
GPL

User's Guide

 D
PS

7
0
0
0
/
X
TA

N
O

VA
S
C

A
LE

 7
0
0
0

Languages: General

REFERENCE
47 A2 36UL 03

DPS7000/XTA
NOVASCALE 7000

GPL
User's Guide

Languages: General

July 1990

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

REFERENCE
47 A2 36UL 03

The following copyright notice protects this book under Copyright laws which prohibit such actions as, but not
limited to, copying, distributing, modifying, and making derivative works.

Copyright Bull SAS 1990

Printed in France

Suggestions and criticisms concerning the form, content, and presentation of this
book are invited. A form is provided at the end of this book for this purpose.

To order additional copies of this book or other Bull Technical Publications, you
are invited to use the Ordering Form also provided at the end of this book.

Trademarks and Acknowledgements

We acknowledge the right of proprietors of trademarks mentioned in this book.

Intel® and Itanium® are registered trademarks of Intel Corporation.

Windows® and Microsoft® software are registered trademarks of Microsoft Corporation.

UNIX® is a registered trademark in the United States of America and other countries licensed exclusively through
the Open Group.

Linux® is a registered trademark of Linus Torvalds.

The information in this document is subject to change without notice. Bull will not be liable for errors contained
herein, or for incidental or consequential damages in connection with the use of this material.

47 A2 36UL Rev03 iii

Preface

OBJECTIVES

This manual provides the information necessary to run GPL programs on the DPS 7
operating system. The GPL Reference Manual is a companion manual.

INTENDED READERS

This manual is intended for users of GCOS 7 who use GPL.

STRUCTURE

This manual is divided into two parts, Part A entitled "GPL Program Development", and
Part B, entitled "Efficient Programming".

GPL User's Guide

iv 47 A2 36UL Rev03

Part I

Section 1 is an introduction to the manual and gives an overview of the preparation of a
GPL program.

Section 2 describes how the source text of a GPL program is entered and maintained.

Section 3 explains how MACPROC is used to expand the standard GPL system
primitives, if they are used in the program.

Section 4 explains how to call the GPL compiler and gives an example of compiler
output.

Section 5 explains how the Linker builds an executable load module from compile units.

Section 6 describes how the load module may be executed and debugged.

Part II

Sections 7 to 14 describe the features of GPL, literals and variables, addressability of
data, declarations, references, expressions, statements and builtin functions, and how
they can aid the user in making more efficient programs.

This manual also has three appendices.

Appendix A lists the limits of the GPL compiler.

Appendix B lists the messages which are displayed in the Job Occurrence Report by the
GPL compiler.

Appendix C gives an example of a short GPL program.

Preface

47 A2 36UL Rev03 v

ASSOCIATED DOCUMENTS

The following documents can be used in conjunction with this manual:

• For more information about GPL programming

GPL Reference Manual..47 A2 35UL
GPL System Primitives ..47 A2 37UL

• For more information about the MACPROC macro

MACPROC Reference Manual...47 A2 70UL
MACPROC User's Guide ...47 A2 71UL

• Error Message and Return Codes Message Directory 47 A2 10UJ

JCL Reference Manual .. 47 A2 11UJ
JCL User Guide.. 47 A2 12UJ

• For GCOS7 interactive (GCL) functions

IOF Programmer's Manual ... 47 A2 05UJ
IOF System Administrator's Manual... 47 A2 06UJ

IOF Terminal User's Reference Manual (GCOS7-V3):
Part I : Introduction to IOF.. 47 A2 01UJ
Part II : GCOS Command Language .. 47 A2 02UJ
Part III : Processor commands... 47 A2 03UJ
Part IV : Appendices ... 47 A2 04UJ

IOF Terminal User's Reference Manual (GCOS7-V5):
Part I : Introduction to IOF.. 47 A2 21UJ
Part II : GCL Commands (VBO).. 47 A2 22UJ
Part II : GCL Commands (FBO) .. 47 A2 23UJ
Part III : Directives and General Processor
commands.. 47 A2 24UJ
Part IV : Appendices ... 47 A2 25UJ

• For manipulations during compilation and linking

Library Maintenance Reference manual ..47 A2 01UP
Library Maintenance User's Guide...47 A2 02UP
Linker User's Guide..47 A2 10UP

• For an overview of the system

System Overview .. 47 A2 04UG
System Administrator's Manual..47 A2 01US

GPL User's Guide

SYNTAX NOTATION

The commands use the following syntax:

ITEM An item in upper case is a name or keyword and is entered
literally as shown. The upper case is merely a convention; in
practice you can specify the item in upper or lower case.

item An item in lower case indicates that a user-supplied value is
expected.
In most cases it gives the type and maximum length of the
value:

char105 a string of up to 105 alphanumeric characters

name31 a name of up to 31 characters

lib78 a library name of up to 78 characters

file78 a file name of up to 78 characters

In some cases, it gives the format of the value:

a means a single alphabetic character

nnn means a 3-digit number

hh.mm means a time in hours and minutes

In other cases, it is simply descriptive of the value:

device-class
condition
any-characters

item
item
item

A list of items enclosed in braces indicates a choice of value. Only
one can be selected. Sometimes the list is presented horizontally,
with each item separated by a vertical bar, i.e.
{ item item item }

[item] An item enclosed in square brackets is optional.

ITEM An underlined item is a default value. It is the value
assumed if none is specified.

<item> Angle brackets indicate a single key on the micro
computer.

= , $ * / \ . Enter these special non-alphabetic characters as shown.

NOTE: This document uses the following symbols in the left margin:

! This indicates danger.

--> This relates to performance.

vi 47 A2 36UL Rev03

Preface

[]
{ }

(1) WHEN =
IMMED
dd.mm.yy. hh.mm

+ nnnn W D H M item

This means you can specify:

1.
2.
3.
4.
5.
6.
7.
8.

Nothing at all, in which case WHEN=IMMED applies.
WHEN=IMMED (the same as nothing at all).
WHEN=22.30 to specify a time (and today's date).
WHEN=10.11.87.22.30 to specify a date and time.
WHEN=+0002W to specify 2 weeks from now.
WHEN=+0021D to specify 21 days from now.
WHEN=+005H to specify 5 hours from now.
WHEN=+0123M to specify 123 minutes from now.

(2) PAGES={dec4|(dec4[-dec4][,dec4]...)}

Indicates that PAGES must be specified. Valid entries are a
single value or a list of values, enclosed in parentheses.
The list can consist of single values seperated by a
comma, a range of values separated by a hyphen, or a
combination of both. For example:

PAGES=(2,4,10-25,33-36,78,83)

(3) <enter> refers to the return key (the enter key) on the
alphanumeric keypad

<transmit> refers to the transmission key on the numeric
keypad

47 A2 36UL Rev03 vii

GPL User's Guide

viii 47 A2 36UL Rev03

47 A2 36UL Rev03 ix

Table of Contents

1. Introduction ... 1-1

2. Input And Maintenance Of Source Programs ... 2-1

2.1 INPUT ENCLOSURES ... 2-1

2.1.1 Source Libraries .. 2-2
2.1.2 Creating A Library Member Interactively .. 2-2

2.2 UPDATING THE SOURCE MEMBER .. 2-4

2.3 SOURCE PROGRAM FORMAT ... 2-5

2.3.1 Interactive Line Format ... 2-5
2.3.2 System Standard Format .. 2-5

2.4 THE IND REQUEST ... 2-6

3. Using Macproc ... 3-1

3.1 BATCH MODE .. 3-1

3.1.1 The MACPROC JCL Statement .. 3-1

GPL User's Guide

x 47 A2 36UL Rev03

3.2 INTERACTIVE MODE .. 3-3

3.2.1 Execution Of Macproc .. 3-3
3.2.2 Interactive Jcl .. 3-3

3.3 PARAMETER DESCRIPTION .. 3-4

3.3.1 Source, Inlib, Lib And Inlibn ... 3-4
3.3.2 Outlib .. 3-5
3.3.3 Prtlib ... 3-6
3.3.4 List And Nlist ... 3-6
3.3.5 Xref, Bxref And Nxref .. 3-6
3.3.6 Silent And Nsilent .. 3-6
3.3.7 Observ, Nobserv, Warn And Nwarn .. 3-7

3.4 THE MACPROC LISTING .. 3-8

3.5 USE OF THE $ CHARACTER IN SOURCE PROGRAMS ... 3-9

4. Using The GPL Compiler ... 4-1

4.1 THE JCL STATEMENT GPL .. 4-1

4.2 DESCRIPTION OF PARAMETERS .. 4-3

4.2.1 The Code Parameter ... 4-4

4.3 GCL MODE ... 4-6

4.4 COMPILER OUTPUT ... 4-7

4.4.1 Banner Page .. 4-7
4.4.2 Source Program Listing ... 4-7
4.4.2.1 Line Numbers.. 4-7
4.4.2.2 Primitives... 4-8
4.4.2.3 Diagnostic Messages In The Source Listing ... 4-8

4.4.3 Data Maps .. 4-9
4.4.3.1 Symdef Map .. 4-9
4.4.3.2 Symref Map... 4-10
4.4.3.3 Segment Map.. 4-10
4.4.3.4 Line Location Map ... 4-10

4.4.4 Cross Reference Listing ... 4-11
4.4.5 Summary Page .. 4-12

Table of Contents

47 A2 36UL Rev03 xi

4.5 NAMING CONVENTIONS .. 4-13

4.6 COMPILER MESSAGES IN THE JOR ... 4-13

5. Linking and Communication .. 5-1

5.1 USING THE LINKER .. 5-1

5.1.1 Linking In Batch .. 5-1
5.1.2 Interactive Linking .. 5-2

5.2 DATA SHARING ... 5-3

5.2.1 Data Sharing Between Procedures ... 5-3
5.2.2 Data Sharing Between Tasks ... 5-3
5.2.3 Communication Between Different Languages ... 5-4
5.2.3.1 Data Types And Other Compilers ... 5-4

5.2.4 Passing Pointers From A Cobol Program ... 5-5

5.3 PROCEDURE REFERENCES.. 5-7

5.3.1 Procedure References In A Monotask Program ... 5-7
5.3.2 Procedure References In A Multitask Program .. 5-8

6. Execution and Debugging ... 6-1

6.1 THE JCL STATEMENT STEP .. 6-1

6.2 THE GCL STATEMENT EXEC_PG ... 6-1

6.3 DEBUGGING CODE ... 6-2

6.4 PROGRAM CHECKOUT FACILITY ... 6-3

6.4.1 Symbolic Addressing And Effective Addressing ... 6-4
6.4.2 Primitives And Pcf ... 6-4
6.4.3 Multitask Programs And Pcf .. 6-5

GPL User's Guide

xii 47 A2 36UL Rev03

6.5 JOB EXECUTION MESSAGES .. 6-6

6.5.1 Exception Messages Specific To GPL Programs .. 6-6
6.5.1.1 Hardware Exceptions .. 6-6
6.5.1.2 Software Exceptions.. 6-8

7. Literals And Variables ... 7-1

7.1 LITERAL VALUES .. 7-1

7.1.1 Types .. 7-1
7.1.2 Logbin Type ... 7-2
7.1.3 About Syntax ... 7-2
7.1.4 Precision Of Arithmetic Literals ... 7-2
7.1.5 Use Of Symbolic Literals .. 7-3
7.1.6 Literals Versus Constants .. 7-4

7.2 VARIABLES .. 7-5

7.2.1 Arithmetic Data .. 7-5
7.2.2 String Data ... 7-5
7.2.3 Program Control .. 7-6
7.2.3.1 Pointer Handling.. 7-6
7.2.3.2 Entry Variables .. 7-6

7.2.4 Structuring Data .. 7-7

8. Storage Control .. 8-1

8.1 ADDRESSING OF DATA .. 8-1

8.1.1 Constant Data .. 8-1
8.1.2 Static Data .. 8-2
8.1.3 Automatic Data .. 8-3
8.1.4 Parameter Data .. 8-6

8.2 SCOPE USAGE .. 8-9

8.3 STORAGE SHARING ... 8-10

8.3.1 Static Versus Dynamic .. 8-10
8.3.2 Sharing Table For Based Variables ... 8-11

Table of Contents

47 A2 36UL Rev03 xiii

9. Declarations .. 9-1

9.1 ALIGNMENT ... 9-1

9.1.1 The Alignment Of Parameters .. 9-1
9.1.2 The Alignment Of Other Data ... 9-2

9.2 ADJUSTABLE ELEMENTS .. 9-3

9.3 INITIALIZATION OF DATA ... 9-4

9.4 USE OF THE NOSUBRG ATTRIBUTE .. 9-6

9.5 ATTRIBUTES THAT IMPROVE PERFORMANCE .. 9-7

9.5.1 Short ... 9-7
9.5.2 Nomap .. 9-7
9.5.3 Input .. 9-8
9.5.4 Reducible ... 9-8
9.5.5 Constant ... 9-9
9.5.6 Byte ... 9-9

10. References ... 10-1

10.1 RESOLVING REFERENCES.. 10-1

10.2 SHORT-CUT IN THE ADDRESSING PATH .. 10-3

10.3 PROCEDURES AND FUNCTIONS .. 10-5

10.4 PARAMETERS AND ARGUMENTS .. 10-6

10.4.1 The Argument Is Passed By Value .. 10-6
10.4.2 Descriptors .. 10-7
10.4.3 Variable Number Of Arguments ... 10-7
10.4.4 Empty Arguments ... 10-8

GPL User's Guide

xiv 47 A2 36UL Rev03

11. Expressions .. 11-1

11.1 GENERAL REMARKS .. 11-1

11.2 USING BRACKETS .. 11-1

11.3 PRECISION AND LENGTH .. 11-2

11.4 CONVERSIONS.. 11-3

11.5 CONDITIONAL EXPRESSIONS ... 11-5

11.6 REAL COMPARISONS .. 11-6

12. Statements ... 12-1

12.1 ASSIGNMENT .. 12-1

12.2 BEGIN ... 12-2

12.3 DO/LEAVE .. 12-3

12.4 PROCEDURE AND ENTRY ... 12-5

12.5 SELECT .. 12-6

12.6 PACKAGING OF GPL PROGRAMS .. 12-9

12.6.1 Data... 12-9
12.6.2 Code ... 12-9

Table of Contents

47 A2 36UL Rev03 xv

13. Builtin Functions ... 13-1

13.1 PARAMETERIZATION ... 13-1

13.2 HANDLING VARIABLE LENGTH STRINGS ... 13-1

13.3 POINTER HANDLING .. 13-2

13.4 CONVERSIONS.. 13-2

13.5 MOVING STRINGS... 13-2

14. Optimizing with GPL .. 14-1

14.1 INTRODUCTION... 14-1

14.1.1 The Goals of the Optimizer .. 14-1
14.1.2 The Local Optimizer .. 14-2
14.1.3 The Global Optimizer .. 14-2
14.1.4 Optimization Levels .. 14-4

14.2 GLOBAL OPTIMIZER FUNCTIONS .. 14-5

14.2.1 Constant Folding and Copy Propagation ... 14-5
14.2.2 Deleting Globally Redundant Expressions ... 14-6
14.2.3 Deleting Useless or Inaccessible Code .. 14-7
14.2.4 Anticipation and Temporization .. 14-8
14.2.5 Deleting Partially Redundant Expressions ... 14-9
14.2.6 Removing Loop Invariants ... 14-9
14.2.7 Strength Reduction and Processing of Loop Control Variables 14-11
14.2.7.1 Strength Reduction.. 14-11
14.2.7.2 Processing of Loop Control Variables... 14-12

14.2.8 Loop Unrolling ... 14-13
14.2.9 Procedure Merging ... 14-14

14.3 USING THE GLOBAL OPTIMIZER .. 14-15

GPL User's Guide

xvi 47 A2 36UL Rev03

Appendices

A. Compiler Limits ... A-1

B. Compiler Messages ... B-1

C. Example GPL Program ... C-1

Table of Contents

47 A2 36UL Rev03 xvii

Illustrations

Figures

1-1 Overview of Program Processing.. 1-2
3-1 MACPROC Listing... 3-11
4-1 SYMDEF Data Map... 4-14
4-2 SYMREF Data Map... 4-14
4-3 Segment Map.. 4-15
4-4 Line Location Data Map .. 4-15
4-5 Cross Reference Listings .. 4-21
4-6 Naming Conventions... 4-22
5-1 LINKER Statement Format ... 5-2
8-1 Static Data Linkage Section .. 8-3
8-2 Automatic Data - Stack Frame Allocation ... 8-4
8-3 Automatic Data - Stack Layout.. 8-5
8-4 Parameter Data - Stack Frame Layout ... 8-7
8-5 Parameter Data - Stack Frame Layout With Link Array.. 8-8
10-1 Program Behavior With Short-cuT .. 10-4
C-1 Compiler Source Listing .. C-2
C-2 SYMDEF Data Map... C-3
C-3 SYMREF Data Map... C-3
C-4 Segment Map.. C-3
C-5 Line Location Data Map .. C-3
C-6 Cross Reference List... C-4
C-7 Summary Page.. C-4
C-8 LINKER Listing .. C-6

Tables

4-1 GPL Statement Parameters (1/2).. 4-3
4-1 GPL Statement Parameters (2/2).. 4-4
5-1 Comparison of Data Formats.. 5-4
5-2 Comparison of CALL and ENTRY Statements ... 5-7

GPL User's Guide

xviii 47 A2 36UL Rev03

47 A2 36UL Rev03 1-1

1. Introduction

The GCOS Programming Language (GPL) is a PL/1-like language which is suitable for
writing system software while also providing the facilities of a high-level language. GPL
consists of:

• a subset of PL/1 in accordance with the ANSI 1976 standard.

• certain extensions to the PL/1 subset. These include additional features to aid
structured programming and specifically for programming in the DPS 7 GCOS
environment.

The GPL programmer accesses the GCOS facilities, task management, file handling,
segment management, etc., via system primitives. If these primitives are used in a
program, the program must be processed before compilation by the MACPROC utility.
MACPROC expands each primitive into source code and inserts the source code into
the program. This expansion can then be compiled by the GPL compiler. The steps in a
GPL job are:

• MACPROC. Processes primitives, produces an expansion. (If there are no primitives
in the program, this step is unnecessary). The use of MACPROC is described fully in
Section III of this manual.

• GPL. Compiles the expansion (or the original source program, if MACPROC was not
used) and produces a compile unit.

• LINKER. Links the compile unit(s) and produces a load module. See the note below.

• Execution. The load module is loaded and executed.

NOTE: The user can call GPL procedures from within other programs. That is, you can
write the main program in, say, COBOL and call procedures written in GPL
from within it. The converse is also true: you can call procedures written in
other languages from within a GPL program. If this is the case, at linkage time
there will be compile units from different compilers to be linked. This process is
shown in Figure 1-1.

GPL User's Guide

1-2 47 A2 36UL Rev03

G P L
S ource

P rogram

Primit ives

M A C P R O C
U tility

M A C P R O C
Listing

Load
M odule

L INKER

G P L
C om pile r

L IN K E R
List ing

C om pile r
L is ting

C om pile U n it(s)
F rom O the r
com p ile r(s)

no

Figure 1-1. Overview of Program Processing

47 A2 36UL Rev03 2-1

2. Input And Maintenance Of Source
Programs

The GPL compiler and the MACPROC utility accept input from an input enclosure or
from a library member. An input enclosure must be part of a Batch job; a library member,
however, may be used in either Batch mode or interactive mode. Library members are
created and updated using the Library Maintenance facilities. The use of input
enclosures and libraries for source programs is discussed briefly in the following
paragraphs.

2.1 INPUT ENCLOSURES

In the following example an input enclosure called GPROG is used as input to the GPL
compiler; the compiler will store its output, the compile unit, in the library RES.CULIB
(the library member will be called GPROG).

 $JOB...
GPL SOURCE = *GPROG CULIB = RES.CULIB; $INPUT GPROG TYPE = DATASSF;
 GPROG : PROC; . . END; $ENDINPUT; $ENDJOB;

If the source program contains primitives then the MACPROC utility must be used before
compilation; that is, the JCL statement MACPROC is required before the JCL statement
GPL. An example is given below.

 $JOB...
MACPROC SOURCE = *GPROG PRTLIB = SL.PRT;
 GPL SOURCE = *GPROG CULIB = RES.CULIB PRTLIB = SL.PRT $INPUT GPROG TYPE = DATASSF;
 GPROG : PROC;
 .
 .
 END;
 $ENDINPUT;
 $ENDJOB;

MACPROC reads its input from the input enclosure GPROG, and stores its output, the
expansion, in a temporary source library TEMP.SLLIB (the library member will be called
GPROG). The listing is stored as a member of the library SL.PRT; the member will be
called GPROG_J. The GPL compiler reads its input from the member GPROG in the
temporary source library TEMP.SLLIB and stores its output in the library RES.CULIB; the
compile unit name will be GPROG. The listing produced by GPL is stored as a member
of the library SL.PRT; the member will be called GPROG_L. The JCL statements
MACPROC and GPL are described in Sections III and IV of this manual respectively.

GPL User's Guide

2-2 47 A2 36UL Rev03

2.1.1 Source Libraries

If a program is part of a JCL step, in an input enclosure, it is generally more useful to
store the program in a library in order to permit the program to be edited, printed etc..

2.1.2 Creating A Library Member Interactively

To create a library member while working in interactive mode, use the Text Editor (EDIT)
or the Full Screen Editor (FSE) under the control of the Interactive Operation Facility
(IOF). An example using EDIT at LIBMAINT command level is given and explained
below.

 S: LMN SL LIB = OPER.SLLIB;
 >>> 11:25 LMN 50.00 21
 C: EDIT;
 R: A
 I: SFIRST : PROC;
 .
 .
 I: /
 R: W (GPL) SFIRST
 R: /
 C: RENUMBER SFIRST;
 C: /
 <<< 11.28
 S:

The prompt S: is output by the system; it indicates that the user can enter any JCL
statement at job enclosure level. When the Library Maintenance statement is entered,
Library Maintenance outputs a heading (>>> etc.) containing the time of day. This is
followed by the C: prompt which invites the user to enter a Library Maintenance
command. The user then enters EDIT, after which Library Maintenance outputs the R:
prompt - this invites the user to enter an EDIT request. The user enters an Append Data
request (A), after which Library Maintenance outputs the I: prompt - this invites the user
to enter data until the escape sequence / is encountered. The user then enters the
source program. When it encounters the escape sequence, Library Maintenance again
outputs the R: prompt and waits for a request. The response "W (GPL) SFIRST"
requests that the source program just entered be written to a library member named
SFIRST. The (GPL) option used in the W request gives the language type value, see
"SOURCE PROGRAM FORMAT" below. The line sequence numbers are generated
after input by means of the RENUMBER command, as shown in the example. This
command generates a sequence number in the SSF header of each record, but does
not insert a sequence number into the GPL text. '/' terminates the EDIT session; Library
Maintenance outputs the C: prompt and waits for a new command. The RENUMBER
command is used to generate line numbers, and then the Library Maintenance session is
terminated by '/'. Library Maintenance outputs a termination line (<<< etc); then the S:
prompt indicates that the terminal is once more ready to accept GCL statements.

Input And Maintenance Of Source Programs

47 A2 36UL Rev03 2-3

You can also create a GPL program using FSE as follows:

 S: FSE LIB=OPER.SLLIB;
 >>> 11:15 FSE 20.00
 F: MODIFY NEW=SFIRST LANG=GPL

We recommend that, where possible, the same name is used throughout program
development for the following:

• input enclosure name

• program name (procedure name of the external procedure)

• compile unit name (taken by the compiler from the program-name)

• load module name (procedure name of the main external procedure)

• expansion name (if MACPROC is used).

This minimizes any confusion that might arise from having different names for the same
program at various stages of development.

GPL User's Guide

2-4 47 A2 36UL Rev03

2.2 UPDATING THE SOURCE MEMBER

A source member can be updated in a Batch job using EDIT. This utility allows the user
to insert, replace, or delete specific lines; the lines are identified by their line sequence
numbers. EDIT and FSE can be used to modify programs interactively. EDIT is
described in the Text Editor User's Guide. FSE is described in the Full Screen Editor
User's Guide.

Input And Maintenance Of Source Programs

47 A2 36UL Rev03 2-5

2.3 SOURCE PROGRAM FORMAT

2.3.1 Interactive Line Format

When a library member containing a GPL source program is created interactively, the
language type parameter (GPL) should be specified when creating or modifying the
source member using the editor (EDIT or FSE). An example of this is given in the
paragraph "Creating a Library Member Interactively" above. The specification of the
language type parameter ensures the following:

• It causes the language type, GPL, to be written into the SSF control record.

• The member is stored in SSF format (explained below).

Each line is written into the "text" part of an SSF record exactly as it is entered at the
terminal. The line number field in the 8-byte SSF header remains blank until sequence
numbers are entered by the Library Maintenance command RENUMBER.

2.3.2 System Standard Format

System Standard Format (SSF) is a standard record format used by GCOS. Briefly,
storing a GPL source program in SSF format implies two things:

• The first record of each member is a control record, known as a type 101 control
record. This control record is created by the system and, as far as MACPROC
processing and GPL compilation is concerned, it need not concern the user.

• The user's source code is stored in data records, each of which consists of two parts:
an 8-byte record header part and a text part. The record header contains information
about the record. This information includes the line number, as explained above.

For a detailed description of the structure of SSF records see the Section entitled
"System Standard Format Usage" in the GPL Primitives manual.

GPL User's Guide

2-6 47 A2 36UL Rev03

2.4 THE IND REQUEST

IND is an FSE request which may be used to make a GPL program more readable. IND
rearranges the layout of the program so that, when it is printed, each related sequence
of statements (e.g., from a DO or BEGIN to the matching END statement) is equally
indented. Comments and the first attributes of DECLARE statements are lined up in a
specified column. Indenting a program does not affect its meaning. A full description of
the IND request is given in the FSE User's Guide. You may also use the LIBMAINT
command INDENT. The same remarks apply.

47 A2 36UL Rev03 3-1

3. Using Macproc

MACPROC may be called either in batch mode or in interactive mode.

3.1 BATCH MODE

In batch mode, MACPROC is called via the Job Control Language (JCL) statement
"MACPROC". JCL is described fully in the "JCL Reference Manual".

3.1.1 The MACPROC JCL Statement

The MACPROC statement is an extended JCL statement. It constitutes a job step in
itself and therefore must not appear inside a step enclosure. An example of the syntax
for the MACPROC statement is given below. Only the most important and essential
parameters are included. The MACPROC statement is described fully in the MACPROC
User's Guide.

Note that the underlined parameters are the default values.

GPL User's Guide

[]()
[]

MACPROC

SOURCE input_ encolure_ name

SOURCE

member - name

member_ name member_ name

star_ name star_ name

_

 1

 2

 INLIB3

 = ∗

 =

 ...

 (. ..)

 = ()

INLIB

LIB

INLIB

INLIB

input library

(){ }[]
(){ }[]

[]
[]
[]
[]

 OUTLIB = output_ library TEMP

 PRTLIB = print_ library TEMP

 LIST NLIST

 XREF BXREF NXREF

 OBSERV NOBSERV

 WARN NWARN

The following symbolic names refer to standard parameter groups and are described in
the JCL Reference Manual: input_library output_library print_library

A detailed description of each parameter may be found in the subsection entitled
"PARAMETER DESCRIPTION".

3-2 47 A2 36UL Rev03

Using Macproc

47 A2 36UL Rev03 3-3

3.2 INTERACTIVE MODE

MACPROC can be executed from an IOF terminal. The JCL statement MACPROC can
be used for this purpose when interactive JCL mode is selected. If the interactive mode
is GCL, since GPL programs quite often invoke the GPL system primitives, the GCL
command "GPL" invokes MACPROC to expand the primitives before calling the GPL
Compiler. The "GPL" command is fully described in Section IV of this manual.

3.2.1 Execution Of Macproc

MACPROC executes as in Batch mode with the following exceptions:

• The source text must be held in a library member or in a sequential file. IOF does not
use input enclosures.

• If the PRTLIB parameter is not used, the listing is stored in a member of the
temporary source library TEMP.SLLIB instead of in the standard SYSOUT file. The
listing may be examined using SCANNER or MAINTAIN_LIBRARY.

• If the SILENT parameter is not used, the error diagnostics, with the corresponding
source lines, are output on the screen, as well as in the listing.

• All messages sent to the Job Occurrence Report (JOR), including the processing
summary, are also sent to the terminal.

• If a break is detected, the current processing (single or serial processing) is
terminated immediately.

3.2.2 Interactive Jcl

An example of the interactive use of MACPROC in JCL mode, first without and then with
the SILENT parameter, is given in the following lines:

 S: MACPROC SOURCE = SHORT_EX INLIB = MAC.SLLIB;
 >>>17:43 MACPROC 50.00
 JUN 06, 1986 17:43:16 X284.2 PROCESSING OF MAC.SLLIB: SHORT_EX
 5 $INDEX ('ABC','A',4);
 * ERROR 38 SEVERITY 1 DETECTED ON LINE 5
 OBSERV- THE STARTING POINT OF SEARCH IS BEYOND THE
 LIMITS OF THE STRING - THE RETURNED VALUE IS 0.

 $INDEX(ABC,A,4);
 MAC00(50.00) SUMMARY FOR SHORT_EX: *:1 --> OUTPUT PRODUCED <<<17:43

 S: MACPROC SOURCE = SHORT_EX INLIB = MAC.SLLIB SILENT;
 MAC00(50.00) SUMMARY FOR SHORT_EX: *:1 --> OUTPUT PRODUCED

GPL User's Guide

3-4 47 A2 36UL Rev03

3.3 PARAMETER DESCRIPTION

The following paragraphs describe the most important parameters which may be used in
the MACPROC JCL statement.

3.3.1 Source, Inlib, Lib And Inlibn

These parameters are used to specify the name and the location of the text or texts to
be processed. A series of texts can be processed during a single execution of
MACPROC. This is known as serial processing. Note that the source text must always
be in SSF format (System Standard Format). When using these parameters, the
simplest case is when the source text is held in an "input enclosure" contained in the
same job enclosure.

Example:

 MACPROC SOURCE=*T;
 $INPUT T, TYPE=DATASSF;
 text
 $ENDINPUT;

Because the source text must be in SSF format, "TYPE=DATASSF" is mandatory in
the JCL statement $INPUT.

• If the source text is held in a library, the name of this library may be specified with the
INLIB (alias LIB) parameter, as in the following example:

 MACPROC SOURCE = text_mb LIB = my_sllib;

where "text_mb" is the name of a member in the catalogued library named "my_sllib".

• Up to three libraries may also be specified in separate JCL statements as follows:

 LIB SL INLIB1 = input_library_1
 [INLIB2 = input_library_2
 [INLIB3 = input_library_3]];
 MACPROC SOURCE = text_mb;

The JCL statement LIB defines a "search path" for MACPROC. The source text
called "text_mb" is first searched for in input_library_1, specified by INLIB1, then in the
library specified by INLIB2, and finally in the library specified by INLIB3, if INLIB2 and
INLIB3 are specified. The first member found with the specified name will be
processed. Any other member with the same name will be ignored.

• Using the same JCL statement LIB as above, the standard search path may be
overridden by the INLIBn parameter, as follows:

 MACPROC SOURCE = text_mb INLIB2;

In this case, the source text is only searched for in the INLIB2 library, and any other
member called "text_mb" in the INLIB1 or INLIB3 libraries will be ignored.

Using Macproc

47 A2 36UL Rev03 3-5

• The last three methods of specifying a member name and a library name (cases (b) to
(d)), may also be used when a series of source texts is to be processed in a single
execution of MACPROC. In this case, the SOURCE parameter must specify a list of
member names:

 MACPROC SOURCE = (text_mb1, text_mb2, text_mb3) ...

• As an alternative to specifying a list of member names in the SOURCE parameter, a
range of member names can be specified with a "star name". Using the star
convention it is possible to select in a specified library, (or in the INLIB1 library when
neither the INLIB (alias LIB) nor INLIBn parameter is used), all members whose
names have a common characteristic. Conversely, all members whose names have a
common characteristic may be excluded from processing:

 MACPROC SOURCE = (abc*, bc*z) INLIB = my_sllib;
 MACPROC SOURCE = ^x* INLIB2;
 MACPROC SOURCE = ^*z$>bc$<f

The asterisk "*" may match any occurrence of characters, including none, within a
name:

abc* matches all names that begin with "abc"
bc*z matches all names that begin with "bc" and end with "z"
The not sign "^" means "all but those ...":

^x* matches all names except those that begin with "x"

The qualifiers "$>" and "$<" restrict the matched names to those that fall
alphabetically between, and including, specified values.

^*z$>bc$<f matches all those names which do not end with "z, and which begin with
any of the letters between "bc" and "f" inclusive.

Parentheses are not mandatory for one star name, unless the name begins with an
asterisk. Otherwise the star name would be interpreted as an input enclosure name.

Note that the JCL statement "GPL" does not accept the star name convention. (See
Section IV for more explanation).

3.3.2 Outlib

The OUTLIB parameter specifies the source library into which the expanded members
are to be written. To each source text successfully processed corresponds an expanded
member with the same name. As this member replaces any previous member of the
same name, the OUTLIB library must be different from the source text library, in order to
protect this source text.

The default parameter specification is "OUTLIB = TEMP": the expanded texts are written
in members of the temporary source library TEMP.SLLIB.

GPL User's Guide

3-6 47 A2 36UL Rev03

3.3.3 Prtlib

PRTLIB specifies the source library to which the MACPROC listing is to be written. For
each source text processed, successfully or not, there is a listing whose name is the
source text name suffixed by "_J". This member replaces any previous member with the
same name. The default value depends on the execution mode of MACPROC:

• In Batch mode, MACPROC writes the listings to the SYSOUT file, which will be printed
at the end of job execution.

• In interactive mode, the default is "PRTLIB = TEMP": the listings are written to
members of the temporary source library TEMP.SLLIB.

3.3.4 List And Nlist

The LIST parameter specifies that a listing of the source text is to be produced. This is
the default value. The NLIST parameter specifies that a listing of the source text is not to
be produced. However, lines associated with the production of error diagnostics will be
produced.

3.3.5 Xref, Bxref And Nxref

The XREF parameter specifies that a cross reference listing of the GPL system
primitives encountered during the source text processing is to be produced. This is the
default. The primitive names are listed in alphabetical order.

The BXREF parameter specifies that the cross reference listing is to be produced in brief
form.

The NXREF parameter specifies that no cross reference listing is to be produced.

3.3.6 Silent And Nsilent

The SILENT and NSILENT parameters are effective only in interactive mode. The
SILENT parameter specifies that only the summary is to be printed on the screen. The
error diagnostics with the corresponding source lines will only be printed in the listing.
The NSILENT parameter specifies that banners, source identification, the summary and
the error diagnostics with the corresponding source lines are to be printed on the screen.
This is the default.

Using Macproc

47 A2 36UL Rev03 3-7

3.3.7 Observ, Nobserv, Warn And Nwarn

The OBSERV parameter specifies that all observation messages, errors of severity 1,
are to be reported in the listing. This is the default. The NOBSERV parameter
suppresses the printout of all observation messages. The WARN parameter specifies
that all warning messages, errors of severity 2, are to be included in the listing. This is
the default. The NWARN parameter suppresses the printout of all warning messages.

GPL User's Guide

3-8 47 A2 36UL Rev03

3.4 THE MACPROC LISTING

The listing produced by MACPROC consists of four main sections:

• The banner.

• A listing of the source program with error messages; this listing is not produced if
NLIST is specified.

• A cross reference listing of the GPL system primitives, in alphabetical order. This
listing is not produced if NXREF is specified.

• A summary of errors and a message indicating whether MACPROC processing
terminated normally or abnormally; a message to this effect is also printed in the Job
Occurrence Report (JOR).

• The listing given here as an example is mainly self-explanatory, but a few points need
to be noted here:

• The error messages refer only to errors in the coding of primitives; the rest of the code
is checked by the GPL compiler.

• The line numbers were not inserted by the user; they were created by the
RENUMBER command when the members were written to the library.

• The last line of the first page of the listing gives the contents of the SSF header record
(see subsection 2.3 of this manual). The abbreviations have the following meanings:

CD
CT
MD
MT
SL
MN

Creation Date
Creation Time
Modification Date
Modification Time
Source Language
Modification (Version) Number

The line of information printed at the top of each page in the listing is as follows:

Utility name and version number
Run Occurrence Number (RON)
Job Identifier
User
Project
Account
Time of day and date
Page number

Using Macproc

47 A2 36UL Rev03 3-9

3.5 USE OF THE $ CHARACTER IN SOURCE PROGRAMS

Every primitive within a source program must begin with the character $ (dollar), for
example, $H_GET or $H_CHKPT. MACPROC uses the character $ to identify primitives
within the source code. In some cases however, a $ character is not intended to identify
a primitive. For example:

 DCL A CHAR(3);
 .
 .
 A = "A$B";

In such a case, the $ character should be immediately followed by a semicolon.
MACPROC will translate "A$;B" in the source program into "A$B" in the expanded
source program. Note however that if the source to be compiled is passed directly to the
GPL Compiler, this pattern must not be used.

GPL User's Guide

3-10 47 A2 36UL Rev03

**
**
**** GCOS7 ****
**** M A C P R O C ****
**** VERSION:50.00 DATED: JAN 06, 1986 ****
*****ERROR_J** 40 -1*************************
**

ADDITIONAL INFO: 38

ACTIVE OPTIONS OF MACPROC ARE:
LIST, NEXPLIST, XREF, NCASEQ, NTRACEON, WARN, OBSERV

MAY 28, 1990 10:16:31 X9315.2 PROCESSING OF LSFY.DOC.SLLIB: ERROR
CD=10/30/84 CT=12:49 MD=11/06/84 MT=15:04 SL=GPL MN=24
 1 Error : PROC (Message);
 2 DCL Message CHAR (*) INPUT;
 3 %REPLACE Buffer_max_length BY 100;
 4 %REPLACE Max_number_of_words BY 200;
 5 %REPLACE Max_word_length BY 20;
 6 DCL 1 Input_interface EXTERNAL STATIC,
 7 2 Buffer_length FIXED BIN (15),
 8 2 Buffer CHAR (Buffer_max_length),
 9 2 End_of_file BIT (1) INIT ("0"b) ;
10 DCL First_time BIT (1) INIT ("1"b) STATIC;
11 DCL Line CHAR (80);
12 DCL No_ref_so_not_alloc AUTO PTR; /* Level1 never ref'd so not alloc */
13 DCL Number_of_words FIXED BIN (15) EXTERNAL STATIC;
14 DCL 1 Word (Max_number_of_words) EXTERNAL STATIC,
15 2 Name CHAR (Max_word_length),
16 2 Counter FIXED BIN (15);
17 $H_FD INPUT ACTUAL;
18 $H_FD OUTPUT ACTUAL SYSOUT;
19 $H_OPEN OUTPUT PMD = OU;
20 IF $H_TESTRC ^DONE;
21 THEN $H_ABTSK;
22 Line = Message;
23 $H_PUT OUTPUT WA = Line ALN = 'MEASURE (Line)';
24 $H_ABTSK;
25 Read_in_buffer : ENTRY;
26 IF First_time
27 THEN DO;
28 $H_OPEN INPUT PMD = IN;
29 IF $H_TESTRC ^DONE;
30 THEN CALL Error ("Cannot open INPUT");
31 First_time = "0"b;
32 END;
33 $H_GET INPUT WA = Buffer ALN = 'MEASURE (Buffer)' OUTLEN = Buffer_length;
34 SELECT;
35 WHEN ($H_TESTRC DATALIM;) End_of_file = "1"b;
36 WHEN ($H_TESTRC ^DONE;) CALL Error ("Cannot get INPUT");
37 OTHER;
38 END;
39 RETURN;
40 Write_word_array : ENTRY;
41 DCL i FIXED BIN (15);
42 $H_CLOSE INPUT;
43 $H_OPEN OUTPUT PMD = OU;
44 IF $H_TESTRC ^DONE;
45 THEN $H_ABTSK;
46 Line = " Statistics on the text :";
47 $H_PUT OUTPUT WA = Line ALN = 'MEASURE (Line)';
48 IF $H_TESTRC ^DONE;
49 THEN $H_ABTSK;
50 DO i = 1 TO Number_of_words;
51 Line = " " !! Word (i).Name !! CHAR (Word (i).Counter);
52 $H_PUT OUTPUT WA = Line ALN = 'MEASURE (Line)';
53 IF $H_TESTRC ^DONE;
54 THEN $H_ABTSK;
55 END;
56 $H_CLOSE OUTPUT;
57 END Error;

 (* INDIRECT REF, + MULTIPLE REFS) CROSS_REF_MAP
NAME TYPE DATE_TIME ORIGIN

Using Macproc

47 A2 36UL Rev03 3-11

 REFERENCES
H_ABTSK EXTERNAL MACRO 07/29/86 16:22 FROM SYS.GPL.MACLIB
 21 24 45 49 54
H_CLOSE EXTERNAL MACRO 07/29/86 16:25 FROM SYS.GPL.MACLIB
 42 56
H_FD EXTERNAL MACRO 07/29/86 16:36 FROM SYS.GPL.MACLIB
 17 18
H_GET EXTERNAL MACRO 07/29/86 16:39 FROM SYS.GPL.MACLIB
 33
H_OPEN EXTERNAL MACRO 07/29/86 16:41 FROM SYS.GPL.MACLIB
 19 28 43
H_PUT EXTERNAL MACRO 07/29/86 16:42 FROM SYS.GPL.MACLIB
 23 47 52
H_TESTRC EXTERNAL MACRO 07/29/86 16:48 FROM SYS.GPL.MACLIB
 20 29 35 36 44 48 53

 MACPROC PROCESSING : NO ERROR DETECTED
 OUTPUT PRODUCED

*****ERROR_J***************************M*A*C*P*R*O*C**

Figure 3-1. MACPROC Listing

GPL User's Guide

3-12 47 A2 36UL Rev03

47 A2 36UL Rev03 4-1

4. Using The GPL Compiler

This section explains how to use the GPL Compiler. The JCL statement "GPL", the GCL
command "GPL", and the printed output produced by the Compiler are described in
detail.

4.1 THE JCL STATEMENT GPL

The JCL statement GPL, which is used to call the compiler, is an extended statement. It
constitutes a job step in itself and so must not appear inside a step enclosure. GPL
compiles the user's source code and produces a compile unit (object code) which can
then be input to the LINKER utility. The format of the GPL statement is shown below.

GPL User's Guide

[] { }
{ }

[] []
[] []

{ }[]
[] []
[] []
[] { }[] []
[] []
[]

GPL

 SOURCE = * input enclosure name

 SOURCE =
nb name
ALL
(mb name ,mb name ...)

 INLIB =
 (input library)
 TEMP

 CULIB
 (output library)
 TEMP

 OBJ NOBJ WARN NWARN

 OBSERV NOBSERV MAP NMAP

 OPTIMIZE = 0 2 3 4

 DEBUG NDEBUG XREF NXREF

 DEBUGMD NDEBUGMD DCLXREF NDCLXREF

 LIST NLIST LEVEL = GPL PL CASEQ NCASEQ

 BRIEF ILN XLN

 SILENT CODE =

_ _

_

_ _

_

_

=

1

1

{ }[]
{ }[]

[]

{ }

 OBJA OBJCD

 DUMP = NO DATA

 STEPOPT = (step parameters)

PRTFILE = (print file)

PRTLIB =
(print library)
TEMP

_

_
_

Note that TEMP may be specified for PRTLIB only under IOF, in which case it is the
default.

4-2 47 A2 36UL Rev03

Using The GPL Compiler

47 A2 36UL Rev03 4-3

4.2 DESCRIPTION OF PARAMETERS

The table below describes the parameters which may be used in the GPL statement.
Note that the following symbolic names used in the statement description above refer to
standard parameter groups which are described in the JCL Reference Manual.

input_library
output_library
print_file
print_library

= input-library-description
= output-library-description
= print-file-description
= print-library-description

Table 4-1. GPL Statement Parameters (1/2)

Parameter Value Notes
mb_name Indicates the name of the member in the library defined by the

INLIB parameter.
The number of mb_names given in a list is limited to 90.

ALL All the members of the library defined by the INLIB parameter
will be compiled.

INLIB = TEMP Specifies a temporary library created by a preceding step.
CULIB Specifies the library into which CUs are to be placed (if OBJ

option is ON).
PRTLIB

print_library
Specifies the library to which the output listing will be written.
The member name will be the main procedure name suffixed
by "_L".

PRIFILE
print_file

The listing will be written to a sequential file.

Note that if neither PRTLIB nor PRIFILE is present, the
listing will be written to the standard SYSOUT for printing
at job termination.

OBJ Causes the compiler to generate a compile unit in the library
specified by the CULIB parameter.

NOBJ No compile unit is generated
WARN Diagnostics defined as WARNING messages are output.

NWARN Diagnostics defined as WARNING messages are not output.
This implies NOBSERV.

OBSERV Diagnostics defined as observation messages are output.
NOBSERV Diagnostics defined as observation messages are not output.

MAP A data_map listing is issued.
NMAP No data_map listing is issued.

DCLXREF A cross reference listing sorted by line of declaration is issued.
NDCLXREF Opposite of DCLXREF parameter.

XREF A cross reference listing sorted by variable name in
alphabetical order is issued.

NXREF Opposite of WREF parameter.
LIST A listing of the original source program is issued. Diagnostic

messages are written in the margins of the lines which contain
errors.

NLIST Only the lines with errors are listed.
DEBUG Causes the data base for PCF to be produced.

NDEBUG The data base for PCF is not produced.

GPL User's Guide

4-4 47 A2 36UL Rev03

Table 4-1. GPL Statement Parameters (2/2)

Parameter Value Notes
DEBUGMD The text enclosed between % DEBUG and % END_DEBUG

will be compiled.
LEVEL Checks the language level.
BRIEF Non-level1 names which are not referenced will not be cross

referenced.
XLN The line number given in the cross reference and in the line

location map will be the external line number.
ILN The line number given in the cross reference and in the line

location map will be the internal line number given by the
compiler.

SILENT Only the summary line and the system errors, if any, will be
reported to the console during an interactive compilation.
Ineffective in Batch mode.

CASEQ Lower case letters are converted to upper case letters
everywhere except within character string literals.

NCASEQ Lower case letters are not converted. The words belonging to
the language (even if not reserved) must be in upper case.

OPTIMIZE 0
1
2
3
4

No optimization
Statement optimization
Local optimization
Global optimization
Enhanced global optimization, with automatic in-line
procedure insertion and loop unrolling.

4.2.1 The Code Parameter

The CODE parameter specifies the class of the target computer for which code will be
generated. The different classes are:

• Class A
• Class C
• Class D

: DPS 7/X5, X07 and 64/DPS
: DPS 7/X0, X17, X27 and DPS 7000
: DPS 7/1017, 1027

If CODE=OBJA is used, the program can be run on a class A or C computer.

If CODE=OBJCD is used, the program can be run on a class C or D computer. When
the GPL compiler runs under GCOS 7-V3A, the default value is OBJA. When the GPL
compiler runs under GCOS 7-V3B or V5, the default value is OBJCD.

If no value is given, the default value OBJA is chosen when compiling under GCOS7-
V3A system version.

If a program is compiled with CODE=OBJA and executed on a class D computer, there
is a loss of precision on floating point results, and the program is rejected by the system.

Using The GPL Compiler

47 A2 36UL Rev03 4-5

A program compiled with CODE=OBJCD and executed on a class A computer may stop
with the error message: "ILLEGAL FIELD IN INSTRUCTION".

The LIST command of the Library Maintenance processor may be used to get
information on the compatibility class of a compiled unit. It should be interpreted as
follows:

CU CLASS A-C COMPATIBLE C-C COMPATIBLE
0 or none
1
2
3
4

yes
yes
no
no
unknown

yes
no
yes
no
unknown

GPL User's Guide

4-6 47 A2 36UL Rev03

4.3 GCL MODE

When in GCL mode in the IOF domain, use the GPL command to call the GPL compiler.

The parameters are similar to those explained for JCL mode, but with the usual GCL
conventions, for example, namely boolean values, and file literals.

Menus and helps can be requested if guidance is needed.

Full details about the GCL command GPL can be found in Part II of the IOF Terminal
User's Reference Manual.

NOTE: The GPL procedure includes a call to MACPROC prior to compilation.

The following Table contains a transcript of a call to this procedure through a menu. GPL

Compile GPL program(s)
SOURCE + source program names
my_prog
INLIB input library (def. is #SLIB-<>#HSINLIB)
my_lib
CULIB output library (default is #CLIB)
MLIST list source text? 1
LIST list expanded text? 0
MAP produce a data map? 0
XREF produce a cross reference table? 0
DCLXREF cross references in DCL order? 0
BRIEF brief cross references? 0
DEBUG produce PCF information? 0
DEBUGMD Debug mode? 0
WARN report warnings 1
OBSERV report observations? 1
LEVEL GPL, PL1 GPL

PRTLIB listing library (default is #PRTLIB)
RETRIEVE retrieve libs. (default #BLIB -<>#BINLIB)
OPTIMIZE level from 0 to 4

Note that all these parameters are described in detail in the entry for the GPL command
in Volume II of the IOF Terminal User's Reference Manual.

Using The GPL Compiler

47 A2 36UL Rev03 4-7

4.4 COMPILER OUTPUT

The following paragraphs give a brief description of the output produced by the GPL
compiler. The output is described in the order in which it is printed, under the following
headings:

• Banner Page

• Source Program Listing

• Data Maps

• Cross-Reference Listing

• Summary Page

4.4.1 Banner Page

A sample banner page is shown in Appendix C. The name of the listing file is formed by
adding the suffix "_L" to the name of the main procedure. The compiler always produces
a banner page.

4.4.2 Source Program Listing

A listing of the user's source program is produced, unless the parameter NLIST is
specified. See Appendix C for examples of source program listings produced by the
compiler. The source listing is mainly self-explanatory, but some explanation is
necessary for line numbers, primitives and diagnostic messages.

4.4.2.1 Line Numbers

The line numbers printed on the left of the source lines are respectively the external line
numbers (XLN) and the internal line numbers (ILN). The XLN is taken from the source
input file; if no numbers were generated in the SSF header, the XLN for each line is zero
(but see 'PRIMITIVES' below). The ILN is generated by the compiler, which uses it to
identify the line. The XLN and ILN are completely independent of each other.

GPL User's Guide

4-8 47 A2 36UL Rev03

4.4.2.2 Primitives

The source listing below was created when GPL compiled the expansion produced by
MACPROC from a procedure containing one primitive.

 FIRST_PROC
 SOURCE
 0 1 FIRST_PROC:PROC;
 0 2 DCL AA CHAR(250);
 0 3
 .0002 4
 .0003 5 /* $H_PUTACT AA,LENGTH=30; *V3*/
 .0004 6
 0 16 RETURN;
 0 17 END;
 XLN ILN

The expansion code is not printed; its existence is, however, indicated in the listing. the
example above, the ILN jumps from 6 to 16: the omitted lines contain the expanded
code. Blank lines are inserted on either side of the primitive statement, and the
statement itself appears inside comment symbols (i.e. /* and */). The level of the GCOS
operating system is also indicated inside the comment symbols. The XLN for the
comment line and the blank lines above and below it is prefixed with a dot. This indicates
that the line was inserted by the text editor or generated by MACPROC.

4.4.2.3 Diagnostic Messages In The Source Listing

When incorrect or inconsistent code is detected during compilation, a diagnostic
message is printed after the offending line. The message is of the form:

 aaaa order-no code message-text

Example:

 *** 1 D3 THIS VARIABLE IS NOT EXPLICITLY DECLARED IN
 THE PROGRAM

where:

aaaa is one, two, three or four asterisks, indicating the severity of
the message as follows:

 * observation
 ** warning
 *** serious error
 **** fatal error

An observation message indicates the action taken by the compiler when this may not
be clear from the source code. Observation messages may be suppressed by specifying
the NOBSERV or NWARN parameter in the JCL statement GPL.

Using The GPL Compiler

47 A2 36UL Rev03 4-9

A warning message indicates a possible error. The statement is compiled, but the results
may be unexpected. Warning messages may be suppressed by specifying the NWARN
parameter in the JCL statement GPL. A serious error message indicates a major error in
the program. The compiler continues to check the source code but does not produce a
compile unit. The message "NO CU PRODUCED" is printed in the summary page and in
the JOR. A fatal error message indicates that an error has occurred which prevents the
compiler from continuing its analysis or from generating object code. This could be a
system error, a compiler error, compiler limit exceeded, user error, use of a feature not
included in the level of compilation being used, etc.. No compile unit is produced and a
message to this effect is printed in the summary page and in the JOR.

order-no If there is more than one error in a line, this number
indicates the order in which the errors occurred.

code is the code number of the error which has occurred.

message-text is a short explanation of the error.

4.4.3 Data Maps

Data maps are only produced if the MAP parameter is specified; NMAP is the default.
The MAP parameter produces the following three maps:

• SYMDEF map

• SYMREF map

• line location map

A SYMDEF (symbolic definition) is an entry point or data entity within the compile unit,
which may be referred to from another compile unit. A SYMREF (symbolic reference) is
a reference to another compile unit. SYMDEFs and SYMREFs are generated at
compilation time and matched at linkage time. See the LINKER User's Guide for more
information.

4.4.3.1 Symdef Map

The SYMDEF map specifies how many SYMDEFs are generated, their names, and
whether they are procedure or data SYMREFs. The address specified gives the internal
segment number (ISN) and the displacement within the segment. The address is given
in the form:

 /internal-segment-number displacement/

In Figure 4-1, the address /0 08/ indicates that the procedure descriptor for ERROR is in
segment 0 and starts at byte 8. This information is useful if you wish to locate the
procedure in a memory dump. To find the start of the procedure in the dump, use the
displacement in conjunction with the segment number obtained from the linker listing. It
is however preferable to use the Program Checkout Facility for this purpose. PCF is
described briefly in subsection 6.3 of this manual, and in the Program Checkout Facility
User's Guide.

GPL User's Guide

4-10 47 A2 36UL Rev03

4.4.3.2 Symref Map

The SYMREF map specifies how many SYMREFs were generated, their names and
whether they are procedure or data SYMREFs. The addresses specified are for use by
the Service Center. They are of no direct interest to the user.

4.4.3.3 Segment Map

The segment map specifies how many segments have been generated. The information
is given in the form:

 usage /isn displacement/ size name

where:

usage can be LINKAGE_SECTION, CODE SEGMENT or DATA
SEGMENT.

isn is the internal segment number given by the GPL compiler.

displacement is the offset from the beginning of the segment.

size is the size of the segment in bytes. It is specified in decimal
and hexadecimal in parentheses.

name is the name of the segment, if it has one.

The first value for isn 0 is the value of register BR7 at the beginning of the procedure,
which is the offset of the linkage section.

4.4.3.4 Line Location Map

The line location map specifies the segment and location of the instructions generated
from each line of source code. This information is useful when an exception message
which contains an address has been output. You can trace on the line location map the
line of source code where the exception occurred. Note that the address given is the
byte at which the instructions begin. In the example listing, Figure 4-4, if the exception
message specified location 36A, this would indicate line 43 of the source code. The line
number specified is the ILN. Note that the instructions generated from one line of source
code may occupy a large number of bytes. Also, one line of source code may have more
than one entry in the line location map. The data maps in Figures 4-1 to 4-4 were
produced by the example program given in Section V.

Using The GPL Compiler

47 A2 36UL Rev03 4-11

4.4.4 Cross Reference Listing

A cross-reference listing is produced if either the XREF or DCLXREF parameter is
specified. The only difference between the two parameters is that with XREF the variable
names are given in alphabetical order, and with DCLXREF, they are given in order of
declaration. The example cross-reference map shown in Figure 4-5 is produced by
XREF. It gives the following information:

• Level number (if applicable)

• Name of variable

• Address (base register and offset)

• Data type

• Storage class

• Number of the line on which the variable was declared

• Number of each line on which the variable is referenced.

The address may be used for debugging purposes, in the DUMP command of the
Program Checkout Facility, however it is preferable to use the symbolic addressing
facilities of PCF. See the PCF User's Guide for details. Note that for internal procedures,
the address given is that which contains the return address. A separate cross-reference
map is produced if the compile-time statement %REPLACE is used in the program (and
XREF or DCLXREF is specified). An example is given in Appendix C.

GPL User's Guide

4-12 47 A2 36UL Rev03

4.4.5 Summary Page

The final page of the compilation listing is the summary page. This states whether the
compilation produced object code and if any error messages were generated, gives a
summary of the messages and their line numbers. A successful compilation which
generates object code and caused no error messages to be produced will have a
summary page which simply says:

 NO ERROR MESSAGES
 OBJECT CODE PRODUCED

In the example below, one serious error was detected at line 29 and no object code was
produced.

 NUMBER OF ERROR MESSAGES

 * 0

 * * 0

 * * * 1

 * * * * 0

 ERRONEOUS LINES
 29 ***
 NO OBJECT PRODUCED

Using The GPL Compiler

47 A2 36UL Rev03 4-13

4.5 NAMING CONVENTIONS

Let S be the source member name. Let P be the program name. Then:

• S_J contains the report listing of MACPROC in the PRTLIB defined for MACPROC.

• S contains the expansion created by MACPROC in OUTLIB.

• P_L contains the report listing of GPL in the PRTLIB defined for GPL.

• P contains the compile unit created by GPL in the CULIB.

4.6 COMPILER MESSAGES IN THE JOR

For every program input to the compiler, the following message is printed in the JOR:

 GPL00 (vv.nn) SUMMARY FOR program-name
 error-summary [NO] CU PRODUCED

In the example given below, the program NICE_ONE compiled successfully with no error
messages:

 GPL00 (72.00) SUMMARY FOR NICE_ONE
 NO ERRORS CU PRODUCED

The message below was produced by the program TWO_BAD, whose compilation
terminated abnormally with one serious error. No compile unit was produced:

 GPL00 (72.00) SUMMARY FOR TWO_BAD
 ***1 NO CU PRODUCED

The same information is given for each program in the summary page of the compilation
listing. (The terms "compile unit" and "object code" are synonymous). When a
compilation terminates abnormally, there will usually be explanatory messages in the
source listing and/or further messages in the JOR. Appendix B contains an annotated list
of all the JOR messages produced by the GPL compiler.

GPL User's Guide

4-14 47 A2 36UL Rev03

ERROR

 SOURCE
 SYMDEF ADDRESS

ERROR / 0 08/ PROCEDURE
READ_IN_BUFFER / 0 10/ PROCEDURE
WRITE_WORD_ARRAY / 0 18/ PROCEDURE
INPUT_INTERFACE / 1 00/ DATA
INPUT / 2 00/ DATA
H_S_INPUT / 3 00/ DATA
OUTPUT / 4 00/ DATA
H_S_OUTPUT / 5 00/ DATA
 8 SYMDEFS GENERATED: 5 REFERENCE DATA. 3 REFERENCE PROCEDURES.
THE ADDRESSES ABOVE REFER TO INTERNAL SEGMENT NUMBERS (ISN'S) WHICH ARE MAPPED
INTO
SEGMENT TABLE NUMBERS (STN'S) AND SEGMENT TABLE ENTRIES (STE'S) BY THE STATIC
LINKER.

Figure 4-1. SYMDEF Data Map

ERROR

 SOURCE
 SYMDEF ADDRESS

 / 0 0C/= / 0 20/ SEGMENT NUMBER
ERROR / 0 20/ PROCEDURE
 / 0 14/= / 0 20/ SEGMENT NUMBER
READ_IN_BUFFER / 0 24/ PROCEDURE
 / 0 1C/= / 0 20/ SEGMENT NUMBER
WRITE_WORD_ARRAY / 0 28/ PROCEDURE
INPUT_INTERFACE / 0 2C/ DATA
NUMBER_OF_WORDS / 0 30/ DATA
WORD / 0 34/ DATA
H_STND2_TDF1 / 0 38/ DATA
INPUT / 0 3C/ DATA
H_S_INPUT / 0 40/ DATA
OUTPUT / 0 44/ DATA
H_S_OUTPUT / 0 48/ DATA
H_DFPRE_UOPF / 0 4C/ PROCEDURE
H_TASKM_UABT / 0 50/ PROCEDURE
H_DFPRE_UCFM / 0 54/ PROCEDURE
 / 0 58/= / 6 00/ SEGMENT NUMBER
 / 0 08/= E/ 0 BC/ SEGMENT NUMBER
 / 0 10/= E/ 0 1FC/ SEGMENT NUMBER
 / 0 18/= E/ 0 336/ SEGMENT NUMBER
H_S_INPUT / 2 00/ DATA
H_STND2_TDF1 / 3 01/ DATA
H_S_OUTPUT / 4 00/ DATA
H_STND2_TDF1 / 5 01/ DATA

25 SYMREFS GENERATED:
12 REFERENCE DATA. 6 REFERENCE PROCEDURES. 7 SEGMENT NUMBERS.

THE ADDRESSES ABOVE REFER TO INTERNAL SEGMENT NUMBERS (ISN'S) WHICH ARE MAPPED
INTO SEGMENT TABLE NUMBERS (STN'S) AND SEGMENT TABLE ENTRIES (STE'S) BY THE
STATIC LINKER.

Figure 4-2. SYMREF Data Map

Using The GPL Compiler

47 A2 36UL Rev03 4-15

ERROR
 SEGMENT MAP
 USAGE /BEGINNING / SIZE
NAME

LINKAGE SECTION / 0 20/ 9C (156)
CODE SEGMENT / 0 BC/ 51E (1310)
DATA SEGMENT / 1 00/ 67 (103)
DATA SEGMENT / 2 00/ 08 (8)
DATA SEGMENT / 3 00/ 4D (77)
DATA SEGMENT / 4 00/ 08 (8)
DATA SEGMENT / 5 00/ 4D (77)
DATA SEGMENT / 6 00/ 01 (1)

Figure 4-3. Segment Map

LINE:LOC LINE:LOC LINE:LOC LINE:LOC LINE:LOC LINE:LOC LINE:LOC LINE:LOC LINE:LOC
LINE:LOC

ISN: 0
 1:BC 141:CC 141:D4 142:DC 143:E4 144:EC 145:F4 146:108 153:110
172:118
172:124 172:12C 176:15C 235:16E 236:176 237:17E 238:186 239:18A 240:190
241:198
258:1B4 258:1C0 258:1C8 263:204 302:20E 302:216 303:21E 304:226 305:22E
306:236
307:24A 314:252 323:25A 324:286 385:28C 386:294 387:29C 388:2A8 389:2B0
390:2B6
391:2BE 392:2C6 399:2E2 409:2F6 419:304 422:334 452:33E 453:346 454:34E
455:356
456:36A 500:372 500:37A 501:382 502:38A 503:392 504:39A 505:3AE 512:3B6
531:3BE
531:3CA 531:3D2 535:402 594:412 595:41A 596:422 597:42A 598:42E 599:434
600:43C
607:458 626:460 626:46C 626:474 630:4A4 631:4BE 690:504 691:50C 692:514
693:51C
694:524 695:52A 696:532 703:54E 722:556 722:562 722:56A 726:59A 754:5A4
755:5AC
756:5B4 757:5BC 758:5D0 765:5D8

LOC:LINE LOC:LINE LOC:LINE LOC:LINE LOC:LINE LOC:LINE LOC:LINE LOC:LINE LOC:LINE
LOC:LINE

ISN: 0
 BC:1 CC:141 D4:141 DC:142 E4:143 EC:144 F4:145 108:146 110:153
118:172
124:172 12C:172 15C:176 16E:235 176:236 17E:237 186:238 18A:239 190:240
198:241
1B4:258 1C0:258 1C8:258 1F8:259 204:263 20E:302 216:302 21E:303 226:304
22E:305
236:306 24A:307 252:314 25A:323 286:324 28C:385 294:386 29C:387 2A8:388
2B0:389
2B6:390 2BE:391 2C6:392 2E2:399 2F6:409 304:419 334:422 33E:452 346:453
34E:454
356:455 36A:456 372:500 37A:500 382:501 38A:502 392:503 39A:504 3AE:505
3B6:512
3BE:531 3CA:531 3D2:531 402:535 412:594 41A:595 422:596 42A:597 42E:598
434:599
43C:600 458:607 460:626 46C:626 474:626 4A4:630 4BE:631 504:690 50C:691
514:692
51C:693 524:694 52A:695 532:696 54E:703 556:722 562:722 56A:722 59A:726
5A4:754
5AC:755 5B4:756 5BC:757 5D0:758 5D8:765

Figure 4-4. Line Location Data Map

GPL User's Guide

4-16 47 A2 36UL Rev03

BUFFER_MAX_LENGTH INTEGER 100 3 8
MAX_NUMBER_OF_WORDS INTEGER 200 4 14
MAX_WORD_LENGTH INTEGER 20 5 15

2 BUFFER(INPUT_INTERFACE) ?BR7.C->2 CHAR(100) EXT STATIC DCL: 8
 387
2 BUFFER_LENGTH(INPUT_INTERFACE) ?BR7.C->0 FIXED BIN(15) EXT STATIC DCL: 7
 388
2 COUNTER(WORD) ?BR7.14->14 ARRAY FIXED BIN(15) EXT STATIC DCL: 16
 631
2 END_OF_FILE(INPUT_INTERFACE) ?BR7.C->66 BIT(1) EXT STATIC DCL: 9i
 409m
 ERROR ?BR7.0 PROCEDURE RECURSIVE EXT DCL: 1
 323 419
 FIRST_TIME ?BR7.38->0 BIT(1) INT STATIC DCL: 10i
 263 324m
2 H_BRA_PTR(H_EVA) /EXP_PTR/-> 30 POINTER BASED DCL: 215 NO
REF
2 H_BRA_PTR(H_EVA) /EXP_PTR/-> 30 POINTER BASED DCL: 364 NO
REF
2 H_BRA_PTR(H_EVA) /EXP_PTR/-> 30 POINTER BASED DCL: 574 NO
REF
2 H_BRA_PTR(H_EVA) /EXP_PTR/-> 30 POINTER BASED DCL: 670 NO
REF
2 H_CL_PROC(H_EVA) /EXP_PTR/-> 4 ENTRY RECURSIVE BASED DCL: 193 NO
REF
2 H_CL_PROC(H_EVA) /EXP_PTR/-> 4 ENTRY RECURSIVE BASED DCL: 342 NO
REF
2 H_CL_PROC(H_EVA) /EXP_PTR/-> 4 ENTRY RECURSIVE BASED DCL: 552 NO
REF
2 H_CL_PROC(H_EVA) /EXP_PTR/-> 4 ENTRY RECURSIVE BASED DCL: 648 NO
REF
 H_DFPRE_UCFM ?BR7.34 ENTRY RECURSIVE EXT DCL: 433
 455
 H_DFPRE_UCFM ?BR7.34 ENTRY RECURSIVE EXT DCL: 735
 757
 H_DFPRE_UOPF ?BR7.2C ENTRY RECURSIVE EXT DCL: 112
 145
 H_DFPRE_UOPF ?BR7.2C ENTRY RECURSIVE EXT DCL: 273
 306
 H_DFPRE_UOPF ?BR7.2C ENTRY RECURSIVE EXT DCL: 471
 504
2 H_DL_PROC(H_EVA) /EXP_PTR/-> 24 ENTRY RECURSIVE BASED DCL: 209 NO
REF
2 H_DL_PROC(H_EVA) /EXP_PTR/-> 24 ENTRY RECURSIVE BASED DCL: 358 NO
REF
2 H_DL_PROC(H_EVA) /EXP_PTR/-> 24 ENTRY RECURSIVE BASED DCL: 568 NO
REF
2 H_DL_PROC(H_EVA) /EXP_PTR/-> 24 ENTRY RECURSIVE BASED DCL: 664 NO
REF
1 H_EVA H_EXEVA_PTR-> 0 STRUCTURE BASED DCL: 188 NO
REF
1 H_EVA H_EXEVA_PTR-> 0 STRUCTURE BASED DCL: 337 NO
REF
1 H_EVA H_EXEVA_PTR-> 0 STRUCTURE BASED DCL: 547 NO
REF
1 H_EVA H_EXEVA_PTR-> 0 STRUCTURE BASED DCL: 643 NO
REF
2 H_EXACCMODE(H_EXUCA_ON) ?BR1.7B CHAR(1) AUTO DCL: 131 NO
REF
2 H_EXACCMODE(H_EXUCA_ON) ?BR1.7B CHAR(1) AUTO DCL: 292 NO
REF
2 H_EXACCMODE(H_EXUCA_ON) ?BR1.7B CHAR(1) AUTO DCL: 490 NO
REF
2 H_EXAVAILSP(H_EXUCA_PT) ?BR1.90 POINTER AUTO DCL: 233 NO
REF
2 H_EXAVAILSP(H_EXUCA_PT) ?BR1.90 POINTER AUTO DCL: 592 NO
REF
2 H_EXAVAILSP(H_EXUCA_PT) ?BR1.90 POINTER AUTO DCL: 688 NO
REF
2 H_EXCKPT(H_EXUCA_CL) ?BR1.70 POINTER AUTO DCL: 448 NO
REF
2 H_EXCKPT(H_EXUCA_CL) ?BR1.70 POINTER AUTO DCL: 750 NO
REF
2 H_EXCKPT2(H_EXUCA_CL) ?BR1.74 POINTER AUTO DCL: 449 NO
REF
2 H_EXCKPT2(H_EXUCA_CL) ?BR1.74 POINTER AUTO DCL: 751 NO
REF

Using The GPL Compiler

47 A2 36UL Rev03 4-17

2 H_EXCNT(H_EXUCA_CL) ?BR1.60 POINTER AUTO DCL: 444 NO
REF
2 H_EXCNT(H_EXUCA_CL) ?BR1.60 POINTER AUTO DCL: 746 NO
REF
2 H_EXEFN(H_EXUCA_ON) ?BR1.6A POINTER AUTO DCL: 126 NO
REF
2 H_EXEFN(H_EXUCA_ON) ?BR1.6A POINTER AUTO DCL: 287 NO
REF
2 H_EXEFN(H_EXUCA_ON) ?BR1.6A POINTER AUTO DCL: 485 NO
REF
2 H_EXEVA_PTR(H_EXFCB_C) /EXP_PTR/-> 1 POINTER BASED DCL: 186
 188d 241b
2 H_EXEVA_PTR(H_EXFCB_C) /EXP_PTR/-> 1 POINTER BASED DCL: 335
 337d 392b
2 H_EXEVA_PTR(H_EXFCB_C) /EXP_PTR/-> 1 POINTER BASED DCL: 545
 547d 600b
2 H_EXEVA_PTR(H_EXFCB_C) /EXP_PTR/-> 1 POINTER BASED DCL: 641
 643d 696b
2 H_EXEXLEN(H_EXUCA_PT) ?BR1.88 FIXED BIN(15) AUTO DCL: 230 NO
REF
2 H_EXEXLEN(H_EXUCA_GT) ?BR1.70 FIXED BIN(15) AUTO DCL: 379 NO
REF
2 H_EXEXLEN(H_EXUCA_PT) ?BR1.88 FIXED BIN(15) AUTO DCL: 589 NO
REF
2 H_EXEXLEN(H_EXUCA_PT) ?BR1.88 FIXED BIN(15) AUTO DCL: 685 NO
REF
2 H_EXEXTMASK(H_EXUCA_ON) ?BR1.7C BIT(32) AUTO DCL: 132 NO
REF
2 H_EXEXTMASK(H_EXUCA_ON) ?BR1.7C BIT(32) AUTO DCL: 293 NO
REF
2 H_EXEXTMASK(H_EXUCA_ON) ?BR1.7C BIT(32) AUTO DCL: 491 NO
REF
2 H_EXEXTPTR(H_EXUCA_PT) ?BR1.8C POINTER AUTO DCL: 232 NO
REF
2 H_EXEXTPTR(H_EXUCA_GT) ?BR1.74 POINTER AUTO DCL: 381 NO
REF
2 H_EXEXTPTR(H_EXUCA_PT) ?BR1.8C POINTER AUTO DCL: 591 NO
REF
2 H_EXEXTPTR(H_EXUCA_PT) ?BR1.8C POINTER AUTO DCL: 687 NO
REF
1 H_EXFCB_C H_EXFCB_PTR-> 0 STRUCTURE BASED DCL: 333 NO
REF
1 H_EXFCB_C H_EXFCB_PTR-> 0 STRUCTURE BASED DCL: 543 NO
REF
1 H_EXFCB_C H_EXFCB_PTR-> 0 STRUCTURE BASED DCL: 639 NO
REF
2 H_EXFCB_PTR(H_EXUCA) ?BR1.94 POINTER AUTO DCL: 115
 141m 146
2 H_EXFCB_PTR(H_EXUCA) ?BR1.60 POINTER AUTO DCL: 218
 184d 188b 235m 241b
2 H_EXFCB_PTR(H_EXUCA) ?BR1.94 POINTER AUTO DCL: 276
 302m 307
2 H_EXFCB_PTR(H_EXUCA) ?BR1.80 POINTER AUTO DCL: 367
 333d 337b 385m 392b
2 H_EXFCB_PTR(H_EXUCA) ?BR1.80 POINTER AUTO DCL: 436
 452m 456
2 H_EXFCB_PTR(H_EXUCA) ?BR1.94 POINTER AUTO DCL: 474
 500m 505
2 H_EXFCB_PTR(H_EXUCA) ?BR1.60 POINTER AUTO DCL: 577
 543d 547b 594m 600b
2 H_EXFCB_PTR(H_EXUCA) ?BR1.60 POINTER AUTO DCL: 673
 639d 643b 690m 696b
2 H_EXFCB_PTR(H_EXUCA) ?BR1.80 POINTER AUTO DCL: 738
 754m 758
2 H_EXFILEATTR(H_EXUCA_ON) ?BR1.64 POINTER AUTO DCL: 124 NO
REF
2 H_EXFILEATTR(H_EXUCA_ON) ?BR1.64 POINTER AUTO DCL: 285 NO
REF
2 H_EXFILEATTR(H_EXUCA_ON) ?BR1.64 POINTER AUTO DCL: 483 NO
REF
2 H_EXGT_RFU(H_EXUCA_GT) ?BR1.7A CHAR(2) AUTO DCL: 383 NO
REF
2 H_EXILNVALUE(H_EXUCA) ?BR1.A4 FIXED BIN(15) AUTO DCL: 118 NO
REF
2 H_EXILNVALUE(H_EXUCA) ?BR1.70 FIXED BIN(15) AUTO DCL: 221
 238m
2 H_EXILNVALUE(H_EXUCA) ?BR1.A4 FIXED BIN(15) AUTO DCL: 279 NO
REF
2 H_EXILNVALUE(H_EXUCA) ?BR1.90 FIXED BIN(15) AUTO DCL: 370
 390m

GPL User's Guide

4-18 47 A2 36UL Rev03

2 H_EXILNVALUE(H_EXUCA) ?BR1.90 FIXED BIN(15) AUTO DCL: 439 NO
REF
2 H_EXILNVALUE(H_EXUCA) ?BR1.A4 FIXED BIN(15) AUTO DCL: 477 NO
REF
2 H_EXILNVALUE(H_EXUCA) ?BR1.70 FIXED BIN(15) AUTO DCL: 580
 597m
2 H_EXILNVALUE(H_EXUCA) ?BR1.70 FIXED BIN(15) AUTO DCL: 676
 693m
2 H_EXILNVALUE(H_EXUCA) ?BR1.90 FIXED BIN(15) AUTO DCL: 741 NO
REF
2 H_EXINADDR(H_EXUCA_ON) ?BR1.88 POINTER AUTO DCL: 135 NO
REF
2 H_EXINADDR(H_EXUCA_PT) ?BR1.7C POINTER AUTO DCL: 227 NO
REF
2 H_EXINADDR(H_EXUCA_ON) ?BR1.88 POINTER AUTO DCL: 296 NO
REF
2 H_EXINADDR(H_EXUCA_GT) ?BR1.64 POINTER AUTO DCL: 376 NO
REF
2 H_EXINADDR(H_EXUCA_ON) ?BR1.88 POINTER AUTO DCL: 494 NO
REF
2 H_EXINADDR(H_EXUCA_PT) ?BR1.7C POINTER AUTO DCL: 586 NO
REF
2 H_EXINADDR(H_EXUCA_PT) ?BR1.7C POINTER AUTO DCL: 682 NO
REF
2 H_EXINKEY(H_EXUCA_PT) ?BR1.78 POINTER AUTO DCL: 226 NO
REF
2 H_EXINKEY(H_EXUCA_GT) ?BR1.60 POINTER AUTO DCL: 375 NO
REF
2 H_EXINKEY(H_EXUCA_PT) ?BR1.78 POINTER AUTO DCL: 585 NO
REF
2 H_EXINKEY(H_EXUCA_PT) ?BR1.78 POINTER AUTO DCL: 681 NO
REF
2 H_EXINKEYID(H_EXUCA_GT) ?BR1.78 FIXED BIN(15) AUTO DCL: 382 NO
REF
2 H_EXLBADDR(H_EXUCA_ON) ?BR1.72 POINTER AUTO DCL: 128 NO
REF
2 H_EXLBADDR(H_EXUCA_ON) ?BR1.72 POINTER AUTO DCL: 289 NO
REF
2 H_EXLBADDR(H_EXUCA_CL) ?BR1.6A CHAR(5) AUTO DCL: 446 NO
REF
2 H_EXLBADDR(H_EXUCA_ON) ?BR1.72 POINTER AUTO DCL: 487 NO
REF
2 H_EXLBADDR(H_EXUCA_CL) ?BR1.6A CHAR(5) AUTO DCL: 748 NO
REF
2 H_EXNUMBLK(H_EXUCA_ON) ?BR1.6E POINTER AUTO DCL: 127 NO
REF
2 H_EXNUMBLK(H_EXUCA_ON) ?BR1.6E POINTER AUTO DCL: 288 NO
REF
2 H_EXNUMBLK(H_EXUCA_CL) ?BR1.64 CHAR(6) AUTO DCL: 445 NO
REF
2 H_EXNUMBLK(H_EXUCA_ON) ?BR1.6E POINTER AUTO DCL: 486 NO
REF
2 H_EXNUMBLK(H_EXUCA_CL) ?BR1.64 CHAR(6) AUTO DCL: 747 NO
REF
2 H_EXOLNPTR(H_EXUCA) ?BR1.A0 POINTER AUTO DCL: 117 NO
REF
2 H_EXOLNPTR(H_EXUCA) ?BR1.6C POINTER AUTO DCL: 220 NO
REF
2 H_EXOLNPTR(H_EXUCA) ?BR1.A0 POINTER AUTO DCL: 278 NO
REF
2 H_EXOLNPTR(H_EXUCA) ?BR1.8C POINTER AUTO DCL: 369
 388m
2 H_EXOLNPTR(H_EXUCA) ?BR1.8C POINTER AUTO DCL: 438 NO
REF
2 H_EXOLNPTR(H_EXUCA) ?BR1.A0 POINTER AUTO DCL: 476 NO
REF
2 H_EXOLNPTR(H_EXUCA) ?BR1.6C POINTER AUTO DCL: 579 NO
REF
2 H_EXOLNPTR(H_EXUCA) ?BR1.6C POINTER AUTO DCL: 675 NO
REF
2 H_EXOLNPTR(H_EXUCA) ?BR1.8C POINTER AUTO DCL: 740 NO
REF
2 H_EXORGCHECK(H_EXUCA_ON) ?BR1.8E BIT(8) AUTO DCL: 137 NO
REF
2 H_EXORGCHECK(H_EXUCA_ON) ?BR1.8E BIT(8) AUTO DCL: 298 NO
REF
2 H_EXORGCHECK(H_EXUCA_ON) ?BR1.8E BIT(8) AUTO DCL: 496 NO
REF
2 H_EXOUTADDR(H_EXUCA_PT) ?BR1.84 POINTER AUTO DCL: 229 NO
REF

Using The GPL Compiler

47 A2 36UL Rev03 4-19

2 H_EXOUTADDR(H_EXUCA_GT) ?BR1.6C POINTER AUTO DCL: 378 NO
REF
2 H_EXOUTADDR(H_EXUCA_PT) ?BR1.84 POINTER AUTO DCL: 588 NO
REF
2 H_EXOUTADDR(H_EXUCA_PT) ?BR1.84 POINTER AUTO DCL: 684 NO
REF
2 H_EXOUTKEY(H_EXUCA_PT) ?BR1.80 POINTER AUTO DCL: 228 NO
REF
2 H_EXOUTKEY(H_EXUCA_GT) ?BR1.68 POINTER AUTO DCL: 377 NO
REF
2 H_EXOUTKEY(H_EXUCA_PT) ?BR1.80 POINTER AUTO DCL: 587 NO
REF
2 H_EXOUTKEY(H_EXUCA_PT) ?BR1.80 POINTER AUTO DCL: 683 NO
REF
2 H_EXPARMASK(H_EXUCA) ?BR1.98 BIT(32) AUTO DCL: 116
 144m
2 H_EXPARMASK(H_EXUCA) ?BR1.64 BIT(32) AUTO DCL: 219
 240m
2 H_EXPARMASK(H_EXUCA) ?BR1.98 BIT(32) AUTO DCL: 277
 305m
2 H_EXPARMASK(H_EXUCA) ?BR1.84 BIT(32) AUTO DCL: 368
 391m
2 H_EXPARMASK(H_EXUCA) ?BR1.84 BIT(32) AUTO DCL: 437
 454m
2 H_EXPARMASK(H_EXUCA) ?BR1.98 BIT(32) AUTO DCL: 475
 503m
2 H_EXPARMASK(H_EXUCA) ?BR1.64 BIT(32) AUTO DCL: 578
 599m
2 H_EXPARMASK(H_EXUCA) ?BR1.64 BIT(32) AUTO DCL: 674
 695m
2 H_EXPARMASK(H_EXUCA) ?BR1.84 BIT(32) AUTO DCL: 739
 756m
2 H_EXPGID(H_EXUCA_ON) ?BR1.60 POINTER AUTO DCL: 123 NO
REF
2 H_EXPGID(H_EXUCA_ON) ?BR1.60 POINTER AUTO DCL: 284 NO
REF
2 H_EXPGID(H_EXUCA_ON) ?BR1.60 POINTER AUTO DCL: 482 NO
REF
2 H_EXPMD(H_EXUCA_ON) ?BR1.68 CHAR(2) AUTO DCL: 125
 142m
2 H_EXPMD(H_EXUCA_ON) ?BR1.68 CHAR(2) AUTO DCL: 286
 303m
2 H_EXPMD(H_EXUCA_ON) ?BR1.68 CHAR(2) AUTO DCL: 484
 501m
2 H_EXPREASONS(H_EXUCA_CL) ?BR1.7C POINTER AUTO DCL: 451 NO
REF
2 H_EXPREASONS(H_EXUCA_CL) ?BR1.7C POINTER AUTO DCL: 753 NO
REF
2 H_EXRECOV(H_EXUCA_CL) ?BR1.78 POINTER AUTO DCL: 450 NO
REF
2 H_EXRECOV(H_EXUCA_CL) ?BR1.78 POINTER AUTO DCL: 752 NO
REF
2 H_EXRECTYPE(H_EXUCA_PT) ?BR1.94 BIT(16) AUTO DCL: 234 NO
REF
2 H_EXRECTYPE(H_EXUCA_GT) ?BR1.7C POINTER AUTO DCL: 384 NO
REF
2 H_EXRECTYPE(H_EXUCA_PT) ?BR1.94 BIT(16) AUTO DCL: 593 NO
REF
2 H_EXRECTYPE(H_EXUCA_PT) ?BR1.94 BIT(16) AUTO DCL: 689 NO
REF
2 H_EXREFMODE(H_EXUCA_ON) ?BR1.7A CHAR(1) AUTO DCL: 130 NO
REF
2 H_EXREFMODE(H_EXUCA_ON) ?BR1.7A CHAR(1) AUTO DCL: 291 NO
REF
2 H_EXREFMODE(H_EXUCA_ON) ?BR1.7A CHAR(1) AUTO DCL: 489 NO
REF
2 H_EXRESTART(H_EXUCA_ON) ?BR1.84 POINTER AUTO DCL: 134 NO
REF
2 H_EXRESTART(H_EXUCA_ON) ?BR1.84 POINTER AUTO DCL: 295 NO
REF
2 H_EXRESTART(H_EXUCA_ON) ?BR1.84 POINTER AUTO DCL: 493 NO
REF
2 H_EXRFLDEF(H_EXUCA_ON) ?BR1.80 POINTER AUTO DCL: 133 NO
REF
2 H_EXRFLDEF(H_EXUCA_ON) ?BR1.80 POINTER AUTO DCL: 294 NO
REF
2 H_EXRFLDEF(H_EXUCA_ON) ?BR1.80 POINTER AUTO DCL: 492 NO
REF
2 H_EXSECIDX(H_EXUCA_ON) ?BR1.8C FIXED BIN(15) AUTO DCL: 136 NO
REF

GPL User's Guide

4-20 47 A2 36UL Rev03

2 H_EXSECIDX(H_EXUCA_ON) ?BR1.8C FIXED BIN(15) AUTO DCL: 297 NO
REF
2 H_EXSECIDX(H_EXUCA_ON) ?BR1.8C FIXED BIN(15) AUTO DCL: 495 NO
REF
2 H_EXSELECT(H_EXUCA_ON) ?BR1.8F CHAR(1) AUTO DCL: 138 NO
REF
2 H_EXSELECT(H_EXUCA_ON) ?BR1.8F CHAR(1) AUTO DCL: 299 NO
REF
2 H_EXSELECT(H_EXUCA_ON) ?BR1.8F CHAR(1) AUTO DCL: 497 NO
REF
2 H_EXSPECPTR(H_EXUCA) ?BR1.A8 POINTER AUTO DCL: 119
 141m
2 H_EXSPECPTR(H_EXUCA) ?BR1.74 POINTER AUTO DCL: 222
 236m
2 H_EXSPECPTR(H_EXUCA) ?BR1.A8 POINTER AUTO DCL: 280
 302m
2 H_EXSPECPTR(H_EXUCA) ?BR1.94 POINTER AUTO DCL: 371
 386m
2 H_EXSPECPTR(H_EXUCA) ?BR1.94 POINTER AUTO DCL: 440
 453m
2 H_EXSPECPTR(H_EXUCA) ?BR1.A8 POINTER AUTO DCL: 478
 500m
2 H_EXSPECPTR(H_EXUCA) ?BR1.74 POINTER AUTO DCL: 581
 595m
2 H_EXSPECPTR(H_EXUCA) ?BR1.74 POINTER AUTO DCL: 677
 691m
2 H_EXSPECPTR(H_EXUCA) ?BR1.94 POINTER AUTO DCL: 742
 755m
2 H_EXSRCHLEN(H_EXUCA_PT) ?BR1.8A FIXED BIN(15) AUTO DCL: 231 NO
REF
2 H_EXSRCHLEN(H_EXUCA_GT) ?BR1.72 FIXED BIN(15) AUTO DCL: 380 NO
REF
2 H_EXSRCHLEN(H_EXUCA_PT) ?BR1.8A FIXED BIN(15) AUTO DCL: 590 NO
REF
2 H_EXSRCHLEN(H_EXUCA_PT) ?BR1.8A FIXED BIN(15) AUTO DCL: 686 NO
REF
2 H_EXSUBFILE(H_EXUCA_ON) ?BR1.76 POINTER AUTO DCL: 129 NO
REF
2 H_EXSUBFILE(H_EXUCA_ON) ?BR1.76 POINTER AUTO DCL: 290 NO
REF
2 H_EXSUBFILE(H_EXUCA_ON) ?BR1.76 POINTER AUTO DCL: 488 NO
REF
2 H_EXSUBREF(H_EXUCA) ?BR1.A6 FIXED BIN(15) AUTO DCL: 118 NO
REF
2 H_EXSUBREF(H_EXUCA) ?BR1.72 FIXED BIN(15) AUTO DCL: 221
 239m
2 H_EXSUBREF(H_EXUCA) ?BR1.A6 FIXED BIN(15) AUTO DCL: 279 NO
REF
2 H_EXSUBREF(H_EXUCA) ?BR1.92 FIXED BIN(15) AUTO DCL: 370
 389m
2 H_EXSUBREF(H_EXUCA) ?BR1.92 FIXED BIN(15) AUTO DCL: 439 NO
REF
2 H_EXSUBREF(H_EXUCA) ?BR1.A6 FIXED BIN(15) AUTO DCL: 477 NO
REF
2 H_EXSUBREF(H_EXUCA) ?BR1.72 FIXED BIN(15) AUTO DCL: 580
 598m
2 H_EXSUBREF(H_EXUCA) ?BR1.72 FIXED BIN(15) AUTO DCL: 676
 694m
2 H_EXSUBREF(H_EXUCA) ?BR1.92 FIXED BIN(15) AUTO DCL: 741 NO
REF
2 H_EXTYPE(H_EXFCB_C) /EXP_PTR/-> 0 CHAR(1) BASED DCL: 185 NO
REF
2 H_EXTYPE(H_EXFCB_C) /EXP_PTR/-> 0 CHAR(1) BASED DCL: 334 NO
REF
2 H_EXTYPE(H_EXFCB_C) /EXP_PTR/-> 0 CHAR(1) BASED DCL: 544 NO
REF
2 H_EXTYPE(H_EXFCB_C) /EXP_PTR/-> 0 CHAR(1) BASED DCL: 640 NO
REF
1 H_EXUCA ?BR1.94 STRUCTURE AUTO DCL: 114
 145r
1 H_EXUCA ?BR1.60 STRUCTURE AUTO DCL: 217
 241r
1 H_EXUCA ?BR1.94 STRUCTURE AUTO DCL: 275
 306r
1 H_EXUCA ?BR1.80 STRUCTURE AUTO DCL: 366
 392r
1 H_EXUCA ?BR1.80 STRUCTURE AUTO DCL: 435
 455r
1 H_EXUCA ?BR1.94 STRUCTURE AUTO DCL: 473
 504r

Using The GPL Compiler

47 A2 36UL Rev03 4-21

1 H_EXUCA ?BR1.60 STRUCTURE AUTO DCL: 576
 600r
1 H_EXUCA ?BR1.60 STRUCTURE AUTO DCL: 672
 696r
1 H_EXUCA ?BR1.80 STRUCTURE AUTO DCL: 737
 757r
1 H_EXUCA_CL ?BR1.60 STRUCTURE AUTO DCL: 441
 453
1 H_EXUCA_CL ?BR1.60 STRUCTURE AUTO DCL: 743
 755
2 H_EXUCA_CL01(H_EXUCA_CL) ?BR1.6F CHAR(1) AUTO DCL: 447 NO
REF
2 H_EXUCA_CL01(H_EXUCA_CL) ?BR1.6F CHAR(1) AUTO DCL: 749 NO
REF
1 H_EXUCA_GT ?BR1.60 STRUCTURE AUTO DCL: 372
 386
1 H_EXUCA_ON ?BR1.60 STRUCTURE AUTO DCL: 120
 141
1 H_EXUCA_ON ?BR1.60 STRUCTURE AUTO DCL: 281
 302
1 H_EXUCA_ON ?BR1.60 STRUCTURE AUTO DCL: 479
 500
1 H_EXUCA_PT ?BR1.78 STRUCTURE AUTO DCL: 223
 236
1 H_EXUCA_PT ?BR1.78 STRUCTURE AUTO DCL: 582
 595
1 H_EXUCA_PT ?BR1.78 STRUCTURE AUTO DCL: 678
 691
2 H_EXUTILITY(H_EXUCA_ON) ?BR1.90 POINTER AUTO DCL: 139 NO
REF
2 H_EXUTILITY(H_EXUCA_ON) ?BR1.90 POINTER AUTO DCL: 300 NO
REF
2 H_EXUTILITY(H_EXUCA_ON) ?BR1.90 POINTER AUTO DCL: 498 NO
REF
2 H_EXWAPTR(H_EXUCA) ?BR1.9C POINTER AUTO DCL: 117
 143m
2 H_EXWAPTR(H_EXUCA) ?BR1.68 POINTER AUTO DCL: 220
 237m
2 H_EXWAPTR(H_EXUCA) ?BR1.9C POINTER AUTO DCL: 278
 304m
2 H_EXWAPTR(H_EXUCA) ?BR1.88 POINTER AUTO DCL: 369
 387m
2 H_EXWAPTR(H_EXUCA) ?BR1.88 POINTER AUTO DCL: 438 NO
REF
2 H_EXWAPTR(H_EXUCA) ?BR1.9C POINTER AUTO DCL: 476
 502m
2 H_EXWAPTR(H_EXUCA) ?BR1.68 POINTER AUTO DCL: 579
 596m
2 H_EXWAPTR(H_EXUCA) ?BR1.68 POINTER AUTO DCL: 675
 692m
2 H_EXWAPTR(H_EXUCA) ?BR1.88 POINTER AUTO DCL: 740 NO
REF
2 H_FO_PROC(H_EVA) /EXP_PTR/-> 2C ENTRY RECURSIVE BASED DCL: 213 NO
REF
2 H_FO_PROC(H_EVA) /EXP_PTR/-> 2C ENTRY RECURSIVE BASED DCL: 362 NO
REF
2 H_FO_PROC(H_EVA) /EXP_PTR/-> 2C ENTRY RECURSIVE BASED DCL: 572 NO
REF
2 H_FO_PROC(H_EVA) /EXP_PTR/-> 2C ENTRY RECURSIVE BASED DCL: 668 NO
REF
2 H_GT_PROC(H_EVA) /EXP_PTR/-> 10 ENTRY RECURSIVE BASED DCL: 199 NO
REF
2 H_GT_PROC(H_EVA) /EXP_PTR/-> 10 ENTRY RECURSIVE BASED DCL: 348
 392
2 H_GT_PROC(H_EVA) /EXP_PTR/-> 10 ENTRY RECURSIVE BASED DCL: 558 NO
REF
2 H_GT_PROC(H_EVA) /EXP_PTR/-> 10 ENTRY RECURSIVE BASED DCL: 654 NO
REF
2 H_IN_PROC(H_EVA) /EXP_PTR/-> 28 ENTRY RECURSIVE BASED DCL: 211 NO
REF
2 H_IN_PROC(H_EVA) /EXP_PTR/-> 28 ENTRY RECURSIVE BASED DCL: 360 NO
REF
2 H_IN_PROC(H_EVA) /EXP_PTR/-> 28 ENTRY RECURSIVE BASED DCL: 570 NO
REF
2 H_IN_PROC(H_EVA) /EXP_PTR/-> 28 ENTRY RECURSIVE BASED DCL: 666 NO
REF
 H_LENGTH ?BR1.80 FIXED BIN(15) AUTO DCL: 171
 172m 172r
 H_LENGTH ?BR1.80 FIXED BIN(15) AUTO DCL: 257
 258m 258r

GPL User's Guide

4-22 47 A2 36UL Rev03

 H_LENGTH ?BR1.80 FIXED BIN(15) AUTO DCL: 530
 531m 531r
 H_LENGTH ?BR1.80 FIXED BIN(15) AUTO DCL: 625
 626m 626r
 H_LENGTH ?BR1.80 FIXED BIN(15) AUTO DCL: 721
 722m 722r
 H_NAME ?BR1.60 CHAR(32) AUTO DCL: 170
 172m 172r
 H_NAME ?BR1.60 CHAR(32) AUTO DCL: 256
 258m 258r
 H_NAME ?BR1.60 CHAR(32) AUTO DCL: 529
 531m 531r
 H_NAME ?BR1.60 CHAR(32) AUTO DCL: 624
 626m 626r
 H_NAME ?BR1.60 CHAR(32) AUTO DCL: 720
 722m 722r
2 H_NT_PROC(H_EVA) /EXP_PTR/-> 18 ENTRY RECURSIVE BASED DCL: 203 NO
REF
2 H_NT_PROC(H_EVA) /EXP_PTR/-> 18 ENTRY RECURSIVE BASED DCL: 352 NO
REF
2 H_NT_PROC(H_EVA) /EXP_PTR/-> 18 ENTRY RECURSIVE BASED DCL: 562 NO
REF
2 H_NT_PROC(H_EVA) /EXP_PTR/-> 18 ENTRY RECURSIVE BASED DCL: 658 NO
REF
2 H_ON_PROC(H_EVA) /EXP_PTR/-> 0 ENTRY RECURSIVE BASED DCL: 191 NO
REF
2 H_ON_PROC(H_EVA) /EXP_PTR/-> 0 ENTRY RECURSIVE BASED DCL: 340 NO
REF
2 H_ON_PROC(H_EVA) /EXP_PTR/-> 0 ENTRY RECURSIVE BASED DCL: 550 NO
REF
2 H_ON_PROC(H_EVA) /EXP_PTR/-> 0 ENTRY RECURSIVE BASED DCL: 646 NO
REF
2 H_PN_PROC(H_EVA) /EXP_PTR/-> 8 ENTRY RECURSIVE BASED DCL: 195 NO
REF
2 H_PN_PROC(H_EVA) /EXP_PTR/-> 8 ENTRY RECURSIVE BASED DCL: 344 NO
REF
2 H_PN_PROC(H_EVA) /EXP_PTR/-> 8 ENTRY RECURSIVE BASED DCL: 554 NO
REF
2 H_PN_PROC(H_EVA) /EXP_PTR/-> 8 ENTRY RECURSIVE BASED DCL: 650 NO
REF
2 H_PO_PROC(H_EVA) /EXP_PTR/-> 1C ENTRY RECURSIVE BASED DCL: 205 NO
REF
2 H_PO_PROC(H_EVA) /EXP_PTR/-> 1C ENTRY RECURSIVE BASED DCL: 354 NO
REF
2 H_PO_PROC(H_EVA) /EXP_PTR/-> 1C ENTRY RECURSIVE BASED DCL: 564 NO
REF
2 H_PO_PROC(H_EVA) /EXP_PTR/-> 1C ENTRY RECURSIVE BASED DCL: 660 NO
REF
2 H_PT_PROC(H_EVA) /EXP_PTR/-> 14 ENTRY RECURSIVE BASED DCL: 201
 241
2 H_PT_PROC(H_EVA) /EXP_PTR/-> 14 ENTRY RECURSIVE BASED DCL: 350 NO
REF
2 H_PT_PROC(H_EVA) /EXP_PTR/-> 14 ENTRY RECURSIVE BASED DCL: 560
 600
2 H_PT_PROC(H_EVA) /EXP_PTR/-> 14 ENTRY RECURSIVE BASED DCL: 656
 696
2 H_PX_PROC(H_EVA) /EXP_PTR/-> 20 ENTRY RECURSIVE BASED DCL: 207 NO
REF
2 H_PX_PROC(H_EVA) /EXP_PTR/-> 20 ENTRY RECURSIVE BASED DCL: 356 NO
REF
2 H_PX_PROC(H_EVA) /EXP_PTR/-> 20 ENTRY RECURSIVE BASED DCL: 566 NO
REF
2 H_PX_PROC(H_EVA) /EXP_PTR/-> 20 ENTRY RECURSIVE BASED DCL: 662 NO
REF
1 H_S_INPUT ?BR7.20->0 STRUCTURE EXT STATIC DCL: 28
 25d
1 H_S_OUTPUT ?BR7.28->0 STRUCTURE EXT STATIC DCL: 71
 68d
2 H_SK_PROC(H_EVA) /EXP_PTR/-> C ENTRY RECURSIVE BASED DCL: 197 NO
REF
2 H_SK_PROC(H_EVA) /EXP_PTR/-> C ENTRY RECURSIVE BASED DCL: 346 NO
REF
2 H_SK_PROC(H_EVA) /EXP_PTR/-> C ENTRY RECURSIVE BASED DCL: 556 NO
REF
2 H_SK_PROC(H_EVA) /EXP_PTR/-> C ENTRY RECURSIVE BASED DCL: 652 NO
REF
 H_STND2_TDF1 ?BR7.18->0 CHAR(52) EXT STATIC DCL: 22
 31d 74d
 H_TASKM_UABT ?BR7.30 ENTRY RECURSIVE EXT DCL: 169
 172

Using The GPL Compiler

47 A2 36UL Rev03 4-23

 H_TASKM_UABT ?BR7.30 ENTRY RECURSIVE EXT DCL: 255
 258
 H_TASKM_UABT ?BR7.30 ENTRY RECURSIVE EXT DCL: 528
 531
 H_TASKM_UABT ?BR7.30 ENTRY RECURSIVE EXT DCL: 623
 626
 H_TASKM_UABT ?BR7.30 ENTRY RECURSIVE EXT DCL: 719
 722
 I ?BR1.5C FIXED BIN(15) AUTO DCL: 424
 630m 631 631
1 INPUT ?BR7.1C->0 STRUCTURE EXT STATIC DCL: 24 NO
REF
1 INPUT_INTERFACE ?BR7.C->0 STRUCTURE EXT STATIC DCL: 6 NO
REF
2 INPUTFCB_PTR(INPUT) ?BR7.1C->0 POINTER EXT STATIC DCL: 25i
 302 307m 385 452 456m
2 INPUTRFUUCA(INPUT) ?BR7.1C->4 POINTER EXT STATIC DCL: 26 NO
REF
 LINE ?BR1.C CHAR(80) AUTO DCL: 11
 176m 237 535m 596 631m 692
 MESSAGE ?BR1.4->0 CHAR(*) PARAM DCL: 2
 176
2 NAME(WORD) ?BR7.14->0 ARRAY CHAR(20) EXT STATIC DCL: 15
 631
 NO_REF_SO_NOT_ALLOC **NOT ALLOC** POINTER AUTO DCL: 12 NO
REF
 NUMBER_OF_WORDS ?BR7.10->0 FIXED BIN(15) EXT STATIC DCL: 13
 630
1 OUTPUT ?BR7.24->0 STRUCTURE EXT STATIC DCL: 67 NO
REF
2 OUTPUTFCB_PTR(OUTPUT) ?BR7.24->0 POINTER EXT STATIC DCL: 68i
 141 146m 235 500 505m 594
690 754 758m
2 OUTPUTRFUUCA(OUTPUT) ?BR7.24->4 POINTER EXT STATIC DCL: 69 NO
REF
 READ_IN_BUFFER ?BR7.4 ENTRY RECURSIVE EXT DCL: 262 NO
REF
1 WORD ?BR7.14->0 ARRAY STRUCTURE EXT STATIC DCL: 14 NO
REF
 WRITE_WORD_ARRAY ?BR7.8 ENTRY RECURSIVE EXT DCL: 423 NO
REF
 + + + NO ERROR MESSAGES + + +
 OBJECT CODE PRODUCED

Figure 4-5. Cross Reference Listings

GPL User's Guide

4-24 47 A2 36UL Rev03

G PL
Source

Program

M AC PR O C
U tility

M AC PR O C
Listing

G PL
C om piler

C om piler
L isting

Source m em ber nam e : S
Program nam e : P

S

P

C U N am e : P
C om pile

U nit

P

S_ J_

P_L

Figure 4-6. Naming Conventions

47 A2 36UL Rev03 5-1

5. Linking and Communication

Every compile unit must be processed by the LINKER utility before execution. The
LINKER builds an executable load module from a compile unit or set of compile units. It
is possible to link compile units which are produced by different compilers, for example,
the source programs of which were written in different languages.

5.1 USING THE LINKER

5.1.1 Linking In Batch

The LINKER is called by the JCL statement LINKER. The following example illustrates
the simple use of this statement:

 $JOB...
 LIB CU INLIB1 = CU.LIB;
 LINKER GPROG1 OUTLIB = LM.LIB;
 $ENDJOB;

The LIB statement sets up a search path for LINKER. LINKER will produce a load
module called GPROG1 (the entry-name is assumed to be also GPROG1) which will be
stored in the library LM.LIB. For a complete description of the JCL statement LINKER
see the LINKER manual. The GPL programmer should have a copy of this manual: in
addition to the JCL for LINKER, it gives a detailed description of the printed output
produced by LINKER and of the advanced LINKER commands. It contains a
considerable amount of background information which is of interest to the GPL user. An
example of a LINKER listing is given as part of the example GPL program in Appendix
C. The LINKER statement format is given in Figure 5-1 as a memory aid only.

GPL User's Guide

5-2 47 A2 36UL Rev03

LINKER load module name

 *

 INLIB = (input - library - description

 (output - library - description)

 OUTLIB = TEMP

 COMFILE = (sequential - input - file - description)

 COMMAND = ' command command ...'

 ENTRY = entry -name COMFAC

 PRTFILE = (print - file - description)

 PRTLIB = (print - library - description)

 STEPOPT = (step - parameters) ;

Figure 5-1. LINKER Statement Format

5.1.2 Interactive Linking

In interactive mode, the LINKER may be called using the GCL statement LINK_PG.
LINK_PG is described fully in Volume II of the IOF Terminal User's Reference Manual.

The remainder of this section, which should be read in conjunction with the LINKER
manual, is concerned with multitasking and associated topics. It covers data sharing,
segmentation and procedure references.

Linking and Communication

47 A2 36UL Rev03 5-3

5.2 DATA SHARING

5.2.1 Data Sharing Between Procedures

Data which is to be shared by different procedures must be declared with storage class
STATIC and scope EXTERNAL in each of the sharing procedures. For example, if the
declaration: DCL A CHAR(20) STATIC EXTERNAL; is used in two procedures, then the
same character variable A can be referenced by both procedures. The variable must be
declared by using exactly the same declaration statement in each procedure. STATIC
EXTERNAL data is written in the BLANK segment, unless a WITHIN clause which
specifies a segment name is used (see below). Data declaration and the concepts of
storage class and scope are explained in the GPL Reference Manual.

5.2.2 Data Sharing Between Tasks

The above method of sharing data applies only to procedures which are part of the same
task (a program which does not use the multitasking facilities is by default a monotask
program). In a multitask program, data which is to be shared by different tasks must be
written in a common segment by means of the WITHIN clause in the declaration
statement. The clause: WITHIN X (TT(2)); specifies that all data associated with X is to
be stored in the same segment. Since the segment is to be shared, it is declared with
the attribute Table Type 2 which corresponds to SHRLEVEL=2 in the LINKER command
MSEGAT. (Segment sharability is discussed in the LINKER manual). The segment
name is known to the LINKER and, provided that the segment is similarly declared in
each task, the data within the segment may be shared. If no segment name is specified,
the data is allocated in the BLANK segment. Note that the data which is to be shared
must be declared as STATIC EXTERNAL. So, if the character variable A is to be shared
by different tasks, it is declared as follows: DCL A CHAR(20) STATIC EXTERNAL
WITHIN X (TT(2)); Any segment attributes specified in the WITHIN clause may be
overridden at linkage time by the LINKER command MSEGAT. The MSEGAT command
is described in the LINKER manual; the WITHIN clause is described in the GPL
Reference Manual.

GPL User's Guide

5-4 47 A2 36UL Rev03

5.2.3 Communication Between Different Languages

5.2.3.1 Data Types And Other Compilers

When a GPL program calls, or is called by, a program written in another language, and
data is to be shared between the two programs, the programmer must take into account
the data storage conventions used by the different compilers. The programmer must
ensure that the data attributes used represent the same data storage. The table below
gives a comparison of GPL, COBOL, PASCAL, C and FORTRAN data formats.

Table 5-1. Comparison of Data Formats

GPL C (a) COBOL-74 FORTRAN 77 (e) PASCAL
FIXED BIN (15) short int COMP-1 INTEGER *2 enumerators
FIXED BIN (31) int COMP-2 INTEGER INTEGER
FLOAT BIN (21) float COMP-9 REAL -
FLOAT BIN (53) double COMP-10 DOUBLE

PRECISION
REAL

FLOAT BIN (109) - - QUADRUPLE
PRECISION

-

CHAR (1) char (b) PIC X - CHAR
CHAR (K) (c) - PIC X (K) - PACKED

ARRAY [1..K]
OF CHAR

CHAR (*) - - CHARACTER* (*) -
POINTER pointer - (f) - -
ENTRY - - SUBROUTINE PROCEDURE
ENTRY

RETURNS
function - FUNCTI0N FUNCTION

BIT (1) BYTE - - - BOOLEAN
BIT (8) BYTE - - LOGICAL*1 (d) -
LOGBIN (32)

BYTE
unsigned - - -

FIXED DEC (K)
[PACKED] (c)

- PIC 9(K)
USAGE
COMP-8

- -

FIXED DEC (K)
UNPACKED

- PIC 9(K) - -

Linking and Communication

47 A2 36UL Rev03 5-5

• (a) Note that in C, parameters are always passed by value, unless the function is
declared with the special symbol '&'. For example, extern int F(&).

• (b) A LINKER warning will be issued.

• (c) K denotes a constant integer.

• (d) Only certain values are allowed.

• (e) A LINKER warning may be issued.

• (f) See the paragraph below on passing pointers from a Cobol program.

For further information, refer to the language User Guides.

5.2.4 Passing Pointers From A Cobol Program

It is possible, when calling a GPL procedure from a COBOL program, to pass a pointer
as a parameter of the CALL statement. The pointer is set up in the COBOL program by
means of the ADDRESS OF option in the USING phrase of the CALL statement. (There
is no equivalent facility in FORTRAN). The following example shows a COBOL program
calling a GPL procedure. Two parameters are passed; the first is a pointer, the second is
a halfword binary variable.

 .
 .
 WORKING-STORAGE SECTION.
 .
 .
 01 GROUP.
 02 AGE PIC S999 COMP-1.
 02 NAME PIC X(31).
 02 AMOUNT PIC $99.99.
 .
 .
 77 CODE PIC S9 COMP-1.
 .
 .
 PROCEDURE DIVISION.
 .
 .
 CALL HPROC USING ADDRESS OF GROUP, CODE.
 .
 .

GPL User's Guide

5-6 47 A2 36UL Rev03

The GPL procedure may be as follows:

 HPROC:PROC(P,D);
 DCL 1 G BASED P,
 2 A FIXED BIN(15),
 2 B CHAR(31),
 2 C CHAR(6);
 DCL D FIXED BIN(15);
 DCL P PTR;
 A = D + 12;
 B = "LITERAL";
 C = "$12.34";
 .
 .
 RETURN;
 END HPROC;

Linking and Communication

47 A2 36UL Rev03 5-7

5.3 PROCEDURE REFERENCES

5.3.1 Procedure References In A Monotask Program

A GPL program consists of one or more external procedures. The source code for each
external procedure is held in a unique input enclosure or library member, which is
compiled to produce a compile unit. At linkage time, the LINKER utility resolves all
references between compile units and builds an executable load module. Each
procedure name (from a PROC statement) or entry name (from an ENTRY statement) is
known to the LINKER. For example, if the statement:

 X : PROC; or X : ENTRY;

is used, then the entry point X is known to LINKER. The code which is entered through X
can be called in another procedure by means of a declaration statement and a CALL
statement:

 DCL X ENTRY (...
 CALL X (...

GPL procedures can call, or be called by, programs written in other languages (e.g.,
COBOL or FORTRAN). A GPL procedure calls such a program in the manner shown
above: the non-GPL program is called in the same way as another GPL procedure would
be called. The only difference is that the programmer must take into account the relative
data storage conventions used by the two compilers in order to ensure the compatibility
of any data items which are passed as parameters in the CALL statement. See Table 5-
1 above. Table 5-2 gives a comparison of the call and entry statements for GPL,
FORTRAN and COBOL.

Table 5-2. Comparison of CALL and ENTRY Statements

Language Call Entry
GPL CALL EXTPRO(A,B) EXTPRO: PROC(C,D)

FORTRAN CALL EXTPRO(A,B) SUBROUTINE EXTPRO (C,D)
COBOL CALL EXTPRO USING A,B PROGRAM-ID. EXTPRO.

.

.
PROCEDURE DIVISION

USING C,D.(C and D must be
defined at level 01 in the

linkage section).

In the statements in Table 5-2, the variables A and B are passed to the called procedure
in which they are known as C and D. When the called procedure terminates, the values
of C and D are passed back to the calling program as A and B.

GPL User's Guide

5-8 47 A2 36UL Rev03

5.3.2 Procedure References In A Multitask Program

The above method of calling procedures applies only to monotask programs. In a
multitask program, code which is to be called by different tasks should be written in a
common segment by using the WITHIN clause in the PROC or ENTRY statement. The
segment must be created with Table Type 2 (equivalent to SHRLEVEL=2 in the LINKER
command MSEGAT). For example:

 P : PROC WITHIN (TT(2));

specifies that the code in procedure P is to be written in the same segment, which is to
have Table Type (share level) 2. A segment name may be specified, but is not
necessary for procedure reference purposes, since the code will be called by procedure
name (or entry point name), not by segment name.

Any segment attributes specified in the WITHIN clause may be overridden at linkage
time by the LINKER command MSEGAT. If the code segment to be referenced by
different tasks is created by a program written in a source language that does not have
facilities for specifying segment attributes, SHRLEVEL=2 must be specified in the
LINKER command MSEGAT. The MSEGAT command is described in the LINKER
manual; the WITHIN clause is described in the GPL Reference Manual.

47 A2 36UL Rev03 6-1

6. Execution and Debugging

6.1 THE JCL STATEMENT STEP

The user requests that a load module be executed by specifying the load module name
in a STEP statement. A simple example is given below:

 $JOB ...
 STEP GPROG1 LM.MYLIB;
 ENDSTEP;
 $ENDJOB;

The STEP statement specifies the load module name and the name of the library file on
which it is stored: ENDSTEP indicates the end of the step specifications and requests
execution of the named load module.

See the JCL Reference Manual for a complete description of the STEP JCL statement
and of the other JCL statements (e.g., ASSIGN and DEFINE) which may be specified
between the STEP and ENDSTEP statements.

The remainder of this section is concerned with facilities for debugging GPL programs
and with job execution messages.

6.2 THE GCL STATEMENT EXEC_PG

The previous example can be written in GCL as follows:

 EXEC_PG GPROG1 LM.MYLIB

See the IOF Terminal User's Reference Manual for further details.

GPL User's Guide

6-2 47 A2 36UL Rev03

6.3 DEBUGGING CODE

If the user inserts debugging code in the program, the code should be enclosed in the
compile-time statements:

 %DEBUG and %END_DEBUG

The code is compiled only if the DEBUGMD parameter is specified in the JCL statement
"GPL", or in the GCL command "GPL". Compile-time statements are described in the
GPL Reference Manual.

In most cases, however, the programmer will find it simpler and more efficient to debug
his programs using the Program Checkout Facility (outlined below) than to write and
insert his own debugging code.

Execution and Debugging

47 A2 36UL Rev03 6-3

6.4 PROGRAM CHECKOUT FACILITY

Program Checkout Facility (PCF)

The Program Checkout Facility (PCF) is a diagnostic facility which can be executed in
parallel with a user program. PCF may be used to monitor the user program in the
following ways:

• The flow of program control can be traced through a specified point (or points) in the
program.

• The values of specified data items can be dumped when control reaches specified
points within the program.

• The values of specified data items can be changed when control reaches specified
points within the program.

• PCF commands can be made conditional upon the value of specified data items.

• Commands can be applied to selected procedures or blocks.

PCF can be used in Batch mode or in interactive mode. The programmer specifies the
type of monitoring to be done by PCF by means of PCF commands. In Batch mode
these commands must be stored in a file which is assigned to the job step and which
has the internal file name H_DB; in interactive mode the PCF commands are entered at
the interactive device. PCF is requested by specifying the DEBUG parameter in the
STEP statement of the user program.

PCF is described in detail in the Program Checkout Facility Reference Manual, and is
not described any further in this manual. The paragraphs below are concerned only with
the following aspects of PCF usage which are specific to GPL:

• The JCL required at compilation time for the subsequent use of PCF in either
symbolic or effective addressing mode.

• The use of PCF with primitives and multitask programs.

GPL User's Guide

6-4 47 A2 36UL Rev03

6.4.1 Symbolic Addressing And Effective Addressing

If the Program Checkout Facility is to be used in symbolic addressing form, the program
must be compiled with the DEBUG parameter specified in the JCL statement GPL . This
instructs the compiler to produce tables giving the mapping of source program elements
(i.e., line numbers, labels and variables) on main memory locations and to store these
tables in the compile unit. Specifying the DEBUG parameter does not affect the
subsequent linking and execution of the program.

The user refers to source program elements by their symbolic names in PCF
statements. For example: DUMP VARA AT LB2; specifies that the value of variable
VARA should be displayed when control reaches label LB2. It is recommended that the
Program Checkout Facility be used in symbolic addressing form: it is more efficient and
simpler for the programmer. PCF can be used on a program which was compiled without
the DEBUG parameter, but it can only be used in effective addressing form or semi-
symbolic form, that is, source program elements must be addressed by their memory
locations. The addresses of data items are given in the Cross Reference Variables Map
produced by the compiler when the MAP parameter is specified in the GPL statement.

The address of a source line is constructed from information given in the following two
listings:

• the Line Location Map (also produced by specifying the MAP parameter in the GPL
statement

• the Group Information listing produced by LINKER.

The use of effective addressing in PCF is described in detail in the Program Checkout
Facility User's Guide.

6.4.2 Primitives And Pcf

The expansion code produced by MACPROC is not printed on any listing (though its
presence can be inferred from the internal line numbers in the source listing produced by
the compiler). Similarly, PCF does not list the occurrences of a source program element
within the expansion code. For example, the PCF command:

 DUMP A AT EACH-REF A;

specifies that the value of the variable A is to be displayed at each reference to the name
A in the program. If, however, A is passed as a parameter to a primitive there may be
one or more references to A within the expansion code. PCF does not list these
references.

Execution and Debugging

47 A2 36UL Rev03 6-5

In the vast majority of cases, the invisibility of the expansion code does not matter for the
purposes of debugging: this code is very unlikely to contain errors. The user himself,
however, may introduce an error condition into the expansion by passing a bad
parameter in the primitive statement. For example, the sequence:

 10 MYPROC : PROC;
 20 DCL A(1:10)...
 .
 .
 70 I = 20;
 80 $H PRIM A(I)...

causes an array-out-of-bounds error when the variable A(I) is referenced in the
expansion code. In such a case the line number returned by PCF will be of the form:

 n.xxxx (for example 80.4)

where:

n is the external line number of the executable line
immediately preceding the expansion code,

xxxx is the number of the line within the expansion code.

The dot before the expansion line number indicates that the line was inserted by the text
editor or generated by the MACPROC utility.

If PCF returns a line number of this form and indicates that an error has been detected
at that line, then the user should check the parameter(s) passed in the primitive
statement. If the parameters are all correct, the problem should be reported to the
Service Center.

It is also possible that, during an interactive PCF session, the user can "break" into
program execution while expansion code is being executed; in such a case the message
returned will be of the form:

 ... PCF AT LINE n.xxxx IN MYPROC

6.4.3 Multitask Programs And Pcf

The current version of PCF does not support multitask programming. The user who
wishes to monitor a multitask program should insert his own debugging code.

GPL User's Guide

6-6 47 A2 36UL Rev03

6.5 JOB EXECUTION MESSAGES

The general format of messages output by the system in the Job Occurrence Report is
as follows:

 ccnn.text

where:

cc is a two letter classification code.

nn is the number of the message within its class.

The messages are classified according to the nature of the system function which
generated the message. Some of the more common classification codes and
corresponding system functions are:

CK Checkpoint/Restart
DV Device Management
EX Exception Handling
FP File Open/Close

Depending on the error class, the text following the code may be a brief explanation of
the cause of the error or else a further numerical classification followed by a return code
specification. A complete list of classification codes, messages and return codes is given
in the Error Messages and Return Codes Manual.

6.5.1 Exception Messages Specific To GPL Programs

The exception messages listed and explained below are specific to GPL programs; for
other messages, see the Error Messages and Return Codes Manual.

6.5.1.1 Hardware Exceptions

EXCEPTION 03-03 ILLEGAL SEMAPHORE TYPE

This results from an attempt to perform an operation restricted to a "semaphore with
message" or a "semaphore without message", or vice versa. For example, a CALL SEV
builtin function was issued from a semaphore declared as "without message".

EXCEPTION 03-07 ILLEGAL SEMAPHORE SEGMENT

In a builtin function specific to semaphores, the pointer specified as an argument does
not define a semaphore.

EXCEPTION 04-03 SEMAPHORE COUNT OUT OF RANGE

This results from the execution of a V-type operation which would increment the
semaphore counter above the maximum value declared for this semaphore.

Execution and Debugging

47 A2 36UL Rev03 6-7

EXCEPTION 06-00 ACCESS OUT OF SEGMENT BOUNDS

This usually results from the misuse of a based variable and its associated pointer: the
pointer has been updated so that it points outside the limits of the segment.

EXCEPTION 06-01 ILLEGAL SEGMENT NUMBER

This results from an illegal pointer value: the STE field is greater than the maximum
segment number in the segment table.

EXCEPTION 06-02 UNAVAILABLE SEGMENT

Similar to 06-01, illegal pointer value; but in this case the STE field does not correspond
to a valid segment in the segment table.

EXCEPTION 06-03 ILLEGAL SEGMENT TABLE NUMBER

Similar to 06-01, illegal pointer value; but in this case the STN field does not correspond
to a valid segment table number.

EXCEPTION 09-08 ILLEGAL FIELD IN INSTRUCTION

The code was generated with the option CODE=OBJCD, but it is being run on a class A
machine. See paragraph 3.2.1. of this manual.

EXCEPTION 09-10 ILLEGAL OVERLAP IN TRANSLATE INSTRUCTION

This results from an overlap, in the TRANSLATE builtin function, between the string to
be translated and the translation table.

EXCEPTION 10-09 ILLEGAL GATE SEGMENT

This results from an attempt to call a procedure to be executed with a maximum ring of 2
from a procedure executed in ring 3, when the called procedure is not gated. (No GATE
command at linkage time with CMRN=3).

EXCEPTION 12-00 READ RIGHT VIOLATION

This results from an attempt to read, in a procedure executed in ring 3, a variable
located in a segment in which read operations are allowed in ring 2 only.

EXCEPTION 12-01 WRITE RIGHT VIOLATION

Similar to 12-00, but for write operations.

EXCEPTION 17-02 SUBSCRIPT OUT OF ARRAY RANGE

This results from a reference to an array element, the subscript of which is outside the
bounds of the array. This exception occurs only when the SUBSCRIPTRANGE condition
prefix applies.

GPL User's Guide

6-8 47 A2 36UL Rev03

6.5.1.2 Software Exceptions

Software exceptions correspond to run-time checks generated by the compiler. They
have the form:

 UNEXPECTED RETURN CODE (RC= F000xxxx -> USER 0, yyyyyyyy)
 GOT IN TASK MAIN AT ADDRESS <address>

The values are:

xxxx yyyyyyyy Meaning

1032 CASUNKN No matching value in SELECT statement
without OTHERWISE clause.

1807 LNERR Illegal length specified as argument to
VERIFY builtin function.

1816 SNDARERR Illegal syntax specified to BINARY builtin
function.

1889 SEQERR A function is left and no value is returned.
(No RETURN (x) statement.)

47 A2 36UL Rev03 7-1

7. Literals And Variables

The following sections are intended for the user who wishes to minimize the "cost" of
GPL constructs in terms of the size and execution time of the generated code. It is
assumed that the reader is familiar with the contents of the GPL Reference Manual and
has a basic knowledge of the GCOS 7 operating system.

It is also assumed that the user programs will have been properly structured, i.e.
organized into a number of modules, each module being a procedure or a BEGIN block.

NOTE: This document uses symbols in the left margin to indicate danger or
performance. The symbols are as follows:

Symbol Meaning
! Indicates danger
--> Relates to performance

7.1 LITERAL VALUES

7.1.1 Types

The GPL language allows the programmer to describe 8 kinds of literals belonging to the
5 data types, namely:

 . true FIXED BINARY such as 11001B
 . FIXED BINARY in decimal base 25
 . FIXED DECIMAL 25.
 . FLOAT BINARY .25E01
 . BIT STRING (binary) "11001"B
 . BIT STRING (hexadecimal) "19"X
 . CHARACTER STRING "AB"
 . CHARACTER STRING (hexadecimal) "C108"H

GPL User's Guide

7-2 47 A2 36UL Rev03

7.1.2 Logbin Type

It is not possible to describe a literal of type LOGICAL BINARY, or LOGBIN. FIXED
BINARY literals must be used, and these will be converted to LOGBIN if necessary by
the context. For example:

 DCL L LOGBIN (8) INIT (2);
 L = L + 1;

The literals 2 and 1 will be converted to LOGBIN. Be aware of this when looking which
conversion rule will apply in an expression.

7.1.3 About Syntax

! Some literal descriptions have a similar syntax but different
types, for instance

11001B (FIXED BINARY) vs "11001"B (BIT STRING)
 "A2"H (CHAR STRING) vs "A2"X (BIT STRING)
 12 (FIXED BINARY) vs 12. (FIXED DECIMAL)

Remember that the "E" is mandatory for FLOAT BINARY literals, as is the final decimal
point for FIXED DECIMAL literals.

7.1.4 Precision Of Arithmetic Literals

The precision of a literal is computed from the number of digits or which it consists. (See
the GPL Reference Manual)

This is particularly important in the following cases:

• implicit conversions

• conversions through builtin functions (if not specified)

• FLOAT BINARY values handling

For example, 1 is a literal FIXED BINARY with precision p=5 since p= 1 + ceil (3.32 x l)
where l=1. Therefore, if B8 is a BIT(8) data item, the statement B8=1; will lead to a
conversion to a BIT STRING of length 5 padded to the right with zeroes, so that B8 will
contain "00001000"B.

Leading zeroes, although non-significant, will be taken into account when computing the
precision. Example:

 BINARY(12) will return a FIXED BINARY(8) value, as l=2
 BINARY(0012) will return a FIXED BINARY(15) value, as l=4

Literals And Variables

47 A2 36UL Rev03 7-3

The internal representation for a FLOAT BINARY literal depends on its precision. As a
reminder:

1 to 6 digits in mantissa
7 to 15 digits in mantissa
16 or more digits in mantissa

:short representation
:long representation
:extended representation

Therefore avoid extended FLOAT BINARY literals if you have performance problems
because their handling is more expensive.

Example:

Use

1.00000000000000E0

instead of

1.000000000000000E0

This is because the second version has 16 digits and will then be implemented as
extended.

If a value has an infinite representation in decimal, try to give the maximum number of
significant digits according to the representation you choose. For example, the following
value is the most accurate representation for one third.

0.33333333333333E0

7.1.5 Use Of Symbolic Literals

This is an important means to increase program readability.

As a reminder, this is achieved by using the REPLACE compile-time statement:

 %REPLACE identifier BY literal;

This is particularly interesting in the following cases:

• When it is an implementation value

 %REPLACE MAX_NUMBER_OF_USERS BY 17;
 %REPLACE EPSILON BY 1E-10;

• When the name is better known than the value

 %REPLACE PI BY 3.1415926535E0;
 %REPLACE BELL BY "2F"H;

GPL User's Guide

7-4 47 A2 36UL Rev03

7.1.6 Literals Versus Constants

The symbolic representation of values may also be achieved using the CONSTANT
attribute for declarations. The main differences between the two features are that
CONSTANTs are always allocated and not pooled.

A memory access is thus needed, when literals may be incorporated in machine
instructions and therefore not allocated.

If a literal must be allocated because it cannot be used directly, a new copy is actually
allocated only if its internal representation does not already exist in the constant section.

Example:

X ="ZA";
Y ="BX";
Z ="AB";

In this case, only a string of length 4 will be allocated: "ZABX".

Literals And Variables

47 A2 36UL Rev03 7-5

7.2 VARIABLES

7.2.1 Arithmetic Data

FIXED and FLOAT BINARY data are represented internally with a precision that is
predefined according to the precision specified by the user.

For FIXED DECIMAL and LOGICAL BINARY data the actual precision is used.
If you have some performance constraints, note that:

• Generally speaking FIXED BINARY is more efficient than LOGBIN which is more
efficient than FIXED DECIMAL.

• For LOGBIN data the precision is all important. 8,16 and 32 are the most efficient,
followed by 1 and 24, and then the other values.

• For FIXED DECIMAL, performance is directly related to precision. In particular, note
that:

• A general register is required to handle the precision when it becomes higher then 16.

• PACKED is more efficient than UNPACKED.

• For FLOAT BINARY data, beware of extended representation, as this is less efficient
than the others. This representation takes effect as soon as the precision exceeds 53.

7.2.2 String Data

Manipulation of BIT STRINGs is more efficient if the string does not share a byte with
other data.

Example:

DCL 1 *,
 2 B1 BIT(1),
 2 B2 BIT(1);
DCL BB1 BIT(1);
DCL BB2 BIT(1);

GPL User's Guide

7-6 47 A2 36UL Rev03

Access to BB1 and BB2 will be more efficient than to B1 and B2 as B1 and B2 are both
in the same byte. Note however that this form is more compact.

Bit strings of length 1, 8, 16, 32 and 64 are handled better than other lengths.

Character strings of length 1, 2 or 4 are particularly efficient.

Strings of length up to 256 or strings of variable length with the SHORT attribute are
more efficient.

7.2.3 Program Control

This involves pointer, entry and label data. Remember that label variables are not
allowed.

7.2.3.1 Pointer Handling

The use of specific constructs is preferable when handling pointers.

Pointers allow the user to manipulate memory locations. Remember that the
programmer is responsible for the validity of the address value.

Moreover the NULL() builtin function returns a unique pointer value that do not identify
any location.

7.2.3.2 Entry Variables

entry variables

The use of entry variables is the only way to communicate a context dynamically
between modules.

Example:

We have two modules M1 and M2. According to some event which occurs for M1, M1
gives control to M2 by selecting a specific function of M1 (one of the procedures of M1).

This kind of structure may be achieved through an ENTRY VARIABLE common to both
M1 and M2.

Let P1, P2 and P3 be the procedures of M1 which can be used by M2, and let EV be the
entry variable.

In M1 one must have EV = P1;, EV = P2; or EV = P3;

A call to EV inside M2 calls P1, P2 or P3 depending on the last assignment to EV.

Literals And Variables

47 A2 36UL Rev03 7-7

Consequently different procedures may be called using one name EV which insures
independence between M1 and M2.

An internal procedure may be called externally in the way shown below:

P : PROC ;
 ...
P1 : PROC ; ... END P1 ;
P2 : PROC RECURSIVE ; ... END P2 ;
P3 : PROC ; ... END P3 ;
DCL EV ENTRY VARIABLE EXT ;
EV = P2 ;
 ...
END P ;

EV may be declared and used in another external procedure Q.

P2 will be called in the example. As P2 is an internal procedure of P the context of P is
accessible.

Note the example shown below:

P : PROC ;
DCL EV ENTRY VARIABLE EXT ;
 ...
EV = P1 ;
LAB : ...
P1 : PROC RECURSIVE; GO TO LAB ; END P1; END P ;

If P calls Q which calls R and so on, a call to EV will produce a transfer of control to the
last activation of P i.e to the label LAB. Q, R etc. will be erased from the stack.

Note that if such an internal procedure has not got the RECURSIVE attribute, the
compiler forces it and a message is issued to this effect.

7.2.4 Structuring Data

This is achieved by building structures or arrays,which correspond to homogeneous and
non-homogeneous aggregates respectively. Both structures and arrays can be mixed. In
this latter case non-connected arrays can be obtained where two elements are not
contiguous in memory.

Example:

DCL 1 S(3)
 2 A FIXED BIN(31),
 2 B PTR;

The representation of A in memory is as follows:

A(1) A(2) A(3) //////////// //////

GPL User's Guide

7-8 47 A2 36UL Rev03

Some restrictions of use apply to such aggregates:

• They cannot be globally assigned; (T1=T2 is not allowed if T1 or T2 is a non-
connected array).

• They cannot be used as arguments for builtin functions.

Because of alignment constraints fillers may occur in certain structures. (Refer to
Appendix C of the GPL Reference Manual). Be careful when handling such structures,
especially when comparing them.

47 A2 36UL Rev03 8-1

8. Storage Control

8.1 ADDRESSING OF DATA

The GPL compiler establishes the addressing of data according to storage class.

• B0 points to the communication area of the current stack frame.

• B1 points to the local area of the current stack frame.

• B7 points to the linkage section of the procedure.

The registers need not be reloaded once the prologue of the procedure has been
executed.

8.1.1 Constant Data

There are two types of constant; data declared with the CONSTANT data attribute and
literals. The constants declared with the CONSTANT attribute are allocated in the
linkage section and are referenced directly through B7. They do not share their storage
with any other data. Literals that can be manipulated using immediate instructions are
not allocated.

Example:

X="A"; generates an efficient instruction.

A literal with a length greater than 8 bytes is allocated in the current code segment and
must be referenced by a supplementary instruction. Other literals are allocated in the
linkage section and are directly referenced through B7.

When allocated, two literals can share the same memory.

GPL User's Guide

8-2 47 A2 36UL Rev03

Example:

 X = "ZA"
 Y = "BX"
 Z = "AB"

Only "ZABX" is allocated.

--> Programs containing INTERNAL STATIC data used as
constants may be greatly improved by using the
CONSTANT attribute which will avoid the loading of a base
register and possibly a segment.

8.1.2 Static Data

Static data, INTERNAL or EXTERNAL, is allocated in segments.

Each name with the EXTERNAL scope attribute has a pointer which points to that data
in the linkage section of the procedure.

INTERNAL static data is grouped together by the compiler into one or more segments.
Each segment is addressed by a pointer in the linkage section of the procedure. Thus,
INTERNAL and EXTERNAL data are addressed in a similar way.

Example:

P : PROC ;
 .
 .
 .
DCL A EXTERNAL
DCL B INTERNAL STATIC....
 .
 .
 .

Storage Control

47 A2 36UL Rev03 8-3

leads to the following linkage section:

Linkage sect ion of P A into a segment X (or b lank)

ITS - A

.

.

.

ITS-int
B

INTERNAL STATIC SEGMENT OF P

Figure 8-1. Static Data Linkage Section

To address A or B, a base register with the corresponding ITS must be loaded.

8.1.3 Automatic Data

AUTOMATIC variables are allocated in the hardware stack. The stack frame consists of
two areas; the fixed area, which is addressed directly, and the variable area, which
requires one level of indirect addressing via pointers in the fixed area. Short
AUTOMATIC variables (i.e. <= 1024 bytes), are allocated in the fixed area; long
AUTOMATIC variables (i.e. > 1024 bytes) and adjustable AUTOMATIC variables are
allocated in the variable area.

Note that all scalar POINTER and FIXED BINARY data is short, and is therefore
allocated in the fixed area. For this initial allocation, an implicit base register exists which
is B1.

GPL User's Guide

8-4 47 A2 36UL Rev03

A stack frame allocation may be viewed as follows:

V A 1 VA2 VA3

.

.

.

VA1

VA2

VA3

B 1

F ixed a re a o f
the cu rren t
stack fram e

V a ria b le
a rea o f th e
curre n t
s ta ck fra m e

Layou t
o f a
cu rren t
G PL
procedure
stack
fram e

Figure 8-2. Automatic Data - Stack Frame Allocation

Each box of the variable area is allocated on entering a BEGIN or internal procedure
block.

The addressing of the variable area is obtained through "DOPE" information allocated in
the fixed area and initialized during the prologue of the procedure. If the procedure
contains internal procedures with the RECURSIVE attribute, for example:

P : PROC;
 .
 .
 .
Q : PROC RECURSIVE
 .
 .
 .
END Q, END P;

the stack frame allocated for Q is linked back to the stack frame of P. The layout of the
stack during execution may be as shown in the following figure.

Storage Control

47 A2 36UL Rev03 8-5

}

}

}

}

Stack f rame of P

S tack fram e o f firs t
ac tiva tion o f Q

B 1

S tack fram e o f last
activa tion o f Q

S tack fram e of second
activa tion o f Q

Figure 8-3. Automatic Data - Stack Layout

However, automatic variables declared in P and in the scope of Q may be referenced in
Q. It is possible to address P during the activation of Q through a link set during the
execution of the prologue of Q.

A new stack frame is created each time an internal procedure with the RECURSIVE
attribute or an external procedure is entered. In the first case, when an external
procedure contains a recursive internal procedure, the new stack frame which is
allocated for the internal procedure is linked back to the stack frame of the external
procedure. Variables which are declared in the external procedure are within the scope
of the internal procedure. They can be referenced in the in the internal procedure.
However, referencing variables in a non-current stack frame involves indirect
addressing, as follows:

• Variables allocated in the fixed area of the non-current stack frame require one level
of indirect addressing.

• Variables allocated in the variable area of the non-current stack frame require two
levels of indirect addressing.

GPL User's Guide

8-6 47 A2 36UL Rev03

8.1.4 Parameter Data

Like AUTOMATIC data, the parameters are allocated in the hardware stack.

Parameters of external procedures or internal procedures with the RECURSIVE attribute
are referenced through the BO register.

Parameters of internal non-recursive procedures are referenced through the B1 register.

Parameters of an OPTIONS(VARIABLE) ENTRY that are not named in the parameter
list, CHAR(*) parameters and unaligned BIT parameters are referenced through a data
descriptor, called a DOPE. To avoid two base register loadings, the DOPEs of CHAR(*)
and unaligned BIT parameters are moved from the caller's stack frame to the fixed area
of the current stack frame when the procedure block is activated. Unnamed parameters
are referenced via the ARG_PTR builtin function.

If a dummy argument is passed (* in the argument list) a NULL pointer is set in the
parameter area (parameter without DOPE) or in the first word of the DOPE (parameter
with DOPE). For example :

P:PROC(U,V,W,X)OPTIONS(VARIABLE);
DCL(U,V)CHAR(*),(W,X)FIXEDBIN(31);
Q:PROC(Y,Z);DCL(Y,Z)FIXED BIN(31);
:
END Q;
:
CALL Q(D,E);
:
END P;

Let the call to the external procedure P be:

CALL P(*,A,*,B,C);

This example has the following stack frame layout.

Storage Control

47 A2 36UL Rev03 8-7

Linkage sect ion of P A into a segment X (or b lank)

B 0
NULL()

B

LENGTH OF A

LENGTH OF C

B 1 D

E

P A R A M E T E R
A R E A O F Q

F IXE D
A R E A

P A R A M E T E R
A R E A O F P

D O P E

ITS U

ITS V

ITS W=NULL()

ITS X

EXTRA ITS

ITS A

ITS C

ITS Y

ITS Z

-

-

-

-
-

-

-

-

-

Figure 8-4. Parameter Data - Stack Frame Layout

If the parameters are in a previous stack frame, addressing is established through the
link array but this implies one indirection more.

Example:

P : PROC (X, Y);
Q : PROC RECURSIVE;
END Q; END P;

GPL User's Guide

8-8 47 A2 36UL Rev03

has the following stack frame layout:

The fixed a rea con ta ins a link
to the com m un ica tion a rea

F ixed a rea
o f P

C om m un ication
a rea o f P

C om m unica tion a rea o f
las t invoca tion o f Q

B 0

B 1

.

.

.

Figure 8-5. Parameter Data - Stack Frame Layout With Link Array

Storage Control

47 A2 36UL Rev03 8-9

8.2 SCOPE USAGE

Beware of the difference between scope and allocation: an object can be allocated but
not accessible.

Example:

 P: PROC;
 Q: PROC;
 DCL X PTR EXT;
 END Q;
 END P;

X is allocated when it is in P, in fact as soon as the program starts, but it is not
accessible because its scope is restricted to Q.

Generally speaking, declaring the variables and procedures at the lowest possible level
achieves some data encapsulation. Moreover it may increase performance as accessing
local automatic data may be cheaper than accessing global automatic data as explained
previously.

GPL User's Guide

8-10 47 A2 36UL Rev03

8.3 STORAGE SHARING

There are two kinds of storage sharing, static (completely known at compile-time) and
dynamic.

Example:

DCL X FIXED BIN(31) BASED(ADDR(Y));

implies dynamic sharing because other locaters can be used for X.

8.3.1 Static Versus Dynamic

Performance is improved by changing dynamic sharing (using the BASED attribute) to
static sharing (using the DEFINED or OVERLAY attributes).

If sharing is static the compiler knows which variables share the same storage. It can
thus define precisely which variables will be destroyed by an assignment. Therefore
code optimization will be more efficient.

Example:

 DCL (X,Y) FIXED BIN(31);
 DCL (B1 BASED(P1), B2 BASED(P2)) FIXED BIN(31);
 X = 3;
 B1 = 5;
 Y = X + 1; /* X will be reloaded from memory */
 B2 = B1-1; /* B1 will also be reloaded from memory */

Use the NOMAPPED attribute if possible and if the BASED attribute cannot be avoided
(see below).

Variable information such as lengths and dimensions are recomputed at each reference
for BASED objects.

Storage Control

47 A2 36UL Rev03 8-11

8.3.2 Sharing Table For Based Variables

Refer to the table given in the GPL Reference Manual.

Note especially that program control variables (ENTRY, POINTER), should not share
storage with data of other types.

Example:

 DCL P PTR;
 DCL B BIT(32) BASED;
P and B should not share storage. If they do, the DEFINED
attribute must be used as follows:
 DCL P PTR;
 DCL B BIT(32) DEFINED (P);

GPL User's Guide

8-12 47 A2 36UL Rev03

47 A2 36UL Rev03 9-1

9. Declarations

The addressing of data is discussed in Section VIII. More information about declaration
attributes is given below.

9.1 ALIGNMENT

Aligning certain types of data on certain boundaries can influence performance.
Alignment can be considered in two parts.

9.1.1 The Alignment Of Parameters

BIT STRING and LOGBIN data, and aggregate data consisting entirely of BIT STRINGs
and LOGBINs are bit-aligned by default unless the BYTE attribute is specified.

If this is the case, a descriptor (called a DOPE) is added to the CALL statement, and
references to the parameter in the called procedure are made through this descriptor.
This increases both code length and execution time.

Example:

 DCL B BIT(32); /* level one, then BYTE*/
 CALL P1(B); CALL P2(B);
 P1: PROC(X);
 DCL X BIT(32);
 X=(32)"0"B;
 END P1;
 P2: PROC(X);
 DCL X BIT(32) BYTE;
 X=(32)"0"B;
 END P2;

GPL User's Guide

9-2 47 A2 36UL Rev03

The results of this example are shown below.

 Ratio not BYTE/BYTE
Code Size (BYTE) ~3
Timing (Call) ~2
 (Body of Pi) ~5
 (Total) ~4

--> For best results, use the BYTE attribute when calling
procedures in other languages. Except for GPL, there is
no language implemented on GCOS7 that can send or
receive parameters that are not byte aligned.

9.1.2 The Alignment Of Other Data

Aligning data on a natural boundary, for example aligning PTR, FIXED BIN(31) and
FLOAT BIN data on a WORD boundary, decreases the time needed for memory access.

The best alignment for AUTOMATIC level-1 data is automatically chosen by the
compiler.The programmer has only to worry about:

• the alignment of STATIC data

• the alignment of elements in a structure (for all storage classes).

Example:

DCL 1 S WORD,
 2 P PTR,
 2 F FIXED BIN(15),
 2 B BIT(1)

is more efficient than:

DCL 1 S WORD
 2 B BIT(1),
 2 P PTR, /*only BYTE aligned*/
 2 F FIXED BIN(15);

This is because in the second case P and F have only a BYTE boundary (although S is
WORD aligned). Note that the improvement in performance may be up to 25% on a
load-store sequence.

Declarations

47 A2 36UL Rev03 9-3

9.2 ADJUSTABLE ELEMENTS

Data is called adjustable if its dimension or length is not known at compile time.

Only AUTOMATIC and BASED data may be adjustable.

Constant expressions in dimension or length (such as CHAR(2+2)) lead to an adjustable
element.

For automatic data the values are computed when entering the block in which the object
is declared. For based variables they are computed at each reference.

For self-defining BASED structures, an implicit pointer is needed and the dimension and
length are derived from the object based by this pointer.

Example:

DCL 1 S BASED (P),
 2 L FIXED BIN(15),
 2 C CHAR(L);

Q->C = P->C; assumes that the length of Q->C is P->L.

Note that both dimension and length may be variable as in:

DCL T(I:I+N) CHAR(N) AUTO;

GPL User's Guide

9-4 47 A2 36UL Rev03

9.3 INITIALIZATION OF DATA

Use of expressions may increase readability and maintainability of programs.

Example:

DCL 1 MESSAGE_TABLE STATIC,
 2 * FIXED BIN (15) INIT (DISP(M1)),
 2 * FIXED BIN (15) INIT (DISP(M2)),
 .
 .
 .
 2 * FIXED BIN (15) INIT (DISP(M25)),
 2 M1,
 3 * BIT(8) INIT(FIXED(HASH("ABC",0,97),8)),
 3 * BIT(8) INIT(FIXED(3,8))
 3 * CHAR(3) INIT ("ABC")
 .
 .
 .
 2 M25,
 3 * BIT(8)
 3 * BIT(8)
 3 * CHAR(5) INIT (" TU") ;

which looks like a table of names.

The table contains a list of indexes to the names. Each name cell contains a hash code
value, the length of the name and the name

itself.
Instead of an index, a pointer may be used and the declaration will be

as follows:

 2 * PTR INIT (ADDR(M1)),

and so on.
Note that AUTOMATIC data may also be initialized. The code for the initialization is
provided by the compiler in the prologue of the block in

which the variable is declared.
For example if you want to initialize all the elements of an array

with an initial value you can write:

DCL A (25) FIXED BIN(15)
 INIT ((HBOUND (A,1)) -1) ;

The parameterized expression to compute the number of elements will be:

HBOUND (A,1) - LBOUND (A,1) + 1

Duplication factors may also be expressions.

Declarations

47 A2 36UL Rev03 9-5

If you have some performance constraints, you may find the following information
helpful.

• For large static objects, static initialization (with the INITIAL attribute) is more efficient
than dynamic initialization (with assignment statements).

• For structures, (with any storage class), global dynamic initialization is more efficient
than field-by-field dynamic initialization.

Example:

DCL 1 S,
 2 D FIXED DEC(12),
 2 R FLOAT BIN(53),
 2 C CHAR(8),
 2 P PTR;
DCL 1 S_INIT CST, /*use the CST attribute*/
 2 * FIXED DEC(12) INIT(-31.),
 2 * FLOAT BIN(53) INIT(3.0 E0),
 2 * CHAR(8) INIT ("ABCDEFGH"),
 2 * INIT (NULL());
 S = S_INIT;

is more efficient than:

 S.D = -31.;

GPL User's Guide

9-6 47 A2 36UL Rev03

9.4 USE OF THE NOSUBRG ATTRIBUTE

NOSUBRG cannot be overridden.

Example:

 DCL T(10) PTR;
 DCL V(10) NOSUBRG PTR;
 (SUBRG): T(i)=v(i); /*checking on T only*/

This code is very efficient if NOSUBRG is specified when the lower bound is 0 and the
length of an element is a power of two. In this case the index value is computed through
a shift instruction.

This attribute makes it possible to reference arrays with more than 64K elements, such
as an array which maps a large segment.

Example:

DCL T(0:1048575) PTR NOSUBRG BASED;

Declarations

47 A2 36UL Rev03 9-7

9.5 ATTRIBUTES THAT IMPROVE PERFORMANCE

9.5.1 Short

This attribute may be used for all strings whose length is adjustable but less than or
equal to 256. When moving 256 bytes for example, the gain will be about 20%.

Example:

 DCL C1 CHAR(I) BASED(P) SHORT;
 DCL C2 CHAR(J) AUTO SHORT;

NOTE: The programmer must ensure that the attribute is used consistently. In the
example, if I or J is greater than 256 an unpredictable result will occur.

9.5.2 Nomap

This attribute may be used for any data that cannot be modified indirectly.

Example:

 DCL L FIXED BIN(15) AUTO NOMAP;
 DCL BUFFER CHAR(L) BASED(P) SHORT;
 DCL P PTR NOMAP;
 BUFFER = REPEAT ("00" H, MEASURE (BUFFER)-1));

The code generated will be efficient in this case. But if NOMAP is not specified for L and
S, a temporary data item of length L will be created in the stack, initialized with "00"H and
then moved to BUFFER, because the modification of BUFFER may change either L or
P.

NOTE: The programmer must use this attribute consistently.

GPL User's Guide

9-8 47 A2 36UL Rev03

9.5.3 Input

This attribute indicates that an object will not be modified. It can increase the readability
of the program as it restricts the context modified in the procedure.

Note that the compiler checks that the object will actually not be modified.

It may also improve performance in some cases:

As explained below, literal arguments are passed to procedures or functions by making a
copy of the object in the stack, and passing this copy to the called procedure (to avoid
modification attempts). If the parameter is declared with the INPUT attribute, the
compiler knows that no update can be made. It will therefore pass the address of the
argument to the constant section instead of making a copy.

 DCL P1 ENTRY (CHAR(100));
 DCL P2 ENTRY (CHAR(100) INPUT);
 CALL P1 ((100)" ");
 CALL P2 ((100)" ");

The first call will need 100 bytes in the stack for the copy and a move instruction on 100
bytes. Both will be avoided in the second case.

NOTE: On the other hand, as an address in the constant section is passed, the
parameter must be forced to be the passed value in some contexts:

 DCL PEXT ENTRY (FIXED BIN(31) INPUT);
 CALL PEXT ((20));

9.5.4 Reducible

This attribute may apply for any function that does not depend on its context in any way.

Example:

 NEXT: PROC(P) REDUCIBLE RETURNS(PTR);
 DCL P PTR INPUT;
 DCL 1 S BASED(P) NOMAP,
 2 DATA
 2 NEXT PTR;
 RETURN (S.NEXT);
 END NEXT;
 IF NEXT(Q) = NULL()
 THEN Q = NEXT(Q); /*NEXT will be called only once*/

NOTE: The programmer is responsible for using this attribute consistently.

Declarations

47 A2 36UL Rev03 9-9

In the following cases, REDUCIBLE may not be used:

• A variable is modified that is local to the function and is not AUTOMATIC.

• A variable is referenced that is local to the function and is not AUTOMATIC.

• Data from outside is used (GET, READ, GETOD(),...).

9.5.5 Constant

As explained in section 8.1, access to CONSTANT data is more efficient than access to
STATIC data.

9.5.6 Byte

The effects of this attribute on parameters are discussed in the subsection about using
the GPL compiler.

GPL User's Guide

9-10 47 A2 36UL Rev03

47 A2 36UL Rev03 10-1

10. References

10.1 RESOLVING REFERENCES

Name hiding can occur if the same name is declared in several blocks which overlap.

Example:

 P: PROC;
 DCL A FIXED BIN(31);
 Q: PROC;
 DCL A PTR;
 END Q;
 END P;

NOTE: The name A, which refers to a FIXED BINARY object, cannot be accessed in
Q.

! The same name can also occur in several structures in the same block.

The reference is resolved by searching in the current block firstly for a name which is
wholly applicable, and secondly for a name which is partly applicable. If no name is
found, this algorithm is repeated for all the containing blocks. This process is described
in more detail in Section V of the GPL Reference Manual.

GPL User's Guide

10-2 47 A2 36UL Rev03

Example:

 P: PROC;
 DCL A FIXED BIN(31);
 DCL 1 T,
 2 A CHAR(1);
 Q: PROC;
 DCL 1 S,
 2 A PTR;
 A = NULL();
 END Q;
 END P;

The statement A = NULL(); is legal. Referring to "S.A" as "A" is an incomplete
qualification as "A" is applicable to "A FIXED BIN(31)". But as explained above, the
name A FIXED BIN(31) is hidden by the name A PTR in the structure S, although the
reference is only partly applicable.

Consequently "A FIXED BIN(31)" can no longer be accessed in Q. A can be accessed
from T through a complete reference T.A, which is not applicable to any data from Q.

References

47 A2 36UL Rev03 10-3

10.2 SHORT-CUT IN THE ADDRESSING PATH

Some objects have long addressing paths either because of their storage class (see
Section III) or because of the logic of the program (several levels of BASED data).

If such objects are frequently used, especially when referenced in loops, a good way to
improve performance is to create a short-cut in the addressing. This is done in the
following way:

Determine the longest sub-path in the program that remains constant. Then declare an
automatic pointer and assign it with the address equal to the short-cut.

Example:

 1 Q: PROC(P);
 2 DCL P PTR;
 3 DCL 1 S1 BASED (P) NOMAP,
 4 2 P1 PTR,
 5 2 A FIXED BIN(31);
 6 DCL 1 S2 BASED (P1) NOMAP,
 7 2 B FIXED BIN(31),
 8 2 P2 PTR,
 9 2 C CHAR(B) SHORT;
 10 DCL V FIXED BIN(31) BASED(P2) NOMAP;
 11 DCL I FIXED BIN(31);
 12 DO I = 1 TO B;
 13 IF SUBSTR (C,I,1) =" "
 14 THEN V = V +1;
 15 END;
 16 END Q;

This program can be improved by adding the declarations:

 DCL R0 PTR AUTO INIT(P1);
 DCL R1 PTR AUTO INIT(P2);

after line 10 and replacing the loop by:

 D0 I = 1 TO R0 ->B;
 IF SUBSTR (R0->B,I,1) =" "
 THEN R1->V = R1->V + 1;
 END;

GPL User's Guide

10-4 47 A2 36UL Rev03

The code generated is longer than of the initial program, but the execution speed is
increased. Assuming that 50% of characters in C are blanks, the behavior of the
program is given below.

init ial program

short-cut

t(cycles)

100

1 10

500

Figure 10-1. Program Behavior With Short-cuT

References

47 A2 36UL Rev03 10-5

10.3 PROCEDURES AND FUNCTIONS

The programmer declares when INTERNAL procedures and functions are RECURSIVE.
Procedures and functions that have EXTERNAL scope or that are assigned to variable
entries are automatically RECURSIVE.

A procedure with a single scalar output parameter may be changed to a function (with
the RETURNS attribute) to improve readability and in some cases, performance. This
may be done if the procedure can be declared with the REDUCIBLE attribute (see
Section VII) and/or if it returns a value with a data type which is not CHARACTER
STRING and FIXED DECIMAL. In this latter case the value is returned in a register or a
register pair.

It may also avoid the problem of an argument passed by value which cannot contain a
returned value (see below).

GPL User's Guide

10-6 47 A2 36UL Rev03

10.4 PARAMETERS AND ARGUMENTS

Matching between parameter and arguments is done by the CALL statement. According
to the argument, it is passed either by reference or by value. In the first case it can be
modified as the address of the variable is passed to the procedure. In the second case,
a temporary data structure is built which contains the value to be passed. The data
passed by the caller cannot therefore be updated.

In addition a descriptor called a DOPE is added to the CALL statement in certain cases.
This contains information about the argument, which can be passed by reference or
value.

10.4.1 The Argument Is Passed By Value

This is the case if at least one of the following conditions is fulfilled:

• The argument is a literal (see the paragraph 4.5.3., INPUT).

• The argument is an expression.

• The argument is a variable reference enclosed between parentheses.

• An implicit conversion is needed.

• The precision or length of the argument is not equal to that of the parameter.

• The argument is a pseudo-variable reference. In the example below, all the
arguments are passed by value.

 CALL P1 (3, " ");
 CALL P2 (A!!B, 3 + I, F(X), ADDR(Z));
 CALL P4 ((I));
 DCL P5 ENTRY (LOGBIN(32)BYTE), I FIXED BIN(31);
 CALL P5(I);
 DCL P6 ENTRY (FIXED BIN(15)), J FIXED BIN(31);
 CALL P6(J);
 CALL P7(UNSPEC(I));

Note that an argument that is passed by value cannot contain an output value. The
example below illustrates this.

 DCL CM CHAR(8) INIT(" "),
 CALL P(CH); /* CH contains blanks */
 P: PROC(C);
 DCL C CHAR(6);
 C = (6) "X"; /* The argument is modified
 if it is declared with the
 CHAR(6) attribute */
 END P;

References

47 A2 36UL Rev03 10-7

10.4.2 Descriptors

A descriptor is necessary in the following cases:

• If the parameter is a BIT STRING, or a LOGBIN structure or a structure which
contains only BIT or LOGBIN data, and which does not have the BYTE attribute. In
this case, the descriptor contains the byte address and the bit displacement.

• The parameter is declared with the CHAR(*) attribute. In this case, the descriptor
contains the address and the length of the string.

• The entry is declared with the OPTIONS(VARIABLE) attribute (see below).

10.4.3 Variable Number Of Arguments

The only case for which the number of arguments may be not equal to the number of
parameters, is when the entry is declared with the OPTIONS (VARIABLE) attribute.

NOTES: 1. This feature is allowed for EXTERNAL procedures only.

2. The ARG_COUNT builtin function supplies the number of
arguments. The declared parameters are accessed through their
names, the others through the ARG_PTR builtin function. For
non-declared parameters a descriptor is built which contains the
address and the length of the argument.

Example:

 DCL P ENTRY (PTR, CHAR(4) INPUT) OPTIONS(VARIABLE);
 CALL P (ADDR(X), "ACCD", 21, "ASCDEFGM");

In P the following statements can be found:

 P: PROC (Q,C) OPTIONS(VARIABLE);
 DCL Q PTR; DCL C CHAR(4) INPUT;
 DCL V3 FIXED BIN(31) BASED(P3) NOMAP;
 DCL V4 CHAR(L) BASED(P4) NOMAP;
 DCL L FIXED BIN(31);
 DCL (P3,P4) PTR;
 SELECT (ARG_COUNT());
 WHEN (0,1,2) CALL ERROR ("NOT ENOUGH ARGS");
 WHEN (3) CALL ARG_PTR(3,P3);
 WHEN (4) DO;
 CALL ARG_PTR(3,P3);
 CALL ARG_PTR(ARG_COUNT(), P4,L);
 END;
 OTHER CALL ERROR ("TOO MANY ARGS");
 END;

GPL User's Guide

10-8 47 A2 36UL Rev03

Note that if no argument with rank n is passed, the following builtin function:

CALL ARG_PTR (n, P, L);

returns NULL() in P and -1 in L.

10.4.4 Empty Arguments

If an argument is known to be meaningless in some contexts, it is possible to pass a so-
called empty argument as follows:

 CALL P (A,*,B);

The second parameter is empty.

In the called procedure, it is possible to know if an empty argument has been passed by
testing the address of the parameter to see if it is NULL().

Example:

 P: PROC (P1,P2,P3);
 DCL (P1,P2,P3) CHAR(10);
 IF ADDR(P2) = NULL()
 THEN CALL MESSAGE ("P2 WAS EMPTY");
 ...

Note that this may be a way to allow an internal procedure to have a variable number of
arguments.

The CALL statements can be:

 CALL P(A,*,*);
 CALL P(A,B,*);
 CALL P(A,B,C);

and the number of argument actually passed can be counted in P by testing the address
of all parameters to see if they are NULL().

Another way to implement such a feature is the use of secondary entry points.

 MAIN: PROC(P1,P2);

 E : PROC(P1);

47 A2 36UL Rev03 11-1

11. Expressions

11.1 GENERAL REMARKS

Expressions are evaluated in the order which corresponds to the precedence of the
operators, after any implicit conversions of the operands have been performed if
necessary. The order of evaluation is given in the GPL Reference Manual (Section VI). It
may be altered by using brackets Constant expressions or sub-expressions are
evaluated at compile time. Common sub-expressions may be evaluated only once if the
compiler knows that none of the operands is modified.

11.2 USING BRACKETS

! The use of brackets is advised to enhance readability, particularly in expressions
involving comparison operators.

Remember that logical operators (except monodic "not") have lower precedence than
comparison operators.

For example, the expression

 IF A=B ! C & D + E

may be easier to read if it is written:

 IF (A = B) ! (C & (D + E)

In this second example, to test if A is equal to the "and" between B and C, the statement
must be written as follows:

 IF A = (B & C) because A = B & C means (A = B) & C.

GPL User's Guide

11-2 47 A2 36UL Rev03

11.3 PRECISION AND LENGTH

The precision or length of an expression is managed by the compiler according to the
following rules:

• Comparison operators always return a BIT(1) result.

• LOGBIN results have the precision 32.

• FLOAT BINARY results have a precision equal to MAX (p1, p2).

• FIXED results (BIN or DECIMAL) have a precision equal to 1 + MAX (p1, p2). This is
limited to 31 for + and - dyadic operators, and p1 + p2 is limited to 31 for + and /.

• -String results have a length equal to MAX (l1,l2).

If the precision of an expression has an important influence on the result (for example,
the builtin function CHAR), it is strongly recommended that the precision be managed
using the appropriate builtin function.

Example:

CHAR(exp)

may be written as:

CHAR(FIXED (exp,n))

Note that from these rules, it follows that if an extended FLOAT BINARY value occurs in
an expression, the result is also an extended FLOAT BINARY value. This may decrease
performance.

! For string operators the shortest string is extended to the right with "0"B if it is a BIT
string, or with " " if it is a CHARACTER string, so that the two operands are the same
length. This may lead to unpredictable results in certain cases, as in the following
example:

IF (X = Y) & B8 THEN CALL P;

In this case, B8 as BIT(8) X=Y is evaluated first returning a BIT(1) value (see above),
that is extended to the right with 7 zeros. The AND with B8 are then performed. The
statement is therefore equivalent to:

IF (X=Y) & SUBSTR (B8,1,1) THEN CALL P;

In other words the 7 rightmost bits of B8 will have no influence on the condition.

Expressions

47 A2 36UL Rev03 11-3

11.4 CONVERSIONS

The conversions BIT to FIXED or LOGICAL BINARY, LOGICAL to FIXED BINARY and
vice versa are implicit in GPL.

When converting from BIT to FIXED BINARY, the BIT STRING is considered as a
positive number with a precision equal to the length of the BIT STRING. If the length of
the BIT STRING is greater than 31, any bits to the left of the 31 rightmost bits are
ignored.

For example, if you have:

DCL (I, L) BIT(8), Z CHAR(50), T(10) PTR ;

the following expressions are correct:

SUBSTR (Z, I, L)
T (I)

The code generated is not altered by the conversion. However, an observation message
is output by the compiler.

When converting from BIT to LOGICAL BINARY, the BIT STRING of length N is
interpreted as a LOGICAL BINARY data item with precision 32. Any bits to the left of the
32 rightmost bits are ignored. If N is less than 32 the 32-N leftmost bits of the LOGICAL
BINARY data item are set to zero.

When converting from FIXED BINARY to LOGICAL BINARY, the 32 bits that represent
the signed number are considered as a LOGICAL BINARY data item of precision 32.

Example:

DCL X LOGICAL BINARY(8);
X = -1;

The signed number -1 is considered as 32 bits all set to 1. The eight right-most bits are
stored in X. Thus the value of the variable X is 255.

! Be careful when converting from FIXED BINARY to BIT as the absolute value of the
number is converted. Writing X = 1; when X is a BIT(8) variable, generates code that
may seem strange. The reason for this is that 1 is a decimal representation of a FIXED
BINARY variable with precision 1 (one decimal digit). A conversion to the binary base is
therefore necessary first. The precision of the result is given by the formula:

1 + CEIL (P* 3.32),

In this case, the precision is 5. Then a conversion from FIXED BINARY(5) to BIT(8) is
performed which leads to the result "00001000"B.

GPL User's Guide

11-4 47 A2 36UL Rev03

To be sure of the result, write:

X = FIXED(1, 8); or X = 00000001B;

When converting from LOGICAL BINARY to FIXED BINARY, the unsigned number that
is the value of the LOGICAL BINARY data item of precision P is considered as a signed
positive number with a precision equal to MIN(P,31).

If the precision of the LOGICAL BINARY is 32 the leftmost bit is ignored.

Example:

DCL X FIXED BINARY(31);
DCL Y LOGBIN(32);
 X=-1;
 Y=X; /* Y = 2**32-1 */
 X=Y; /* X = 2**31-1 */

! For performing conversions of the types described above, you are strongly
recommended to use the builtin functions FIXED, LOGBIN and BIT. These functions are
described in Section VIII of the GPL Reference Manual.

For the conversion FIXED BINARY to CHAR, GPL provides two builtin functions,
BINARY and CHAR.

These are also described in Section VIII of the GPL Reference Manual.

Remember that no implicit conversion from or to FIXED DECIMAL or FLOAT BINARY is
provided.

Expressions

47 A2 36UL Rev03 11-5

11.5 CONDITIONAL EXPRESSIONS

expressionconditional
! Note that FIXED BINARY and LOGBIN data is not boolean data but arithmetic data,
although such data is allowed to be included in condition expressions.

Therefore the following statements are allowed:

IF F THEN ...
or
IF L THEN ...

where F is FIXED BINARY and L is LOGBIN. However, they produce inefficient code, as
a conversion to BIT is needed.

If L is a LOGBIN(1), a good way to test it is to write:

IF L = 0 THEN ...
or
IF L = 1 THEN ...

But if B is a BIT(1) it is more readable to write:

IF B THEN ...
or
IF ^B THEN ...

If the condition is multiple, some parts of the expression may not be evaluated in some
cases.

In the following example:

IF (P^=NULL()) & (P->X = 0) THEN ...

! The use of such a construction may be dangerous because the short-cut in resolving
the expression is bound to the context. To avoid such a dependence on the evaluation,
expand the statement as follows:

IF P^=NULL() THEN IF P->X = 0 THEN ...

GPL User's Guide

11-6 47 A2 36UL Rev03

11.6 REAL COMPARISONS

! Because of rounding or truncation errors that may occur in floating point
computations, the programmer is strongly advised against direct comparison. It is better
to use a "tolerance range".

Example:

 DO UNTIL (X=X0);
 ...
 END;

can lead to an infinite loop because X may never exactly reach the value X0. The
following example is much safer:

DO UNTIL (ABS(X-XO)<=EPS); /* EPS is a %REPLACE
 e.g.1E-5 */
 ...
 END;

47 A2 36UL Rev03 12-1

12. Statements

The GPL statements are described in Section IX of the GPL Reference Manual.
However, further information is given in this section on how the use of certain
statements, such as DO, SELECT, LEAVE and IF can aid structured programming.

12.1 ASSIGNMENT

When making an equivalence between a variable reference and an expression, such as
in the statement:

V = exp;

where V is a variable reference and "exp" is an expression, an implicit conversion may
be needed according to the data types of V and exp. See Section 11 for further details.

The structure assignment is allowed if the two structures have the same shape, meaning
that they have the same hierarchy and their elements are of the same type. If so, the
assignment is performed through a single MOVE instruction.

Arrays may also be assigned if they are connected.

All the elements of an array may be set to the same value with a statement of the form:

 T = exp;

This means that T(i) is assigned with "exp", for i in the range LBOUND (T,1) to HBOUND
(T,1). T need not be connected.

GPL User's Guide

12-2 47 A2 36UL Rev03

12.2 BEGIN

The variables declared in a BEGIN block are not visible outside the block. Hence a
BEGIN block may be used to restrict the scope of certain objects, especially in the cases
explained below.

As BEGIN blocks may be viewed as procedures generated "on-line", the data declared in
the block is that which is necessary to perform the action corresponding to the
procedure. Note that objects declared in a DO group can be viewed from the outside.

The use of a BEGIN block can restrict the scope of large or variable automatic data
items allocated in the variable area, see Section VIII. This allows you to allocate such
resources at the very point you need them.

Example:

 BEGIN;
 DCL WORK CHAR(I);
 ...
 END;

Like DO and SELECT groups, a BEGIN block may be used for packaging purposes via
the WITHIN attribute.

Statements

47 A2 36UL Rev03 12-3

12.3 DO/LEAVE

This is a very powerful statement for repetitive processing. Some brief examples are
given here.

• To get an element from a simple linked list, use the following:

 DCL 1 CELL BASED,
 2 DATA CHAR(12), /* for instance...*/
 2 NEXT PTR;
 DO P = HEAD_PTR REPEAT (P->CELL.NEXT)
 WHILE (P^=NULL());
 ...
 END;

• The way to get the next element is more elaborate. A function may be used:

 DO P = HEAD_PTR REPEAT (GET_NEXT(P))
 WHILE (P^=NULL());
 ...
 END;
 GET_NEXT: PROC (P) RETURNS (PTR) REDUCIBLE;
 DCL P PTR INPUT;
 ...
 END GET_NEXT;

The WHILE option enables you to exit from the beginning of the loop.

The UNTIL option enables you to exit from the end of the loop.

The DO FOREVER option with the LEAVE statement enable you to exit from the middle
of the loop.

UNTIL loops are executed at least once. WHILE and TO loops may never be executed
at all.

! Be careful about the exit condition, particularly in the case of TO loops and overflows.
As explained in the GPL Reference Manual (from which the notation is taken), the exit
condition may be expressed by the following if the BY value is negative:

 IF (v > e2) THEN LEAVE;
if the BY value is positive or null, or
 IF (v < e2) THEN LEAVE;

However, the statement:

v = v + e3;

may cause an overflow and the following conditions will not be met:

v > e2 (or v < e2)

GPL User's Guide

12-4 47 A2 36UL Rev03

Example:

 DO LGB8 = 1 TO 255 ... /*LGB8 is a LOGBIN(8)*/
 DO FB15 = 1 TO 32767 ... /*FB15 is a FIXED BIN(15)*/

The loops above will never end. To ensure termination, the best way in this case is to
use the following:

DO LGB8=1 REPEAT (LB8 + 1) UNTIL (LGB8 = 255);

! UNTIL or WHILE loops on real values must be used cautiously because of truncation
errors. See the subsection 11.5, "CONDITIONAL EXPRESSIONS".

A LEAVE <label>; statement helps to make the code and the group nesting level less
dependent on each other. For example, if the following piece of code:

 DO FOREVER;
 ...
 LEAVE;
 ...
 END;

is changed to:

 DO FOREVER;
 ...
 DO I = 1 to 10;
 ...
 LEAVE;
 END;
 ...
 END;

It is not possible to leave the DO FOREVER loop.

Statements

47 A2 36UL Rev03 12-5

12.4 PROCEDURE AND ENTRY

A list of aliases to an entry point can be specified by:

 ALIAS1: ALIAS2: MAIN: PROC;
 ...
 END;

ALIAS1 and ALIAS2 are entry names that are aliases of the procedure MAIN. To label
an empty statement located just before a PROCEDURE or ENTRY statement, a null
statement is necessary.

Example:

 L:;
 P: PROC;
 GOTO L;
 END P;

If the semicolon after L: is omitted, the statement GOTO L will be illegal since L will
denote a procedure.

Secondary entry points can be defined with the ENTRY statement. The parameter list
must be a sub-list of the parameter list given in the PROCEDURE statement. If a
procedure is activated through a secondary entry point and if a parameter which does
not belong to this entry point is referenced, the result is unpredictable.

GPL User's Guide

12-6 47 A2 36UL Rev03

12.5 SELECT

There are 4 cases of generation for a SELECT statement:

1. In the first case, the SELECT statement is expanded to an IF statement. If it exists,
the expression in the SELECT clause is evaluated only once.

2. In the second case, the compiler generates an array of labels in order to select the
right case.

4 bytes

S E L E C T O R V A L U E

ARRAY OF LABE

3. In the third case, an auxiliary array is constructed by the compiler in order to save
space.

d

d

AUXIL IARY
 ARRAY

4 bytes

ARRAY OF LABEL

S E L E C T O R V A L U E

1 byte

4. The fourth case is identical to Case 3 except that the auxiliary array item is two
bytes in length.

Statements

47 A2 36UL Rev03 12-7

The following definitions help explain the generation algorithm.

• Let S be a boolean the meaning of which is: "There is an expression in the SELECT
clause".

• Let E be a boolean the meaning of which is: "There is an OTHERWISE clause in the
SELECT statement".

• Let C be a boolean the meaning of which is: "The WHEN clauses contain only literal
integers".

• Let W be the number of WHEN clauses.

• Let N be the total number of expressions inside the WHEN clauses.

• Let MAX be the greatest value of the expressions inside the WHEN clauses.

• Let MIN be the smallest value of the expressions inside the WHEN clauses.

• Let R be the range, i.e. R = MAX-MIN +1

• Let X be the number of bytes for an auxiliary array entry.

Note that MAX, MIN and R are significant only if C is true.

The algorithm is as follows:

 IF (N > 6 & C & S)
 THEN DO;
 IF N + 1 < 64
 THEN X = 1;
 ELSE X = 2;
 IF (E|(R * X) + 4 *(W + 1) < 4 * R)
 THEN IF X = 1
 THEN Case 3
 ELSE Case 4
 ELSE Case 2
 END;
 ELSE Case 1

The cases require the following storage:

Case 2: 4 * (R + 1)

Case 3: R + 4 * (W + 1)

Case 4: 2 * R + 4 * (W + 1)

For Case 1, the code may be optimized by first specifying the WHEN cases that will
occur most frequently, because all the values are tested in the order given in the source
text

GPL User's Guide

12-8 47 A2 36UL Rev03

For example, to test the return code from a primitive, you can put the case "DONE" first:

 SELECT;
 WHEN ($H_TESTRC DONE;);
 WHEN ($H_TESTRC SFNUNKN;) DO;
 ...
 END;
 WHEN ($H_TESTRC EFNUNKN;) DO;
 ...
 END;
 OTHER DO;
 ...
 END;
 END;

Prefixing the SELECT group with NOSUBRG avoids using a "compute subscript"
instruction, which is expensive, to obtain the branch table entry if Cases 2, 3 or 4 are
used.

Statements

47 A2 36UL Rev03 12-9

12.6 PACKAGING OF GPL PROGRAMS

This is the way in which pieces of data and code are put together. Note that ring 2 is not
allowed with GCOS7-V3B. It will be changed to ring 3 at compilation or linkage time if
CODE=OBJCD is specified.

12.6.1 Data

Only data with the STATIC attribute may be pooled together using the WITHIN attribute
and given specific attributes.

In order to be independent of the LINKER flow, EXTERNAL data must always be
allocated in the same segment. (Note that the default is the blank segment).

12.6.2 Code

If the main procedure has no WITHIN attribute, the code and the linkage section are
joined together. To give specific attributes, specify a WITHIN attribute as follows:

P : PROC WITHIN (RN(3, 3, 3, 1, 1)) ; ...

Now the segment will have the specified attributes.

GPL User's Guide

12-10 47 A2 36UL Rev03

47 A2 36UL Rev03 13-1

13. Builtin Functions

13.1 PARAMETERIZATION

The independence of code and data may be achieved using certain builtin functions,
namely:

• HBOUND and LBOUND to obtain the bounds of arrays.

• MEASURE and LENGTH to obtain the length of an object. (LENGTH applies only to
strings).

• DISP and BITDISP to obtain the displacement of an object in a structure with respect
to the level-1 item.

Example:

 DCL T(-3:5) PTR;
 DO I = LBOUND (T,1) TO HBOUND (T,1);
 ...
 END;

There is no change if the values of the bounds are modified.

13.2 HANDLING VARIABLE LENGTH STRINGS

As explained in Section IX, the use of the NOMAP and SHORT attributes is strongly
advised to improve performance. Generally speaking, the use of builtin functions on
variable length strings is as efficient as the use of basic equivalent statements.

However, care must be taken to prevent the program from handling zero length strings.

GPL User's Guide

13-2 47 A2 36UL Rev03

13.3 POINTER HANDLING

Pointers must be handled with their specific builtin functions, namely:

• POINTER (p,x) to obtain the xth byte in the segment to which p points.

• ADDREL (p,x) to obtain the xth byte in the segment after the address to which p
points.

• ALLOC (p,s) to obtain the next address in the segment after the one pointed to by p,
at which the structure s can be allocated.

• REL (p) to obtain the displacement in the segment corresponding to the address
pointed to by p.

13.4 CONVERSIONS

As explained previously, the use of specific builtin functions is recommended to perform
conversions, although some conversions are implicit in the language.

Remember that no implicit conversion from or to FIXED DECIMAL or FLOAT BINARY
data is allowed.

Note that conversion builtin functions change the data type but not the value, whereas
the UNSPEC builtin function changes the value but preserves the internal
representation.

13.5 MOVING STRINGS

Because an overlap can occur when moving strings, it is a good idea to use the builtin
function MOVERTL, especially when shifting a string to the right.

Example:

DCL S CHAR(100);
 SUBSTR (S,1,1+MEASURE(S)-I)=SUBSTR (S,I);

The string SUBSTR is shifted I places to the left.

CALL MOVERTL (SUBSTR (S,I),SUBSTR (S,1,1+MEASURE(S)-I));

The string SUBSTR is shifted I places to the right.

47 A2 36UL Rev03 14-1

14. Optimizing with GPL

14.1 INTRODUCTION

14.1.1 The Goals of the Optimizer

The GPL language, like other high-level programming languages (for example C,
PASCAL, and FORTRAN 77) allows programmers to compose algorithms using
concepts that are more abstract than those of the assembly language, thus improving
productivity and maintenance. Because of this, the program code generated by a high-
level language can be less effective than code written in assembly language. In effect, a
high level language does not allow the programmer to improve object code by
composing algorithms that are at the level of the machine.

The example below shows how an indexed table address, compiled at the assembler
level, develops some expressions that a programmer can not.

DCL (A (0:100), B (0:100)) FIXED BIN (31);
DCL (I, J) FIXED BIN (15);
 DO I = 0 TO 100;
 DO J = 1 TO 100;
 A (I + J) = B (J + I);
 END;
 END;

The compiler evaluates addresses that translate the assignment statement of the
innermost loop. Those addresses are as follows:

ADDRESS [A (I+J)] = ADDRESS [A] + 4 * (I + J)
ADDRESS [B (J+I)] = ADDRESS [B] + 4 * (I + J)

The programmer can not avoid the redundant expressions that the compiler creates, and
these redundancies can be extremely taxing on the efficiency of the loop.

The main goal of the optimizer is not to compensate for the eventual weakness of a
program. Rather, it is to reduce the inefficiencies of the generated code that are inherent
in high-level programming languages.

GPL User's Guide

14-2 47 A2 36UL Rev03

14.1.2 The Local Optimizer

Before the 80.0 version, the GPL compiler had only two optimization levels, the
statement optimization level and the extended linear sequence optimization level. The
statement level is automatically activated when using DEBUG option.

In the first level, the scope of the optimization is limited to the algorithm expressions
within a source instruction. In the second, the scope of the optimization is extended to a
set of instructions, called a linear sequence of a basic block, situated between two label
definitions: a label being explicit in the source text, or a label being implicit and
generated by the compiler (for example, a conditional instruction, or a loop).

The two optimization levels perform the following principal functions:

• Constant folding.

• Copy propagation (or assign folding).

• Deletion of local redundant expressions.

• Deletion of useless code.

14.1.3 The Global Optimizer

The global optimizer, available in GPL 80.0, extends the optimization reach for a whole
procedure. The global optimizer improves local optimization in the following areas:

1. Constant folding and copy propagation.

2. Deletion of redundant global expressions.

3. Deletion of useless or inaccessible code.

A good understanding of the program graph and the flood of data that it handles allows
the global optimizer to create an elaborate optimization. This is due to the manipulations
that the optimization functions perform on an internal representation of the source code.
These manipulations include deletion, insertion, and instruction replacement. These
global optimization functions are as follows:

4. Anticipation and temporization.

5. Deleting partially redundant expressions.

6. Removing invariant expressions in loops.

7. Strength reduction of loops and processing loop control variables.

Optimizing with GPL

47 A2 36UL Rev03 14-3

In addition, the global optimizer has two other functions characterized by an expansion
effect on the generated code. These are as follows:

8. Loop unrolling.

9. Procedure merging (also called in-line insertion).

NOTES: 1. The optimization functions perform at the procedure level. There
are no inter-procedural optimizations.

2. There are two types of local or global optimizing improvements:

- Increased speed in program execution.

- Decreased volume of code generation, except in optimization
cases of loop unrolling (8) and procedure merging (9).

Restrictions in Optimizing

The optimizer follows these rules:

Efficiency Rule The optimizing functions work only if the application shows
an improvement in storage or time efficiency in all possible
execution cases of the program.

Coherence Rule An optimization function must never affect the semantics of
a program. If a program executes correctly and conforms
to the definition of a language without optimization, then
optimization must not cause the program to abort.

Compromised Time and
Storage Rule

The optimizer gives greater importance to the optimization
functions that contribute a gain in execution time than to
those that contribute to the reduction of generated volume
of source code.

GPL User's Guide

14-4 47 A2 36UL Rev03

14.1.4 Optimization Levels

The GPL compiler has five optimization levels. Each level is guided by one of the
OPTIMIZE parameter levels, as follows:

OPTIMIZE=0 No optimization

OPTIMIZE=1 Local optimization, limited to the source statement (the
source instruction).

OPTIMIZE=2 Local optimization, limited to an extended linear sequence.
This is the default level.

OPTIMIZE=3 Global optimization avoiding code expansion (loop
unrolling, procedure merging).

OPTIMIZE=4 Global optimization with possible code expansion.

Only the OPTIMIZE=1 level is compatible with the debugging option. This is the default
level when DEBUG is specified.

Optimizing with GPL

47 A2 36UL Rev03 14-5

14.2 GLOBAL OPTIMIZER FUNCTIONS

This section describes the different functions of the global optimizer and gives an
example of each in the GPL source language. The functions are presented independent
of each other. In the examples, you can concentrate on one optimization function at a
time, without considering the possible effects from other functions. When you actually
use the global and local optimizer, the functions are linked together and have a
cumulative effect.

The global optimizer works on the internal image of the source code that is closest to the
machine code. It is possible for the optimizer to have a greater effect than shown here in
the following examples. For example, the address expression is not developed when
indexing an array.

14.2.1 Constant Folding and Copy Propagation

When the optimizer has the operand values of a sub-expression, it can calculate directly
the resulting values. By repeating this process, the propagation reaches all the program
expression, as long as those expressions are valid.

A = 1;
IF VALID THEN
 X = A + 3;
ELSE
 X = A + 1;

This gives the following, after optimization:

A = 1;
IF VALID THEN
 X = 4;
ELSE
 X = 2;

Constant folding and coy propagation use the basic elementary operations (arithmetic,
logical, and comparative) in their scope of applications. However, the compiler does not
evaluate a constant expression during compilation if the expression causes an
exception. An overflow or an illegal operation are examples of exceptions.

GPL User's Guide

14-6 47 A2 36UL Rev03

14.2.2 Deleting Globally Redundant Expressions

An expression, at a particular point in a program, is globally redundant if it was previously
evaluated with the same values, regardless of how the program is running.

In the example below, the expression "A + B" is globally redundant:

X = (blank);
IF A > B THEN
 X = 10;
ELSE
 X = 20;
Y = A + B + D;

This optimization function deletes all the redundant expressions in the program. It does
this by grouping together all common sub-expressions. After optimization, the above
example gives the following:

T = A + B;
X = T + C;
IF A > B THEN
 X = 10;
ELSE
 X = 20;
Y = T + D

The optimization function interprets the value of the intermediary variable, T, as the value
of the already-memorized "A + B" sub-expression. The compiler keeps the sub-
expression value in a machine register.

NOTE: This function is legal only if the value of the expression and variable are the
same. Consequently, if one of the variables X, A, or B is BASED, it must have
the NOMAP attribute to allow the optimization. Optimization would also not be
possible, for example, in the following context:

S: PROC (X, A, B);

This is because S procedure could be called by a statement, resulting in the
following:

CALL S (A, A, A);

Optimizing with GPL

47 A2 36UL Rev03 14-7

14.2.3 Deleting Useless or Inaccessible Code

When using the optimization functions, some program code can become useless or
inaccessible. This often occurs after constant folding and copy propagation. This is
shown in the following example.

BEGIN;
DCL (A, B) FIXED BIN (15);
 A = 1;
 B = A - 1;
 IF A < B THEN
 C = B;
 ELSE
 C = A;
 C = C * 2;
END;

After constant folding and copy propagation, this gives the following:

BEGIN;
DCL (A, B) FIXED BIN (15);
 A = 1;
 B = 0;
 IF 1 < 0 THEN
 C = 0;
 ELSE
 C = 1;
 C = C * 2;
END;

Deleting Useless Code

When the optimization functions evaluate the above example, it creates some useless
code, with A and B declared in the current block. Deleting the useless code results in the
following:

BEGIN;
DCL (A, B) FIXED BIN (15);
 IF 1 < 0 THEN
 C = 0;
 ELSE
 C = 1;
 C = C * 2;
END;

Deleting Inaccessible Code

Constant folding and copy propagation can also reveal some inaccessible code. The
previous example, which shows this, is reduced to the following:

BEGIN;
DCL (A, B) FB15;
 C = 1;
 C = C * 2;
END;

GPL User's Guide

14-8 47 A2 36UL Rev03

14.2.4 Anticipation and Temporization

Two of the optimization functions reduce the object code, but do not shorten program
execution time. These functions either bring forward or set back expressions that use
the IF-THEN-ELSE instruction in the program. They move the expressions that are
within the THEN and ELSE outside, towards the top or the bottom. In this way, the
expressions are evaluated only once. The optimization function that brings an
expression forward is called anticipation. The function that sets an expression back is
called temporization.

The following is an example of anticipation:

IF U > V THEN DO;
 X = A + B;
 A = U;
END;
ELSE DO;
 X = A + B;
 B = V;
END;

This yields the following after optimization:

X = A + B;
IF U > V THEN;
 A = U;
ELSE
 B = V;

The following is an example of temporization:

IF U > V THEN DO;
 A = U;
 X = A + B;
END;
ELSE DO;
 B = V;
 X = A + B;
END;

This yields the following after optimization:

IF U > V THEN
 A = U;
ELSE
 B = V;
X = A + B;

Optimizing with GPL

47 A2 36UL Rev03 14-9

14.2.5 Deleting Partially Redundant Expressions

An expression, at a particular point in a program, is partially redundant if the expression
has been already evaluated with the same value in another point in the program. Partial
redundancy is weaker than global redundancy.

This optimization function eliminates partial redundancies in the program, without
interfering with the coherence rule. Partial redundancy is shown in the example below:

IF X = 1 THEN
 X = A + B;
ELSE
 A = 1;
X = A + B;

In the example above, the assignment of X = A + B is partially redundant. This is
because there is one path that executes it twice, uselessly. In contrast, this assignment
is not globally redundant because there is one path where there is no redundancy.

It is possible to eliminate the partial redundancy X = A + B by moving it from the IF
instruction into the ELSE instruction, as follows:

IF X = 1 THEN
 X = A + B;
ELSE DO;
 A = 1;
 X = A + B;
END;

14.2.6 Removing Loop Invariants

An expression located in the body of a loop is invariant when its evaluation remains
constant throughout the execution of the loop. In the following examples, the
expressions A + B, and SQRT (Y) are loop invariants.

Example 1:

DO I = 1 TO 10;
 X (I) = A + B;
END;

Example 2:

DO I = 1 TO J;
 X (I) = A + B;
END;

GPL User's Guide

14-10 47 A2 36UL Rev03

Example 3:

DO I = 1 TO 10;
 IF Y > 0 THEN
 X (I) = SQRT (Y);
END;

To remove a loop invariant, the optimization function evaluates all the invariant
expressions outside of the loop. This transformation is possible only if does not involve
an expression evaluated outside the loop, when there was a path in which that
expression was not evaluated before. When the loop invariants are removed from the
examples above, the results are as follows.

Example 1, from above, after optimization:

T = A + B;
DO I = 1 TO 10;
 X (I) = T;
END;

Moving the loop invariant , "A + B", to the top, as in example 1, is successful because
there is at least one whole iteration in this loop (in this case, the number of iterations is
10).

In the second example, the lower bound, 1, is known, but the higher bound, J, is not
known. The optimization function can rearrange the code without changing the
semantics. This simplification allows the optimization function to remove the loop
invariant.

Example 2, from above, after rearrangement:

IF J >= 1 THEN
 DO I = 1 TO J;
 X (I) = A + B;
END;

Example 2, after optimization:

IF J >= 1 THEN DO;
 T = A + B;
 DO I = 1 TO J;
 X (I) = T;
 END;
END;

It is not possible to remove the loop invariant, SQRT (Y), from the third example. This is
because no rearrangement can be made that does not interfere with the coherence rule.

Optimizing with GPL

47 A2 36UL Rev03 14-11

14.2.7 Strength Reduction and Processing of Loop Control
Variables

14.2.7.1 Strength Reduction

The strength reduction optimization function replaces, in loops, an expensive operation
with one that is equivalent, but more economic. The result of the operation remains the
same, but requires less power to accomplish. This optimization function operates on
arithmetic multiplication in the following two steps:

Step 1:

The detection of all the variables in the loop, progressing step by step through each
iteration. Let X be a variable and K be a loop invariant, progressing as follows:

X = X + K

Step 2:

The replacement of multiplications of the following type:

X * C

Where C is a loop invariant by an intermediary variable, T. Variable T is correctly
initialized and modified at the end of the loop by the following assignment:

T = T + K * C

where the product of K * C is evaluated at compile time.

An example of this optimization function is:

DO I = 1 TO 10 BY 2;
 X = X + 4 * I;
END;

After optimization:

T = -4
DO I = 1 TO 10 BY 2;
 T = T + 8;
 X = X + T;
END;

GPL User's Guide

14-12 47 A2 36UL Rev03

14.2.7.2 Processing of Loop Control Variables

When in a loop, the compiler can know the number of iterations, and the loop control test
is substituted by an equivalent one. The equivalent test uses one of the intermediary
variables that the strength reduction function created.

The example from above (after the strength reduction) can be reformulated to make the
loop exit test more specific. This is as follows:

 T = -4;
 I = 1;
LAB:
 T = T + 8;
 X = X + T;
 I = I + 2;
 IF I <= 10 THEN GOTO LAB;

In this way, the substitute control test, which is possible in this example, leads to the
following:

 T = -4;
 I = 1;
LAB:
 T = T + 8;
 X = X + T;
 I = I + 2;
 IF T ^= 36 THEN GOTO LAB;

This manipulation deletes the induction variable, I (when it is no longer working in the
loop) only by adding the assignment of the last value of I at the end of the loop. The
example above shows this optimization function as follows:

 T = -4;
 I = 11;
LAB:
 T = T + 8;
 X = X + T;
 IF T ^= 36 THEN GOTO LAB;

Optimizing with GPL

47 A2 36UL Rev03 14-13

14.2.8 Loop Unrolling

Loop unrolling consists of artificially reducing the number of iterations in a loop and
duplicating the body of the loop a certain number of times. The number of duplications
depends on the size of the loop and the number of its iterations. This optimization
applies only if the number of iterations is known at compile time.

For small size loops, the expansion is total. A small loop is one in which the number of
iterations does not exceed 20. In other loops, the expansion is partial, provided that the
ratio of expansion is not great. The loop unrolling optimization function limits itself to only
the lowest level loops, as shown in the following example.

DO I=1 TO 25;
 K = 25 * (I - 1);
 DO J = 1 TO 25;
 X (K + J) = J;
 END;
END;

As the number of iterations of this loop is greater than 20, this is not a small loop. After
partial expansion, this gives the following:

DO I = 1 TO 25;
 K = 25 * (I - 1);
 DO J = 1 TO 5;
 X (K + J) = J;
 J = J + 1;
 X (K + J) = J;
 J = J + 1;
 X (K + J) = J;
 J = J + 1;
 X (K + J) = J;
 J = J + 1;
 X (K + J) = J;
 J = J + 1;
 END;
END;

This program can be optimized using the algorithms described above.

GPL User's Guide

14-14 47 A2 36UL Rev03

14.2.9 Procedure Merging

The optimization function of procedure merging (in-line insertion) works by substituting
all the references to procedures and functions with their corresponding code. This
speeds the program execution time.

Generally speaking, either all the calls of a procedure are merged, or none of them are.
The decision of when to merge procedures is based upon the following criteria.

Intrinsic Criteria

• The procedure is a non-recursive procedure (directly or indirectly)

• The procedure does not contain the OUTLINE attribute.

• All the internal procedures can be merged.

• If the procedure contains a label that is branched to from outside (a non-local GOTO),
it must be called only one time.

• Each formal parameter corresponds to an effective parameter (no empty argument in
CALL statement).

Criteria Resulting From Implementation

• The procedure size is reasonable after the procedure merging.

• The procedure does not have an aggregate-type parameter, such as an array or
structure.

• The procedure does not have a fixed-decimal parameter.

• The procedure does not have a parameter redefined by a variable declared with the
DEFINED attribute.

• If containing SELECT instructions or some aggregate variables, the procedure can be
called one time at most.

• The procedure is not a function argument of another procedure.

NOTE: The criteria requiring implementation are susceptible to change from one
version to another. Therefore, the programmer can not use them to control
procedure merging.

Even when the INLINE attribute is used, if at least one of the above criteria is
not satisfied, the procedure merging is invalidated, and an observe message is
issued.

Optimizing with GPL

47 A2 36UL Rev03 14-15

14.3 USING THE GLOBAL OPTIMIZER

The quality of the code generated with the global optimization functions permits the
compiled programs to execute more rapidly. However, because the global optimizer
slows the program compilation, it is best to use it only in the final phase of program
development.

For the initial testing, it is recommended to use the default optimization level
(OPTIMIZE=2). This works well for local optimization running on a linear extended
sequence. If the debugging option is running, then only the first optimization level
(OPTIMIZE=1) can be used. This level is that running on a source statement.

The global optimizer functions work independently with only one procedure at a time.
There are no inter-procedural optimization functions. The procedure calls that are not
inserted on line limit the effects.

The use of a non-local goto has an equally limiting effect on the optimizations. It is not
advisable to write procedures that are too large, which misuse registered variable
declarations.

NOMAP and REDUCIBLE attributes should be used as often as possible because, by
default, the variables are MAPPED and the procedures are IRREDUCIBLE. This limits
considerably the effect of global optimization.

GPL User's Guide

14-16 47 A2 36UL Rev03

47 A2 36UL Rev03 A-1

A. Compiler Limits

<=6768 Number of different indentifiers (median length=16).

128 Maximum number of ISNs.

20 Maximum number of nested blocks.

20 Maximum number of nested levels in a structure.

10 Maximum number of nested iterative do_groups.

20 Minimum number of nested select_groups.

15 Maximum number of declared parameters or arguments.

4096 Kbytes The size which aggregate can not exceed.

<=65535 bytes Size of an array element.

<=32767 bytes Size of a parameter.

20 Maximum number of arrays of labels per block.

32767 Number of lines of a program.

<= 255 Length of a source line.

Composite operators as >, <, ... cannot be split on two source lines.

An arithmetic constant can not be split on two or more source lines.

A CHARACTER STRING constant can not be greater than 256 bytes in the code but can
be up to 64K byte long in the INIT attribute.

The length of an identifier can not exceed 31 characters.

A statement cannot contain references to more than 100 different variables or labels.

GPL User's Guide

A-2 47 A2 36UL Rev03

47 A2 36UL Rev03 B-1

B. Compiler Messages

These are messages that are displayed in the JOR by the GPL compiler.

CCG00. COMMON CODE GENERATOR VERSION vv.nn <update-id>

Meaning: Information message indicating the version of the code
generator used by the compiler. <update-id> gives its
modification level.

GPL00.(vv.nn) SUMMARY FOR program_name
 <error-summary> [no] CU produced

Meaning: Information message displayed for each external procedure
compiled by the activation of the GPL compiler. It indicates:
- The version of the compiler: vv.nn.
- The name of the compiled program.
- The summary of errors detected, i.e. the number of errors

for each severity level if relevant or the phrase 'NO
ERROR'.

- Whether or not a CU was produced.

GPL.K1 ERROR WHEN OPENING THE PRTLIB
 RC = edited return code

Meaning: The GPL compiler failed to OPEN the permanent report file
for the reason indicated by the return code. The most
common user error is: RC = EFNUNKN; the report file
specified has not been found on the indicated volume

Result: The compiler proceeds but the listing is produced in the
standard SYSOUT file, so it will be deleted after being
printed.

Action: Correct the JCL if relevant or contact the Service Center.

GPL.K2. ERROR WHEN OPENING THE PRTFILE
 RC = edited return code.

Refer to message GPL.K1.

GPL User's Guide

B-2 47 A2 36UL Rev03

GPL.K3. ERROR WHEN OPENING THE INLIB

Meaning: The GPL compiler failed to OPEN the file containing source
programs to be compiled. The file can be either a library or
an input enclosure. The most common return code is
EFNUNKN which indicates that the library specified in the
INLIB parameter of the GPL JCL statement has not been
found on the specified volume.

Result: No compilation is performed.

Action: Correct the JCL if relevant or contact the Service Center.

GPL.K4. ERROR WHEN OPENING THE CULIB, OBJECT CODE WILL NOT BE
 PRODUCED.
 RC = edited return code

Meaning: The GPL compiler failed to OPEN the library where the
produced objects should be stored for the reason indicated
by the return code. Such a message is very unusual when a
temporary CU library is used. When a permanent CU library
is used, the most common error is:

RC = EFNUNKN

which indicates that the library specified in the CULIB
parameter of the GPL JCL statement has not been found on
the specified volume.

Result: The compiler continues its processing. It will not generate
any CUs.

Action: Correct the JCL if relevant or contact the Service Center.

GPL.K5. ERROR WHEN PROCESSING SOURCE LIST (BUILD).
 RC = edited return code

Meaning: A problem occurred when the compiler attempted to retrieve
source member names from the input library. The reason is
indicated by the return code.

Result: No compilation is performed.

Action: Report the problem to the Service Center.

GPL.K6. ERROR WHEN OPENING INLIB SUBFILE member-name (OPENS).
 RC = edited return code.

Meaning: An incident occurred when the compiler attempted to access
a source member from the input library. The reason is
indicated by the return code. The incident may be due to a
system error, but the most common error is that the
member does not exist (return code: EFNUNKN).

Result: The compilation is aborted.

Action: Report the problem to the Service Center.

Compiler Messages

47 A2 36UL Rev03 B-3

GPL.K7. ERROR WHEN OPENING PRTLIB SUBFILE proc_name_L (OPENS)

Meaning: An incident occurred when the compiler attempted to create
the member that will receive the listing created by the
compilation. Note that the name of the member is derived
from the procedure name by adding the "_L" suffix. The
reason is indicated by the return code. The incident may be
due to a system error.

Result: The listing will be stored in the standard SYSOUT file, so it
will be deleted after being printed.

Action: Report the problem to the Service Center.

GPL.K8. ERROR WHEN CLOSING INLIB SUBFILE member_name (CLOSES)
 RC = edited return code

Meaning: An incident occurred at the end of reading the source
program. The reason is indicated by the return code. Such
an incident is very unusual and may be due to a system
error.

Result: The compilation of the source program continues.

Action: Check that the compilation was correctly performed and
report the problem to the Service Center.

GPL.K9. ERROR WHEN CLOSING PRTLIB SUBFILE proc_name_L (CLOSES)
 RC = edited return code

Meaning: An incident occurred at the end of the creation of the listing
in the print library. The reason is indicated by the return
code. Such an incident is very unusual and may be due to a
system error. Note that the name of the member is derived
from the procedure name by adding the "_L" suffix.

Result: If no serious error has been detected in the source program,
the CU will already have been generated at the time of the
incident. The listing may however be accessible from the
print library.

Action: Report the problem to the Service Center.

GPL.K10 ERROR WHEN CLOSING CULIB
 RC = edited return code

Meaning: An incident occurred when the compiler attempted to
CLOSE the CU library. The return code gives the reason of
the incident. The incident may be due to a system error.

Result: The CUs have already been produced and may be
accessible in the CU library.

Action: If the incident was an I/O error, check the disk drive and the
disk pack. Contact the Service Center if necessary.

GPL User's Guide

B-4 47 A2 36UL Rev03

GPL.K12. ERROR WHEN CLOSING INLIB
 RC = edited return code

Meaning: An incident occurred when the compiler attempted to
CLOSE the library containing the source programs. The
return code gives the reason for the incident. The incident
may be due to a system error.

Result: The compiler processing continues.

Action: If the incident was an I/O error, check the disk drive and the
disk pack supporting the file. Contact the Service Cen ter if
necessary.

GPL.K12. ERROR WHEN CLOSING SYSOUT
 RC = edited return code

Meaning: An incident occurred when the compiler attempted to
CLOSE the standard SYSOUT file containing the report.
The return code gives the reason for the incident. The
incident may be due to a system error.

Result: This incident occurs at the end of compiler processing when
the CUs have already been produced. The listings may be
accessible and may have successfully printed.

Action: If the incident was an I/O error, check the disk drive and the
disk pack supporting the file. Contact the Service Center if
necessary.

GPL.K12. ERROR WHEN CLOSING PRTLIB
 RC = edited return code

Meaning: An incident occurred when the compiler attempted to
CLOSE the report file, either a library specified in the
PRTLIB parameter of JCL or a sequential file specified in
the PRTFILE parameter of JCL. The return code gives the
reason for the incident. The incident may be due to a system
error.

Result: Refer to the preceding message.

Action: Refer to the preceding message.

Compiler Messages

47 A2 36UL Rev03 B-5

GPL.K13. ERROR WHEN WRITING ON SYSOUT (PUT)
 RC = edited return code

Meaning: The compiler was unable to write a record to the standard
SYSOUT file containing the report. The reason is indicated
by the return code. Such an incident is very unusual and
may indicate a system error.

Result: The compiler stops. However, the generation phase of the
current program has already been performed. Message
GPL00 in the JOR indicates which CUs have already been
produced. A partial listing of the program being processed
may be accessible.

Action: If the incident was an I/O error, check the disk drive and the
disk pack supporting the file. Contact the Service Center if
necessary.

GPL.K13. ERROR WHEN WRITING ON PRTLIB (PUT)
 RC = edited return code

Meaning: The compiler was unable to write a record in the report file,
either a library specified by the PRTLIB parameter or a
sequential file specified in the PRTFILE parameter. The
return code indicates the reason for the incident. The return
code DATALIM means the file or library is full and can no
longer be extended. Note that:

- The PRTFILE is processed in append mode.

- In the PRTLIB, the listing of the procedure "procname" is
stored in the member "procname_L" and replaces those
created by a previous compilation of "procname".

Result: Refer to the preceding message.

Action: Refer to the preceding message.

GPL.K14. ERROR WHEN READING member_name FROM INLIB (GET)
 RC = edited return code
GPL.A61. ERROR WHEN READING member_name FROM INLIB (GET)

Meaning: The compiler was unable to read a source record either
from a user library or from the standard SYS.IN library. The
reason of the incident is given by the return code. Such an
incident is very unusual and may indicate a system error.

Result: The member is not compiled, control passes to the next
member.

Action: If the incident was an I/0 error, check the disk drive and the
disk pack supporting the file. Contact the Service Center if
necessary.

GPL User's Guide

B-6 47 A2 36UL Rev03

GPL.K15. THE SOURCE MEMBER member_name IS EMPTY

Meaning: The specified member given as input to the compiler does
not contain any records.

Result: If several compilations were requested, the compiler goes to
the next compilation.

GPL.K16. ERROR WHEN OPENING THE SYSOUT
 RC = edited return code

Meaning: The compiler was unable to OPEN the standard SYSOUT
file in order to create the compiler report. The return code
gives the reason for the incident. Such an error is very
unusual and may indicate a system error.

Result: The compiler stops. The CU has already been produced in
the CU library.

Action: If the incident was an I/O error, check the disk drive and the
disk pack supporting the file. Contact the Service Center if
necessary.

GPL.K17. THE SOURCE MEMBER member-name DOES NOT EXIST IN THE
INLIB

Meaning: The user asked for compilation of a source program present
in the member "member_name" but the member does not
exist in the specified source library.

Result: If several compilations were requested, the compiler goes
on the next member.

Action: Correct the JCL.

GPL.K18. ERROR WHEN READING THE CR101 FOR member-name
 RC = edited return code

Meaning: The compiler was unable to read the control record 101
either from a user library or from the standard SYSIN
Library. The reason for this incident is very unusual and may
indicate a system error.

Result: The control record is ignored.

Action: As for GPLK.16.

Compiler Messages

47 A2 36UL Rev03 B-7

GPL.K19. THE SOURCE MEMBER member_name IS NOT IN SSF FORMAT

Meaning: The source given in input to the compiler is not in SSF
format and so the compiler cannot process it. This error may
occur when an input enclosure is used and no "TYPE"
parameter is specified in the $INPUT JCL statement. In this
case TYPE = DATA is assumed.

Result: The compiler stops.

Action: If the source was in an input enclosure use TYPE =
DATASSF or TYPE = GPL in the $INPUT JCL statement. If
the source was in a permanent library, use Library
Maintenance to create a member in SSF format. More
detailed explanations on data format and data types can be
found in the Library Maintenance Reference Manual.

GPL.K20. THE SOURCE MEMBER member_name IS NOT IN GPL LANGUAGE

Meaning: The source member given as input to the compiler has
neither TYPE=DATASSF nor TYPE = GPL.

Result: The compiler proceeds, but the results may be
unpredictable if the input text is JCL commands or a
COBOL source program.

Action: Change the TYPE of the source member using the Library
Maintenance processor. More detailed explanations on
source member types can be found in the Library
Maintenance Reference Manual.

GPL.K21. THE TYPE OF THE INLIB LIBRARY SHOULD BE SL

Meaning: The library given as input to the compiler is not a Source
Language library.

Result: The compiler stops.

Action: Check the JCL and correct it if relevant.

GPL.K21. THE TYPE OF THE CULIB LIBRARY SHOULD BE CU

Meaning: The library specified in the CULIB parameter is not a
Compile Unit library.

Result: The compiler stops.

Action: Check the JCL and correct it if relevant.

GPL.K21. THE TYPE OF THE PRTLIB LIBRARY SHOULD BE SL

Meaning: The library specified in the PRTLIB parameter is not a
Source Language library.

Result: The compiler stops.

Action: Check the JCL and correct it if relevant.

GPL User's Guide

B-8 47 A2 36UL Rev03

GPL.K22. THE COMPILER GIVES UP IN phase-name PHASE
 WHEN PROCESSING proc-name.

Meaning: Information message displayed when a compilation is
halted. It indicates:

- The name of the program which was currently processed:
proc_name.

- In which phase of compilation the processing was given
up: phase_name.

Another message in the JOR or in the report usually says
why the processing has been suspended.

GPL.K23 THE COMPILER ABORTS IN phase-name PHASE WHEN COMPILING
 member_name

Meaning: This message is displayed when the compiler aborts due to
an internal error. It indicates:

- The name of the program which was currently processed:
proc_name.

- In which phase of compilation the compiler aborted:
phase_name.

Action: Report the problem to the Service Center.

GPL.K30 UNKNOWN TARGET COMPUTER

Meaning: The value requested for target code is unknown, (CODE
parameter in JCL statement).

Result: The compiler stops

Action: Correct the CODE parameter (see paragraph 4.2.1).

GPL17. OPENS CULIB WORK MEMBER: member_name
 RC = edited return code

Meaning: The compiler was unable to create the member in the CU
library to receive the CU being generated. The return_code
indicates the reason for the incident.

Result: The compiler stops. The old version of the program being
compiled is still available in the CU library because the
compiler creates the new version of the CU in a temporary
member and replaces the old version by the new one only
when the CU generation phase is completed.

Action: Refer to the preceding message.

Compiler Messages

47 A2 36UL Rev03 B-9

GPL18. OPENS CULIB OLD_MEMBER: member_name
 RC = edited return code

Meaning: The compiler was unable to access the member that
contains the old CU version of the program being compiled
in order to replace it by the new version. The return code
indicates the reason for the incident; it is probably due to a
system error.

Result: The compiler stops.

Action: If the incident was an I/O error, check the disk drive and the
disk pack supporting the file, contact the Service Center if
necessary.

GPL19. procname IS ALREADY AN ALIAS IN CULIB. DUPLICATE NAME

Meaning: An attempt was made to create a CU while there already
exists in the library another CU which contains either a
secondary entry point whose name is the same as the name
of the procedure being compiled.

Example:

 Procedure P1: PROC P2: PROC:
 .
 .
 P2 :ENTRY ;
 .
 .
 .
 END P1 ; END P2 ;

The procedure P1 is already compiled; in the CU library
directory there exist two entries P1 and P2. Both entries lead
to the same member; P2 is said to be an alias of P1
therefore a new member P2 cannot be added to the library.

Result: The new CU cannot be created in the library.

Action: Use the LIST command of Library Maintenance CU to get
the name of the procedure that contains the secondary entry
point then rename the new procedure or use a new CU
library.

GPL20. GET CULIB OLD MEMBER: member_name
 RC = edited return code

Meaning: In order to replace an old version of the CU by the new one,
the compiler reads the old CU. An incident occurs while
reading a record. The return code gives the reason for the
incident. It is probably due to a system error.

Result: The compiler stops.

Action: Refer to message GPL18.

GPL User's Guide

B-10 47 A2 36UL Rev03

GPL21. PUT CULIB WORK MEMBER: member_name

Meaning: The compiler was unable to write a CU record in the CU
library. The reason for the incident is given by the return
code. The return code DATALIM indicates that the CU
library is full. The compiler generates the CU in a work
member before replacing the old version of the CU by the
new one. In this way, enough room must be provided in the
CU library to create the work member even when an old
version of the CU already exists in the CU library.

Result: The compiler stops. The old version of the CU, if it exists, is
still available in the CU library

Action: Compile the program again using another CU library. If the
incident was an I/O error, check the disk drive and the disk
pack supporting the library or delete the old CU using the
Library Maintenance CU.

GPL22. STOW(ADD) CULIB ALIAS alias_name TO member_name.
 RC = edited return code

Meaning: The compiler is compiling the GPL program named
"member_name". This program contains a secondary entry
point named "alias_name". The compiler is trying to store in
the directory of the CU library, the name of the secondary
entry point as an alias of the main entry point i.e. both
names will lead to the same CU member. An incident
occurred during the operation. The reason for the incident is
given by the return code. The most common return code is
"DUPNAME". This means that the name of the secondary
entry point already exists in the directory of the library either
as a main entry point or as the secondary entry point of
another procedure.

Result: The new CU is created in the library but the implied name is
not catalogued in the directory as an alias of this CU.

Action: Use the LIST command to check the contents of the CU
library.

GPL23. CLOSES(DELETE) CULIB MEMBER: member_name
 RC = edited return code

Meaning: The compiler was unable to delete the old version of the CU
in the CU library. The reason for the incident is given by the
return code. Such an incident is very unusual and may
indicate a system error.

Result: The compilation continues. Use the LIST command to check
the contents of the library.

Action: If the incident was an I/O error, check the disk drive and the
disk pack supporting the file. Contact the Service Center if
necessary.

Compiler Messages

47 A2 36UL Rev03 B-11

GPL24. CLOSES CULIB WORK MEMBER = member_name.
 RC = edited return code

Meaning: The compiler was unable to CLOSE the CU work member.
The reason for the incident is given by the return code. Such
an incident is very unusual and may indicate a system error.

Result: The compiler stops. The old version of the CU is normally
available in the CU library.

Action: Refer to the message GPL23.

GPL25. STOW(DELETE) CULIB ALIAS: alias name OF member_name.
 RC = edited return code

Meaning: An old version of the CU being created already exists in the
library. The old version of the program had some secondary
entry point whose name was catalogued in the CU library as
an alias name of the main entry point. An incident occurred
while deleting this alias, the name of which is given in the
message. The reason for the incident is given by the return
code.

Result: The compilation continues. The alias involved is not deleted
from the directory of the library. Further consequences can
be:

- Error GPL22 may appear in the same compilation when
the compiler tries to add this name as an alias of the new
CU.

- The return code ADDROUT may be output at linkage time
when this name is referenced.

Action: Refer to message GPL23.

GPL28. CHNAME CULIB FROM WORK member_name_1 TO member_name_2.
 RC = edited return code

Meaning: An old version of the CU being created already exists in the
library. The compiler has created the new version of the CU
in a member with a work name (member_name_1). After
having deleted the old member, the compiler is renaming
the work member with its actual name (member_name_2).
An incident occurred during this operation. The reason is
given by the return code.

Result: The compiler stops.

Action: If the incident was an I/O error, check the disk drive and the
disk pack supporting the file. Contact the Service Center if
necessary.

GPL User's Guide

B-12 47 A2 36UL Rev03

GPL30. VMMACC WORK. RC = edited return code

Meaning: A problem has arisen in the management of the virtual
memory files used by the compiler. The return code gives
the reason for the incident. Such a message indicates a
system error.

Result: The compiler stops.

Action: Contact the Service Center.

GPL31. VMFOP WORK.
 RC = edited return code

Refer to message GPL30

GPL32. VMFCL VORK. RC = edited return code

Refer to message GPL30.

GPL35. SEGSIZE FCB_POOL
 RC = edited return code

Refer to message GPL30.

GPL47. VMM TABLE OVERFLOW

Meaning: An internal problem has arisen in the management of the
virtual memory work files used by the compiler.

Result: The compiler stops.

Action: Report the problem to the Service Center.

GPL48. UPDATE: ERRONEOUS LENGTH

Refer to the message GPL47.

47 A2 36UL Rev03 C-1

C. Example GPL Program

This short program, called SAMPLE_GPL, reads a text and computes the number of
occurrences of each word encountered in the text. These statistics are then output. The
program calls external entry points to deal with environment management (I/O and
errors).

All the listings produced during the development of the program are given below.

*

*
**** GCOS7

**** G P L

**** VERSION: 80.00 DATED: SEP 29,1989

*****SAMPLE_GPL_L*********************************
20***

*

Active options are :
OBJ, NDEBUG, WARN, OBSERV, MAP, NDCLXREF, XREF, LIST, NDEBUGMD, CASEQ, ILN, OBJCD, LEVEL=GPL,
OPTIMIZE=STATEMENT
10:54:36 MAY 31, 1990 X3463.1 Compilation of LSFY.DOC.SLLIB: SAMPLE_GPL

 1 Sample_gpl : PROC;
 2 /*
 3 This little program is intended to read a text and to compute
 4 the number of occurrences of each word encountered in the text
 5 and then to output these statistics.
 6 It calls external entry points dealing with environment
 7 management (i_o and errors).
 8 */
 9 %REPLACE Buffer_max_length BY 100;
10 %REPLACE Max_number_of_words BY 200;
11 %REPLACE Max_word_length BY 20;
12 DCL 1 Input_interface EXTERNAL STATIC,
13 2 Buffer_length FIXED BIN (15),
14 2 Buffer CHAR (Buffer_max_length),
15 2 End_of_file BIT (1) INIT ("0"b) ;
16 DCL (Read_in_buffer, Write_word_array) ENTRY EXTERNAL;
17 DCL Error ENTRY (CHAR (*) INPUT) EXTERNAL;
18 DCL 1 Word (Max_number_of_words) EXTERNAL STATIC,
19 2 Name CHAR (Max_word_length),
20 2 Counter FIXED BIN (15);
21 %REPLACE Separators BY ",.;'()? ";
22 %REPLACE Letters BY "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
23 DCL Number_of_words FIXED BIN (15) EXTERNAL STATIC INIT (0);
24 DCL Buffer_index FIXED BIN (15),
25 Length_of_word FIXED BIN (15),
26 I FIXED BIN (15);
27 DO FOREVER; /* Get a new buffer */
28 CALL Read_in_buffer;
29 IF End_of_file
30 THEN LEAVE;
31 Buffer_index = 1;

GPL User's Guide

C-2 47 A2 36UL Rev03

32 DO FOREVER;
33 I = VERIFY (SUBSTR (Buffer, Buffer_index, Buffer_length-Buffer_index),
Separators);
34 IF I = 0 THEN LEAVE;
35 Buffer_index = Buffer_index + I - 1;
36 I = VERIFY (SUBSTR (Buffer, Buffer_index, Buffer_length-Buffer_index),
Letters);
37 SELECT (I);
38 WHEN (1) DO;
39 CALL Error ("Illegal character " !! SUBSTR (Buffer,
Buffer_index,1));
40 Buffer_index = Buffer_index + 1;
41 END;
42 WHEN (0) DO;
43 Length_of_word = Buffer_length - Buffer_index + 1;
44 CALL Process_word (SUBSTR (Buffer, Buffer_index, Length_of_word));
45 Buffer_index = Buffer_index + Length_of_word;
46 END;
47 OTHER DO;
48 Length_of_word = I - 1;
49 CALL Process_word (SUBSTR (Buffer, Buffer_index, Length_of_word));
50 Buffer_index = Buffer_index + Length_of_word;
51 END;
52 END; /* Select */
53 IF Buffer_index > Buffer_length THEN LEAVE;
54 END;
55 END;
56 CALL Write_word_array;

57 Process_word : PROC (Cur_name);
58 DCL Cur_name CHAR (*) INPUT;
59 DCL i FIXED BIN (15);
60 DO i = 1 TO Number_of_words;
61 IF Cur_name = Word (i).name
62 THEN DO;
63 Word (i).Counter = Word (i).Counter + 1;
64 RETURN;
65 END;
66 END;
67 IF Number_of_words = Max_number_of_words
68 THEN CALL Error ("Sorry, your vocabulary is too wide for me");
69 IF MEASURE (Cur_name) > Max_word_length
70 THEN CALL Error ("Sorry, this word is too long");
71 Number_of_words = Number_of_words + 1;
72 Word (Number_of_words).Name = Cur_name;
73 Word (Number_of_words).Counter = 1;
74 END Process_word;
75 END Sample_gpl;

Figure C-1. Compiler Source Listing

Example GPL Program

47 A2 36UL Rev03 C-3

SAMPLE_GPL / 0 08/ PROCEDURE
INPUT_INTERFACE / 1 00/ DATA
NUMBER_OF_WORDS / 2 00/ DATA
 3 SYMDEFS GENERATED: 2 REFERENCE DATA. 1 REFERENCE PROCEDURES.
THE ADDRESSES ABOVE REFER TO INTERNAL SEGMENT NUMBERS (ISN'S) WHICH ARE MAPPED INTO
SEGMENT TABLE NUMBERS (STN'S) AND SEGMENT TABLE ENTRIES (STE'S) BY THE STATIC LINKER.

Figure C-2. SYMDEF Data Map

 / 0 0C/= / 0 10/ SEGMENT NUMBER
SAMPLE_GPL / 0 10/ PROCEDURE
INPUT_INTERFACE / 0 14/ DATA
READ_IN_BUFFER / 0 18/ PROCEDURE
WRITE_WORD_ARRAY / 0 1C/ PROCEDURE
ERROR / 0 20/ PROCEDURE
WORD / 0 24/ DATA
NUMBER_OF_WORDS / 0 28/ DATA
 / 0 08/= E/ 0 290/ SEGMENT NUMBER
 9 SYMREFS GENERATED: 3 REFERENCE DATA. 4 REFERENCE PROCEDURES. 2 SEGMENT
NUMBERS.
THE ADDRESSES ABOVE REFER TO INTERNAL SEGMENT NUMBERS (ISN'S) WHICH ARE MAPPED INTO
SEGMENT TABLE NUMBERS (STN'S) AND SEGMENT TABLE ENTRIES (STE'S) BY THE STATIC LINKER.

Figure C-3. SYMREF Data Map

LINKAGE SECTION / 0 10/ 17C (380)
CODE SEGMENT / 0 18C/ 2D6 (726)
DATA SEGMENT / 1 00/ 67 (103)
DATA SEGMENT / 2 00/ 02 (2)

Figure C-4. Segment Map

LINE:LOC LINE:LOC LINE:LOC LINE:LOC LINE:LOC LINE:LOC LINE:LOC LINE:LOC LINE:LOC
LINE:LOC

ISN: 0
 1:290 28:298 29:2A4 30:2B2 31:2B6 33:2BC 34:2E6 34:2EE 35:2F2
36:300
37:32A 39:346 40:382 41:388 43:38C 44:39A 45:3E0 46:3E8 48:3EC
49:3F6
50:43C 53:444 53:450 54:454 55:454 56:454 57:18C 60:194 61:1AE
63:1CC
64:1DE 66:1E2 67:1EC 68:1F8 69:224 70:230 71:25C 72:262 73:27C
74:28C
75:460

LOC:LINE LOC:LINE LOC:LINE LOC:LINE LOC:LINE LOC:LINE LOC:LINE LOC:LINE LOC:LINE
LOC:LINE

ISN: 0
18C:57 194:60 1AE:61 1CC:63 1DE:64 1E2:66 1EC:67 1F8:68 224:69
230:70
25C:71 262:72 27C:73 28C:74 290:1 298:28 2A4:29 2B2:30 2B6:31
2BC:33
2E6:34 2EE:34 2F2:35 300:36 32A:37 346:39 382:40 388:41 38C:43
39A:44
3E0:45 3E8:46 3EC:48 3F6:49 43C:50 444:53 450:53 454:56 460:75

Figure C-5. Line Location Data Map

GPL User's Guide

C-4 47 A2 36UL Rev03

BUFFER_MAX_LENGTH INTEGER 100 9 14
LETTERS CHAR_STRING "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef" 22 36
 "ghijklmnopqrstuvwxyz"
MAX_NUMBER_OF_WORDS INTEGER 200 10 18 67
MAX_WORD_LENGTH INTEGER 20 11 19 69
SEPARATORS CHAR_STRING ",.;'()? " 21 33

2 BUFFER(INPUT_INTERFACE) ?BR7.4->2 CHAR(100) EXT STATIC DCL: 14
 33 36 39 44 49
 BUFFER_INDEX ?BR1.18 FIXED BIN(15) AUTO DCL:
24
 31m 33 33 35 35m 36
36 39 40 40m
 43 44 45 45m 49 50
50m 53
2 BUFFER_LENGTH(INPUT_INTERFACE) ?BR7.4->0 FIXED BIN(15) EXT STATIC DCL: 13
 33 36 43 53
2 COUNTER(WORD) ?BR7.14->14 ARRAY FIXED BIN(15)EXT STATIC DCL: 20
 63 63m 73m
 CUR_NAME ?BR1.C->0 CHAR(*) PARAM DCL: 58
 61 72
2 END_OF_FILE(INPUT_INTERFACE) ?BR7.4->66 BIT(1) EXT STATIC DCL: 15i
 29
 ERROR ?BR7.10 ENTRY RECURSIVE EXT DCL: 17
 39 68 70
 I ?BR1.14 FIXED BIN(15) AUTO DCL: 26
 33m 34 35 36m 37 48
 I ?BR1.1C FIXED BIN(15) AUTO DCL: 59
 60m 61 63 63
1 INPUT_INTERFACE ?BR7.4->0 STRUCTURE EXT STATIC DCL: 12
NO REF
 LENGTH_OF_WORD ?BR1.16 FIXED BIN(15) AUTO DCL: 25
 43m 44 45 48m 49 50
2 NAME(WORD) ?BR7.14->0 ARRAY CHAR(20) EXT STATIC DCL: 19
 61 72m
 NUMBER_OF_WORDS ?BR7.18->0 FIXED BIN(15) EXT STATIC DCL: 23i
 60 67 71 71m 72 73
 PROCESS_WORD ?BR1.4 PROCEDURE INT DCL: 57
 44 49
 READ_IN_BUFFER ?BR7.8 ENTRY RECURSIVE EXT DCL: 16
 28
 SAMPLE_GPL ?BR7.0 PROCEDURE RECURSIVE EXT DCL: 1 NO
REF
1 WORD ?BR7.14->0 ARRAY STRUCTURE EXT STATIC DCL: 18 NO
REF
 WRITE_WORD_ARRAY ?BR7.C ENTRY RECURSIVE EXT DCL: 16
 56

Figure C-6. Cross Reference List

 + + + NO ERROR MESSAGES + + +
 OBJECT CODE PRODUCED

Figure C-7. Summary Page

Example GPL Program

47 A2 36UL Rev03 C-5

*

*
**** GCOS7

**** L I N K E R

**** VERSION: 90.00 DATED: JUN 30,1986

*****SAMPLE_GPL_K*** 18 -
2*************************

*

ADDITIONAL INFO: 4 5

 1 CODE (DEFAULT): OBJC OBJD
*********************************** LINKER CONTROL STATEMENTS

 2 LIST=S ,
*** TASK=MAIN
**
 3 PROCESS OCCURRENCES : P0
 4 FATHER PROCESSES : NONE
 5 BASE 1ST PAGE NB.PAGES SH INITSIZE MAXSIZ
 6 STACK RING 0 8.14 NONE 0 3 0 4096
 7 STACK RING 1 8.15 8.16 5 3 2048 16384
 8 STACK RING 2 8.1C NONE 0 3 2048 16384
 9 STACK RING 3 8.1D NONE 0 3 2048 32768
10 ENTRY POINT = SAMPLE_GPL LOCATION: 8.10.000008 IN CU: SAMPLE_GPL
11 ===================================GROUP
INFORMATION=======================================
12 MINIMUM CONTROL MEMORY REQUIRED : 8416 MINIMUM USER MEMORY REQUIRED :
12176
13 FIXED SIZE SEGTS. CUMULATED SIZE: 16560 VAR SIZE SEGS CUMUL INITIAL SIZE:
6240
14 VAR SIZE SEGS CUMUL MAXIMAL SIZE: 294912 LOAD MODULE SIZE :
23861
15 CONTROL SEGMENTS
16 SEG NUM SEG NUM
17 PGCR 9. 0 PCS 8. 0
18 NPCS 8. 1 ITS LIST 9. 2
19 TASK.DIR. 9. 3 DEBUGGING 9. 5
20 PG PCP S 9. 6 OPTION 9. 7
21 PGFECB 9. 8 DECB 9. 9
22 SEMPH. POOL 9. D SYMBMAP 9. C
23 TERMINATION 9. 4 ASL2 9. 1
24 ASL3 8. 3
25 GLOBAL SEGMENTS
26 SEGNAME SEG NUM CONTAINS
27 __BLANK 8.11 LOCATION LOCATION
28 INPUT_INTERFACE 000000 NUMBER_OF_WORDS 000067
29 WORD 000069 INPUT 001199
30 OUTPUT 0011A1
31 __SLFICB 9. A LOCATION LOCATION
32 H_S_INPUT 000000 H_S_OUTPUT 00004D
33 __REFTAB 9. B LOCATION LOCATION
34 H_STND2_TDF1 000004 H_DFPRE_UOPF 000011
35 H_TASKM_UABT 00001E H_DFPRE_UCFM 00002B
36 SEGMENT LIST
37 SEG. IN CU.ISN TYPE SH RF RD WR EX WP EP G S SIZE MAXSIZE CONT.P.
38 8. 0 PCS .D. 3 3 3 0 0 W 320 *
39 8. 1 NPCS .D. 3 3 3 1 0 W 32 *
40 8. 3 ASL3 .D. 3 3 1 0 0 W 16 32768 *
41 8.10 SAMPLE_GPL.0 C.L 3 3 3 3 3 E 1136 0
42 8.11 __BLANK .D. 3 3 3 3 3 W 4528 0
43 8.12 ERROR.0 C.L 3 3 3 3 3 E 1504 0
44 8.13 ERROR.6 .D. 3 3 3 3 0 W 16 0
45
46 9. 0 PGCR CD. 2 3 3 0 3 W E 4576
47 9. 1 ASL2 .D. 2 3 1 0 0 W 80 32768
48 9. 2 ITS LIST .D. 2 0 3 1 0 W 208
49 9. 3 TASK.DIR. .D. 2 3 3 0 0 W 48
50 9. 4 TERMINATION .D. 2 3 3 0 0 W S 96
51 9. 5 DEBUGGING .D. 2 3 3 1 0 W 0 32768
52 9. 6 PG PCP S .D. 2 0 1 0 0 W E 0 32768
53 9. 7 OPTION .D. 2 2 3 3 0 W 0 32768
54 9. 8 PGFECB .D. 2 3 1 0 0 W 0 32768
55 9. 9 DECB .D. 2 3 3 1 0 W 0 32768

GPL User's Guide

C-6 47 A2 36UL Rev03

56 9. A __SLFICB .D. 2 3 3 1 3 W 160
57 9. B __REFTAB .D. 2 3 3 0 0 W 64
58 9. C SYMBMAP .D. 2 3 3 1 0 240
59 9. D SEMPH. POOL .D. 2 3 3 1 1 W S 3632
60
=======================================LIST OF CU (S) ======================================
 ERROR INLIB CREATED 10:16:12 MAY 28, 1990 BY: GPL 80.0
 CU OPTION : EOD
 SAMPLE_GPL INLIB CREATED 10:16:12 MAY 28, 1990 BY: GPL 80.0
 CU OPTION : EOD
***************************************LINKAGE REPORT***************************************
 NO ERRORS DETECTED

. OUTPUT MODULE PRODUCED ON LIBRARY ;009315.TEMP.LMLIB
MODULE IS OF CLASS (CODE): 0

 NUMBER OF ITEMS PROCESSED

 - COMPILE UNITS 2
 - SYMDEFS 11 (PROC 4, DATA 7)
 - SYMREFS 25 (PROC 7, DATA 18)
 - CALLED SYSDEFS 4
 - NB OF CALL ''' 6
 - EXT. DATA NAMES 11
 - SEG.ENTRIES USED 510 (TYPE 2 255,TYPE 3 255)
 TYPE 2 VACANT 241
 TYPE 3 VACANT 225 IN MAIN
L*I*N*K*E*R
*************************************** END OF SESSION **********************************LAST
PERCENTAGE OF SPACE USED 2

Figure C-8. LINKER Listing

47 A2 36UL Rev03 i-1

Index

%

%DEBUG 6-2

A

ADDREL builtin function 13-2
addressing

paths 10-3
shortcuts 10-3

addressing of data 8-1
alignment

automatic 9-2
other data 9-2
parameters 9-1

ALLOC builtin function 13-2
anticipation in optimization 14-8
arguments

empty 10-8
matching with parameters 10-6
passed by value 10-6
variable number 10-7

arithmetic
data 7-2
precision of literals 7-2
variables 7-5

arrays
structuring of 7-7

assembly language 14-1
ASSIGN GPL command 12-1
attributes

CONSTANT 8-1, 9-9
INPUT 9-8
NOMAP 9-7, 13-1, 14-15
NOSUBRG 9-6
RECURSIVE 10-5
REDUCIBLE 9-8, 14-15
RETURNS 10-5
SHORT 9-7, 13-1

automatic data 8-3, 9-3

B

banner page, GPL compiler 4-7
batch use MACPROC 3-1
BEGIN blocks 7-1, 12-2
BEGIN GPL command 12-2
BINARY builtin function 11-4
builtin functions

ADDREL 13-2
ALLOC 13-2
BINARY 11-4
CHAR 11-4
code data independence 13-1
conversion 13-2
handling pointers 13-2
handling variable length strings 13-1
HBOUND 13-1
LBOUND 13-1
LENGTH 13-1
MEASURE 13-1
MOVERTL 13-2
moving strings 13-2
POINTER 13-2
REL 13-2

C

CHAR builtin function 11-4
code data independence 13-1
coherence rule in optimization 14-3
compile-time statements

%DEBUG 6-2
%END_DEBUG 6-2

compiler
indexed table address 14-1
JOR messages 4-13, B-1
limits A-1
optimization levels 14-2
redundant expressions 14-1

compromised time, storage 14-4
CONSTANT attribute 9-9
constant data 8-1, 9-9

GPL User's Guide

i-2 47 A2 36UL Rev03

constant folding 14-5
constants versus literals 7-4
copy propagation 14-5
creation of a library member 2-2
cross reference listing,
GPL compiler 4-11, 6-4, C-4

D

data
addressing of 8-1
alignment of 9-1
arithmetic 7-2
automatic 8-3, 9-2, 9-3
constant 8-1, 9-9
entry 7-6
initialization of 9-4
label 7-6
logbin type 7-2
parameter 8-6
pointer 7-6
sharing between procedures 5-3
static 8-2
string 7-5
structuring of 7-7

debugging codeSee Program Checkout
Facility: 6-3
deleting in optimization

global redundancy 14-6
inaccessible code 14-7
partial redundancy 14-9
useless code 14-7

DO GPL command 12-3
dollar sign ($), use of 3-9
DOPE 8-4, 8-6, 10-6

E

EDIT See Text Editor:
2-2

efficiency rule in optimization 14-3
entry data 7-6
ENTRY GPL command 12-5
entry variables 7-6
example GPL program C-1
exception messages

hardware 6-6
software 6-8

EXEC_PG GPL command 6-1
expression

conditional 11-5
conversion 11-3
length 11-2
precision 11-2

EXTERNAL functions 10-5
external procedure parameters 8-6

EXTERNAL procedures 10-5

F

format
line, interactive 2-5
source program 2-5

FSE See Full Screen Editor:
2-2

Full Screen Editor (FSE) 2-2, 2-6
functions

external 10-5
internal 10-5

G

general output, GPL compiler 4-7
global optimization 14-2, 14-15
global redundancy in optimization 14-6
GPL compiler

banner page 4-7
cross reference listing 4-11, 6-4, C-4
general output 4-7
JOR messages 4-13, B-1
limits A-1
line location map 4-10, 6-4
segment map 4-10
source program listing 4-7, C-3
summary page 4-12, C-5
SYMDEF map 4-9, C-3
SYMREF map 4-10, C-3

GPL exception messages
hardware 6-6
software 6-8

GPL GCL command 4-1, 6-2
GPL JCL statement 2-1, 3-5, 4-1, 6-2
GPL program

code packaging 12-9
data packaging 12-9
example C-1

GPL statement parameters
OPTIMIZE 14-4

GPL statements
ASSIGN 12-1
BEGIN 12-2
DO 12-3
ENTRY 12-5
EXEC_PG 6-1
LEAVE 12-3
PROCEDURE 12-5
SELECT 12-6

group information listing (LINKER) 6-4

Index

47 A2 36UL Rev03 i-3

H

handling pointers 13-2
handling variable-length strings 13-1
hardware exception messages, JOR 6-6
HBOUND Builtin function 13-1

I

implementation criteria
optimization 14-14

in-line insertion 14-14
IND Full Screen Editor request 2-6
initialization of data 9-4
INPUT attribute 9-8
input enclosure 2-1
interactive

creation of a library member 2-2
line format 2-5

interactive use of MACPROC 3-3
INTERNAL functions 10-5
internal procedure parameters 8-6
INTERNAL procedures 10-5
intrinsic criteria

optimization 14-14

J

JCL statements
GPL 2-1, 3-5, 4-1, 6-2
LIB 5-1
LINKER 5-1
MACPROC 2-1, 3-1
STEP 6-1, 6-3

job execution messages 6-6
JOR messages

exception, hardware 6-6
exception, software 6-8
GPL compiler 4-13, B-1
job excecution 6-6

L

label data 7-6
LBOUND builtin function 13-1
LEAVE GPL command 12-3
LENGTH builtin function 13-1
LIB JCL statement 5-1
library member, creation of 2-2
line format

interactive 2-5
line location map, GPL compiler 4-10, 6-4
LINKER

batch mode 5-1

group information listing 6-4
interactive mode 5-2
JCL statement 5-1
JCL step 1-1
listing C-6
utility 5-1

literals
precision of arithmetic 7-2
symbolic 7-3
versus constants 7-4

logbin type data 7-2
loop control variables 14-12
loop unrolling 14-13

M

MACPROC
batch mode 3-1
expansion code 1-1, 2-1, 6-4
interactive mode 3-3
JCL statement 2-1, 3-2
listing 3-8
syntax 3-1

MEASURE builtin function 13-1
messages, JOR

compiler 4-13, B-1
exception, hardware 6-6
exception, software 6-8
job excecution 6-6

monotask procedure references 5-7
MOVERTL builtin function 13-2
moving strings 13-2
multitask procedure references 5-8

N

name hiding 10-1
NOMAP attribute 9-7, 13-1
non-local goto 14-15
NOSUBRG attribute 9-6

O

object code 14-1
optimization

anticipation 14-8
coherence rule 14-3
compromised time and storage rule 14-4
constant folding and copy
propagation 14-5
deleting global redundancy 14-6
deleting partial redundancy 14-9
deleting useless or inaccessible
code 14-7
efficiency rule 14-3

GPL User's Guide

i-4 47 A2 36UL Rev03

global 14-2, 14-15
implementation criteria 14-14
in-line insertion 14-14
intrinsic criteria 14-14
local 14-2
loop control variables 14-12
loop unrolling 14-13
non-local goto 14-15
procedure merging 14-14
removing loop invariants 14-9
source program 14-2
strength reduction 14-11
temporization 14-8

optimization levels
0 through 4 14-4
default (1) 14-4
extended linear sequence 14-2
statement 14-2

OPTIMIZE statement parameter 14-4
output from GPL compiler

banner page 4-7
cross reference listing 4-11, 6-4, C-4
line location map 4-10, 6-4
segment map 4-10
source program listing 4-7
summary page 4-12, C-5
SYMDEF map 4-9, C-3
SYMREF map 4-10, C-3

P

parameter
alignment 9-1
code 4-4
data 8-6
descriptor 10-7
matching arguments with 10-6

passing (COBOL) pointers 5-5
PCF See Program Checkout Facility:

6-3
POINTER builtin function 13-2
pointer data 7-6
pointers 7-6

passing (COBOL) 5-5
primitives

in source programs 3-9
system 1-1

PROCEDURE GPL command 12-5
procedure merging 14-14
procedure references

monotask 5-7
multitask 5-8

procedures
external 10-5
external parameters 8-6
internal 10-5
internal parameters 8-6

Program Checkout Facility (PCF) 6-3

effective addressing 6-4
multitasking and 6-5
primitives and 6-4
symbolic addressing 6-4

R

RECURSIVE attribute 10-5
REDUCIBLE attribute 9-8
redundant expressions 14-1
REL builtin function 13-2
removing loop invariants in optimization 14-9
Request, IND 2-6
resolving references 10-1
RETURNS attribute 10-5

S

segment map, GPL compiler 4-10
SELECT GPL command 12-6
sharing data

between procedures 5-3
SHORT attribute 9-7, 13-1
shortcut addressing 10-3
software exception messages, JOR 6-8
source program

format 2-5
listing (GPL Compiler) 4-7
listing, GPL compiler C-3
optimizing with 14-2
primitives within 3-9

source program listing, GPL compiler 4-7
SSF See System Standard Format:

2-5
static data 8-2
STEP JCL statement 6-1, 6-3
storage sharing 8-10
strength reduction in optimization 14-11
string data 7-5
string variables 7-5
strings

handling variable length 13-1
moving 13-2

structuring arrays 7-7
structuring data 7-7
summary page, GPL compiler 4-12, C-5
symbolic literals 7-3
SYMDEF 4-9
SYMDEF map, GPL compiler 4-9, C-3
SYMREF 4-10
SYMREF map, GPL compiler 4-10, C-3
system primitives 1-1
System Standard Format (SSF) 2-5, 3-4

Index

47 A2 36UL Rev03 i-5

T

temporization in optimization 14-8
Text Editor (EDIT) 2-2

V

variables
arithmetic 7-5
entry 7-6
string 7-5

GPL User's Guide

i-6 47 A2 36UL Rev03

Technical publication remarks form

Title : DPS7000/XTA NOVASCALE 7000 GPL User's Guide Languages: General

Reference Nº : 47 A2 36UL 03 Date: July 1990

ERRORS IN PUBLICATION

SUGGESTIONS FOR IMPROVEMENT TO PUBLICATION

Your comments will be promptly investigated by qualified technical personnel and action will be taken as required.
If you require a written reply, please include your complete mailing address below.

NAME : Date :

COMPANY :

ADDRESS :

Please give this technical publication remarks form to your BULL representative or mail to:

Bull - Documentation Dept.

1 Rue de Provence
BP 208
38432 ECHIROLLES CEDEX
FRANCE
info@frec.bull.fr

Technical publications ordering form

To order additional publications, please fill in a copy of this form and send it via mail to:

BULL CEDOC
357 AVENUE PATTON
B.P.20845
49008 ANGERS CEDEX 01
FRANCE

Phone: +33 (0) 2 41 73 72 66
FAX: +33 (0) 2 41 73 70 66
E-Mail: srv.Duplicopy@bull.net

CEDOC Reference # Designation Qty

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

_ _ _ _ _ _ _ _ _ [_ _]

[_ _] : The latest revision will be provided if no revision number is given.

NAME: Date:

COMPANY:

ADDRESS:

PHONE: FAX:

E-MAIL:

For Bull Subsidiaries:

Identification:

For Bull Affiliated Customers:

Customer Code:

For Bull Internal Customers:

Budgetary Section:

For Others: Please ask your Bull representative.

BULL CEDOC

357 AVENUE PATTON

B.P.20845

49008 ANGERS CEDEX 01

FRANCE

47 A2 36UL 03
REFERENCE

	GPL User's Guide - 47 A2 36UL Rev03
	Preface
	Table Of Contents
	1. Introduction
	2. Input And Maintenance Of Source
	2.1	INPUT ENCLOSURES
	2.1.1	Source Libraries
	2.1.2	Creating A Library Member Interactively

	2.2	UPDATING THE SOURCE MEMBER
	2.3	SOURCE PROGRAM FORMAT
	2.3.1	Interactive Line Format
	2.3.2	System Standard Format

	2.4	THE IND REQUEST

	3. Using Macproc
	3.1	BATCH MODE
	3.1.1	The MACPROC JCL Statement

	3.2	INTERACTIVE MODE
	3.2.1	Execution Of Macproc
	3.2.2	Interactive Jcl

	3.3	PARAMETER DESCRIPTION
	3.3.1	Source-Inlib-Lib And Inlibn
	3.3.2	Outlib
	3.3.3	Prtlib
	3.3.4	List And Nlist
	3.3.5	Xref-Bxref And Nxref
	3.3.6	Silent And Nsilent
	3.3.7	Observ-Nobserv-Warn And Nwarn

	3.4	THE MACPROC LISTING
	3.5	USE OF THE $ CHARACTER IN SOURCE PROGRAMS

	4. Using The GPL Compiler
	4.1	THE JCL STATEMENT GPL
	4.2	DESCRIPTION OF PARAMETERS
	4.2.1	The Code Parameter

	4.3	GCL MODE
	4.4	COMPILER OUTPUT
	4.4.1	Banner Page
	4.4.2	Source Program Listing
	4.4.2.1	Line Numbers
	4.4.2.2	Primitives
	4.4.2.3	Diagnostic Messages In The Source Listing

	4.4.3	Data Maps
	4.4.3.1	Symdef Map
	4.4.3.2	Symref Map
	4.4.3.3	Segment Map
	4.4.3.4	Line Location Map

	4.4.4	Cross Reference Listing
	4.4.5	Summary Page

	4.5	NAMING CONVENTIONS
	4.6	COMPILER MESSAGES IN THE JOR

	5. Linking and Communication
	5.1	USING THE LINKER
	5.1.1	Linking In Batch
	5.1.2	Interactive Linking

	5.2	DATA SHARING
	5.2.1	Data Sharing Between Procedures
	5.2.2	Data Sharing Between Tasks
	5.2.3	Communication Between Different Languages
	5.2.3.1	Data Types And Other Compilers

	5.2.4	Passing Pointers From A Cobol Program

	5.3	PROCEDURE REFERENCES
	5.3.1	Procedure References In A Monotask Program
	5.3.2	Procedure References In A Multitask Program

	6. Execution and Debugging
	6.1	THE JCL STATEMENT STEP
	6.2	THE GCL STATEMENT EXEC_PG
	6.3	DEBUGGING CODE
	6.4	PROGRAM CHECKOUT FACILITY
	6.4.1	Symbolic Addressing And Effective Addressing
	6.4.2	Primitives And Pcf
	6.4.3	Multitask Programs And Pcf

	6.5	JOB EXECUTION MESSAGES
	6.5.1	Exception Messages Specific To GPL Programs
	6.5.1.1	Hardware Exceptions
	6.5.1.2	Software Exceptions

	7. Literals And Variables
	7.1	LITERAL VALUES
	7.1.1	Types
	7.1.2	Logbin Type
	7.1.3	About Syntax
	7.1.4	Precision Of Arithmetic Literals
	7.1.5	Use Of Symbolic Literals
	7.1.6	Literals Versus Constants

	7.2	VARIABLES
	7.2.1	Arithmetic Data
	7.2.2	String Data
	7.2.3	Program Control
	7.2.3.1	Pointer Handling
	7.2.3.2	Entry Variables

	7.2.4	Structuring Data

	8. Storage Control
	8.1	ADDRESSING OF DATA
	8.1.1	Constant Data
	8.1.2	Static Data
	8.1.3	Automatic Data
	8.1.4	Parameter Data

	8.2	SCOPE USAGE
	8.3	STORAGE SHARING
	8.3.1	Static Versus Dynamic
	8.3.2	Sharing Table For Based Variables

	9. Declarations
	9.1	ALIGNMENT
	9.1.1	The Alignment Of Parameters
	9.1.2	The Alignment Of Other Data

	9.2	ADJUSTABLE ELEMENTS
	9.3	INITIALIZATION OF DATA
	9.4	USE OF THE NOSUBRG ATTRIBUTE
	9.5	ATTRIBUTES THAT IMPROVE PERFORMANCE
	9.5.1	Short
	9.5.2	Nomap
	9.5.3	Input
	9.5.4	Reducible
	9.5.5	Constant
	9.5.6	Byte

	10. References
	10.1	RESOLVING REFERENCES
	10.2	SHORT-CUT IN THE ADDRESSING PATH
	10.3	PROCEDURES AND FUNCTIONS
	10.4	PARAMETERS AND ARGUMENTS
	10.4.1	The Argument Is Passed By Value
	10.4.2	Descriptors
	10.4.3	Variable Number Of Arguments
	10.4.4	Empty Arguments

	11. Expressions
	11.1	GENERAL REMARKS
	11.2	USING BRACKETS
	11.3	PRECISION AND LENGTH
	11.4	CONVERSIONS
	11.5	CONDITIONAL EXPRESSIONS
	11.6	REAL COMPARISONS

	12. Statements
	12.1	ASSIGNMENT
	12.2	BEGIN
	12.3	DO/LEAVE
	12.4	PROCEDURE AND ENTRY
	12.5	SELECT
	12.6	PACKAGING OF GPL PROGRAMS
	12.6.1	Data
	12.6.2	Code

	13. Builtin Functions
	13.1	PARAMETERIZATION
	13.2	HANDLING VARIABLE LENGTH STRINGS
	13.3	POINTER HANDLING
	13.4	CONVERSIONS
	13.5	MOVING STRINGS

	14. Optimizing with GPL
	14.1	INTRODUCTION
	14.1.1	The Goals of the Optimizer
	14.1.2	The Local Optimizer
	14.1.3	The Global Optimizer
	14.1.4	Optimization Levels

	14.2	GLOBAL OPTIMIZER FUNCTIONS
	14.2.1	Constant Folding and Copy Propagation
	14.2.2	Deleting Globally Redundant Expressions
	14.2.3	Deleting Useless or Inaccessible Code
	14.2.4	Anticipation and Temporization
	14.2.5	Deleting Partially Redundant Expressions
	14.2.6	Removing Loop Invariants
	14.2.7	Strength Reduction and Processing of Loop Control
	14.2.7.1	Strength Reduction
	14.2.7.2	Processing of Loop Control Variables

	14.2.8	Loop Unrolling
	14.2.9	Procedure Merging

	14.3	USING THE GLOBAL OPTIMIZER

	A. Compiler Limits
	B. Compiler Messages
	C. Example GPL Program
	Index

