default value is determined by the job class.

NOTE:
The dispatching priority of a step can be modified by using the operator
command MJ (Modify Job). The MDPR (Modify Dispatching Priority)
command is used to control what specific CPU allocation is available to steps
that are executing with a certain dispatching priority.

1-14 47 A2 12UJ Rev03

Job Management

1.5 Holding And Releasing Jobs

You can influence the timing or order of job execution by holding a particular job
(that is, preventing it from being executed) and then releasing it at an appropriate
time. This is achieved using the HOLD parameter and the RELEASE statement,
each of which is described below.

151 The HOLD Parameter

1.5.1.1 HOLD

When a job is introduced with the HOLD parameter specified in the $JOB
statement, it is not scheduled for execution until it is released either by an RJ
operator command or a RELEASE statement in a job that is currently executing.
There are two forms of the HOLD parameter and each is discussed separately
below.

If this form is used the job can be released by a single RELEASE statement or an
RJ operator command. The format is:

$JOB MYJOB, USER = MYSELF, HOLD;
The job MYJOB will stay in the HOLD state until either:

- the operator issues the command RJ X123, where X123 is the ron of MYJOB, or
- another job executes a statement of the form RELEASE MYJOB.

1512 HOLD=n

In this case the job is released by the execution of n RELEASE statements or an RJ
operator command with the STRONG option. This facility enables the release of a

job to be made dependent on the execution of several other jobs or job steps.

The format is,

$JOB MYJOB, USER = MYSELF, HOLD =3;

Without operator intervention (via RJ) the job MYJOB will stay in the HOLD state
until 3 RELEASE statements have been executed. These RELEASE statements
will be of the form:

RELEASE MYJOB;

These RELEASE statements could be in separate jobs or different steps of the same
job.

47 A2 12UJ Rev03

1-15

JCL User's Guide

EXAMPLE :

job A job B jobC

RELEASE MYJOB; RELEASE MYJOB; RELEASE MYJOB;

O

The job MYJOB will be released for execution after the three RELEASE
statements (in jobs A, B, and C) have been executed. This ensures that MYJOB
cannot start executing until after jobs A, B and C.

If the operator attempts to release the job MYJOB with the RJ command,

RJ X123

where X123 is the ron of MYJOB, then the message
RJ STRONG REQUIRED FOR X123: HOLD COUNT =3

is given. This is to warn the operator that he is trying to interfere with automatic
job synchronization. The job MYJOB is not released. The value of HOLD
COUNT is the number of RELEASE statements still needed to release the job.
This count is reduced by one by each RELEASE statement and the job is released
when the count becomes zero.

The operator can release the job at any time (irrespective of the value of the hold
count) by issuing an RJ command with the STRONG option as follows:

RJ X123 STRONG

It should be noted that HOLD = 1 is not exactly equivalent to HOLD. Even though
a single RELEASE statement releases the job in both cases, the operator can
release the HOLD job with an RJ command without STRONG, whereas RJ
....STRONG is needed to release a HOLD =1 job.

1-16

47 A2 12UJ Rev03

Job Management

1.5.2 RELEASE Statement

1.5.3 Control

The RELEASE statement in a job enclosure can be used to release a job which has
been suspended (by a JCL HOLD parameter in $JOB statement, or by the operator
command HJ). The job in which the statement appears and the job to be released
must have the same characteristics, namely USER and PROJECT. If the job being
held has the parameter HOLD = n in its $JOB statement then n RELEASE
statements must be executed before the job is released (that is, each RELEASE
reduces n by one and the job is released when n becomes zero). The statement has
a single keyword, SWITCHES, which has two parameters, hex-string and
PASS.SWITCHES is used to initialize each of the 32 job switches associated with
each job to a required value when the job is released. The PASS parameter causes
the current switch value of the releasing job to be assumed by the released job. If
the SWITCH keyword is omitted from RELEASE then all 32 switches are set to
zero.

of Interdependent Jobs

The testing of switch or status values can be used to control the order in which
interdependent jobs are executed. The user can do this by interspersing the job
description with JUMP, RUN and RELEASE statements. The facility is useful in
cases where the execution sequence is dependent upon successful completion of
other jobs in the same stream. Rather than burden the operator with the
responsibility of managing the interdependencies, the system handles them by
selectively spawning the job descriptions.

47 A2 12UJ Rev03

1-17

JCL User's Guide

1.6 Start Up Procedures

Startup procedures applicable in a batch environment are described below. There
is a similar facility available in an interactive environment and this is described in
thelOF Terminal User's Reference Manudtartup procedures may be mandatory

or optional. For more information, refer to tBgstem Administrator's Manual

16.1 Description

A startup sequence consists of JCL statements that are inserted automatically in
every job without further user action. The sequence is stored in the source library
named SITE.STARTUP and there is usually a member for the site (member-name =
SITE_B) and members for selected projects (member-name = < project-name_B).
The site sequence (if present) is inserted immediately after the $JOB statement and
the project sequence (if present) then follows. Startup sequences can also be
associated with particular users (member-name = project_user_B). The
NSTARTUP parameter, described below, can be used to explicitly request the
suppression of the optional startup sequence(s).

1.6.2 Application

Startup sequences can be used to achieve the following objectives:

» Specification of a common working environment at either the installation level
(site startup) or the project level (project startup). For example, the VALUES
statement can be used to specify parameter values, and the LIB statement can be
used to specify libraries, thereby relieving user jobs of these tasks.

- Users of a given project can be presented immediately with a given processor
(e.g., Library Maintenance, QUERY) without explicitly calling it. In such a
case, the JCL necessary to call and execute the processor concerned would be
stored in the project or user startup.

» Some special steps (for accounting or initialization purposes) can be executed
automatically at the installation level (site startup) and/or the project level
(project startup), and/or the user level (user startup).

1-18

47 A2 12UJ Rev03

Job Management

1.6.3 Creation and Maintenance

The SITE.STARTUP library must be on a resident disk or cataloged. The members
of the library are created and maintained using the standard library maintenance
facilities of Library Maintenance. These are described ititv@ry Maintenance
Reference Manualln installations which have implemented Access Rights, the

user must have at least the EXECUTE access right to the SITE.STARTUP library.
In such installations, it is desirable to restrict the write access on this library to the
SYSADMIN project. If Access Rights have not been implemented then, for
security reasons, it is recommended that SITE.STARTUP be kept under the control
of system operations.

1.6.4 NSTARTUP Parameter

Startup sequences (if they exist) are inserted automatically. Users can explicitly
inhibit them by specifying the parameter NSTARTUP in the $JOB statement. If

the job's project is SYSADMIN, then NSTARTUP inhibits the startup sequences.
Note that this facility is necessary to enable an erroneous site startup sequence to
be bypassed and corrected. If the project is not SYSADMIN, then NSTARTUP
inhibits just the optional startup sequence, the site startup sequence is still inserted.

1.6.5 Example of a Batch Project Startup

The member MYPROJ_B of the SITE.STARTUP library contains the following:

ATTACH CATALOG1 = MYPROJ.CATALOG
CATALOG2 = OUR.CATALOG
CATALOGS = SITE.CATALOG;

VALUES DISK1 ='DEVCLASS = MS/D500, MEDIA = VOL3'
DISK2 = 'DEVCLASS = MS/D500, MEDIA = VOL5,

The effect of these statements is to define a catalog search path (ATTACH) and
define values for the JCL keyword parameters (see Section 4) &DISK1 and
&DISK2. All jobs whose project is MYPROJ will have these statements
automatically inserted in their job description unless the NSTARTUP parameter is
used to request suppression of the startup.

47 A2 12UJ Rev03 1-19

JCL User's Guide

Thus a job which starts,

$JOB MYJOB, USER = MYSELF, PROJECT = MYPROQJ;
XXXX
XXXX
XXXX

is executed as if it were,

$JOB MYJOB, USER = MYSELF, PROJECT = MYPROJ,
ATTACH CATALOG1 = MYPROJ.CATALOG
CATALOG2 = OUR.CATALOG
CATALOGS = SITE.CATALOG;

VALUES DISK1 = 'DEVCLASS = MS/D500, MEDIA = VOL3'
DISK2 = 'DEVCLASS = MS/D500, MEDIA = VOL5,

XXXX
XXXX
XXXX

This relieves the user of the task of specifying ATTACH and VALUES in his job
and ensures that all jobs in the project use the correct catalogs and disk volumes.
By changing the project startup sequence, the project manager can implement the
change for all jobs without further action.

A job which starts,
$JOB MYJOB, USER = MYSELF, PROJECT = MYPROJ, NSTARTUP;

XXXX
XXXX
XXXX

will not have the project startup sequence included, if it is optional.

1-20

47 A2 12UJ Rev03

2. Input/Output Management

2.1 Introduction

To separate the input/output function from that of job translation and execution,
and thus prevent the build-up of queues, GCOS employs a spooling system. This
facility makes use of intermediate storage space on disk or tape files, and operates
independently from the execution of user jobs. Note that it is possible for the
programmer to bypass the intermediate storage and access a device directly.

47 A2 12UJ Rev03

2-1

JCL User's Guide

2.2 Handling Input Data

There are three ways in which input data can be handled:

- by storing it in an intermediate system file; that is, spooling it onto the file and
thus relieving the user of the responsibility for device assignment. This facility
is known as "standard SYSIN".

Dby storing it in a sequential input file using the CREATE utility, or by storing it
as a member subfile) of a source library by using the LIBMAINT utility. This
facility is known as "permanent input file".

« by storing it in a library using the $DATA statement.

2.2.1 Input Enclosures - SINPUT and $SENDINPUT

For standard SYSIN, the input data is contained in an input enclosure. An input
enclosure is defined by the Basic JCL statements $INPUT and $SENDINPUT.
The $ sign is mandatory with these statements.

The ENDCHAR and CONTCHAR parameters of the $SINPUT statement allow the
user to select characters from the data, and to concatenate records together.

2.2.1.1 ENDCHAR
When the ENDCHAR parameter is used, consecutive input data are concatenated

to the same record until the character specified in the ENDCHAR parameter
appears as the last non-blank character of the input record.

FOR EXAMPLE :

ENDCHAR =/
Input data: : ABC/DE... (80 characters)
FGHIJ/... (80 characters)
resulting
record : ABC/DE ..FGHIJ (85 characters)
O

2.2 47 A2 12UJ Rev03

Input/Output Management

2.2.1.2 CONTCHAR

When the character specified in the CONTCHAR parameter appears as the last
non-blank character of the input record:

- only the characters preceding it in the current data are copied to the record,
- the next card will be concatenated to the current one in the same input record.

FOR EXAMPLE :

CONTCHAR = +
Inputdata : ABC/DE +... (80 characters)
FGHIJ (80 characters)

resulting
record : ABC/DEFGHIJ ... (86 characters)

O

2.2.1.3 ENDCHAR and CONTCHAR used together

The ENDCHAR and CONTCHAR parameters can be used together.

FOR EXAMPLE :

ENDCHAR =/ CONTCHAR =+
Input data: : ABCDE +... (80 characters)
FGHIJKL/ ... (80 characters)

resulting
records : ABCDEFGHIJKL (12 characters)

O

If the input data to be read does not have the $ character in column 1 of any of the
records, the SENDINPUT statement need not be written, and the END parameter of
the $INPUT statement can be used.

47 A2 12UJ Rev03 2-3

JCL User's Guide

FOR EXAMPLE :

$INPUT INDECK, END = DOLLAR;
input data

$STEP ... ; NOTE: The $ sign is mandatory in this case.
O

If the input data to be read contains a $ENDINPUT statement, the match facility
can be used.

FOR EXAMPLE :

$INPUT INDECK, END = MATCH,;

$INPUT DATA }

other data to be read } DATA
$ENDINPUT DATA; }
$ENDINPUT INDECK; }

O

Because the Input Reader always considers a $JOB statement to be the start of a
new job enclosure, a $JOB statement cannot be read as data in an input enclosure.

NOTE:
If the ENDCHAR is the blank character, all the characters in the input data up
to the last non-blank character are transferred to the file. This can be used to
save space on the SYS.IN system library file for standard SYSIN. In this case,
the last column of the data must always be blank, otherwise this data will be
concatenated to the next in the same input record.

An error in the $SINPUT statement will cause the job to abort after JCL
translation, and this will also happen if two input enclosures in the same job
stream have the same name.

47 A2 12UJ Rev03

Input/Output Management

2.2.2 The Use of Standard SYSIN

With the standard SYSIN, the data from the input enclosure is stored as a subfile of
an intermediate system file known as SYS.IN. An input enclosure is associated
with its processing program by means of an ASSIGN statement of the form:

ASSIGN internal-file-name, *input-enclosure-name;

Other parameters of ASSIGN are ignored, but if present, each one causes a
warning message to be produced on the JOR. If the specified input-enclosure-
name does not exist in the job stream, the job will abort at JCL translation time.

Within the COBOL program, a file-description must be supplied for each standard
SYSIN used, and this file-description must specify that the file is a standard SYSIN
file. This is done in the ASSIGN clause:

ASSIGN TO internal-file-name-SYSIN

47 A2 12UJ Rev03 2-5

JCL User's Guide

2.2.3 Permanent Input File

With a permanent input file, the intermediate file that contains the input data may
be:

« a permanent sequential disk or tape file (filled by using the CREATE utility, for
example)

- a subfile of a source library, (filled by using the LIBMAINT utility, for
example).

CREATE can be used in two ways:

1. If the file does not exist, OUTDEF can be used to specify the characteristics
required

CREATE INFILE = *INDECK
OUTFILE = (CARD, DEVCLASS = MT/T9, MEDIA = TAPEO3),
OUTDEF = (RECFORM = FB, RECSIZE = 80, BLKSIZE = 2400);
$INPUT INDECK;

data to be read

$ENDINPUT;

If the program is to process card images then RECFORM = FB and RECSIZE = 80
is specified either in OUTDEF of CREATE or when the file is preallocated.

2. If the file already exists then CREATE can be used to load the file and
OUTDEEF is not needed.

CREATE INFILE = *INDECK
OUTFILE = (CARD, DEVCLASS = MT/T9, MEDIA = TAPEO3);

$INPUT INDECK;
data to be read

$ENDINPUT;

2.6 47 A2 12UJ Rev03

Input/Output Management

Using a Permanent Input File

A COBOL program uses a permanent input file in the same way as it uses any
sequential file. An ASSIGN statement must be present in the JCL to make the
correspondence between the internal-file-name and the external-file-name.

AN EXAMPLE IS :

JCL:
STEP PROGA ...
ASSIGN CARDFILE, CARD, DEVCLASS = MT/T9, MEDIA = TAPEOS;

ENDSTEP;

COBOL Program:

SELECT IN1
ASSIGN TO CARDFILE-SYSIN.

FD IN1
RECORD CONTAINS 80 CHARACTERS

LABEL RECORD IS STANDARD.

NOTE:
At OPEN time, COBOL checks the record size found in the file label. Ifitis
greater than the record size declared in the program, a warning message is
produced on the JOR, but processing continues.

At READ time, if the record being read is greater than the receiving area, the
read data is right truncated. The processing can continue if the program
specified a USE procedure for this file.

47 A2 12UJ Rev03

JCL User's Guide

225 Input Data Types

The following data formats are discussed:

« Standard Access Record Format (SARF)

In this format each record is composed exclusively of data without any special
heading information. This is the format normally used in data files or subfiles
that are passed between COBOL programs.

- System Standard Format (SSF)

In this format each record comprises an eight-byte header followed by data. The
function of this header is to make the file or subfile device-independent: a file or
subfile in system standard format may be routed from the disk or tape to any
kind of 1/0O device.

With the permanent input file, data type SSF can be asked for regardless of the
type of card to be read (BIN, HOL, punched or marked).

With CREATE, the SSF header (8 bytes) must be taken into account when the
file is allocated.

With an input enclosure, to get SSF all that has to be specified is
TYPE = DATASSF in the $INPUT statement.

FOR EXAMPLE :

CREATE INFILE =*INDECK,
OUTFILE = (CARDFILE, DEVCLASS = MT/T9, MEDIA = TAPEO3);

$INPUT INDECK, TYPE = DATASSF;
input data

$ENDINPUT;

Note that the format of a permanent input file can be exactly the same as that of the
standard SYSIN subfile.

O

2.8 47 A2 12UJ Rev03

Input/Output Management

2.2.6 Reading SSF Input

The COBOL programmer can process the SSF header. When nothing is specified
in the SELECT statement for the SYSIN file, the READ statement only delivers
the data part of the record, regardless of the format of the file (SARF or SSF). If
the input file is SSF, COBOL skips the control records and suppresses the SSF
header.

When WITH SSF is specified in the SELECT statement, COBOL suppresses the
eight byte SSF header and skips the control records without checking what format
the file is in. Because of this, the user must ensure that the file is actually in SSF,
otherwise the first eight bytes of data will be lost, and any records which look like
control records (bit O of byte 1 is equal to 0) will be skipped.

When WITH SARF is specified in the SELECT statement, the READ statement
delivers the entire record to the COBOL program, including the SSF header, if it
exists. Thus if WITH SARF is specified and the SYSIN file is in SSF, the
programmer must include the eight byte header in the record-description.

The WITH SARF option is used to access the SSF header.

FOR EXAMPLE :

JCL:
STEP PROGA .. .;

ASSIGN CARDFILE, *INDECK;
ENDSTEP;

$INPUT INDECK,

TYPE = DATASSF;

COBOL Program:

SELECT CARD
ASSIGN TO CARDFILE-SYSIN WITH SARF.
FD CARD
RECORD CONTAINS 88 CHARACTERS.
01 INREC.

02 SSFHEAD PIC X(8).

02 USERDATA PIC X(80).

O

47 A2 12UJ Rev03

2-9

JCL User's Guide

2.2.7 Data Enclosures-$DATA and $ENDDATA

A data enclosure is delimited by $DATA and $SENDDATA statements. The $DATA
statement is processed by the Stream Reader and causes the loading of the data
enclosure into a member of a source library. $DATA facilitates the loading of input
data and provides an alternative to CREATE or LIBMAINT where the target file is

a member of a permanent library. The file concerned must be available at stream
reading time i.e., there can be no waiting for volume mounting or other resources).
As a data enclosure is functionally equivalent to a job, $DATA cannot appear

within a job enclosure. If there is a large amount of data to be loaded, it can be
split into batches with each being loaded into a separate subfile of the library. Each
subfile can be edited separately.

EXAMPLE 1:

$DATA SALESO01, LIBA, USER = ABC, PROJECT = XYZ;

XXXXXX }
XXXXXX } data (batch 1)
XXXXXX }
XXXXXX }

$ENDDATA;

O

This loads the first batch of sales data. Similarly, the other batches can be loaded
into the subfiles SALES02, SALESO0S3, etc. Each batch (subfile) can be edited
separately using the LIBMAINT editor facility or a user program. After editing,

the batches can be processed either individually or concatenated to form one large
batch (e.qg., using the star convention described in LIBMAINT).

EXAMPLE 2:

$DATA SALES*, LIBA, USER=ABC, PROJECT=XYZ, PRINT;

XXXXXX }
XXXXXX } data
XXXXXX }
XXXXXX }

$ENDDATA,;

210 47 A2 12UJ Rev03

Input/Output Management

Instead of numbering data batches as in Example 1, the automatic date-time
stamping facility of $DATA can be used. This facility is employed by placing an
asterisk after the subfile name (e.g., SALES*). On being processed by the Stream
Reader, this asterisk is removed and replaced by the date and time (prefixed by D)
at which the $DATA statement is executed. If execution takes place at 15 minutes
20 seconds after 10 a.m. on 13 November 1980, the data is loaded into the subfile
named SALES D801113-101520 of the library LIBA. Because of the format of
data-time stamp, subfiles named in this way will have a collating sequence (of
names) corresponding to their chronological order of loading. Thus, data loaded at
25 minutes after 10 a.m. on 13 November 1980 will be stored in a subfile named
SALES D801113-102500 that follows SALES D801113-101520 in collating
sequence. This fact facilitates concatenation of the subfiles using the LIBMAINT
star convention. The PRINT parameter specified on the $DATA statement causes a
listing of the input data to be produced.

47 A2 12UJ Rev03

2-11

JCL User's Guide

2.3 Handling of Printed Output

2.3.1 The GCOS Output Facilities

Many jobs will produce some output that is to be sent to a printer, although this
may only be the Job Occurrence Report (JOR). A user program can access a
printer directly; however, to avoid having to assign a printer to each job while it is
in execution, a spooling technique is available. Each report is assigned to a file on
disk or tape and later printed from that file by the system component known as the
Output Writer.

The maximum number of reports known to the Output Writer for a job is 254.
However, the reports from a job can be printed while the job is running, and when
a report has been printed, its description is deleted, so there is often no limit to the
number of reports that a job may output.

The theoretical number of outputs for a given job is 9999 JOBOUT members and
9998 non-JOBOUT members. Only 254 can be known to the Output Writer at a
given time. The maximum number of subfiles "XRON_IIIl_NNNN" of the
standard SYSOUT for a job is 9999.

When considering the spooling of output within GCOS, the user should distinguish
between two separate stages:

1. when afile that is to be output is being created (that is, written) by means of a
file access method,

2. when the contents of the file are being printed by means of the Output Writer

A special access method, known as the SYSOUT Mechanism, is available for the
writing of output files. The SYSOUT mechanism incorporates the editing
requirements into the file as it is built. Its use is generally recommended, as it
saves time when the file is output later by the Output Writer (see 'SYSOUT
Mechanism', below). Each output file, if any, produced during the execution of
each step is normally written by the system to a standard system output subfile,
known as a standard SYSOUT subfile, which is generally printed at the end of the
job. You can modify the standard output parameters (print belt, number of copies,
etc.), by using an OUTVAL statement within the job enclosure or a SYSOUT
statement in the corresponding step enclosure. Alternatively, you can write output
to a permanent file that is output by a SYSOUT statement in the same step or by a
WRITER statement in the same or a later job. This facility has the advantage that
the file, known as a permanent SYSOUT file, is not deleted after printing, as is the
case with a standard SYSOUT subfile. The program can also access the printer
directly by an assignment (using ASSIGN) of the internal file name to the device
itself. In general, this procedure is not recommended.

2-12

47 A2 12UJ Rev03

Input/Output Management

NOTE:
The use of standard SYSOUT subfiles is the simplest and most common
method of producing printed output. As will be shown below, you need not be
concerned with file assignment nor with special instructions to the system. All
that is required is either a JCL statement (SYSOUT) in the relevant step
enclosure, or an indication in the user program.

The main differences between standard and permanent SYSOUT files are as
follows:

« A standard SYSOUT subfile is a member of a system file, called SYS.OUT, that
is automatically assigned to the step. Once the information to be output is
printed, the relevant SYSOUT subfile is deleted from SYS.OUT. The SYSOUT
mechanism is always used for the creation of a standard SYSOUT subfile and
any editing requirements are incorporated into the file as it is written.

« A permanent SYSOUT file is a permanent sequential file on disk or tape (or a
permanent source library member) and the assignment of the file is the
responsibility of the user. In general, the contents of a permanent SYSOUT file
are preserved after the execution of the job. The file can be created under UFAS
and may be in SSF or SARF format. Any editing requirements in these
circumstances will be incorporated when the file contents are printed. However,
you can choose to use the SYSOUT mechanism (see below) to edit the file when
it is being created.

2.3.2 Summary of Facilities

The following output facilities are available under GCOS:

1. use of the SYSOUT Mechanism and the Output Writer:

a) for temporary subfiles (standard SYSOUT subfiles)
b) for permanent files (edited permanent SYSOUT files),

2. use of the Output Writer for permanent files created under UFAS or BFAS
(unedited permanent SYSOUT files),

3. direct use of the output device (no intermediate file).

Refer toFigure 2.3towards the end of this Section for an illustration of the
functions of the various output facilities.

47 A2 12UJ Rev03 2-13

JCL User's Guide

2.4

24.1

24.2

Sysout Mechanism

Description

Use

As described previously, when output spooling is used, program output to a unit
record device takes place in two stages:

1. the creation of a SYSOUT file,
2. the printing of the file.

The use of the SYSOUT Mechanism at stage 1 to produce an "edited SYSOUT
file" saves the Output Writer time at stage 2 and, in general, gives a net increase in
throughput over both stages.

The SYSOUT Mechanism edits a SYSOUT file as it is created, as follows:

» suppresses from each record the trailing information produced by the program
(e.g., by a COBOL WRITE verb),

- writes each record in the file in a format suitable for the output device,
» formats the output page according to the user's requirements.
An edited SYSOUT file is said to be in "SYSOUT format".

To use the SYSOUT Mechanism for the creation of a SYSOUT file or subfile, you
can specify one of the following options:

» a SYSOUT statement in the relevant step enclosure,

« the suffix -SYSOUT in a SELECT clause for the appropriate internal-file-name
in a COBOL program,

« the parameter SYSOUT in a DEFINE statement in the relevant step enclosure.

2-14

47 A2 12UJ Rev03

Input/Output Management

The SYSOUT Statement

The use of the SYSOUT statement is the simplest way of requesting output from a
program. If there is no assignment of the internal-file-name of the file to be
printed, the SYSOUT Mechanism will create a standard SYSOUT subfile whose
contents will be printed by the Output Writer and the file will be deleted. If the
internal-file-name of the file to be printed is assigned to a permanent file, the
SYSOUT Mechanism will create a permanent SYSOUT file and the Output Writer
will print the file contents.

EXAMPLES::

1. STEPTSTA, ...;
ASSIGN INP, *CRDS;
ASSIGN REF, MY .PFILE;
SYSOUT RESULTS;

ENDSTEP;

In the above example, the data associated within the program with the
internal-file-name RESULTS will be printed after the end of the job; the default
installation parameters (e.g., standard stationery, standard print density) will be
used; no permanent copy of the data will be kept.

2.STEPTSTB,..;
ASSIGN INP, *CRDS;
ASSIGN REF, MY .PFILE;
ASSIGN RESULTS, MY.DATA;
SYSOUT RESULTS;

ENDSTEP;

Assuming that the program writes to RESULTS, assigned to external-file-name
MY.DATA, the SYSOUT mechanism will be used to create MY.DATA. The
required editing parameters, in this case the default installation parameters, will be
incorporated into the file as it is created (subject to the restriction on Record Size
described below) and the edited file will be printed after the end of the current job.
The data written to RESULTS will be preserved in the edited permanent SYSOUT
file MY.DATA.

O

47 A2 12UJ Rev03

2-15

JCL User's Guide

244 The -SYSOUT Suffix

If a COBOL program contains a statement of the form:

SELECT file-name ASSIGN TO ifn-SYSOUT

the SYSOUT Mechanism will be used for the writing of data to the file with the
specified internal-file-name (corresponding to "ifn"). If the relevant step enclosure
does not assign the internal-file-name, the SYSOUT Mechanism will create a
standard SYSOUT subfile whose contents will be printed by the Output Writer and
the subfile will be deleted; no SYSOUT statement is necessary in this case. If the
internal-file-name is assigned to a permanent file, the SYSOUT Mechanism will
create a permanent SYSOUT file, incorporating the required editing parameters in
the file (subject to the restriction on Record Size below). The contents of the
permanent SYSOUT file will not be printed unless an appropriate SYSOUT
statement appears in the corresponding step enclosure or an appropriate WRITER
statement appears in the current job (see "Use of Output Writer Facilities" below).

Here is an example of part of a COBOL program that uses the SYSOUT facility:

SELECT OUT
ASSIGN TO OUTFILE - SYSOUT.
FD OUT
RECORD CONTAINS 100 CHARACTERS
LABEL RECORD IS STANDARD.

OPEN OUTPUT QOUT.
WRITE record name.

CLOSE OUT.

2-16

47 A2 12UJ Rev03

Input/Output Management

245 The DEFINE Parameter SYSOUT

The use of the SYSOUT parameter in a DEFINE statement in the relevant step
enclosure has an identical effect to that of the suffix -SYSOUT in a user program.
If there is no assignment of a file to be output, the parameter SYSOUT will force
the creation and printing of a standard SYSOUT subfile. For a permanent file
assigned and created in the current step, it will force the use of the SYSOUT
Mechanism and edit the file as appropriate, subject to the restriction on Record
Size given below. The contents of the permanent SYSOUT file will not be printed
unless a corresponding SYSOUT or WRITER statement is specified.

NOTE:
The DEFINE statement is normally used for the purpose of overriding, for a
particular step execution, certain options that have been specified in a program.
For the use of the SYSOUT Mechanism, you are advised to specify
either -SYSOUT in the program (for standard program output) or SYSOUT
(useful for specifying particular output handling parameters) or both options
together, instead of specifying the SYSOUT parameter in DEFINE.

If there is no -SYSOUT in your program, but you wish to force the use of the
SYSOUT Mechanism for the creation of a permanent SYSOUT file without
printing the file contents, the following alternative to the use of a DEFINE
statement is available:

specify WHEN = DEFER in a SYSOUT statement in the corresponding step
enclosure (see Output Handling Parameters, below).

2.4.6 Restriction on Record Size

In order that the SYSOUT Mechanism can edit a file at creation time and thus
increase the performance of the job), the file must have a record size of at least
600 bytes. This is no problem for standard SYSOUT subfiles since the record size
of all members of SYSOUT is above this minimum value. However, in the case of
permanent SYSOUT files, you must allocate the file with an appropriately large
record size. If this is not done, the record size given in the program will be used
and the SYSOUT Mechanism will not edit the file at file creation time. The
recommended procedure is to specify a PREALLOC statement before the step that
creates the permanent SYSOUT file. The recommended record format is VB.

EXAMPLE :

PREALLOC R2D2, DEVCLASS = MS/D500,
GLOBAL = (MEDIA = VADAR, SIZE = 10), FILESTAT = UNCAT,
BFAS = (SEQ = (BLKSIZE = 5000, RECSIZE = 1000,
RECFORM = VB));

47 A2 12UJ Rev03 2-17

JCL User's Guide

If an ALLOCATE statement is used to allocate a permanent SYSOUT file, a
DEFINE statement that specifies the appropriate record size must appear in the
same step.

ExampLE (for disk):

STEP PROGA, ...;
ASSIGN OUTFILE, R2D2, DEVCLASS = MS/D500, MEDIA = VADAR;
ALLOCATE OUTFILE SIZE = 10, UNIT = CYL,
DEFINE OUTFILE, RECSIZE = 1000, BLKSIZE = 5000, RECFORM = VB;

ENDSTEP;

O

EXAMPLE (for tape):

STEP PROGA ...;
ASSIGN OUTFILE, TAPEFILE, DEVCLASS = MT/T9, MEDIA = TAPEOL,
DEFINE OUTFILE, RECSIZE = 1000, BLKSIZE = 5000, RECFORM = VB;

ENDSTEP;

O

NOTE:
For a permanent SYSOUT file, the record size specification in the program is
not affected by the RECSIZE value in PREALLOC or DEFINE. For example,
the following file-processing statements might appear in a COBOL program
that is associated with the above examples of PREALLOC and ALLOCATE.

SELECT OUT
ASSIGN TO OUTFILE-SYSOUT.
FD OUT
RECORD CONTAINS 108 CHARACTERS
LABEL RECORD IS STANDARD.

OPEN OUTPUT OUT.
WRITE record name.

CLOSE OUT.

The program is still writing records with a length of 108 characters. Apart from the
fact that trailing blanks are suppressed on a SYSOUT file, the record structure
superimposed by the SYSOUT Mechanism is of no importance to the programmer.

218 47 A2 12UJ Rev03

Input/Output Management

2.5 Effect of the Various Sysout Options

Table 2-1 illustrates the effect of the main options concerned with the use of the
SYSOUT Mechanism. If read horizontally, it shows what effect the presence
(indicated by YES) or absence (indicated by NO) of certain situations in the
program, the JCL, or the file label (in particular, the record size) have on a file that
is created by a user program. Each result indicated on the right of the table gives
the type of file created (e.g., standard SYSOUT subfile, edited permanent
SYSOUT file), and whether or not the contents are printed (column headed
Output).

NOTES:

1. The case where there is no -SYSOUT in the program and SYSOUT does
not appear in the JCL is not considered to be relevant to this table
(produces either an unedited file or an error condition, depending on
whether or not the internal-file-name has been assigned within the step
enclosure).

2. A hyphen (-) in the column headed -SYSOUT indicates that either YES or
NO can apply (the case where the column headed SYSOUT contains
YES).

3. A hyphen in the column headed RECSIZE indicates that the entry is not
applicable (the case where there is no permanent file).

4. If a SYSOUT statement contains the parameter WHEN = DEFER, the
entries marked with an asterisk in the column headed Output will not
produce output in connection with the current step.

5. The presence in the step enclosure of a DEFINE statement with the
parameter SYSOUT has an identical effect to that of SYSOUT in the
program.

47 A2 12UJ Rev03

2-19

JCL User's Guide

Table 2-1. SYSOUT Options

Program | JCL Peran_;ement Result
ile
SYSOUT | SYSOUT | ASSIGN | RECSIZE | File Output
YES NO NO - standard YES
SYSOUT
- YES NO - standard YES
SYSOUT
YES NO YES <600 |permanent NO
SYSOUT
edited
YES NO YES <600 |permanent not NO
edited
- YES YES >600 |permanent *YES
SYSOUT edited
- YES YES <600 |permanent *YES
SYSOUT not
edited

2-20 47 A2 12UJ Rev03

Input/Output Management

2.6

2.6.1

Avoiding the Use of the SYSOUT Mechanism for Output Editing

When Use of the Mechanism is Unsuitable

There are certain cases where the use of the SYSOUT Mechanism is unsuitable for
the editing of permanent files at creation time.
For example,

where the contents of a permanent SYSOUT file are to be reused by another
system component (for example, as input to LIBMAINT),

where a file is used in conjunction with the report selection facility of the
COBOL Report Writer, which means that the REPORT option of the WRITER
statement cannot be used with files in SYSOUT format. This rule also implies
that the COBOL Report Writer selection facility cannot use standard SYSOUT
subfiles since they are by definition in SYSOUT format.

In the above situations, the user can override the presence of the -SYSOUT suffix
in the program in one of the following ways:

By preallocating the file with a record size of less than 600 bytes, or by
specifying RECFORM not equal to VB. If in this case a SYSOUT statement is
specified for the file, the SYSOUT Mechanism will take account of the
enqueuing requested (that is, the value of the WHEN parameter), but the file will
not be edited.

NOTE:

This method cannot be used for uncataloged tape files because PREALLOC
cannot be used for them.

By specifying the parameter NSYSOUT in a DEFINE statement. This is the
usual way to avoid the use of the SYSOUT Mechanism for an uncataloged tape
file. The record size in the program will apply, the SYSOUT Mechanism will

not be used to write the file, and the file will not be edited.

NOTE:

If the SYSOUT Mechanism is not used, the file will be written in SSF, SARF,
or ASA format (see the COBOL User's Guide).

- If the SYSOUT file is on tape and therefore cannot be preallocated, the

SYSOUT mechanism can be avoided at installation level by specifying
OWDFLT tape = NSYSOUT in the CONFIG statement.

47 A2 12UJ Rev03

2-21

JCL User's Guide

2.6.2 Overriding Rules for the SYSOUT Mechanism

Figure 2-lillustrates, in the form of a flow diagram, the overriding rules that
decide whether a SYSOUT file will be edited or not.

-SYSOUT
in program
?

NSYSOUT

in DEFINE
?

Y SYSOUT
in JCL
SYSOUT N
mechanism :
WHEN parameter
incorporated

RECSIZE

<600
?

standard access

method:
no editing
SYSOUT
mechanism no editing
editing

Figure 2-1. Overriding Rules for SYSOUT Mechanism

2-22 47 A2 12UJ Rev03

Input/Output Management

2.7 Standard Sysout Subfiles

2.7.1 Most Frequent Use

The most frequent use of the Output Writer will be for the printing of reports on
standard stationery with no requirement to maintain a copy of a report on disk or
tape. A simple way of doing this is to use the SYSOUT statement, for example:

SYSOUT F1,

(where F1 is an internal-file-name). There is no need for an ASSIGN statement; in
fact, as explained previously, an ASSIGN statement is only relevant for permanent
SYSOUT files. If the user wants the Output Writer to be notified at a time other
than the end of the job (the default value of the WHEN parameter), or requires
nonstandard stationery, the appropriate parameters can appear on the SYSOUT
statement. For nonstandard editing (for example, margin setting, form control), a
DEFINE statement is necessary. Both types of parameters are discussed later.

A statement of the form:

SELECT PRFILE ASSIGN TO F1-SYSOUT

is an alternative means of requesting the printing of a standard SYSOUT subfile
provided no ASSIGN statement is given for the internal-file-name F1). However,
if nonstandard options are required, a SYSOUT statement (or a previous OUTVAL
statement) with the appropriate parameters must also appear.

You should not open a standard SYSOUT subfile several times within a step. If
you do, the system will create a new member in SYS.OUT. For example, two
standard SYSOUT subfiles will be created if a COBOL program contains the
following statements:

SELECT OUTFILE
ASSIGN TO OUT-SYSOUT.

OPEN OUTPUT OUTFILE.
CLOSE OUTFILE.
OPEN EXTEND OUTFILE.
CLOSE OUTFILE.

The above example shows that, for a standard SYSOUT subfile, EXTEND
processing mode is treated as OUTPUT processing mode.

47 A2 12UJ Rev03 2-23

JCL User's Guide

2.7.2 Use of Several SYSOUT Statements for One Subfile

Several SYSOUT statements can appear for the same standard SYSOUT subfile if
the user requires several copies of a listing, each copy having different
characteristics.

2-24 47 A2 12UJ Rev03

Input/Output Management

Permanent Sysout Files

In some cases, a permanent copy of a report may be required on disk or tape.
Furthermore, since there is a limitation on the size of the file SYS.OUT, a standard
SYSOUT subfile should not be used when a job is likely to produce a very large
amount of output. In these cases, instead of using SYS.OUT, the user should make
an assignment to the file in which the copy is to be held, for example:

ASSIGN F1, OUT.PRFL1;

or, for output to tape:

ASSIGN F1, XYZ.TAPE, EXPDATE =3,
DEVCLASS = MT/T9/D1600, MEDIA = Q45;

To request the printing of a report created in the current step, inform the Output
Writer by means of a SYSOUT statement, for example:

SYSOUT F1,

if at a later stage in the current job, or in another job) the user requires a printed
copy of the file, a WRITER statement will be necessary; for example, for a printer
listing:

WRITER OUT.PRFL1,

Both output handling and editing parameters can appear in the WRITER statement.
These are discussed later in this Section.

NOTE:
The ASSIGN statement for a permanent SYSOUT file must not contain the
parameter MEDIA = WORK nor the DVIDLIST parameter.

In the following statement,

WRITER efn DEVCLASS =..MEDIA = ..))

DEVCLASS and MEDIA are residency parameters for the file whose efn is
specified.

However, in the form,

WRITER ..DEVCLASS = ..MEDIA = ...

DEVCLASS and MEDIA are editing parameters.

47 A2 12UJ Rev03

2-25

JCL User's Guide

2.8.1

2.8.2

Writing to a Permanent SYSOUT File in Several Steps

You can write to a permanent SYSOUT file in several steps and request the Output

Writer to print the complete file, as follows:

1. Open the file in OUTPUT processing mode in the first step that writes to it,

and open the file in EXTEND processing mode in the other steps that write to

it.
2. If a SYSOUT statement appears in one or more of the steps, insert the
WHEN = DEFER parameter to prevent a request to the Output Writer.

3. Ensure that the output records are processed in an identical manner in each
step (that is, either all of the records are edited by the SYSOUT Mechanism,
or none of them are).

4. Use a WRITER statement to make the request to the Output Writer.

NOTE:
To ensure that the latest contents of the file are printed even if one of the job
steps aborts, do one (or both) of the following:

- Make use of the JUMP statement (Seetion .

- Put the WRITER statement immediately after the $JOB statement.

Partial Output of Files

The PART parameter of the WRITER statement allows you to output specified
parts of a permanent SYSOUT file.

EXAMPLE :

WRITER (PFILE, DEVCLASS = MS/D500, MEDIA = CO18),
PART = (40:60,90:$);

O

The above example prints pages 40 to 60 and pages 90 to the end, for an
uncataloged disk file.

The SUBFILES parameter of the WRITER statement allows you to output
specified members of a permanent SYSOUT library file.

2-26

47 A2 12UJ Rev03

Input/Output Management

EXAMPLE 1:
WRITER MY.LIB, SUBFILES = (TOM, DICK, HARRY);

O

The above example prints members TOM, DICK and HARRY of the cataloged
library file MY.LIB.

EXAMPLE 2:

WRITER MY .LIB, SUBFILES = (SUB?*),

O

Prints the members SUB1, SUBB, SUBC, SUBD etc. of the library file MY.LIB.

Deallocation of a Permanent SYSOUT File

Since the activity of the Output Writer is independent of the execution of the job
that has requested its use, you must take care before attempting to deallocate a
permanent SYSOUT file after an output request has been made for it. You are
advised never to use the DEALLOC statement for a file in the same job as it is
output, nor even in a later job unless it is certain the file has already been printed.
Otherwise, there is a danger that the file will be deallocated before it has been
output. In order to overcome the problem, you can do one of the following:

» use a standard SYSOUT subfile instead of a permanent SYSOUT FILE;

« put the DEALLOC statement in a separate job whose $JOB statement contains
the HOLD parameter;

« use a member of permanent library file as the SYSOUT file and include the
DELETE parameter in the SYSOUT or WRITER (or OUTVAL) statement.

47 A2 12UJ Rev03 2-27

JCL User's Guide

2.9 Editing and Handling Of Output

It is important to distinguish between output parameters that are concerned with the
editing of the data to be output and those that deal with the handling of listings.

29.1 Output Editing

The parameters that are used to specify output editing characteristics are as
follows:

for the printer:

» the MEDIA parameter of SYSOUT and OUTVAL and the PRINTER parameter
group of DEFINE and WRITER;

» the DEVCLASS parameter of SYSOUT and OUTVAL (type of printer and
number of hammers)

29.2 Output Handling

The parameters that are used to direct the handling of output are those that appear
in the OUTVAL statement (except MEDIA for a printer). All those parameters can
be specified also within the SYSOUT and WRITER statements. With the

exception of the WHEN parameter (see below) they are obeyed at output time by
the Output Writer. The required handling parameters must be specified each time a
permanent SYSOUT file is to be printed or punched.

NOTE:
Although SLEW and NSLEW appear both in the OUTVAL statement and in the
PRINTER group of DEFINE and WRITER, they are treated as output handling
parameters and apply only to a current request for the Output Writer.

2-28 47 A2 12UJ Rev03

Input/Output Management

2.9.3 Lines Limits

To limit the amount of output produced by a program, for example to anticipate the
occurrence of an infinite loop, you can specify in the STEP statement a maximum
number of lines printed (LINES parameter). When the limit is reached, the
program is abnormally terminated, with the return code ERLMOV.

EXAMPLE :

Suppose a program works satisfactorily with test data and produces less than
100 lines of SYSOUT output. If you want to print the SYSOUT report for a
particular production run, use a STEP statement of the form given below:

STEP STEP1], ..., LINES = 100,...;

NOTE:
The limit controlled is the number of WRITES that the program produces. In
general, this value will be identical to the number of lines printed. However, if
several copies of a SYSOUT file are made (COPIES parameter), the additional
lines produced by the extra copies are not included and neither are lines
produced by a dump after an abort. The lines printed in the Job Occurrence
Report are also independent of the LINES limit.

294 Output Editing Parameters

EFFECT ON DIFFERENT SYSOUT FILE TYPES

The following paragraphs summarize the way in which editing is done for the
different types of SYSOUT files.

2.9.4.1 Standard SYSOUT Subfiles

Editing is done as the subfile is filled. Any given editing parameters of OUTVAL
and/or SYSOUT and/or DEFINE override the default system values.

47 A2 12UJ Rev03 2-29

JCL User's Guide

2.9.4.2 Edited Permanent SYSOUT Files

Editing is done as the file is filled. If any editing parameters appear for a previous
OUTVAL statement or for a SYSOUT and/or DEFINE statement in the step in
which the file is created, their values override the standard system parameter
values. If an edited permanent SYSOUT file is output at a later stage by WRITER,
the Output Writer will do so according to the editing done at file creation time.

You can supply alternative editing parameter values in the WRITER statement, but
these will be ignored unless the FPARAM (Force Editing Parameters) parameter
also appears. Note, however, that this use of FPARAM to force new editing
parameters will mean that extra processing time will be required in order to re-edit
the file.

EXAMPLE :

Suppose an uncataloged permanent SYSOUT file is edited at creation time with a
nonstandard form height setting and a nonstandard print density. To print the file
later with standard characteristics, use the following WRITER statement:

WRITER (MYFILE, DEVCLASS = MS/D500, MEDIA = V1), FPARAM,;

Similarly, if a standard form height and print density is required but you want a
different margin setting:

WRITER (MYFILE, DEVCLASS = MS/D500, MEDIA = V1),
FPARAM, PRINTER = (MARGIN = 10);

2.9.4.3 Unedited Permanent SYSOUT Files

These are files that are not edited by the SYSOUT mechanism at file creation time,
and about which the message: " 0U28 ifn IS NOT IN SYSOUT FILE FORMAT"

has been issued in the JOR.

Since the record size is less than 600 bytes, the SYSOUT Mechanism does not edit
the file at file creation time.

If the file is to be output later with any nonstandard editing parameters, these
parameters must appear in the WRITER statement, even if they appeared in a
SYSOUT and/or a DEFINE statement when the file was written. If the data

records are not in SSF format, you must specify the format in the DATAFORM
parameter.

2-30

47 A2 12UJ Rev03

Input/Output Management

2.9.4.4 Ordinary Permanent Files

Since the SYSOUT Mechanism has not been requested at file creation time, the file
is not edited. If the file is to be output with any nonstandard editing parameters,
these parameters must appear in the WRITER statement. If the data records are in
ASA format, you must specify it in the DATAFORM parameter. Other formats, i.e.
SSF and DOF, are automatically recognized, or SARF is assumed.

295 Printer Characteristics

The user can specify the following printer characteristics:

 character set

« paper form

« logical page size

- stop levels within a page.

Details on these topics can be found in$lystem Operator's Guide

47 A2 12UJ Rev03

2-31

JCL User's Guide

2.10 Output Handling Parameters

2.10.1 Enqueing of Output Writer Requests

By default, a request to output a SYSOUT file is sent to the Output Writer when
the current job terminates. By use of the WHEN parameter, it is possible to change
the time that the Output Writer is notified. The possibilities are:
- at job termination (default value)
WHEN = JOB

- at step termination (for the JCL statement SYSOUT only);
WHEN = STEP

For a job that contains several steps, this option allows the output of one step to
be printed concurrently with the execution of later steps (depending on the
current activity of the Output Writer, see note 4 below).

- early delivery, each time a (user specified) number of pages are ready

WHEN = digits 5

A separate SYSOUT file is created each time this number of pages has been
output. After each such file is completed, it may be edited by the Output Writer
depending on the output class and priority. For example, if WHEN = 100 each
100 pages of output constitutes a separate SYSOUT file. The Output Writer can

process each file (i.e., 100 pages) as soon as it is complete. The early
mechanism only applies to outputs created in the standard SYSOUT.

« as soon as the SYSOUT file is closed (i.e., "immediately");
WHEN = IMMED

« no Output Writer request made at this point
WHEN = DEFER

for permanent SYSOUT files only, with the JCL statement SYSOUT.

2-32 47 A2 12UJ Rev03

Input/Output Management

NOTES:

1. The system always takes account of the value of the WHEN parameter on
a SYSOUT statement even if the SYSOUT Mechanism is not used to edit
the file. This means that, if a SYSOUT statement is specified for a
permanent file, the enqueuing request is observed even though the editing
parameters are not. Editing parameters must be restated if a future output
is required (see SYSOUT Mechanism, above).

2. The WHEN = DEFER option is useful when a program creates a
permanent SYSOUT file and you wish to delay the output of the file
content, but the program does not contain the -SYSOUT suffix in the
SELECT statement. In order to use the SYSOUT Mechanism to write to
the file (to increase efficiency by editing at the time of file creation), you
can add a SYSOUT statement that contains the parameter WHEN =
DEFER. Provided that the record size is large enough (see SYSOUT
Mechanism, above), the SYSOUT Mechanism will edit the file but the file
contents will not be printed. For example, if a program contains the
following statement:

SELECT OUT ASSIGN TO OUTFILE-PRINTER.

the following step enclosure will ensure the editing of the file assigned to
OUT without printing its contents.
STEP STEPA, ...
ASSIGN OUTFILE, MYTAPE, DEVCLASS = MT/T9,
MEDIA = TAPEOQS;
SYSOUT OUTFILE, WHEN = DEFER,;
ENDSTEP;

3. The requests to output the SYSOUT files that are created by various
system utilities (e.g., CREATE, LIBMAINT) are made, by default, at job
termination, (that is, WHEN = JOB). Where the utility statement contains
the PRTOUT parameter, you can override this default value.

EXAMPLE :

LIBMAINT SL LIB = MY.LIB COMFILE =*MY-IN
PRTOUT = (WHEN = IMMED);

47 A2 12UJ Rev03 2-33

JCL User's Guide

4. The time between the request to the Output Writer and the start of printing
or punching on the output device is dependent on the current Output Writer
activity and on the order of the request within the output queue. Even if
WHEN = IMMED is specified, for example, the printing may still be
delayed beyond the termination of the step or job. Refer also to
Deallocation of a Permanent SYSOUT File, above.

5. For repeatable jobs or steps, the enqueuing of output is delayed until the
end of the job or the end of the step respectively (that is, the WHEN option
is forced to JOB or STEP). This does not apply to dumps however.

2.10.2 Output Selection and Naming

Each output request in the output queue belongs to a given output class and also
has a particular output priority. The existence of different output classes means
that the operator can control the printing of different categories of output. For
example, if several types of paper are used in an installation, all the requests for
output on a particular type of paper should belong to one class and requests for
output on a different type should belong to a different class, for each type of paper.
If the operator activates the Output Writer only for one output class, all the listings
on the corresponding type of paper will be printed consecutively. You can specify
the class and priority for each output request by means of the CLASS and priority
parameters. The operator can select a particular output class by means of the
operator SO command.

NOTE:
The requests to output the SYSOUT files that are created by various system
utilities (e.g., CREATE, LIBMAINT), belong, by default, to output class C.
You can override this value by means of the PRTOUT parameter in the utility
statement.

EXAMPLE :

LIBMAINT SL LIB = MY.LIB COMFILE = MAY.SEQ PRTOUT = (CLASS =D);

O

The OUTVAL statement can also influence the output class of output requests from
subsequent utility statements (see OUTVAL Statement, below).

You can prevent the selection by the Output Writer of an output request, by means
of the HOLD parameter. The Output Writer will not select a "held" request until
the operator specifies a Release Output (RO) command.

2-34

47 A2 12UJ Rev03

Input/Output Management

NOTES:

1. The HOLD parameter differs fundamentally in use from the
WHEN = DEFER parameter. The WHEN = DEFER parameter prevents
the notification of the Output Writer, since the output request is not made
and no entry is put in the output queue. The HOLD parameter delays the
printing by the Output Writer, but the request is made and an entry is put in
the output queue.

2. If you specify HOLD for an output request, it is advisable also to specify
the NAME parameter so that the operator can easily identify this request.
NAME is also useful for identification purposes if a job produces many
output listings.

EXAMPLE :

$STEP STY, ..
ASSIGN INPT, *ADECK;
SYSOUT PRT1, NAME = REPA,
SYSOUT PRT2, HOLD, NAME = HLDOP;
SYSOUT PRT3, NAME = REPB;
ENDSTEP;
STEP ST2, ...,
ASSIGN FL1, ABC.X14;
ASSIGN FL2, ABC.Q14;
SYSOUT FL2, NAME = REPC,
ENDSTEP;

3. If the $JOB statement contains the HOLDOUT parameter, all output
requests made within the job will be held until released by the operator.
You can override this for a particular request by using the NHOLD
parameter of the SYSOUT statement (or for several consecutive requests
by using the NHOLD parameter of the OUTVAL statement).

2.10.3 Production of Several Copies
With the COPIES parameter you can make several copies of a SYSOUT file.

EXAMPLE :

STEP STEPA, ..;
SYSOUT PRINT, COPIES = 3;
ENDSTEP;

O

47 A2 12UJ Rev03 2-35

JCL User's Guide

2.10.4 Output Banners

You can suppress the standard output banners that appear on listings and, control
how often banners are output, or supply alternative values for the items they
contain (e.g., Run Occurrence Number, user-name). The appropriate parameters
are NBANNER, BANLEVEL and BANINF respectively. Details of the format of
printer listing banners are given in Section 8

Suppression of Skip Function

You can force the replacement of every skip function in the program by a skip to
the following line, by means of the NSLEW parameter.

2.10.5 Use of the OUTVAL Statement

By means of the OUTVAL statement, you can supply output handling parameter
values that override the default system parameter values. The new default values
will apply to all SYSOUT and WRITER statements that appear after the OUTVAL
statement, up to the next OUTVAL statement or, if there are no more OUTVAL
statements, to the end of the job. Any explicit appearance of a particular parameter
value in a SYSOUT or a WRITER will in turn override, for that statement only,

any new default value supplied by OUTVAL. Note that the OUTVAL statement
takes affect at the time of the execution of the job and not at JCL translation time.

The scope of the parameter values defined by an OUTVAL statement is as follows:

« Only parameters, which do not depend on the destination station or the output
class, remain applicable to the SYSOUT or WRITER request statements.

« If SYSOUT or WRITER specify an output, which has a destination other than
that specified in the OUTVAL statement, the media, device class and priority are
re-evaluated.

- In the same way, if a new class is specified, the media and priority are re-
evaluated.

2-36 47 A2 12UJ Rev03

Input/Output Management

EXAMPLE :

1. $JOB XYZ, ...;
OUTVAL CLASS =D;

SYSOUT OPL:
SYSOUT OP2, CLASS = E:
SYSOUT OP3:

$ENDJOB;
In the above example, OP1 and OP3 will belong to class D and OP2 to class E.

2.$JOB ABC, ...;
OUTVAL CLASS =D;
START:
STEP ST1, ..
SYSOUT OP1,

INDSTEP;

OUTVAL CLASS =E;

STEP ST2, ..,
SYSOUT OP2,

ENDSTEP;
JUMP START, SW1, EQ, 1;
$ENDJOB;

O

The first time ST1 is executed, its output will belong to class D; if, as a result of the
JUMP statement, ST1 is executed again, its output will then belong to class E.

47 A2 12UJ Rev03 2-37

JCL User's Guide

2.11 The Job Occurrence Report and the JOBOUT

The first OUTVAL statement (for the printer) that appears before the first step in a
job description defines the output characteristics of the Job Occurrence Report; if
no such statement is specified, or if an OUTVAL statement without any parameters
is specified, the Job Occurrence Report will be printed according to the attached
station values, the default values being as follows:

« DEST, depending on the attached station.
- default class, device class and media, depending on the attached station.

- priority, depending on the class. By default, the option WHEN = JOB,
COPIES =1 applies.

CLASS =C, PRIORITY =3, WHEN = JOB, COPIES = 1

The group of standard SYSOUT subfiles that have the same output characteristics
as the file that contains the JOB is considered as a single file for output purposes
and known as the JOBOUT. For example, suppose a job does a compilation, a
linkage and an execution of a program; assume that no nonstandard output
handling parameters are specified in the job description; as a result, the operator
will be aware of only two output listings:

JOB_REP which contains the Job Occurrence Report
JOB_OUT which contains the JOBOUT, (i.e., the output from the

compiler, the linker and the step corresponding to the
user program).

The discussion in the first paragraph above about the JOB also applies to the
JOBOUT.

2-38 47 A2 12UJ Rev03

Input/Output Management

EXAMPLES:

1.$JOBQRS, ...
OUTVAL CLASS =E;
STEP STPA, ...;

$ENDJOB:

In the above example, the JOBOUT contains all the output listings with
characteristics WHEN = JOB, CLASS = E, PRIORITY =5, COPIES = 1.

2.$J0BTUV, ..,
OUTVAL;
OUTVAL CLASS =D, PRIORITY =4, COPIES = 2;
STEP STAB, ..,

5‘3ENDJOB:

In the above example, the JOB is the only listing that has characteristics CLASS =
D, PRIORITY = 4, WHEN = JOB, COPIES = 2 (assuming that there is no other
OUTVAL statement in the job description, and that no SYSOUT nor WRITER
statement specifies those four values).

O

47 A2 12UJ Rev03

2-39

JCL User's Guide

2.12 Example of the Use of Sysout and Writer in a Job

The following example contains a variety of output requests. An illustration of the
different effects of these statements is showFigre 2.2

$JOB ...;
STEP STEPL], ...;
ASSIGN IN1, *INCRDS;
ASSIGN G1, MY.P99, END = PASS;
COMMENT 'SEND THE OUTPUT OP1 TO A PERMANENT SYSOUT FILE";
ASSIGN OP1, MY.OUT1Z,;
DEFINE OP1, SYSOUT;
ENDSTEP;
STEP STEP2, ...;
ASSIGN IN2, MY.P99, END = PASS;
COMMENT 'USE A STANDARD SYSOUT SUBFILE FOR THIS STEP;;
SYSOUT OP2;
ENDSTEP;
JUMP ST3, SEV, GE, 3;
COMMENT 'NOW REQUEST COPY OF STEP1 OUTPUT
WRITER MY.OUT],;
ST3: STEP STEPS, ...;
ASSIGN IN3, MY.P99;
COMMENT 'SEND SOME OUTPUT TO A PERMANENT SYSOUT FILE";
ASSIGN OP3A, MY.OUTS3;
COMMENT 'REQUEST TO BE MADE AT STEP TERMINATION?
SYSOUT OP3A, WHEN = STEP;
COMMENT 'USE A STANDARD SYSOUT SUBFILE FOR MORE OUTPUT;
SYSOUT OP3B;
ENDSTEP;
$INPUT INCRDS;

$ENDINPUT;
$ENDJOB;

2-40 47 A2 12UJ Rev03

Input/Output Management

= Tom-wm

D ToOm-—o;m

wowm-—w

KEY

File creation (SYSOUT Mechanism)

3

— — Qutput Writer notification

Production of output

Figure 2-2. Job Output

47 A2 12UJ Rev03 2-41

JCL User's Guide

2.12.1 Direct Use of the Printer

When a unit record device is used directly, the records written are sent to the device
without any intermediate storage on a temporary or a permanent file. You have
exclusive use of the device until the execution of the current step has terminated or,
if the COBOL program contains the WITH LOCK option, when the CLOSE
statement is executed.

To use a printer directly you must specify the device in an ASSIGN statement. In
addition, the COBOL program should contain the suffix -PRINTER in the
ASSIGN clause of the SELECT statement. The ASSIGN statement can also
specify the paper form for a printer (MEDIA parameter).

EXAMPLE :

1. $JOB DIRECT, ...;
STEP STEPA, ...;
ASSIGN PROUT, DEVCLASS = PR, MEDIA = 150000;
ENDSTEP;
$ENDJOB;

O

NOTE:

If a device is used directly, no banners are provided.

The only relevant parameters of the ASSIGN statement for direct use are the
internal-file-name, DEVCLASS, MEDIA and POOL.

2.12.2 Summary of Output Facilities

Figure 2-3summarizes the action of the different output methods that are available.

2-42 47 A2 12UJ Rev03

Input/Output Management

UNEDITED
EDITED SYSOUT FILE
PERMANENT DIRECT
Standard | Permanent | SYSOUTFILE |ASS|G'\”V|E'\‘T
USER USER USER USER
Program Program Program Program

SYSOUT (JCL) or SYSOUT (JCL) or
-SYSOUT (SELECT)|-SYSOUT (SELECT

Editing by Editing by standard
SYSOUT SYSOUT access method
mechanism mechanism* (no editirg)
permanent file permanent f|Ie WRITER
or subfile or subfile

Output Writer
(with editing if required)

\
independent of program execution

Unit
Record Edited and oytut
Device during program execution

* no editing if record size <600 bytes

Figure 2-3. Summary of Output Facilities

47 A2 12UJ Rev03 2-43

JCL User's Guide

2.13 Summary of Output Writer Usage

2.13.1 PRTFILE, PRTDEF and PRTOUT

Extended JCL statements (e.g., COBOL, PREALLOC) implicitly define a step;

that is, a step is created even though no STEP or ENDSTEP JCL statements appear
(and consequently there is no step enclosure). Such extended JCL statements can
be considered as SDS's (Step Defining Statements). In the case of an SDS, the
absence of a step enclosure prohibits the use of JCL statements that would

normally appear within the step enclosure e.g., ASSIGN), and the information
concerned is usually supplied via a parameter or parameter group of the SDS.

In the case of output that will be processed by the Output Writer (sooner or later),
the following parameter groups are of interest.

PRTFILE description of a permanent SYSOUT file; i.e.,
parameters of the JCL statement ASSIGN.

PRTDEF file and printer parameters; i.e., parameters of the JCL
statement DEFINE.

PRTOUT output parameters; i.e., parameters of the JCL
statement SYSOUT.

2.13.2 OUTVAL, SYSOUT and WRITER JCL Statements

OUTVAL

Defines the default output parameters which will be applied to all output created by
the job concerned. For example, if all the outputs of the job are to have the same
output class, or to be printed on the same special paper, OUTVAL can be used to
accomplish this.

SYSOUT

Defines the output parameters applicable to a single output (within a step). It takes
effect at the moment of creation of the output in the user step. SYSOUT is
associated with a given ifn. SYSOUT enables the user to specify the output class,
priority, queuing, output device, paper, and causes editing of the output when
possible. As a complement to SYSOUT, the JCL statement DEFINE can be used
to specify editing parameters (e.g., form height, print density).

2-44

47 A2 12UJ Rev03

Input/Output Management

WRITER

Requests the printing of a file that has been created either in a preceding step or in
another job. WRITER also permits the specification of output and editing
parameters.

2.13.2.1 Difference Between SYSOUT and WRITER

SYSOUT permits the creation of output in edited format (depending on the value
of RECSIZE) and requests the printing of the output. In contrast, WRITER
requests the printing of a file already in existence. It is possible to create on output
file in "non-edited" format and to supply the editing parameters later at the time of
printing (via WRITER).

2.13.2.2 Difference Between SYSOUT and DEFINE

These two JCL statements do not define the same type of parameter; in fact their
parameters are complementary. SYSOUT gives the output parameters, device class
and media. DEFINE gives editing parameters (e.g., form length) which override
those of media.

The printer parameters of DEFINE are rarely used in practice, as the media
parameters of SYSOUT are sufficient. The characteristics of special paper (which
could be supplied via DEFINE) are usually stored in the file SYS.URCINIT (This
can be done using the URCINIT utility).

SYSOUT implies the use of the SYSOUT access (with or without editing) and
causes the printing of this output even if SYSOUT has not been specified in the
user program file description (e.g., COBOL SELECT ... -SYSOUT).

47 A2 12UJ Rev03

2-45

JCL User's Guide

2.13.2.3 Summary Table

Table 2-2shows the differences between standard SYSOUT and permanent
SYSOUT.

Table 2-2. Differences Between Standard and Permanent SYSOUT

Standard SYSOUT Permanent SYSOUT

Conditions Conditions

No ASSIGN statement
or
ASSIGN ifn, SYSOUT; | ASSIGN statement

or
PRTFILE parameter

ar COBOL FD -SYSOUT
SELECT ... -SYSOUT or
or SYSOUT ifn ...;
SYSOUT ifn;
o or
DEFINE ifn, SYSOUT DEFINE ifn, SYSOUT;
Result Result Result
Always edited. Edited or not Not edited.
depending on
Always printed. RECSIZE. Printing via
Parameters from SYSOUT| Printing automatic WRITER JCL
and/or DEFINE if SYSOUT (JCL) statement.
specified.
Otherwise printing
via WRITER

JCL statement.

2-46 47 A2 12UJ Rev03

3. File Assignment and Allocation

Introduction

A number of system resources such as memory space, physical files and devices
are associated with each job step. You can control the handling of files and devices
by means of JCL statements.

This section explores the various means by which you can allocate space and
assign files for user jobs. The catalog facility is also explained.

The allocation of file space is carried out by either the ALLOCATE statement or
the data management utilities (PREALLOC, FILALLOC, LIBALLOC ...) and the
allocation of device and volume is performed by the ASSIGN statement. The
following paragraphs explain the concepts involved in resource allocation.

Files have characteristics which depend on their structure, and can be processed in
different ways, depending on the application. Files are known internally to a
program by an internal file name (ifn). Externally, i.e., to the GCOS system, files
are known by an external file name (efn).

The association of a given efn to an ifn is made using the JCL statement ASSIGN.
JCL is also used to specify other characteristics such as residency, sharing, access
and journalization (if these are not contained in the catalog). The characteristics of
a file are also contained in:

« The file label

« The VTOC

» The catalog

Three major classes of files are available to the GCOS user, namely:

« temporary files
« permanent cataloged files
« permanent uncataloged files

47 A2 12UJ Rev03

3-1

JCL User's Guide

These three classes include the standard libraries and UFAS,), file organizations
(e.g., sequential, indexed-sequential) and media types (disk, tape, cartridge). See
Table 3-1below for restrictions.

Table 3-1. File Class, Organization and media
File Type UFAS | UFAS | UFAS | Libraries and
S IS R LINKQD Files
Temporary T X
D X *| *| X
Cataloged T X
D X X X X
T X
Uncataloged D X X X X
Dt X

*| Not normally used.
S= SEQUENTIAL, IS=INDEXED SEQUENTIAL, R=RELATIVE,
T=TAPE, D=DISK, Dt=DISKETTE

You can use a temporary file when a work area is required in which the data is not
needed after the end of the step. Such a file exists only for the duration of the step
and is deleted at step termination. If you require such a file to be retained for more
than one step within a job, but feel that the creation of a permanent file is not
justified, then the file may be passed (END = PASS, see File Passing), to the next
step. A temporary file is never accessible to another job. The organizations
available to temporary files are the same as for permanent files, but are normally
sequential. Space for a temporary file is made available using ALLOCATE in the
step in which the file is to be used. The PREALLOC statement can also be used
when the options available in ALLOCATE are insufficient to describe the
temporary file to be generated. When you make no explicit space allocation, a
default size is computed according to the volume organization and the file
characteristics.

Permanent files are of two types, cataloged and uncataloged. A catalog contains
information such as file location, file generations and usage. The catalog thus
simplifies user JCL since a cataloged file may be referenced simply by its external-
file-name (see ASSIGN).

Space for a permanent file can be made available using ALLOCATE (within a

step) or in a job enclosure using the PREALLOC utility. For all three classes of

file, a program is written to access a file name described in the conventions of the
language being used. When step execution is launched, a physical file must be
accessed. The link between the file name known by the program, and the file name
known by GCOS has to be established.

3-2

47 A2 12UJ Rev03

File Assignment and Allocation

This link is provided using the ASSIGN statement in which the file name known to
the program (internal-file-name, or ifn) and the file name known to GCOS
(external-file-name, efn) are associated within a step. The ASSIGN statement
allows any user program to see an input enclosure as an ordinary sequential file.

$JOB TEST, USER = TD, PROJECT = ED;
$INP UT CRDR,;

XXX

XXX

XXX
$ENDINPUT;

STEP LIMI, LMLIB.EXS;
ASSIGN CRDN1, INENC1, DEVCLASS = MS/D500, MEDIA = NI;

COMMENT ' IFN CRDNI IS ASSIGNED TO EFN INENC1, WHICH

IS AN UNCATALOGED DISK FILE',
ASSIGN DATAL, *CRDR;

COMMENT 'INPUT ENCLOSURE CRDR IS ASSIGNED TO DATA1,
ASSIGN STAS, CDEX.DCOM, TEMPRY;

COMMENT ' TEMPORARY FILE CDEX.DCOM IS ASSIGNED TO STAS
AND SINCE NO PASS PARAMETER IS STATED THE FILE IS
DELETED AT THE END OF THE STEP;,

ASSIGN IN3, TD.COM;
COMMENT 'TD.COM IS CATALOGED IN THE SITE CATALOG;
ENDSTEP;
STEP LMODA, LMLIB.NEW,
ASSIGN INA, MY.FILE;
ENDSTEP;

$ENDJOB;

47 A2 12UJ Rev03

3-3

JCL User's Guide

3.2 Catalog Overview

The fundamental function of the JCL statement ASSIGN is to associate an efn
(external-file-name) with an ifn (internal-file-name). In addition, ASSIGN is used

to specify a number of parameters associated with a file. These parameters can be
divided into two classes, as follows:

Variable Those which reflect the particular type of processing of
the file in the step under consideration (and which vary
from step to step); for example, END (= DEASSIGN,
PASS or UNLOAD), ACCESS (= READ, WRITE
etc.).

Fixed Those which describe the characteristics of the file
itself (and which do not vary from step to step) for
example DEVCLASS, MEDIA.

In an installation it is desirable to have a control file which contains the fixed
characteristics of each file in current use. This control file is structured such that
the system can access this information given the efn of any file. This control file is
known as a catalog, and the files whose characteristics are contained in the catalog
are known as cataloged files.

3.21 Simplification of JCL

The use of cataloged files leads to considerable simplification of JCL, for example,
the ASSIGN statement for a cataloged file can often be reduced to just

ASSIGN ifn, efn;
The user does not have to supply the values of the fixed characteristics of the file.

The existence of a catalog does not necessarily imply that all files are cataloged.
For uncataloged files, the ASSIGN statement must supply the necessary
parameters. Note that cataloged files may be contained in resident disks. In this
case the parameter RESIDENT must not be specified in the ASSIGN statement,
nor must DEVCLASS, MEDIA or DVIDLIST. (If any of these four parameters is
specified and FILESTAT = CAT is also specified, the job is aborted at translation.
If any of these four parameters is specified and FILESTAT = CAT is not specified,
then the job aborts at execution with a return code of CATERR).

3-4 47 A2 12UJ Rev03

File Assignment and Allocation

Generation Groups

In many applications, there are files which are updated at fixed intervals

(e.g., daily, weekly) and are accessed only in READ mode between such updates.
For security reasons, it is generally desirable to retain several generations of each
such file. Each update uses the same JCL; that is, the input file (to be updated) and
the output file (updated file) have the same file name. The output file of an update
run becomes the input file to the next update.

This is achieved by using the catalog to define a generation group of files. The

JCL statement SHIFT causes a cyclic rotation of generations. It is only necessary
to use SHIFT before each update. The same JCL can be used for each update and
the number of generations retained is constant. The most recently created
generation is retained in place of the oldest.

Access to the System

In an IOF environment where there are many terminals available which permit
interactive use of the system, it is essential to control access to the system and,
given access, to control the activities of each user. Such control can best be
exercised by the system itself.

To control access, the USER, PROJECT and BILLING parameters are used. In
batch mode, these appear on the $JOB statement and in IOF they are given at log-
on.

The USER is the person who is permitted to submit work via an IOF terminal or to
submit a job in batch. A password associated with each user prevents unauthorized
persons from logging on under IOF.

The PROJECT is a set of users to which a number of access rights are associated.
These include the right to access a file or use a terminal.

The BILLING is the account to which the work is charged.
A USER can have several PROJECTS (of which one may be the default).
A PROJECT can have several BILLINGS (of which one may be the default).

The USER, PROJECT and BILLING values are stored in the catalog. At log-on
(IOF), or job submission (batch), the system automatically checks the consistency
of these parameters as supplied by the user. Any inconsistency will lead to denial
of log-on (IOF) or rejection of the job (batch).

For more details, see tizatalog Management Manual

47 A2 12UJ Rev03

3-5

JCL User's Guide

3.24 Assignment of Cataloged Files

The resolution of the file reference is performed according to the catalog "search
rules" mechanism. This mechanism can make use of several catalogs, successively
scanned until the reference is resolved.

The catalogs are searched in the following order:

1. the catalogs which are explicitly attached to the user context; this can be done
using the extended JCL statement ATTACH
(up to five catalog-file-descriptions can be given).

the site catalog (SITE.CATALOG).
the system catalog (SYS.CATALOG).
the catalogs which are registered system-wide as "auto-attachable".

NOTE:

The search path can be overridden by use of CATALOG parameter in ASSIGN.
For example,

$JOB ...
ATTACH CATALOGL1 = DEPT.CATALOG
CATALOG?2 = SITE.CATALOG
CATALOG3 = INV.CATALOG,;
STEP RST,LMLIB ...,
ASSIGN CT1, INV.TOWN.STREET, CATALOG = 3;

. ASSIGN ;

ENDSTEP;

The catalog INV.CATALOG only is searched for file INV.TOWN.STREET. Ifitis
not found, the step is abnormally terminated.

However, the recommended practice is to use private catalogs and to make them
auto-attachable. (Refer to the GCO&talog Management User's Guifte
further details.)

3-6

47 A2 12UJ Rev03

File Assignment and Allocation

3.25 Assignment of Uncataloged Files

As mentioned previously, information about a file such as its residency,
journalization and sharing parameters can be stored in the catalog. For uncataloged
files this information must be supplied, as follows:

« residency, via the MEDIA and DEVCLASS, or DVIDLIST or RESIDENT
parameters of the ASSIGN JCL statement.
When MEDIA is used, the name of the media must generally be specified by the
user. However, this can be done by the operator if the special value *
(MEDIA = *) has been specified.

« journalization, via the JOURNAL parameter of the DEFINE JCL statement.

« sharing, via the SHARE and ACCESS parameters of the ASSIGN JCL
statement.

FOR EXAMPLE :

ASSIGN FILE-1, MYFILE, DEVCLASS = MS/D500, MEDIA = V1
SHARE = MONITOR, ACCESS = WRITE;

O

This assigns the file with external-file-name MYFILE to the internal-file-name
FILE-1 (by which the file will be referenced in the user program). The device class
is a disk drive (MS/D500) and the file resides on the volume named V1. File
sharing is to be controlled by GAC (as specified by SHARE = MONITOR) and the
file is to be written.

The following DEFINE statement,
DEFINE FILE-1 JOURNAL = BEFORE;

requests the use of the BEFORE journal for the file. Note that the DEFINE
statement is associated with the ASSIGN statement by means of the internal-file-
name FILE-1.

As a special case, uncataloged tape files can be assigned without reference to an
external-file-name. An asterisk is specified instead of the external-file-name. For
tapes, the file is identified by its position on the tape volume, specified by FSN (on
the ASSIGN statement) or if FSN is not given, the first file on the tape volume is
taken.

For example:

ASSIGN FILE-2,c, FSN = 3, DEVCLASS = MT/T9, MEDIA = TAPE3;

assigns the third file on the tape volume TAPES to the internal-file-name FILE-2.

In the case of uncataloged cassette and tape files, the value MEDIA = * can be
specified. This means that the volume names are not known at job submission but
will be supplied by the operator at run time. As the volumes and their sequence of
mounting are under the complete control of the operator, care must be taken to
ensure that he has a list of volumes in the correct sequence and that he can readily
identify each volume.

47 A2 12UJ Rev03

3-7

JCL User's Guide

3.3 File Allocation and Preallocation

ALLOCATE and PREALLOC (extended JCL statements) can be used to allocate
space for either permanent or temporary uncataloged disk or tape files. The
ALLOCATE statement must be used in conjunction with an ASSIGN in the same
STEP enclosure.

The VOLSET facility may be used for allocating cataloged and temporary files on
mass storage. This provides a simplification of the JCL. Instead of specifying the
media name and device class of a particular volume, the user can omit any location
parameter, or enter the name of a volset. (For more information, refer to the
Administering the Storage Manager Guide

3.3.1 Temporary Disk Files

Temporary disk files can be allocated space by means of the ALLOCATE
statement associated with the ASSIGN which defined the file status as temporary.
Temporary file organizations can only be UFAS, or LINKQD mono-subfile.
PREALLOC can be used in cases where insufficient options are available in
ALLOCATE to completely describe the required temporary file. The following
general points should be noted:

« Atemporary disk file cannot exist after the end of execution of the step that
created it, unless it is passed to a later step (see Section 4). Once created, a
temporary disk file cannot be given permanent status (although the contents can
always be copied into a permanent file under program control).

- Space for a temporary file is only reserved when the file is opened by a
processing program utility. Consequently, if a temporary file is not opened
during the execution of a particular job step, the space will not be allocated.

« If no residency parameter is specified (RESIDENT, DEVCLASS, MEDIA, or
VOLSET), the file is located on the job submitter's default volset, provided that
the volset facility is active. If the volset facility is not active, the resident
volumes are used.

- By default, temporary disk files are deallocated by the system at the end of the
job step in which they are created and used (i.e., privilege of access to the file,
and device, are removed and the file label is destroyed). A temporary disk file
can be prematurely deallocated during job step execution by closing the file with
deassign e.g., CLOSE WITH LOCK in COBOL. If a temporary disk file is
required for more than one job step, it can be passed to a subsequent step under
the direction of each ASSIGN by END = PASS (normal termination) or by
ABEND = PASS (abnormal termination).

« If an increment size is specified in an ALLOCATE for a UFAS sequential disk
file, the size of the file will be increased dynamically by the specified amount
whenever a write operation in the current job step cannot be performed because
the file is full.

3-8

47 A2 12UJ Rev03

File Assignment and Allocation

3.3.2 Permanent Disk Files

Space reservation for permanent disk files can be done in one of two ways:

» As a special operation before any use of the file. This is a disk preallocation. It
is the recommended procedure for all permanent disk files.

» As part of the first open operation on the file (as for temporary files). This is a
dynamic allocation of a disk file. The mechanism can be used only for UFAS
files or LINKQD mono-subfiles. The ALLOCATE statement can be used to
specify the amount of space to be allocated to the file.

Once allocated, a permanent file will continue to exist after the execution of the
job. Under normal circumstances when the file is no longer required, the space
must be deallocated under explicit user control, by use of the DEALLOC utility.
Volume preparation (using the Data Management utility VOLPREP) on the volume
containing the file will also perform this function.

At the beginning of each jobstep in which an existing permanent disk file is
assigned, system resources such as access to the file and to the device are given to
the job. Unless the file is passed to the next job stefS@aen 4, File Passing

all these resources (excluding the file space itself) are freed at the end of the job
step.

However, if a file is closed with deassign (CLOSE WITH LOCK in COBOL), the
resources will be freed at the time of file closing and the file cannot be opened
again in that job step.

47 A2 12UJ Rev03 3-9

JCL User's Guide

EXAMPLE :

$JOB HJIEX, USER =K1, PROJECT = WASF;
COMMENT 'THE FOLLOWING JOB CREATES AND USES A TEMPORARY
DISK FILE SCR AND REFERENCES AN EXISTING PERMANENT FILE
ABC.PR';
STEP ST01, ABC.LD1,
ASSIGN FILE1, SCR, TEMPRY, DEVCLASS = MS/D500, MEDIA = 12345;
COMMENT 'NOW ALLOCATE 10 TRACKS FOR THIS TEMPORARY FILE',
ALLOCATE FILE1, SIZE =10, UNIT = TRACK;
ASSIGN FILE2, ABC.PR, DEVCLASS = MS/D500, MEDIA = X42,

COMMENT 'SINCE RESIDENCY PARAMETERS (DEVCLASS AND MEDIA) ARE
GIVEN THEN THE FILE IS CONSIDERED TO BE UNCATALOGED'

ENDSTEP:

COMMENT 'AS TEMPORARY FILE SCR OF STEP ST01 NO LONGER EXISTS, THE
FILE NAME CAN BE USED IN ANOTHER STEP;,

STEP ST02, ABC.LOZ;
ASSIGN NEX, SCR, TEMPRY;

COMMENT 'AS NO ALLOCATE IS PROVIDED FOR SCR ONE CYLINDER
(ON A RESIDENT DISK) WILL BE ALLOCATED";

ENDSTEP;

$ENDJOB;

O

3.3.2.1 Preallocation of a Permanent Disk File

For UFAS, permanent files, space may be reserved and file labels may be created
using the PREALLOC utility. This utility is described in detail in Data
Management Utilities manualnd in thedJFAS User's Guidas appropriate.

3-10 47 A2 12UJ Rev03

File Assignment and Allocation

3.3.2.2 Preallocation of Cataloged Disk Files

For cataloged disk files, the catalog entry can be created using the CATALOG
statement before the file is preallocated (see Catalog Management), or the
CATNOW parameter of PREALLOC can be used instead (sdeatae
Management Utilities User's Guider more details).

3.3.2.3 Allocation of a Permanent Disk File

The ALLOCATE basic JCL statement can be used in a job step to allocate space
for a permanent file, instead of the PREALLOC utility, but it must have an
associated ASSIGN statement in the same job step. ALLOCATE is generally used
to create temporary disk files.

The ALLOCATE statement requests disk space in units of track (by default) or
cylinder, but without defining a location for the file. In addition, for UFAS
sequential, indexed, and library files, a dynamic file extension mechanism
(INCRSIZE) is available if all the space in a file is fully occupied, or likely to
become so.

COMMENT: ALLOCATE (with INCRSIZE specified) must be present in the step
in which the extension is required, unless the file was created (ALLOCATE OR
PREALLOC) with an INCRSIZE value specified.

The ALLOCATE statement enables an optional check mechanism (the CHECK
parameter) to be used to prevent the overwriting of an already created file, by
erroneous allocation to a step.

The execution of an ALLOCATE statement does not occur until the file is opened
for the first time. The ALLOCATE statement does not supply the external file
name (provided instead by an associated ASSIGN statement in the same step), or
the file characteristics (taken from the file description in the processing program or
from an associated DEFINE statement).

$JOB NEWPERM, USER = PREPF, PROJECT = MKT;
STEP LM1, PREPF.COBCR,;
ASSIGN KDIS, PREPF.NO1, DEVCLASS=MS/D500, MEDIA=C018;
ALLOCATE KDIS, SIZE=50, UNIT=TRACK, INCRSIZE=1,
ENDSTEP;

$ENDJOB;

47 A2 12UJ Rev03

3-11

JCL User's Guide

Assuming the load-module LM1 has been built from the COBOL program:
SELECT MISAJ

ASSIGN TO KDIS

LEVEL-64 SEQUENTIAL

FLR.

FD MISAJ
BLOCK CONTAINS 80 RECORDS.
01 KDIS-REC PIC A(80).

a file named PREPF.NO1 will be created on volume C018. lts size will be 50
tracks. It will be a UFAS sequential file with fixed blocked records, each record
being 80 bytes long, with 80 records per block.

One track will be dynamically allocated to this file whenever a write operation
would overfill the file during this job step.

3-12

47 A2 12UJ Rev03

File Assignment and Allocation

3.3.2.4 Comparison of PREALLOC and ALLOCATE

Table 3-2shows the main differences between the Extended JCL Statement
PREALLOC and the basic Statement ALLOCATE.

Table 3-2.

Comparison of PREALLOC and ALLOCATE statements

PREALLOC

ALLOCATE

Permanent files (cataloged or
uncataloged) and temporary files
Step Defining Statement

Must be used for indexed sequential
files

The number of extents and placeme
of space can be explicitly declared
The maximum number of extents pe

(MAXEXT)

The organization, block size, record
size, and record format are declared
explicitly (BLKSIZE, RECFORM,
and RECSIZE)

Extension of file space must be
performed explicitly for sequential
disk files

If the file exists, PREALLOC
terminates abnormally

volume may be restricted by the user

Permanent uncataloged or temporar
files

Placed inside a step enclosure wit
associated ASSIGN statement
Only allocates sequential or direct
BFAS files and all UFAS
organizations
htAutomatic space allocation only

Up to 16 extents per volume may be
allocated, if required

The organization, block size, record
size, and record format are taken fro
the program which is executed (or
from an associated DEFINE
statement)

Specifies the space extension to be
made if end-of-file on output is
reached by the executing step; appli
to sequential files only

CHECK feature for existing files

m

D
(2]

It is recommended that PREALLOC be used for permanent files and ALLOCATE
for temporary files. PREALLOC must be used if the files are cataloged.

47 A2 12UJ Rev03

3-13

JCL User's Guide

3.3.3 Tape Files

The term "tape" is used generically in the following paragraphs to denote both tape
and cartridge.

At the beginning of a job step, system resources, such as tape drives, are assigned
to the step. The file name is written when the tape file is opened in output
processing mode (even if the permanent file already exists on the tape volume).
Tape naming also occurs when a file which does not already exist on the volume is
opened in append processing mode.

The file label contains information from the ASSIGN statement (external-file-
name, expiry date) and the file definition in the generating program, or DEFINE.

Unless they are passed from one job step to another, temporary tape files, like
temporary disk files, are known to the system only for the duration of the job step
in which they are assigned (and opened). In fact temporary tape files are not
destroyed automatically by the system since a new file can be created on the tape
by overwriting the current one. Note that work tapes (see below) are dissimilar in
this respect.

A permanent tape file, cataloged or uncataloged, still exists after the job step that
created the file terminates. The contents of the file are preserved until a new file is
created on the named volume, or until the VOLPREP utility is used on the volume.
Note however that the integrity of cataloged tape files is subject to the same
security given by the catalog function, as for permanent disk files. The destruction
of a file is subject to file security rules, in particular any expiry date applying to the
file (seeSection 4. Cataloged tape files must be preallocated using the
PREALLOC utility.

Work Tapes

A WORK tape is a tape volume that has been prepared by the Data Management
Utility VOLPREP or TAPEPREP (with WORK option). WORK tapes are

intended to free the user from the need to indicate the exact name of the tape,
particularly if temporary work space is required. When the programmer specifies
MEDIA = WORK in an ASSIGN statement, the operator at execution time is
instructed to mount a WORK volume for the job.

The ASSIGN specifies whether the file to be written is temporary (TEMPRY
parameter) or permanent (see ASSIGN for permanent cataloged and uncataloged
files). If a temporary file is requested the tape volume remains a WORK tape.
However, if a permanent file is requested, the tape volume loses its WORK status
and becomes a normal named volume. The next time the file on tape is used, the
programmer must supply the proper volume name, that is, the volume name of the
work tape (displayed in the original job occurrence report). The WORK status of a
tape can also be removed using the VOLPREP utility.

3-14

47 A2 12UJ Rev03

File Assignment and Allocation

EXAMPLE :

$JOB;
STEP....;
ASSIGN SCRI, OFF.TEMP, DEVCLASS = MT/T9
MEDIA = WORK, TEMPRY;
ENDSTEP;
STEP....;
ASSIGN EXTRA, HOME.PERM, DEVCLASS = MT/T9
MEDIA = WORK;
ENDSTEP;
$ENDJOB;

O

Work tapes are temporarily allocated for the duration of the first step, and retain
their work status at the end of the step. The tape used in the second step will lose
its work status and become permanent.

3.34 Tape File Extension

Work tapes can be used for the extension of existing tape files. If, during a writing
operation on a normal tape file, the end of the last specified tape is reached, GCOS
will try to use a work tape to extend the file, rather than abort the step. If no
WORK tape is premounted, the system will ask the operator to mount one. The
operator may refuse to do so, in which case the writing operation is not performed
and the job step will be aborted.

If the existing tape file is a permanent file, the new work tape will lose its WORK
status. If a file is passed to a later step, it will be considered as a multi-volume file
and treated as if the new tape has been indicated in the respective ASSIGN
statement. If a file is not passed, the new tape will not be usable in a subsequent
step. The exception to this is for a cataloged file in which case file passing is not
necessary.

If the (multi-volume) file is used afterwards, the associated ASSIGN statement
must include the new volume name in the MEDIA list. This name will have been
indicated in the original Job Occurrence Report.

47 A2 12UJ Rev03 3-15

JCL User's Guide

3.4 Use of Multi-volume Files

A single file may be spread across a number of volumes up to a maximum of 10

volumes. All the volumes for the file must be of exactly the same type, that is, all
disk, same disk type (and for FSA disks, the same protection level: HRD, or HRD
RDF, or HRD RDS, or HDR RD1), or all tape, same tape type. You must always

supply volume names, in the ASSIGN statement, in the same order as they were
specified when the file was written.

For sequentially organized files, you can indicate how many volumes of a multi-
volume file are to be mounted simultaneously. This facility, introduced by means
of the MOUNT parameter in the ASSIGN statement, can be helpful in reducing
device requirements.

Multi-volume files can be temporary or permanent.

3.4.1 Partial Processing

If you require records from a subset of the volumes of a multi-volume file (e.g., in
APPEND processing mode) you only need to specify the volumes required. Partial
processing can be requested by using the FIRSTVOL and LASTVOL parameters
of the ASSIGN statement to specify (respectively) the position in the media list of
the "first" and "last" volumes to be processed.

EXAMPLE 1:

A cataloged multi-volume file.

The file MYFILE is contained in the volumes

A, B,C D, EandF

ASSIGN IN1, MYFILE, FIRSTVOL = 3, LASTVOL = 4;

The volumes C and D are the only ones processed.

O

3-16

47 A2 12UJ Rev03

File Assignment and Allocation

EXAMPLE 2:

An uncataloged multi-volume file.

The file OURFILE is contained in the volumes
V, W, Xand Y.

ASSIGN IN2, OURFILE, LASTVOL = 2, DEVCLASS = MT/T9/D1600,
MEDIA = (V,W);

The volumes V and W are processed.

For tape, cassette files, the default value for LASTVOL is EOF (i.e., the last
volume processed must contain the end of file). In the above ASSIGN statement if
LASTVOL were omitted then the step would terminate abnormally as volume W
does not contain the end of file.

O

EXAMPLE 3:

File extension of an uncataloged multi-volume file. The file OURFILE is as
described irExample 2

ASSIGN IN3, OURFILE, DEVCLASS = MT/T9/D1600, MEDIA = (V, W, X, Y);
This leads to normal processing of the whole file (i.e., all the volumes).

Suppose that the file is subsequently extended onto another volume Z. The above
ASSIGN statement will lead to an abnormal termination as volume Y no longer
contains the end of file. This warns you (when you have forgotten to update your
media list with the new volume Z) that you have not processed the whole file.

If you wish to process volumes V, W, X and Y only, then LASTVOL must be
specified as follows:

AGGIGN IN4, OURFILE, DEVCLASS = MT/T9/D1600, MEDIA = (V, W, X, Y)

LASTVOL =4;

Here LASTVOL is necessary, but should only be used when the processing mode
is input.

O

47 A2 12UJ Rev03

3-17

JCL User's Guide

3.4.2 Multi-volume Work Tapes

A multi-volume temporary tape file can consist entirely of WORK tapes. If the file
is permanent, and MEDIA = WORK is indicated in ASSIGN, the system will
automatically use as many WORK volumes as are required. The sequence in
which they are used will be listed on the Job Occurrence Report and these names
will then to be used in references to the file in subsequent jobs.

A multi-volume permanent uncataloged tape file can be entirely on WORK tapes,
but such tapes cease to be WORK tapes once the file has been written on them.

File FNAL.A

Program only reads records within the volume LBC and LBD. Does not read to
end of file so LBE is not needed.LASTVOL must be specified as the volume LBD
does not contain the EOF. If LASTVOL is omitted, then LASTVOL=EOF is
assumed and the step terminates abnormally.

File NCU.BX

() (2

File NCU.BX, opened in APPEND MODE, is to grow using work volumes.
Currently, only one volume, 148, accommodates the file.

STEP GROFIL, (MY.LMLB, DEVCLASS=MS/M452, MEDIA=MSD);
ASSIGN FLA,FNAL.A,DEVCLASS=MT/T9, MEDIA=(LBC,LBD) LASTVOL=2;
ASSIGN FLB,NCU.BX,DEVCLASS=MT/T9, MEDIA=148;

ENDSTEP;

Figure 3-1. Partial/Extensible Multi-volume Processing

3-18 47 A2 12UJ Rev03

File Assignment and Allocation

EXAMPLE :

COMMENT 'THE NEXT STATEMENT ASSIGNS A MULTIVOLUME DISK FILE';
ASSIGN FILA, MST.PLN, DEVCLASS = MS/D500

MEDIA = (VOL1, VOL2, VOL3);

COMMENT THE NEXT STATEMENT ASSIGNS A TAPE FILE WHICH
IS TO BE WRITTEN ON A WORK TAPE OR WORK TAPES;

ASSIGN FILB, N.MTSPLN, DEVCLASS = MT/T9
MEDIA = WORK, EXPDATE = 340;

Note that in the second ASSIGN statement, the EXPDATE parameter ensures that
the file N.MSTPLN will be retained for 340 days. Expiry settings are described in
Section 4

O

47 A2 12UJ Rev03 3-19

JCL User's Guide

3.5 Multi-file Tape Volumes

A tape volume may contain one file (a mono-volume file), part of a file (multi-
volume file) or it may contain more than one file, in which case it is known as a
multi-file volume. All files on a standard multi-file tape volume must be
uncataloged. Non-standard multi-file tape volumes are not supported. A file on a
multi-file volume cannot have an expiry date that is later than the expiry date of
any of the files that precede it on the volume.

351 Useful Parameters of ASSIGN

There are parameters of the ASSIGN statement that are useful in processing of
multi-file tape volumes. They are the END, ABEND, and FSN parameters.

With the END and ABEND keywords, the special value LEAVE ensures that a
multi-file tape volume is left positioned at the start of the next file on the tape when
processing of the current file is finished. If this is not specified, the tape would
normally be rewound after each file is processed.

The FSN parameter, which gives the file sequence number of the file to be
assigned, must be specified for multi-file tapes. Sequence numbers of files start at
1 and must not normally exceed 253. (The exception to this is the INFILE
parameter of the CREATE command, where FSN may be specified as any value up
to and including 258.)

There are two special values for FSN: NEXT and ANY.

The NEXT value is available only in output mode when using multi-volume files
on multi-file tapes. Specify ANY or a number to process multi-volume files in
input mode.

If FSN = ANY is specified, the tape will be searched for a file of the specified
name at file open time. Note that if the processing is in output mode, the existing
file will be over-written. All files which follow the over-written file are lost. If

there is no file of the specified name, and processing is in output mode, a new file
will be created after the last file on the tape.

To avoid problems with possible overwriting of existing files of the same name
when processing in output mode, the value of NEXT can be given for FSN. This
value causes the file to be written after the last file on the tape regardless of
whether a file with the same name already exists on the tape.

3-20

47 A2 12UJ Rev03

File Assignment and Allocation

3.5.2

File Concatenation

3.5.2.1 Omitting Internal File Name on ASSIGN

Several UFAS standard sequential or cassette files can be accessed as if they were a

single sequential file. File concatenation, as it is called, can be specified by
successive ASSIGN statements in the required sequence, with the omission of the
internal-file-name of all but the first ASSIGN. For example:

$STEP...;
ASSIGN TOTO, MY .FILE1, DEVCLASS = MT/T9, MEDIA = A1,
ASSIGN, MY.FILE2, DEVCLASS = MT/T9, MEDIA = A2,
ASSIGN, MY.FILE3, DEVCLASS = MT/T9, MEDIA = A3;

In this example the three uncataloged tape files are treated as a single file with an
internal-file-name TOTO. The file starts at MY.FILE1 and ends with MY.FILE3.

Instead of a using a comma, the missing internal file name can be indicated by the
symbol #. Consequently the last two ASSIGN statements above could be written,

ASSIGN # MY.FILE2, DEVCLASS = MT/T9, MEDIA = A2;

ASSIGN # MY.FILE3, DEVCLASS = MT/T9, MEDIA = A3;

3.5.2.2 Uncataloged Tape Files

In the case of uncataloged tape files and diskette files, concatenation may also be
achieved by use of the NBEFN parameter. This parameter gives the number of
files to be concatenated starting from the "first" file which is specified by its
external-file-name or by FSN. On multi-file tapes the sequence of concatenation is
the physical order in which the files are on the volume.

EXAMPLE 1:
ASSIGN INT1, FILE3, NBEFN =5, FSN = 3, DEVCLASS = MT/T9/D1600,
MEDIA = A5;

This concatenates 5 files on a multi-file tape. The concatenation starts at the 3rd
file on the tape.

O

47 A2 12UJ Rev03 3-21

JCL User's Guide

3.5.2.3 Restrictions

Whatever the method of concatenation used, the following restrictions apply:

« All the files must be sequential.

- There may also be restrictions on the difference in attributes (e.g., record size,
record format) between the files concerned. These restrictions are dependent on
the programming language being used.

- If a UFAS file with SHARE = MONITOR (specified in the catalog or in the
ASSIGN statement) is included in the concatenation process then

Either (i) Specify ACCESS = SPREAD (ASSIGN statement)
Or (ii) Specify READLOCK = STAT (DEFINE statement)

Or (iii) the step must be repeatable (REPEAT parameter of STEP or $JOB
statement)

3-22 47 A2 12UJ Rev03

File Assignment and Allocation

3.6 Deallocation of File Space

The release of space occupied by an outdated file, to allow a new file to be created,
is achieved in different ways, depending on the type of file; i.e. disk file, (cataloged
or uncataloged), tape file (cataloged or uncataloged).

3.6.1 Uncataloged Tape File

Tape file deletion can be performed by overwriting the file contents after the expiry
date However, if you also wish to change the name or owner of the file (and have
the right to do so), use the VOLPREP utility.

3.6.2 Cataloged Tape Files

A cataloged tape file can be deallocated using DEALLOC. The file name remains
in the catalog unless the UNCATNOW parameter of DEALLOC is used.
Alternatively, the catalog entry can be deleted using the UNCAT statement. If only
the file itself is to be deleted, you can use VOLPREP.

When a cataloged file (on tape or cartridge) is opened in write mode, if a previous
version of that file is referenced in the catalog, the existing list of media is used.
The system asks for all media to be mounted (even if the new file is smaller than
the previous one, and requires less media). When the file is closed, any unused
space is deallocated; and the list of media is updated in the catalog.

3.6.3 Permanent Disk Files

A file is deleted when its file label is deleted from all its volumes. A file may be
deleted in a step using utilities DEALLOC or LIBDELET. With the volume
preparation utility program (VOLPREP) it is possible to release the space occupied
by all files on a volume.

Cataloged Disk Files

The space is released, as for permanent disk files, but the file name and description
will remain in the appropriate catalog until it is deleted by use of the UNCAT
statement (see Catalog Management), or the UNCATNOW parameter is specified
with DEALLOC (Data Management Utilities). Both methods are subject to expiry
date checks, if appropriate

47 A2 12UJ Rev03 3-23

JCL User's Guide

3.7 Duplicate File and Volume Names

GCOS supports duplicate file names on different volumes. For example, FILE A
on volume X is distinguished from FILE A on volume Y. The residency of the

files (which in this case is the means of distinguishing between them) can be
specified by the ASSIGN statement or by cataloging the files on different catalogs.

The use of such duplicate file names is not recommended for the following
reasons:

- in the case of uncataloged files, an error in specifying the residency parameters
can lead to the assignment of the incorrect file,

« in the case of cataloged files, an error in the order of the ATTACH statements
will affect the search rules and will lead to the assignment of the incorrect file.

This recommendation also applies to catalogs themselves. To apply this principle
to catalogs, the following rules should be observed;

- all private catalogs are given different names so that they can all be cataloged in
the site catalog,

- master directories in all catalogs, including the site catalog are given different
names,

« itis recommended that there should be only one master directory in each private
catalog, and in that case, the master directory name is the same as the catalog
name (e.g., the master directory in the catalog C1.CATALOG is named C1).

GCOS supports duplicate volume names which have different attributes, for
example, volume X (CT/M5 device-class) is distinguished from volume X (CT/M6
device-class).

The use of such duplicate volume names is not recommended. You can request the
incorrect volume by making an error in the device-class specification. Such an

error will not be detected by GCOS. Duplicate volume names are also undesirable
from the operator's point of view.

In addition to the problems discussed above, duplicate file and volume names can
cause confusion in user documentation.

3-24

47 A2 12UJ Rev03

File Assignment and Allocation

3.8 Overview of the DEFINE Statement

The DEFINE statement allows you to supply information about a file. This
information can override program supplied information and/or supply information
that is otherwise not available. It may not be available either because the file label
does not contain it (for example, the label does not exist), or because the program
does not contain it (for example, the language does not allow this information to be
given).

DEFINE is always associated with an internal-file-name, and if the same file is
assigned to different internal-file-names, there may be a DEFINE for each
assignment.

The information provided by DEFINE sets up the file characteristics when the file
is opened. This information overrides any file-description in the program, but the
contents of the file label will override the DEFINE information. The exception to
this is when a non-native tape file is indicated (FILEFORM = NSTD), when any
file labels are ignored.

The following information can appear in DEFINE:

 block size and record size

« recording format

« file format

« number of buffers and number of blocks per buffer

- the inclusion or omission of block sequence numbers

- the occurrence or not of read after write check

« the residency of the index for Indexed Sequential files

 key position and size

- control interval (UFAS only) and control area size (UFAS only)
« control interval (UFAS only) and control area free space (UFAS only)
« the frequency with which checkpoints are taken

« unit record device control options

« file journalization can be requested.

47 A2 12UJ Rev03 3-25

JCL User's Guide

3.9 GCOS Overriding Rules
When specified, and if DEFINE does not indicate a non-native tape file, the file
label provides the following:
- file configuration
« record length
 Dblock size
» for UFAS tape files, the specification or omission of block sequence numbers
« size and location of the key
- whether deleted records are to be allowed or not
« Cl and CA size available space (UFAS)
« whether the file is cataloged or not.
ASSIGN provides:
- the external-file-name
« the label type
» the name of the volumes and the type of device on which the file resides (if not
retrieved from the catalog)
- the level of sharing and access allowed to the file (if not retrieved from the
catalog).
- whether the file is temporary, permanent uncataloged or permanent cataloged
- whether the file is multi-volume (if not retrieved from the catalog).
The file definition in the program provides the other features, hamely:
+ access mode
« number of buffers
« move or locate mode
- code set used for data storage
- all label information when the label is not present.
The file label is considered to be missing for:
- tapes without labels (LABEL = NONE)
- files which have to be generated.
3-26 47 A2 12UJ Rev03

File Assignment and Allocation

3.10 Prefixing

To reduce the amount of writing required in JCL statements, external-file-names
can be shortened by taking advantage of prefixing. This can be done in two ways,
as described below.

3.10.1 Using the Master Directory

If the files associated with a project are all given external-file-names that start with
the project name, the first component name of the files can be omitted. This
requires that the master directory for these files has the same name as the project.
When this is done, the external-file-name starts with the concatenation character (.)
and the system automatically supplies the first component name. For example, if a
job is running under the project DEPT1, and the master directory for all files
associated with this project is DEPT1, the file DEPT1.SECT2. INVENTORY

could be accessed by the name .SECT2. INVENTORY, with the system
automatically providing the name DEPTL.

Prefixing using the master directory only allows you to omit the first component
name of the external-file-name. The second method of prefixing, described below,
allows you to omit as many component names as you want to.

3.10.2 Using the PREFIX Statement

The PREFIX statement (described in the JCL Reference Manual) allows you to
define a prefix for all files. Each PREFIX statement is valid until it is overridden
by another PREFIX statement. For example, if within a job there were frequent
reference to files whose first two component names were DEPT1 and SECT2,
(DEPT1.SECT2. INVENTORY, and DEPT1.SECT2. SALES, and
DEPT1.SECT2. PAYROLL, for example), the first two component names can be
omitted from references to the files if the statement

PREFIX DEPT1.SECTZ2;
occurs before the references to the files.

When accessing the files, the only names that need be given are .INVENTORY,
.SALES, and .PAYROLL, as the system will automatically supply the defined
prefix.

NOTE:

The prefix must always be taken into account when calculating file name
lengths.

47 A2 12UJ Rev03 3-27

JCL User's Guide

3-28 47 A2 12UJ Rev03

4. Resource Management

4.1 Introduction

GCOS provides you with JCL facilities that enable the overall system throughput
to be optimized by improving the use of resources, such as memory, files and
devices. This section discusses the way in which you can influence the allocation
of resources within a step enclosure and from job step to job step.

Before a job step is initiated, the system refers to your JCL statements to establish
the nature and extent of resources required, and attempts to reserve them. If all the
necessary resources are available, they are allocated to the job for the duration of
the job step. If one or more resources are not available, the step is kept waiting
until they are released by a step of another job. Once all of the required resources
have been allocated to the step, its load module is loaded and control is given to the
first instruction.

When the step terminates, allocated resources are freed and the JCL processing
continues with the next statement of the job description (i.e., the statement that
follows the ENDSTEP). Note that the multiprogramming slot occupied by a job is
not released between steps, and is not released if the job is held or suspended (see
section).

47 A2 12UJ Rev03

4-1

JCL User's Guide

4.2 Memory Management

4.2.1 Concept in GCOS 7

The virtual memory concept implemented in GCOS frees you from problems
associated with program structure (e.g., segmentation, transaction sequences), since
it will appear that you have one large area of memory for your exclusive use. (For
further details, see thigystem Administrator's Manugpln a multiprogramming
environment, memory overload situations can occur when several jobs compete for
memory resources. Memory overload causes a general degradation in overall job
throughput, due to an increase in the number of segment transfers between the
backing store and main memory.

Information is made available in the Job Occurrence Report (JOR) from which you
can make a quantitative assessment of the overall processing efficiency of a given
job step with respect to memory usage. This information is the SYS MISSING
SEGMENTS number and PROG MISSING SEGMENTS number (see Section 8,
Job Occurrence Report).

The MISSING SEGMENTS number indicates the number of system segment and
user program segment transfers that occurred in a given step. If the non-resident
segments of a program are confined to a small amount of memory, as would occur
in a multiprogramming overload situation, then the number of swapping operations
would eventually seriously degrade the system throughput.

If the system can fulfill the stated memory value, as well as other system resources
(e.g., devices, media), then step execution can be initiated. If the available memory
is inadequate, the step is "WAITING FOR RESOURCES”, as it would be for any
other system resources.

4.2.2 Declared Working Set

The declared working set (DWS) is the physical memory size in units of 1K

(1024 bytes), required by the code/data segments and the control structures of a job
step. This figure should be the optimal requirement that allows a program to
execute without any significant loss in performance (or excessive memory
allocation).

Information appears in the Linker listing and JOR that enables an initial estimate to
be made of the DWS value. The Linker listing gives the sizes of process control
structures, user code and data segments, and run-time package segments. The JOR
gives the number of buffers used, channel program page size and the number of
missing segments.

Tuning of the DWS value is described in Bystem Administrator's Manual

4-2

47 A2 12UJ Rev03

Resource Management

4.3 File Passing

43.1 Description

Generally, all resources are allocated at the beginning of each step and released at
the end of the step. With respect to files, this situation may lead to problems when
successive steps are to work on the same file. Between the end of one step and the
beginning of the next, another step in a concurrent job could gain access to this file
and modify it, jeopardizing the work performed by the first job. If the file in

question is a temporary disk file, it would be deallocated at the end of the first step
and the subsequent step would not be able to work on it at all.

In order to overcome these problems, files may be passed from one job step to a
later one, using the END and ABEND parameters (with value PASS) in an
ASSIGN statement. END specifies file passing for normal termination of load
module execution, ABEND for abnormal termination.

Consider first of all a situation where file passing is not used:

STEP STO01, ABC.LD1;
ASSIGN FILE1, ABC.SCR, TEMPRY;

ASSIGN FILE2, ABC.PR, DEVCLASS = MS/D500,
MEDIA = (5DX143,DX127);

ENDSTEP;
STEP ST02, ABC.LD1,
ASSIGN JACK, ABC.SCR, TEMPRY;

ASSIGN JILL, ABC.PR, DEVCLASS=MS/D500,
MEDIA = (DX143,DX127);

ENDSTEP;

47 A2 12UJ Rev03

JCL User's Guide

In a multiprogramming environment there is always the danger of the permanent
file ABC.PR being used by another job between the execution of program ST01
and STO02. In addition, the temporary file ABC.SCR in the first step has no
particular relationship with the file of the same name in the second step.

Consider the following modification of the above example:

STEP ST01, ABC.LD1;

ASSIGN FILE1, ABC.SCR, TEMPRY, END=PASS;

ASSIGN FILE2, ABC.PR, DEVCLASS=MS/D500
MEDIA=(DX143,DX127), END=PASS,;

ENDSTEP;

STEP ST02, ABC.LD1,;

ASSIGN JACK, ABC.SCR, TEMPRY;
ASSIGN JILL, ABC.PR;

ENDSTEP;

In the modified example, both files are passed from STO1 to ST02. Note that in
subsequent assignments of a passed permanent file, it is not necessary to supply
device and volume attributes. Note also that for a passed temporary file, the
allocation of space is performed only in the job step in which the file is first
assigned (in the above example a default size of 1 cylinder is allocated when the
file is first opened in step STO1). The file is not deallocated between steps and so it
can be used to pass information from one step to the next. However, the temporary
file in the above example will be deallocated at the end of step ST02, because

END = PASS has not been specified for the file in that step.

The following general points apply to the passing of files:

- "Passing the file" means that the name, attributes, resource requirements and
sharing mode (SHARE, ACCESS) apply until the next ASSIGN of the relevant
external-file-name (efn), is performed in the job. (However, note that disk files
are not protected against the VOLPREP utility).

» Access to a passed file is reserved to the job, subject to the declared file sharing
constraints applying to the file (see File Sharing in this Section), from job step to
job step until END = DEASSIGN (or END = UNLOAD) is specified or assumed
by default.

» Access to a volume that contains a passed file is not normally reserved.
Therefore another job could acquire access to the same volumes to use a
different file or to share the same file (s€#€' Sharind, later in this Section).

« A file may be passed across job steps that do not refer to the file at all. In these
cases, the resources are reserved throughout the job until an ASSIGN statement
that refers to the file is encountered (see the example job TRY below).

4-4 47 A2 12UJ Rev03

Resource Management

4.3.2 Rules for Passed Files

If the DEVCLASS, MEDIA and FILESTAT parameters are missing from the
ASSIGN statement, the following occurs:

1. The system looks for a catalogued file of the given name in the currently
attached catalog(s).

2. If there is no cataloged file of this name, the system looks for an uncataloged
file passed from a previous step.

3. Ifthere is no passed file of this name, the system assumes itis a RESIDENT
uncataloged file.

File passing is therefore the means of ensuring that temporary information
produced or used in one job can be accessed in a later step in the job.

EXAMPLE :

$JOBTRY, ...;

STEP LM1, ...;

ASSIGN MAN1, SUNDAY.REP
DEVCLASS=CT/M5, MEDIA= CH215,
END=PASS,;

ENDSTEP;

STEP LM2, ...;

ENDSTEP;

STEP LM3, ...;

ASSIGN MAJ, SUNDAY.REP;

ENDSTEP;

$ENDJOB;

47 A2 12UJ Rev03 4-5

JCL User's Guide

Suppose the processing program in step LM1 contains the following COBOL
statements:

SELECT MAN

ASSIGN TO MANL.

OPEN MAN.

CLOSE MAN.
CLOSE MAN WITH LOCK.

and that step LM3 contains:
SELECT AGT

ASSIGN TO MAJ.

OPEN AGT.

CLOSE AGT.

If the execution of LM1 terminates normally, the file SUNDAY.REP will be passed
on to LM3 without interference from the execution of LM2 (if LM2 does not

access this file). No other job will have access to SUNDAY.REP and LM3 is
guaranteed access to it (although possibly on another tape drive if in the meantime
the drive has been assigned to another job step).

If the execution of LM1 aborts, SUNDAY.REP will not be passed (because
ABEND=PASS has not been specified for this file assignment in LM1) even if, by
use of the JUMP statement (see Section 6), the job itself is not aborted. Note that
in these circumstances the CLOSE... WITH LOCK in LM1 prevents any further
opening of the file during the execution of this load module but does not prevent
the file from being passed.

O

4-6

47 A2 12UJ Rev03

Resource Management

4.3.3 Deadlock Situation

When the files are being passed in a multiprogramming environment, care must be
taken to avoid a deadlock situation. This can occur when two programs are waiting
on each other to release files. An example of this situation is illustrated in

Figure 4-1

JOB STREAM A

JOB STREAM B

STEP LMS5 YY.MA;

ASSIGN 11 FILEA
END=PASS...;

ENDSTEP;

STEP LM6 YY.MA;
ASSIGN 12 FILEA..;
ASSIGN 12J FILEA...;

ENDSTEP;

STEP LM3 YY.MB;

ASSIGN J1 FILEX
END=PASS..;

ENDSTEP;

STEP LM4 YY.BB,;
ASSIGN J2 FILEX...;
ASSIGN J21 FILEA...;

ENDSTEP;

Figure 4-1. File Passing with Deadlock

In the above example, step LM5 in multiprogramming stream A and step LM3 in
stream B can run in parallel. However, step LM6, which "owns" file FILEA,

cannot start execution until it can access file FILEX, but will not release FILEA

(to step LM4) until it has completed execution. Correspondingly, step LM4 cannot
start execution until step LM6 has released FILEA. Thus each stream is waiting on
the other. The only way to resolve this situation is for the operator to terminate one

of the two jobs.

47 A2 12UJ Rev03

4-7

JCL User's Guide

4.4 File Protection

A measure of protection must be given to files in any processing system to ensure
that spurious accesses, which may modify or otherwise compromise the integrity of
a given file, are not possible. Unrequested modifications or involuntary destruction
of files, due to user errors or due to the malfunctioning of hardware or software,
must be taken into account.

GCOS provides this function in two main ways:

- By assignment, files are protected against non-requested access, since no file can
be processed unless the user supplies its name and supporting volume
identification.

« By a file logging method and checkpoint/restart mechanism, in which files are
protected against unexpected events (refer to the section on Error Processing).

The protection provided by the file assignment method consists of the following
mechanisms:

« Expiry date, to protect a file against destruction prior to a given date.

- File sharing, to allow only authorized sharing modes of a given file (see File
Sharing).

A set of Utility Programs is provided to anticipate possible incidents:

« Saving and restoring files (FILSAVE, FILREST).

« Saving of files during RESTART (see Error Processing). For cataloged files,
access rights can be used to restrict the type of access to a file.

4-8 47 A2 12UJ Rev03

Resource Management

4.5 File Sharing Without GAC

The following paragraphs describe file sharing where GAC (General Access
Control) is not active. There are many situations where it is desirable to allow
access to one particular physical file (as specified by its external file name) by
several jobs running concurrently or within the same step by means of two or more
independent internal file names. On the other hand, it is useful in some
circumstances to be able to control the simultaneous access to a file in order to
prevent, for example, two jobs from modifying a file at the same time.

Access and sharing policy can be controlled in GCOS using the SHARE and
ACCESS parameters of the ASSIGN statement, in the case of uncataloged and
temporary files. For cataloged files the SHARE parameter of CATALOG is used to
set sharing information and is held permanently in the catalog, and only the
ACCESS parameter of ASSIGN need be udedure 4-2illustrates the

simultaneous access of the same file by two concurrent jobs.

Job R1 ...

COMMENT 'REQUEST READ ACCESS TO HJ.OMN
AN UNCATALOGED FILE ALLOWING
OTHERS READ-ACCESS ONLY";
ASSIGN COMP, HJ.OMN, DEVCLASS=MS/D500 MEDIA =
(DX143,DX127)
ACCESS = READ, SHARE=NORMAL ...;

ENDSTEP:
$ENDJOB:

Job R2 ...

STEP
ASSIGN COMM, HJ.OMN, DEVCLASS=MS/D500 MEDIA =
(DX143,DX127)
ACCESS = READ, SHARE=NORMAL ...;
ENDSTEP;
$ENDJOB;

Figure 4-2. Inter-job File Sharing

47 A2 12UJ Rev03

4-9

JCL User's Guide

When share and access requests are made on a file, the system will decide whether
or not to grant the request, depending on the type of sharing currently active on the
files. If the requested access is given, the system updates the current sharing mode
accordingly (in preparation for further requests). If an inter-job file sharing request
cannot be granted, the requesting job will be queued to wait until the request can be

satisfied (when an appropriate job, or jobs, releases the file). If an access request
from the step already using the file cannot be granted, the job is aborted.

Two or more concurrent assignments with different SHARE values are not
permitted except between SHARE=NORMAL and SHARE=ONEWRITE. For
example, if a job is running with the values SHARE=FREE, ACCESS=WRITE
(see ACCESS below), a request for SHARE=ONEWRITE, ACCESS=READ wiill
not be granted until the first job has released the file. The required type of
concurrent access would be permitted if the two requests were:

SHARE=ONEWRITE, ACCESS=WRITE

and

SHARE=ONEWRITE, ACCESS=READ

The ACCESS parameter can have one of six values, WRITE, READ, ALLREAD,
SPWRITE, SPREAD, RECOVERY. Of the possible SHARE values, the ones
recommended for standard use are NORMAL and ONEWRI&ble 4-1shows
the possible combination of the SHARE and ACCESS parameter values and their
corresponding meanings in terms of type of sharing requested. Note that SHARE
can have the value FREE, but its use is not normally recommended since the
system has no control over the access of files when FREE is specified. If SHARE
and ACCESS are not specified, the step has exclusive use (read or write) of the
file, via a single internal file name, (i.e., within the step the file cannot be assigned

with another internal file name).

Table 4-1. File Sharing Requests
Keyword Values
ACCESS SHARE = Type of Sharing Requested
NORMAL Exclusive use (default)

WRITE

SPWRITE NORMAL Exclusive use

READ NORMAL Read while any job reads

SPREAD NORMAL Read while same step reads

READ ONEWRITE Read while any job reads and one job writes
SPREAD ONEWRITE Read while same step reads and writes
WRITE ONEWRITE Write while any job reads

SPWRITE ONEWRITE Write while same step reads

ALLREAD NORMAL Read while any job reads

ALLREAD ONEWRITE Read while any job reads, no job writes
RECOVERY NORMAL Exclusive access for file recovery purposes

4-10

47 A2 12UJ Rev03

Resource Management

SHARE = NORMAL SHARE = ONEWRITE
ACCESS = ACCESS =

S I O N e
ACCESS = ACCESS =

READ READ
\ ACCESS = \ ACCESS =

READ READ

N~—— k_,/

OR (EXCLUSIVE)

N
~—_ v
ACCESS = ASVCREITSES =
WRITE
¥_—/

Figure 4-3. Shared Access to File

The SHARE parameter defines a protocol for sharing the file. Generally, users
must specify the same protocol if the file is to be shared by them. For cataloged

files, the protocol is enforced via the catalog.

47 A2 12UJ Rev03 4-11

JCL User's Guide

Figure 4-3illustrates the rules that the system follows when it tests whether access
can be granted or not. It shows, for example, that a file assigned with values
ACCESS=WRITE, SHARE=ONEWRITE may be shared with other jobs that
specify ACCESS=READ, SHARE=ONEWRITE but not with any jobs that specify
SHARE=NORMAL nor with another job that specifies ACCESS=WRITE,

SHARE =ONEWRITE; if, however, in this situation the original job
(ACCESS=WRITE, SHARE=ONEWRITE) releases the file, any job with
ACCESS=READ, irrespective of the value of SHARE, can access the file.

Note that the rules of ACCESS=SPREAD, ACCESS=SPWRITE correspond to
those for ACCESS=READ and ACCESS=WRITE respectively, except that other
accesses to the file are restricted to the same step (i.e., multiple assignments).

Figure 4-4illustrates the effect of multiple assignments within a step.

4-12

47 A2 12UJ Rev03

F3
Queued

Resource Management

Queued
4-13

P
S E

ASSIGN TO F1]
L F1 |

L w o
- = —
ol o <C
1W_| 1WD =0
N0 wn< N <<
E - - E - E
LFNW L= FOR
T><o =<0 =<z
Nl oy M oy !
.mrr wn 'wn L
ww e Wen
EnNURE nNURE WRE
I=<O =<0 2<o0
NDNIO NITO »nIO
NN <C nN<C nnN<C
<C <C <C

File Sharing Example

[CLOSE FILEL1 WITH LOCK]

Figure 4-4.

47 A2 12UJ Rev03

JCL User's Guide

NOTES:

1. Sharing is possible on disk only. A tape user always has exclusive read
access or exclusive write access.

2. If space is being allocated for a file within a step (ALLOCATE), the file
can only be accessed from within the step. In other words, the values
WRITE and READ for the ACCESS parameter are treated in this case as
SPWRITE and SPREAD respectively. The ALLOCATE must refer to the
first ASSIGN statement for this file in the step.

3. When afile is passed (END=PASS), the sharing mode of the file remains
until the next ASSIGN for the file. This ASSIGN may declare a new
(or the same) sharing mode.

4. The system does not check that the sharing mode requested is supported by
the file organization. You should make sure that the two are compatible.

5. The catalog contains SHARE information. If the value of SHARE
specified via ASSIGN (either explicitly or implicitly default) is different
from that stored in the catalog, then the catalog sharing information is used
but the step has exclusive use of the file (equivalent to SP). If the
information is the same then no problem arises.

6. The special value RECOVERY for the ACCESS parameter is reserved for
recovery purposes of a cataloged file in the state ABORT=LOCKED; the
step has exclusive access to such a file (see Catalog Management Manual).

The following apply when GAC is not used for file sharing:

Sharing in batch, IOF and under QUERY is controlled at file level; that is, a user
is granted or denied access to the entire file. Therefore, if you want exclusive
access to a single record in a file, once this access is granted other users are
prevented from accessing any record in the file.

Sharing in batch, IOF and QUERY is controlled for the duration of the current
step on the basis of the assignment of a file; that is, conflicting requests are
gueued until the completion of the step currently accessing the file (or until the
file is deassigned).

Under batch, IOF and QUERY, the default rule (if nothing else is specified) is
that no more than one user can write to a file at any one time.

You may override this rule if you choose, but if you do, then to preserve the
integrity of the data you must either (i) take care that your actions do not lead to
inconsistent data or (ii) establish synchronization controls.

Under TDS, no concurrent write access is permitted to non-controlled files
(i.e., where GAC does not apply), even among users (transactions) in the same
TDS Job.

Any sharing of a file among users in different processing environments

(e.g., between batch and QUERY users or between batch and TDS users) is subject
to the above constraints: only one writer at a time, control at the level of the file

and the step.

4-14

47 A2 12UJ Rev03

Resource Management

4.6 File Sharing With GAC

File sharing where GAC is active is discussed in the following paragraphs.

GAC is activated by specifying SHARE=MONITOR in the ASSIGN JCL
statement for uncataloged files or in the catalog for cataloged files. Concurrent
access to a file between GAC users and non-GAC users is not possible.
Consequently, if a file is assigned to a user under SHARE=MONITOR, access will
be denied (until the file is released) to users who wish to assign the file with any
other value of SHARE. Conversely, if a file is currently assigned to a user with
SHARE=any value (except MONITOR), users wishing to assign the file under
SHARE=MONITOR will be denied access.

This fact should be borne in mind during job and job class scheduling. Jobs which
share a file under SHARE=MONITOR should not be run concurrently with jobs
which share the same file under any other value of SHARE.

GAC permits several simultaneous accesses (reads, writes) from several programs
to the same files. Each program has a coherent view of the files irrespective of
what the other programs are doing.

While a file is being shared under GAC (that is, SHARE=MONITOR), sharing is
controlled at the CI (Control Interval) level at access time. This should be
contrasted with the situation without GAC where file sharing is applied at the file
level (i.e., access is granted or not granted to the whole file) at assign time. Under
GAC, afile can be accessed and updated concurrently by batch, transactional
(TDS), IOF, and QUERY users. Even though users do not have exclusive access to
the file, the consistency and integrity of data is ensured. Deadlock situations (e.qg.,
where User A cannot proceed until User B releases a Cl and User B cannot proceed
until User A releases a Cl) are resolved automatically.

47 A2 12UJ Rev03

4-15

JCL User's Guide

4.7 Expiration Dates

4.7.1 Introduction

The existence of an expiry date on a file provides security against an accidental
deallocation of the file (or against a simple overwriting with a new file if an
uncataloged tape file is concerned). However, note that it does not prevent a
program from modifying the contents of the file (in output, append, or update
processing mode); it is the file space that is protected, not the file contents.
Expiration dates apply to permanent files only. The date is recorded in the file
label.

4.7.2 Uncataloged Tape Files

The expiry date is set, through the EXPDATE parameter of the ASSIGN statement,
when the file is opened in output processing mode. For example:

ASSIGN IFN, FILE1, DEVCLASS=MT/T9, MEDIA=1600
EXPDATE=94/10/1,

Later on, the same parameter can be used to modify the expiry date when the file is
assigned in output processing mode.

If you want to re-utilize the same tape for another file before the expiration date of
the file is over, you must use the VOLPREP utility with the BYPASS parameter.
For example:

VOLPREP OLD=(DEVCLASS=MT/T9, MEDIA =1600)
NEW=(DEVCLASS=MT/T9, MEDIA =1600)
BYPASS;

4-16

47 A2 12UJ Rev03

Resource Management

4.7.3 Cataloged Tape Files

A cataloged tape file must be preallocated. The expiry date can be set at that time.
For example:

PREALLOC PROJECT.FILEA, DVC=MT/T9
BFAS=(SEQ=(BLKSIZE=1024, RECSIZE=200))
GLOBAL=(MEDIA=1600)

FILESTAT=CAT, CATALOG=1, CATNOW
EXPDATE=94/10/1;

It can be set later (or modified if set at allocation time) through the EXPDATE
parameter of the ASSIGN statement, when the file is opened in output mode.

If you want to deallocate the file before the expiry date is over, you must use the
BYPASS parameter of the DEALLOC utility. For example:

DEALLOC PROJECT.FILEA, UNCATNOW, BYPASS;

4.7.4 Uncataloged Disk Files

There are two ways of setting (at allocation time) the expiry date of uncataloged
disk files, depending on the method chosen to allocate the file: using ALLOCATE
or PREALLOC. For example:

- the first way, using ALLOCATE

ASSIGN IFN, FILE1, DVC=MS/D500, MD=K047
EXPDATE=94/10/1,
ALLOCATE IFN, SIZE=50, UNIT=CYL;

» the second way, using PREALLOC

PREALLOC FILE1, DVC=MS/D500
BFAS = (SEQ= (BLKSIZE=1024, RECSIZE=200))
GLOBAL = (MEDIA=K047, SIZE=50)
FILESTAT = UNCAT
EXPDATE = 94/10/1;

The expiry date can be set later (or modified if set at allocation time) by using the
EXPDATE parameter of the ASSIGN statement when the file is opened in output
or update mode. It is also possible to modify the expiration-date or/and the efn of
the file using the utility program FILMODIF. For example:

FILMODIF
INFILE = (PAYFILE, DVC=MS/D500, MD=K047)
OUTFILE = (PAYROLL, EXPDATE=94/1/1),

47 A2 12UJ Rev03 4-17

JCL User's Guide

The efn of the file is changed from PAYFILE to PAYROLL and the new expiry
date is 94/1/1.

If you want to deallocate the file before the expiry date is over you must use the
BYPASS parameter of the DEALLOC utility. If you want to carry out volume
preparation of a disk containing files that have unexpired expiration dates, you
must also use the BYPASS parameter in the VOLPREP utility.

4.7.5 Cataloged Disk Files

There is only one way of setting, at allocation time, the expiry date of a cataloged disk
file since the only way to allocate space for such a file is via the PREALLOC utility.
For example:

PREALLOC PLANT1.PAYFILE, DVC=MS/D500
BFAS = (SEQ = (BLKSIZE=1024, RECSIZE=200))
GLOBAL = (MEDIA=K047, SIZE=50)

FILESTAT = CAT, CATALOG=1, CATNOW
EXPDATE = 94/10/1;

Expiry date and efn can be modified in the same way as for uncataloged disk files.
The BYPASS parameter is necessary to deallocate the file before the expiration
date is over. However, you cannot use VOLPREP on a disk volume containing
cataloged files (except for recovery purposes by the SYSADMIN project using the
FORCE parameter). Such files should be deallocated before VOLPREP is used.

EXPDATE can be expressed in three different ways:

1. YY/MM/DD year, month, day

2. YY/DDD where DDD is the number of the day in the year

3. DDD where DDD is an expiry period, i.e., the number of days added to the
date of the run that sets the expiry date.

EXAMPLE :

If a program is run on the 95/1/14, then EXPDATESs of 95/2/14, 95/45 or 31 are
equivalent.

EXPDATE should not be confused with RETPER (Retention Period) which is
recorded in the catalog entry of a generation-group. RETPER is used every time
you record a new-generation to automatically calculate the expiry date of the run.
Since every generation of a group has a different name (due to the different
generation number), the protection of the space also provides a protection of the
contents. It is possible to override the RETPER mechanism by giving an
EXPDATE in the ASSIGN statement of a generation when you write it. For more
details refer to th€atalog Management User's Guide Manual.

O

4-18

47 A2 12UJ Rev03

Resource Management

4.8

48.1

Device Management

In theory, the number of devices needed to run a step will be equal to the number of
different volumes which are specified in all the ASSIGN statements in the step
description. In practice, there are two areas of application where device utilization
can be minimized. These concern the mounting of multi-volume files and the
situation where different files using the same (type of) device are processed one
after another rather than simultaneously.

NOTE:
For specific use of cartridge devices via a cartridge library, refer to the
Cartridge Tape Library User's Guidar CTL-UNIX Server User's Guide

Mounting of Multi-volume Files

The default is that just one volume is mounted at a time. The default options
correspond to the default values of the MOUNT parameter of the ASSIGN
statement.

Since only one tape is actually required at any moment an assignment of the
following type can be made:

ASSIGN IF1, EF1, DEVCLASS=MT, MEDIA=(M4T1, M4T2, MAT3, MAT4);

so that only one drive is requested instead of four. In this case, as MOUNT has not
been specified, the default MOUNT=1 applies. The MOUNT parameter in the
ASSIGN statement indicates the number of volumes to be mounted simultaneously.
The use of MOUNT is obviously essential when there are not sufficient devices
available for all the volumes of a file.

The most useful values of MOUNT for multi-volume tape files are MOUNT = 1
and MOUNT = 2.

IF MOUNT = 1 is specified, or MOUNT is omitted, then only 1 tape drive will be
used for the file. At the end of each volume used, the volume will be replaced by
the next volume in sequence. Although it minimizes device usage, this technique
does cause the program to be halted while the operator changes volumes.

With MOUNT = 2 only 2 devices are used for the file. However in this case the
operator can mount each volume in advance, so switching is not delayed by
operator intervention (sd€gure 4-5.

47 A2 12UJ Rev03

4-19

JCL User's Guide

COMM ‘ALL VOLUMES MOUNTED SIMULTANEOUSLY",
ASSIGN GLBE,REL.X,FILESTAT=UNCAT,DEVCLASS=MT/T9
MEDIA=(MA1,MA2,MA3,MA4),MOUNT=4;

MTO1 MTO02 MTO3 MTO04

COMM ‘MINIMUM DEVICE USAGE",
ASSIGN GLBE,REL.X,DEVCLASS=MT/T9
MEDIA=(MA1,MA2,MA3,MA4);

NOTE: As MOUNT=1is the default for tape, this parameter has been omitted
from the above ASSIGN statement.

MTO1 MTO02 MTO3 MTO04

COMM ‘'MOUNTING IN ADVANCE BY OPERATOR";
ASSIGN GLBE,REL.X,DEVCLASS=MT/T9
MEDIA=(MAL1,MA2,MA3,MA4),MOUNT=2;

MTOl MT02 MT03 MTO

Figure 4-5. Multi-volume Device Management
The use of MOUNT applies to both permanent and temporary tape files.

The MOUNT parameter continues to have effect when a normal tape file overflows
onto a WORK volume.

The MOUNT parameter can also be applied to the use of ASSIGN for multi-
volume files. MOUNT cannot be used on a file which has multiple assignments
(i.e., more that one ASSIGN in a job step, each having the same external file name
but a different internal file name). MOUNT is not allowed when a multi-volume

file is being allocated (for example, in conjunction with an ALLOCATE

statement).

The MOUNT parameter may be used with a device pool (see below). If an
ASSIGN statement specifies POOL, FIRST then the number of devices indicated
by MOUNT will be required at assign time. If POOL, NEXT is indicated, the
specified number of devices will be required only at open time.

4-20

47 A2 12UJ Rev03

Resource Management

4.8.2

Use of Device Pools

Normally the access to a particular device is granted exclusively to a file for the
duration of a job step. Suppose, however, an executing COBOL program contains
the following statements:

SELECT FILE1 ASSIGN TO F1.

SELECT FILE2 ASSIGN TO F2.

OPEN INPUT FILEL.

CLOSE FILE1 WITH LOCK.

OPEN INPUT FILE2.

This means that the file FILE1 is completely processed before processing begins on
file FILE2.

In the above case it would be possible to use the same device for F1 and F2. You
can inform GCOS that this is possible by using the POOL statement in conjunction
with the POOL parameter in ASSIGN:

POOL 1*CT/M5;
ASSIGN F1, MAX.Z, DEVCLASS=CT/M5, MEDIA=VOL1, POOL, FIRST, ..,;
ASSIGN F2, BMY.l, DEVCLASS=CT/M5, MEDIA=VOLZ2, POOL, FIRST, ...;

Thus only one cartridge device will be reserved for the use of the pooled files.

A device pool can be specified by the use of a POOL statement together with
ASSIGN statements (one for each file accessing the "pool”). The device pool
technique depends on the logic of the processing program. When the program has
completed the processing of a file it must signal to GCOS that the file can be
deassigned, thus freeing the devices assigned to the file. In COBOL this is done as
indicated in the example by the indication of WITH LOCK in the CLOSE verb. A
further example of device pool usage follows.

47 A2 12UJ Rev03

4-21

JCL User's Guide

Suppose a COBOL program contains the following statements:

SELECT FC1 ASSIGN TO IFN1.
SELECT FC2 ASSIGN TO IFN2.
SELECT FC2 ASSIGN TO IFN3.

6PEN FC1.

ELOSE FC1 WITH LOCK.
OPEN FC2.

CLOSE FC2 WITH LOCK.
OPEN FC3.
CLOSE FC3.

Since the files are used sequentially only one device is necessary. The job
description could be:

$JOB ...
STEP ..;
POOL MT/T9/D1600;
ASSIGN IFN1, FIRSTFILE, DEVCLASS=MT/T9, MEDIA=VOLA
POOL, FIRST;
ASSIGN IFN2, SEC.FILE, DEVCLASS= MT/T9, MEDIA=VOLB
POOL, NEXT,
ASSIGN IFN3, THIRD-FILE, DEVCLASS= MT/T9, MEDIA=VOLC
POOL, NEXT;
ENDSTEP;
$ENDJOB;

The mounting of volume VOLA will be requested before the load module
execution is initiated. When the OPEN FC2 is executed, volume VOLB will be
mounted and when OPEN FC3 is executed, volume VOLC will be mounted. This
job is able to run with only one device rather than three.

4-22 47 A2 12UJ Rev03

Resource Management

In the examples so far only one device has been pooled. In general a device pool
may contain more than one device. If in the first example the cartridge files
MAX.Z and/or BMY. | were each on two volumes, the POOL statement would be:

POOL 2*CT/M5

The device pool is constructed as follows:

The POOL statement defines and reserves the number of devices of a particular
device type to be placed in the pool.

The POOL parameter of the ASSIGN statement indicates that the device to be
used for the current file must be selected in the pool for that device.

The DEVCLASS or DVIDLIST parameter specifies what type of device is to be
selected. The recommended practice is to use the POOL statement with the
device class parameter (DEVCLASS), so that the required number of devices is
free but no explicit declaration is made concerning which physical devices are
members of the pool.

The FIRST parameter indicates that the named volume should be mounted at
assign time. The sum of all the volumes of the files for which FIRST is
specified (for multi-volume files that includes the value of MOUNT where
FIRST is specified) must not exceed the minimum number of devices specified
in the POOL statement.

The NEXT parameter indicates that the volume mounting will be requested only
at open time. However GCOS checks at the time of assignment that the file is
not already being used, and the step will be kept waiting if the volume or the file
is not accessible.

As shown already, a device pool can be specified for disk and tape or cassette
device types. The files may be temporary or permanent. There is no restriction on
the use of MOUNT in conjunction with device pools.

47 A2 12UJ Rev03

4-23

JCL User's Guide

EXAMPLE :

STEP...,

POOL2*MS/D500;

POOL1*MT/TY;

ASSIGN F1, AX.BM, DEVCLASS=MS/D500, MEDIA=4D2S, POOL, FIRST;
ASSIGN F3, AX.BT, DEVCLASS=MS/D500, MEDIA=4D2E, POOL, FIRST;
ASSIGN F2, AX.BP, DEVCLASS=MS/D500, MEDIA=4D20, POOL, NEXT;

ASSIGN F4, AX.BZ, DEVCLASS=MS/D500, MEDIA=4D2P, POOL, NEXT;

ASSIGN F5, AX.CD, DEVCLASS=MS/D500, MEDIA=4D2Z,

ASSIGN F6, P4.DI, DEVCLASS=MT/T9, MEDIA=(T41, T42, T43),
POOL FIRST;

ASSIGN F7, P4.DP, DEVCLASS=MT/T9, MEDIA=T63, POOL, NEXT;

ASSIGN F8, P4.D3, DEVCLASS=MT/T9, MEDIA=T71;
ENDSTEP;

O

In the above example, if POOL had not been used we would require 5 disk drives
and 3 tape drives. With POOL we require 3 disk drives (2 for files F1, F2, F3, F4
(1 for F5) and 2 tape drives (1 for F6, F7: 1 for F8). Note that the disk file AX.CD
and the file P4.D3 do not access pooled devices.

NOTES:

1. You should ensure that the number of volumes in a pool that are
simultaneously required is always less than or equal to the number of
corresponding devices in the pool.

2. All ASSIGN statements for a particular device pool may specify POOL,
NEXT. This is particularly useful when the order in which the opening of
the files will take place is not necessarily known in advance.

4-24

47 A2 12UJ Rev03

5. Maintenance of Stored JCL and Parameter
Substitution

Introduction

When a set of JCL statements is to be used more than once, it is convenient to store
it in a member of a library file from which it may be accessed as required. The set
of statements may be part of a job description (referred to as a JCL sequence) or it
may consist of one or more complete job descriptions (referred to as a job stream).

By means of the RUN statement, you can submit to the Stream Reader a stored job
stream for translation and execution. Alternatively, you can insert a stored JCL
sequence into a current job at translation time (INVOKE) or at execution time
(EXECUTE). Details of these statements are given id@ieReference Manual

Job streams and JCL sequences can be stored in members of permanent library
files. You can create and maintain each library member by means of LIBMAINT,
which has its own comprehensive text editing facility, or by the Full Screen Editor
(FSE). Refer to theibrary Maintenance User Guider full details on the
maintenance of library files.

In addition, the system provides a "mini" editing facility and a parameter
substitution facility, so that you can modify stored JCL sequences and job streams
dynamically to suit the requirements of a particular job run.

Figure 5-1gives an example of the corresponding job description. Note that since
only one job is involved here, an INVOKE or an EXECUTE statement could be
used (provided the $JOB and $ENDJOB statements are removed from the stored
file and there are no input enclosures).

47 A2 12UJ Rev03

5-1

JCL User's Guide

$JOB ...;
COMMENT'IT IS ASSUMED THAT THE LIBRARY GEN.JCL
HAS ALREADY BEEN ALLOCATED';
COMMENT'STORE JCL STATEMENTS ON SUBFILE NEWJCL
OF LIBRARY FILE GEN.JCL';
LIBMAINT SL
LIB=GEN.JCL
COMFILE=*INDATA,;
SINPUT INDATA;
MOVE COMFILE:NEWJCL, TYPE=JCL, NUMBER;

< JCL statement>

$ENDINPUT,;
$ENDJOB,;

Figure 5-1. Example of Storing JCL in a Library Member

5.2 47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

5.2 Run, Invoke, and Execute

An important difference between the use of RUN and INVOKE (or EXECUTE)
concerns the processing of the job description. RUN requests the scheduling for
execution of a job stream (the "spawned" job) that is independent of the job issuing
the RUN statement (the "spawning" job). The spawning operation is activated
when the RUN statement is encountered during the execution of the original job.
Suppose, for example, a spawned job contains statements that request the updating
of a data file. Since the execution of the spawned job depends on its scheduling
parameters and on the current job environment, the spawning job can make no
assumption concerning the updating of the file. Therefore it would normally be

bad practice if, subsequent to the RUN statement, the spawning job contained a
statement which accessed the same data file.

The use of INVOKE causes a sequence of JCL statements to be inserted directly
into the current job description in place of the INVOKE statement itself. This
operation is performed at JCL statement translation time (any INVOKE statements
encountered within this sequence are also replaced at JCL translation time). These
statements are then executed, in order, as part of the current job.

Note that a JUMP statement cannot be used to jump to an INVOKE statement, nor
to any other translator statement.

Unlike the INVOKE statement, EXECUTE is activated at execution time; no
replacement is made at JCL translation time. INVOKE is static in the sense that a
sequence of JCL statements is inserted into a job description at translation time and
thus becomes part of the job description. EXECUTE is dynamic since the
sequence to be executed is not identified and translated until execution time and,
once the sequence has been executed, it has no further significance to the job
description that contains the EXECUTE statement. Therefore EXECUTE
represents at least two steps at job execution time, the first step is the translation of
the sequence, then execution of enclosed steps; i.e., translation and execution.

The operator SJ and SI commands perform the same function as RUN but may be
entered from the operator's console or by an IOF user. The operator can exercise
subsequent control over any job using other operator commands (in particular, the
MJ command).

47 A2 12UJ Rev03 5-3

JCL User's Guide

NOTES:

1. Although there can be a marked difference in the effect of INVOKE and
EXECUTE, most of the rules for the use of the statements are identical.
At the end of this Section there is a comparison between the two
statements ("Differences between INVOKE and EXECUTE"); elsewhere
in the Section, where there is a general explanation or example that applies
to both statements only the INVOKE statement is used, in order to
simplify the discussion.

2. In this Section, the terms 'INVOKEd' and 'EXECUTEGAd' will be used to

identify stored JCL sequences that are accessed by INVOKE and
EXECUTE respectively.

5-4

47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

Use of Run

Throughout this discussion, the information given about the RUN statement is also
applicable to the operator SJ and S| commands.

Parameters of the $JOB statements of a spawned job or jobs are computed from:

» parameters of the $JOB statement (if any)
» parameters of the RUN statement
» parameters of the $JOB statement of the spawning job or log-on parameters.

If the job stream referred to by RUN contains more than one job, each job must be
delimited by $JOB and $ENDJOB statements. However, if the job stream contains
only one job it is possible to omit the $JOB and $ENDJOB statements. In such a
case, the job-name is assumed to be the same as the member-name specified in the
RUN statement. If member-name exceeds 8 characters, then only the first

8 characters are used, the user-name is assumed to be the same as that of the RUN
statement, and the REPEAT parameter cannot be specified.

The parameters of the $JOB statement for each stored job override those of the
RUN statement and those of the $JOB statement of the spawning job or log-on
parameters. The following rules apply:

job-name Job-name in stored $JOB statement.

user-name User-name in stored $JOB statement. Note that
user-name is optional in a stored $JOB statement.

project-name Project-name in stored $JOB statement;
if none, spawning job's project.

billing-name Billing-name in stored job;
if none, spawning job's billing.

job-class Parameter of RUN statement;
if none, parameter of stored $JOB statement;
if none, default class of project as stored in the catalog;
if none is specified in the catalog, class P.

scheduling-priority Parameter of RUN statement;
if none, parameter of stored $JOB statement;
if none, default associated with spawned jobclass.

HOLD Parameter of RUN statement or parameter of stored
$JOB statement;
HOLD is considered as present if it is present in either
statement or both).

47 A2 12UJ Rev03

5-5

JCL User's Guide

HOLDOUT Parameter of RUN statement or parameter of stored
$JOB statement. HOLDOUT is considered present if
it is present in one statement or both).

REPEAT Parameter of stored $JOB statement.
A summary of these relationships is showiable 5-1

The above rules can also be expressed by the fact that identification is given by the
stored job description in preference to the spawning job, while, on the other hand
processing information comes from the spawning job in preference to the stored
job description.

Table 5-1. Example of Storing JCL in a Library Member

PARAMETER | RUN | STORED |SPAWING DEFAULT
SJ/SI JOB JOB

Job-id 2 1 - member-name*

User-id - 1 2 -

Project - 1 2 catalog

Billing - 1 2 catalog

Job-class 1 2 - default class of project

Sch-pr 1 2 - class default

HOLD 1 1 - not held

HOLDOUT 1 1 - not held

REPEAT - 1 - not repeat

The spawning job can pass information to spawned jobs through the use of
switches (see th#CL Reference ManuaRUN statement).

In installations that have implemented Access Rights, only the main operator may
launch jobs for other users. For example:

if USER = X in the $JOB statement of the stored job, a user with USER not equal
to X cannot launch the stored job.

The following examples illustrate the handling of $JOB parameters in spawned
jobs.

5-6

47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

EXAMPLE 1:

Assume that a job stream containing a single job with job name T32 (in its $JOB
statement) has been stored in member TUES32 of library JOBS.LIB. The
spawning job could be:

$JOB LONDON, USER = X123, PROJECT = INVHQ, CLASS = L;
RUN TUES32, JOBS.LIB;

$ENDJOB;

The spawned $JOB statement would be:

$JOB T32, USER = X123, PROJECT = INVHQ, CLASS = P;

where T32 comes from the stored $JOB, X123 and INVHQ come from the
spawning $JOB, and P is the default.

Now, if instead the RUN statement were:

RUN TUES32, JOBS.LIB, CLASS =K, HOLD, PRIORITY =2;

The spawned job would have a $JOB statement of the form:

$JOB T32, USER = X123, PROJECT = INVHQ, CLASS =K,
HOLD, PRIORITY =2;

where T32 comes from the stored $JOB, X123 and INVHQ come from the
spawning $JOB, and K, HOLD, 2 come from RUN.

O

47 A2 12UJ Rev03 5-7

JCL User's Guide

EXAMPLE 2:

Assume that a job stream containing two jobs has been stored in member WED32
of library JOBS.LIB. The spawning job could be:

$JOB LONDON, USER = X123, PROJECT = INVHQ, CLASS = L;
RUN WED32, JOBS.LIB;
$ENDJOB;
Assume also that the $JOB statement of the stored jobs were:
$JOB MONDAY, USER = AQ47, PROJECT = BRW, CLASS = M;
$JOB TUESDAY, USER = AQ48;
The spawned $JOB statements would be:
$JOB MONDAY, USER = AQ47, PROJECT = BRW, CLASS = M;
where MONDAY, AQ47, BRW, M come from the stored $JOB.

$JOB TUESDAY, USER = AQ48, PROJECT = INVHQ, CLASS = P;

where TUESDAY, AQ48 come from the stored $JOB, INVHQ comes from the
spawning $JOB, and P is the default.

O

NOTE:
The use of RUN for the control of interdependent jobs (i.e., jobs whose
processing is consequent to the execution of other jobs) is described in
Section 6.

5.8 47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

54 Use of

Invoke And Execute

The INVOKE statement refers to a stored JCL sequence. The INVOKE statement
is replaced by the referenced JCL sequence as described above. Note that the
stored JCL sequence must not contain JCL statements which are handled by the
Stream Reader ($JOB, $SENDJOB, $INPUT, SENDINPUT, $DATA, $SENDDATA

or $SSWINPUT).

Suppose that member PREA of library JOBS.ILIB contains the following

statements:

PREALLOC MYFILE.INV
DEVCLASS=MS/D500, FILESTAT = CAT
GLOBAL = (MEDIA = C112, SIZE =5)
UFAS = (SEQ = (CISIZE = 1024, RECSIZE = 100));
Then the job:
$JOB NEW, USER = PETER, PROJECT = MARY;
INVOKE PREA, JOBS.ILIB;
STEP LML1...;
ENDSTEP;
$ENDJOB;

will be equivalent to the job:

$JOB NEW, USER = PETER, PROJECT = MARY;
PREALLOC MYFILE.INV
DEVCLASS = MS/D500, FILESTAT = CAT
GLOBAL = (MEDIA = C112, SIZE = 5)

UFAS = (SEQ = (CISIZE = 1024, RECSIZE = 100));
STEP LML1...

ENDSTEP;

$ENDJOB;

47 A2 12UJ Rev03

5-9

JCL User's Guide

54.1 Input Enclosures Referenced from Stored JCL

As $INPUT and $ENDINPUT cannot be used in an 'INVOKEd' stored JCL
sequence, then, an input enclosure cannot be contained in such JCL sequences.
However, the sequence 'INVOKEd' can reference input enclosures of the job
containing the INVOKE statement, as shown in the following example. Consider a
job of the form:

$JOB...;

SORT INFILE = (...), OUTFILE = (...)
COMFILE =*ORDER;
$INPUT ORDER;

<sort commands>

$ENDINPUT;
$ENDJOB;

A JCL sequence of the form outlined below can be stored under the name PETER
in library MY.JCLLIB:

SORT INFILE = (...), OUTFILE = (...)
COMFILE = *ORDER;

A job of the following form can invoke the above sequence:

$JOB...;
INVOKE PETER, MY.JCLLIB;
$INPUT ORDER;

sort commands

$ENDINPUT;
$ENDJOB;

obtaining the same result as the original job.

5-10

47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

5.4.2 Independence of INVOKEd JCL Sequences

Labels

A label which is defined inside an INVOKEd JCL sequence cannot be referenced
outside the sequence. In addition, it is not possible to jump outside the sequence.
Therefore you can define the same label name both inside and outside the sequence
with no subsequent ambiguity.

For example, using the following stored JCL sequence named MYJCL:

STEP LM1...,

ENDSTEP;
JUMP A, STATUS, NE, 0;

STEP LM2...,

ENDSTEP;

A

The following job description:
$JOB,,,;

A:STEP S1,...;

ENDSTEP;
JUMP A, STATUS, EQ, 12;
INVOKE MYJCL;

$ENDJOB;

47 A2 12UJ Rev03 5-11

JCL User's Guide

will effectively become:

$JOB...

A:STEP S1,...;

ENDSTEP;
JUMP A, STATUS, EQ, 12;

STEP LM1...,

ENDSTEP;
JUMP A, STATUS, NE, O;

STEP LM2...,

ENDSTEP;
A"

$ENDJOB;

NOTE:

'A"is not a legal label, but is used in the above example to show the distinction
between label A in the job containing the INVOKE and label A in the

INVOKEd enclosure.

Independence of INVOKEd sequences also applies to parameter value
substitution by means of the VALUES statement. If a VALUES statement
appears in an INVOKEd sequence, it applies only to that JCL sequence.

5-12

47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

LIB Statement

A LIB statement in the job (or JCL sequence) that contains the INVOKE will apply
within a sequence that does not itself contain a LIB statement. In other words, if
there is a LIBMAINT, but no preceding LIB, in the sequence, the search path
declared in the job or sequence that contained the INVOKE will apply to the
LIBMAINT statement. However, a LIB statement within the invoked sequence
(i.e., sequence invoked via the INVOKE) is effective only within this sequence.
Thus after the INVOKE statement, the last LIB statement of the main JCL
sequence is again applicable to the main sequence.

A LIB statement in a main JCL sequence is not applicable to an executed JCL
sequence (i.e., a sequence executed via the EXECUTE statement). A LIB
statement within the executed sequence is effective only within this sequence (it is
not applicable to the main sequence after the EXECUTE statement).

47 A2 12UJ Rev03

5-13

JCL User's Guide

The effect of a LIB statement with INVOKE, EXECUTE, and $SWINPUT
(described later in this section) is shown in the following examples.

@ LIB SL INLIBI=(MYLIBA); Contents of member MYJCL

> SCOPE :
of (1) > SCOPEof 1)
. J . - 0
INVOKE MYJCL, (MYLIBA); (2) LIBSL INLIB1=(MYLIBB);
- SCOPE - » SCOPE of 2)
ol 2) -
. J
(3) LIB CU INLIB1=(.MYLIBC)
INLIB2=TEMP;
SCOPE of
Zana3)
$ENDJOB;

The first LIB statement defines .MYLIBA as the input JCL library. The LIB
statement of the invoked sequence overrides this, so that the input SL becomes
.MYLIBB. However, the scope of this override is limited to the invoked sequence
itself, so that the original input SL library .MYLIBA becomes effective again after
the INVOKE statement.

The third LIB statement defines a CU library search path. As this LIB statement is
for a different type of library (namely CU), it does not override the LIB SL
statement and .MYLIBA remains the effective input SL library.

5-14 47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

(1) LIB SL INLIB1=(.MYLIBA);

Contents of member MYJCL
SCOPE .
>of<> .}SCOPEofC>
. / :
. <:) LIB SL INLIB1=
FXECUTEMYJCL(MYUBA! (MYLIBB)
> SCOPE :
o 2] . SCOPE of (2)
(3) LIB CU INLIB1=(.MYLIBC)
INLIB2=TEMP:
SCOPE of
(2)and(3)
$ENDJOB;

This example is similar to the previous example, except that the INVOKE has been
replaced by an EXECUTE. Note that the LIB statement of the main sequence is
not applicable within the sequence MYJCL. The LIB statement within MYJCL

has no effect in the main sequence, so LIB statement no 1 is again effective after
the EXECUTE statement.

47 A2 12UJ Rev03 5-15

JCL User's Guide

@ LIB SLINLIBI=(.MYLIBA); Contents of member MYJCL

SCOPE
SCOPE of
of @ 0 @
$SWINPUT MYJCL, (MYLIBA); @ (LIBYSLLlEi';)L.lBlz
SCOPE : SCOPE of@

(3) LIB CU INLIB1=(.MYLIBC)
INLIB2=TEMP;

SCOPE of

@and@
ZSISENDJOB;

This example is similar to the two previous examples, except that the contents of
MYJCL are "inserted" into the main sequence using the $SWINPUT statement.
The $SWINPUT statement is processed by the Stream Reader, which logically
replaces the $SWINPUT by the contents of MYJCL. The JCL Translator processes
the sequence as if it were a single main sequence. Consequently, the LIB
statements take effect as they would if they were all in the main sequence, i.e., 1 is
overridden by 2, which remains effective until another LIB SL is encountered.

5-16 47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

Nested INVOKE Statements

A stored sequence may itself contain INVOKE and/or EXECUTE statements.

These statements can in turn refer to stored sequences that contain INVOKE and/or
EXECUTE statements, and so on. However, whereas there is no control over the
number of levels of "nesting" for EXECUTE, INVOKE statements can be nested
only up to a depth of nine levels. Any INVOKE statement in a stored sequence

that is referred to by an EXECUTE statement will not be translated and replaced
until the EXECUTE itself is executed. The above rules concerning the
independence of stored sequences apply to each level of nesting.

Invoking or Executing Input Enclosures

Sequences of JCL statements can be INVOKEd or EXECUTEd from input
enclosures, rather than from stored files. You can take advantage of this facility for
testing and debugging purposes before storing a JCL sequence in a library.

FOR EXAMPLE :

$JOB...;
INVOKE *TEST;
$INPUT TEST;

STEP LM1...,

ENDSTEP;
$ENDINPUT;
$ENDJOB;

will become after translation

$JOB ...;
STEP LML1...;
ENDSTEP;

$ENDJOB;

O

47 A2 12UJ Rev03

5-17

JCL User's Guide

545 Difference Between INVOKE and EXECUTE

The JCL Translator replaces INVOKE statements at job translation time (unless
such statements are contained in a stored sequence subject to an EXECUTE
statement). This implies the following:

« INVOKE cannot refer to a JCL sequence which is created in a previous step in
the same job; nor can it take account dynamically of any file updates which may
be made during job execution.

« The JCL translator does not act as a user step, in the following sense: if the
INVOKE statement references a library on a volume which is not resident or not
known to the system at JCL translation time, then it will not ask the operator to
mount the volume, nor will it wait for the volume to be mounted. The job is
aborted at JCL translation time so that the translation of other jobs will not be
delayed. Therefore, if you reference a non-resident library via an INVOKE
statement, you must ensure that the volume is mounted before the job is input to
the system.

The above restrictions can be avoided by using the EXECUTE statement as
described in the note below.

A useful feature of the EXECUTE statement is that if a particular EXECUTE
statement is executed several times in the same job (for example, by means of a
JUMP statement), it is possible for a different version of the sequence to be created
each time. For example, the file that contains the sequence may be modified using
LIBMAINT between each execution of the EXECUTE statement. See the section
"Sequence Maodification and Error Processifigr a discussion of this technique.

To summarize, the choice between using INVOKE and EXECUTE depends upon:

1. whether the stored JCL statements are on a resident disk, or a non-resident
disk which is not mounted:;

whether the insertion of JCL can be static or must be done dynamically;

whether you wish to have all JCL errors detected before any step is started, or
at job execution time.

5-18

47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

NOTE:
Use of INVOKE with Non-Resident Libraries

As mentioned above, an EXECUTEd JCL sequence can contain INVOKE
statements. Such statements, because they are translated at job execution time, are
not subject to the above restrictions. To force the mounting of the required
volume(s) in advance of the INVOKE statement, the following steps are required:

1. Putthe appropriate INVOKE statement in an input enclosure, or store it in a
library member.

2. Specify in a LIB statement the library that contains the stored JCL sequence
that is to be INVOKEQd.

3. Below the LIB statement, add an EXECUTE statement that refers to the input
enclosure or library member containing the INVOKE.

FOR EXAMPLE :

LIB SL, INLIB1 = (TOOLS.SLLIB, DEVCLASS = MS/D500, MEDIA = TEAM15)

INLIB2 = (TEST.SLLIB, DEVCLASS = MS/D500, MEDIA = EXP42);

EXECUTE *MY — ENC,

At step-initiation of the EXECUTE statement, as the libraries TOOLS.SLLIB and
TEST.SLLIB are assigned to the step, the operator is requested to mount the
volumes TEAM15 and EXP42. Then, if the input enclosure MY-ENC is as
follows:

$INPUT MY-ENC;
INVOKE MY-WORK, (TOOLS.SLLIB, DEVCLASS = MS/D500, MEDIA = TEAM15);

INVOKE TEST-WORK, (TEST.SLLIB, DEVCLASS = MS/D500, MEDIA = EXP42);

$ENDINPUT;

the statements will be translated successfully, because the volumes TEAM15 and
EXP42 are already mounted.

O

47 A2 12UJ Rev03

5-19

JCL User's Guide

5.4.6

$SWINPUT Statement

The $SWINPUT statement can be used to switch the input stream reading from the
current stream (or file) to another named file. The file named must be available at
Stream Reader time (i.e., must not need volume mounting or other resources). The
CONSOLE option of $SWINPUT allows stream input to come from the console

(the console of the submitter if the submitter is a station operator, or the IOF
console if the submitter is an IOF user - if the console is not logged on, the job
aborts). This facility should be used with care, especially in larger installations, as
the Stream Reader is halted while it awaits operator input.

In the examples below, INFILE references files cataloged in the SITE.CATALOG.

EXAMPLE 1:

$JOB JOBNO-1, USER = XYZ, PROJECT = SW1;

$SWINPUT INFILE = SW1.FIL1;
$SWINPUT MEMNO1, INFILE = SW1.LIB;
ASSIGN INT,

$SWINPUT CONSOLE ="GIVE PRSONNEL FILE NAME'

ANSWERS = (SW1.HOME',SW1.OVERSEAS', 'SW1.LOCAL',SW1.OTHER),

CATALOG =2;

$ENDJOB;

The contents of the file SW1.FIL1 and of the member MEMNO1 of the library
SWL1.LIB are inserted in the job stream in place of the first two $SWINPUT
statements above. The contents of both of these files would be JCL statements
needed in the job description. Both files are processed through to end-of-file
condition.

5-20

47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

The third $SWINPUT statement is embedded in a JCL statement and refers to a
console. The message GIVE PERSONNEL FILE NAME will appear on the
console and the operator will be given 3 attempts to specify one of the 4 valid
replies listed in ANSWERS. Failure to supply a valid reply in 3 attempts will lead
to job abortion. If the operator replies SW1.PERS then the ASSIGN statement
becomes ASSIGN INT, SW1.PERS, CATALOG = 2;

EXAMPLE 2:

$JOB JOB-3, USER = MIKE, PROJECT = SW1;
STEP PROG], .LIB;

$SWINPUT INFILE = .JCL1;

$INPUT INDATA2 CKSTAT;

XXXXXXXX }

XHXXXXXXX }
$SWINPUT SUBL, INLIB = .LIB;
XHXXXXXXX }

XXXXXXXX }

$ENDINPUT ;
$ENDJOB ;

47 A2 12UJ Rev03

5-21

JCL User's Guide

Logically, this job is equivalent to the following,

JOB JOB-3, USER = MIKE, PROJECT = SW1,;

STE PROG1, SW1LIB;
XHXXXXXXX }

XXXXXXXX } contents of file SW1.JCL1

XXXXXXXX }
$INPUT INDATA2 CKSTAT ;

XXXXXXXX }
XXXXXXXX } data A
XXXXXXXX }

XHXXXXXXX }

XXXXXXXX } contents of subfile of library SW1.LIB

XXXXXXXX }

XHXXXXXXX }
XXXXXXXX } data B
XHXXXXXXX }

$ENDINPUT ;
$ENDJOB ;

The following points should be noted

(i)

(ii)

The CKSTAT (Check for Stream Reader Statement)
parameter must be specified on the $INPUT statement
for the input-enclosure INDATA2. This parameter
advises the Stream Reader that one or more
$SWINPUT statements may appear within the input-
enclosure data (i.e., any $SWINPUT statements are
recognized and acted on). If CKSTAT is omitted, then
$SWINPUT statements in the input enclosure are
treated as data (i.e., part of the input enclosure and not
interpreted as $SWINPUT statements). Note that for
processing efficiency, if there is no $SWINPUT
statement in the input enclosure, CKSTAT should be
omitted.

Within the limit of 10 levels of nesting, any humber of
$SWINPUT statements may appear in a job stream. It
is your responsibility to ensure that the final job
stream, after all the input switching has taken place, is
a valid job.

5-22

47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

EXAMPLE 3:

$DATA MEMBER-1, SW1.LIB, END = 'FINISH', CKSTAT :
XHXXXKXXK }

XHXXXKXXXK }

$SWINPUT SW1.FILE4 -

XHXXXXXXX }

XXXXXXXX }
FINISH
The data loaded into MEMBER-1 of the library SW1.LIB will be:

data A
contents of file SW1.FILE4
data B

The files SW1.LIB and SW1.FILE4 must be available at Stream Reader time.

CKSTAT is necessary as a $SWINPUT statement appears in the data to be
processed by $DATA.

EXAMPLE 4:

$SWINPUT CONSOLE ="FILE NAME?', ANSWERS = (A.B,'A.C','AD);

The message FILE NAME? will appear on the console. Valid operator replies are
A.B, A.C, or A.D. If none of these replies is given in three attempts, the job aborts.

EXAMPLE 5:
$SWINPUT CONSOLE = (DATA?''NEXT LINE'), END ="FINISH

The message DATA? is sent to the console to solicit the first line of data. After
each reply the message NEXT LINE is sent to request another line of data. This
process is repeated until the operator gives the reply FINISH. If the string 'NEXT
LINE' is omitted from the $SWINPUT statement then the message DATA? would
be used to solicit the second and subsequent lines of data.

O

47 A2 12UJ Rev03 5-23

JCL User's Guide

5.5 JCL Parameter Setting

5.5.1 Principles of Parameter Setting

There is often a need to use JCL sequences which differ from each other only in the
value of certain parameters (ifn, efn, media-name, etc.) with each of these
parameters likely to be found at several locations in the same sequence. JCL
parameter setting does away with the tedious job of having to duplicate "n" number
of times the same JCL, changing only these parameters.

The principle is simple.

« The parameter values are replaced in the JCL by "parameter references"
(consisting of the symbol & followed by a maximum of 8 letters or digits).

» The values of these parameters are set using certain JCL statements (VALUES,
in most cases).

« At translation time, the JCL Translator substitutes the corresponding parameter
value for each reference, and does so each time this reference is found in the
JCL being translated.

In this way, depending on the use, only statement(s) that set the parameter values
need be modified. The following basic example illustrates this principle:

VALUES SAVE-PARIS, SALES-PARIS, K116, 1602,
ASSIGN RESULT, &2, DVC = MS/D500, MEDIA = &3;

VOLSAVE VOLUME = (DVC = MS/D500, MEDIA = &3)
OUTFILE = (&1, DVC = MT/T9, MEDIA = &4);
Is the equivalent of:

ASSIGN RESULT, SALES-PARIS, DVC = MS/D500, MEDIA = K116;

VOLSAVE VOLUME = (DVC = MS/D500, MEDIA = K116)

OUTFILE = (SAVE-PARIS, DVC = MT/T9, MEDIA = 1602);

5-24 47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

The &1 reference was replaced by SAVE-PARIS, which is the first value in the list
given by VALUES. Similarly, &2 was replaced by SALES-PARIS, which is the
second value in the list. And &3 was replaced by K116, at the two locations where
it appears, by the third value in the list.

This subsection, detailing how JCL parameter setting works in GCOS, deals with
four main topics.

1. The first topic consists of the precise syntax of the parameter references and
how they are entered in the JCL text.

2. The second covers how, through the use of VALUES and MODVL
statements, the parameter values are substituted for their references in a direct
JCL stream; that is, directly entered without resorting to the RUN, INVOKE
or EXECUTE statements or the OCL SJ command.

3. The third covers parameter setting within sequences called up via INVOKE or
EXECUTE, as well as jobs initiated by RUN or the OCL SJ command.

4. The last topic is the special cases that arise when setting the Input Enclosures
parameters.

47 A2 12UJ Rev03

5-25

JCL User's Guide

55.2 JCL Parameter References

There are two types of parameter references: positional references and keyword
references.

5.5.2.1 Positional References

A positional reference consists of the & character followed by a 1 or 2 digit
number (maximum value 99).

EXAMPLES :
&11, &20, &03, &3

Note that the last two examples have exactly the same value. This reference is
called positional because the value of the corresponding parameter is given by a
positional parameter in the statement which defines the parameter value; the value
of the number following the & character gives the position of this parameter in the
definition statement. In the example given at the beginning of this subsection, all
the parameter values are positional and the VALUES statement gives the parameter
values in the form of a list of positional parameters.

O

5.5.2.2 Keyword References

A keyword reference consists of the & character followed by a string of up to 8
letters or digits. The first character in the string must be a letter.

EXAMPLES :
&KEYWORD &X1234567 &A1 &A01
Note that the last two examples are not the same.

This reference is called a keyword reference because the value of the
corresponding parameter is given by a keyword parameter in the statement that
gives parameter value. The parameter whose reference is & < Keyword > is
defined in the definition statement by < Keyword > = value.

5-26 47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

Going back to the first example, by using keyword references for both MEDIA
names we have:

VALUES SAVE-PARIS, SALES-PARIS
DISK = K116 TAPE = 1602,

ASSIGN RESULT, &2, DVC = MS/D500, MEDIA = &DISK;

VOLSAVE VOLUME = (DVC = MS/D500, MEDIA = &DISK)
OUTFILE = (&1, DVC = MT/T9, MEDIA = &TAPE);

The substitution of parameter values for their references gives the same results as
in the first example.

CAUTION:
In the above example, it so happens that the positional parameters are
replaced by positional references and that the keyword parameter values
are replaced by keyword references. This is not a rule. The opposite could
just as well have been done, or only keyword references could have been
used:

VALUES DISK = K116 TAPE = 1602
EFN1 = SALES-PARIS EFN2 = SAVE-PARIS;

ASSIGN RESULT, &EFN1, DVC = MS/D500, MEDIA = &DISK;

VOLSAVE VOLUME = (DVC = MS/D500, MEDIA = &DISK)
OUTFILE = (&EFN2, DVC = MT/T9, MEDIA = &TAPE);

In addition, such a rule would be illogical, as will be seen in the following
paragraphs where references may replace either part of a parameter or a set of
parameters.

O

47 A2 12UJ Rev03 5-27

JCL User's Guide

5.5.2.3 Location of Parameter References in the JCL

A reference (either positional or keyword) can be found anywhere in a job
description except in a Stream Reader Statement; (that is, statements which must
be preceded by the $ sign) because they are used by the Stream Reader (therefore
before translation and the substitution of parameter values for the references):
$JOB, $ENDJOB, $INPUT, $SENDINPUT, $SWINPUT, $DATA and $ENDDATA.

This means that a parameter reference, within a job description may be written in
the place of:

A single syntactic unit: ifn, efn, devclass, media-name, member-name, etc. This
is the case of all the references used in the above examples.

« A more or less complex expression corresponding to a set of parameters, or even
to one or more full JCL statements or including the end of one statement and the
beginning of the next one. The only requirement for this is that it be possible for
the "JCL portion" replaced by the reference to be defined by a string of
characters not exceeding a length of 128.

« A portion of a single syntactic unit: a name prefix or suffix, for example.

This freedom of use may lead to ambiguities in interpreting the written JCL text:
for example, does the expression &12ND represent positional reference &1
followed by 2ND, or positional reference &12 followed by ND? (it cannot be a
keyword reference because the character following the & sign is not a letter).

It is therefore necessary to be very familiar with the rules used by the JCL
translator in order to interpret texts which follow the & sign and to know where the
exact end of the reference is.

The JCL translator recognizes the end of a reference as soon as one of the
following three conditions is met:

1. Ifit encounters a character which is not part of the set authorized by the
syntax involved. In other words:

for a positional reference (beginning with a digit): any non-numeric character
(letter, space, ;: ? . etc.)

for a keyword reference (beginning with a letter): any non-numeric or non-
alphabetic character (space, ;: ? . etc.).

Example:in the expression
(&NAME.FILEA, DVC = MT/&1/&2, MEDIA = &3TAPE)
The keyword parameter &NAME is delimited by the . and positional

parameters &1, &2 and &3 are delimited by the characters /, and T
respectively.

5-28

47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

2. Ifit reaches the limit number of characters for the type of reference involved
without having encountered condition A above or condition C below (2 digits
for a positional reference or 8 letters or digits for a keyword reference).

Example:
&1234 is interpreted as being reference &12 followed by 34.

&KEYWORD12A is interpreted as being reference &KEYWORDL1 followed
by 2A.

3. Ifit encounters the symbol ||, two vertical lines, which are deleted when the
parameter value is substituted for its reference.

Example:
&1||234 is interpreted as being reference &1 followed by 234.

&KEYWORD]|12A is interpreted as being reference &KEYWORD followed
by 12A (and not &KEYWORD1 followed by 2A, as in B, above).

Practically speaking, the following two rules should be observed:

a. Parameter references can be placed anywhere in the JCL except in Stream
Reader statements.

b. The symbol || (! in IOF) is used to delimit references (C above) each time
the reference is not directly followed by a character authorized in the
syntax of a reference (A above) and it has not reached maximum length
(B above). (Most of the time, condition A occurs).

NOTE:
For reasons concerning the structure of the JCL translator analyzer, the double
vertical line is also required in the special case when a parameter reference ends
a job description on the last positions of a record preceding $SENDJOB.

In the remainder of this document, the distinction will no longer be made between
positional and keyword references; only parameter references will be referred to
without further precision because the procedure involved in substituting parameter
values for their references is the same in both cases. The only differences lie in the
way in which the values are defined in the definition statements for these values
and in the way in which the JCL translator analyzes their references in the text to
be translated. All this has been covered above. Thus, in order to reduce lengthy
examples, only positional references will be used.

47 A2 12UJ Rev03

5-29

JCL User's Guide

5.5.3 Procedure Involved in Substituting Parameter Values for References

5.5.3.1 How VALUES and MODVL Work in the "DIRECT STREAM"

A "direct stream", as used in our discussion, is a JCL stream entered directly, that
is, without resorting to INVOKE, EXECUTE, or RUN statements or to the OCL SJ
command.

The parameter setting procedure can be broken down into two steps:

 setting up a table giving the parameter values to substitute for the corresponding
references.

« substituting these values in the JCL text.

The first step is more or less complex depending on whether the VALUES
statement alone is used or whether both the VALUES and MODVL statements are
used, and depending on whether this is done in a direct stream or in a sequence
called in or initiated by INVOKE, EXECUTE, RUN, or SJ in combination with the
parameter values that these statements may provide themselves.

The second step is the same in both cases.

Going from simple to complex, the discussion will begin with an explanation of
VALUES in direct stream. This will also allow us to explain in detail the second
step; i.e., substituting the values for references in the JCL. The following
paragraphs will cover streams called in or initiated by INVOKE, EXECUTE, RUN
or SJ.

5.5.3.2 The VALUES Statement

Value Definitions in the VALUES statement

The VALUES statement is the easiest way to set up a table of values to be
substituted for references. It uses positional parameters to define the values to be
substituted for positional references and keyword parameters for the values to be
substituted for keyword references.

This values table applies to all statements which follow VALUES until a MODVL
statement is encountered which modifies it, or another VALUES statement is
encountered which cancels it and defines a completely new table, or until the
$ENDJOB statement is encountered.

5-30

47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

The values as they are found in the VALUES statement can be expressed in one of
the following ways:

1. A string of characters observing the syntax of the single syntactic unit (or of
the portion of a single syntactic unit corresponding to the parameter referred
to: an efn, a devclass, a media-name, etc.

EXAMPLE :

CUSTOMER.FILE T7 1610

in (&1, DVC = MT/&2/D1600, MEDIA = &3)

2. A protected string of characters (in quotes) having a maximum length of 128
characters. (If this protected string also contains a protected string, the latter
must be placed in double quotes.) This protected string can correspond in the
JCL to very different types of referenced units:

Protected strings: option string, commands for a processor in the parameter
COMMAND ='command [command] ..."

Single syntactic units that may be protected strings:
efn, media-name

More or less complex portions of JCL that may overlap two consecutive
statements or even contain a full statement.

O

These different possibilities result in a substitution procedure, which, in the case of
protected strings, may seem complex if unfamiliar, but which is in reality simple
once it becomes familiar. It is important to be very familiar with it if mistakes are
to be avoided. This is covered in the next paragraph.

47 A2 12UJ Rev03

5-31

JCL User's Guide

Substituting Parameter Values for References

The basic example given in the introduction shows how parameter values are
substituted for references, but it is restricted to the case in which references involve
a single syntactic unit or in which values defined by VALUES are unprotected
strings.

Let us examine the general case. When the JCL translator-analyzer encounters a
parameter reference, it expects to find a well-defined type of unit: a label, an efn, a
keyword, a member-name, etc. (or a portion of one of these single syntactic units).

1. The value found in the table of values is not in quotes. The JCL translator
simply substitutes this value for the reference and checks that the result meets
the requirements of the syntax of the expected syntactic unit (see the example
at the beginning of this subsection).

2. The value found is a protected string. This again breaks down into two
conditions:

a. The expected single syntactic unit is (or may be) a protected string: option
string, processor commands in COMMAND =..., media-name. Here
again the JCL translator simply substitutes, but no analysis is made as to
the contents of the protected string; it just checks that its length does not
exceed the authorized length for the unit involved (6 characters for a
media-name, for example).

b. The expected single syntactic unit can under no circumstances be a
protected string (a keyword, a decimal number, a devclass, an SIV, etc).
This means that the reference has been placed in the text as a replacement
for a more or less complex JCL portion and that the protected string found
in the table of parameter values contains this JCL portion. In this case,
the JCL translator substitutes this string (except the quotes) for the
reference and continues analyzing the text beginning with the string
which was substituted.

This is the substitution algorithm in general. It implies the following rule:

when, during a JCL parameter setting operation, an entire JCL portion is to be
replaced by a single reference, this JCL portion must not begin with a single
syntactic unit which is always or may possibly be a protected string. If this

rule is not observed, the JCL translator assumes it is in case b1, whereas case
b2 was anticipated: it will take the entire string for the value of the beginning
single syntactic unit.

Here are several examples to illustrate this rule.

5-32 47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

EXAMPLE 1:

VALUES ‘A + B', MT/T9, 1601,

ASSIGN IFN, &1, DVC = &2, MEDIA = &3;
Is the equivalent of:

ASSIGN IFN, 'A + B', DVC = MT/T9, MEDIA = 1601,

EXAMPLE 2:

VALUES CUSTOMER.FILE, 'DVC = MS/D500, MEDIA = K116

ASSIGN IFN, &1, &2;
Is the equivalent of:
ASSIGN IFN, CUSTOMER-FILE, DVC = MS/D500, MEDIA = K116;

For the parameter referenced by &2, case b2 is involved.

EXAMPLE 3:

VALUES 'CUSTOMER.FILE, DVC = MS/D500, MEDIA = K116,

ASSIGN IFN, &1;

Is the equivalent of:

ASSIGN IFN, 'CUSTOMER.FILE, DVC = MS/D500, MEDIA = K116';
And not

ASSIGN IFN, CUSTOMER.FILE, DVC = MS/D500, MEDIA = K116;

Case bl and not b2, is involved. The JCL translator took the entire protected string
for an efn. And if the second ASSIGN was expected, it was because the above rule

was not observed.

47 A2 12UJ Rev03

5-33

JCL User's Guide

EXAMPLE 4:

For the same reason MEDIA = &1 with a &1 value defined by 'K116, DEVCLASS
= MSD500' does not result in

MEDIA = K116, DEVCLASS = MS/D500

The translation aborts with the fatal message MEDIA: TOO LONG STRING.
Actually, since a media-name may be a protected string, case b1l is involved and the
JCL translator takes the entire string for the media-name, but this is obviously too
long (6 characters maximum for a media-name).

For the same reason, a media-list (even in parentheses) cannot be considered as a
single parameter. Its value should be defined in quotes because of the commas or
blanks separating the various media-names, or the JCL translator would take the
list for a single media-name.

EXAMPLE 5:

On the other hand, DVC = &1 can perfectly well be written with the &1 value
defined by 'MS/D500, MEDIA = K116'. Case b2 is involved because a devclass
cannot be a protected string. The following will be the result of the substitution
after the quotes are removed:

DVC = MS/D500, MEDIA = K116

O

NOTES:

1. ltis possible for the value of a parameter not to be defined in the table of
values.

VALUES A,, C; or VALUES A # C;
The value corresponding to the &2 reference is not defined. This is the

same as an empty string (not to be confused with a blank): what precedes
&2 is then directly concatenated with what follows.

J.&2SMITH results in J.SMITH and not J. SMITH

5-34

47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

The presence of a reference as the value of a parameter in a VALUES
statement is the equivalent of #. Caution: this is true in a direct stream, but
no longer in the JCL called in by INVOKE, EXECUTE, RUN, or SJ.

VALUES A, &2, C;or VALUES A, &KEY, C;

gives the same result as VALUES A,, C;

When case b2 is involved and the string which was just substituted for the
reference is being analyzed, a reference can perfectly well be found once
again; the substitution algorithm is then applied to this reference in the
same way it would have been if the reference had been found in the text
before any substitution took place. In particular, the string which was just
substituted may very well be just a reference:

VALUES A, '&3', MS/D500, K116;

ASSIGN IFN1, &1, DVC = &2, MEDIA = &4,
ASSIGN IFN2, &2, DVC = &3, MEDIA = &4,

Is the equivalent of;

ASSIGN IFN1, A, DVC = MS/D500, MEDIA = K116;
ASSIGN IFN2, '&3', DVC = MS/D500, MEDIA = K116;

For the first ASSIGN, DVC = &2 has first become DVC = &3 then DVC
= MS/D500. On the other hand, for the second ASSIGN, case bl was
involved; the &2 reference was changed for an efn which may be a
protected string; therefore the value '&3' was taken for the efn value.

Lastly, still in the same case, a second precaution must be taken when the
reference ends the protected string which defines the value to be
substituted: it must be followed by the double line || if the length of the
reference is less than its permitted maximum length (<2 for a positional
reference, <8 for a keyword reference). Here is an example to help
explain:

VALUES A, 'D&3', 50;

As applied to DVC = MS/&2 | |0

Firstly, the &2 reference (separated from the 2 which follows the 0 to
clearly show that the reference is not &||) is replaced by the corresponding
value, with the || removed, and as the expected unit cannot be a protected
string, the quotes are removed and results in DVC = MS/D&30. The
translator again analyzes from D, finds the &30 reference which is not
defined, and the final result is DVC = MS/D.

47 A2 12UJ Rev03

5-35

JCL User's Guide

On the other hand, if the following is written:

VALUES A, 'D&3][, 50;
The first step results in DVC = MS/D&3]|0

and the second substitutes its value for &3 by removing the ||, which
results in DVC = MS/D500.

4. In addition to efn and media-name, a third unit may be a protected string; it
is member-name in the SOURCE = member-name of COBOL,
FORTRAN, RPG, and PL1 compilation statements. In these statements,
the full star-convention with FROM =... TO =... can be used.

EXAMPLE :

COBOL SOURCE ="TOTO* FROM = TOTODD TO = TOTOPP'
INLIB = INLIB1 CULIB = USER.CULIB;

The possibility of having such an expression in SOURCE = excludes the following
writing which consists in taking a member-list for a parameter:

VALUES (TOTO, TITI, TATA);
COBOL SOURCE = &1;

After substitution, the SDS will attempt to find the expression of a star-convention,
which does not exist. If the parameters of such a member-list are to be set, the
same procedure used for a media-list must be used; that is, setting the parameter of
each object separately:

VALUES TOTO, TITI, TATA,;
COBOL SOURCE = (&1, &2, &3); works perfectly well.

This remark does not hold true for the other statements in which a member-name
may appear. For example, in an INVOKE, the member-name and its library may
be grouped together in the same parameter in quotes; case b2 is then involved and
not bl as above:

VALUES TESTVAL, USER.SLLIB;
INVOKE &1;

This is the equivalent of INVOKE TESTVAL, USER.SLLIB; INVOKE calls in the
TESTVAL member of the USER.SLLIB library and not the 'TESTVAL,
USER.SLLIB' of the SYS.SLLIB library, which would not make sense.

O

5-36 47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

5.6 The MODVL Statement

The MODVL statement is used to modify the table of values previously set up
using a VALUES statement or already modified by another MODVL statement.
Application of the modified table continues up to the next MODVL, VALUES, or
$ENDJOB statement.

MODVL modifies the table of parameter values in 3 ways:

- by replacing certain values by others,
- by adding values of new parameters,

by deleting others, which consists in replacing them with an empty string by
indicating NIL for these values.

MODVL modifies the table of parameter values in 3 ways:

EXAMPLE :
VALUES A, B, C, D;
MODVL ,1, NIL,, 3, KW1 = AB;

After MODVL:

- the value corresponding to the &1 reference is not modified. It is A.

« the value corresponding to the &2 reference is no longer B. Itis 1.

« the value corresponding to the &3 reference is no longer C. It is "empty".
- the value corresponding to the &4 reference is not modified. Itis D.
 the value 3 corresponding to the &5 reference is added.

» the value AB corresponding to the &KW1 reference is added.

The final table of values to be substituted after MODVL is therefore

&l &2 &3 &4 &5 &KW1
A 1 empy D 3 AB

O

47 A2 12UJ Rev03

5-37

JCL User's Guide

NOTE:
One very important remark must be added for an understanding of the MODVL
mechanism. The presence of a parameter reference as a value in MODVL, is
not, as it is in VALUES, equivalent to no value; it simply means that in order to
modify the table, the value of the corresponding reference is taken from the
table itself at the time the modification is made relative to the parameter
involved. It must be clearly understood that this is a dynamic process. The
various table values are processed in the order they are mentioned by MODVL
from left to right. If the &3 reference corresponds to a value which is itself
modified, calling in this reference in MODVL will not have the same effect
depending on whether the value relative to &1 or the one relative to &5 is to be
modified.

For example, let us apply the following MODVL statement to the table resulting
from the above MODVL statement:

MODVL &4,, &1,,, KW2 = &KW1, KW1 = &4, KW3 = &KW1;

The resulting table will be as follows:

&l &2 &3 &4 &5 &KW1 &KW2 &KW3
D 1 D D 3 D AB D

+ &1 takes on the value of &4 of the initial table; i.e., D.
o &2, &4 and &5 are not modified,

« &3, being processed after &1, takes on the value of &1 of the already modified
table; i.e., D (and not A, the value of the initial table).

&KW2 and &KW3, although both referring to &KW1, take on two different

values, AB and D, respectively, since the first is created before the modification of
KW1 and therefore takes its initial value AB, whereas the second is created after
the modification of KW1 and therefore takes on its final value of D.

Remember that replacing table values by other values applies both to values that
are not in quotes as well as to those that are. In addition, this process involves the
replacement of values to be later substituted and not "substitution" as meant in the
substitution algorithm explained above when speaking about VALUES. The
substitution of values in the modified table in the JCL that follows MODVL,
obviously takes place according to the algorithm explained for VALUES.

Note that if MODVL has deleted a value (using NIL) a further reference to this
parameter has no effect. If such a reference is used in a further MODVL statement
the value you want to modify is not modified i.e., NIL is not a value that you can
transfer from one MODVL to another.

5-38 47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

5.6.1 Parameter Setting in a Sequence Called or Initiated by INVOKE,
EXECUTE, RUN, or SJ

5.6.1.1 Setting the Parameters

When setting the parameters for the called-in sequence or the launched job, these
JCL statements and the SJ command behave in the same way. In particular, they
can give the values of the parameters to be set within the called-in sequence, owing
to the VALUES = (...) keyword for JCL statements. Therefore, in the following
paragraphs, only sequences called in by INVOKE will be covered, since the same
process is involved for EXECUTE, RUN, and SJ, but at slightly different times.

The problem that arises involves setting up the table of values to be substituted for
references, since as far as substitution itself is concerned, the process is the same.

First, remember that in the expression VALUES = (...) (by which INVOKE

provides the values to be substituted for references in the called-in sequence),
parameter references may be found in the place of values. The first step consists of
replacing these references with the corresponding values in the calling-in sequence.

VALUES ABCD;

INVOKE SEQ, VALUES = (83, 2, 3, 4, &1);
Is equivalent to INVOKE SEQ, VALUES = (C, 2, 3, 4, A);

5.6.1.2 The Principle of Operation

By using the keyword VALUES = (...), INVOKE provides the called-in sequence

with the parameter values that must be applied. These values are called external
(relative to the sequence). But it can happen that VALUES = (...) does not provide
values for every referenced parameter in the called-in sequence. In this case, the
values defined by the VALUES and MODVL statements of the called-in sequence
are used by default in exactly the same way as if this sequence were used in "direct
stream": this is the reason why these values are called default values.

47 A2 12UJ Rev03 5-39

JCL User's Guide

FOR EXAMPLE :

INVOKE SEQ, VL = (# B#D);

With SEQ: VALUES 1, 2, 3, 4;

The external values are empty B empty D
The default valuesare 1 2 3 4

The table of current values that are substituted for the references in the remainder
of the sequence is:

1 B 3 D

The following is a detailed explanation of how the table of default values is set up
and evolves as a function of the VALUES and MODVL statements encountered in
the called-in sequence.

The VALUES statements in the sequence called in by INVOKE may themselves
contain parameter references. Contrary to what happens in "direct stream” (and
concerning this, the general operating principle described above needs to be
explained), these references are not equivalent to "empty" but they are given the
corresponding external value (which may be "empty") in order to make up the table
of default values which will be valid after the VALUES statement involved.

O

EXAMPLE :
INVOKE SEQ, VL = (#B #D);
With SEQ: VALUES &2,&1, 3,4;

Gives default values: B empty 3 4
andcurrentvalues B B 3 4

These are the values that are applied to the called-in sequence up to the next
VALUES or MODVL statement or the end of sequence.

MODVL applies (dynamically as well as in direct stream) to the table of default
values (and not to the current values).

5-40

47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

Continuing with the above example, and supposing that further on in the called-in
sequence the following statement is found:

MODVL 1, ., C;

the table of default values becomes: lempty C4

and the table of current values: 1 B CD

But the MODVL statement itself may contain parameter references for parameter
values. The general rule applies, taking into account the dynamic operation of the
MODVL statement: this reference is replaced by the corresponding external value
if it exists, otherwise by the corresponding default value (as it figures in the table at
this time).

O

FOR EXAMPLE :
INVOKE SEQ, VL = (### D);
with SEQ: VALUES &4 2 &1 4;

@-
MODVL A &4 &1
-

For all the statements in (1)

The default values are: D 2 empty 4

and the current values: D 2 empty D
Then MODVL modifies the table of default values:

» Afirst replaces D as the value of the first parameter, which gives the following
default table:
A 2 empty 4

» The second MODVL value is actually the &4 reference which is first replaced
by the corresponding external value D, which is the value that is substituted for
the second value of the default table, which now becomes:

A D empty 4

« The third MODVL value is the &1 reference for which there is no corresponding
external value. Therefore, the default of the table as it exists at this time (i.e., A)
is the one that is taken to modify the table itself, which then becomes:

A D A 4

47 A2 12UJ Rev03

5-41

JCL User's Guide

As the fourth parameter is not modified by MODVL; the final default value table
is:

A D A 4

And for all the statements in (2), the table of current values, which will be
substituted for the parameter references, is:

A D A D

There is no special problem if the INVOKE statements are nested. The current
values of the sequence called in by the first INVOKE statement are taken to
complete the VALUES = (...) of the INVOKE statement internal to this sequence.
From this point on, the external values to be used for the sequence called in by this
second INVOKE statement are available and the same procedure takes place to get
the values to be used in this second sequence.

O

5.6.2 Input Enclosure Parameter Setting

It is also possible to have parameter references inside an Input enclosure (which
may be, for example, the commands for a utility program initiated by a step of the
job in progress). The environment in which the parameters are set is characterized
as follows:

An Input enclosure can be found only at the job level; it cannot be found inside a
sequence called in by INVOKE or EXECUTE (but a job initiated by RUN or SJ is

an actual job and can therefore contain Input enclosures).

This Input enclosure can be ASSIGNed several times during the same job, either at
the job level or at the level of a sequence called in by INVOKE or EXECUTE.

The sequence of events is as follows:

« At the time the Stream Reader reads a JOB, it stores a version (called version 0)
of the Input enclosure in SYS.IN in which the parameter references figure as
such.

« Then at translation time, each time the Input enclosure is ASSIGNed, either at
the job level or at the level of a sequence called in by INVOKE, the JCL
translator makes a new version of the Input Enclosure in SYS.IN. In this
version, the appropriate values of the parameters have been substituted for their
references.

« At the end of translation, version 0 of the Input enclosure is saved in the SYS.IN
for further possible assignment during a sequence called in by an EXECUTE
statement contained in the job.

5-42 47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

As with the parameter setting of the JCL itself, the input enclosure setting
procedure poses two types of problems:

1. The choice of values to be substituted for the references,
2. The actual substitution of these values for the references.
The second point will be covered first, since it is simpler.

5.6.2.1 Substitution Algorithm

The substitution algorithm is exactly the same as for the JCL statements.

EXAMPLE :

Consider &1 corresponding to '‘&2MAIN'
&2 correspondingto H_ TN_EP
and the command PRINT &1; (LIBMAINT command).

The first step consists in converting it into

PRINT &2MAIN;

The second step results in the final version
PRINT H_TH_EPMAIN;

Two minor restrictions should be noted as compared with operation with the JCL
statements:

1. A given reference cannot overlap two consecutive records as it may with two
consecutive JCL statements,

2. If arecord ends with a reference, this reference must be followed by the
symbol || (in JCL this was only required for the last statement in a job, just
before $SENDJOB).

47 A2 12UJ Rev03 5-43

JCL User's Guide

5.6.2.2 Determining the VALUES to be Substituted

So that parameter setting operates correctly, one of the two SIVs, JVALUES or
CVALUES (i.e., job-level VALUES and current VALUES), must be used in the
S$INPUT statement. If none of these two SIVs is used, a new version of the Input
enclosure is not created; version 0, containing the parameter reference in the initial
state, is the one that is ASSIGNed.

Let us now examine Input enclosure parameter setting with JVALUES and
CVALUES, depending on whether the Input enclosure ASSIGN is:

- atthe job level,
- at the level of a sequence called in by INVOKE,
« or at the level of a sequence called in by EXECUTE.

5.6.2.3 At Job Level

Both SIVs (JVALUES and CVALUES) behave in the same way. The table of
values to be used is the one that is valid at the time ASSIGN occurs in the
particular job. The table is the one resulting from the set of VALUES and MODVL
statements in a "direct stream" and which, for a job called in by RUN or SJ,
consists of the external values provided by RUN or SJ, possibly completed by the
default values determined by the set of VALUES and MODVL statements at the
time the ASSIGN occurs.

5.6.2.4 At INVOKE Level

The JVALUES and CVALUES statements behave differently.

With JVALUES, all the ASSIGNs within the INVOKE statement (or within nested
INVOKES) trigger parameter setting using the table of values which would have
been valid for an ASSIGN located in the place of the first INVOKE.

With CVALUES, the table of current values as it is valid at this time within the
sequence called in by INVOKE is used.

5-44

47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

5.6.2.5 At EXECUTE Level

Contrary to INVOKE, which is processed by the translator, EXECUTE
corresponds to a step which, at the time of job execution, calls the translator in
again to translate the designated sequence.

JVALUES and CVALUES statements behave in the same way. They both use the
table consisting of the external values provided by EXECUTE, possibly completed
by the default values at the time the ASSIGN occurs. The sequence of events is the
same as at the job level for a sequence called in by RUN.

The following job structure illustrates all the cases that may arise:

$JOB...;

VALUES A;

ASSIGN IFNA, *EXAMPLE;

iNVOKE SEQ1, VL = (1); with SEQ1: ASSIGN IFN1, *EXAMPLE;
:VALUES B;

{A\SSIGN IFNB, *EXAMPLE;

EXECUTE SEQ2, VL = (2); with SEQ2: ASSIGN IFN2, *EXAMPLE;

VALUES C;
$INPUT EXAMPLE, CVALUES or JVALUES;

$ENDINPUT;
$ENDJOB;

47 A2 12UJ Rev03

5-45

JCL User's Guide

In this example, it is assumed that the set of values passed by the INVOKE or
EXECUTE statement is complete and that therefore the possible default values in
the called-in sequences are irrelevant. If this were not the case, it would be easy to
correct. Accordingly, the following conclusions can be made:

« The ASSIGN IFNA concerns an Input enclosure whose parameters have been
set using the set of values A whatever the SIV (JVALUES or CVALUES) in the
$INPUT may be. Similarly, the ASSIGN IFNB concerns an Input enclosure
whose parameters have been set using the set of values B.

« The ASSIGN IFN1 concerns an Input enclosure whose parameters have been set
using:

- the set of values 1 for $INPUT...., CVALUES. (The current values are those
given by the INVOKE statement.)

- the set of values A for $SINPUT..., JVALUES. (If at the JOB level, there were
an ASSIGN IFN1 in the place of the INVOKE, the set of values A would be
the ones used.)

« The ASSIGN IFN2 concerns an Input enclosure whose parameters have been set
using the set of values 2, whether there is a CVALUES or JVALUES in the
$INPUT.

5-46

47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

5.6.2.6 Parameter Setting of Part of an Input Enclosure

Parameter setting may be used for only a portion of an input enclosure. The
portion(s) of the Input enclosure for which the parameters should not be set (i.e.,

for which the & symbol must be left as is), must be preceded by // BOD and

followed by // EOD which serve as protection. This is especially useful in Input
enclosures using parameter setting and containing LIBMAINT commands

including EDIT with requests (substitution, concatenation) in which the & symbol
has a completely different meaning than that of introducing a parameter reference.
The portions of the Input enclosure containing such requests must be preceded by //

BOD and followed by //EOD.

EXAMPLE :

$JOB TEST USER=X PROJECT=Y;
VALUES TN_EPMAIN ;

LIBMAINT SL LIB = SL.LIB COMFILE = *IN ;
$INPUT IN JVALUES;

PRINT &1 ;

EDIT;

R&1

//BOD

A$ GPITN/

~$ SITN/&_EP/

A$ GP/TN/

JIEOD

Q
$ENDINPUT ;
$ENDJOB ;

is equivalent to:

$JOB TEST USER =X PROJECT=Y;
LIBMAINT SL LIB =SL.LIB COMFILE =*IN ;
$INPUT IN;

PRINT TN_EPMAIN ;

EDIT ;

R TN_EPMAIN

~$ GP/TN/

~$ SITN/&_EP/

~$ GP/TN/

Q

$ENDINPUT ;

$ENDJOB ;

47 A2 12UJ Rev03 5-47

JCL User's Guide

Input enclosures may be used in the place of a library-member to contain the JCL
called in by INVOKE or EXECUTE and the Input enclosure which may be
referenced by the INVOKE UPDATE parameter and contains the mini-editor

commands.

None of those Input enclosures can have their parameters set as discussed in this
subsection. That is, the introductory $INPUT must not contain a SIV JVALUES or

a SIV CVALUES keyword.
O

5-48 47 A2 12UJ Rev03

Maintenance of Stored JCL and Parameter Substitution

5.7 Job Stream Creation

A job stream is a sequence of job descriptions that the Stream Reader can read.
The Stream Reader is able to read a job stream from:

« a sequential disk or tape file
« a source library member

Furthermore, the operator can ask the Stream Reader to select only certain jobs of
the job stream.

A job stream can be stored on a sequential disk or tape using the CREATE
statement as in the following example:

$JOB...;
CREATE INFILE = (STREAM, MEDIA = OUTFILE = (STREAM,
MEDIA = DD345, DEVCLASS =
MT/T7);
$ENDJOB;

The same function is also provided via LIBMAINT:

$JOB...;
LIBMAINT SL,
INFILE = (STREAM, MEDIA =,
OUTFILE = (STREAM, MEDIA = DD345, DEVCLASS = MT/T7),
COMMAND = ‘MOVE INFILE: KARDS, INFORM = SARF,
TYPE =JCL,
OUTFORM = SARF;
$ENDJOB;

Execution of any of the two preceding jobs will request the operator to mount a
deck of cards which is the job stream to be stored. The system will issue the
message:

hh.ss CDOi MOUNT KARDS FOR Xj.

where CDOi is the device on which the deck of cards is to be mounted and
KARDS is taken from the value given to the MEDIA parameter.

The job stream will be stored in file STREAML1 on tape DD345. Later, the
operator will be able to issue the S| command. For example:

SI STREAM1: DD345: MT/T7

47 A2 12UJ Rev03 5-49

JCL User's Guide

58 The Mini-Editor

It is sometimes desirable to INVOKE a sequence of JCL that is slightly different
from an existing stored sequence (for example, to test modifications). The stored
sequence may be modified using the editor and then tested in a subsequent job
(using INVOKE). Alternatively, the sequence can be modified at JCL translation
time (i.e., at the moment that the sequence is inserted in the job stream) without
modifying the stored sequence. This has the advantage that the stored sequence is
unchanged, which is preferable if the modified sequence is to be run just once or is
found to be in error.

By using the UPDATE = *input-enclosure-name parameter of INVOKE, a

sequence can be modified at JCL translation time without changing the sequence as
stored. The input enclosure contains editor commands to effect the required
modifications.

The editing commands available to the Mini-Editor user is the following subset of
the LIBMAINT editing commands:

adl A - Creates a new line after the line number specified.

adl [,ad?] C - Changes the whole of the specified lines for the
text following the C.

adl [,ad?] D - Deletes the lines specified.

adl | - Inserts new lines of text before the line number
specified.

adl [,ad?] S - Substitutes one character string for another on the
specified line.

Use of the Mini-Editor commands requires the specification of the line number of
each statement. This information can be obtained using the PRINT command of
LIBMAINT. These line numbers are indicated by adl and ad2 in the commands
above.

Note the following:

« only numerical line number addressing can be used

« - and $ are not acceptable as line numbers

« [0 is treated normally, but *;, and $ are not treated as special characters
« the commands must be submitted in increasing order by ad1l.

For more details see thérary Maintenance Reference Manual

5-50 47 A2 12UJ Rev03

6. Sequence Modification and Error
Processing

6.1 Introduction

GCOS contains system components and utilities that are designed to minimize the
effects of serious errors that can occur for diverse reasons within the system.

For this purpose JCL can be included in a job description to alter the execution
sequence in the event of a step abort. Thus the abort of a single step can be
prevented from causing the entire job from being terminated. Step recovery aids
include the periodic storage of executing process group structures and file
journalizing, so that a step can be restarted from a known point prior to where an
execution abort occurred. These facilities are known as Checkpoint/Restart and
File Journal.

Errors in application programs can be traced simply by means of a system
component called the Program Checkout Facility (PCF).

Error messages and return codes are generated by the system when an abnormal
incident occurs in the execution of a job. These incidents are recorded on the JOR
(Job Occurrence Report).

47 A2 12UJ Rev03

6-1

JCL User's Guide

6.2 Error Messages and Return Codes

When the system detects a malfunction during the execution of a job, an error
message is entered in the Job Occurrence Report. The malfunction may be due to a
user error or a system error.

Error messages can be report messages with no qualification, or may be qualified
as WARNING, FATAL or SYSTEM messages. SYSTEM messages refer to some
malfunction of the system itself (either hardware or software) and are normally
indicated by only a message code and a message number.

Return codes are also printed on the Job Occurrence Report. These codes normally
indicate that some abnormal incident has occurred within the system.

A complete list of return code mnemonics appears ificther Messages and
Return Codes Directorglong with probable causes and remedial action where
appropriate.

6.2.1 JCL Errors

Errors found by the JCL Translator result in error messages being printed in the

JOR (Job Occurrence Report). These error messages are self-explanatory and
usually appear just after the statement to which they apply. There are two types of
message, WARNING and FATAL. WARNING messages usually supply

information (e.g., standard action or default value taken) rather than signal errors
and the statement concerned can subsequently be executed successfully. FATAL
messages indicate serious errors that will prevent successful execution of the
statement concerned and consequently the job is not executed. Some types of JCL
error can lead to a message or sequence of messages that require further analysis to
trace the error. Examples of these are given below.

EXAMPLE 1:

Missing closing quote mark in a protected string.

$JOB...;

EOMM 'RECREATE MACHREF FROM BACKUP,;

STEP PROGA, LOD,LIB;

ASSIGN M5242, EMPLOYE.MST; ASSIGN M5243, FILE.A;
ASSIGN M5244, FILWORK, DEVCLASS=MS, MEDIA=RDISK2;
ALLOCATE M5244, SIZE=1, INCRSIZ=1, UNIT=CYL;

SEND 'LINE UP MACH PREF ERROR. ABORT.,

FATAL 211 INVALID KEYWORD: MACH

FATAL 211 PREF

FATAL 211 ERROR. ABORT.ENDSTEP;

FATAL 101 NO MATCHING BETWEEN STEP STATEMENT AND
ENDSTEP STATEMENT

47 A2 12UJ Rev03

Sequence Modification and Error Processing

The error is a comma instead of a quote mark following BACKUP in the COMM
statement. This results in all the statements (up to the next quote mark) following
the COMM statement being treated as part of the protected string (i.e., part of the
comment). The first quote mark of the SEND statement is taken as closing the
string.

The result is several error messages which apply to the SEND and ENDSTEP
statements even through there is in fact no error in either of these. The error is
several statements earlier.

EXAMPLE 2:

Missing semicolon at the end of a statement

XSSIGN MY123, FILE.X

ASSIGN MY124, FILE.Y;
FATAL KEYWORD UNKNOWN.
ASSIGN

FATAL KEYWORD UNKNOWN.
MY124

FATAL KEYWORD UNKNOWN.
FILEY

The missing semicolon on the first ASSIGN statement causes the second ASSIGN
statement to be treated as parameters of the first.

The error messages appear after the second ASSIGN statement even though there
is in fact no error in this statement.

47 A2 12UJ Rev03 6-3

JCL User's Guide

EXAMPLE 3:

Missing closing parenthesis.

STEP MYPROG, (MY .LIB, CATALOG=3, CPTIME=10,
DUMP=DATA, REPEAT,

FATAL 211 INVALID KEYWORD: CPTIME
FATAL 211 INVALID KEYWORD: DUMP
FATAL 211 INVALID KEYWORD: REPEAT

FATAL ... MISSING PARENTHESEIS

The missing closing parenthesis causes the last three parameters to be treated as
part of the library file description. Even though the three parameters are valid
parameters of the STEP statement, they are not valid parameters for a library file
description. In this case the error messages immediately follow the statement in
error; however, they are misleading at first sight.

EXAMPLE 4:

Error in INVOKE library
INVOKE MYSUB, (MY .LIB);

FATAL WRONG LIBRARY SPECIFICATION
XXX

This error message can be misleading in IOF or in batch if LIST=ALL is not
specified in the $JOB statement. The problem is in the sequence of statements
inserted (and which are not printed unless LIST=ALL is specified), rather than in
the INVOKE statement. The job should be re-run in batch with LIST=ALL on the
$JOB statement.

O

6-4 47 A2 12UJ Rev03

Sequence Modification and Error Processing

Labeling a JCL Statement

A label can be associated with any JCL statement simply by preceding the
statement with the label name and a colon.

EXAMPLE :

$JOB ...;
STIL: STEP LM4 ...;

ENDSTEP;

$ENDJIOB

The step LM4 can now be referenced in a JUMP statement (by use of the name
STIL).

O

The JUMP Statement

The JUMP statement allows the modification of the order in which JCL statements
are handled.

The following rules apply:

« JUMP statements outside step enclosures can only refer to labels outside step
enclosures. A JUMP used in this way changes the order in which steps are
executed within a job. Jumping can be forward or backward.

- A JUMP statement inside a step enclosure can only refer to a label inside the
same step enclosure. Furthermore, jumping can then only be forward. Such a
jump can be used, for example, to select various resources associated with the
step.

« A JUMP statement cannot refer to an INVOKE (or other translator) statement.
Consequently such translator statements cannot be labeled (however EXECUTE
which is not a translator statement can be labeled).

The first parameter of a JUMP statement is a label. The other parameters, which
are optional, correspond to condition tests and will be described later on.

47 A2 12UJ Rev03

6-5

JCL User's Guide

The following example illustrates the previous rules.

Step 1

Step 2

Labels in an invoked JCL sequence are considered as local. In other words, a

- $JOB...;
JUMP A...; (forward)
STEP LMI...;
ASSIGN...;

JUMP B...; (forward)
ASSIGN...;
B : ASSIGN..;
ENDSTEP;

A: STEP LM..,

ENDSTEP;
JUMP A...; (backward)

$ENDJOB;

JUMP statement in the job (or sequence) that contains the INVOKE cannot

reference a label defined in the invoked sequence; conversely a JUMP statement in
the invoked sequence cannot reference a label defined in the job (or sequence) that

contains the INVOKE. This concept is illustrated in this section. The above
comments also apply to JCL sequences referred to by EXECUTE.

6-6

47 A2 12UJ Rev03

Sequence Modification and Error Processing

Switches

A set of 32 switches are associated with each executing job. They are named SWO0
through SW31. At the beginning of job execution, they are all set to 0 unless the
job is spawned (via the RUN statement) or released (via the RELEASE statement)
by another job. In both of these cases, the switches can be set initially to any value
by the other job. Each one can be setto 0 or 1 by means of the LET JCL statement
or by the executing load module (for example, using SET SWITCH-i in COBOL).
They are not modified otherwise. Each one can be tested by a JUMP JCL
statement or by an executing load module (testing in COBOL SWITCH-i).

The following example illustrates a simple use of switches. Assume that LM1 sets
SWS5 to 1 when the end of a procedure is reached and that the job description is:

$JOB...

LET SW5,0;
LOOP: STEP LM1...;

ENDSTEP;

JUMP FIN, SW5, EQ, 1,
STEP LM2...;
ENDSTEP;

JUMP LOOP;

FIN: STEP LMS,...;
ENDSTEP;
$ENDJOB;

The first LET statement guarantees that SW5 is set to O initially. Then the load
module LM1 is executed. If it leaves SW5 at 0, load module LM2 is executed and
then LM1 again. This continues until LM2 or LM1 sets SW5 to 1. At this stage
the jump is performed to FIN and LM3 is executed. The job terminates after the
execution of LM3.

47 A2 12UJ Rev03

6-7

JCL User's Guide

Through this mechanism, one job can influence the execution of another (that it
spawns using RUN). Suppose that a job description stored in member EX12 of
library L.JOBS is of the form.

JUMP NEXT, SWO, EQ,1,
STEP LMY, ...
ENDSTEP;

NEXT: STEP LMZ, ..;
ENDSTEP;

A spawning job.

$JOB...
RUN EX12, LJOBS;

$ENDJOB;

causes the stored job to execute both LM1 and LM2 (SWO0 having been setto 0
originally), while a spawning job:
$JOB...;
COMMENT 'SPAWN JOB EX12 SETTING SW0 TO 1}
RUN EX12, L.JOBS, SW0 = 1;

$ENDJOB;

causes only LM2 to be executed. Note that the value of SWO0 in the RUN
statement has no effect on the switches of the father job. The transfer of
information from one job to another via switches in the RUN statement can also be
performed by means of switches in a RELEASE statemenREEEASEabove,

and inSection L

6-8

47 A2 12UJ Rev03

Sequence Modification and Error Processing

6.4 Status

The status is a decimal number that is associated with each executing job step. Its
purpose is to enable you to program, via JCL, the action to be taken in the event of
execution time errors. The default action of the system is to abort if STATUS >
10000, and to carry on execution otherwise. The user with appropriate JUMP JCL
statements may override this system default action. The use of status is similar to
that of switches but is more directly related to the overall results of the execution of
a load module. It is set to O at the beginning of the execution of the load module,
and its value can be modified under user control within the load module itself (for
example, using a CALL H_CBL_USETST in COBOL) or by the System when it
takes a decision about this execution. In the latter case, the status set by GCOS
will override the value set by the user. The status can be tested by the JUMP JCL
statement, and its value remains unmodified until the next load module execution is
started.

FOR EXAMPLE :

$JOB...;
STEP LM1;
0 Status
FIRST: ENDSTEP; —
STEP LM2...;
SECOND: ENDSTEP: Status set by LM:

Status set by LM:

The status set by LM1 may be tested between the ENDSTEP statement labeled
FIRST (which corresponds to LM1 execution) and the ENDSTEP statement
labeled SECOND (which corresponds to a new load module execution).

O

47 A2 12UJ Rev03 6-9

JCL User's Guide

The scope of the status of a load module might not correspond to continuous
statements if a JUMP statement exists as in the following example:

REPEAT: STEP LMO...;

THIRD: ENDSTEP; N E— SR
Status LMO Status LMO
STEP LML...; S R -
FIRST: ENDSTEP. Status LM1 Status LM1
JUMP REPEAT, STATUS,NE,200;
stepumz N B
SECOND: ENDSTEP; Status LM2

If the status set by LM1 is equal to 200 it can be tested between statement FIRST
and SECOND. If not the JUMP statement will be effective and the status set by
LM1 can be tested between statement FIRST and the JUMP statement, and then
between statements REPEAT and THIRD.

Thus you can direct the flow of control of a job according to the execution of a
particular load module.

You can set the status, also referred to as the step completion code, to any value
between 0 and 32767; other values are used for special cases by GCOS.
Furthermore, any value greater than 9999 will be interpreted by GCOS as meaning
that the load module execution was incorrect and that the job execution should be
aborted. Note however that it is possible by use of the JUMP statement to
overcome this situation (sédse of Status for Execution Abotiglow). Status

values are classified into groups.

6-10 47 A2 12UJ Rev03

Sequence Modification and Error Processing

The names of these groups are SEVO0 through SEV6 (for Severity 0 through 6) and
can be used in JUMP statements to test groups of values as in the following
example:

$JOB ...;
STEP LM1 ...;

ENDSTEP;
JUMP MESS, SEV, NE, 0;
FILSAVE ...,
JUMP CONTINUE;
JUMP FIN, SEV, EQ, 0;
MESS: SEND ‘FILE OLDFILE HAS NOT BEEN SAVED;,

FIN:
$ENDJOB;

If LM1 execution sets status to a value of severity 1 or more, the file save will not
be attempted but the message FILE OLDFILE HAS NOT BEEN SAVED will be
sent to the operator; if the file save is unsuccessful (SEV0) the same message is
sent to the operator. Note the necessity for the JUMP CONTINUE in the case of
an unsuccessful FILSAVE (refer tbise of Status for Execution Abof#ter in this
Section). You can set the value of SEV by means of the LET statement.

Table 6-1shows the relationship between a particular SEV grouping (with its
corresponding status value range) and its significance to the system (for all SEV
groups). Note that the interpretation of status values set under control is defined by
the user, but in all cases the system will interpret a value of 10000 or over (SEV3

or greater) as an abnormal condition. The significance of the status after the
execution of a compiler is influenced by the fact that a compiler will always set the
status according to the highest severity encountered during the compilation.

47 A2 12UJ Rev03

6-11

JCL User's Guide

Table 6-1. Step Termination Conditions
STATUS whle\a/lr(?apnrlgdguced Job Occurrence
Group Value by system) Report messa ge Consequences
SEVO 0-99 Normal termination TASK TERMINATED))
Execution terminated
. | T STEP TERMINATED normally.
SEVL ~ 100-999 orma termination STATUS=SEV1 (or SEV2)
+ WARNING
or
SEV2 1000-9999 | Normal termination STATUS=numeric code Job processing
+ WARNING (SEV1 or SEV2 is continues
printed only if numeric
code equals 100 or
1000 respectively)
Work not STEP ABORTED REPEAT option
10000
performed due (Checkpoint/Restart):
SEV3 10 user error. STATUS=SEV3 (or SEV4) p :
) or . If operator enters YES,
19999 Step is notrepeatable. STATUS=numericcode step repeated from last
checkpoint.
20000 Work not (SEV3 or SEV4 is No REPEAT option
performed due to printed only if numeric (no Checkpoint/Restart):
SEV4 GCOS problem or code equals 10000 scan JCL
to external events . can statement
or 20000 respectively) . }
32767 (110 Error). following ENDSTEP;
. - If no label,

Step is repeatable. no JUMP CONTINUE,
no JUMP with SEV test,
or a SEV test does not

Abort requested STEP ABORTED BY match, abort the job;

SEVS 50000 by the operator OPERATOR

remna e SE

Job command) STATUS=SEVS continue, but keep the
SEV level;

An exception

60000 Occu”edpm a STEP ABORTED BY - If JUMP CONTINUE,

SYSTEM jump and reset the SEV
SEV6 system procedure level, then continue;
61000 System Crash STATUS=SEV6 - If a label, scan next
statement and begin
same process again.

6-12

47 A2 12UJ Rev03

Sequence Modification and Error Processing

6.4.1 Use of Status for Execution Abort

If after the execution of a step the status value is greater than 9999 (in other words
the severity is greater than 2), the step is considered to be abnormally terminated.
From that point on, the command interpreter reads the next JCL statement
(following ENDSTEP or the equivalent), and the following process takes place:

if the statement is neither a label, a JUMP CONTINUE, nor a JUMP testing the
severity level, the job is aborted;

if it is a JUMP testing the severity level and the condition tested does not match,
the job is aborted,;

if it is a JUMP testing the severity level and the condition tested matches, the
jump takes place, the severity level is kept, but the JCL translation continues;

if it is a JUMP CONTINUE, the severity level is reset, the jump takes place, and
the JCL translation continues;

if it is a label, the next JCL statement is read and the same procedure is repeated.

Consider the following job:

$JOB ...;

STEP LM1, ...;
ENDSTEP;
STEP LMZ, ...;
ENDSTEP;

JUMP ABNORM, SEV, GE, 3;

SEND ‘EXECUTION OK’;
STEPLMS, ...;
ENDSTEP;

JUMP END;

ABNORM: STEP LM4, ... ;

ENDSTEP;

END:

$ENDJOB;

47 A2 12UJ Rev03

6-13

JCL User's Guide

If steps LM1 and LM2 terminates normally, the message "EXECUTION OK" will
appear on the operator's console and step LM3 will be started.

If LM1 execution is abnormally terminated the command interpreter will abort the
job when it encounters the next step (here step LM2).

If LM1 terminates normally but LM2 execution is abnormally terminated the
Command Interpreter will execute the jump to ABNORM (i.e., the SEND
statement is skipped) and the job execution will resume from there (load module
LM4).

Another example is

$JOB ...;

COBOL ...;

JUMP CONTINUE;

COBOL ...;

JUMP CONTINUE;

COBOL ...;
$ENDJOB;

Each COBOL statement is an extended statement corresponding to a step requiring
execution of the COBOL compiler. In this job all three steps will be executed even
if the first or second one discovers a problem and sets the status to a value which
would normally cause the job to be aborted.

6.4.2 Setting Severity Value

The LET statement with SEV parameter can be used to simulate an error condition
thus allowing the processing sequence to be altered. Suppose, for example, an
invoked sequence contains three step descriptions, the first step of which is to be
executed in all cases; only one of the two remaining steps is to be executed,
depending on whether the first step terminates normally (severity less than 3) or
not. In other words, the success or failure of the first step determines which of the
other two steps will be executed. Assuming that the second step to be executed
terminates normally, the severity value at the end of the JCL sequence (invoked)
and therefore applying to the statement, will always be less than 3. A JUMP
statement after the INVOKE cannot take account of the severity code of the first
step in the invoked sequence. The solution to this problem is to set the severity
to 3 or more at the end of the step (in the invoked sequence), which is executed in
the event of an abnormal termination of the first step. This concept is illustrated in
Figure 6-1

6-14

47 A2 12UJ Rev03

Sequence Modification and Error Processing

JOBA

STEPA

INVOKED SEQUENCE

. ‘{//////////////// GEN-SPEC
INVOKE |
GEN-SPEC | STEPLL
\
‘ Y
Y |
|
|
SEV N
SEV N | GE 37
GE 37 \
\
‘ Y
\ \
y | y STEP12
STEPB
| \
\ STEP13
STEPC | RESET SEV to 3
\
\
FINISH 1

Figure 6-1. Use of LET SAVE

47 A2 12UJ Rev03 6-15

JCL User's Guide

$ENDJOB;

Figure 6-2.

$JOB JOBA,.....;
STEP STEPA.,.....; Contents of GEN.SPEC
STEP STEP11...... :
ENDSTEP;

INVOKE GEN.SPEC......;

JUMP LAST,SEV,GE,3;

ENDSTEP;
STEP STEPB,......;
JUMP ERR,SEV,GE,3;
STEP STEP12.....;
ENDSTEP. .
LAST: STEP STEPC....,;
ENDSTEP,;
JUMP END;
ERR: STEP STEP13....,;
ENDSTEP;

ENDSTEP;
LET SEV,3;
END: JUMP CONTINUE;

Figure 6-2contains the JCL statements that correspond to the situation shown in
Figure 6-1 If STEP11 terminates normally, STEP12 is executed and provided it
also terminates normally, a severity of 0 applies to the JUMP after the INVOKE.

In this case steps STEPB and STEPC are executed. If, however, STEP11 aborts
STEP13 is executed; the LET statement ensures that a severity of 3 applies to the
JUMP statement after the INVOKE, irrespective of the result of the execution of
STEP13. In this case only STEPC is executed next.

Example of the Use of LET STATUS Group Value

6-16

47 A2 12UJ Rev03

7. Job Occurrence Report

7.1 Introduction

For each job run on the system and for each data enclosure entered, a system report
is produced called the Job Occurrence Report (JOR).

The JOR has the following roles:

- To describe the work which has been submitted to the system and to list the JCL
of that job.

« To describe the operations that take place in the order that they take place.
Whenever a step is executed, messages are produced in the JOR that fully
identify the step and give the result of the step execution. Each time an external
event influences the execution of the job (i.e., operator intervention) a message
is produced in the JOR to record this event.

» To record any abnormal situations by producing a warning or an error message
in the JOR. Each message is coupled with a code that allows easy identification
of error explanation in the documentation.

» To record the amount of resources (CPU time, 1/0s) that have been used by the
job during its execution. Most of the accounting information that is produced in
the accounting file is also produced in the JOR.

The JOR is generally organized into separate sub-reports:

« The Job/Data Introduction and Translation Report that is produced when job
descriptions or data enclosures are entered into the system.

- The Job Execution Report that is produced when the job is executed. In the case
of data entry the Job Execution Report is not produced because the $DATA JCL
statement does not imply that any job has been run.

The JOR messages usually begin in column 11. The left margin (columns 1.10) is
reserved so that important messages can be emphasized (i.e., start and end step
messages and error messages).

47 A2 12UJ Rev03 7-1

JCL User's Guide

The Output Writer normally prints the JOR when the job terminates. After being
printed it is automatically deleted. There are, however some cases when the JOR is
not printed:

« For a user job, the JOR parameter of the $JOB JCL statement indicates whether
or not the JOR is to be printed. The available options are:

NORMAL. The JOR is automatically printed at job termination.
This is the default.

NO. The JOR is not printed.

ABORT. The JOR is only printed when the job terminates
abnormally.

« For a data entry, a JOR is not printed except in the following circumstances:

» An error has been detected during the data entry and an error message printed in
the JOR.

« The PRINT option was present in the $DATA JCL statement.

» For an IOF session a JOR is optionally produced for each IOF user. By default
this is not created, but it can be if requested by the user, for instance at IOF start-
up. The JOR is then printed when the user logs off, but only the Job Execution
Report that gives the interactively executed steps is provided.

- For service jobs the JOR is normally not printed unless the job aborts. However,
the JOR of BTNS service jobs is always printed. This provides statistics on line
usage. The JOR of the Magnetic Writers is also printed. It gives the contents of
the file (rons/output).

7-2

47 A2 12UJ Rev03

Job Occurrence Report

7.2 Job Occurrence Report Description

This section describes how the Job Occurrence Report (JOR) is organized. Every
message that appears during normal execution of the job is explained. Error
messages will be detailed in the next section.

The JOR is divided into two separate sub-reports:

« The Job/Data Entry Introduction Report
» The Job Execution Report

The JOR is generally embedded with other outputs of the job between banners.
These banners contain information printed in large characters to allow easy
selection and routing of reports by the operator.

7.2.1 Output Writer Banners

These are in two forms: Output Writer Start Banner and Output Writer End Banner.
OUTPUT WRITER START BANNER

The first thing printed is the Output Writer Start Banner (Example in Figure 7-1).
The information produced is:

1. Start print date
2. Start print time

3. Executing HOST, Run Occurrence Number of the Job, Output index or output
name (if applicable)

User name
Job name
Billing

N o o bk

Project. An extra line may appear giving one or more of the following values,
if applicable

Permanent file identifier with subfile name
Number of copies

10. Size of output in number of pages. Then four lines of text are output in large
letters which give respectively

11. Run Occurrence Number
12. User name

13. Job name

14. Billing

47 A2 12UJ Rev03

7-3

JCL User's Guide

NOTE:
The above values may be overridden by values provided by the user via the
BANINF parameter of the JCL statement OUTVAL. Refer to Subsection 2.4 of
this manual, and Section 4 of the JCL Reference Manual.

3 .

16: 26: 30 BC10: x2550 = JOYNES JOYNES IOF GDOC-- SD SD3 OCT 08, 1986
efn...member: nd:dvc A / / A A “ 150 PAGES COPY = 02
'Y 4 N
Va'd A 7K
® o ® ® ©
00 00 0000 0000000 000000 00 @
0000 O 00 00 00 00 00
0000 00 00 00 00 00
00 00 000 00000 00 00
0000 00 00 00 00 00
00 00 00 00 00 00 00
00 00 00 0 00 00 00
00 00 0000000 0000 00
00000
00 000000 0o o 00 00 00000000 000000
00 00 00 00 00 000 00 00 0w o
00 00 00 00 00 000 00 00 00
0 00 00 0000 00 00 00 0000000 000000
00 00 00 00 00 0 00 00 00
00 00 00 00 00 00 00 00
0000 00 00 00 0 00 00 0 00
00 00 000000 b 00 00 00000000 000000
00000 00
0000 000000 00000000
00 00 00 00
00 00 00 00
00 00 00 0000000
00 00 00 00
00 00 00 00
00 00 00 00
0000 000000 00
000000 000000 000000 000000 000000 000000
0 o 00 0 00 00 00 0 0 0 00 0
00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 000000 00 00
00 0000 00 00 00 00 00 000000 000000 00 00 00
00 00 00 00 00 00 00 00 00 00
00 00 00 0 00 00 00 o 0 00 00 0
000000 000000 000000 000000 000000 000000

1 1 7 i \ \j \ *
BC10 V2.0 23CI SM: 23CI LM: 23CI FW; G5-006 88210027

BP3C V2.0 SM: W635 LM: W63880681005-005 PRO3 PR/PR71/FI/H160

bbb b b

Figure 7-1. Output Writer Start Banner

7-4 47 A2 12UJ Rev03

Job Occurrence Report

BOTTOM Lines:

When an output is printed that has been created on another site, or if the status of
the site has changed since the output was saved on tape, an extra line is printed
before the system status. This line contains:

15.
16.
17.
18.
19.
20.
21.

29.
30.

Name of the system on which the output was created (host_id).
External name of the Software Release of the host system.
Version of the host system.

Shared modules of the host system used when producing the job.
Load modules of the host system used when producing the job.
Version of the firmware of the host system.

Identifier of the CPU of the host system.

The last line describes the system which is printing the output and contains
items 22 to 28 which are similar to items 15 to 21 above, plus items:

Printer name.

Printer attributes.

47 A2 12UJ Rev03

7-5

JCL User's Guide

Output Writer End Banner

When all the outputs related to the same job have been printed, the Output Writer
prints an End Banner. (Example in Figure 7-2.) The same information as in the
Start Banner is printed, except that:

- only the Run Occurrence Number and User-name are printed in large letters,

- if the output could not be successfully printed, the reason for failure is given in
place of the software and firmware descriptions. The reasons for this may be
one of the following:

OUTPUTS HELD The output has been retained on SYS.OUT by the
system due to a fault during printing, or by an IOF user
HO command.

OUTPUT HELD BY THE OPERATOR

The output has been retained on SYS.OUT by the
operator (HO command) or HOLD answer has been
given to the RESTART FROM? question.

OUTPUT CANCELLED The output has been cancelled by the system due to a
severe and irrecoverable error.

OUTPUT CANCELLED BY THE OPERATOR

The output has been cancelled by the operator (CO
command), or CAN answer has been given to the
RESTART FROM? question.

WRITER TERMINATED BY THE OPERATOR

All Output Writer activities have been terminated by
the operator (TO command).

The Output Writer end banner is not produced if a severe or irrecoverable error
occurs or if the STRONG option is included when stopping the Output Writer.

NOTE:
The printing of banners may be temporarily suppressed with the NBANNER
(OUTVAL, SYSOUT, and WRITER statements). In the same way, the
frequency of banner output may be controlled by the BANLEVEL parameter
for the same statements.

7-6

47 A2 12UJ Rev03

Job Occurrence Report

;

15: 52: 06

(&

BC10: x3341 = JOYNES

JOYNES

e

IOF

SD SD3

A A

MAR 10, 1986
155 PAGES COPY =02

K

@—»

&
@

00 00 0000000

00 00 00
0000 00
00 000
0000 00
00 00 00
00 00 00
00 00 00000
00 000000
00 00 00
00 00 00
00 00 00
00 00 00
o0 oo 00 00
00 00
00 00 000000
00000

00 000

00 0000

000 00 00

00 00 00

00 0000000
00 00
00000 00
0 0 00 00
00 00 000 00
00 00 000 00
0000 00 00 00
00 00 0 00
00 00 00 00
00 00 0 00
00 00 00

ek

e

BC10 V2.0 22CI SM: 22CI LM: 22CI FW; G5- OOG 88210027

BP3C V2.0

SM: W635 LM: W635 8BRC@SD05

EETNE é

Figure 7-2.

ZZZZ: 2277

PRO3 PR/PR71/FI/H160

Z
4 ® ©
0000000 00 00 @

000

00

00

00

00

00

000000

00000000 000000
00 00 O
00 00
0000000 000000
00 00
00 00
00 0 00
00000000 000000

5

Output Writer End Banner

47 A2 12UJ Rev03

77777

JCL User's Guide

7.2.2

Job/Data Introduction and Translation

An example of the Job Introduction and Translation Report is given in Figure 7-3.
The most important information is marked with a number, which refers to the
explanations given below. The listing is organized in the following way:

A.

SOURCE:

ALL:

NO:

NOTE:

Report Heading

14. The full identification of the job or data introduced: job-name,
user-name, project, billing, Run Occurrence Number.

15. The date when the Job/data was introduced.

16. The input medium from which the Job/data was entered. In the
example, the job was entered from a library member by a Start Job
(SJ) command; the member name, library name, volume name and
device class are given.

17. In the case of a job, the time at which job translation started is
given.

Parameter Values

When the job has been introduced by a Start Job command, or a RUN
JCL statement with parameters passed, the values of these parameters
are printed.

Source JCL.

In the case of a job, the JCL is printed according to the LIST
parameter of the $JOB JCL statement; the available options are:

Only the JCL at first level is printed: if some stored JCL is activated
through the INVOKE or $SWINPUT statements, it is not printed.

All the JCL statements are printed including stored JCL activated by
INVOKE and $SWINPUT JCL statements.

Only the error messages are printed.

In addition to the rules stated above, if Access Rights have been implemented,
stored JCL is printed only if the user has the READ access right on the files
concerned. The JCL executed as a result of an EXECUTE statement is printed
in a separate report since the translation takes place during the job execution.

7-8

47 A2 12UJ Rev03

Job Occurrence Report

The following information may also appear in the JCL list:

18. Error messages detected during the introduction or translation. There are two
types of JCL "error".

WARNING indicates that default action has been taken. The user should
verify that this is the intended action.

FATAL indicates that the error is more serious and the job has been aborted at
the end of translation.

19. Stored JCL sequences that are activated are flagged with one or several "*"
characters in the margin; the number of asterisks indicates the level of
nesting.

20. By default, data contained in input enclosures is not printed; only the number
of records found in the input enclosure is given. However, when the PRINT
option is present in the $INPUT JCL statement the data cards are printed, up
to a limit of 200.

21. The number of records read during JCL introduction is given. Note that
invoked JCL is counted as 2 records.

D. Report Footing
This gives:
a. The time when the translation finished (job)

b. The result of job/data introduction;

JOB ABORTED

RESULT: DATA INTRODUCTION COMPLETED
DATA INTRODUCTION ABORTED
END OF TRANSLATION

47 A2 12UJ Rev03 7-9

JCL User's Guide

JOBID=JORTEST USER=LEHOUX PROJECT-OPER g BILLING=OPER__R4 RON=X0114
Y
@ 00:12:03 % JOB INTRODUCED FROM oCT 23, 1979
JORTEST SRLIB K117 MS/M452 ;

09:12:08 START OF TRANSLATION H@ k /
{" PARAMETERS VALUES ~ * @

&DK *DVC=MS/M452 MD=K117

[$JOB JORTEST USER=LEHOUX CLASS=W LIST=ALL;
WARNING 107 CLASS : ILLEGAL VALUE
DEFAULT VALUE IS ASSUMED }
REPORT "** EXAMPLE OF UTILITY REPORT **";
CREATE INFILE**DATAL OUTFILE=(SEQTEST &DK TEMPRY END=PASS SIZE=1)
OUTDEF=(BLKSIZE=1000 RECSIZE=80 RECFORM=FB FILEFORM=BFAS);
REPORT "** EXAMPLE OF TEMP FILE, CLEANING MESSAGES **";
LETSW11;LETSW21;
BEG: INVOKE PH1 (SRLIB &DK) VALUES=(SFQTEST "TEMPRY END=PASS ABEND=PASS");
VALUE EFN RESIDENT;
PHASEL: STEP INOUT (LMLIB DEVCLASS=MS/M452 MEDIA=(117);
ASSIGN ENTREE &1 &2;
ENDSTEP;
JUMP AGAIN STATUS GE 10000; JUMP NEXT ;
AGAIN: LET SW10;LET SW20;LETSW81;
REPORT "** EXAMPLE OF JUMP **"; JUMP BEG;
@ NEXT:LET SW4 1;LET SW3 1;LETSW81;
REPORT "** EXAMPLE OF RESTARDED STEP **";
PHASE2: STEP INOUT (LMLIB &DK) REPEAT;
ASSIGN ENTREE *DATA2;
ASSIGN PRIVE LEH.IND &DK;
ENDSTEP;
RELEASE RLSJOB;
$INPUT DATAL;
RECORD COUNT: 7
SENDINPUT;
$INPUT DATA2 PRINT;

03519COUDERC-ANDRE-U1
05565VATOUX-MICHEL
RECORD COUNT: 2

$ENDINPUT;

$ENDJOB;
RECORD COUNT: 31 e@
®{09:12:10 END OF TRANSLATION

Figure 7-3. Job Introduction and Translation

7-10 47 A2 12UJ Rev03

Job Occurrence Report

7.2.3 Job Execution Report Structure

Some messages may be printed in the Job Execution Report during each phase of
job processing. The organization of the report is as follows:

E.

F
G.
H

rx “

M.

Job Initiation Messages

Job Termination Messages

Step Initiation Messages

Step Execution Messages

Task Termination Messages

Step Clearing Messages

File Usage Messages

System Resources Statistics Messages

Step Result Messages

In addition to the above messages, the following may appear anywhere in the Job
Execution Report.

N.
O.

Messages at restart time that appear in the event of a system crash

Job execution trace messages

The above letters are references to the text below where a detailed explanation is
given along with examples.

47 A2 12UJ Rev03

7-11

JCL User's Guide

JOBID=JORTEST USER=LEHOUX PROJECT=0PER BILLING=OPER_ _R4 RON=X0114
MOl : THIS IS AN EXAMPLE OF JOB

09:12:10 JOB EXECUTION LISTING OCT 23, 1979
+ EXAMPLE OF UTILITY REPORT **
STEP | CREATE
LOAD MODULE = H_UTILITY (11;22;48 JULY 20 1979)PREINITIALIZED

@ LIBRARY = SYS.HLALID
SHARED MODULE = H*SMIO LIBRARY = SYS-HSMLIB

09:12:12 STEP STARTED XPRTY=9

>>> CREATE 51.00 7

DU00.30 INFILE = SYS.IN

@ FP04. 1CYLINDER(S)ALLOCATED ON VOLUME : K117 FOR IFN: OUTFILE EFN:;000114.SEQTEST
DU00.30 OUTFILE =SEQTEST
DU03.00 INFILE :NUMBER OF READ RECORDS :7

DU03.01 OUTFILE :NUMBER OF WRITTEN RECORDS : 7

@{ <<<

TASK MAIN J=06 P=00 COMPLETED

TEMPORARY FILES USED= 19 TRACKS
@ SYSBKST ON CTE549: NB OF |0 CONNECTS= 57
INFILE ON CTE549: NB OF I0 CONNECTS= 4
OUTFILE ON K117 : NB OF I0 CONNECTS= 2
@ CPU 0000.016 PROG MISSING PAGES 6 STACKOV 1
ELAPSED 0000.169 SYS MISSING PAGES 32
LINES 0 LIMIT NOLIM BACKING STORE 0 LOCKED XXXX
CARDS 0 LIMIT NOLIM BUFFER SIZE 4992 CPSIZE 1552
@{09:12:23 STEP COMPLETED

** EXAMPLE OF TEMP FILE, CLEANING MESSAGES **

PHASEL: STEP 2

LOAD MODULE = INOUT (14:22:48 SEP 13, 1979)

LIBRARY = LMLIB (MD=K117)

STEP STARTED XPRTY=9
@{ 09:12:27 TASK MAIN J=06 P=00 COMPLETED

NO TRACE : AC=4FDB1008->DQULK 27,SF NUNKH AT 1AD4047E RC=4FD01008->DQULK 16,SFNUNKN AT 1AE00324
@{ FPO7.IFN*SORTIE HAS BEEN CLOSED BY SYSTEM

FPO7.IFN*ENTREE HAS BEEN CLOSED BY SYSTEM

TEMPORARY FILES USED= 19 TRACKS

SYSBKST ON CTE549: NB OF I0 CONNECTS= 48

INFILE ~ ON CTE549: NB OF IO CONNECTS= 5

OUTFILE ON K117 : NB OF I0 CONNECTS= 0

CPU 0000.010 PROG MISSING PAGES 10 STACKOV 16
ELAPSED 0000.042 SYS MISSING PAGES 26

LINES 0 LIMIT NOLIM BACKING STORE 117216 LOCKED XXXX
CARDS 0 LIMIT NOLIM BUFFER SIZE 9408 CPSIZE 2272

@{09;12;30 STEP ABORTED SEV3=11000

Figure 7-4. Example of Job Execution Report (1/3)

7-12 47 A2 12UJ Rev03

Job Occurrence Report

09:12:33
09:12:51
09:14:02
09:14:26

09:14:27
09:14:27

(o)

09:17:34
09:19:49

JUMP DONE TO AGAIN

* EXAMPLE OF JUMP **

JUMP DONE TO BEG

PHASEL: STEP 2

LOAD MODULE = INOUT (14:22:48 SEP 13 1979)
LIBRARY = LMLIB (MD=K117)

STEP STARTED XPRTY=9

JOB SUSPENDED BY OPERATOR

JOB RELEASED BY OPERATOR

JOB MODIFIED BY OPERATOR : CLASS=* SCH=* DPR=* SW=00000000
TASK MAIN J=06 P=00 COMPLETED

TEMPORARY FILES USED= 19 TRACKS

SYSBKST ON CTE549: NB OF 10 CONNECTS= 35

SORTIE ON CTE549: NB OF 10 CONNECTS= 29

ENTREE ON K117 : NB OF I0 CONNECTS= 294

CPU 0000.397 PROG MISSING PAGES 610 STACKOV 602
ELAPSED 0001.893 SYS MISSING PAGES 11

LINES 2058 LIMIT NOLIM BACKING STORE 117216 LOCKED XXXX
CARDS 0 LIMIT NOLIM BUFFER SIZE 9408 CPSIZE 2272

STEP COMPLETED
JOB DELAYED BY SHUTDOWN
JUMP DONE TO NEXT
* EXAMPLE OF RESTARTED STEP **
PHASE2 : STEP 3
LOAD MODULE = INOUT (14:22:48 SEP 13, 1979)
LIBRARY = LMLIB (MD=K117)
STEP STARTED XPRTY=9
TJ COMMENTS : EXAMPLE OF TJ COMMAND
TASK MAIN J=06 P=00 KILLED
RC TRACE: RC=4FDB1008->DQULK 27,SF NUNKN AT 1AD4047E RC=4FD01008->DQULK 16,SFNUNKN AT 1AE00324
ISO1: UTILIZATION REPORT,IFN=PRIVE ,EFN=LEH.IND
0 ITEMS CREATED BY THIS RUN
0 ITEMS DELETED BY THIS RUN
68 ACCESSES IN PRIME DATA AREA
0 ACCESSES IN OVERFLOW AREA
FPO7.IFN=PRIVE HAS BEEN CLOSED BY SYSTEM
FPO7.IFN=SORTIE HAS BEEN CLOSED BY SYSTEM

SYSBKST ON CTE549: NB OF 10 CONNECTS= 3067

PRIVE ~ ON K117 : NB OF I0 CONNECTS= 6

SORTIE ON CTE549: NB OF |0 CONNECTS= 10

ENTREE ON CTE549= NB OF I0 CONNECTS= 34

CPU 0000.386 PROG MISSING PAGES 741 STACKOV 125
ELAPSED 0002.508 SYS MISSING PAGES 98

LINES 68 LIMIT NOLIM BACKING STORE 0 LOCKED XXXX
CARDS 0 LIMIT NOLIM BUFFER SIZE 11696 CPSIZE 2272

{ STEP KILLED
@ 09:20:05 CHECKPOINT 34 TIMES CALLED
CHECKPOINT LARGEST SNAPSHOT

Figure 7-4.

LENGTH 38304

Example of Job Execution Report (2/3)

47 A2 12UJ Rev03

7-13

JCL User's Guide

@ 09:20:07 PHASE2:STEP 3 RESTARTED AT CHECKPOINT 33
09:23:13 STEP STARTED XPRTY=9
JOB MODIFIED BY OPERATOR : CLASS=* SCH=* DPR=* SW=18000000

IS01 :UTILIZATION REPORT,IFN=PRIVE EFN=LEH.IND

0 ITEMS CREATED BY THIS RUN

0 ITEMS DELETED BY THIS RUN
172 ACCESSES IN PRIME DATA AREA

0 ACESSES IN OVERFLOW AREA

TASK MAIN J=06 P=00 COMPLETED

SYSBKST ON CTE549: NB OF 10 CONNECTS= 4355
PRIVE ON K117 : NB OF I0 CONNECTS= 3
SORTIE ON CTE549: NB OF IO CONNECTS= 9
ENTREE ON CTE549: NB OF 10 CONNECTS= 53
CPU 0000.563 PROG MISSING PAGES 1027 STACKOV 169
ELAPSED 0003.156 SYS MISSING PAGES 76
LINES 117 LIMIT NOLIM BACKING STORE 0 LOCKED XXXX
CARDS 0 LIMIT NOLIM BUFFER SIZE 11696 CPSIZE 2272

09:23:16 STEP COMPLETED

CHECKPOINT 53 TIMES CALLED
CHECKPOINT LARGEST SNAPSHOT LENGTH 39392

RLSJOB : JOB RELEASED
RLSJOB : JOB RELEASED

START 09:12:10 LINES 2243
STOP 09:23:17 CARDS 0
@ CPU 0001.374

ELAPSE 0011.115
09:23:17 RESULT: JOB COMPLETED

Figure 7-4. Example of Job Execution Report (3/3)

7-14 47 A2 12UJ Rev03

Job Occurrence Report

7.2.4 Job Initiation and Termination Messages

JOB INITIATION MESSAGES (E)
The following information is given:

- The full identification of the job: job name, user name, project name, run
occurrence number.

« The Message of Today (MOT) which has been created by the operator and
normally gives general information about the installation (e.g., shut down time).

» The date and time at which execution started.

JOB TERMINATION MESSAGES (F)

The following information is given:

START: time at which execution started

STOP: time at which execution ended

LINES: number of lines registered in the SYSOUTs

CARDS: number of punched cards registered in the SYSOUTs
CPU: total CPU time used by the steps, expressed in minutes

(excluding System Functions)

ELAPSE: job elapsed time. This is normally greater than the
sum of the elapsed time of all steps. The difference is
the time spent waiting for resources and time used by
system tasks.

RESULT: indicates the time at which the job terminated and the
result of the job: COMPLETED, ABORTED or
KILLED.

47 A2 12UJ Rev03 7-15

JCL User's Guide

STEP INITIATION MESSAGES

When a step execution begins, messages are given in the JOR which allow the user
to identify the step being executed. The messages given depend on the type and
result of the step initiation.

Normal Step Initiation. (G)
[label:] STEP ssn [utility-name]
LOAD MODULE = Im-name (Im-creation-date) [PREINITIALIZED]
LIBRARY = Im-lib-name [(MD = volume-name)]
[SHARED MODULE = sm-name LIBRARY = sm-lib-name]
hh.mm.ss STEP STARTED XPRTY = priority

Description of Parameters:

Label: is the label that immediately precedes the STEP or
utility statements in JCL.

ssn: is the static step number. A number is allocated to
each step at JCL translation time when a STEP
statement or utility statement appears.

Utility-name: When the step is a utility, the utility name is also
given.
Im-name: the name of the load module being executed as found

in the STEP JCL statement.

Im-creation-date: the time and date that the load module was created.
This is presented in the format:

hh.mm.ss month, year

PREINITIALIZED: The load module was already present in backing store:
it had been loaded previously by a PLM OCL
command.

Im-lib-name: The name of the library where the load module was
found.

Volume-name: The name of the volume where the load module

resides; it is given only if the load module is not
preinitialized or if the load module library is not
resident.

7-16 47 A2 12UJ Rev03

Job Occurrence Report

sm-name: Identifies the shared modules used by the step; (i.e., in
a TDS step); identifies the name of the library which
contains the shared modules.

hh.mm.ss: Gives the time at which step execution started.
Priority: Gives the execution priority of the step at start time.
Restart of a Step: P)

[label:] STEP ssn [utility-name] {REPEATED }

{RESTARTED AT CHECKPOINT n }
hh.mm.ss STEP STARTED XPRTY = priority

Description of Parameters:

Label: has the same meaning as for normal execution
ssn: has the same meaning as for normal execution
Utility-name: has the same meaning as for normal execution
REPEATED: the step has been restarted from the beginning

RESTARTED FROM: the step has been restarted from checkpoint n

hh.mm.ss: indicates the time the step execution restarted
Priority: indicates the execution priority of the step at restart
time.

Abnormal Step Initiation:

[label.] STEP ssn [utility-name]
[error-message]

{DELAYED BY SHUTDOWN }
STEP INITIATION {KILLED SEV 5 }
{ABORTED SEVi [RC = edited-return-code] }

47 A2 12UJ Rev03 7-17

JCL User's Guide

Description of Parameters:

Label: has the same meaning as for normal execution
ssn: has the same meaning as for normal execution
Utility-name: has the same meaning as for normal execution.
Error-message: gives code for the abnormal step initiation; Refer to the

System Error Messages and Return Codes Manual for
a description of the code.

DELAYED BY SHUTDOWN:

indicates that the operator used an END SYSTEM
SESSION command whilst the step was in the step
initiation phase possibly waiting for a resource. The
step initiation is delayed and will be restarted at the
next session.

KILLED: indicates that the operator has issued a TJ command
without the STRONG option during the step initiation.
This may be because one of the resources requested by
the job was not available.

ABORTED: indicates that the step initiation could not be
completed; the reason is indicated by the return code.
In most cases, a preceding explanation of the error
message gives a more explicit explanation of the error
that has arisen. SEV3 indicates that the step initiation
has failed because of a user error whilst SEV4 means
that the failure was due to an irrecoverable 1/O error.

STEP EXECUTION MESSAGES (H)

During step execution some messages may be logged in the JOR either by the
program itself or by system procedures called by the program. The following types
of messages may appear:

 Information and Error Messages:
- These messages always start with a message key. They are documented in the
System Error Messages and Return Codes Manual.

FOR EXAMPLE :

CBL13. ACCEPT program-id entered-data

O

7-18

47 A2 12UJ Rev03

Job Occurrence Report

- These messages may be:

Informative messages: CBL13 makes a trace of text entered from the console
as a result of an ACCEPT instruction.

Error messages: which indicate an abnormal situation has been
detected. This may result in step abortion.

Mini-reports Some utilities, especially Data Management utilities,
may produce a report in the JOR that summarizes the
operations performed. This report is embedded
between a Start Banner and an End Banner and has the
following format:

>>> utility-name utility-version start banner

utility report

. end banner
>>>

Other steps such as BTNS and TDS may produce statistical results in the JOR. The
reports produced by these utilities are documented in the appropriate manuals.

STEP TERMINATION MESSAGES
When a user program terminates, the following operations take place:

- Termination of the task(s). Each step is mapped on one or several tasks; the task
is the level of management from the system point of view. Whenever a task
terminates, the result of the task is printed in the JOR.

» Clearing of the step environment, for example, files still open at this time are
closed by the system.

« Creation of accounting information relative to
- file usage
- system resources such as CPU time, memory use.

After this has been done the step automatically terminates and the result is printed
in the JOR.

During these phases messages are printed in the JOR and are described below.

47 A2 12UJ Rev03 7-19

JCL User's Guide

TASK TERMINATION (1)

For each task the termination result is printed. It should be noted that this result is
only from the system point of view and has no relative significance to the result of
the step; for example, when compiling a COBOL program containing FATAL
errors, the TASK is considered COMPLETED but the STEP is considered
ABORTED because FATAL errors have been encountered. The message has the
following format.

TASK task name J =j number P = p number
{COMPLETED [RC = edited-return-code] }
{ABORTED BY SYSTEM [RC = edited-return-code] }
{ABORTED BY USER. TERMINATOR CODE = status }
{KILLED }

[RC TRACE : RC = edited-return-code AT ADDRESS address]

Description of Parameters:

task name: name of the task. In a mono task step this name is
MAIN

j-number: the process group number (step number) as known by
the hardware

p-number: the process number (task number) as known by the
hardware

COMPLETED: the task has reached a normal end from the system
point of view

ABORTED BY SYSTEM: the task has been aborted by the system because a
program exception has been detected (refer to
messages EX.xx in the System Error Messages and
Return Codes Manual) or because a line limit has been
reached.

ABORTED BY USER: a task abort has been requested. The termination code
gives the status value in decimal. This may happen
when the system detects invalid structures during step
execution

KILLED: a Terminate Job (TJ) command has been issued during
step execution

RC TRACE: a trace of the last four abnormal return codes set by
functions called by the program. This information is
useful to the Service Center in case of system
malfunction.

7-20

47 A2 12UJ Rev03

Job Occurrence Report

STEP CLEARING MESSAGES (J)

When messages are produced in the JOR during the step-clearing phrase, they
begin with a message key. These messages are documented in the System Error
Messages and Return Codes Manual.

FILE USAGE (K)
The following information is given:

When temporary files have been used during the step execution, the sum of
allocated space for all temporary files used is given under the heading
"TEMPORARY FILES USED".

For each file that has been opened during the step execution the following is given:
ifn: internal file name

ON volume-name: the name of the volume on which the file resides. In
the case of a multi-volume disk file, if the file is
assigned with MOUNT=1, the names of all volumes
supporting the files are printed. Without MOUNT=1,
only the name of the first volume is printed.

NB OF I/O CONNECTS: the number of physical I/Os issued by the program for
that file on the specified volume (1 per block transfer +
file OPEN, CLOSE etc).

NB OF LOG EVENTS: the number of I/O events that have been logged onto
the SYS.LOG file. Such events occur in the case of
I/O retries. They have nothing to do with success or
failure of the 1/0. When no I/O retries have been
performed this value is not given. A high value may
indicate that the volume or drive is damaged.

47 A2 12UJ Rev03 7-21

JCL User's Guide

In addition to the user defined files, the following conventional files may appear in
the list:

SYSBKST: "system backing store". This gives the number of I/Os
performed on the system disk, including swapping of
segments of the step

PRMBKST: "permanent backing store". This gives the number of
I/Os performed on this file, when the file does not
reside on the system disk. This file contains the
preinitialized load modules and the checkpoint images.

TMPBKST: "temporary backing store". This gives the number of
I/Os performed for the step on this file that has been
allocated to the step, provided that the file does not
reside on the system disk.

TMPBKST*: Gives the number of I/Os performed for swapping out
segments belonging to other steps (on volumes
different from the system disk) to swap in a segment of
the current step.

JOURNAL: Gives the number of I/Os performed on the journal
files for the step. If Before Journal was used,
"BEFORE" appears instead of volname; if After
Journal was used, "AFTER" appears in lieu of
volname.

NOTE: As all steps using the After Journal at the
same time share the same buffer, the 1/O is account to
the step that caused the physical writing of the buffer.

ROLLBACK: Appears when files are rolled back after a step abort or
system crash. Gives the number of I/Os performed to
read the Before Journal in order to rollback the files.

H_DPPR: Appears when the step aborted and a dump has been
taken. Gives the number of 1/0Os performed while
storing the dump in the SYSOUT.

NOTE: A user who wishes to save a dump on a file
(rather than printing it) may do so by assigning this efn
to a file.

7-22 47 A2 12UJ Rev03

Job Occurrence Report

SYSTEM RESOURCES STATISTICS (L)

This information gives the amount of resources used by the step. The following
descriptions are given:

CPU: The CPU time taken to process the user program. It

starts timing at the end of the step initiation (start
program) and finishes at the end of step termination
and includes system functions called by the program.
The time is expressed in minutes. In the case of a
multitask step, the value given is the sum of the CPU
time used by each task. Details about CPU time used
per task can be found in the accounting file.

All the CPU time output within the user process-group is accounted for, including
the following:

user processing (COBOL, RPG, FORTRAN...)
run-time packages (if any)

data management including all functions used; open, get, put, close, editing in
the case of the Sysout access method, etc.

virtual memory activity (mainly missing segment handling...)
physical I/O initiation

part of step initiation and step termination.

All "centralized" system functions are left out (They are executed within the
System process group). These functions include:

physical I/O termination

scheduling and sequencing of job and steps

system availability management (management of retries and error logging).
management of SYSIN and SYSOUT queues

management of operator dialog.

47 A2 12UJ Rev03

7-23

JCL User's Guide

Very little time is spent in the execution of these centralized system functions: they
usually account for well under 10 % (or even 5 %) of total CPU usage.

ELAPSED: The elapsed time between the end of step initiation and
the end of step termination. The time is expressed in
minutes.

CPSIZE: The total size of the channel program pages in bytes.

SYS MISSING SEGTS: The number of missing segments related to system
procedures called by the program.

PROG MISSING SEGTS: The number of missing segments related to the
program itself.

BUFFER SIZE: Total buffer size in bytes. This value can be used to
evaluate the working set of the program specified in
the SIZE JCL statement.

BACKING STORE: Total amount of temporary backing store that has been
allocated to the step. The size is expressed in bytes
although backing store is allocated in units of 39K
bytes. In the case of preinitialized load modules and
repeatable steps with or without checkpoints, the size
occupied by the original copy of the segments or by
the checkpoint snapshot is not included in this value
and only the modified segments which have been
swapped out are counted.

LOCKED: The size of the non-relocatable resident segments.

LINES: The number of lines in the SYSOUT files relating to
this step. In the case of step abort with dump, the lines
created for the dump are included in this value.

CARDS: The number of card images in the SYSOUT files
relating to this step.

LIMIT: The maximum number of LINES or CARDS allowed
for this job as specified in the STEP JCL statement.
NOLIM is taken as default if no limit is specified.

STACKOV: Number of stack overflows. Stack segment size is
dynamically adapted (increased or decreased)
according to the user needs. The value given indicates
the increase in the number of lines. A high value here
may indicate that a procedure activation in a loop
caused increasing stack size adaptation.

7-24 47 A2 12UJ Rev03

Job Occurrence Report

STEP RESULT (M)

The following message is displayed:

{CDOMPLETED [SEV. [= status-value]] }
hh.mm.ss STEP {ABORTED [SEV. [= status-value]] }
{KILLED }

Parameter Description:

COMPLETED: The step execution is considered as correct; that is, the
status-value is less than 10000. If the status-value is
not O then it is displayed in the message.

ABORTED: The step execution is considered as incorrect; that is,
the status-value is greater than or equal to 10000. The
next step of the job will not be executed unless a
JUMP JCL statement follows the step description in
the JCL.

KILLED: The operator issued a Terminate Job (TJ) command.

If the step used the checkpoint/restart facility the following messages are also
displayed.

CHECKPOINT nn TIMES CALLED
CHECKPOINT LARGEST SNAPSHOT LENGTH snapshot-size

A checkpoint snapshot is an image of the virtual memory address space saved by
the checkpoint facility. The size of the largest snapshot is given in bytes.

MESSAGES AT RESTART TIME (N)

If a crash occurs during the initiation or termination of a job or a step (process
group) one of the following messages will be produced:

JOBINIT RESTARTED AFTER A SYSTEM CRASH
JOBTERM RESTARTED AFTER A SYSTEM CRASH
PGINIT RESTARTED AFTER A SYSTEM CRASH
PGTERM RESTARTED AFTER A SYSTEM CRASH

If a crash occurs between steps, for example during the processing of a LABEL,
JUMP or WRITER JCL statement, a warm restart performs the necessary
operations to allow the inter-step statement to be executed. In this case the
following message is written on the JOR:

JOB RESTART AFTER A SYSTEM CRASH

47 A2 12UJ Rev03

7-25

JCL User's Guide

If a warm restart aborts the job that was being executed or was suspended at the
time of the crash because of irrecoverable inconsistencies found in its structure, the
following message appears in the JOR:

JOB TERMINATED BY SYSTEM CRASH

If a system crash occurs while a step is being processed the step is aborted and the
following message appears in the JOR:

STEP ABORTED BY SYSTEM CRASH

This message is followed by recovery information about the files that were
currently assigned to the step:

LIST OF FILES ASSIGNED AT CRASH TIME
EFN VSN PMD SALVAGED NEEDED

where:

EFN: Heads the list of file names

VSN: Identifies the volume that contains the file in question

PMD: Processing Mode

SALVAGED: Will indicate either YES or NO depending on whether
or not the file was salvaged.

NEEDED: Specifies what is required for the recovery with the
following significance:

NONE: No action is required

FILREST: A file restore should be performed

VOLREST: A volume restore should be performed

VOLCHECK: Volume checking is required

DEALLOC: Deallocate the file

PREALLOC: Preallocate the file

VOLPREP: A volume preparation should be performed

UNKNOWN: Damage has been done but the system is unable to

establish the type of recovery action necessary.

7-26

47 A2 12UJ Rev03

Job Occurrence Report

JOB EXECUTION TRACE (O)

As one of the purposes of the Job Execution report is to trace every event that
arises during all aspects of job execution, the following messages may also appear
as the result of a specific event. These can appear at the execution of a JUMP JCL
statement or where an operator command has influenced job execution or where
the execution of a JCL statement does not imply any step execution.

COMMAND ABORTED: command text. RC=edited-return-code

This is where an OCL command has been found in the JCL. This is normally
treated as if it was entered at the operator console, but in this case the command
has not been accepted by the system. The return-code gives the reason for the
problem. If this code is CDUNKN, this indicates that the command submitted is
not OCL. Other codes normally indicate a system error.

Job-name: HOLD COUNT DECREMENTED TO n

This message is the result of a RELEASE JCL statement being encountered. The
HOLD=n parameter in the $JOB card indicates the number of times a RELEASE
JCL statement must be read before the job can be put into the IN SCHEDULING
state. The message indicates that the old count has been decremented but is not yet
equal to zero for that job. Therefore the job stays in the HOLD state.

If several jobs with the same name are in the HOLD state a message appears for each
one.

ron IN job-name user-name class SPR = n submitter-ron station-name

This message is the result of a RUN JCL statement being encountered. It provides
the identification of the submitted job: run occurrence number, job-name, user-
name, job class, scheduling priority, run of the submitter, name of the RBF station
to which the job is attached.

@hh.mm.ss JOB DELAYED BY SHUTDOWN

This message is the result of an END SYSTEM session command entered by the
operator. The execution of the job continues until the current step terminates. The
job will restart automatically at the next step when the new session begins.

hh.mm.ss JOB HELD BY OPERATOR

This message is the result of a Hold Job (HJ) command. Depending on the job
state at the time the command is entered, the job will not be selected for execution
if the job execution is suspended or if the job was in the IN SCHEDULING state.
The job is restarted when the operator issues a Release Job (RJ) command.

hh.mm.ss JOB FORCED BY OPERATOR

This message is the result of a Force Job (FJ) command. This command allows the
job to bypass the scheduling mechanisms.

47 A2 12UJ Rev03 7-27

JCL User's Guide

hh.mm.ss JOB MODIFIED BY OPERATOR. CLASS ={class} SCH {spr}
{1 {*}
DPR ={dpr} SW ={switches-value}
¢ty 0"}

This message is the result of a Modify Job (MJ) command. It indicates which job
parameters have been modified, c indicates that the parameter has not been
modified by the command. The operator can modify the job class, the scheduling
priority (spr), the execution priority (dpr) and the switches. If the switches have
been modified the new state is given in hexadecimal.

hh.mm.ss JOB REACTIVATED BY SYSTEM

This message appears when the system automatically resumes execution of a job
that had been previously suspended because the system was overloaded (TDAC).

job-name: JOB RELEASED

This message is the result of a RELEASE JCL statement. It indicates that the job
specified in the message has been released. When several jobs with the same name
have been released by the execution of the statement, one message appears for each
of them.

hh.mm.ss JOB RELEASED BY OPERATOR

This message is the result of a Release Job (RJ) command. The job that was
previously in the HOLD or SUSP state is put into the In Scheduling or Executing
state.

hh.mm.ss JOB SUSPENDED BY SYSTEM FOR TDAC

This message indicates that the job execution has been automatically suspended by
TDAC because the system was overloaded. The job will be automatically released
later.

JUMP {CONTINUE }
{DONE TO label }

This message traces the Jump JCL statements which have been actually executed.
That is, for conditional Jumps, those for which the condition was verified.

hh.mm.ss TJ COMMENTS: Operator-entered-text

This message is the result of a Terminate Job (TJ) command. It displays on the
JOR the text that has been entered by the operator to the TJ command. This text
normally indicates the reason why the operator interrupted the execution.

7-28

47 A2 12UJ Rev03

A. RESIDENT Volumes

Al Introduction

The list of RESIDENT volumes is specified at ISL time. During a Warm Restart,
this list can be modified temporarily, that is, for the duration of the current session.
While a volume is RESIDENT, it should be processed as such and not via
DEVCLASS and MEDIA. Before removing a disk from the list of RESIDENT
volumes, ensure that it contains no extents of files that also have extents on other
RESIDENT volumes. If these precautions are not taken, problems may
subsequently arise in the processing of such multi-volume files. An example of
such a problem is given below.

EXAMPLE :

1. The volume MYDISK is declared RESIDENT.

2. The library file MYLIB is allocated on MYDISK using LIBALLOC with
DEVCLASS and MEDIA.

3. LIBMAINT with RESIDENT is used to load MYLIB. Extension (if
necessary) of MYLIB may take place on other RESIDENT volumes (up to the
maximum size specified by LIBALLOC). Suppose that MYLIB is extended
onto the RESIDENT volume RESDSK. The situation is as shown in
Figure A-1

47 A2 12UJ Rev03 A-1

JCL User's Guide

Q MYLIB -
S
W Extent 4 W Extent 2
W Extent 3
N

RESDSK MYDISK

MYLIB

Extent 1

Figure A-1. MYLIB Extended onto RESDSK

4. The file MYLIB can be processed normally as long as it is treated as
RESIDENT. In particular, the utilities FILDESC and FILDUPLI can be used
to describe and copy the file, respectively.

5. If MYLIB is processed as a non-RESIDENT file (i.e., specifying DEVCLASS
and MEDIA), the result depends on the MEDIA value given.

a. MEDIA = (MYDISK,RESDSK)
This will lead to "normal” processing of all the extents of MYLIB. From
this viewpoint, it is equivalent to 4 above. However, it is undesirable as it
relies on the user specifying an up-to-date list of volume names. Thus, if
the file were subsequently extended onto a third disk volume, then this
volume name would have to be added to the list.

b. MEDIA = MYDISK
This will lead to partial processing of the file, that is, of the extents on
MYDISK.
In particular, FILDESC indicates,

FREE LOGICAL TRACKS USED negative
% USED greater than 100

both of which warn the user of the existence of extents external to
MYDISK.
FILDUPLI duplicates only those extents found on MYDISK i.e., it obeys
the request to process only MYDISK.
c. MEDIA = RESDSK
This will lead to an attempt to process just Extent 4, which resides on
RESDSK. In fact, FILDESC, FILDUPLI, and LIBMAINT will all abort
as it is not possible to process Extent 4 on its own.
6. MYLIB is "partially" saved. A VOLSAVE (of MYDISK) or a FILSAVE (of
MYLIB with MEDIA=MYDISK) results in a partial save of the file (not
deliberately, of course!).

A2 47 A2 12UJ Rev03

RESIDENT Volumes

7. Other users continue to process MYLIB as a RESIDENT file i.e., they process
the extents on MYDISK and on RESDSK. This processing includes the
addition of new members and the modification/deletion of existing members.

8. MYDISK or MYLIB is restored from the save made at phase 6.

MYLIB is now in an inconsistent state. The directory as restored (i.e., as
saved at 6) is not consistent with the file. This is due to the processing done
in phase 7. For example, members deleted from Extent 4 (during phase 7) are
in the restored directory, while new members added to Extent 4 do not appear
in the directory.

NOTE:
RESIDENT disks can be considered as a pool of on-line storage and declaring a
volume RESIDENT adds it to this pool. Files on a RESIDENT volume may be
extended onto other RESIDENT volumes without specific user request (phase 3
above). This should be borne in mind before removing a volume from the
RESIDENT pool. While RESIDENT, a volume should be processed as
RESIDENT, and not by using DEVCLASS and MEDIA (phase 5 above).
Violating this principle can lead to partial processing of files, and in certain
circumstances lead to inconsistent files.

47 A2 12UJ Rev03 A-3

JCL User's Guide

A.2 Recommendations

The following subsections give recommendations about making disks RESIDENT
or non-RESIDENT.

A.2.1 Making a Volume RESIDENT

Ensure that the volume will in future be processed as RESIDENT only. This may
mean changing the JCL of steps that process it. Processing the volume sometimes
as RESIDENT and sometimes as non-RESIDENT (i.e., DEVCLASS, MEDIA)

may lead to inconsistent results. This can occur when users "forget" to change their
JCL.

A.2.2 Making a Volume Non-RESIDENT

Before withdrawing a volume from the list of RESIDENT disks, ensure that:

» |t contains no extents of files from other RESIDENT disks
« None of its files have extents on other RESIDENT disks.
If necessary, such files can be copied using FILDUPLI (but with RESIDENT).

Ensure that the JCL of the steps concerned is changed, so that in future the volume
is processed as a non-RESIDENT volume.

A-4 47 A2 12UJ Rev03

B. Parameter Substitution

B.1 General Concepts

The user can define a parameter value within any of the JCL statements VALUES,
MODVL, INVOKE, EXECUTE or RUN (or within the operator command SJ).

Each defined value is a character string, which may be protected (enclosed in
single quotes). The character string replaces each corresponding parameter value
reference that comes within the scope of the defining statement (e.g., each
parameter value reference in a job stream introduced by RUN statement).

The substitution of a parameter value can occur anywhere within a job description
(including within an input enclosure) except within a Stream Reader statement (i.e.,
$JOB, $ENDJOB, $INPUT, $SENDINPUT, $DATA, $ENDDATA, $SWINPUT).

The system replaces parameter value references with parameter values during job
translation.

47 A2 12UJ Rev03 B-1

JCL User's Guide

B.2 Parameter Value References

There are two types of parameter value references: positional parameter value
references and keyword parameter value references; they refer respectively to
positional parameters and keyword parameters in the defining statement. Their
functions are identical, but they differ in definition and in use.

B.2.1 Positional Parameter Value References

A positional parameter value reference consists of an ampersand character (&)
followed by a one-digit or a two-digit number (maximum value 99); for example:

&11 &20 &03 &3

Note that the last two examples are exactly equivalent in meaning.

The number after the & character specifies the position of the appropriate
parameter value definition within the VALUE statement, or within the VALUES
parameter of the INVOKE, EXECUTE, or RUN statement; consider the following
parameter value definition:

VALUE ONE, TWO, XYZ, Q43;
If the parameter value reference &2 appears after the above VALUES statement in

a job description, it will be replaced at JCL translation time by the character string
TWO; similarly, the string Q43 will replace each occurrence of &4.

B.2.2 Keyword Parameter Value Reference

A keyword parameter value reference consists of an ampersand (&) followed by a
keyword of up to eight alphanumeric characters, the first of which must be a letter
(A to 2); for example:

&KEYWORD &X1234567 &A1 &A01

Note that the last two examples are not equivalent.

For a particular keyword parameter value reference, the system substitutes the
value assigned to the corresponding keyword parameter value definition within the
VALUES statement, or within the VALUES parameter of the INVOKE,

EXECUTE or RUN statement; consider the following parameter value definition:

VALUES VALIO = A, VAL56 = 14,

The character A will replace each occurrence of &VALIO, and the character string
14 will replace each occurrence of &VALS56.

B-2

47 A2 12UJ Rev03

Parameter Substitution

B.2.3 General Rules for Parameter Value References

A parameter value reference can occur anywhere within a job description (except
within $JOB, $ENDJOB, $INPUT, $SWINPUT); this includes, for example, within
parameter names (e.g., if the defined value for &1 is E then &1ND represents
END; if the defined value is ABE then &1ND represents ABEND). This situation
could lead to confusion; for example, do the characters &11ND represent the value
of &11 followed by ND or the value of &1 followed by 1IND?

To avoid ambiguity, the following rules apply to the way in which the system
interprets the text that follows an ampersand character.

1. If the first character is a digit, there is a positional parameter value reference;
in this case if the next character is a digit, it is included as the second digit of
the value reference; for example:

&1A2 - value of &1 followed by A2
&12A - value of &12 followed by A
&123 - value of &12 followed by 3

2. If the first character is a letter, there is a keyword value parameter reference;
in this case the keyword includes every character up to the first non-
alphanumeric character; if more than eight successive alphanumeric
characters follow the ampersand, only the first eight are taken as the keyword.

For example, consider the definition:

VALUES KEYWORD = DFILE, KEYWORDL = SFIL1,;
MODVL KEYWORD = OFILE, KEYWORD1 = SFIL1;

the reference &KEYWORD, becomes DFILE,
the reference &KEYWORD1, becomes SFIL1,
the reference &KEYWORD12, becomes SFIL12,
the reference &KEYWORD?2, becomes an empty string, (since KEYWORD?2
has not been defined; see rules for Parameter Substitution below).
3. If the first character is neither a letter nor a digit, an error condition will result.

Two consecutive vertical bars (||, each of which corresponds to the internal
EBCDIC hexadecimal value 4F and H36 card code 12-8-7) always end a
parameter value reference and are omitted when the string value is
substituted; the use of these special symbols avoids the addition of unwanted
characters at the end of a parameter value reference. For example:

&22AB represents the value of &22 followed by AB
&2||2AB represents the value of &2 followed by 2AB
&END, represents the value of &END followed by,

&EN||D, represents the value of &EN followed by D,

NOTE:
On an IOF (Interactive Operation Facility) terminal, the character ? is used
instead of each vertical bar.

47 A2 12UJ Rev03 B-3

JCL User's Guide

B.3 Rules for Parameter Substitution

1. When the JCL Translator finds a parameter value reference, it analyzes the
corresponding replacement value (i.e., the parameter string to be substituted)
in terms of the required syntax of the current JCL entity (i.e., the label,
keyword, statement name etc. that the translator is currently analyzing). For
example, consider the definition:

FDESC = 'DEVCLASS = MS/M400, MEDIA = C053'

(Note that a protected string is necessary because there are characters other
than letters, digits and hyphens).

If there is a statement of the following form;
ASSIGN INFL, MY .FILE, &FDESC;

The Translator will remove the enclosing quotes, ensure that the DEVCLASS
and MEDIA parameters are syntactically correct, and produce the following
statement:

ASSIGN INFL, MY.FILE, DEVCLASS = MS/M400, MEDIA = C053;

If for example, MODIA had appeared instead of MEDIA, the JCL Translator
would have detected an error at the time of the replacement.

@ IMPORTANT:

If a protected string is permitted within a particular JCL entity (e.g., for a
nonstandard file name as an external-file-name), a replacement value that is a
protected string is not analyzed.

Consider the definition:

FDESC ='MY.FILE, DEVCLASS = MS/M400,
MEDIA = C053'

If there is a statement of the following form:
ASSIGN INFL, &FDESC;

The Translator will simply replace the value reference with the defined value,
to produce:

ASSIGN INFL, 'MY.FILE, DEVCLASS = MS/M400,
MEDIA = C053;,

The character string MY.FILE, DEVCLASS = MS/M400, MEDIA = C053 as
nonstandard external-file-name.

B-4 47 A2 12UJ Rev03

Parameter Substitution

2. An"empty string" value is associated with any reference whose value has not
been defined. The JCL Translator ignores an empty string. For example, if
the keyword value parameter FDESC has not been defined, the statement:

Becomes: ASSIGN INFL, MY.FILE, &FDESC;

ASSIGN INFL, MY.FILE;

B.4 Parameter Substitution in Input Enclosures

An input enclosure can contain parameter value references. The appropriate values
to be substituted can be taken either from values that apply at the level of the
original job or from those that apply at the level of the current invoked JCL
sequence, depending on whether the appropriate $INPUT statement contains the
JVALUES parameter or the CVALUES parameter.

47 A2 12UJ Rev03 B-5

JCL User's Guide

B.5 Definition of Parameter Values

B.5.1 Types of Defining Statements

The VALUES and MODVL statements allow the user to define and redefine
default values within a JCL entity (i.e., within a job description or a JCL sequence).
The user can also define external values to JCL entities from the RUN, INVOKE
and EXECUTE statements that introduce the entities; these external values
override any values that are defined within the introduced JCL entity (by VALUES
or MODVL).

Table B-2at the end of this Appendix illustrates the effect of internal and external
value definition.

B.5.2 Mixing of Positional Parameters and Keyword Parameters

Both positional parameters and keyword parameters can appear in a value
definition. However, all positional parameters must be specified before any
keyword parameters.

EXAMPLE :

VALUES A, B, C,D,KEY =E, CHECK=F, SUB =G;

In the above example, there are four positional parameters and three keyword
parameters. The characters A, B, C, D, E, F and G will replace respectively &1,
&2, &3, &4, &KEY, &CHECK and &SUB.

NOTE:
If a particular value is to be identical to the specified value reference (e.g.
CHECK = CHECK), the keyword parameter does not need to appear in full but
can be specified as a single self identifying value (provided that, as such, it is
not recognized as a positional parameter); for example:

VALUES A, B, C, D, KEY = KEY, CHECK = CHECK, SUB = SUB;
can be rewritten as:
VALUES A, B, C, D, KEY = KEY, CHECK, SUB;

However, if KEY appeared in place of KEY = KEY, it would be considered as
the fifth positional parameter, replacing &5, and not as a self-identifying
parameter. These remarks also apply to the MODVL statement.

B-6

47 A2 12UJ Rev03

Parameter Substitution

The VALUES Statement

The VALUES statement sets default values within the current JCL entity. These
values are valid until the next VALUES or MODVL statement or, if none is
present, to the end of the JCL entity. The values apply to parameter references in
all JCL statements except in the seven Stream Reader statements ($JOB,
$ENDJOB, $INPUT, $SENDINPUT, $DATA, $ENDDATA, $SWINPUT) and in the
next VALUES or MODVL statement. Each VALUES statement resets to "not
defined" all default values set by a previous VALUES or MODVL, before it sets
any new default values. This means that if there is no definition for a particular
value reference in a VALUES or MODVL statement (and if no externally defined
value applies) an "empty string" is substituted, irrespective of the value set by
earlier VALUES or MODVL statements. Consider the following sequence of
statements, assuming that no external values have been set.

VALUES RES, DOC1, C035;
) &1 &2 &3
this sets the value: RES DOC1 C035

VALUES &1, DOC2,
. &l &2 &3

this sets the values: "empty” DOC2 "empty".

Note that the value &1 for the first parameter is not defined, since the previous
VALUES statement is not valid for this VALUES statement; the statement
VALUES, DOC2; would have an identical effect.

VALUES'&2', NDOC, C053;

&1 &2 &3
this sets the values: &2 NDOC C053

NOTE:
Where a value reference &1 occurs in a following JCL statement, the value &2
is substituted. Provided that a protected string is not permitted at this position
(see "Rules for Parameter Substitution" above), the JCL Translator will
substitute the value NDOC. If the value &2 for the first parameter had not been
protected, the JCL Translator would have made the substitution immediately, to
give an empty string, as in the preceding VALUES statement above.

47 A2 12UJ Rev03

B-7

JCL User's Guide

B.5.4 The MODVL Statement

The MODVL statement is similar to the VALUES statement except that MODVL
does not reset to "not defined" the default values set by preceding MODVL or
VALUES statements. MODVL affects the values of those parameters that are
explicitly given a new value by it. MODVL does not affect the values of
parameters for which it does not supply a new value; these parameters retain the
values (which may be "not defined") that they had before the MODVL statement.
Consider a sequence of statements similar in effect to that examined under the
VALUES statement above:

VALUES RES, DOC1, C035;
) &1 &2 &3
this setsthe values RES DOC1 C035

MODVL &1, DOC2:

&1 &2 &3
this sets the values RES DOC2 C035

MODVL ' &2', NDOC, C053;

&1 &2 &3
this setsthe values &2 NDOC C053

NOTE:
If &1 is referenced in a subsequent JCL statement, the value &2 is substituted.
If a protected string is not permitted at this position, the JCL translator will
substitute the value NDOC. If &2 had been used in the MODVL statement,
then the effect would have been to substitute DOC2.

MODVL NIL, DOC4;
. &l &2 &3
this sets the values "empty" DOC4 C053

NOTE:
As MODVL does not supply a new value for &3, it retains its previous value
C053. DOCH4 replaces the old value of &2. The parameter &1 is explicitly set
to "empty". The statement MODVL, DOC4; would have left &1 unchanged
(i.e., '&2".

If the last MODVL statement above were replaced by

VALUES, DOCH4;
&l &2 &3
then the values set would be "empty" DOC4 “"empty”

B-8

47 A2 12UJ Rev03

Parameter Substitution

B.6 Examples of Parameter Substitution with Values

B.6.1 VALUES Statements and Substitution
The following examples are structured as a Table (Table B-1), giving a defining
VALUES statement, a statement (or part of statement) containing a parameter
reference, and the version with the substituted value or values.

Table B-1. Value Definition and Substitution

Definin g Statement Value Reference (s) New Version
VALUES MS/M400; DEVCLASS = &1 DEVCLASS = MS/M400
VALUES RESIDENT; &1 RESIDENT
VALUES MS, M400; DEVCLASS = &1/&2 DEVCLASS = MS/M400
VALUES MY, FILE; &16&2 MYFILE

&10&2 FILE

&1]|0&2 MYOFILE

&0108&2 MYOFILE
VALUES 'USED A.B'; REPORT &1, REPORT 'USED A.B';
VALUES JAN; REPORT 'MST.'&1' REPORT 'MST.JAN-AC';

-AC';

VALUES A,B,F =MY, &10 "empty string"
FILE = AFILE; &1|0 AO

&F MY

&FILE AFILE

&F||ILE MYILE

&FILEX "empty string"

&FILE[|X AFILEX

47 A2 12UJ Rev03 B-9

JCL User's Guide

B.6.2 The INVOKE Statement

The following paragraphs, which describe the definition and substitution of
externally defined values for an invoked JCL sequence, apply equally to JCL
sequences handled by EXECUTE and to job descriptions within job streams
handled by RUN (or by the SJ operator command).

The INVOKE statement can define external values for a JCL sequence. These
values override the default values that are defined in all VALUES statements that
appear within the JCL sequence. Each time the JCL Translator finds a parameter
value reference, it does the following:

1. If the corresponding value is defined by the INVOKE statement, the character
string replaces the value reference.

2. If the value is not defined by the INVOKE statement, the JCL Translator
examines the previous VALUES statement within the sequence; if this
statement has defined a default value it replaces the value reference; if there is
no defined value, an empty string is substituted.

NOTE:

1. If the corresponding value in the INVOKE statement is NIL, an empty
string replaces the value reference even if a default exists within the JCL
sequence.

2. If any VALUES statement within the JCL sequence contains a value
reference, the corresponding value defined by the INVOKE is substituted.

Consider the following INVOKE statement:
INVOKE MEMBER, SYS, VALUES = (, FILE, NIL);

Suppose MEMBER contains the following VALUES statements:
VALUES ABC, XFILE,C035,MS/M400;
VALUES, YFILE,C035MS/M350, &2;

After the first VALUES, the parameter values will be as follows:

& & &3 &4 &5
ABC FILE "empty" MS/M400 "empty"

After the second VALUES, the following values apply:

&l &2 &3 &4 &5
"empty" FILE "empty" MS/M350 FILE

B-10 47 A2 12UJ Rev03

Parameter Substitution

B.7 Example Using External Values

Table B-2 shows the effect of the definition of external values by a RUN statement
and by an INVOKE statement. The relevant statements of the original job
description, those of the job introduced by RUN, and those of the JCL sequence
invoked by INVOKE appear on the left of the table. The corresponding values that
apply within the current JCL entity after the translation of each statement appear on
the right alongside the respective statement. Where a substitution is made, the new
version is shown below the relevant statement or part of a statement. Note that,
where external values have been defined, the "new version" of a VALUES
statement that contains a value reference does not necessarily give the values that
apply currently (for example, see the contents of subfile MEMale B-2.

47 A2 12UJ Rev03

B-11

JCL User's Guide

Table B-2. Substitution of External and Internal Values
Job JOBA &1 &2 &3 &VI
$JOB JOBA, ... ;
VALUES A, B, C ; ABC-
RUN ..., JOBS = JOBB,
VALUES = (D,E,F) ; ABC-
INVOKE MEML, ...,
VALUES = (&3,,G) ; ABC-
[becomes VALUES = (C,,G) ;]
STEP &2, ... ; ABC-

becomes STEP B, ...;

$ENDJOB ;

Job JOBB

$JOB JOBB, ... ;

STEP &3, ... ; DEF-
[becomes STEP F, ...]

VALUES ,,Z,VI=X; DEFX

STEP &1, &2, &3, &VI ; DEFX
[becomes STEP D,E,F,X ;]

$ENDJOB ;
Contents of subfile MEM1 &1 &2 &3 &VI
STEP &1, &2 ...; C-G-

[becomes STEP C,, ...]]

VALUES M,N,O VI=P CNGP

VALUES &2, Q,R, VI =&V ; CQG-
[becomes VALUES , Q,R ;]

VALUES S, &1, T ; CCG-
[becomes VALUES S, C, T ;]

STEP &1, &3, ... ; CCG-
[becomes STEP C, G, ... ;]

B-12 47 A2 12UJ Rev03

$

$ENDJOB statement| 1-1

$INPUT statement| 22
CONTCHAR parameter| 242
ENDCHAR parameter| 2}2

$JOB statement 11, 110
HOLDOUT parameter| 2-35
LIST=ALL option

$JOB statement paramete5

$SWINPUT statement| 1ll9, 5116

$SWINPUTstatement
CONSOLE option [5-20

A

Access Rights[_5}6
ALLOCATE statement [311

ASSIGN statement
FIRSTVOL parameter| 3-16
LASTVOL parameter | 3-1l6

MEDIA = WORK parameter| 3-14
MOUNT parameter| 3-16, 4-119
POOL parameter| 4-23

PRTFILE parameter groug 244
SHARE and ACCESS paramete4—9
SHARE=MONITOR option
TEMPRY parameter| 3-14

ASSIGN statementy 1-12

Assignment of Cataloged File -6
Assignment of Uncataloged File -7

Index

B

basic statementd -1

Batch project startup. Examplp _ 1}19
BILLING parameter

C

catalog

search rules| 3}6

Catalog

Overview
cataloged file | 34
Checkpoint/Restart facility[_6}-1
COBOL CLOSE WITH LOCK option[_2-42,

[3-9][4-6

COBOL Report Writer
COBOL SELECT statemen{ 2-9
COBOL -SYSOUT suffix
COBOL -SYSOUT Suffix | 2-1B
Concatenation restrictiong 3122
CONTCHAR parameter| 213
CREATE utility

D
Data Enclosures| 2-10

data management utilitie§ 3-1

deadlock situation 7
DEALLOC statement 3
declared working sef 4-2

47 A2 12UJ Rev03

JCL User's Guide

DEFINE statement
NSYSOUT parameteﬂ 2-]21
Overview | 3-25
PRINTER parameter| 2-28
PRTDEF parameter group 2144
SYSOUT parametern 2-17
DEVCLASS parameter] 2-28
Device managemen{ 419
mounting of multivolume files[4-19
device pool | 4-28
Device Pools| 4-21
Difference between SYSOUT and
DEFINE
Difference between SYSOUT and

WRITER | 2-4%
Dispatching priority | 1-1/
Duplicate file and volume namef 324

DWS

E

edited SYSOUT file| 2-14

ENDCHAR parameter| 22

Error message -2

Error Processing 1

EXECUTE statement| 5l3, 5-1L5, 5}18
EXECUTING state | 1{5

Expiration dates| 4-16

EXTEND processiode} 2—23, 2}26
1

external file name

=
File allocation and preallocatiofi_B-8
File Assignment

3_

File concatenation 1
File Journal | 6-[
File passing| 443
File protection | 48

File sharing with GAC| 4-15
File sharing without GAC| 419
Full Screen Editor[_5]1

G

GCOS Output Facilities] _2-12
Generation Groups|_3-5

H
Hold parameter5

HOLD parameter 5
HOLD state | 1-5
Holding jobs | 1-15

Input Data Types| 2{8
Input Enclosures| 22

parameter setting 5-42

using INVOKE or EXECUTE
Input/Output Managemen{ _ 2-1
internal file name
INVOKE statement | 543

containing JUMP statemen -6

using

J

JCL Errors
JCL translator | 118
Job Occurrence Repoit 2412, 2¢38,|6-1
Job Sequence Modificatio -1
job stream

creation | 5-49
JOBOUT [2-38
JUMP statementE-S

containing INVOKE statemen{ _§-6

L
label
labels | 6-F

LET statement

SEV value | 6-1ll, 6-14
LIB statement | 5-13
LIBMAINT utili 2
lines limit | 2-2

LINES parameter[2-29

47 A2 12UJ Rev03

Index

M

MEDIA parameter | 2-28
Memory management 4-2
Memory overload | 4{2

Mini-Editor

Mounting of multivolume files 9
multifile tape volume | 3-20
Multivolume files | 3-16

Multivolume work tapes 8

N

Nested INVOKE statement$ 5]17
NSLEW parameter[2-28
NSYSOUT parameterl 2-P1

O

output banners
frequency

Output editing

margin setting [2-30
Output Editing Parameter§_ 2]29

Edited Permanent SYSOUT Subfilds 3—30

Ordinary Permanent Fileg 2731
Standard SYSOUT Subfileizg
Unedited Permanent SYSOUT
Subfiles | 2-3D

Output Facilities| 2-42

output handling| 2-28

OUTPUT processing modet 2126

output queue 4

output request| 2-34

Output Selection and Naming__ 2134

2
[2-4]
Output Writer Requests] 2-|32

OUTVAL statement | 2-2B, 2-34, 2-B6, 2144

DEVCLASS parameter] 2-28
NHOLD parameter 5

P

Parameter Setting
principles
Parameter substitutio] 3-1
algorithm [5-43
parameter referenceg 5126
the MODVL statement| 5-37
the VALUES statement 5-80
Partial processin6
Passed files
rules
Permanent disk files| 3-9
permanent input file| 2}6
permanent SYSOUT file[2-13
deallocating
writing to | 2-26
Permanent SYSOUT file§ 2-P5
POOL statement| 4-21
Prefixing file names 7
using the Master Directory 3-R7
using the PREFIX stateme 27
Printer

direct use
printer characteristic§ 2-B1

character set] 2-81
logical page size| 2-81
paper form [2-311
stop levels within a pagg 231
PRINTER paramete28
Program Checkout Facility| -1
PROJECT parametef _3-5
PRTDEF parameter group 2{44
PRTFILE parameter group 244

PRTOUT parameter grouy 44

R
Record Size Restrictions__2{17

Resource managemer(t

resources| 41

Return codes| 6}2

Ron Occurence Numbef 1-5

RUN statement| 5|3
using

47 A2 12UJ Rev03

JCL User's Guide

S

SARF
Scheduling priority
SCHEDULING statement| 1-13
SHIFT statement[3]5
site catalog 6
skip function
suppressing 6
SLEW parameter| 2-28
spooling system| 2M1
SoF
Standard Access Record Form 2-8
standard SYSIN|[2}5
standard SYSOUT subfilg 213, 2§23
status [650
aborting executio3
step completion codg 610
STEP statement
LINES parameter[2-39
Stored JCL [5]1

stored JCL sequencg _p-1
Stream Reader__1-8
SUSPENDED state[15

switches | 6

SYS.IN file [2-%

SYS.URCINIT file

SYSOUT and WRITER statements

example of use[2-40
SYSOUT file

defining in ALLOCATE statement

2-

defining in PREALLOC statemen

making copies of[2-35
permanent| 2-12
standard | 2-1]2
SYSOUT format | 2-14
SYSOUT Mechanism| 2-12
avoiding use of | 2-21
overriding rules | 2-2p
SYSOUT Options|_2-19
SYSOUT parameter| 2-]

SYSOUT statement] 2-12, 2415, 223, 2-44

SYSOUT statement (continued)
HOLD parameterﬁ 4
NBANNER parameter| 2-36
NHOLD parameter| 2-35
PRTOUT parameter grouy
WHEN = DEFER option| 2-33
WHEN parameter| 2-216, 2-B2

SYSOUT subfile | 2-1p

system catalog| 36

System Standard Formdt _p-8

T
Tape file deletion[3-73
Tape files

Temporary disk files[_318

U
USER parameter[35

V
VOLPREP utility [3-14, 3-21

W
WORK opti
Work tapes| 3-1{

WRITER statement| 2-12, 2-p6, 2{45
PART parameter| 2-26

PRINTER parameten _2-28
SUBFILES parameter| 2-26

47 A2 12UJ Rev03

Technical publication remarks form

Title : DPS7000/XTA NOVASCALE 7000 JCL User’s Guide Job Control and IOF

Reference N° : 47 A2 12U) 03 Date : September 1999

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please include your complete mailing address below.

NAME : Date :
COMPANY :

ADDRESS :

Please give this technical publication remarks form to your BULL representative or mail to:

Bull - Documentation DeP"

1 Rue de Provence

BP 208

38432 ECHIROLLES CEDEX
FRANCE

info@frec.bull.fr

Technical publications ordering form

To order additional publications, please fill in a copy of this form and send it via mail to:

BULL CEDOC
357 AVENUE PATTON Phone: +33 (0) 2 41 73 72 66
B.P.20845 FAX: +33 (0) 2 41 73 70 66
49008 ANGERS CEDEX 01 E-Mail: srv.Duplicopy@bull.net
FRANCE
CEDOC Reference # Designation Qty

G A

R A

e A

(__ 1 : The latest revision will be provided if no revision number is given.

NAME: Date:
COMPANY:

ADDRESS:

PHONE: FAX:

E-MAIL:

For Bull Subsidiaries:

Identification:

For Bull Affiliated Customers:

Customer Code:

For Bull Internal Customers:

Budgetary Section:

For Others: Please ask your Bull representative.

BULL CEDOC

357 AVENUE PATTON
B.P.20845

49008 ANGERS CEDEX 01
FRANCE

REFERENCE
47 A2 12UJ 03

	 JCL User's Guide - 47 A2 12UJ Rev03
	Preface
	Table of Contents
	Table of Graphics

	1. Job Management
	1.1 Introduction
	1.1.1 Job Structure
	1.1.2 Job Submission

	1.2 A Job Run
	1.2.1 Stages of a Job Run
	1.2.2 Input Reader
	1.2.2.1 STREAM Reader
	1.2.2.2 JCL Translator

	1.2.3 Known Jobs Limit
	1.2.4 Input Stream

	1.3 Job Descriptions
	1.3.1 Introduction
	1.3.2 STEP Description
	1.3.3 File Assignment

	1.4 Scheduling and Execution
	1.4.1 Scheduling Priority
	1.4.2 Job Classes
	1.4.3 Step Execution
	1.4.4 Execution Priority (Dispatching Priority)

	1.5 Holding And Releasing Jobs
	1.5.1 The HOLD Parameter
	1.5.1.1 HOLD
	1.5.1.2 HOLD = n

	1.5.2 RELEASE Statement
	1.5.3 Control of Interdependent Jobs

	1.6 Start Up Procedures
	1.6.1 Description
	1.6.2 Application
	1.6.3 Creation and Maintenance
	1.6.4 NSTARTUP Parameter
	1.6.5 Example of a Batch Project Startup

	2. Input/Output Management
	2.1 Introduction
	2.2 Handling Input Data
	2.2.1 Input Enclosures - $INPUT and $ENDINPUT
	2.2.1.1 ENDCHAR
	2.2.1.2 CONTCHAR
	2.2.1.3 ENDCHAR and CONTCHAR used together

	2.2.2 The Use of Standard SYSIN
	2.2.3 Permanent Input File
	2.2.4 Using a Permanent Input File
	2.2.5 Input Data Types
	2.2.6 Reading SSF Input
	2.2.7 Data Enclosures-$DATA and $ENDDATA

	2.3 Handling of Printed Output
	2.3.1 The GCOS Output Facilities
	2.3.2 Summary of Facilities

	2.4 Sysout Mechanism
	2.4.1 Description
	2.4.2 Use
	2.4.3 The SYSOUT Statement
	2.4.4 The -SYSOUT Suffix
	2.4.5 The DEFINE Parameter SYSOUT
	2.4.6 Restriction on Record Size

	2.5 Effect of the Various Sysout Options
	2.6 Avoiding the Use of the SYSOUT Mechanism for Output Editing
	2.6.1 When Use of the Mechanism is Unsuitable
	2.6.2 Overriding Rules for the SYSOUT Mechanism

	2.7 Standard Sysout Subfiles
	2.7.1 Most Frequent Use
	2.7.2 Use of Several SYSOUT Statements for One Subfile

	2.8 Permanent Sysout Files
	2.8.1 Writing to a Permanent SYSOUT File in Several Steps
	2.8.2 Partial Output of Files
	2.8.3 Deallocation of a Permanent SYSOUT File

	2.9 Editing and Handling Of Output
	2.9.1 Output Editing
	2.9.2 Output Handling
	2.9.3 Lines Limits
	2.9.4 Output Editing Parameters
	2.9.4.1 Standard SYSOUT Subfiles
	2.9.4.2 Edited Permanent SYSOUT Files
	2.9.4.3 Unedited Permanent SYSOUT Files
	2.9.4.4 Ordinary Permanent Files

	2.9.5 Printer Characteristics

	2.10 Output Handling Parameters
	2.10.1 Enqueing of Output Writer Requests
	2.10.2 Output Selection and Naming
	2.10.3 Production of Several Copies
	2.10.4 Output Banners
	2.10.5 Use of the OUTVAL Statement

	2.11 The Job Occurrence Report and the JOBOUT
	2.12 Example of the Use of Sysout and Writer in a Job
	2.12.1 Direct Use of the Printer
	2.12.2 Summary of Output Facilities

	2.13 Summary of Output Writer Usage
	2.13.1 PRTFILE, PRTDEF and PRTOUT
	2.13.2 OUTVAL, SYSOUT and WRITER JCL Statements
	2.13.2.1 Difference Between SYSOUT and WRITER
	2.13.2.2 Difference Between SYSOUT and DEFINE
	2.13.2.3 Summary Table

	3. File Assignment and Allocation
	3.1 Introduction
	3.2 Catalog Overview
	3.2.1 Simplification of JCL
	3.2.2 Generation Groups
	3.2.3 Access to the System
	3.2.4 Assignment of Cataloged Files
	3.2.5 Assignment of Uncataloged Files

	3.3 File Allocation and Preallocation
	3.3.1 Temporary Disk Files
	3.3.2 Permanent Disk Files
	3.3.2.1 Preallocation of a Permanent Disk File
	3.3.2.2 Preallocation of Cataloged Disk Files
	3.3.2.3 Allocation of a Permanent Disk File
	3.3.2.4 Comparison of PREALLOC and ALLOCATE

	3.3.3 Tape Files
	3.3.4 Tape File Extension

	3.4 Use of Multi-volume Files
	3.4.1 Partial Processing
	3.4.2 Multi-volume Work Tapes

	3.5 Multi-file Tape Volumes
	3.5.1 Useful Parameters of ASSIGN
	3.5.2 File Concatenation
	3.5.2.1 Omitting Internal File Name on ASSIGN
	3.5.2.2 Uncataloged Tape Files
	3.5.2.3 Restrictions

	3.6 Deallocation of File Space
	3.6.1 Uncataloged Tape File
	3.6.2 Cataloged Tape Files
	3.6.3 Permanent Disk Files

	3.7 Duplicate File and Volume Names
	3.8 Overview of the DEFINE Statement
	3.9 GCOS Overriding Rules
	3.10 Prefixing
	3.10.1 Using the Master Directory
	3.10.2 Using the PREFIX Statement

	4. Resource Management
	4.1 Introduction
	4.2 Memory Management
	4.2.1 Concept in GCOS 7
	4.2.2 Declared Working Set

	4.3 File Passing
	4.3.1 Description
	4.3.2 Rules for Passed Files
	4.3.3 Deadlock Situation

	4.4 File Protection
	4.5 File Sharing Without GAC
	4.6 File Sharing With GAC
	4.7 Expiration Dates
	4.7.1 Introduction
	4.7.2 Uncataloged Tape Files
	4.7.3 Cataloged Tape Files
	4.7.4 Uncataloged Disk Files
	4.7.5 Cataloged Disk Files

	4.8 Device Management
	4.8.1 Mounting of Multi-volume Files
	4.8.2 Use of Device Pools

	5. Maintenance of Stored JCL and Parameter Substitution
	5.1 Introduction
	5.2 Run, Invoke, and Execute
	5.3 Use of Run
	5.4 Use of Invoke And Execute
	5.4.1 Input Enclosures Referenced from Stored JCL
	5.4.2 Independence of INVOKEd JCL Sequences
	5.4.3 Nested INVOKE Statements
	5.4.4 Invoking or Executing Input Enclosures
	5.4.5 Difference Between INVOKE and EXECUTE
	5.4.6 $SWINPUT Statement

	5.5 JCL Parameter Setting
	5.5.1 Principles of Parameter Setting
	5.5.2 JCL Parameter References
	5.5.2.1 Positional References
	5.5.2.2 Keyword References
	5.5.2.3 Location of Parameter References in the JCL

	5.5.3 Procedure Involved in Substituting Parameter Values for References
	5.5.3.1 How VALUES and MODVL Work in the "DIRECT STREAM"
	5.5.3.2 The VALUES Statement

	5.6 The MODVL Statement
	5.6.1 Parameter Setting in a Sequence Called or Initiated by INVOKE, EXECUTE, RUN, or SJ
	5.6.1.1 Setting the Parameters
	5.6.1.2 The Principle of Operation

	5.6.2 Input Enclosure Parameter Setting
	5.6.2.1 Substitution Algorithm
	5.6.2.2 Determining the VALUES to be Substituted
	5.6.2.3 At Job Level
	5.6.2.4 At INVOKE Level
	5.6.2.5 At EXECUTE Level
	5.6.2.6 Parameter Setting of Part of an Input Enclosure

	5.7 Job Stream Creation
	5.8 The Mini-Editor

	6. Sequence Modification and Error Processing
	6.1 Introduction
	6.2 Error Messages and Return Codes
	6.2.1 JCL Errors
	6.2.2 Labeling a JCL Statement

	6.3 Switches
	6.4 Status
	6.4.1 Use of Status for Execution Abort
	6.4.2 Setting Severity Value

	7. Job Occurrence Report
	7.1 Introduction
	7.2 Job Occurrence Report Description
	7.2.1 Output Writer Banners
	7.2.2 Job/Data Introduction and Translation
	7.2.3 Job Execution Report Structure
	7.2.4 Job Initiation and Termination Messages

	A. RESIDENT Volumes
	A.1 Introduction
	A.2 Recommendations
	A.2.1 Making a Volume RESIDENT
	A.2.2 Making a Volume Non-RESIDENT

	B. Parameter Substitution
	B.1 General Concepts
	B.2 Parameter Value References
	B.2.1 Positional Parameter Value References
	B.2.2 Keyword Parameter Value Reference
	B.2.3 General Rules for Parameter Value References

	B.3 Rules for Parameter Substitution
	B.4 Parameter Substitution in Input Enclosures
	B.5 Definition of Parameter Values
	B.5.1 Types of Defining Statements
	B.5.2 Mixing of Positional Parameters and Keyword Parameters
	B.5.3 The VALUES Statement
	B.5.4 The MODVL Statement

	B.6 Examples of Parameter Substitution with Values
	B.6.1 VALUES Statements and Substitution
	B.6.2 The INVOKE Statement

	B.7 Example Using External Values

	Index

